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ABSTRACT
Genome-wide association studies (GWAS) identify correla-
tions between the genetic variants and an observable charac-
teristic such as a disease. Previous works presented privacy-
preserving distributed algorithms for a federation of genome
data holders that spans multiple institutional and legisla-
tive domains to securely compute GWAS results. However,
these algorithms have limited applicability, since they still
require a centralized instance to operate on the data and
decide whether GWAS results can be safely disclosed, which
violates privacy regulations, such as GDPR. In this work,
we introduce GenDPR, a distributed middleware that lever-
ages Trusted Execution Environments (TEEs) to securely
determine a subset of the potential GWAS statistics that can
be safely released. GenDPR achieves the same accuracy as
centralized solutions, but requires transferring significantly
less data because TEEs only exchange intermediary results
but no genomes. Additionally, GenDPR can be configured
to tolerate all-but-one honest-but-curious federation mem-
bers colluding with the aim to expose genomes of correct
members.

CCS CONCEPTS
•Computingmethodologies→Distributed computing
methodologies; • Computer systems organization →
Distributed architectures; • Security andprivacy→Pri-
vacy protections; Privacy-preserving protocols.
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1 INTRODUCTION
Genome-Wide Association Studies (GWAS) are essential sta-
tistical analyses that aim at better understanding the cor-
relations between genomic variations and observable traits
or diseases, called phenotypes. GWAS play an important
role in human health research and the development of preci-
sion/personalized medicine [10].
As the precision of GWAS increases with the size of the

genomic dataset they study, biocenters are incentivized to
perform studies collaboratively. A variety of cryptographic
solutions have been proposed to compute GWAS statistics in
a distributed and secure manner [7–9, 17, 22, 28, 47]. How-
ever, secure computation is not enough since privacy can
also be attacked from just observing the results of a GWAS.

For instance, membership inference attacks [11, 24, 25, 41,
51] have been reported to identify whether an individual’s
known genome participated in a study. This revelation would
potentially lead to the identified individuals being discrimi-
nated [3], a risk that may well extend to their relatives [2].
To enforce privacy, once publicly available GWAS statis-

tics are now only accessible under restrictive conditions [52]
and regulations, such as the Health Insurance Portability and
Accountability Act (HIPAA) [32] and the General Data Pro-
tection Regulation (GDPR) [34]. Both impede an exchange
of personal data across borders [22, 35, 38]. Hence, to facili-
tate open research and the sharing of scientific findings, it
is necessary to design privacy-preserving GWAS solutions
that are compatible with existing regulations.

Two main techniques have been proposed to enforce pri-
vacy while openly releasing GWAS results: (i) differential
privacy (DP) [21] and (ii) methods that bound the statistical
inference power of an adversary [24, 41, 51, 54].

Differential privacy perturbs the results of a GWAS to ob-
tain privacy at the cost of decreased accuracy. In contrast,
methods that bound the adversary’s statistical inference
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power aim to preserve high accuracy by performing several
successive computations over the data to identify a subset of
genomic variants over which statistics can be securely com-
puted and safely released. More specifically, they ensure that
the detection power of an adversary attempting membership
inference attacks remains below a given threshold, which
is derived from a tolerated false-positive rate [24, 41, 51].
Unfortunately, such computations require genomic data to
be pooled in a central location [24, 36, 37, 41, 51].

This work strives for a federated GWAS protection mech-
anism that bounds the statistical inference power and that:
(i) maintains the same privacy guarantees against external
adversaries as one would obtain from centralized solutions;
(ii) provides protection against possible collusions of up to
all-but-one federation members; and (iii) keeps all genomic
data inside the participating biocenters’ premises.
This paper introduces Genome Distributed Private Re-

lease (GenDPR), a distributed middleware that achieves the
above goals. Each federation member runs two subsystems
of GenDPR. A non-trusted one (from the perspective of other
federation members) that exclusively accesses the local ge-
nomic data of that member, and a subsystem that is trusted
by all federation members to combine intermediary informa-
tion and to identify the subset of variants that can be safely
used in the subsequent secure GWAS computation. GenDPR
leverages Trusted Execution Environments (TEEs), e.g., Intel
Software Guard Extensions (Intel SGX [20]) enclaves, but
works as well with other privacy-preserving schemes, such
as fully homomorphic encryption [31].
Running GenDPR, federation members only exchange

intermediate data, such as allele count vectors and local cor-
relation metrics, instead of genomic variants files that can
amount to several gigabytes and which likely also include
irrelevant information for the task at hands. GenDPR signif-
icantly reduces the secure storage requirement of the TEE
that will be elected to determine whether it is safe to re-
lease GWAS results. GenDPR outsources and communicates
intermediate data exclusively in encrypted form and only
to properly authenticated TEEs, as a release of such infor-
mation would still enable some membership and inference
attacks [36], albeit with a much reduced chance of success.
We evaluate the performance of GenDPR considering sev-
eral GWAS scenarios using up to 10,000 SNPs and 27,895
real genomes, which we compare against a centralized and
non-collusion-tolerant approach.
The remainder of this paper is organized as follows. We

discuss related works in Section 2 and provide necessary
background in Section 3. Section 4 describes our system and
threatmodels.We introduceGenDPR in Section 5 and further
discusses how honest-but-curious collusions are tolerated.
Next, Section 6 explains GenDPR’s algorithm in greater de-
tail. Section 7 presents GenDPR’s results discussion, and

show that GenDPR does not affect the accuracy of the tests
used to identify the safe subset over which GWAS results
can be released. Finally, Section 8 concludes this paper and
directs to future work.

2 RELATEDWORK
2.1 Privacy-Preserving Federated GWAS
Several solutions have been proposed to protect federation
members’ privacy-sensitive information during distributed
computations of GWAS. These can be based on cryptographic
mechanisms, such as Homomorphic Encryption (HE) [7, 27,
31] and Secure Multiparty Computation (SMC) [17, 26, 47],
leverage Trusted Execution Environments (TEEs) [14, 15, 36,
37], or Differential Privacy (DP) [19, 29]. SMC allows parties
to privately share their inputs for computing aggregate func-
tions without the need for trusted third parties. HE operates
entirely on encrypted data and reveals access to the final
output only to authorized players holding the corresponding
keys. DP perturbs local outputs by adding noise so that the
probabilities that any individual’s data was used or not differ
by a limited amount.

Hybrid schemes, like SAFETY [40] or SCOTCH [16] com-
bine HE for aggregation and TEEs for computing more com-
plex statistics. Carpov and Tortech [12] compute the 𝜒2 statis-
tics inside an Intel SGX enclave using horizontal partitioning
techniques to encode genomic data more efficiently. Kockan
et al. [28] filters and compresses variant files (under the
VCF file format) in a TEE for more efficient sharing. Bomai
et al. [8] combine multi-key HE and TEE to enable secure
sharing of genomic data from multiple institutions, which
are later used by the SGX-enabled service to compute and
answer GWAS queries.

TEEs leverage trusted processor areas. Their security can
further be reinforced through memory oblivious and side-
channel mitigation techniques. GenDPR leverages Intel SGX
as TEE, but can easily be extended with side-channel defense
mechanisms or ported to a different TEE [35].

TEE (Intel SGX) limitations. TEEs generally suffer from
limited memory (128 MB) [12]. In response, SGX2 allows
dynamic memory management and paging techniques to
expand an enclave’s memory to up to 4 GB [14]. Several
TEEs experience side-channel attacks that can allow adver-
saries to exploit the memory access patterns of algorithms
running inside the enclave to leak private information like
genome data [14, 30, 36, 37]. Generic memory-oblivious so-
lutions have been proposed to overcome this issue, such as
path RAM (PRAM) [46], Oblivious RAM (ORAM) [23], and
Oblivious B+ tree shuffling [49]. Specific memory-oblivious
genomic data processing algorithms have also been devel-
oped [1, 14, 15, 30]. Data-oblivious approaches have a signif-
icant performance overhead [1, 30]. Adapting GenDPR to
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implement data-oblivious access patterns is a challenge that
we leave as future work.

2.2 Private GWAS Releases
In addition to protecting privacy-sensitive genomic informa-
tion while GWAS results are produced, federation members
must also ensure that revealed results carry no information
that allow inferring the participation of individuals in studies,
in particular in the case group, (e.g., by adversaries mounting
membership inference attacks [24, 25, 41, 51]).
Statistical inference-based methods can be used to de-

termine which data should be used to create safe releases.
Homer et al.’s membership attack [24] leverages likelihood-
ratio tests (LR-tests) to identify the presence of a particular
individual in the case population. Wang et al. [51] proposed
hypothesis test 𝑇𝑟 to ensure that the identification power of
participants remains below a given threshold. Zhou et al. [54]
proposed the Λ metric for the same purpose. SecureGenome
(SG) [42] combines several genome-oriented statistical verifi-
cations and a LR-test to select a subset of SNPs whose GWAS
results are safe to be used. DyPS [36] builds upon SG and
leverages a TEE to centrally select SNP subsets over which
it is safe to release GWAS statistics that are computed in a
federated and dynamic manner, i.e., as soon as new genomes
become available.
DP can be used to protect the results of GWAS analyses

by perturbing the final statistics [4, 44] or when sharing
intermediate data during federated computation. However,
care has to be taken to not disturb results to a degree where
high-precision studies become infeasible [43, 44]. For this
reason, centralized DP-based approaches often use central
curators, which, given access to the genome information,
compute how much noise still leads to safe and accurate
results..
In this paper, we avoid centralizing genome information,

in particular because doing so raises legislative and data
protection concerns. Instead, we propose GenDPR, as a dis-
tributed solution to assess the risk associated with using a
particular subset of SNPs in a federated GWAS. In addition,
GenDPR offers collusion-tolerance, which we argue is a fur-
ther important aspect towards increased privacy guarantees.

3 BACKGROUND
3.1 Genomics 101
Humans share almost 99% of the 3 billion nucleotide pairs
contained in their genome. The remaining 1% are called ge-
netic variations. The vast majority of such variations are
Single Nucleotide Polymorphisms (SNPs), where one nu-
cleotide is replaced by another one. Genomic variations indi-
cate unique biological characteristics, such as disease dispo-
sitions. Genome-Wide Association Studies (GWAS) aim at

SNP1 SNP2 . . . SNP𝐿 Population
Individual 𝑔𝑒𝑛1 0 1 1 Case
Individual 𝑔𝑒𝑛2 1 1 1 Control

...
...

...

Individual 𝑔𝑒𝑛𝑁 0 1 0 Case
Table 1: Collected and encoded data for GWAS.

revealing such correlations between variants and observable
characteristics, which are also called phenotypes.
A genome-wide association study over 𝐿 SNPs encodes

each genome using a binary value per SNP and indicates
the population it belongs to. This encoding is illustrated in
Table 1. The case population contains the individuals that
have the phenotype of interest, while the control population
contains the remaining individuals. For each individual, at a
given genomic variation 𝑆𝑁𝑃𝑙 (𝑙 ∈ {0, . . . 𝐿}), if its genome
only contains the most common SNP (i.e., the major allele)
it is then encoded using a 0, while the presence of the least
common allele (i.e., the minor allele) is encoded with a 1.

GWAS routinely require the computation of intermediary
tables, illustrated in Tables 2a and 2b, which are later used
to compute GWAS statistics. In Table 2a, 𝑁 case

𝑖 and 𝑁 control
𝑖

stand for the count of the major/minor allele occurrence of
the respective population. 𝑁 case , 𝑁 control , 𝑁0, 𝑁1, and 𝑁𝑇 are
the sums of the columns and rows. In Table 2b, the 𝐶𝑙1,𝑙2

−− are
the pairwise allele counts, i.e., the number of occurrences of
the minor/major allele combinations {00, 01, 10, 11} between
two SNP positions 𝑙1, 𝑙2. An example of a test statistic is the
Linkage Disequilibrium (LD), which identifies correlations
between any two SNP positions 𝑙𝑖 , 𝑙 𝑗 : 𝑟 2 =

(𝐶𝑖,𝑗

00 ·𝐶
𝑖,𝑗

11 −𝐶
𝑖,𝑗

01 ·𝐶
𝑖,𝑗

10 )2

𝐶
𝑖,𝑗

0− ·𝐶
𝑖,𝑗

1− ·𝐶
𝑖,𝑗

−0 ·𝐶
𝑖,𝑗

−1
.

Case Control Total
SNP𝑙 0 (major) 𝑁 𝑐𝑎𝑠𝑒

0 𝑁 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
0 𝑁0

1 (minor) 𝑁 𝑐𝑎𝑠𝑒
1 𝑁 𝑐𝑜𝑛𝑡𝑟𝑜𝑙

1 𝑁1
Total 𝑁 𝑐𝑎𝑠𝑒 𝑁 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑁𝑇

(a) A singlewise contingency table.

SNP𝑙2
0 1 Total

SNP𝑙1 0 𝐶
𝑙1,𝑙2
00 𝐶

𝑙1,𝑙2
01 𝐶

𝑙1,𝑙2
0−

1 𝐶
𝑙1,𝑙2
10 𝐶

𝑙1𝑙,2
11 𝐶

𝑙1,𝑙2
1−

Total 𝐶
𝑙1,𝑙2
−0 𝐶

𝑙1,𝑙2
−1 2𝑁 𝑝𝑜𝑝

(b) A pairwise contingency table.

Table 2: GWAS contingency tables.

Additionally, 𝜒2 tests are computed to measure the as-
sociation of a SNP with the phenotype of interest, defined
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as 𝜒2 = (𝑁 𝑐𝑎𝑠𝑒
𝑖

−𝑁 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝑖

)2

𝑁 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝑖

. 𝑃-values on 𝜒2 < 10−8 identifies a
strong association with a particular phenotype [5]. The SNPs
with the smallest 𝑝-values are the most significant (ranked)
SNPs of a GWAS.
To increase the confidence in GWAS findings [33] and

avoid bias (e.g., through under-representing some popula-
tions, like Asians, Africans and Latin Americans compared to
European and North American individuals) [45], biocenters
move towards global-scale GWAS [6, 48]. Under these large
scale settings, federations of biocenters assemble a global
dataset comprised of multiple smaller datasets sampled from
possibly geographically distant populations [28, 40].

3.2 Statistical Tests for Safe Release
Like SG [41] andDyPS [36],GenDPR leverages the likelihood-
ratio test to assess the privacy risks associated with consid-
ering particular SNPs in a GWAS statistics. We briefly recall
GWAS statistics and the principle of the likelihood-ratio test
in the following.

3.2.1 Minor Allele Frequencies (MAF). SNP positions with
rare minor alleles (e.g., MAF < 0.05) form characteristic
outliers, which can be used by adversaries to deduce mem-
bership [51, 54]. SNPs with very rare alleles are therefore
not considered in a privacy-preserving GWAS whose result
should be publicly available.

3.2.2 Linkage Disequilibrium (LD). High linkage disequilib-
rium (e.g., 𝑝-value on 𝑟 2 < 10−5) indicates highly connected
SNPs. Such information can be leveraged to attack individ-
uals by using the association levels among SNPs, as shown
in [41, 54]. SNP positions in high LD should therefore be
removed as well from public releases.

3.2.3 Likelihood-Ratio Test (LR-test). MAF and LD ensure
the independence of retained SNPs, which is a requirement
for correctly conducting SG’s LR-test. SG’s null hypothesis
corresponds to the situation where an individual does not
belong to the case population, while under the alternate
hypothesis the individual is part of that population. The LR
metric is expressed as follows (adapted from [41]):

𝐿𝑅 =

𝐿∑
𝑙=1

[
𝑥𝑛,𝑙 log

𝑝𝑙

𝑝𝑙
+ (1 − 𝑥𝑛,𝑙 ) log

1 − 𝑝𝑙

1 − 𝑝𝑙

]
, (1)

where 𝐿 is the number of SNPs tested, 𝑥𝑛,𝑙 is the allele infor-
mation at SNP position 𝑙 of individual 𝑛, 𝑝𝑙 is the frequency
of SNP position 𝑙 in the reference set and 𝑝𝑙 is the frequency
of SNP 𝑙 in the case population. SG’s authors empirically
demonstrate that the LR-test is more powerful than previous
metrics, including the one used in Homer et al.’s attack [24].
The LR-test can be used to find a subset of SNPs in 𝐿

that can have their statistics released while maintaining the

Open-access  
GWAS statistics 
release 

Phase 1 (MAF analysis) 
Phase 2 (LD analysis) 
Phase 3 (LR-test analysis) TEE-enabled machine 

Selected  
data for  
safe GWAS 
release 

Colluding GDOs 

Local genome dataset 

GenDPR 

Figure 1: GenDPR’s system and threat model.

power for detecting individuals in a study below a configured
detection and false-positive rates [42]. Thus, GWAS statistics
released over the retained SNPs enforce privacy [36, 37, 41].
Threshold parameters, i.e., MAF and LD cut-offs, and the con-
fidence levels used for the LR-test are configured according
to the privacy guarantees one desires to achieve [42].

4 MODELS AND OBJECTIVES
We illustrateGenDPR’s system and threat models in Figure 1
and describe them in the following.
System model. We consider a federation composed of 𝐺

members, which we also call genome data owners (GDO):
𝐺𝐷𝑂1, . . ., 𝐺𝐷𝑂𝐺 . Each GDO is entrusted with genomic in-
formation from patients and authorized to use this informa-
tion in genome-wide association studies. On their premises,
federation members maintain a database with genomes and
a TEE-enabled server to perform operations over this data,
whose TEE is mutually trusted by that member and all others.
Remote attestation ensures authenticity of the trusted part
of GenDPR that runs in the TEE. Additionally, a TEE data-
sealing mechanism is used to store data persistently outside
the TEE. Sealed data can only be encrypted/decrypted by
the enclave using its private key. We further assume that ap-
propriate countermeasures are in place to mitigate potential
limitations of a particular TEE implementation. Members
have access to a common public genome dataset (e.g., from
the 1000 genomes project [18] or dbGaP [50]), which they
use as reference for the LR-test.
Threat model. Like previous works on secure GWAS re-

lease [36, 37, 39, 40, 53], we assume adversaries are capable of
mounting membership attacks by observing released GWAS
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statistics and metadata (see Section 3). In a membership
attack, the adversary owns a victim’s genotype sequence
(𝑔𝑒𝑛𝑣𝑖𝑐𝑡𝑖𝑚) and has access to a reference population with an
allele distribution similar to the one of the case population
used in the study [24, 42, 51]. The adversary’s goal is to in-
fer participation of 𝑔𝑒𝑛𝑣𝑖𝑐𝑡𝑖𝑚 in the GWAS, which can result
in severe privacy implications. For example, inferring that
a particular individual belongs to the case population can
be unethically used (e.g., by insurance companies refusing
coverage).
In addition, we assume that up to 𝑓 federation members

might be faulty (e.g., as a result of compromise) and collude
with other compromised members to mount membership
attacks. Colluding allows members to exchange their knowl-
edge, which increases their chances of mounting member-
ship attacks successfully (as reported in Pascoal et al. [36]).
We allow 𝑓 to become as large as𝐺 − 1, but will make no fur-
ther liveness guarantees once federation members become
non-responsive. We leave the addition of measures to guar-
antee liveness despite faults as future work. Likewise, we do
consider leakage of genome information from the member’s
premises an orthogonal problem.

Whilewe assume that federationmembersmight be honest-
but-curious and collude in their attacks, we assume that the
integrity and confidentiality of each member’s TEE remains
intact. Moreover, we assume that the trusted part of GenDPR
is able to detect whether a federation member has tampered
with the genome data and its accuracy (e.g., by checking the
authenticity of signed VCF files and all exchanged data).
Objectives. Given a desired starting set of SNP positions

𝐿𝑑𝑒𝑠 ,GenDPR returns a reduced set 𝐿𝑠𝑎𝑓 𝑒 ⊆ 𝐿𝑑𝑒𝑠 of SNPs that
are safe to be considered in a GWAS, which the federation
computes after this check using one of the existing secure
and privacy-preserving federated GWAS approaches [8, 28,
36, 37, 39, 40].
We aim at securing the privacy of individuals that have

entrusted a correct federation member (GDO) with their
genomes even when the federation releases GWAS results
or when other members are honest-but-curious or get com-
promised.
Under the above assumptions, we show that as long as

no TEE crashes, GenDPR correctly produces a selection of
SNP positions (𝐿𝑠𝑎𝑓 𝑒 ) that are safe to be considered for actual
GWAS computation while protecting the privacy of individ-
uals, even if up to 𝑓 ≤ 𝐺 − 1 federation members collude.
Thus, GenDPR ensures that the GWAS federation properly
considers the risks of including genetic variations that might
compromise the privacy of its members.

To remain compliant with regulations, such as the GDPR,
no raw genomic information gets exchanged and all commu-
nication of intermediate results remains encrypted and ex-
clusively among the TEEs. Despite that, GenDPRmimics the

Multi-enclave GWAS federation (GenDPR-enabled)

Regular GDO TEE-enabled server
. . .

Enclave 

LD phase trusted
module

LR-test phase
trusted module

MAF phase
trusted module

Leader GDO TEE-enabled 
 server

Local genome 
dataset

Local genome 
dataset

Regular GDO

Regular GDO

Regular GDO

Enclave 

LR-test phase
trusted module

LD phase trusted
module

MAF phase
trusted module

Coordination
trusted module

Figure 2: GenDPR’s architecture components.

same output decision as if a centralized privacy-protection
mechanism is in place.

5 GENDPR
5.1 Overview
GenDPR coordinates multiple TEEs at the GDO’s premises,
allowing them to jointly conduct a particular GWAS aiming
at releasing statistics over 𝐿𝑑𝑒𝑠 SNP positions with specific
MAF, LD and LR-test cutoff parameters. GenDPR proceeds
with a randomly elected leader GDO. The TEEs of non-leader
GDOs produce the required intermediate values and com-
pute the GWAS on their selected local subsets. The leader’s
TEE coordinates this computation and aggregates the inter-
mediate results it receives from other federation members,
but also produces such results for the local dataset.

Encrypted local genome datasets are used to feed local en-
claves so that each GDO enclave can produce and outsource
genomic intermediate data as requested by the leader ac-
cording to the current phase of the protocol. Since TEEs are
mutually authenticated to each other, they trust the code and
results produced in this outsourcing step. Any communica-
tion between federation members is encrypted and happens
only between TEEs. That is, the sending TEE will encrypt the
information such that only the receiving TEEs can encrypt it.
In particular, GDOs agree on keys and other credentials dur-
ing the remote attestation phase to connect the trust-chain
from boot to communication. Figure 2 illustrates GenDPR’s
architecture.

5.2 Workflow
We present an overview of GenDPR’s workflow in Figure 3.
GenDPR follows three consecutive phases where GDOs com-
pute and outsource different intermediate computation re-
sults. One of the GDOs is randomly chosen as coordinator
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Figure 3: GenDPR’s workflow.

of the protocol and aggregator of inputs produced by the
other GDOs. In particular, at the beginning of a GWAS and
before the start of its distributed computation, GenDPR initi-
ates two essential pre-processing tasks: First, the leader TEE
selection, which consists of randomly choosing one of the
registered enclaves of participants of the federation. Second,
the computation of summary statistics (e.g., allele count vec-
tors of each GDO over the original SNP-set 𝐿𝑑𝑒𝑠 over which
the GWASwould ideally be computed). As part of this second
step, GDOs locally compute N case

1 l for each 𝑙 ∈ 𝐿𝑑𝑒𝑠 . Such
a vector is identified as 𝑐𝑎𝑠𝑒𝐿𝑜𝑐𝑎𝑙𝐶𝑜𝑢𝑛𝑡𝑠 [𝐿𝑑𝑒𝑠 ]𝑔 of size 𝐿𝑑𝑒𝑠
and is sent by each GDO 𝑔 to the leader GDO’s enclave for
aggregation. The GDOs also share the number of individu-
als in their local case population (𝑁 𝑐𝑎𝑠𝑒

𝑔 ). All of the above
information is encrypted and linked to the boot of the in-
volved TEEs, so that only a properly authenticated enclave
can decrypt them. With this information in place, GenDPR
finds the set of secure-to-be-used SNPs in the following three
phases.

5.3 Phase 1/3: MAF Analysis
First, the leader enclave locally computes the al-
lele counts vector of the reference population
referenceLocalCounts[Ldes], which contains 𝐿𝑑𝑒𝑠 en-
tries that are each computed over N reference genomes. Then,
after receiving the encrypted caseLocalCounts[Ldes]g and
N case

g from each GDO, the leader enclave decrypts and
starts MAF verification. In particular, the leader enclave
sums all 𝑁 𝑐𝑎𝑠𝑒

𝑔 received from the GDOs with N reference into
𝑁𝑇 . Then, the leader GDO goes over the received inputs
to calculate the allele counts of SNPs in both populations
(case and reference) and then computes the global MAF
of each SNP. More specifically, for each 𝑙 in the original
SNP-set 𝐿𝑑𝑒𝑠 and for each GDO’s 𝑔 allele counts vector,
the leader GDO computes totalGlobalCounts[l] as the
sum of caseLocalCounts[l]g and referenceLocalCounts[l].
The aggregated result is then divided by 𝑁𝑇 to obtain
the MAF for SNP 𝑙 , i.e., globalAlleleFreq[l] is computed
as totalGlobalCounts[l]/NT . Finally, the leader checks if
MAF𝑙 < 𝑀𝐴𝐹𝑐𝑢𝑡𝑜 𝑓 𝑓 . If so, SNP 𝑙 is removed and will not
further be considered for the current release. Phase 1
removes rare MAF SNP positions without requiring to

outsource the actual genomes from the GDOs. At the end of
this phase, the leader GDO broadcasts the list of retained
SNPs 𝐿′ ∈ 𝐿𝑑𝑒𝑠 to all federation members, which is then
further reduced in Phase 2.

5.4 Phase 2/3: LD Analysis
The second phase consists in executing the Linkage Dise-
quilibrium (LD) verification over the retained SNPs 𝐿′. It
ensures all released SNPs will be independent from each
other. To compute LD, allele information between two SNPs
needs to be pooled. This is easily achievable in a central-
ized TEE-based architecture with local access to all genomes.
However, in GenDPR, we aim to keep genomes distributed
at their respective GDO, which prevents us from pooling
allele sequences for LD computation.

One could naïvely let GDOs conduct the LD analysis over
their local data and share the locally retained SNPs. However,
this approach would lead to inaccurate selection since each
GDO’s local data does not incorporate the heterogeneous
distribution of genomes among the GDOs.

GenDPR therefore employs the following adaptations for
removing SNPs in LD. When computing the LD between
every pair of SNP 𝑙 and 𝑙 + 1 ∈ 𝐿′, local allele sequences of
individuals are pooled to compute correlation statistics. For
that, each GDO 𝑔’s enclave locally produces and outsources
the following correlation statistics over their genomes:
𝜇lg += SNPlg , 𝜇l+1g += SNPl+1g , 𝜇 (l,l+1)g += SNPlg ∗ SNPl+1g ,
𝜇l2g += SNPlg ∗ SNPlg , 𝜇 (l+1)2g += SNPl+1g ∗ SNPl+1g , and 𝑁𝑇

(acquired during the previous phase). The leader GDO com-
putes the same correlation statistics over the reference set.
Upon receiving the member’s correlation statistics, the

leader enclave aggregates GDO inputs with the correlation
metrics obtained over its local and the reference set. This way,
GenDPR absorbs the correlation statistics from each GDO
so that the aggregated correlation metrics reflect the global
genome distribution of the federation for a proper computa-
tion of LD. After that, the leader enclave can proceed with
the computation of the 𝑝-value on the 𝑟 2 test to measure how
much the two SNPs are correlated. If LD(𝑙,𝑙+1) < 𝐿𝐷𝑐𝑢𝑡𝑜 𝑓 𝑓 ,
then SNPs 𝑙 and 𝑙 + 1 are dependent, and cannot both be
retained. GenDPR keeps the higher ranked (in terms of 𝑝-
value on 𝜒2, recall Section 3). The leader iterates over this

313



Secure and Distributed Assessment of Privacy-Preserving GWAS Releases Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

Figure 4: GenDPR distributed LR-test phase scheme.

step at most (𝐿′)2 times, which would happen if all pairs of
SNPs were independent, which remains an unlikely common
event in case of the human genome [5, 10]. The result of this
phase is a further reduced list of SNPs 𝐿′′, which the leader
broadcasts to all members to start phase 3.

5.5 Phase 3/3: LR-test Analysis
Similar to the previous phase, the allele information of each
participant is needed (i.e., 𝑥𝑛,𝑙 in Equation 1) to perform
LR-test verification. Existing solutions rely on a centralized
enclave that collects all required data. On the other hand,
GenDPR overcomes such constraint by demanding each
GDO to compute and outsource their local LR-matrices. The
local LR-matrix consists of the LR values (recall Equation 1)
for each SNP 𝑙 and of the allele value of individual 𝑛 at SNP
position 𝑙 represented by 𝑥𝑛,𝑙 in each GDO dataset. However,
GDOs cannot correctly compute these matrices just from
their local genome dataset, since this would lead to incorrect
conclusions. Indeed, using local frequencies only would lead
to wrong LR-matrices because the LR-test needs to be drawn
considering aggregate SNP frequencies of the whole popula-
tion (i.e., genomes belonging to all GDOs). Therefore, allele
frequencies over the full cohort are needed so that each GDO
can accurately compute their local LR-matrix.
The complete scheme enforced by GenDPR for the dis-

tributed LR-test evaluation is illustrated in Figure 4, where
we consider that GDO2 has been selected as leader. In Step
(1), the leader broadcasts the allele frequencies vector of
the case and reference populations over the retained SNPs
𝐿′′ (note that these vectors are already available inside
the leader enclave since the MAF phase). Therefore, the
𝑐𝑎𝑠𝑒𝑠𝐴𝑙𝑙𝑒𝑙𝑒𝐹𝑟𝑒𝑞 [𝐿′′] and 𝑟𝑒 𝑓 𝐴𝑙𝑙𝑒𝑙𝑒𝐹𝑟𝑒𝑞[𝐿′′] vectors, both
of size 𝐿′′, are shared with all GDOs. These vectors repre-
sent 𝑝𝑙 and 𝑝𝑙 of Equation 1, respectively. In Step (2), after
the reception of the allele frequencies vectors, each GDO
(GDO1 to GDO𝑔 ) can correctly build their LR-matrices since
the received vectors encompass the frequencies over the

complete cohort of participating genomes. Thus, their lo-
cal LR-matrices can be correctly computed. After comple-
tion, GDOs encrypt and send their local LR-matrices to the
leader GDO. In Step (3), upon reception of the GDOs’ LR-
matrices, the leader first computes its local LR-matrix, and
then merges all matrices received. As a result, creating a
larger LR-matrix that encompasses all GDOs data. This ma-
trix is used throughout the LR-test verification performed in
Step (4) inside the leader’s enclave. This verification consists
of empirically checking several subsets of SNPs in 𝐿′′ that
satisfies the conditions presented in Section 3.2. When the
LR-test ends, the leader enclave has identified a new subset
of SNPs 𝐿𝑠𝑎𝑓 𝑒 ∈ 𝐿′′, which is encrypted and broadcast to the
members of the federation (Step (5)). The list of SNPs in 𝐿𝑠𝑎𝑓 𝑒
can be safely used for the computation and release of the
GWAS. We present the pseudo-code of GenDPR’s protocol
in Section 6.
Additionally, we note that GenDPR could be combined

with Differential Privacy (DP) [21] to increase the data utility
of releases. The SNPs in 𝐿𝑠𝑎𝑓 𝑒 can be released in a noise-free
manner (i.e., without any data perturbation), while statistics
over SNP positions in the complement 𝐿𝑑𝑒𝑠 \ 𝐿𝑠𝑎𝑓 𝑒 could be
released, but with DP-perturbation. Such a hybrid scheme
would allow the release of GWAS statistics over all desired
SNP positions (𝐿𝑑𝑒𝑠 ) in a privacy-preserving manner.

5.6 Tolerating Honest-but-Curious
Collusions

To protect the GWAS federation against collusion among
GDOs, GenDPR’s leader enclave needs to certify that the
outcome of the private analysis is valid for the cases where
up to 𝑓 ≤ 𝐺 −1 colluding GDOs attempt to attack the honest
ones. For this purpose,GenDPR employs a collusion-tolerant
algorithm. For each phase of GenDPR’s pipeline discussed
above, GenDPR generates

(
𝐺

𝐺−𝑓
)
combinations of interme-

diate results received from the GDOs to simulate the case
where 𝑓 GDOs would launch an attack. Each of these combi-
nations has a unique identifier and goes through the various
phases of GenDPR, which identify a list of safe SNPs. At
the end of each phase, GenDPR computes the intersection
of the SNPs chosen for each combination, thus preventing
any 𝑓 GDOs to compromise the data of honest GDOs. Let us
discuss an example for Phase 3 (the most complex one).

During the LR-test phase, the leader enclave generates and
provides a unique id, and broadcasts

(
𝐺

𝐺−𝑓
)
allele frequency

vectors over 𝐿′′ SNPs selected in the previous LD analysis
phase. The leader then receives

(
𝐺

𝐺−𝑓
)
local matrices (each

one computed using its corresponding frequency vector)
from each GDO. Each combination of sub-matrices forms
a unique merged matrix that is used for the actual LR-test
evaluation inside the leader enclave. As a result, GenDPR
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collects several lists of selected SNPs (𝐿𝑠𝑎𝑓 𝑒 ), i.e., one for
each LR-test completed over each combination of matrices.
Finally, the leader enclave computes the intersection among
the lists of SNPs, to finally output only the intersected SNPs,
that were mutually labeled as safe in every combination. This
way, GenDPR certifies that no combination of genome data
can be isolated and become vulnerable to colluding GDOs.
GenDPR can also adhere to a more conservative approach
assuming all possibilities of collusions instead of considering
a static 𝑓 , i.e., f = {1, ...,G − 1}. GenDPR would then per-
form evaluations over

∑f =G−1
f =1

( G
G−f

)
. As one would expect,

this scheme demands GenDPR to execute extra rounds of
computations, which in practice can be efficiently conducted
in parallel inside the leader enclave as it already stores all
necessary data.

6 GENDPR PSEUDO-CODE
Algorithm 1 shows the pseudocode of GenDPR. It reflects
the behavior and steps explained above. We refrained from
describing the standard methods we use for encypting oper-
ations during the workflow and focus here on the rationale
of the algorithm.

In Line 6, GenDPR randomly selects a leader GDO among
the federation members. Then, in line 9, the leader GDO
starts computing its local GWAS summary statistics. The
same computation is also applied to the genomes of the
reference set. From that moment on, the leader receives sum-
mary statistics of the other GDOs that are locally computed
when the federation agrees on starting a study. After col-
lecting the other GDOs’ intermediate data, the leader GDO
proceeds with MAF analysis by first aggregating local counts
over the original SNP-set 𝐿𝑑𝑒𝑠 . It does the same for calculat-
ing the total number of individuals in the federation. Then,
the leader GDO finally computes the MAF of each SNP and
checks the MAF cut-off, keeping only SNP positions with
MAF above or equal to the MAF cut-off (𝑀𝐴𝐹𝑐𝑢𝑡𝑜 𝑓 𝑓 ). These
steps are described in lines 10–24. At the end of this analysis,
the leader GDO has acquired a new SNP-subset 𝐿′ consisting
of the list of SNPs that survived this phase. Such a list of
SNPs is broadcast to all GDOs (line 25).
Next, the leader GDO initiates the LD analysis after re-

ceiving the correlation metrics of each GDO of pairwise
SNP combinations in 𝐿′. In particular, the LD verification
algorithm (from lines 26 to 55) aggregates local correlation
statistics from each GDO and the ones corresponding to the
reference set for SNPs pair 𝑙 and 𝑙 + 1. In addition, the leader
GDO computes allele frequencies over 𝐿′′ for the reference
and global population (note that is achievable using the allele
counts shared in the MAF analysis) that is further aggregated
with the correlation metrics of all GDOS. After aggregation,
the leader GDO calculates the 𝑝-value for the correlation

Algorithm 1 GenDPR’s full workflow pseudo-code
1: procedure GenDPR(GWAS 𝑠 , 𝐺 set of GDOs, original SNP set 𝐿𝑑𝑒𝑠 of 𝑠 , 𝛼 , 𝛽 ,

𝑟𝑒 𝑓 _𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)
2: Inputs: (1) Local allele counts vector from GDOs of size𝐿𝑑𝑒𝑠 ; (2) Local statistics of SNP𝑙

and SNP𝑙+1 ; (3) Local LR-matrix each of size 𝑁𝑐𝑎𝑠𝑒
𝑔 x 𝐿′′

3: Outputs: (1) Selected SNP subset 𝐿′; (2) Selected SNP subset 𝐿′′; (3) Selected SNP subset
𝐿𝑠𝑎𝑓 𝑒 , which can be used to create private GWAS release

4: Uses: 𝑟𝑎𝑛𝑑𝑜𝑚𝐿𝑒𝑎𝑑𝑒𝑟𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 (𝐺) : select and returns a random GDO 𝑔 ∈ 𝐺 to
be considered as leader; 𝑠𝑡𝑎𝑟𝑡𝐿𝑜𝑐𝑎𝑙𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 () : computes local statistics of GDO;
𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑅2 (𝜇𝑙 , 𝜇𝑙+1, 𝜇 (𝑙,𝑙+1) , 𝜇𝑙2 , 𝜇 (𝑙+1)2 , 𝑁𝑇 ) : returns 𝑝-value on 𝑟2 between SNPs 𝑙

and 𝑙 + 1; 𝑔𝑒𝑡𝑀𝑜𝑠𝑡𝑅𝑎𝑛𝑘𝑒𝑑 (𝑙, 𝑙 + 1, 𝑠) : returns index of most ranked SNP (𝑝-value on 𝜒2

of study 𝑠 ; 𝐿𝑅𝑡𝑒𝑠𝑡 (𝐿𝑅𝑀𝑎𝑡𝑟𝑖𝑥, 𝛼, 𝛽) : returns a set of SNPs that keeps individuals identifi-
cation power below given threshold

5:
6: 𝑙𝑒𝑎𝑑𝑒𝑟𝑔𝑑𝑜 = 𝑟𝑎𝑛𝑑𝑜𝑚𝐿𝑒𝑎𝑑𝑒𝑟𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 (𝐺) //randomly selects a leader in𝐺
7: 𝑙𝑒𝑎𝑑𝑒𝑟𝑔𝑑𝑜 .𝑠𝑡𝑎𝑟𝑡𝐿𝑜𝑐𝑎𝑙𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 () // computes leader and GDOs local allele

statistics
8: 𝑙𝑒𝑎𝑑𝑒𝑟𝑔𝑑𝑜 .𝑙𝑖𝑠𝑡𝑒𝑛𝑇𝑜𝐼𝑛𝑝𝑢𝑡𝑠 () // collects intermediate data from other GDOs
9:
10: (Phase 1) //MAF analysis
11: for 𝑔 in𝐺 do //retrieves local allele counts vector from each GDO
12: 𝑁𝑇 += 𝑁𝑐𝑎𝑠𝑒

𝑔

13: end for
14: 𝑁𝑇 += 𝑁 𝑟𝑒𝑓 𝑒𝑟𝑒𝑛𝑐𝑒

15: for SNP 𝑙 in 𝐿𝑑𝑒𝑠 do
16: for 𝑔 in𝐺 do //retrieves local allele counts vector from each GDO
17: 𝑡𝑜𝑡𝑎𝑙𝐺𝑙𝑜𝑏𝑎𝑙𝐶𝑜𝑢𝑛𝑡𝑠 [𝑙 ] = 𝑐𝑎𝑠𝑒𝐿𝑜𝑐𝑎𝑙𝐶𝑜𝑢𝑛𝑡𝑠 [𝑙 ]𝑔 +

𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝐿𝑜𝑐𝑎𝑙𝐶𝑜𝑢𝑛𝑡𝑠 [𝑙 ]
18: end for
19: 𝑔𝑙𝑜𝑏𝑎𝑙𝐴𝑙𝑙𝑒𝑙𝑒𝐹𝑟𝑒𝑞 [𝑙 ] = 𝑡𝑜𝑡𝑎𝑙𝐺𝑙𝑜𝑏𝑎𝑙𝐶𝑜𝑢𝑛𝑡𝑠 [𝑙 ]/𝑁𝑇

20: if 𝑔𝑙𝑜𝑏𝑎𝑙𝐴𝑙𝑙𝑒𝑙𝑒𝐹𝑟𝑒𝑞 [𝑙 ] < 𝑀𝐴𝐹𝑐𝑢𝑡𝑜𝑓 𝑓 then //SNP 𝑙 cannot be retained
21: continue
22: else
23: 𝐿′.𝑝𝑢𝑠ℎ (𝑙)
24: end if
25: end for
26: 𝑙𝑒𝑎𝑑𝑒𝑟𝑔𝑑𝑜 .𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 (𝐿′) // leader GDO broadcast message
27:
28: (Phase 2) //LD analysis
29: 𝑙𝑎𝑠𝑡𝑖𝑛𝑑𝑒𝑥 = 𝐿′ [−1] // get index of the last SNP in 𝐿′

30: 𝑎𝑢𝑥𝑖𝑛𝑑𝑒𝑥 = 𝐿′ [0] // get index of the first SNP in 𝐿′

31: while 𝑎𝑢𝑥𝑖𝑛𝑑𝑒𝑥 ! = 𝑙𝑎𝑠𝑡𝑖𝑛𝑑𝑒𝑥 do // starts greedy algorithm for LD computation
32: for SNP 𝑙 in 𝐿′ do
33: 𝑙𝑒𝑎𝑑𝑒𝑟𝑔𝑑𝑜 .𝑙𝑖𝑠𝑡𝑒𝑛𝑇𝑜𝐼𝑛𝑝𝑢𝑡𝑠 () // collects intermediate correlation statistics

from GDOs
34: 𝑙𝑒𝑎𝑑𝑒𝑟𝑔𝑑𝑜 .𝑠𝑡𝑎𝑟𝑡𝐿𝑜𝑐𝑎𝑙𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 () // computes leader local correlation

statistics
35: for𝑔 in𝐺 do //retrieves local LD statistics for SNP𝑙 and SNP𝑙+1 from each GDO
36: 𝜇𝑙 += 𝜇𝑙𝑔

37: 𝜇𝑙+1 += 𝜇𝑙+1𝑔
38: 𝜇 (𝑙,𝑙+1) += 𝜇 (𝑙,𝑙+1)𝑔
39: 𝜇

𝑙2 += 𝜇
𝑙2𝑔

40: 𝜇 (𝑙+1)2 += 𝜇 (𝑙+1)2𝑔
41: end for
42: 𝜇𝑙 += 𝜇𝑙𝑟𝑒 𝑓

43: 𝜇𝑙+1 += 𝜇𝑙+1𝑟𝑒𝑓
44: 𝜇 (𝑙,𝑙+1) += 𝜇 (𝑙,𝑙+1)𝑟𝑒𝑓
45: 𝜇

𝑙2 += 𝜇
𝑙2
𝑟𝑒𝑓

46: 𝜇 (𝑙+1)2 += 𝜇 (𝑙+1)2
𝑟𝑒𝑓

47: 𝑝𝑣𝑎𝑙 = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑅2 (𝜇𝑙 , 𝜇𝑙+1, 𝜇 (𝑙,𝑙+1) , 𝜇𝑙2 , 𝜇 (𝑙+1)2 , 𝑁𝑇 )
48: if 𝑝𝑣𝑎𝑙 > 𝐿𝐷𝑐𝑢𝑡𝑜𝑓 𝑓 then //independent SNPs
49: 𝑎𝑢𝑥𝑖𝑛𝑑𝑒𝑥 = 𝑙 + 1
50: continue
51: else //dependent SNPs, keep most ranked one
52: 𝑙𝑖𝑛𝑑𝑒𝑥 = 𝑔𝑒𝑡𝑀𝑜𝑠𝑡𝑅𝑎𝑛𝑘𝑒𝑑 (𝑙, 𝑙 + 1, 𝑠)
53: 𝐿′′.𝑝𝑢𝑠ℎ (𝑙𝑖𝑛𝑑𝑒𝑥 )
54: end if
55: end for
56: 𝑎𝑢𝑥𝑖𝑛𝑑𝑒𝑥 = 𝑙 + 1
57: end while
58: 𝑙𝑒𝑎𝑑𝑒𝑟𝑔𝑑𝑜 .𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 (𝐿′′, 𝑐𝑎𝑠𝑒𝑠𝐴𝑙𝑙𝑒𝑙𝑒𝐹𝑟𝑒𝑞 [𝐿′′ ], 𝑟𝑒 𝑓 𝐴𝑙𝑙𝑒𝑙𝑒𝐹𝑟𝑒𝑞 [𝐿′′ ]) // leader

GDO broadcast message
59:
60: (Phase 3) //LR-test analysis
61: 𝑙𝑒𝑎𝑑𝑒𝑟𝑔𝑑𝑜 .𝑙𝑖𝑠𝑡𝑒𝑛𝑇𝑜𝐼𝑛𝑝𝑢𝑡𝑠 () // collects local LR-matrices from GDOs
62: 𝑙𝑒𝑎𝑑𝑒𝑟𝑔𝑑𝑜 .𝑠𝑡𝑎𝑟𝑡𝐿𝑜𝑐𝑎𝑙𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 () // computes leader local LR-matrix
63: for 𝑔 in𝐺 do //retrieves and concatenates local LR-matrix from each GDO
64: for SNP 𝑙 in 𝐿′′ do
65: 𝐹𝑢𝑙𝑙𝐿𝑅𝑀𝑎𝑡𝑟𝑖𝑥 [𝑙 ]+ = 𝐿𝑅𝑚𝑎𝑡𝑟𝑖𝑥𝑔 [𝑙 ]
66: end for
67: end for
68: 𝐿𝑠𝑎𝑓 𝑒 = 𝐿𝑅𝑡𝑒𝑠𝑡 (𝐹𝑢𝑙𝑙𝐿𝑅𝑀𝑎𝑡𝑟𝑖𝑥, 𝛼, 𝛽) //runs LR-test analysis over full matrix
69: return 𝐿𝑠𝑎𝑓 𝑒 //final subset of SNPs for safe GWAS 𝑠 release
70: end procedure315
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between the two SNPs. If SNPs are high-correlated, i.e., 𝑝-
value below the LD cut-off (𝐿𝐷𝑐𝑢𝑡𝑜 𝑓 𝑓 ), the leader GDO keeps
the most ranked SNP and proceeds the loop. SNPs that do
not present a high pairwise correlation with others are re-
tained in 𝐿′′, which is also broadcast at the end of this phase.
Finally, the allele frequencies vectors (𝑐𝑎𝑠𝑒𝑠𝐴𝑙𝑙𝑒𝑙𝑒𝐹𝑟𝑒𝑞 [𝐿′′]
and 𝑟𝑒 𝑓 𝐴𝑙𝑙𝑒𝑙𝑒𝐹𝑟𝑒𝑞[𝐿′′]) are broadcast to the GDOs (line 56).
Last, the leader GDO performs the LR-test to find the

final list of safe SNPs. This verification starts in line 58,
where the leader GDO receives the local LR-matrices from
each GDO that are locally computed by each GDO using
𝑐𝑎𝑠𝑒𝑠𝐴𝑙𝑙𝑒𝑙𝑒𝐹𝑟𝑒𝑞 [𝐿′′] and 𝑟𝑒 𝑓 𝐴𝑙𝑙𝑒𝑙𝑒𝐹𝑟𝑒𝑞[𝐿′′] shared in the
previous phase. Upon the reception of the local LR-matrices,
the leader GDO loops over 𝐿′′ to merge all received LR-
matrices with its local matrix (lines 60 to 64) Next, in line 65,
the leader GDO runs the LR-test function over the merged
matrix that empirically finds a subset 𝐿𝑠𝑎𝑓 𝑒 ∈ 𝐿′′ of which
releases over these SNPs do allow membership inference
attacks to succeed. Finally, the leader GDO broadcasts 𝐿𝑠𝑎𝑓 𝑒
SNP-set list in line 66.

6.1 Collusion-tolerant GenDPR
pseudo-code

In the following, we present in more detail the extensions to
enable collusion-tolerant GenDPR. To avoid repeating the
fullGenDPR algorithm,we reuse Algorithm 1 and explain the
required modifications to accommodate collusion-tolerance.
To tolerate collusions, GenDPR needs to execute the analysis
over each combination of data that can be actually isolated
by colluding GDOs to mount membership attacks against
honest GDOs.
To that extent, after retrieving intermediate data from

each GDO in each phase, GenDPR forms
(

𝐺
𝐺−𝑓

)
combination

with the received inputs to simulate the fraction of data that
could be isolated by the colluding GDOs depending on 𝑓 .
Therefore the original set 𝐺 , consisting of 𝑔 GDOs, becomes
a new set of combinations of GDOs so that the verification
can be computed for every possible combination of GDOs
data. We call such a set combGDOSet = combineGDOS(G),
where 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝐺𝐷𝑂 (𝐺) is a function that receives the set of
GDOs 𝐺 and outputs a new set consisting of

(
𝐺

𝐺−𝑓
)
combi-

nations. As a result, the GDOs data are collected according
to each combination in 𝑐𝑜𝑚𝑏𝐺𝐷𝑂𝑆𝑒𝑡 . For instance, the loop
for MAF analysis in Line 10 of Algorithm 1 is performed
over combGDOSet =

( G
G−f

)
instead of 𝐺 . The same behavior

is applied to the other phases of GenDPR’s protocol. Namely,
in Line 33 for the LD analysis and Line 60 for the LR-test.
GenDPR further needs to keep a data structure to store

the list of selected SNPs of each iteration. This is needed so
that GenDPR can compute the intersection of SNPs selected
as safe in all combinations. In fact, at the end of each phase,

only SNPs present in all lists are broadcast to the federa-
tion because they are safe independently of the presence of
colluders.
For example, considering the MAF phase, GenDPR

appends each 𝐿′ to a new data structure called 𝐿′_𝐿𝑖𝑠𝑡𝑆𝑒𝑡
after Line 23. Once the loop over 𝑐𝑜𝑚𝑏𝐺𝐷𝑂𝑆𝑒𝑡 ends,
GenDPR computes finalL′ = getIntersection(L′_ListSet),
where getIntersection(.) is a function that receives a set of
SNP lists and returns a list of SNPs mutually chosen in
all combinations. The SNPs in 𝑓 𝑖𝑛𝑎𝑙𝐿′ guarantees that no
combination of intermediate results leveraged by colluding
parties can be used to launch successful membership attacks.
The method to compute the intersection of SNPs is per-

formed at the end of each phase, before data is broadcast by
the leader GDO. More specifically, getIntersection(L) finds
the SNPs intersection over the list output for each iteration.
It is executed before Line 25 for MAF analysis, Line 56 for the
LD phase and before Line 66 after the LR-test verification,
and then when acquiring the final intersected list of SNPs
𝐿𝑠𝑎𝑓 𝑒 , which can be safely used in the GWAS computation
whose results should be released.

7 EXPERIMENTAL EVALUATION
We implemented GenDPR in C/C++ using the Graphene
SGX library [13] and evaluated its performance on an Intel
i7-8650U processor with 16 GB RAM, running Ubuntu 18.04.
For the experiments we used 27,895 real genomes from the
phy001039.v1.p1 dbGaP dataset that was collected for an
Age-Related Macular Degeneration study [50]. The dataset
contains 14,860 case and 13,035 control genomes. We used
the control population as reference for the LR-test. We have
divided genomes equally among federation members and
adopt suggested SecureGenome’s [42] settings for assessing
privacy — 0.05 MAF cut-off, 10−5 LD cut-off, 0.1 false-positive
rate and 0.9 identification power threshold. We encrypt all
exchanged data using AES 256. In our experiments, we vary
the number of federation members (GDOs) between 2 and 7,
and use between 1,000 and 10,000 SNP positions. We report
the averages over 5 repetitions. We also compared GenDPR

to a centralized approach that runs SecureGenome inside a
centralized TEE enclave, which we use as baseline.

7.1 Bandwidth, Memory and CPU Usage
Table 3 shows GenDPR’s average resource demand in differ-
ent configurations. As can be seen, all scenarios use less than
1% of the CPU and consume less than 2 MB on average of
memory inside federation members’ TEE. GDOs exchange
vectors of integers that require 32 bits for each SNP in the
original dataset 𝐿𝑑𝑒𝑠 . Hence, the overall size of data that
needs to be exchanged is 4 · 𝐿𝑑𝑒𝑠 Bytes, which increases by
approximately 30% after encryption due to padding. With
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Table 3: GenDPR’s average resource utilization.

Configuration CPU Memory
2 GDOs / 1,000 SNPs < 1% 2,068 KB
2 GDOs / 10,000 SNPs < 1% 2,164 KB

3 GDOs / 1,000 SNPs < 1% 2,068 KB
3 GDOs / 10,000 SNPs < 1% 2,172 KB

5 GDOs / 1,000 SNPs < 1% 2,074 KB
5 GDOs / 10,000 SNPs < 1% 2,148 KB

7 GDOs / 1,000 SNPs < 1% 2,052 KB
7 GDOs / 10,000 SNPs < 1% 2,180 KB

GenDPR, GDOs do not need to outsource genome sequences,
which saves 2 · 𝐿𝑑𝑒𝑠 bits for every genome, i.e., 2 · 𝐿𝑑𝑒𝑠 · 𝑁𝑇

bits in total. Notice that the data that need to be exchanged
in subsequent steps decreases as they successively oper-
ate on a decreasing number of retained SNPs. Indeed, for
the LR-test phase, each GDO shares smaller data, i.e., over
𝐿′′ ·𝑁 𝑐𝑎𝑠𝑒

𝑔 , which is an order of magnitude smaller than com-
plete genome sequences. In summary, we see that GenDPR’s
performance scales well with an increasing number of GDOs
and SNPs considered and that it remains well within the
resource limitations of today’s TEEs. Notice also that with
additional GDOs, the resource demand remains low because
the computation of the LR-test is distributed among them
(i.e., they operate on smaller local datasets).

7.2 Running Time
Figures 5 and 6 report GenDPR’s running time compared
to the centralized baseline for each task performed during
each phase over several possible GWAS settings. First, we
can notice that even though it does not require any data
aggregation tasks, the centralized solution is not noticeable
faster than GenDPR. In particular, the running times of both
approaches directly depend on the size of the data that need
to be evaluated. Comparing Figure 5a with 5b, and Figure 6a
with 6b, we can notice that increasing the number of consid-
ered genomes or SNPs significantly increases the running
time of both approaches. Therefore, we claim that GenDPR
is scalable since doubling the number of genomes considered
at first (7,430) or considering 10 times more SNPs in a study
have not rendered GenDPR unusable. Overall, GenDPR ter-
minates under reasonable delays.

Moreover, one can see that increasing the number of GDOs
actually decreases the running time of the protocol since the
computational tasks are distributed among members, which
demonstrates a performance improvement over the central-
ized baseline. In contrast, the centralized version cannot take
advantage of such a feature, and therefore needs to process
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(a) 7,430 genomes / 1,000 SNPs.
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(b) 14,860 genomes / 1,000 SNPs.

Figure 5: Running time comparison (1,000 SNPs).

all the data at once. Hence, we claim that GenDPR also ben-
efits from the workload distribution achieved thanks to its
distributed protocol. An interesting phenomenon is that al-
though the scenario with 5 GDOs presented a longer running
time when compared to the scenarios with 3 and 7 GDOs,
it takes approximately as long as the scenario with 2 GDOs.
However,GenDPR’s distributed protocol remains faster than
the centralized baseline approach in all settings.
The LR-test analysis phase takes the longest amount of

time due to the fact that besides operating on larger data
structures (2D matrix instead of 1D vectors as in previous
phases), GenDPR uses an empirical approach when selecting
the safe SNP-subset among the available SNPs similarly to
SecureGenome [42]. Such an approach requires several iter-
ations over several sets of SNPs. In general, GenDPR only
imposes slightly longer running time due to the extra coor-
dination and aggregation tasks performed by the leader, but
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Table 4: Comparison of the selected SNPs after each phase of the privacy-protecting verification.

# of genomes / SNPs # of retained SNPs
Centralized GenDPR Naïve distributed

7,430 / 1,000 MAF 731 / LD 44 / LR 44 MAF 731 / LD 44 / LR 44 MAF 731 / LD 29 / LR 29
7,430 / 2,500 MAF 1,559 / LD 107 / LR 107 MAF 1,559 / LD 107 / LR 107 MAF 1,559 / LD 66 / LR 12
7,430 / 5,000 MAF 2,666 / LD 208 / LR 208 MAF 2,666 / LD 208 / LR 208 MAF 2,666 / LD 127 / LR 29
7,430 / 10,000 MAF 4,584 / LD 375 / LR 375 MAF 4,584 / LD 375 / LR 375 MAF 4,584 / LD 240 / LR 240

14,860 / 1,000 MAF 303 / LD 25 / LR 25 MAF 303 / LD 25 / LR 25 MAF 303 / LD 11 / LR 11
14,860 / 2,500 MAF 1,032 / LD 50 / LR 50 MAF 1,032 / LD 50 / LR 50 MAF 1,032 / LD 22 / LR 22
14,860 / 5,000 MAF 2,021 / LD 105 / LR 105 MAF 2,021 / LD 105 / LR 105 MAF 2,021 / LD 44 / LR 44
14,860 / 10,000 MAF 3,767 / LD 187 / LR 187 MAF 3,767 / LD 187 / LR 187 MAF 3,767 / LD 80 / LR 80
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(a) 7,430 genomes / 10,000 SNPs.
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(b) 14,860 genomes / 10,000 SNPs.

Figure 6: Running time comparison (10,000 SNPs).

the presence of more members in the federations can actu-
ally improve GenDPR’s running time. GenDPR’s running
time depends on the distribution of the genome data being
assessed in the analysis. For instance, for some populations

more or fewer SNPs are removed at each phase. In particular,
a higher number of retained SNPs through the phases means
increased running time since statistics need to be computed
over a larger space. Yet, doing so means also more from the
original interest set of SNPs can be published in terms of the
results of the performed analysis.

7.3 Correctness and Effectiveness
To assert the correctness and effectiveness of our approach,
we compared the SNP positions selected as safe by GenDPR,
the centralized baseline and a naïve distributed protocol. In
the naïve approach, each GDO computes the LD and LR-test
independently (relying only on their local dataset) and shares
an encrypted vector of selected SNP indexes, of which the
leader computes an intersection and outputs as safe only
mutually chosen SNPs. On the other hand, in GenDPR the
LD and LR-test analyses are run locally by each GDO leverag-
ing the allele frequency vectors shared by the leader. Recall,
correct LD verification needs pooling pairwise allele statis-
tics over all individuals and the LR-test requires pooling all
genomes to produce the LR-matrix used in the test.

Table 4 presents the number of SNPs retained as safe after
each phase of GenDPR’s privacy-protection obtained con-
sidering 7,430 or 14,860 case genomes and several number of
SNPs. First, we noticed that changing the number of GDOs in
the federation does not affect the outcome of the verification,
as expected. In addition, we can see that GenDPR imitates
the behavior of the centralized baseline over all verification
phases, which shows that GenDPR is correct and does not
suffer from perturbation throughout its execution.

Moreover, if intermediate data is not aggregated and con-
sidered correctly, this can lead to incorrect SNP selections.
Indeed, we detected that even though such a scheme is able
to retain the same SNPs during the MAF evaluation, it is not
able to correctly perform the LD and LR-test analyses since
the latter verifications need to consider the global genome
distribution to correctly identify safe SNPs, which is not
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Table 5: Collusion-tolerant GenDPR results considering 10,000 SNPs and 14,860 genomes.

Settings # safe released SNPs with
collusion-tolerance

# vulnerable SNPs without
collusion-tolerance

Running time (ms)

𝐺 = 3, 𝑓 = 1 141 (75.4%) 46 (24.6%) 123,338.5
𝐺 = 3, 𝑓 = 2 143 (76.5%) 44 (23.5%) 76,362.5

𝐺 = 3, 𝑓 = {1, 2} 138 (73.8%) 49 (26.2%) 158,059.5

𝐺 = 4, 𝑓 = 1 143 (76.5%) 44 (23.5%) 159,293.2
𝐺 = 4, 𝑓 = 2 139 (74.3%) 48 (25.7%) 156,569.9
𝐺 = 4, 𝑓 = 3 145 (77.5%) 44 (22.5%) 80,681.4

𝐺 = 4, 𝑓 = {1, 2, 3} 136 (72.7%) 51 (27.3%) 309,032.3

𝐺 = 5, 𝑓 = 1 144 (77.1%) 43 (22.9%) 215,347.1
𝐺 = 5, 𝑓 = 2 135 (72.1%) 52 (27.9%) 255,071.8
𝐺 = 5, 𝑓 = 3 137 (73.3%) 50 (26.7%) 181,159
𝐺 = 5, 𝑓 = 4 148 (79.1%) 39 (20.9%) 79,300.4

𝐺 = 5, 𝑓 = {1, 2, 3, 4} 134 (71.7%) 53 (28.3%) 605,281.8

enforced with a naïve aggregation. We can identify this be-
havior in the bold lines of Table 4, where the naïve protocol
inappropriately identified a smaller and disjoint set of SNPs.
The release of such SNPs would allow membership inference
of participants in the study. On the other hand, the adjust-
ments we render inGenDPR thwart such issues, i.e.,GenDPR
selects the same set of SNPs as the centralized baseline.

7.4 Collusion-Tolerant GenDPR
Table 5 evaluates the impact of collusion-tolerance on
GenDPR in terms of privacy (detecting SNPs that would be-
come vulnerable given the presence of colluders) and perfor-
mance (running time and release coverage). Between 20.9%
and 28.3% of the SNPs are vulnerable when members collude.
GenDPR can seclude these vulnerable SNPs and refrains
from releasing statistics over them. Thus, we see an expected
impact on the number of SNPs being released proportional
to the number of vulnerable SNPs. Nonetheless, collusion-
tolerant GenDPR still releases between 71.7% and 79.1% of
the data compared to the experiments we performed without
collusion (𝑓 = 0) (see Table 4).

Overall, there is an increase in running time of collusion-
tolerant GenDPR due to the extra verifications conducted
over GDOs’ isolated data. Comparing the most conservative
setting of GenDPR where all possible combination of col-
luders are considered, i.e., f = {1, ...,G − 1} with the 𝑓 = 0
case, we noticed longer running times. For instance, the
G = 5, f = {1, 2, 3, 4} setting took up to 605 seconds com-
pared to 𝑓 = 0 with 44 seconds. Still we believe this increase
in running time is a reasonable trade-off to accept for higher-
levels of privacy.

Table 5 shows that shorter running times are achieved in
the f = G − 1 setting compared to smaller 𝑓 values. In this

scenario the additional rounds of verifications only need to
be performed considering each GDO dataset individually,
and therefore over fewer combination of genomes. We note
that the number of safe SNPs depends on the distribution of
the genome data, which impacts the identification power of
participants during the LR-test evaluation. Therefore, there is
no direct correlation between the number of genomes/SNPs
and the number of safe SNPs. Overall, we noticed a similar
behavior over the experiments that consider 1,000 SNPs.

8 CONCLUSION
In this work, we presented GenDPR, a distributed protocol
that demonstrates that ensuring private releases of federated
GWAS can be accurately and efficiently performed in a dis-
tributed fashion, in contrast to existing solutions that require
centralizing genomes. Our distributed architecture removes
the need for genomic data outsourcing across boundaries and
so contributes to adhering to 21st-century data privacy guide-
lines. GenDPR is a scalable solution compatible with the cur-
rent requirements of security and offers end-to-end privacy
for federated GWAS. GenDPR enables not only donors’ pri-
vacy, by impeding genomic privacy attacks, but also protects
institutions’ intermediate data under the threat of colluding
adversaries. In future work, we plan to extend GenDPR to
cope with side-channel attacks against TEEs by designing
an oblivious version of the protocol.
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