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SUMMARY

This thesis discusses several studies on magnetic two-dimensional (2D) materials, fo-
cusing on their nanomechanical properties and the behavior of resonance frequencies
in response to temperature changes. These studies employ nanomechanical resonators,
specifically suspended membranes (drum resonators) of 2D magnetic materials. The
frequency response of these resonators is measured using optical excitation combined
with an interferometric setup, allowing identification of resonance frequencies.

By altering the temperature of the resonators, the resonance frequency shifts as the
strain within the 2D material changes. This strain change is partially magnetostrictive in
origin due to changes in the magnetic order within the materials, offering a method to
study these magnetic characteristics.

Chapter 1 introduces two-dimensional materials and the nanomechanical techniques
used in this thesis, while Chapter 2 provides a theoretical foundation for the mechanics
of the resonators and the coupling between the mechanics and the magnetic order.

Chapters 3 and 4 present findings from studies on FePS3, CoPS3, NiPS3, and CrPS4.
The anisotropic nature of the coupling between the magnetic order and the crystalline
lattice in these materials allows for the extraction of magnetic order behavior from the
resonators’ responses.

Chapter 5 examines how optothermal modulation of drum resonators in magnetic
2D materials can enhance drive efficiency, particularly near the transition temperature
due to magnetostrictive coupling effects.

Chapter 6 explores the nonlinear behavior observed in a FePS3-based drum resonator,
showing that near the transition temperature, nonlinear response and the nonlinear
damping is significantly influenced by a time delay between the magnetic and lattice
responses.

xi





SAMENVATTING

Dit proefschrift behandelt enkele onderzoeken naar magnetische tweedimensionale (2D)
materialen, met de focus op hun nanomechanische eigenschappen en het gedrag van re-
sonantiefrequenties als functie van temperatuur. Deze onderzoeken maken gebruik van
nanomechanische resonatoren, specifiek vrijhangende membranen (drumresonatoren)
van 2D magnetische materialen. De frequentierespons van deze resonatoren wordt ge-
meten met behulp van optische excitatie in combinatie met een interferometrische de-
tectie, waarmee de resonantiefrequenties kunnen worden geïdentificeerd.

Door de temperatuur van de resonatoren te veranderen, verschuift de resonantie-
frequentie, doordat de deformatie binnen het 2D-materiaal verandert. Deze spannings-
verandering is gedeeltelijk magnetostrictief in oorsprong door de veranderingen in de
magnetische orde in de materialen. Dit biedt een methode om de magnetische eigen-
schappen te bestuderen.

Hoofdstuk 1 introduceert tweedimensionale materialen en de nanomechanische tech-
nieken die in dit proefschrift worden gebruikt. Hoofdstuk 2 biedt een theoretische basis
voor de mechanica van de resonatoren en de koppeling tussen de mechanica en de mag-
netische orde.

Hoofdstukken 3 en 4 presenteren resultaten van studies over FePS3, CoPS3, NiPS3 en
CrPS4. De anisotrope aard van de koppeling tussen de magnetische orde en het kristal-
rooster in deze materialen maakt het mogelijk om het gedrag van de magnetische orde
uit de respons van de resonatoren af te leiden.

Hoofdstuk 5 onderzoekt hoe optothermische modulatie van drumresonatoren in mag-
netische 2D-materialen de efficiëntie van excitatie kan verbeteren, vooral dichtbij de
overgangstemperatuur, door magnetostrictieve koppelingseffecten.

Hoofdstuk 6 bespreekt niet-lineair gedrag waargenomen in FePS3 drumresonato-
ren, en laat zien dat nabij de overgangstemperatuur de niet-lineaire respons en de niet-
lineaire demping aanzienlijk worden beïnvloed door een tijdsvertraging tussen de mag-
netische en roosterresponsen.

xiii





1
INTRODUCTION

If I have seen further, it is by standing on the shoulders of giants.

- Isaac Newton

1
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2 1. INTRODUCTION

E RAS in history are often categorised by the capability of a civilisation to produce and
utilise materials. This categorisation is clear in the case of the Stone, Bronze, and

Iron Age, continuing to the modern era, which is often referred to as the Silicon or Semi-
conductor Age. The reason for this categorisation is intuitive: the tools, vehicles, and
buildings a civilisation creates are limited in strength to that of the strongest material it
has access to. Thus, the study of materials forms a foundational pillar for societal ad-
vancement. Material research broadly consists of three main areas: theory, fabrication,
and characterisation. This thesis focuses on the latter, specifically on developing and
applying a method for characterising two-dimensional (2D) materials. This chapter in-
troduces the relevant context for subsequent chapters, beginning with an overview of 2D
materials, a class that includes the strongest known material, graphene.

1.1. 2D MATERIALS

Two-dimensional materials, also known as van der Waals (vdW) materials1, are crys-
talline materials consisting of strongly bound layers that are stacked on top of one an-
other, held together by the relatively weak vdW forces. This weak interlayer binding
allows for cleaving, or exfoliation, essentially peeling off one or a few layers at a time.
This process enables the isolation and study of individual layers, revealing some of their
properties to be distinct to those of the bulk material. Many material properties differ
significantly between 3D and 2D systems and it remains an open question exactly how
and where the transition between these two regimes occurs. For instance, the theoret-
ical behaviour of magnetic phases varies significantly between 3D and 2D systems (see
section 1.2).

Before the isolation of graphene in 2004 [1], it was believed that 2D materials could
not to exist in a free form because thermal fluctuations would cause any sheet to crum-
ple or deform to a 3D structure, such as nanotubes [1]. However when stabilised by a
substrate or by boundary clamping, these sheets can maintain their 2D structure, pro-
viding an opportunity to investigate vdW materials in their 2D limit.

Since 2004, there has been a large research effort around 2D materials. Following
graphene, many other materials have become available, such as hexagonal boron nitride
(hBN), transition metal dichalcogenides (TMDs), Xenes, and metal thiophosphates. These
research efforts generally focus on either material science, fabrication and applications.
This thesis primarily contributes to the field of material science, but it will also briefly
discuss aspects of fabrication and applications relevant to this work.

1.1.1. MATERIAL SCIENCE

From a material science perspective 2D materials provide a highly intriguing platform
for research. The ability to fabricate different layers from various materials and stack
them together allows for a bottom-up approach to building materials. Each material in
the stack contributes different properties to the composite structure, enabling a certain

1Definition in literature sometimes describes van der Waals materials as a strict subset of 2D materials. Group-
ing any a single unit cell thick system, such as a one unit cell thick film of complex oxide, together with 2D
materials . Throughout this thesis we will not make this distinction and use the terms 2D and vdW materials
interchangeably.
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level of control over the resulting material properties. In some cases, the interactions be-
tween the different layers may even give rise to new physics not present in either layer (or
their bulk variant) separately [2]. This control and the potential to explore new physics,
makes 2D materials an excellent platform for material science research.

Most of the fundamental2 research on 2D materials uses either a form of electri-
cal transport measurements (e.g, Hall measurements or transistor structures) or optical
probing (e.g., MOKE or ARPES experiments). These studies, as is the case for most con-
densed matter physics experiments, typically explore the behaviour of (quasi-)particles,
such as electrons, Cooper pairs, phonons, excitons, plasmons, and magnons and their
interactions. The emphasis is often put on understanding the behaviour of these sys-
tems from the perspective of the band structure of electrons and is then discussed in
terms of a single or few particle picture. To isolate these few particle behaviours, the field
relies on cooling systems to cryogenic temperatures to minimize thermal population of
excited states, which could obscure the observations.

The work in this thesis deviates somewhat from this traditional approach by focus-
ing on larger ensembles and predominantly considering them from a classical perspec-
tive. Commonly researchers working with 2D materials are concerned with imperfec-
tions such as crystal defects and doping as they have a significant impact on their mea-
surements. However for the mechanical measurements in this thesis contribution from
such imperfections are small.3 Of course if defect densities get large enough their con-
tribution should be taken into account [3].

In nanomechanical structures a role equivalent to crystal defects for transport mea-
surements is played by strain related imperfections such as wrinkles, ripples, non-uniform
strains, and geometrical defects like partially covered holes, cracks or steps. These de-
fects often result from the transfer process and are difficult to control or even reproduce,
providing the main source of the sample-to-sample variability in the studies presented
in this thesis [4]. Thus, the fabrication significantly influences the final properties and
behaviour of the 2D materials. Understanding and optimizing both crystal growth and
transfer techniques are essential for achieving consistent, high-quality samples. The
next subsection discusses the fabrication methods for 2D materials samples, focusing
on crystal growth and the transfer process.

1.1.2. FABRICATION

Under the term fabrication as it pertains to 2D materials, there are broadly two cate-
gories: material fabrication and device fabrication. Material fabrication focuses on find-
ing and growing 2D material crystals, while device fabrication deals with shaping these
crystals into desired geometries. This thesis primarily utilises the resulting materials
without engaging in the material fabrication process itself; therefore, we will not delve
into that aspect in detail [5–7].

Device fabrication consists of broadly two approaches: bottom-up or top-down. A
bottom-up approach involves growing and stacking individual layers of the desired ma-

2Here meaning: not fabrication or application focused.
3Although the contribution of such crystal defects has not been specifically quantified they are expected to

be present in the samples. However measured data can be reasonably well explained without accounting for
such defects indicating they do not significantly contribute to the observed phenomena.
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terial into a specific geometry. A top-down approach starts from a bulk crystal and thins
this down to the desired thicknesses. Both approaches have their respective challenges
and benefits and are in practise often used congruently. The samples in this work utilise
a mostly top-down approach, where thin layers obtained from bulk crystals are trans-
ferred and stacked onto a target substrate (see section 1.4.1).

1.1.3. APPLICATIONS
Since the isolation of graphene, there has been a surge in potential applications for it and
other 2D materials. For graphene alone, one can find wide range of applications at sev-
eral stages of development, including material additives, conductive inks, coatings, and
sensors. Examples of the latter include biosensors based on functionalised graphene,
pressure and gas sensors, microphones, and graphene-based hall sensors [8–11]. Be-
yond graphene, there are several examples of applications involving other 2D materials,
for instance metal dicalcogenide gas and electrochemical sensors, demonstrating the
versatility and potential of these materials [12, 13].

The aforementioned examples are not exhaustive but highlight the significant poten-
tial of 2D materials. Another field where 2D materials could provide the material plat-
form for future devices is that of spintronics, which focuses on using spin degrees of free-
dom for information storage and transfer. This can have the benefit of faster computing
and eliminating Joule heating as pathway of energy loss. This could result in substantial
energy saving, particularly given the increasing computational demands from increased
automation and usage of artificial intelligence (AI).

Figure 1.1: Magnetic ordering. From left to right are depicted examples of spin orientations corresponding to
a paramagnetic, ferromagnetic, and antiferromagnetic system respectively.

1.2. MAGNETISM
Magnetism is the the property of a material to have an intrinsic ordered magnetic field.
This requires interaction between its magnetic components, namely its spins. Generally,
materials are split into three types of magnetism: non-magnetic (also called paramag-
netic), ferromagnetic, and antiferromagnetic.4 The difference between these categories

4This categorisation could be further refined to smaller categories such as ferri-magnetism or the recently
introduced altermagnetism [14], but the three mentioned categories will be enough for this work.
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lies in the nature of the spin coupling and the resulting magnetic structure, as shown in
figure 1.1, which can be significantly more complex than these basic types. While a com-
prehensive discussion of magnetism is far beyond the scope of this thesis, an overview
of the relevant theory is provided in chapter 2. For a more detailed discussion, readers
are referred to [15].

1.2.1. MAGNETIC 2D MATERIALS

Historically, it was believed that 2D materials could not host magnetic order because
thermal fluctuations were expected to destroy long range magnetic order at non-zero
temperatures [16, 17]. However, since the discovery of FePS3, the first magnetic 2D ma-
terial, many more have been identified, demonstrating that 2D materials can indeed
exhibit a variety of magnetic orders [18].

This diversity of magnetic 2D materials provides a fertile ground to explore several
open questions, such as how the magnetic order of a system changes when going from
the 3D to 2D limit. Or how the external interactions affect 2D magnetic systems, such as
when several 2D magnets are stacked atop each other. Furthermore, by combining mag-
netic 2D materials with other 2D materials allows access new material regimes otherwise
inaccessible [19].

Despite their potential, 2D magnetic materials pose unique challenges, particularly
in their characterisation. These materials tend to be insulating or semi-conducting, lim-
iting the utility of electrical transport measurements. Traditional methods for charac-
terizing magnetic systems often fail to achieve the necessary signal-to-noise ratio (SNR)
due to the low volume of these materials. While optical methods can be more successful,
they frequently encounter similar SNR problems due to limited thickness of the material,
which restricts reflection and absorption and thus signal strength [20].

This thesis discusses a complementary method that utilises nanomechanical res-
onators to probe the magnetic phase transition in these materials. This approach offers
a novel way to avoid the limitations of traditional characterization techniques, providing
additional insights to the properties of magnetic 2D materials.

1.3. NANOMECHANICS
Nano-electromechanical systems (NEMS) and their larger counterparts, Micro-electro-
mechanical systems (MEMS), have become ubiquitous in modern devices. They are
found in a wide variety of applications, such as in mobile devices where they are used
as gyroscopes, accelerometer, microphones, and speakers. In telecom networks, they
are used as thin-film bulk acoustic resonators (FBARs) for filtering. These devices can
often be described using classical mechanics. However, at the small scale of these de-
vices, certain effects, such as stiction forces, often negligible at the macroscale need be
considered. Since the relevance of such effects becomes significant at small scales, these
devices also provide a platform to study these effects. One can think of contributions
coming from material properties or thermodynamic effects that for macro systems are
small or negligible.

Combining this with resonators that operate at higher frequencies and have higher
quality factors, which can easily driven into non-linear regimes, results in very sensitive
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sensors both to external stimuli as to internal (material) changes. Due to these high
sensitivities, NEMS resonators form a natural platform to study 2D materials.

Particularly drum resonators, consisting of a thin layer of the 2D material suspended
over a cavity, are interesting systems. The suspended nature of such resonators allows
the 2D material to be isolated from external stimuli, such as a substrate, allowing for
precise control and manipulation of their environment. Moreover, the mechanical vi-
brations of the drum resonator serve as sensitive probes, enabling the detection of sub-
tle changes in the material properties. Such resonators are especially suited to study
changes in strain, as the resonance frequency of these systems has a strong dependence
on its strain. This is particular advantageous for the study of 2D materials, where strain
is an important parameter. Strain has been shown to couple to electrical, magnetic, and
thermal properties of these materials [21–23]. These couplings are generally reciprocal,
meaning that small changes in any of these properties can induce a significant change
in the strain in the system.

It is this coupling and sensitivity that lies at the heart of many results of the work dis-
cussed in this thesis. In the next section we will discuss the fabrication and measurement
techniques used, and in chapter 2 we will discuss the underlying theory.

Cleaning Etching Development

Pattern
Exposure

Resist

Spincoat
Resist

Si

SiO2

Starting
Susbtrate

Figure 1.2: Substrate fabrication. The starting substrate consists of a highly doped silicon wafer with a ther-
mally grown silicon-dioxide layer, typically 285 nm thick. Then a layer of resist is spin-coated onto the sample,
the thickness of which is determined by the desired cavity depth and the relative etch rate when compared
to SiO2. During the exposure step the desired pattern is exposed. The sample is then submerged in a devel-
oper suited for the resist. This washes away the exposed area (in case of positive resit) exposing the SiO2 layer.
The sample is then placed in a reactive ion etcher and anisotropically etched until the desired cavity depth is
reached, typically around 300 nm. After this, the remaining resist is cleaned off and the sample is ready for
transfer.
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1.4. METHODS

1.4.1. DEVICE FABRICATION
The fabrication of the substrates used in this thesis was developed by a former PhD
candidate in the group, Martin Lee, and is discussed in [24]. To this recipe only minor
changes are made to used parameters to compensate for the drift of machines over time
and by making several updates to the exact layout of the design pattern, each with a cor-
responding dose test. Unless electrical contact was needed the steps to create embedded
electrodes were skipped resulting in samples with only holes in the SiO2, with typical di-
mensions ranging from 2 to 10 µm in lateral size. The fabrication flow is depicted in
figure 1.2.

The samples presented in this thesis were fabricated using a top-down approach.
Starting from a bulk crystal a few layers are exfoliated and placed on a target substrate
using a dry transfer technique [25, 26]. A dry transfer technique was chosen to avoid
exposing the suspended structures to liquids, as previous experience has shown that the
capillary and other surface forces present in a liquid are often strong enough to collapse
suspended structures.

Figure 1.3: 3D impression of interferometry setup. Shown are the basic components of interferometry setup.
Visible are the 3 light paths, as explained in figures 1.4, 1.5, 1.6, and the cabling to and from the vector network
analyser (blue cables) and the optical cable from the laser diode to the free-space coupler (yellow cable).

1.4.2. INTERFEROMETRY
Let’s walk through the interferometers that form the basis of the results in this thesis. The
work presented here combines results collected from two very similar setups. We will
describe the general version of these setups, an impression of which is shown in figure
1.3, but the reader should keep in mind that small variations between them exist, both
in the optical paths and in the exact equipment used. Where relevant, these variations
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shall be highlighted. The interferometer consist of three light paths, referred to as red,
blue, and white, corresponding with the red laser (λ= 632 nm), blue laser (λ= 405 nm)
and the white light path.

Figure 1.4: Red laser path. A schematic of the setup highlighting the components pertaining to the red laser
path, see text for details.

RED

The red laser is used for the readout and is thus the most crucial part. It utilises interfer-
ence effects to measure the membrane’s response. As shown in figure 1.4, starting from
the laser source, we use a HeNe laser because it provides a very stable laser source. This
laser produces elliptically polarised laser light, which we first send through 2 neutral
density filters (ND-filters) to reduce the intensity, preventing overheating of our samples
to below an acceptable range, generally less than 0.5 K.

One of these ND-filters is a manual continuous density wheel, which is manually
tuned to bring the intensity in the right order of magnitude. The second ND-filter is a
filter wheel containing 12 different filter intensities, which can be computer controlled.
Using two filters in conjunction allows for the manual wheel to be set initially and then
use the filter wheel to achieve more repeatable intensity variations.

After intensity filtering, the laser passes through a half-wave plate to rotate its po-
larisation. This is done such that when the red light later passes through the polarised
beamsplitter, the maximum intensity is directed towards the sample, optimizing the sig-
nal. The laser light then passes through the polarised beamsplitter, which splits the light
beam based on the polarisation. One polarisation is send to the sample and the other is
directed towards a photo detector that acts as a reference for the laser intensity.

The light directed towards the sample passes through a second waveplate to convert
the now linear polarised light into circular polarised light, preventing unwanted effects
coming from bifringent materials as well as ensuring that upon return from the sample
the reflected signal is fully reflected towards the dection photodiode by the polarised
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beamsplitter. The resulting circularly polarised light is then combined with the other
light paths and directed into the sample chamber through an objective lens, focusing
onto the sample. Upon interaction with the sample, the light is reflected back into the
objective lens.

This reflected light passes back through the quarter waveplate converting it to linear
polarisation. It then passes through the polarised beamsplitter and is reflected onto the
measurement photodiode, which detects the reflected light intensity. This photodiode
splits the intensity signal into a constant (low frequency) part and an oscillating (high
frequency) component. The constant signal is used as a proxy for the overall reflection
intensity and is used to optimize the position of the sample in the beam. The high fre-
quency signal contains the information of the mechanical oscillating membrane and is
fed into the Vector Network Analyser (VNA).

Figure 1.5: Blue laser path. A schematic of the setup with the components pertaining to the blue laser path
highlighted, see text for details.

BLUE

The blue laser is used for driving the membranes; for cases where alternative driving is
used, like electrostatic driving, the blue laser is not required. The output AC signal of
the VNA is fed into the laser driver, where it is combined with a DC signal to regulate
the intensity of the blue laser diode (see figure 1.5). The AC signal causes a intensity
modulation on top of the DC-regulated intensity.

The laser diode is connected to an optical fiber which terminates in a free-space cou-
pler mounted in an optomechanical mount, easing the aligning of the laser beam. Di-
rectly after the free-space coupler is a lens used to tune the focal plane of the blue laser
to coincide with that of the red laser. The beam is then directed to two ND-filters: one
manual continuous intensity wheel, and the second a discrete electronic filter wheel,
similar to those used for the red laser.

After passing through the ND-filters, a reference beam is split off using a beamsplitter
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and directed at a photodiode to serve as a intensity reference. The remaining beam is
then directed onto a cold mirror, which is reflective for the blue laser but transparent
for the red, allowing for combination of the beams. This cold mirror also ensures that
any reflected blue laser light will not reach the final measurement diode, preventing an
unwanted offset on top of the signal of interest.

Figure 1.6: White light path. A schematic of the setup with the components pertaining to the white light
path highlighted, see text for details. This section can be entirely bypassed by removing the top indicated
beamsplitter, which is typically done during measurements.

WHITE

The white light serves as basic illumination for positioning of the sample. As shown in
figure 1.6 a simple torch, modified to be powered by a voltage source for easy control,
is used as the white light source. The voltage source allows for adjustment of the light
intensity, and remote control of the torch.

The white light is combined with the laser beam paths using a beamsplitter and is
focused onto the sample through the objective. The reflected signal is passed through
the same beamsplitter and directed onto an off-the-shelf Canon camera without objec-
tive lens, providing visual feedback for the positioning of the sample. The camera’s live
feed is fed to the measurement PC and used to position the desired drum under the laser
spot. After alignment the torch is turned off and the beamsplitter used for the white light
is flipped out of the optical path to minimise loss of signal.

1.5. THESIS OUTLINE
Chapter 2 discusses the theory underlying coupling between the mechanics and mag-
netic order. Chapters 3 and chapter 4 present results of using anisotropy and mechanics
to investigate magnetic 2D materials. Chapter 5 describes the effect of an additional ac-
tuation mechanism that is present in the magnetic phase. Chapter 6 investigates the
effects of a magnetic phase transition on the behaviour of the drum resonators in the
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non-linear regime. The references are listed at the end of each chapter and supplemen-
tary section as well as at the end of the thesis, the numbering is consistent through out
the thesis, meaning that the same reference will have the same number in each chapter.
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In this chapter we will layout the theory from which the following chapters draw. Al-
though the theory presented here can be found in numerous text books, such as [27]
[28] and [15], it will be presented starting from rather basic definitions, for two reasons.
Firstly for consistency, as everyone who used several sources to study a theory will know
that notation and convention even at the level of definitions is not always consistent or
compatible. Secondly, completeness the aim for this thesis is to be as self complete as
possible, requiring the reader to look up little to no external references in order to follow
the discussion. The definitions and theory are mostly based on [27] and [28]. This chap-
ter will first discuss basic concepts from elasticity theory followed by the application of
elasticity to thin structures to setup a plate theory. We will derive this plate theory from
an energy perspective as it allows for an intuitive way to add couplings of other degrees
of freedom to the elastic degrees of freedom, which we will use at the end of the chap-
ter to couple the mechanical and magnetic degrees of freedom. The second part of the
chapter will discuss Landau theory of magnetism, and the chapter concludes by linking
the developed plate theory and theory of magnetism using magnetostriction.

2.1. ELASTICITY
When a force is applied to a material it deforms. There are two important regimes for
these kinds of deformations, elastic and plastic. Elastic deformation means that upon
removal of the force the material returns to it’s original shape where as in plastic defor-
mation the shape remains altered from the original shape even after the force is removed.
For purposes of understanding the results in this thesis we can limit ourselves mostly to
the elastic regime.

Elasticity revolves around describing deformation under forces, to construct a the-
ory we will first introduce the mathemetical objects corresponding to each of these con-
cepts. Deformation can be described using a displacement field, which we will denote u.
This is a vector valued field defined over the volume corresponding with the material in
it’s undeformed state, V ⊂ R3. Where the value of u(x) with x ∈ V is the vector connect-
ing the initial point x with x ′′′ where x ′′′ ∈V ′ ⊂ R3 is the point that the volume of material
at x moves to in the deformed state, such that x +u(x) = x ′′′. Here V ′ corresponds to the
volume occupied by the material in the deformed state. We will assume that V and V ′
are similar in topology, by which we mean that there are no additional holes or tears that
appear as a result of the deformation.

In order to calculate the energy corresponding to a given deformation we need to cal-
culate the work done on the material. This can be done using two tensor fields, the strain
tensor field, ϵ, and the stress tensor field, σ. For ease we will drop the ’field’ in further
discussion understanding that the discussed tensors in general vary over the volume of
interest. The strain tensor corresponds to the deformation of an infinitesimal volume
element and can be calculated form the displacement field as1:

ϵi j = 1

2
(∂ j ui +∂i u j ). (2.1.1)

Here we use the Einstein notation implying a summation over repeated indices, also we

1This definition is sometimes called the harmonic strain, to distinguish it from strain defined as ϵi j = 1
2 (∂ j ui +

∂i u j +∂k ui ∂k u j ) which includes a higher order term that is often neglected [28].
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write ∂i for the partial derivative along the i -th coordinate direction.2 From the defini-
tion it is easy to see that the strain tensor is symmetric, i.e. ϵi j = ϵ j i . As the strain tensor
is used to describe the deformation so is stress tensor used to describe the forces acting
on a infinitesimal volume element. The energy density is then given by the contraction
of the two tensors,

1

2
σ : ϵ= 1

2
σi j ϵi j . (2.1.2)

Thus one can define the stress tensor from the energy formulation as for a given potential
energy density, Uel =σi j ϵi j , the stress tensor is defined as:

σi j = ∂Uel

∂ϵi j
, (2.1.3)

and therefore also the stress tensor is symmetric, σi j = σ j i . This definition, although
general, is often of limited use as it requires knowledge of the potential energy density.
Luckily most materials are adequately described using Hooke’s law relating the the stress
and strain tensor as

σi j =Ci j kl ϵkl , (2.1.4)

where Ci j kl is the elasticity tensor corresponding with the material of study. The elastic-
ity tensor has the following symmetries:

Ci j kl =C j i kl =Ci j lk =Ckl i j . (2.1.5)

For such systems the potential energy density is then given by:

Uel =
1

2
σi j ϵi j = 1

2
Ci j kl ϵkl ϵi j . (2.1.6)

Aside from the potential energy density a volume of material in motion also has ki-
netic energy density, which is relevant for dynamic systems such as the ones under study
in this thesis. The kinetic energy density, Tel, of a material is given by:

Tel =
1

2
ρ(∂t u)2. (2.1.7)

Here ρ is the mass density of the material, ∂t is the time derivative and (∂t u)2 should be
read as the dot product between the vector ∂t u with itself.

2.2. PLATE THEORY
The main system of study in this thesis is that of a suspended material where the thick-
ness of the material, typically ranging from 1×10−9m to 1×10−7m, is significantly smaller
than the lateral size of the suspended area, typically ranging from 1×10−6m to 1×10−5m.
For such systems there is a difference in behaviour along the thin out-of-plane direction
when compared to the large in-plane directions. Such systems are called plates and often
described using Kirchhoff-Love plate theory or variations there on. We will exchange the
assumption of non-varying thickness of standard Kirchhoff-Love plate theory for that of
plane stress and derive the dynamic equations of motion for a plate of a general material.

2So for a standard Cartesian coordinate system consisting of x, y, z directions ∂1 = ∂
∂x .
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2.2.1. DISPLACEMENT FIELD

Firstly we will define the mid-plane as the plane corresponding with the center of the
plate along the out-of-plane, read the thin, direction.3 We will define our coordinates
such that the 3rd coordinate, x3, corresponds to the out-of-plane direction and the mid-
plane corresponds to x3 = 0. So x3 ∈ [−h

2 , h
2 ] where h is the thickness of the plate. We will

make the following simplifying assumptions:

1. Straight lines normal to the mid-plane remain straight after deformation.

2. Straight lines normal to the mid-plane remain normal to the mid-plane after de-
formation.

3. The top and bottom of the plate are free, such that the stress components per-
pendicular to the plate are zero. σi 3(x3 = ±h

2 ) = 0 and the plate is thin enough to
assume this condition holds throughout the plate σi 3 = 0.

Assumptions 1 and 2 allow for the displacement field to be decomposed in three
contributions, the translation of the mid-plane, the rotation of the mid-plane, scaling
along the normals to the mid-plane.4 Figure 2.1 shows a schematic of a deformed plate
in reference to its undeformed state.

For a given point p in the plate there is a point r on the mid-plane of the plate such
that p lies on a normal of the mid-plane trough r . The displacement field at p, u(p),
is given by the vector connecting p to q , where q corresponds to p after deformation.
The first contribution to u(p) is the given by the translation of the mid-plane, u0(p) =
u0(r ), figure 2.1B). The remaining contribution is then u(p)−u0(p) corresponding to
the rotation of the mid-plane, translating p to p ′ in figure 2.1 and a scaling along the
normal, translating p ′ to q ′ in figure 2.1C). The lateral translation due to the rotation is
given by p3 sin(∂αu0

3), where p3 is the out-of-plane coordinate of p and α is the in-plane
coordinate corresponding to the translation. For small values of ∂αu0

3 this translation
can be approximated, using the small angle approximation, as p3∂αu0

3. The scaling along
the normal is generally very small and as such can be neglected.5

This leads to the following form of the in-plane displacement field:

u1 = u0
1 −x3∂1u0

3 (2.2.1)

u2 = u0
2 −x3∂2u0

3, (2.2.2)

where u0 is the displacement field of the mid-plane, i.e. u0 = u(x3 = 0).

3The term mid-plane is not to be confused with neutral-plane which corresponds to the plane where the out
of plane strain component equals zero. For homogeneous plates the two often coincide, but in general they
are different.

4Note that we assume that the mid-plane remains the mid-plane after deformation implying that any scaling
along the normals is mirrored along the mid-plane. This is not generally true, such as for non-homogeneous
plates, but will be a good enough approximation for this thesis.

5This scaling will be captured by the later introduced ũ3(x1, x2, x3), by neglecting the contribution here
we neglect the effect this term has on the in-plane displacement. This contribution is on the order of
ũ3(x1, x2, x3)sin(∂αu0

3) and as such small enough to safely neglect in our discussion.
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Figure 2.1: Schematic displacement field of a plate. A) A schematic cut-through of a plate in the undeformed
(grey) and deformed (black) state. The grey and black dashed lines are the mid-plane of the undeformed and
deformed plate, respectively. The indicated square is shown magnified in panel B). B) A zoom-in of panel
A). The grey and black dashed lines correspond to the mid-plane of the undeformed and deformed plate and
the continous lines are normal to the mid-plane of the corresponding colour. Indicated are a point r on the
mid-plane and p in the undeformed plate that translate to s and q under deformation respectively. The cor-
responding deformation vectors u0(r ) and u(p) are shown and the u(p) is decomposed into a u0 component
and the remainder u −u0. C) shows the same as panel B) except that the deformed system is translated by
−u0, so that the points r and s coincide. The translated point q is indicated as q ′. Also indicated is the point
p ′ corresponding to a translation of p resulting solely by a change in slope of the mid-plane. The grey vectors
correspond to the translation of p by, u −u0 (dark) and it’s constituents, and the translation as a result of only
rotating the mid-plane (light) and it’s constituents. The dotted and dashed lines are added for clarification.

From assumption 3 and the definitions of the stress (2.1.4) and strain tensor (2.1.1)
we find

ϵ33 =− λ

λ+2µ
(ϵ11 +ϵ22) (2.2.3)

∂3u3 =− λ

λ+2µ
(∂1u1 +∂2u2). (2.2.4)

Note that here we have assumed our material to be isotropic meaning that the elasticity
tensor is of the form:

Ci j kl =λδi jδkl +µ(δi kδ j l +δi lδ j k ) (2.2.5)
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where λ,µ are the first and second Lamé parameters6 and δ is the Kronecker delta. Sub-
stituting (2.2.1) and (2.2.2) in (2.2.4) we find:

∂3u3 =− λ

λ+2µ
(∂1(u0

1 −x3∂1u0
3)+∂2(u0

2 −x3∂2u0
3))

=− λ

λ+2µ
(∂1u0

1 +∂2u0
2)+ λ

λ+2µ
x3(∂1∂1u0

3 +∂2∂2u0
3)

=− λ

λ+2µ
f (x, y)+ λ

λ+2µ
x3(∇2

2Du0
3), (2.2.6)

where f (x, y) = ∂1u0
1 +∂2u0

2 and ∇2
2D = ∂1∂1 +∂2∂2. Considering (2.2.6) at the mid-plane

we find a differential equation for u0
3 in terms of the in-plane displacements of the mid-

plane.

(∂3u3)
∣∣

x3=0 =− λ

λ+2µ
(∂1u0

1 +∂2u0
2) (2.2.7)

Note that this is the same as evaluating (2.2.4) at the mid-plane. We can write the out-of-
plane displacement as:

u3(x1, x2, x3) = u0
3(x1, x2)+ ũ3(x1, x2, x3). (2.2.8)

Substituting this into (2.2.6) results in:

∂3u0
3 +∂3ũ3 =− λ

λ+2µ
f (x, y)+ λ

λ+2µ
x3(∇2

2Du0
3)

∂3ũ3 =− λ

λ+2µ
f (x, y)+ λ

λ+2µ
x3(∇2

2Du0
3). (2.2.9)

Integrating both sides results in

ũ3 =
∫ x3

0
∂3ũ3d x3 =

∫ x3

0
− λ

λ+2µ
f (x, y)+ λ

λ+2µ
x3(∇2

2Du0
3)d x3

=− λ

λ+2µ
f (x, y)x3 + λ

λ+2µ
(∇2

2Du0
3)

1

2
x2

3 . (2.2.10)

An interesting consequence of this is that under the made assumptions variations in the
thickness of the plate are proportional to the in-plane strains and the thickness of the
plate, as the variation in thickness, ∆h becomes

∆h = u3(x3 = h

2
)−u3(x3 =−h

2
)

= u0
3 + ũ3(x3 = h

2
)−u0

3 − ũ3(x3 =−h

2
)

=− λ

λ+2µ
f (x, y)h. (2.2.11)

6µ is also know as the shear modulus.
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2.2.2. EQUATIONS OF MOTION

Even though the previous derivation for u3 was based on the assumption of an isotropic
material we will assume the resulting form of the displacement field to be the same for
the case of an anisotropic material. In order to derive the equations of motion (EOM) we
will use the Euler-Lagrange formalism. Starting with a Lagrangian of the form:

L =
∫

V
L dV =

∫
V

1

2
ρ(∂t u)2 − 1

2
σi j ϵi j dV. (2.2.12)

Where L is the Lagrangian density given by (2.1.6) and (2.1.7) resulting in:

L = Tel −Uel =
1

2
ρ(∂t u)2 − 1

2
σi j ϵi j = 1

2
ρ(∂t u)2 − 1

2
Ci j kl ϵkl ϵi j . (2.2.13)

We take the displacement field to be of the same form as in the previous section:

u1 = u0
1 −x3∂1u0

3

u2 = u0
2 −x3∂2u0

3

u3 = u0
3 + ũ3.

(2.2.14)

From substituting this displacement field into the definition of the strain tensor (2.1.1)
we find the following components:

ϵ11 = ∂1u0
1 −x3∂1∂1u0

3

ϵ22 = ∂2u0
2 −x3∂2∂2u0

3

ϵ33 = ∂3(u0
3 + ũ3) = ∂3ũ3

ϵ23 = 1

2
(∂2(u0

3 + ũ3)−∂2u0
3) = 1

2
∂2ũ3

ϵ13 = 1

2
(∂1(u0

3 + ũ3)−∂1u0
3) = 1

2
∂1ũ3

ϵ12 = 1

2
(∂2u0

1 +∂1u0
2)−x3∂1∂2u0

3.

(2.2.15)
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The terms of the potential energy density then becomes:

1

2
Ci j kl ϵkl ϵi j = 1

2

(
C1111ϵ

2
11 +C2222ϵ

2
22 +C3333ϵ

2
33

+2C1122ϵ12ϵ22 +2C1133ϵ11ϵ33 +2C2233ϵ22ϵ33 +4C1112ϵ11ϵ12

+4C1113ϵ11ϵ13 +4C1123ϵ11ϵ23 +4C1212ϵ12ϵ12 +4C1222ϵ12ϵ22

+4C1233ϵ12ϵ33 +8C1223ϵ12ϵ23 +8C1213ϵ12ϵ13 +4C1313ϵ13ϵ13

+4C1322ϵ13ϵ22 +4C1333ϵ13ϵ33 +8C1323ϵ13ϵ23

+4C2223ϵ22ϵ23 +4C2323ϵ23ϵ23 +4C2333ϵ23ϵ33

)
, (2.2.16)

= 1

2

(
C1111

(
∂1u0

1 −x3∂1∂1u0
3

)2

+4C1112
(
∂1u0

1 −x3∂1∂1u0
3

)((
∂2u0

1 +∂1u0
2

)−x3∂1∂2u0
3

)
+2C1113

(
∂1u0

1 −x3∂1∂1u0
3

)
∂1ũ3

+2C1122
(
∂2u0

2 −x3∂2∂2u0
3

)(
∂1u0

1 −x3∂1∂1u0
3

)
+2C1123

(
∂1u0

1 −x3∂1∂1u0
3

)
∂2ũ3 +2C1133

(
∂1u0

1 −x3∂1∂1u0
3

)
∂3ũ3

+4C1212
((
∂2u0

1 +∂1u0
2

)−x3∂1∂2u0
3

)2

+4C1213
((
∂2u0

1 +∂1u0
2

)−x3∂1∂2u0
3

)
∂1ũ3

+4C1222
(
∂2u0

2 −x3∂2∂2u0
3

)((
∂2u0

1 +∂1u0
2

)−x3∂1∂2u0
3

)
+4C1223

((
∂2u0

1 +∂1u0
2

)−x3∂1∂2u0
3

)
∂2ũ3

+4C1233
((
∂2u0

1 +∂1u0
2

)−x3∂1∂2u0
3

)
∂3ũ3

+C1313(∂1ũ3)2 +2C1322
(
∂2u0

2 −x3∂2∂2u0
3

)
∂1ũ3

+2C1323∂2ũ3∂1ũ3 +2C1333∂3ũ3∂1ũ3 +C2222
(
∂2u0

2 −x3∂2∂2u0
3

)2

+2C2223
(
∂2u0

2 −x3∂2∂2u0
3

)
∂2ũ3 +2C2233

(
∂2u0

2 −x3∂2∂2u0
3

)
∂3ũ3

+C2323(∂2ũ3)2 +2C2333∂3ũ3∂2ũ3 +C3333(∂3ũ3)2
)
. (2.2.17)

Similarly the kinetic energy density is given by:

1

2
ρ(∂t u)2 = 1

2
ρ
(
(∂t u1)2 + (∂t u2)2 + (∂t u3)2

)
(2.2.18)

= 1

2
ρ
(
(∂t u0

1 −x3∂t∂1u0
3)2 + (∂t u0

2 −x3∂t∂2u0
3)2 + (∂t u0

3 +∂t ũ3)2
)

(2.2.19)

= 1

2
ρ
(
(∂t u0

1)2 + (∂t u0
2)2 + (∂t u0

3)2 + (∂t ũ3)2 +2(∂t u0
3)(∂t ũ3)

−2x3(∂t u0
1)(∂t∂1u0

3)−2x3(∂t u0
2)(∂t∂2u0

3)

+x2
3(∂t∂1u0

3)2 +x2
3(∂t∂2u0

3)2
)
. (2.2.20)
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Meaning the Lagrangian density becomes:

L = 1

2
ρ(∂t u)2 − 1

2
σi j ϵi j (2.2.21)

= 1

2
ρ
(
(∂t u0

1)2 + (∂t u0
2)2 + (∂t u0

3)2 + (∂t ũ3)2 +2(∂t u0
3)(∂t ũ3)

−2x3(∂t u0
1)(∂t∂1u0

3)−2x3(∂t u0
2)(∂t∂2u0

3)

+x2
3(∂t∂1u0

3)2 +x2
3(∂t∂2u0

3)2
)

− 1

2

(
C1111

(
∂1u0

1 −x3∂1∂1u0
3

)2

+4C1112
(
∂1u0

1 −x3∂1∂1u0
3

)((
∂2u0

1 +∂1u0
2

)−x3∂1∂2u0
3

)
+2C1113

(
∂1u0

1 −x3∂1∂1u0
3

)
∂1ũ3

+2C1122
(
∂2u0

2 −x3∂2∂2u0
3

)(
∂1u0

1 −x3∂1∂1u0
3

)
+2C1123

(
∂1u0

1 −x3∂1∂1u0
3

)
∂2ũ3 +2C1133

(
∂1u0

1 −x3∂1∂1u0
3

)
∂3ũ3

+4C1212
((
∂2u0

1 +∂1u0
2

)−x3∂1∂2u0
3

)2 +4C1213
((
∂2u0

1 +∂1u0
2

)−x3∂1∂2u0
3

)
∂1ũ3

+4C1222
(
∂2u0

2 −x3∂2∂2u0
3

)((
∂2u0

1 +∂1u0
2

)−x3∂1∂2u0
3

)
+4C1223

((
∂2u0

1 +∂1u0
2

)−x3∂1∂2u0
3

)
∂2ũ3 +4C1233

((
∂2u0

1 +∂1u0
2

)−x3∂1∂2u0
3

)
∂3ũ3

+C1313(∂1ũ3)2 +2C1322
(
∂2u0

2 −x3∂2∂2u0
3

)
∂1ũ3

+2C1323∂2ũ3∂1ũ3 +2C1333∂3ũ3∂1ũ3 +C2222
(
∂2u0

2 −x3∂2∂2u0
3

)2

+2C2223
(
∂2u0

2 −x3∂2∂2u0
3

)
∂2ũ3 +2C2233

(
∂2u0

2 −x3∂2∂2u0
3

)
∂3ũ3

+C2323(∂2ũ3)2 +2C2333∂3ũ3∂2ũ3 +C3333(∂3ũ3)2
)
. (2.2.22)

Where we see that L depends on x3, ∂t u0
1, ∂t u0

2, ∂t u0
3, ∂t ũ3, ∂1u0

1,∂1u0
2,∂1ũ3, ∂2u0

1, ∂2u0
2,

∂2ũ3, ∂3ũ3, ∂1∂1u0
3, ∂2∂2u0

3, and ∂1∂2u0
3. In order to find then the EOM we will use the

Euler-Lagrange equations. Since we are mostly interested in the out-of-plane displace-
ments we will derive the EOM for u0

3. The EOM for the other displacement field compo-
nents are discussed in section 2.A.1. In order to find then the EOM for u0

3 we start with
the Euler-Lagrange equation:

0 = ∂L

∂u0
3

− d

d t

∂L

∂∂t u0
3

+ d 2

d x2
1

∂L

∂∂1∂1u0
3

+ d 2

d x2
2

∂L

∂∂2∂2u0
3

+ d 2

d x1x2

∂L

∂∂1∂2u0
3

. (2.2.23)
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So we find that the EOM for u0
3 becomes:

0 = x3

(
C1111∂1∂1∂1u0

1 +C2222∂2∂2∂2u0
2

+C1112
(
3∂1∂1∂2u0

1 +∂1∂1∂1u0
2

)+C1222
(
3∂1∂2∂2u0

2 +∂2∂2∂2u0
1

)
+ (C1122 +2C1212)(∂1∂2∂2u0

1 +∂1∂1∂2u0
2)

)
−x2

3

(
C1111∂1∂1∂1∂1u0

3 +C2222∂2∂2∂2∂2u0
3

+4C1112∂1∂1∂1∂2u0
3 +4C1222∂1∂2∂2∂2u0

3 +2(C1122 +2C1212)∂1∂1∂2∂2u0
3

)
−ρ

(
∂t∂t u0

3 +x3
(
∂1∂t∂t u0

1 +∂2∂t∂t u0
2

)−x2
3

(
∂1∂1∂t∂t u0

3 +∂2∂2∂t∂t u0
3

))
+x3

(
+C1133∂1∂1∂3ũ3 +C2233∂2∂2∂3ũ3 +2C1233∂1∂2∂3ũ3

+C1113∂1∂1∂1ũ3 +C2223∂2∂2∂2ũ3

+ (2C1223 +C1322)∂1∂2∂2ũ3 + (C1123 +2C3121)∂1∂1∂2ũ3

)
−ρ∂t∂t ũ3 (2.2.24)

We remark that in the case that ũ3 vanishes the last two terms vanish, resulting in:

0 = x3

(
C1111∂1∂1∂1u0

1 +C2222∂2∂2∂2u0
2

+C1112
(
3∂1∂1∂2u0

1 +∂1∂1∂1u0
2

)+C1222
(
3∂1∂2∂2u0

2 +∂2∂2∂2u0
1

)
+ (C1122 +2C1212)(∂1∂2∂2u0

1 +∂1∂1∂2u0
2)

)
−x2

3

(
C1111∂1∂1∂1∂1u0

3 +C2222∂2∂2∂2∂2u0
3

+4C1112∂1∂1∂1∂2u0
3 +4C1222∂1∂2∂2∂2u0

3 +2(C1122 +2C1212)∂1∂1∂2∂2u0
3

)
−ρ

(
∂t∂t u0

3 +x3
(
∂1∂t∂t u0

1 +∂2∂t∂t u0
2

)−x2
3

(
∂1∂1∂t∂t u0

3 +∂2∂2∂t∂t u0
3

))
. (2.2.25)

In (2.2.25) the x3 dependence is all explicit since the u0
i do not depend on x3. This means

we can integrate over the thickness of the plate, x3 ∈ [−h
2 , h

2 ], which results in the terms
odd in x3 to vanish.

0 = h3

12

(
C1111∂1∂1∂1∂1u0

3 +4C1112∂1∂1∂1∂2u0
3 +2(C1122 +2C1212)∂1∂1∂2∂2u0

3

+4C1222∂1∂2∂2∂2u0
3 +C2222∂2∂2∂2∂2u0

3

)
+ρ∂t∂t u0

3 −
h3

12
(∂t∂t∂1∂1u0

3 +∂t∂t∂2∂2u0
3). (2.2.26)

In order to make the comparison to the known literature model for an isotropic plate we
can substitute in the corresponding elasticity tensor. Note that due to the assumption
3 we alter the behaviour of the material, this leads to a renormalisation of the elasticity
tensor, see section 2.A.2. The renormalised elasticity tensor for an isotropic material
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then becomes:

C1111 =C2222 =λ+2µ= E

(1−ν2)
, (2.2.27a)

C1112 =C2212 = 0, (2.2.27b)

C1122 =λ= νE

(1−ν2)
, (2.2.27c)

C1212 =µ= E

2(1+ν)
, (2.2.27d)

where E is the materials Young’s modulus and ν is its Poisson ratio. Plugging the renor-
malised values of the elasticity tensor into (2.2.26) we find:

− h3

12

(
(λ+2µ)(∂1∂1∂1∂1u0

3)+ (λ+2µ)(∂2∂2∂2∂2u0
3)

+2λ(∂1∂1∂2∂2u0
3)+4µ(∂1∂2∂1∂2u0

3)
)

= ρh(∂t∂t u0
3)−ρh3

12
(∂t∂t∂1∂1u0

3)−ρh3

12
(∂t∂t∂2∂2u0

3). (2.2.28)

Which can be rewritten as follows:

−D
(
∆2u0

3

)= ρh(∂t∂t u0
3)−ρh3

12
(∂t∂t∂1∂1u0

3)−ρh3

12
(∂t∂t∂2∂2u0

3) (2.2.29)

Where ∆2 = (∂1∂1 + ∂2∂2)2 and D = h3

12
E

(1−ν2)
, which is known as the flexural stiffness.

Commonly the last two terms in (2.2.29), those with the prefactor ρ h3

12 , are neglected
in which case (2.2.29) becomes the standard Kirchoff-Love equation for an undriven
isotropic plate.

D
(
∆2u0

3

)+ρh(∂t∂t u0
3) = 0 (2.2.30)

Equation (2.2.30) can be used to find the resonances of the plate, given the boundary
conditions, examples of which are discussed in [29]. Throughout the following chapters
we will use analysis of such resonances. The theory presented so far provides a starting
point for future work to account for more complex behaviours. For example, the general
from presented in (2.2.24) allows to include also the dynamics of ũ3.

2.3. MAGNETISM
As mentioned in section 1.2 the relevant microscopic origin for magnetism are spins,
particularly electron spins. Since all electrons have spin and all materials contain elec-
trons one might expected that all materials are magnetic. To a certain extend this is true,
but in practise for a lot of materials the interaction with magnetic fields is quite weak
as such these materials can be considered to be not magnetic. This is a result from the
fact that the spins in these materials tend to be aligned oppositely, as is the case of for
two electrons in the same orbital, or aligned randomly resulting in an overall cancella-
tion of the magnetic moments through out the material. However there are materials
where some spins are ordered, i.e. not randomly oriented, or uncompensated resulting



2

24 2. THEORY

in a magnetic structure. It is these materials that we generally refer to when discussing
magnets.

One should however realise that magnetic materials are not magnetic at all tempera-
tures, as this ordering of spins is affected by temperature effects, such as thermal fluctu-
ations. This means that magnets exhibit a phase transition. These phase transitions can
be described using Landau theory [15, 30] which makes use of a quantity know as the
order parameter. In this section we will provide an introduction to this theory starting
from the definitions of this order paramter.

2.3.1. MAGNETIC ORDER PARAMETER

For magnetic phases the order parameter can be understood as a measure for how aligned
the spins, by which we mean the magnetic moments, in the system are. If we consider a
ferromagnetic system, then if the system is fully ordered all spins are aligned parallel to
each other, whereas if the system is fully disordered the spins are not aligned but rather
point in random directions. An intuitive measure for how ferromagnetically ordered a
state is would be to then add all spins together. This quantity would be zero in the case
where the spins are not aligned, called the paramagnetic state, and maximal in the fully
ordered state, the ferromagnetic state. If we consider the set all spins in the system,
{S1,S2, ...,SN }, then summing over this set and dividing by the volume of the system, V ,
gives us the ferromagnetic order parameter:

M = 1

V

N∑
i=1

Si (2.3.1)

Note that this ferromagnetic order parameter, M , is a vector quantity with units of A/m.
Often we don’t really care about the direction of this order parameter and only the mag-
nitude, M = |M |, is considered. We will consider M to be a field varying over space,
which can be understood from the definition in (2.3.1) by taking V to be an infinitesimal
volume element and only sum over the spins in that volume element.

Using the same order parameter for antiferromagnetic systems as for ferromagnetic
systems does not work, in the sense that there is not a difference in value between the
paramagnetic and antiferromagnetic state. This is due to the fact that when the spins
start to order in anti alignment the fact that neighboring spins have opposite direction
means that they cancel in the summation. To take this into account we can define a
slightly different order parameter, called the antiferromagnetic order parameter, which
corresponds to the total staggered magnetisation [31], which we will denote with L. If
we consider the system in a completely ordered state we can divide the set of spins,
{S1,S2, ...,SN }, in the system in to two disjointed subsets whose union form the entire set,
{S ′′′

1,S ′′′
2, ...,S ′′′

NA
} and {S ′′′′′′

1 ,S ′′′′′′
2 , ...,S ′′′′′′

NB
}, where one subset consist of all spins that are parallel

with other spins of that subset but are anti-parallel with the spins in the other subset. We
can then define the antiferromagnetic order parameter to be the the difference between
the sums of each of these subsets,

L = 1

V

( NA∑
i=1

S ′′′
i −

NB∑
j=1

S ′′′′′′
j

)
. (2.3.2)
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For an antiferromagnet there is no macroscopic magnetization which requires that the
two subsets are of equal size, i.e. NA = NB . If this is not the case the two subsets do not
completely cancel each others total magnetization resulting in some macroscopic mag-
netization, this case corresponds to that of a ferrimagnet.7 It is interesting to note that
we can actually consider the ferromagnetic system to be a special case where one of the
subsets is the empty set, in which case we see that the definition of L and M coincide.
And one could generalize this definition further to include systems where the total or-
dered state can be naturally partitioned into more than two subsets, such as for certain
frustrated lattices.

2.3.2. FREE ENERGY
The order parameter is thus zero in the non-magnetic state and non-zero in the magnetic
state. This suggest that at the transition point the order parameter is small 8 allowing for
an expansion of the energy in terms of the order parameter. So close to the transition the
free energy can be written as:

F = F0 + A1i Mi + A2i j Mi M j + A3i j k Mi M j Mk + A4i j kl Mi M j Mk Ml + . . . . (2.3.3)

Where the indices run over {1,2,3} and Mi is the ith component of the vector M . Here the
A’s are the expansion coefficients and F0 represents the contributions to the free energy
not coming from the magnetic order, such as phonon contributions. Since free energy
has to be invariant under time reversal and the order parameters of interest to us, both
M and L, are anti-symmetric under time reversal any term of odd order in the order
parameter has to vanish [32] [15]. If we then also drop terms of order higher than 4th
order in the order parameter we are left with:

F = F0 + A2i j Mi M j + A4i j kl Mi M j Mk Ml (2.3.4)

Equation (2.3.4) uses the general vector form of the order parameter with the corre-
sponding coefficients, A2, A4, written as tensor components. Often it is sufficient to sim-
ply consider the order parameter in a scalar form, such as the magnitude of the order
parameter M =p

Mi Mi . Simplifying (2.3.4) in this way we get:

F = F0 +a(T −TN )2βM 2 +B M 4. (2.3.5)

Here a,B are positive constants9, T is the temperature, TN the transition temperature,
and β a critical exponent describing the transition.

2.4. MAGNETOSTRICTION
Some materials deform when subjected to a magnetic field, this phenomenon is called
magnetostriction. This effect is the reason that transformers hum, as the metal core,

7This definition assumes that the total system has an even amount of spins. In practice this is not always the
case even for systems that we would consider an antiferromagnet and a more rigorous definition involves
considering the infinite size limit of the system.

8Note that we make the implicit assumption that the order parameter is continues. This is the case for the
transitions discussed in this thesis and so we will proceed without further discussion on this assumption.

9a can also be negative, this is dependent on if the disordered state is at higher or lower temperature with
respect to the ordered state. Since for all transitions discussed in the this thesis the disordered state is at a
higher temperature which corresponds to a > 0 we will treat a as being positive.
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usually iron, expands and contracts along with the changing magnetisation induced by
the coils in the transformer. This deformation does not only happen due to externally
induced magnetisation changes, such as with the transformer example, but also when a
material changes magnetisation itself, such as when exhibiting a magnetic phase transi-
tion, the latter case is called spontaneous magnetostriction.

The simplest coupling in the free energy expression that that satisfies the symmetries
mentioned earlier in this chapter is of the form:

λi j klσi j Mk Ml . (2.4.1)

Here λi j kl are the magnetostrictive coupling coefficients with units of m2/A2. It will be
more convenient to rephrase (2.4.1) in terms of strain using (2.1.4).

λi j kl Ci j pqϵpq Mk Ml = λ̄i j kl ϵi j Mk Ml . (2.4.2)

Where we defined λ̄pqkl = λi j kl Ci j pq for ease of notation. If we consider the magnetic
free energy and the coupling as an additional potential to the Lagrangian density from
(2.2.13) we can find the effects this coupling has on the EOM of u0

3 for a plate made from
a magnetostrictive material. The purely magnetic terms, i.e. not containing any strain
component, will not contribute to the EOM of u0

3 as the functional derivatives in the
Euler-Lagrange equation will vanish. So the only new contribution to the EOM of u0

3 can
come from the coupling term itself. Taking the strain tensor to be the same as in (2.2.15)
and substituting those into (2.4.2) we find:

λ̄i j kl ϵi j Mk Ml = Mk Ml

(
λ̄11kl (∂1u0

1 −x3∂1∂1u0
3)+ λ̄22kl (∂2u0

2 −x3∂2∂2u0
3)

+ λ̄33kl∂3ũ3 +2λ̄23kl
1

2
∂2ũ3 +2λ̄13kl

1

2
∂1ũ3

+2λ̄12kl (
1

2
(∂2u0

1 +∂1u0
2)−x3∂1∂2u0

3)
)

(2.4.3)

If we consider the EOM for u0
3 as in (2.2.23) adding the contribution coming from (2.4.3),

see section 2.B.1, we find that the only non-zero functional derivatives are:

δLms

δ∂1∂1u0
3

=−x3Mk Ml λ̄11kl (2.4.4a)

δLms

δ∂2∂2u0
3

=−x3Mk Ml λ̄22kl (2.4.4b)

δLms

δ∂1∂2u0
3

=−x3Mk Ml λ̄12kl . (2.4.4c)

Where Lms =
∫

V LmsdV = ∫
V λ̄i j kl ϵi j Mk Ml dV is the magnetostriction term in the La-

grangian.
In the case of a homogeneous plate where Mi and λ̄i j kl are constant through out

the plate the terms described by (2.4.4) have no x1 or x2 dependence. Therefore there
is no contribution to the EOM for u0

3 as a result from this magnetostrictive coupling, as
these non-zero functional derivatives only appear in (2.2.23) in combination with the
derivative operators d

d x1
and or d

d x2
.
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However the magnetostriction term also has an effect on the EOM for the magnetic
DOF’s. To see this we will follow the same procedure as for the displacement field for the
magnetic field. We start from the Lagrangian:

L = Lel +Lmag +Lms

= Lel −F0 − A2i j Mi M j − A4i j kl Mi M j Mk Ml − λ̄i j kl ϵi j Mk Ml , (2.4.5)

where Lel is the elastic part given by (2.2.12) and Lmag is the purely magnetic part. The
EOM for Mi is then given by:

0 = δL

δMi
− d

d t

δL

δ∂t Mi

=−2A2i j M j −4A4i j kl M j Mk Ml − λ̄kl i j ϵkl M j . (2.4.6)

Which can be rewritten this as:

0 =
(
(2A2i j + λ̄kl i j ϵkl )+4A4i j kl Mk Ml

)
M j . (2.4.7)

If we are only interested in the magnitude of the magnetic order we can replace the Mi

simply with M and find:

0 =
(
(2a(T −TN )2β+ λ̄kl i j ϵkl )+4B M 2

)
M . (2.4.8)

For which there are three possible solutions:

M = 0 (2.4.9)

M =±
√

2a(T −TN )2β+ λ̄kl i j ϵkl

4B
. (2.4.10)

The M = 0 solution corresponds with no magnetisation as in the paramagnetic phase.
The second set of solutions correspond with the 2 orientations of the magnetisation in
the magnetic phase. We remark that for the case that β = 1

2 we can rewrite (2.4.10) to
interpret the magnetostriction contribution as simply renormalising the transition tem-
perature. This results in:

M =±
√

2a(T −TN )+ λ̄kl i j ϵkl

4B
=±

√
2a(T −T ∗

N )

4B
, (2.4.11)

where

T ∗
N = TN − (

λ̄kl i j ϵkl

2a
). (2.4.12)

This result shows that when considering a magnetic phase transition in a system with
magnetostriction the transition temperature becomes dependent on the strain in the
system. This will be relevant for the rest of this thesis as they discuss precisely such
systems.
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2.A. SUPPLEMENTARY PLATE THEORY

2.A.1. EQUATIONS OF MOTION OF ELASTIC DEGREES OF FREEDOM
In the main text we used the Euler-Lagrange formalism to derive the EOM of the elastic
DOF. This method is based on principle of least action which when discussed in un-
dergraduate physics classes is often only discussed in the context of a single variable,
commonly time, and single function, commonly position. This section will give a brief
recap of this one variable one function case and discuss the more general case, for the
readers that are unfamiliar with the generalisation. We will apply the generalised case to
the elastic DOF in the plate theory discussed in the main text to derive the complete set
of EOM for all elastic DOF of the model.

EULER-LAGRANGE FORMALISM

In order to derive the EOM for a dynamical system we look for a stationary point of the
action functional, this principle is the well know principle of least action. Let S be the
action of our system then:

S[ f ] =
∫ t1

t0

L(t , f (t ),∂t f (t ))d t , (2.A.1)

where L(t , f ) is the systems Lagrangian dependent on time, t , and a function f that de-
scribes the variable of interest, such as the position of a particle, and t0 and t1 are the
boundary times of our problem. In this system dependent on one function f , its first
derivative ∂t f (t ), and one variable t a stationary point is given by the well known Euler-
Lagrange equation:

δL

δ f
−∂t

δL

δ∂t f (t )
= 0. (2.A.2)

This formalism can be generalised to systems with multiple variables, functions, and
higher order derivatives, such as the case of a plate in elasticity theory [33]. In that case
the action will have the form:

S[ f1, . . . , fp ] =
∫
Ω

L (t , x1, . . . , xm , f1, . . . , fp ,∂t f1, . . . ,∂m fp ,∂n
t f1, . . . ,∂n

m fp )d x, (2.A.3)

whereΩ= [t0, t1]×V is the parameter space of interest, the product space of the temporal
interval [t0, t1] with the spacial volume V , and L is the Lagrangian (density) dependent
on the variables t , x1, . . . , xm as well as the functions f1, . . . , fp and their derivatives up to

order n, we use the notation ∂n
m for ∂n

∂xn
m

.10 In such a system a stationary point satisfies

the system of Euler-Lagrange equations given by:

∂L

∂ fi
+

n∑
j=1

∑
µ1≤···≤µ j

(−1) j∂µ1...µ j

∂L

∂∂µ1...µ j fi
= 0, (2.A.4)

where µ1 . . .µ j run over the variables t , x1, . . . , xm .

10Note that this also includes combination of derivatives such as ∂t∂1∂m.
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EQUATIONS OF MOTION

We see from (2.2.22) that L depends on x3, ∂t u0
1, ∂t u0

2, ∂t u0
3, ∂t ũ3, ∂1u0

1, ∂1u0
2, ∂1ũ3,

∂2u0
1, ∂2u0

2, ∂2ũ3, ∂3ũ3, ∂1∂1u0
3, ∂2∂2u0

3, and ∂1∂2u0
3. Plugging this in to (2.A.4) we get an

EOM for each field, u0
1,u0

2, ũ3, and u0
3.

0 = ∂L

∂u0
1

−∂t
∂L

∂∂t u0
1

−∂1
∂L

∂∂1u0
1

−∂2
∂L

∂∂2u0
1

(2.A.5a)

0 = ∂L

∂u0
2

−∂t
∂L

∂∂t u0
2

−∂1
∂L

∂∂1u0
2

−∂2
∂L

∂∂2u0
2

(2.A.5b)

0 = ∂L

∂ũ3
−∂t

∂L

∂∂t ũ3
−∂1

∂L

∂∂1ũ3
−∂2

∂L

∂∂2ũ3
−∂3

∂L

∂∂3ũ3
(2.A.5c)

0 = ∂L

∂u0
3

−∂t
∂L

∂∂t u0
3

+∂1∂1
∂L

∂∂1∂1u0
3

+∂2∂2
∂L

∂∂2∂2u0
3

+∂1∂2
∂L

∂∂1∂2u0
3

(2.A.5d)

Substituting (2.2.22) into (2.A.5) we find the following set of coupled EOM:

For u0
1 we find:

C1111∂1∂1u0
1 +C11122∂1∂2u0

1 +C1212∂2∂2u0
1

+C1112∂1∂1u0
2 + (C1122 +C1212)∂1∂2u0

2 +C1222∂2∂2u0
2

+C1113∂1∂1ũ3 +C1223∂2∂2ũ3

+C1233∂2∂3ũ3 +C1133∂1∂3ũ3 + (C1123 +C3121)∂1∂2ũ3

= ρ∂t∂t u0
1 +x3

(
−ρ∂1∂t∂t u0

3

+C1111∂1∂1∂1u0
3 +C1222∂2∂2∂2u0

3

+3C1112∂1∂1∂2u0
3 + (C1122 +2C1212)∂1∂2∂2u0

3

)
.

(2.A.6)

For u0
2 we find:

C1112∂1∂1u0
1 + (C1122 +C1212)∂1∂2u0

1 +C1222∂2∂2u0
1

+C1212∂1∂1u0
2 +C12222∂1∂2u0

2 +C2222∂2∂2u0
2

+C3121∂1∂1ũ3 +C2223∂2∂2ũ3

+C2233∂2∂3ũ3 +C1233∂1∂3ũ3 + (C1223 +C1322)∂1∂2ũ3

= ρ∂t∂t u0
2 +x3

(
−ρ∂2∂t∂t u0

3

+C1112∂1∂1∂1u0
3 +C2222∂2∂2∂2u0

3

+ (C1122 +2C1212)∂1∂1∂2u0
3 +3C1222∂1∂2∂2u0

3

)
.

(2.A.7)
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For ũ3 we find:

C1113∂1∂1u0
1 + (C1123 +C3121)∂1∂2u0

1 +C1223∂2∂2u0
1

+C3121∂1∂1u0
2 + (C1223 +C1322)∂1∂2u0

2 +C2223∂2∂2u0
2

+C1313∂1∂1ũ3 +C2323∂2∂2ũ3 +C3333∂3∂3ũ3

+2C2333∂2∂3ũ3 +2C1333∂1∂3ũ3 +2C1323∂1∂2ũ3

= ρ∂t∂t ũ3

+ρ∂t∂t u0
3 +C1133∂1∂1u0

3 +2C1233∂1∂2u0
3 +C2233∂2∂2u0

3

+x3

(
C1113∂1∂1∂1u0

3 +C2223∂2∂2∂2u0
3

+ (2C1223 +C1322)∂1∂2∂2u0
3 + (C1123 +2C3121)∂1∂1∂2u0

3

)
.

(2.A.8)

And for u0
3 we find:

x3

(
C1111∂1∂1∂1u0

1 +C11123∂1∂1∂2u0
1 +C1222∂2∂2∂2u0

1 + (C1122 +2C1212)∂1∂2∂2u0
1

+C1112∂1∂1∂1u0
2 +C12223∂1∂2∂2u0

2 +C2222∂2∂2∂2u0
2 + (C1122 +2C1212)∂1∂1∂2u0

2

)
−x2

3

(
C1111∂1∂1∂1∂1u0

3 +2(C1122 +2C1212)∂1∂1∂2∂2u0
3 +C2222∂2∂2∂2∂2u0

3

+4C1112∂1∂1∂1∂2u0
3 +4C1222∂1∂2∂2∂2u0

3

)
= ρ

(
∂t∂t u0

3 +x3
(
∂1∂t∂t u0

1 +∂2∂t∂t u0
2

)−x2
3

(
∂1∂1∂t∂t u0

3 +∂2∂2∂t∂t u0
3

))
−x3

(
C1133∂1∂1∂3ũ3 +C2233∂2∂2∂3ũ3 +2C1233∂1∂2∂3ũ3

+C1113∂1∂1∂1ũ3 +C2223∂2∂2∂2ũ3

+ (2C1223 +C1322)∂1∂2∂2ũ3 + (C1123 +2C3121)∂1∂1∂2ũ3

)
+ρ∂t∂t ũ3 (2.A.9)

The equations (2.A.6), (2.A.7), (2.A.8), and (2.A.9) form the total set of coupled EOM for
the displacement fields of a plate. They are here presented in a general format to provide
a starting point for different systems, such as anisotropic materials or non homogeneous
systems.

2.A.2. FROM 3D TO 2D ELASTICITY
If we have an plate of isotropic material the elasticity tensor is given by:

C 3D
i j kl =λδi jδkl +µ(δi kδ j l +δi lδ j k ), (2.A.10)

where λ and µ are the standard Lamé parameters for a three dimensional system. Under
assumption 3 calculating the σzz component for an isotropic material results in:

σzz =C 3D
zzkl ϵkl

=λϵxx +λϵy y +λϵzz +2µϵzz

= (λ+2µ)ϵzz +λ(ϵxx +ϵy y ). (2.A.11)
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Applying the assumption of plane stress, σzz = 0, this results in:

ϵzz = −λ
(λ+2µ)

(ϵxx +ϵy y ). (2.A.12)

For the other diagonal stress components we find:

σxx =C 3D
xxkl ϵkl

= (λ+2µ)ϵxx +λ(ϵzz +ϵy y )

= (λ+2µ)ϵxx +λϵy y − λ2

(λ+2µ)
(ϵxx +ϵy y )

= 4µ(λ+µ)

(λ+2µ)
ϵxx + 2λµ

(λ+2µ)
ϵy y , (2.A.13)

σy y =C 3D
y ykl ϵkl

= (λ+2µ)ϵy y +λ(ϵzz +ϵxx )

= (λ+2µ)ϵy y +λϵxx − λ2

(λ+2µ)
(ϵxx +ϵy y )

= 4µ(λ+µ)

(λ+2µ)
ϵy y + 2λµ

(λ+2µ)
ϵxx . (2.A.14)

From this we can see that there appears to be a renomalisation of the elasticity tensor
due to the plane stress assumption. We define a new elasticity tensor in the 2D (plane
stress) case as satisfying:

σi j =C 2D
i j kl ϵkl , (2.A.15)

where the indices now run over {x, y}. We already found some of the components of C 2D .

C 2D
xxxx =C 2D

y y y y =
4µ(λ+µ)

(λ+2µ)
(2.A.16a)

C 2D
xx y y =C 2D

xx y y =
2λµ

(λ+2µ)
(2.A.16b)

C 2D
xxx y =C 2D

xx y x =C 2D
x y xx =C 2D

y xxx = 0 (2.A.16c)

C 2D
y y y x =C 2D

y y x y =C 2D
y x y y =C 2D

x y y y = 0 (2.A.16d)

Leaving just 4 components, which can be determined from:

σx y =C 3D
x ykl ϵkl (2.A.17a)

=µϵy x +µϵx y . (2.A.17b)

Showing that:

C 2D
x y x y =C 2D

y xx y =C 2D
x y y x =C 2D

y x y x =µ. (2.A.18)
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The 2D analogues of the 3D Lamé parameters are then given by:

C 2D
xxxx =C 2D

y y y y =
4µ(λ+µ)

(λ+2µ)
=λ2D +2µ2D (2.A.19a)

C 2D
xx y y =C 2D

xx y y =
2λµ

(λ+2µ)
=λ2D (2.A.19b)

C 2D
x y x y =C 2D

y xx y =C 2D
x y y x =C 2D

y x y x =µ=µ2D . (2.A.19c)

Rewriting this in terms of the Youngs modulus and Poisson’s ratio E ,ν as per:

λ= Eν

(1+ν)(1−2ν)
, (2.A.20a)

µ= E

2(1+ν)
, (2.A.20b)

results in:

λ2D = Eν

(1+ν)(1−ν)
= Eν

(1−ν2)
(2.A.21a)

µ2D = E

2(1+ν)
(2.A.21b)

λ2D +2µ2D = E

(1+ν)(1−ν)
= E

(1−ν2)
. (2.A.21c)

This provides the renormalised values for the Lamé parameters to be used in EOM for
the displacement fields of a isotropic plate, as is done in the main text following (2.2.26).

2.B. SUPPLEMENTARY MAGNETOSTRICTION

2.B.1. EQUATIONS OF MOTION WITH MAGNETOSTRICTION

When incorporating the magnetic degrees of freedom into our consideration of our sys-
tem we start from a Lagrangian combining the elastic and magnetic DOFs.

L = Lel +Lmag +Lms

= Lel −F0 − A2i j Mi M j − A4i j kl Mi M j Mk Ml − λ̄i j kl ϵi j Mk Ml (2.B.1)

As mentioned in the main text the purely magnetic part of this Lagrangian does not
contribute to the EOM for the elastic degrees of freedom as it does not contain any de-
pendence on the displacement fields. The contributions of Lms to the EOM of the dis-
placement fields can be found by substituting Lms into the right hand sides of equations
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(2.A.5):

∂Lms

∂u0
1

−∂t
∂Lms

∂∂t u0
1

−∂1
∂Lms

∂∂1u0
1

−∂2
∂Lms

∂∂2u0
1

(2.B.2a)

∂Lms

∂u0
2

−∂t
∂Lms

∂∂t u0
2

−∂1
∂Lms

∂∂1u0
2

−∂2
∂Lms

∂∂2u0
2

(2.B.2b)

∂Lms

∂ũ3
−∂t

∂Lms

∂∂t ũ3
−∂1

∂Lms

∂∂1ũ3
−∂2

∂Lms

∂∂2ũ3
−∂3

∂Lms

∂∂3ũ3
(2.B.2c)

∂Lms

∂u0
3

−∂t
∂Lms

∂∂t u0
3

+∂1∂1
∂Lms

∂∂1∂1u0
3

+∂2∂2
∂Lms

∂∂2∂2u0
3

+∂1∂2
∂Lms

∂∂1∂2u0
3

. (2.B.2d)

Here equations a-d correspond with a-d of (2.A.5). Writing out the magnetostriction
term:

Lms = λ̄i j kl ϵi j Mk Ml

= Mk Ml
(
λ̄11kl (∂1u0

1 −x3∂1∂1u0
3)+ λ̄22kl (∂2u0

2 −x3∂2∂2u0
3)

+ λ̄33kl∂3ũ3 + λ̄23kl∂2ũ3 + λ̄13kl∂1ũ3

+2λ̄12kl (
1

2
(∂2u0

1 +∂1u0
2)−x3∂1∂2u0

3)
)

(2.B.3)

and substituting this in (2.B.2) results in11:

−∂1(Mk Ml λ̄11kl )−∂2(Mk Ml λ̄12kl ) (2.B.4a)

−∂1(Mk Ml λ̄(12kl ))−∂2(Mk Ml λ̄22kl ) (2.B.4b)

−∂1(Mk Ml λ̄13kl )−∂2(Mk Ml λ̄23kl )−∂3(Mk Ml λ̄33kl ) (2.B.4c)

−∂1∂1(Mk Ml λ̄11kl x3)−∂2∂2(Mk Ml λ̄22kl x3)−∂1∂2(2Mk Ml λ̄12kl x3). (2.B.4d)

These are the additional terms to the EOM for the displacement fields originating from
the magnetostrictive coupling. An interesting observation to be made at this point is
that when both the magnetisation and the magnetostriction do not vary over the ma-
terial volume, i.e. ∂i M j = 0 and ∂mλ̄i j kl = 0, as in a homogeneus system, all terms in
(2.B.4) vanish.

REFERENCES
33. Gelfand, I. M., Fomin, S. V. & Silverman, R. A. Calculus of Variations (Prentice-Hall,

Englewood Cliffs, N. J., 1963).

11Note that this term does not include any new dependencies on the displacement fields or their derivatives
meaning no new terms need to be added to the Euler-Lagrange equations given in (2.A.5).
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MAGNETIC ORDER IN 2D

ANTIFERROMAGNETS REVEALED BY

SPONTANEOUS ANISOTROPIC

MAGNETOSTRICTION

The temperature dependent order parameter provides important information on the na-
ture of magnetism. Using traditional methods to study this parameter in two-dimensional
(2D) magnets remains difficult, particularly for insulating antiferromagnetic (AF) com-
pounds. Here, we show that its temperature dependence in AF MPS3 (M(II) = Fe, Co, Ni)
can be probed via the anisotropy in the resonance frequency of rectangular membranes,
mediated by a combination of anisotropic magnetostriction and spontaneous staggered
magnetization. Density functional calculations followed by a derived orbital-resolved
magnetic exchange analysis confirm and unravel the microscopic origin of this magne-
tization inducing anistropic strain. We further show that the temperature and thickness
dependent order parameter allows to deduce the material’s critical exponents character-
ising magnetic order. Nanomechanical sensing of magnetic order thus provides a future
platform to investigate 2D magnetism down to the single-layer limit.

Parts of this chapter have been published in [34].
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3. MAGNETIC ORDER IN 2D ANTIFERROMAGNETS REVEALED BY SPONTANEOUS

ANISOTROPIC MAGNETOSTRICTION

3.1. INTRODUCTION

L AYERED two-dimensional (2D) magnetic materials offer an emerging platform for
fundamental studies of magnetism in the 2D limit. Their stackability into van der

Waals heterostructures opens pathways to non-trivial magnetic phases and technolog-
ical applications, including sensors, memories and spintronic logic devices [35]. In ad-
dition to ferromagnetism, first observed in CrI3 [36] and Cr2Ge2Te6 [37], antiferromag-
netism in 2D materials has also been studied in FePS3 [38] and CrSBr [39]. Antiferromag-
netic (AF) materials are of particular technological interest due to their high spin-wave
propagation speed and lack of macroscopic stray fields, making them strong candidates
for spintronic and magnonic applications [40–44].

For insulating, thin AF materials, such as MPS3 (M(II) = Fe, Co, Ni), few methods
are available to study their intrinsic magnetism. Conventional techniques, such as neu-
tron scattering, magnetization measurement by a superconducting quantum interfer-
ence device (SQUID) or vibrating sample magnetometry are challenging, due to the small
volumes of exfoliated 2D materials. Other methods, suited to 2D materials, require elec-
trical conductance, the presence of specific optical modes or ferromagnetic order; they
are therefore difficult to apply [35]. In contrast, strain applied to 2D magnetic materials
was shown to be an extremely powerful tool to modify the magnetic properties, inducing
magnetization reversal [45], reorientating the easy-axis [46], or reversing the exchange
interaction [47]. In addition, the direct coupling between strain, resonance frequency
and magnetization in membranes of 2D magnets, makes nanomechanical resonance a
sensitive method for studying their phase transitions [22, 48, 49]. Here, we show, guided
by density functional theory (DFT), that the magnetic order parameter of MPS3 AF mem-
branes can be quantified through the anisotropy in their magneto-elastic response; from
its temperature dependence the critical exponents are determined, and their thickness
dependence is investigated.

3.2. RESULTS AND DISCUSSION

3.2.1. FIRST PRINCIPLES ANALYSIS OF SPONTANEOUS MAGNETOSTRICTION

IN MPS3
Transition-metal phosphorus trisulphides, with general formula MPS3, are layered ma-
terials stacked in a monoclinic lattice with symmetry group C2/m [50], as shown in the
top view of a single-layer in the paramagnetic phase, figure 3.1a, top panel. The spins
of FePS3 point out-of-plane, whereas both CoPS3 and NiPS3 are in-plane systems with
their spins preferentially aligned along the a axis. The intralayer AF order forms a zigzag
configuration, as shown in bottom panel of figure 3.1a, leading to two opposite aligned
magnetic sub-latices. The difference of the magnetisation between these sub-latices is
the Néel vector. In bulk CoPS3 and NiPS3, these layers with this staggered magnetism are
stacked in a ferromagnetic (FM) fashion with Néel transition temperatures, TN, around
119 and 155 K, respectively [51, 52]. The interlayer magnetic interactions in FePS3 are AF
with a transition around 118 K [53].

To analyse the effect of magnetic ordering on the lattice, a first principles structural
optimization of FePS3, CoPS3 and NiPS3 based on density functional theory (DFT) was
preformed. For the ground state zigzag magnetic configuration, the calculations pre-



3.2. RESULTS AND DISCUSSION

3

37

M
P
S

a b
T > TN

T < TN

J2

b

a

Paramagnetic state

Antiferromagnetic state Up
Down

J3

J5

J4

J1

J6

dyz-dyz

dxy-dxy

dx2-y2 dz2

{dxz, dyz} dxy {dxz, dyz} dxy

dx2-y2 dz2 dx2-y2 dz2

{dxz, dyz} dxy {dxz, dyz} dxy

dx2-y2 dz2

t2g-t2g t2g-t2g

c

e

d

f
J1'

Figure 3.1: Magnetostriction in MPS3 membranes. a, top panel, Crystalline structure of MPS3 in the param-
agnetic phase (T > TN). Black hexagons indicate the organisation of magnetic atoms in the lattice. a, bottom
panel, Crystalline structure of MPS3 at the AF phase (T < TN) as it elongates in the b and contracts in the a
direction. Light blue and red arrows indicate the axial lattice distortion. b, Illustration of the exchange interac-
tion parameters included into the Heisenberg spin Hamiltonian. c-d, Calculated maximally localized Wannier

orbitals. Green arrows illustrate the most relevant FM superexchange channels for J1 (J
′
1) (c) and J2 (d), cor-

responding with the dy z -dy z (dxz -dxz ) and dx y -dx y orbitals, respectively. e-f, Electron configuration of the

Fe2+ magnetic ions connected by J1 (e) and J2 (f), showing parallel and antiparallel spin orientations, respec-
tively.

dict a compression of the a lattice parameter with respect to the crystallographic, non-
magnetic structure of 2.545% and 1.328% for the Co and Fe derivatives respectively (see
Table 3.1). In addition, the b axis expands by 0.402% (Co) and 0.359% (Fe). In contrast,
in NiPS3 the lattice parameters remain almost unchanged. The crystal and magnetic
structures are strongly connected in these compounds, which is further corroborated
by simulations of different spin configurations. The results of which are available in the
supplementary information of [34].

The 2D nature of the magnetostriction was studied by simulating the evolution of lat-
tice parameters in multilayer monoclinic FePS3 (which presents AF interlayer coupling),
obtaining similar results (1.462% compression in the a axis and 0.437% expansion in the
b axis). This indicates that the anisotropic magnetostiction is independent of the stack-
ing and interlayer interactions.

The microscopic mechanism governing the spontaneous magnetostriction in these
materials is studied using orbital-resolved magnetic exchange analyses based on maxi-
mally localized Wannier functions, (see supplementary information of [34]). The anal-
ysis shows that the spontaneous magnetostriction calculated in FePS3 and CoPS3 arises
from isotropic magnetic exchange interactions between t2g -t2g orbitals. Specifically, for
FePS3 the main magnetic exchange channels, substantially affected by the compression
of the a and expansion of the b lattice parameters, are the ones involving t2g -t2g interac-
tions of FM nature. The changes in the lattice parameters result in an increase in J1 and
J′1, see figure 3.1, due to a decrease in distance between the dy z -dy z and dxz -dxz orbitals,
respectively, shown in figure 3.1c. Simultaneously, these changes cause a decrease of
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CoPS3 FePS3 NiPS3

Lattice parameter (Å) a b a b a b

NM 5.895 10.19 5.947 10.301 5.812 10.07

AF-zigzag 5.745 10.231 5.868 10.338 5.817 10.061

Change (%) -2.545 +0.402 -1.328 +0.359 +0.086 -0.089

Table 3.1: CoPS3, FePS3 and NiPS3 lattice parameters of the crystallographic non-magnetic (NM) and fully
optimized zigzag antiferromagnetic (AF-zigzag) configurations, as calculated by DFT (see supplementary in-
formation of [34]).

J2 due to a larger separation of the dx y -dx y orbitals, see figure 3.1d. This is compatible
with the electron configuration of Fe2+ (d6), which has these orbitals partially filled and
allows FM hopping between them, see figure 3.1e,f.

This hopping effect also occurs for Co2+ (d7) although the additional electron present
for Co blocks the dx y -dx y pathway. This results in a stronger effect along J1 and J′1 for the
optimized structure, maximizing FM interactions in the zigzag chain, which involve the
dy z -dy z and dxz -dxz orbitals, respectively. For the Ni2+ derivative (d8), the t2g energy lev-
els are fully occupied, which results in a blocking of the t2g -t2g magnetic super-exchange
channels. This leads to an almost negligible modification in the lattice parameters of the
optimized structure with respect to the crystallographic non-magnetic one.

3.2.2. RESONANCE FREQUENCY CHANGES DUE TO SPONTANEOUS MAGNE-
TOSTRICTIVE STRAIN

The predicted anisotropic change of lattice parameters when going from the paramag-
netic to the AF phase, causes compressive stress, σa, and tensile stress, σb, along the
a axis and b axis respectively, as illustrated in figure 3.1a, bottom pannel. To quan-
tify this anisotropy appearing at the phase transition, we use rectangular membranes,
shown in figure 3.2b, to nanomechanically probe stress variations, along a specific crys-
tallographic axis [54] (see section 3.A.1). In the following analysis, we neglect the stress
contribution from the thermal expansion of the substrate, as this is small compared to
that of the MPS3 compounds [22].

The resonance frequency of the fundamental mode of a rectangular membrane, fres,
is approximately given by [29]:

fres ≈ 1

2

√
1

ρ

[
1

w2σw + 1

l 2σl

]
, (3.2.1)

where ρ is the mass density, w and l are respectively the width and length of the mem-
brane, as indicated in figure 3.2b, andσw,l are the stresses parallel to these directions. For
high-aspect-ratio membranes (w ≪ l ), the mechanical resonance frequency is mostly
determined by the stress along the shortest direction,σw. The membranes shown in this
chapter range in aspect ratio from 1 to 5 up to 1 to 12, corresponding to the σl pre-factor
being smaller by a factor of 25 up to 144 as compared to the σw pre-factor.
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We study the resonance frequency of thin MPS3 flakes suspended over star-shaped
cavities with 30◦ angular resolution, as shown in an example device in figure 3.2b. When
the longest side of the cavity is aligned along a crystallographic axis (a or b) and w ≪ l ,
its fundamental resonance frequency ( fa or fb) is determined by the stress along the
perpendicular axis (σb or σa):

fa ≈ 1

2

√
1

ρw2σb and fb ≈ 1

2

√
1

ρw2σa . (3.2.2)

On cavities oriented at an intermediate angle, θ, (defined with respect to the b axis), the
resonance frequency is:

fθ(T ) ≈ 1

2

√
1

ρw2

[
σa,θ+σb,θ

]
, (3.2.3)

σa,θ = E

(1−ν2)
(cos2θ+νsin2θ)(ϵ̄−ϵms,a),

σb,θ = E

(1−ν2)
(sin2θ+νcos2θ)(ϵ̄−ϵms,b),

where we have used the constitutive equations for a magnetostrictive membrane with
plane stress [55], while only keeping the anisotropy in the magnetostriction coefficient,
see section 3.A.1. Here, E is the Young’s modulus and ν is Poisson’s ratio of the mate-
rial. Moreover, we have ϵ̄ = ϵfab − ϵth, with ϵfab the residual fabrication strain and ϵth

the phononic thermal expansion induced strain variation. The magnetostrictive strain
along the a and b-axes is given by ϵms,a,b =λa,bL2, see section 3.A.2 for a detailed deriva-
tion of equation (3.2.3), hereλa,b are magnetostriction coefficients and L2 is the AF order
parameter squared.

The temperature dependence of the resonance frequency comprises two contribu-
tions: one due to the phononic thermal expansion coefficient α, given by

ϵth(T ) =
∫ T

T0

α(T̃ )dT̃, (3.2.4)

where T0 is a reference temperature and T̃ the integration variable, and the magne-
tostrictive contribution ϵms,a,b(T ) = λa,bL2(T ). The former contribution is a slowly vary-
ing function of T , while the latter term contains the staggered magnetization, which in-
creases abruptly near the phase transition; it thus can be used to determine L(T ), as we
will show below. We assume λa,b to be T independent, as its temperature dependence
will be negligible when compared to that of L(T ).
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Figure 3.2: Angle-resolved mechanical characterization via laser interferometry. a, Schematic illustration of
the laser interferometry setup and sample with rectangular cavity array. b, Optical image of the rectangular
membranes array for a CoPS3 sample. The a and b axis are determined from the resonance frequency be-
haviour. Scale bar: 12µm. Schematic of 0◦ and 90◦ membranes from the array where w is the width of the
membrane and l its length. c, Measured amplitude of the fundamental resonance peak in a CoPS3 drum at
T = 10 K and Lorentzian fit used to extract the fundamental resonance frequency, fres, and quality factor, Q. d,
Temperature dependence of fres of a CoPS3 rectangular membrane, shown are fa (blue) and fb (red) as defined
in equation (3.2.2). The arrows show the dominant magnetostrictive strain contributions for the correspond-
ing cavities. The dashed line indicates the transition temperature TN extracted from the data. e, Resonance
frequency difference, fres(T )− fres(140K), as a function of angle and temperature. The dashed line indicates
the transition as in d f, Polar plot of fres(T )− fres(140K) taken along the red dashed line in (e). Panels g-i, follow
the same structure as (c-e) for NiPS3 resonators with negligible anisotropy, measured between 5 K and 190 K.

3.2.3. NANOMECHANICAL DETERMINATION OF THE ORDER PARAMETER
To quantify the anisotropy in the magnetic membranes, a laser interferometry technique
is used to measure their resonance frequency as a function of temperature [56]. A MPS3

flake, suspended over holes in a patterned Si/SiO2 chip, figure 3.2b, is placed inside a
cryostat with optical access as shown in figure 3.2a. Both actuation and detection are
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done optically, by means of a power-modulated blue laser which opto-thermally excites
the membrane, and a constant red laser which measures the change in the reflected
signal resulting from the membrane’s motion [22]. A typical resonance is shown in fig-
ure 3.2c, along with the damped harmonic oscillator model fit defining the resonance
frequency. Figure 3.2d shows that in CoPS3 fa and fb exhibit a similar temperature de-
pendence for T > TN, while diverging behaviour below the phase transition T < TN is
visible, namely an increase of fa and a decrease of fb relative to an overall isotropic in-
crease. This sudden change in f (T ) for the perpendicular cavities, occurring near TN,
constitutes, in accordance with the DFT calculations, the central result of this chapter as
it shows that the magnetic ordering in MPS3 leads to anisotropic strain and thus spon-
taneous magnetostriction. We further note that strictly speaking, TN should be replaced
by T ∗

N which includes the effects of strain (see section 3.A.1). For simplicity, we here use
the notation TN for the measured transition temperatures.

The anisotropic behavior of CoPS3 in the AF state is even more evident in figure 3.2e,
where fres(T )− fres(140 K) for the different cavities of the star-shaped sample are plotted
as a function of θ and temperature. The polar plot in figure 3.2f shows the data along
the red dashed line at T = 70 K in figure 3.2e and results in a characteristic dumbbell-
shape. Similar anisotropic behaviour is observed in FePS3 as shown in section 3.A.3. On
the contrary, for NiPS3 negligible anisotropy is observed in the angle-resolved magne-
tostriction data in figure 3.2g-i.

To obtain L(T ) from the data, we first subtract the pretension contribution from the
resonance frequency fθ(T0) by calculating f̃ 2

θ
(T ) = f 2

θ
(T )− f 2

θ
(T0), for each angle, where

T0 = 150 K is the highest temperature in our measurements. The resulting values of f̃ 2
θ

(T )
along the crystalline axes a and b are shown in figure 3.3a,d,g for the three MPS3 com-
pounds. Note that this is not the same data as shown in figure 3.2, but of a sample with
thickness and geometry closer to that of the sample figure 3.3d,e,f, for ease of compari-
son. With equation (3.2.3), we then calculate the difference f̃ 2

b (T )− f̃ 2
a (T ) which yields

f̃ 2
b − f̃ 2

a = E

4ρw2(1+ν)
[λa −λb]L2. (3.2.5)

We can now use equation (3.2.5) to access the critical behaviour of L below TN by plot-
ting f̃ 2

b − f̃ 2
a as a function of temperature. As shown in figure 3.3b,e,h, the trend presents

the typical critical behaviour with a non-zero order parameter appearing in the ordered
state for T < TN. Figures 3.3c,f,i show the same critical curve as figure 3.3b,e,h respec-
tively, plotted on a logarithmic scale against the reduced temperature (1−T /TN). Note
that the difference f̃ 2

b − f̃ 2
a for NiPS3, is substantially smaller than that of the Fe/CoPS3

membranes indicative of a weaker anisotropic magnetostrictive behaviour.
The angle dependence of the resonance frequencies allows us to estimate the ratio

rab = λa/λb between the magnetostriction parameters, λa,b, see section 3.A.2. This ra-
tio we directly compare to DFT calculations: Experimentally, we find for FePS3, rab =
−2.3 ± 0.3 while from the DFT calculations we estimate rab = −3.70. For CoPS3 (tak-
ing [57] νCoPS3 = 0.293), the experimental value is −1.42±0.07 and the DFT one −6.33.
We conclude that although both the sign and order of magnitude of the magnetostrictive
anisotropy in these compounds are well reproduced in the current work, more detailed
studies will be needed to obtain full quantitative correspondence with theory.
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Figure 3.3: Anisotropy and critical behaviour in resonance frequency of MPS3 (M(II) = Co, Fe, Ni) mem-
branes. a, Pretension corrected resonance frequency ( f̃ 2

a (T ) = f 2
a (T )− f 2

a (150K) (light) and f̃ 2
b (T ) = f 2

b (T )−
f 2
b (150K) (dark)) of rectangular membranes of CoPS3. b, Difference of the corrected frequency squared f̃ 2

b − f̃ 2
a

proportional to the order parameter L2 from equation 3.2.5. The dashed-dotted line indicates the measured
transition temperature TN. The dashed black line is a powerlaw fit through the data close to TN (see Sup-
plementary Note 6). c, Difference of the corrected frequency squared f̃ 2

b − f̃ 2
a as a function of the reduced

temperature 1−T /TN. The dashed black line is the fit from b where the slope defines the critical exponent 2β.
d-f, and g-i, follow the same structure as (a-c) for FePS3 and NiPS3 resonators, respectively.

3.2.4. THICKNESS DEPENDENCE OF CRITICAL BEHAVIOUR
When transitioning from 3D systems to 2D systems the magnetic order is generally changed.
For isotropic 2D systems the Mermin-Wagner theorem forbids magnetic order as it will
be destroyed by thermal fluctuations. However, for anisotropic 2D systems different
magnetic orders can exist, such as Ising, XY and Kosterlitz-Thouless phases [59]. By
varying the thickness, i.e., the number of layers, of the MPS3 compounds we are able
to investigate the transition from the bulk 3D behaviour to the 2D behaviour.
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Figure 3.4: Thickness dependence of criti-
cal behaviour. Average critical exponent, β,
and critical temperature, TN, of MPS3 res-
onators plotted as a function of thickness.
The blue stars indicate CoPS3 bulk values
from [58]. Critical parameters have been
determined from power law fits to f̃ 2

b − f̃ 2
θ

,
as shown in figure 3.3b,e,h, and then taking
the average value over the fit parameter for
all angles θ ̸= 0. Error bars are calculated
from standard deviation of fit results for all
θ. The horizontal gray dashed lines in the
upper plot indicate the expected values of
β for the 3D or 2D versions of the Heisen-
berg (H), XY or Ising (Is) models. The blue
dashed line in the lower panel indicates a fit
to equation (3.2.7) through the CoPS3 data
with νeff = 0.84±0.13.

As follows from Landau’s theory of phase transitions (see section 3.A.1), L(T ) near TN

is given by

L2(T ) =
{

0 if T > TN
A

2B (TN −T )2β if T < TN,
(3.2.6)

where A and B are constants and β is a critical exponent representative of the magnetic
order. We fit equation (3.2.6) to the data in figure 3.3b,e,h in the region close to TN (indi-
cated by the black dashed line in figure 3.3b,e,h) to extract the critical exponentβ and TN

for the three materials (see section 3.A.5 for more details on the fitting procedure). In the
logarithmic plot of the critical curve the fitting of a straight line shows good agreement
to the data points, consistent with the result of equation (3.2.6). The values for β and TN

are plotted in figure 3.4 as a function of thickness, t , and listed in section 3.A.5, table 3.2.
For the weakly anisotropic NiPS3, β = 0.218± 0.016, comparable to the value (β =

0.22±0.02) found in Ref. [60], and consistent with the expected 2D XY magnetic dimen-
sionality (β2DXY = 0.233) of NiPS3 [61]. For FePS3 we find β= 0.208±0.033, comparable
with literature values [62]. For both β and TN no appreciable thickness dependence is
observed, similar to what has previously been reported in Ref. [63], where changes in the
critical behaviour mostly become visible in the monolayer limit.

For thicker CoPS3 samples (t = 40−60 nm) we find β= 0.289±0.034 close to what is
reported in literature for the bulk (βbulk = 0.3±0.01 [51]) and consistent with the 3D Ising
model. For samples with t < 10 nm the measured β, on the other hand, is 0.195±0.045,
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closer to β2DXY as shown in the top panel of figure 3.4. This constitutes a noticeable
change in β while going from bulk to thinner samples. Similarly, we observe for CoPS3 a
decrease in TN from the bulk value of 118 K down to ∼ 100 K, similar to what was previ-
ously reported in Ref. [58]. We fit a power law to the dependence of TN on thickness,

TN(t )/T 3D
N ∝ 1− (C /t )1/νeff , (3.2.7)

where C is a non-universal constant related to the interlayer coupling, and νeff is an
effective critical exponent related to the correlation length [64]. Fitting the CoPS3 data
points with T 3D

N = 118 K [58] yields C = 1.43±0.457 nm and νeff = 0.84±0.096. This value
of νeff is intermediate between the expected values of νeff = 0.630 for the 3D Ising and
νeff = 1 for the 2D Ising models, and indicative of a transition regime [59].

3.3. CONCLUSIONS
In conclusion, we provide a comprehensive analysis of the anisotropic magnetostric-
tion effect in MPS3 compounds and its implications to the dynamics of membrane made
from them. DFT calculations provide a microscopic explanation for the anisotropic lat-
tice deformation in CoPS3, FePS3 and NiPS3 which are consistent with our measure-
ments. We further demonstrate the relation between magnetic ordering and anisotropy
in the mechanical resonance frequency of suspended MPS3 resonators, providing a di-
rect measure of the AF order parameter in absence of an external magnetic field. We
observe a thickness dependence in the critical behaviour of CoPS3 resonators [51, 58],
which is absent in the case of FePS3. The presented technique is of particular interest for
the study of 2D magnetism given the scarcity of methods available to investigate critical
phenomena of van der Waals materials in the atomically thin limit.
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3.A. SUPPLEMENTARY INFORMATION

3.A.1. LANDAU THEORY OF SECOND-ORDER PHASE TRANSITIONS AND SPON-
TANEOUS MAGNETOSTRICTION

Magnetostriction is a coupling between magnetic and mechanical parts of a system. This
coupling can be described by an energy term in the total free energy [55], written as:

F −F0 =Uel(z)+a(T −TN)2βLi Li +BLi Li Li Li −σi j (z)λi j kl Lk Ll . (3.A.1)

Here F is the total free energy of the system in the AF phase at zero magnetic field, F0

is the free energy of the paramagnetic phase, Uel(z) is the elastic energy of a membrane
with deflection z at its centre, T is the temperature and TN is the Néel temperature, Li

are the components of the Néel vector, β is a critical exponent, a and B are positive
constants, σi j (z) is the stress tensor and λi j kl is the magnetostriction tensor. The last
term couples the stress to the Néel vector thereby describing the magnetostriction. If we
assume the Néel vector to be aligned with the easy axis, equation (3.A.1) simplifies to:

F −F0 =Uel(z)+a(T −TN)2βL2 +BL4 −σi j (z)λi j L2, (3.A.2)

where L is the magnetic order parameter (i.e. the magnitude of the Néel vector). For no-
tational convenience we write λi j in dropping the third and fourth index of λi j kl as only
the component where kl corresponds to the easy axis contributes. The elastic energy in
a homogeneous membrane is given by [28]

Uel =
∫ ∫ Si j kl

2
σi j (x, y, z)σkl (x, y, z)d xd y, (3.A.3)

where the integration runs over the in plane dimensions of the membrane, z is the mem-
brane deflection at its centre and should not be confused with the out-of-plane coordi-
nate. For ease of notation we will not explicitly write the integration and coordinate de-
pendence from here on. Assuming the membrane thickness does not vary significantly
we can take the out-of-plane stress component to vanish, σzx =σz y =σzz = 0. equation
(3.A.3) then simplifies to

Uel =
Sxxxx

2
σxxσxx +

Sy y y y

2
σy yσy y +Sxx y yσxxσy y

+2Sxxx yσxxσx y +2Sy y x yσy yσx y +2Sx y x yσx yσx y . (3.A.4)

Taking our coordinates such that x, y correspond with the principle stress directions all
terms containing σx y vanish. This simplifies the elastic energy further to

Uel =
Sxxxx

2
σxxσxx +

Sy y y y

2
σy yσy y +Sxx y yσxxσy y . (3.A.5)

Assuming the material has isotropic elastic properties the relevant compliance tensor
components are

Sxxxx = Sy y y y = 1

E
and Sxx y y = −ν

E
. (3.A.6)
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Substituting this in to equation (3.A.5) we find

Uel =
1

2E
σxxσxx + 1

2E
σy yσy y − ν

E
σxxσy y . (3.A.7)

By taking the derivative of the free energy with respect to either z or L we find the
forces acting on these degrees of freedom, φL and φz respectively to be given by

−φL = d(F −F0)

dL
= 2a(T −TN)2βL+4BL3 −2σi j (z)λi j L, (3.A.8)

−φz = d(F −F0)

d z
= (

Si j klσi j (z)+λkl L2) dσkl (z)

d z
. (3.A.9)

ORDER PARAMETER AND CRITICAL EXPONENT

In order to find an equation that describes the order parameter as a function of temper-
ature, we find a solution for equation (3.A.8) for the case where φL = 0. Aside from the
trivial solution L = 0, we find for below the transition the additional solution:

L2 =− a

2B
(T −TN)2β+ σi jλi j

2B
, (3.A.10)

which can be rewritten, using T ∗
N = TN − (

σi jλi j

a )
1

2β , as[22]:

L2 = a

2B
(T ∗

N −T )2β. (3.A.11)

This equation now describes the temperature dependence of the order parameter in a
critical region near TN with a corresponding critical exponent β.

MAGNETOSTRICTIVE STRAIN AND RESONANCE FREQUENCY

To assess the magnetostriction contribution to strain and thus the frequency of a rect-
angular membrane resonator, we need to find stiffness of the membrane from its force-
deflection equation. In doing that we analyse equation (3.A.9). First, we describe strain
equation for the rectangular membrane at its centre as:

ϵxx (z) = ϵ0,x + c1

2

z2

l 2 (3.A.12a)

ϵy y (z) = ϵ0,y + c1

2

z2

w2 , (3.A.12b)

where c1 is a geometrical pre-factor that describes the deflection shape of the funda-
mental mode of vibration [54, 65]. For w ≪ l we can neglect the z dependence of ϵxx (z).
Now, we substitute (3.A.12) to (3.A.9) and using the relation σi j =Ci j kl ϵkl , we find

−φz =
(

E

1−ν2 ϵ0,y + νE

1−ν2 ϵ0,x −λy y L2
)

c1

w2 z + E

1−ν2

c2
1

2

z3

w4 , (3.A.13)

where we used that Cxxxx = Cy y y y = E
1−ν2 and Cy y xx = Cxx y y = νE

1−ν2 . equation (3.A.13)
can be written as

−φz = k1z − λi j c1

w2 L2z +k3z3, (3.A.14)
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where k1 is the elastic linear stiffness and k3 is the cubic elastic stiffness, given by

k1 = E

1−ν2 (ϵ0,y +νϵ0,x )
c1

w2 , (3.A.15)

k3 = E

1−ν2

c2
1

2w4 . (3.A.16)

Assuming small deflections we can neglect the z3 contribution in equation (3.A.13) and
find that the linear stiffness is changed with respect to the purely elastic case. If we con-
sider a rectangular cavity with it’s long axis is parallel to the crystalline axis b or a respec-
tively we find:

−φz b,a =
(
k1 − c1

w2λa,bL2
)

z , (3.A.17)

where λa,b are the phenomenological magnetostriction coefficients, chosen such that to
couple a and b crystalline directions and L. That leads to a change in the effective linear
stiffness kb,a :

kb,a = k1 − c1

w2λa,bL2, (3.A.18)

which can be used to write the frequency equations using fa,b = 1
2π

√
ka,b
m as:

fb ≈ 1

2π

√
1

m

c1

w2

[
E

1−ν2 (ϵ0,a +νϵ0,b)−λaL2

]
, (3.A.19a)

fa ≈ 1

2π

√
1

m

c1

w2

[
E

1−ν2 (ϵ0,b +νϵ0,a)−λbL2

]
, (3.A.19b)

where m is the mass of the membrane and where the magnetostrictive strain is defined
by:

ϵms,a = c1

mw2λaL2, (3.A.20)

ϵms,b = c1

mw2λbL2. (3.A.21)

Taking the difference of the squares of equations (3.A.19) and assuming ϵ0,a = ϵ0,b, we
arrive at the final equation:

f 2
b − f 2

a =− 1

4π2

c1

mw2 [λb −λa]L2, (3.A.22)

which relates the antiferromagnetic order parameter L with the measured resonance fre-
quencies of orthogonal resonators aligned to crystalline axes fa,b in the ordered phase.
Finally, one can show that by plugging equation (3.A.11) into (3.A.22):

f 2
b − f 2

a ∝ (T ∗
N −T )2β, (3.A.23)

which can be used to fit experimental data to extract critical exponent β near the phase
transition temperature T ∗

N.
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3.A.2. DERIVATION OF ANISOTROPIC RESONANCE FREQUENCY

Here, we derive the general equation of the resonance frequency of a rectangular cavity
oriented at an angle θ with respect to one of the crystalline axes, as schematically shown
in figure 3.5. The global coordinate system is defined by the crystallographic axes a and
b, along which the material deforms resulting in stresses σaa and σbb . The longest side
of the cavity, with length l , can be oriented at an arbitrary angle θwith respect to b. Let us

W

�

θ

b

a

θ
x

y

Figure 3.5: Schematic illustration of rectangular membrane Rectangular membrane of width w and length l
oriented with its long side at an angle θ with respect to the crystalline direction b. The x-y direction refer to
the main directions of the rectangular membrane.

first consider a cavity oriented parallel to a crystallographic axis. Since the membranes
are very thin, we can assume that the stress in the direction perpendicular to the plane
is zero, σcc = 0. The membrane’s stress tensor can then be expressed as

σ=
(
σaa σab

σba σbb

)
ab

, (3.A.24)

where the subscript
()

ab indicates that the stress tensor is expressed in the basis of the
crystallographic coordinate system. If we assume that there are no shear forces acting
on the crystal lattice, σab = σba = 0, there will be no shear on cavities oriented along
the main crystallographic axes. Now, if we consider a rectangular cavity rotated by θ
with respect to the crystallographic axes, we can define a rotated xy-coordinate system
oriented along the main axis of the rectangle. To express σ in this coordinate system
we use the tensor transformation rule, σ′

i j = qki ql jσkl where qi j are components of the

rotation tensor transforming the ab-coordinate system, e, into the xy-coordinate system,
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e ′′′ as e ′
i = qi j e j . We then get:

σ=
(
σxx σx y

σy x σy y

)
x y

=
(

cos2(θ)σaa + sin2(θ)σbb −cos(θ)sin(θ)σaa + sin(θ)cos(θ)σbb

−sin(θ)cos(θ)σaa + sin(θ)cos(θ)σbb sin2(θ)σaa +cos2(θ)σbb

)
x y

.

(3.A.25)

The fundamental resonance frequency of a rectangular membrane oriented at an
angle θ with respect to the crystallographic axis can be expressed as

fθ ≈
1

2

√
1

ρ

(σxx

l 2 + σy y

w2

)
. (3.A.26)

In the case of high-aspect ratio membranes (w ≪ l ), equation 3.A.26 can be approxi-
mated to

fθ ≈
1

2

√
1

ρ

σy y

w2 = 1

2

√
1

ρw2

(
sin2(θ)σaa +cos2(θ)σbb

)
, (3.A.27)

which is (3.2.3) of the main text.
Now, let us consider the constitutive equations of the material:

c1 = E(ϵfab,aa −ϵth,aa −ϵms,aa)

= E

(
ϵfab,aa −

∫ T1

T0

αa(T )dT −λaL2(T1)

)
=σaa(T1)−νσbb(T1) (3.A.28a)

c2 = E(ϵfab,bb −ϵth,bb −ϵms,bb)

= E

(
ϵfab,bb −

∫ T1

T0

αb(T )dT −λbL2(T1)

)
=σbb(T1)−νσaa(T1) , (3.A.28b)

where ϵfab is the residual fabrication strain at T = T0, ϵth and ϵms are respectively the ther-
mal expansion and magnetostriction contributions to strain, α is the thermal expansion
coefficient, λ the magnetostriction coefficient and E is the Young’s modulus, which is
assumed to be isotropic. We can thus write

σaa = c1 +νσbb (3.A.29a)

σbb = c2 +νσaa , (3.A.29b)

which can be combined in the following expressions for σaa and σbb :

σaa = c1 +νc2

1−ν2 , (3.A.30a)

σbb = c2 +νc1

1−ν2 . (3.A.30b)

We can now rewrite equation 3.A.27 in terms of the different contributions to strain, i.e.
residual strain from fabrication (ϵfab), thermal expansion (∝ α) and magnetostriction
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(∝λ):

fθ(T ) = 1

2

√
E

ρw2(1−ν2)

[
sin2θ(c1 +νc2)+cos2θ(c2 +νc1)

]

= 1

2

√√√√√√√√
E

ρw2(1−ν2)

[
(sin2θ+νcos2θ)(ϵfab,aa −ϵth,aa −ϵms,aa)

+ (cos2θ+νsin2θ)(ϵfab,bb −ϵth,bb −ϵms,bb)

]
,

(3.A.31)

which is consistent with equation (3.A.19). We can eliminate the pretension ϵfab terms by

considering f̃θ
2

(T ) = f 2
θ

(T )− f 2
θ

(T0). In the following, we assume that the only anisotropic
temperature-dependent contribution to the total strain comes from magnetostriction,
thus we take ϵth,aa = ϵth,bb = ϵth. By definition of θ we have b → θ = 0◦ and a → θ = 90◦.
From equation (3.A.31), we then find, consistent with (3.A.22), that f̃ 2

a − f̃ 2
b becomes

f̃ 2
a − f̃ 2

b = E

4ρw2(1+ν)

(−ϵms,aa +ϵms,bb
)

=− E

4ρw2(1+ν)
(λa −λb)L2, (3.A.32)

from which we can directly extract the order parameter. The thermal expansion contri-
bution to strain ϵα is proportional to the integral over the temperature of the thermal
expansion coefficient α, which is proportional to the Debye specific heat, CDebye, via the
Grünesen parameter. Thus, the derivative with respect to temperature of f 2

θ

d f 2
θ

dT
= E

4ρw2(1−ν2)

[
(sin2θ+νcos2θ)

(
−α−λa

dL2

dT

)
+ (cos2θ+νsin2θ)

(
−α−λb

dL2

dT

)]
= −E

4ρw2(1−ν2)

[
α(1+ν)+

(
sin2θ(λa +νλb)

dL2

dT
+cos2θ(λb +νλa)

dL2

dT

)]
.

(3.A.33)

can be fitted to b1CDebye +b2
dL2

dT
where b1 and b2 are fit parameters, and

dL2

dT
is esti-

mated from equation 3.A.32. The results of these fits along with measured data of
d f 2

θ

dT
are shown in figure 3.6. The polar plots of the resulting b1(θ) and b2(θ) are shown in
figure 3.7, which confirm that the thermal contribution to strain does not exhibit signif-
icant anisotropic behavior. From equation (3.A.33), the expected angle dependence of
the parameter b2 is

b2(θ) =−
(

E

4ρw2(1−ν2)

)
[(sin2θ(λa +νλb)+cos2θ(λb +νλa)] , (3.A.34)
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120° 150° 180° 210°

240° 270° 300° 330°

Figure 3.6: Angle-resolved
d f 2

dT
: Plot of measured (light blue dots)

d f 2

dT
and fit to b1CDebye +b2

dL2

dT
(blue full

line) for all angles of a star-shaped array of CoPS3.

which we use to fit b2(θ) in figure 3.7 to A sin2θ+B cos2θ where

A

B
= λa +νλb

λb +νλa
. (3.A.35)

The fit yields A/B =−2.062 and -1.798 for CoPS3 and A/B =−5.025 and -8.695 for FePS3.

Figure 3.7: Polar plot of fit parameters b1 and b2: Polar plot of fit parameters b1 and b2 from the fits to d f 2/dT
shown in figure 3.6.

3.A.3. ANISOTROPIC RESONANCE FREQUENCY OF FEPS3 RESONATORS
Figure 3.8 shows resonance frequency data measured on FePS3 star-cavity resonators, as
presented in figure 3.2 of the main text for CoPS3 and NiPS3 samples. Figure 3.8a shows
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the temperature dependence of the resonance frequency of membranes oriented along
the a-axis (in red) and b-axis (in blue). Similarly to CoPS3, the opposite strain along a
and b arising from spontaneous magnetostriction results in opposite behaviour of the
resonance frequency near the transition temperature TN. The resulting anisotropic re-
sponse is further illustrated in the map plot of resonance frequency as a function of tem-
perature and angles in figure 3.8b and in the polar plot of fres(70 K)− fres(140 K) in figure
3.8c.

FePS3

TN

ϵb

ϵa

90°

0°

f0(T ) - f0(140 K) 90°

45°

0°

315° 215°

270°

135°

180°

f0(70 K) - f0(140 K) (MHz)

a b c

Figure 3.8: Angle-resolved resonance frequency data of FePS3 membranes. a, Temperature dependence of
fres of a FePS3 rectangular membrane orientated at 0◦ (blue) and 90◦ (red) with respect to the b crystallo-
graphic axis. Note that f0,0◦ and f0,90◦ are proportional to the strain ϵa and ϵb respectively, see equation
(3.2.2). The dashed-dotted grey line indicates the transition temperature TN. b, Resonance frequency differ-
ence, fres(T )− fres(140K), as a function of angle θ with respect to b-axis and temperature. c, Polar plot of
fres(70 K)− fres(140 K) taken along the red dashed line in (b).

3.A.4. ORDER PARAMETER RELATED FREQUENCY DIFFERENCE f̃ 2
B − f̃ 2

θ

We have shown how to relate the difference f 2
b − f 2

a to the antiferromagnetic order pa-
rameter through the magnetostriction induced strain at the phase transition ϵms,aa =
λaL2 and ϵms,bb = λbL2. In general, f̃ 2

b − f̃ 2
θ

is also proportional to L2, where f̃ 2
θ

is the
pretension corrected resonance frequency of a rectangular cavity oriented at an angle
θ with respect to the b-axis. We show this quantity for the CoPS3 and FePS3 star-cavity
resonators in figure 3.9a,d by plotting f̃ 2

b − f̃ 2
θ

as a function of angle and temperature in

figure 3.9b,e. Figure 3.9c,f shows the polar plot of f̃ 2
b − f̃ 2

θ
taken along the red dashed line

in 3.9b,e.

This relation of f̃ 2
b − f̃ 2

θ
, for θ ̸= 90°, with the order parameter is observed for the

thicker samples (t > 10 nm) and it is exploited to have a better estimate of the critical
parameters β and TN as discussed in 3.A.5. For thinner resonators every irregularity, like
wrinkles or tears, can strongly affect their mode shapes. In some cases, these imperfec-
tions can drastically change the resonance frequency of the fundamental mode, as well
as its temperature dependence. Therefore, when analysing the critical behaviour of thin
flakes, we choose only the most pristine and unaffected membranes fabricated out of
a single flake by optical inspection to minimise the chance of being affected by these
irregularities.



3.A. SUPPLEMENTARY INFORMATION

3

55

90°

45°

0°

315° 215°

270°

135°

180°

90°

45°

0°

315° 215°

270°

135°

180°

CoPS3

FePS3

ba

ed

c

f

a

b

a

b

Figure 3.9: Angle-resolved data of f 2
b − f 2

θ
∝ L2 of CoPS3 and FePS3 membranes. a, d, Optical image of the

CoPS3 (a) and FePS3 (d) resonators. Scale bar 12 µm. b, Resonance frequency difference, f 2
b − f 2

θ
∝ L2, as a

function of angle θ and temperature of the CoPS3 sample in (a). c, Polar plot of f 2
b − f 2

θ
taken along the red

dashed line in (b). e,f follows the same structure as (b,c) for the FePS3 sample in (d).

3.A.5. CRITICAL CURVE FIT
To extract critical parametersβ and TN shown in figure 3.3 and 3.4 of the main text, we fit
the order parameter related difference f 2

b − f 2
a ∝ L2 to the power law Aθ(1−T /TN)2β. The

experimental determination of critical parameters is often debated due to the difficulty
of extracting from one set of data, three strongly correlated parameters, β, TN and Aθ.
In addition, finite size effects are known to smear the transition which usually results in
a non-zero tail of the order parameter in the paramagnetic state and makes it harder to
unambiguously determine the critical temperature. Also, the choice of the temperature
interval for the fit is not universal and it is often arbitrary.

In order to have a better estimate of the critical exponents from our experiments, we
compute f 2

b − f 2
θ

for all θ in a star and fit the data to Aθ(1−T /TN)2β. For each star, we
then calculate the average value and standard deviation of the critical parameters TN

and β weighted by the error from the fit, TN,err and βerr.
We start with an initial guess, which denote T ∗

N, for TN by extracting the maximum of
the derivative of f 2

b − f 2
θ

with respect to temperature as shown in figure 3.10. We then fit

the Aθ(1−T /TN)2β to f 2
b − f 2

θ
over the range [αT ∗

N,T ∗
N], for α varying between [0.85,0.95]

allowing A,TN,β to vary. We define the total error for each α to be TN,err +βerr, where
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TN

Figure 3.10: First estimate of TN from the derivative of the order parameter. A plot showing f̃ 2
b − f̃ 2

a in red
and its temperature derivative in blue. The temperature at which the derivative shows a maximum is used as
the initial guess for TN.

TN,err, βerr are the standard deviation errors of the fit. We take the extracted TN,β with
corresponding TN,err, βerr to be ones given the fit corresponding to the α minimizing
the total error. We repeat this process for each θ yielding a distribution of TN,β. The
weighted mean of this distribution is calculated as follows:

β= 1

N

∑
θ

β
βerr,min

βerr
, (3.A.36)

where N is the number of cavity pairs and βerr,min the βerr of the pairing with smallest
βerr. We then fit a normal distribution with β as mean to the distribution of β where we

weigh each β by
βerr,min
βerr

, from which the standard deviation is extracted. Using the same
process to calculate the mean an standard deviation of the transition temperature, TN .
The resulting parameters for each sample are listed in Table 3.2.
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Material Sample t (nm) β TN (K)

CoPS3 1 33 0.28 ± 0.017 115.7 ± 0.38

CoPS3 2 52 0.311 ± 0.025 117 ± 0.35

CoPS3 3 52 0.298 ± 0.034 116.1 ± 0.18

CoPS3 4 8 0.195 ± 0.0446 107.8 ± 2.65

CoPS3 5 8.6 0.218 ± 0.002 102.5 ± 1.3

FePS3 1 60 0.208 ± 0.0328 112.7 ± 0.87

FePS3 2 40 0.203 ± 0.03 109.1 ± 0.37

FePS3 3 10 0.194 ± 0.023 110.2 ± 0.48

FePS3 4 7 0.206 ± 0.047 107.9 ± 0.76

NiPS3 1 48 0.218 ± 0.016 150.7 ± 0.7

Table 3.2: Critical exponents of MPS3 samples. Critical exponents, β and TN, for CoPS3, FePS3 and NiPS3
samples of different thicknesses, extracted following the procedure described in section 3.A.5
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4
HIGHLY ANISOTROPIC

MECHANICAL RESPONSE OF THE

VAN DER WAALS MAGNET CRPS4

Semiconducting van der Waals magnets exhibit a rich physical phenomenology with dif-
ferent collective excitations, such as magnons or excitons, that can be coupled, thereby of-
fering new opportunities for optoelectronic, spintronic, and magnonic devices. In contrast
with the well-studied van der Waals ferromagnets CrI3 or Fe3GeTe2 which are isotropic,
CrPS4 is a layered metamagnet with a high optical and magnon transport anisotropy.
Here, we investigate the structural anisotropy of CrPS4 above and below the magnetic
phase transition by fabricating nanomechanical resonators consisting of thin layers of
CrPS4. A large anisotropy is observed in the resonance frequency of resonators oriented
along the crystalline a- and b-axis, indicative of a lattice expansion along the b-axis,
boosted at the magnetic phase transition, and a rather small continuous contraction along
the a-axis. This behavior in the mechanical response differs from that previously reported
in van der Waals magnets, such as FePS3 or CoPS3, and can be understood from the quasi-
one-dimensional nature of CrPS4. The results pinpoint CrPS4 as a promising material in
the field of low-dimensional magnetism and show the potential of mechanical resonators
for unraveling the in-plane structural anisotropy coupled to the magnetic ordering that,
in a broader context, can be extended to studying structural modifications in other two-
dimensional materials and van der Waals heterostructures.

Parts of this chapter have been published in [66].
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MAGNET CRPS4

4.1. INTRODUCTION

A NISOTROPY is a fundamental property necessary to fully understand the behaviour of
low-dimensional materials [67]. For instance, long-range magnetic order was long

thought to be forbidden in the two-dimensional (2D) limit, as per the Mermin-Wagner
theorem [16], but this theorem can be circumvented if magnetic anisotropy is present,
as this allows for the stabilization of different magnetic configurations [59]. Anisotropic
behaviours are not limited to magnetic systems as they can also be observed in for exam-
ple the electronic, optical, and structural properties. In fact, these anisotropic properties
are often coupled, offering a fruitful avenue for the control of collective excitations, such
as excitons, phonons, or magnons, and allowing the design of new devices in fields such
as magnonics, spintronics, optoelectronics, or information storage and processing [68,
69]. In this regard, van der Waals magnets with in-plane anisotropy offer unique op-
portunities, both in the fundamental understanding of these materials and in terms of
applications, as recently shown by the exciton-magnon coupling reported for CrSBr or
the fabrication of spintronic and magnonic devices based on 2D magnets, reported in
[70–74] among others.
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Figure 4.1: a) CrPS4 crystal structure along
the ab-plane, in which CrS6 octrahedra
form quasi-1D chains (up-down) connected
via PS4 tetrahedra. The crystallographic
a- and b-axis are indicated using red and
green arrows, respectively. The Cr, P, and
S atoms are colored blue, green, and yel-
low respectively. b) Layered structure of
CrPS4; same color coding as in a). The
magnetic spin structure in the antiferro-
magnetic phase is indicated by the black ar-
rows through the Cr atoms. They are ferro-
magnetically aligned in-plane and antifer-
romagnetically between the planes. c) Tem-
perature dependence of the magnetic sus-
ceptibility under 1 kOe field applied paral-
lel (orange), and perpendicular (blue) to the
c-axis. The transition temperature is indi-
cated with a black dashed line. The parallel
and perpendicular susceptibility show dif-
ferent behaviour below the transition. The
inset shows the extended temperature range
(6−300 K) of the same data.

A promising van der Waals magnet exhibiting an interplay between the optical, elec-
trical, magnetic, and structural properties is the magnetic van der Waals semiconductor
CrPS4 [75–78]. A single layer of CrPS4 consists of edge-sharing CrS6 octahedra forming
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quasi-one-dimensional (1D) chains along the b-axis that are interconnected along the
a-axis by PS4 tetrahedra, figure 4.1a, thus exhibiting a marked low-dimensional charac-
ter [78, 79]. Below ca. 34 K, CrPS4 is an A-type antiferromagnet where ferromagnetic
layers are coupled antiferromagnetically along the c-axis, see figure 4.1b. We corrob-
orate this by magnetic susceptibility measurements of bulk crystals, using a Quantum
Design MPMS-XL-5 magnetometer, the results of which are shown in figure 4.1c, and
are in agreement with previous results in literature, which reports a rich magnetic phase
diagram, including spin-flop and spin-flip transitions [75, 80, 81].

Optically, it exhibits a marked anisotropic behaviour, as determined by Raman spec-
troscopy or photoluminescence measurements; excitonic emission is furthermore tune-
able by temperature and thickness [76–78, 82]. CrPS4 can be thinned down to the single
layer limit while preserving its magnetic ordering [83], and thin-layers have been incor-
porated into electronic devices, showing magnetic states controllable by a gate voltage
[84]. In addition, the insulating nature of CrPS4 at low temperatures is ideal for the elec-
trical excitation and detection of magnons [70], and the fabrication of multi-bit read-
only memories [85]. Despite the exciting properties of CrPS4 described above, the role
of the underlying in-plane anisotropic structural behaviour remains still unexplored.

Here, we take advantage, on the one hand, of the van der Waals nature of CrPS4 for
fabricating nanomechanical resonators based on the layered structure of the material
and, on the other hand, of the high sensitivity of nanomechanical resonators to the strain
concomitant to a structural modification [22, 34, 48, 86, 87]. We observe a large in-plane
structural anisotropy while cooling down, exhibiting a striking opposite mechanical be-
haviour along the a- and b-axes. We also find indications of a previously unreported
structural transition above 120 K.

4.2. RESULTS AND DISCUSSION
Crystals of CrPS4 are grown by chemical vapor transport, see section 4.4. Thin layers
of CrPS4 are mechanically exfoliated from their bulk counterpart and deterministically
transferred on top of cavities etched in a SiO2 on Si substrate, thereby forming a nanome-
chanical resonator. Typical flake thicknesses suitable for covering homogeneously the
cavities are in the range of 40 – 120 nm. Developing chemical routes for reaching atom-
ically thin layers of CrPS4 with larger lateral sizes may enable to study the mechanical
properties of CrPS4 down to the 2D limit. The fundamental mechanical resonance is
characterized as a function of the temperature using a laser interferometry technique,
see figure 4.2a and section 4.4. In particular, our experimental configuration is based
on an optical interferometer where the CrPS4 membrane acts as the moving mirror, and
the silicon surface at the bottom of the drum as the fixed mirror. Thus, by focusing a
red laser (Helium-Neon laser, λ = 632.8 nm) on the CrPS4 membrane, we can track its
motion since the amplitude of the vibration modifies the cavity length and, therefore,
constructive or destructive interference takes place. The interference changes the in-
tensity of the reflected light from the cavity, which is detected with a photodiode. An-
other mechanism that plays a role is the modulated absorption of the light by the CrPS4

drum [88]. The motion of the membrane is triggered photothermally by focusing a blue
diode laser on it (λ = 405 nm). The resonance frequency depends on the geometry, the
material properties (Young’s modulus, density, and Poisson’s ratio) as well as the strain.
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Figure 4.2: a) Schematics of the measure-
ment setup. The vector network analyser
(VNA) power modulates a laser diode (λ =
405 nm), as to actuate the vibrations of the
drum in the cryo-chamber. Motion is read
out with a photodiode connected to the
VNA using a He-Ne laser (λ = 632 nm), a
polarised beam-splitter (BS), and a quarter-
wave plate (λ/4) to create an interferometer.
Note, that the red and blue laser paths are
offset for clarity but in reality they are co-
incident. The zoom-in of the sample shows
a schematic cut-through. b) Representa-
tive frequency response, measured at 6 K.
The blue dots are the experimental data and
the orange line is a harmonic oscillator fit
to them, defining the resonance frequency
(gray dashed line), indicated by f0. c) Res-
onance frequency as a function of tempera-
ture between 6 and 60 K. There is no signif-
icant difference between the heating (red)
and cooling (blue) cycles. The inset shows
an optical microscope image of a circular
drum sample. The scale bar is 4 µm. Data
shown in panels b) and c) correspond to a
120 nm thick CrPS4 flake.

Therefore, variations in the temperature imply a contraction or expansion of the unit
cell of the material that causes tensile or compressive strain and, consequently, modifies
the resonance frequency. Thus, an enhancement (decrease) of the resonance frequency
relates to a compression (expansion) of the unit cell [22].

4.2.1. CIRCULAR CAVITY

A typical resonance response of a circular resonator is shown in figure 4.2b. This re-
sponse is fitted using a Lorentzian function as shown by the orange curve in figure 4.2b.
From this fit the resonance frequency, f0, is extracted. Since this resonance frequency is
the lowest in the spectrum, we attribute it to the fundamental mode. The dependence of
the fundamental resonance frequency on temperature, is shown in figure 4.2c.

A clear change in the resonance frequency over the measured temperature range is
present: in the region between 60 and 40 K the frequency slowly decreases with decreas-
ing temperature, whereas in the region below 40 K this decrease becomes stronger until
around 28 K where the decrease becomes weaker appearing to level out at 10 K. No sig-
nificant thermal hysteresis between the heating and cooling cycles is observed (compare
the blue and red dots). A decrease in the resonance frequency, also called softening, im-
plies a decrease in tensile strain in the material. Since in this case, the decrease occurs
solely as a response to a change in temperature, this softening implies an expansion of
the crystal lattice when cooling down, indicative of a negative thermal expansion coef-
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ficient (TEC). This is comparable to previous results on the 2D magnet Cr2Ge2Te6 [48],
also displaying an softening response. Here, softening is somewhat unexpected as the
related compounds of transition metal thiophosphates (such as FePS3, MnPS3, CoPS3 or
NiPS3) [22, 34], show an increase of f0 with decreasing temperature (hardening). Previ-
ously reported measurements on the same material, CrPS4, by Li et al. [89], also show a
hardening response in contrast to our results.

4.2.2. RECTANGULAR CAVITIES

A possible reason for the difference with the previously reported measurements is the
fact that those measurements were done on a beam geometry for which alignment of
the crystal is relevant, especially for anisotropic materials such as CrPS4. Therefore we
further investigate the anisotropic contributions to this strain behaviour. In order to iso-
late the contributions of different crystallographic axes we create star samples, which
consist of an array of rectangular cavities arranged radially with a rotational offset of 30
degrees. By transferring a flake of CrPS4 over the entire star multiple rectangular drums
are created each with a different orientation with respect to the crystallographic axes
[34]. By combining two star patterns with an offset with respect to each other of 15 de-
grees, the angular resolution is increased, albeit requiring larger flakes of the material.
An optical image of such a sample is given in figure 4.3a. The crystallographic a- and
b-axes are determined as reported by Lee et al. [78]; they are indicated by the red and
green arrows, respectively.

We then compare the resonance frequencies of the cavities with their short axis along
the a- and b-axis respectively, see figure 4.3b. Strikingly different behaviour is observed
between the two directions. For the b-axis, a softening of the mode occurs while cooling,
similar to the observation for circular drums, indicative of decreasing tensile and a neg-
ative TEC. In contrast, the resonance frequency of the a-axis orientation shows a small
increase in the resonance frequency over the same temperature range. This increase in-
dicates increasing tensile strain while lowering the temperature; there is no significant
feature present near the phase transition point in this case.

This behaviour can be understood as a result of an expansion between the Cr centers
along the quasi-1D chains (b-axis), which is enhanced upon the magnetic phase transi-
tion, and a rather steady and small compression for the orthogonal direction, that does
not exhibit a discontinuity at the phase transition. These findings are in line with the
reported crystal structure above and below the magnetic transition, where an expansion
of the b-axis is observed while cooling from 60 to 4 K [81]. For completeness, the tem-
perature dependence for different angular directions is presented in figure 4.3c, which
emphasizes the clear anisotropic dependence of the resonance frequency and thus the
lattice constants of the material. Similar trends are observed for other circular and star
drums (see sections 4.A.1 and 4.A.2), manifesting the robustness of the underlying phys-
ical phenomena. Overall, we observe a pronounced negative thermal expansion along
the b-axis and a small positive thermal expansion along the a-axis. The presence of such
a uniaxial negative TEC is a typical fingerprint of highly anisotropic systems, as occur-
ring in related compounds including metal halides, oxychlorides, or CrSBr [68, 90–92].
This difference in the thermal expansion coefficients along the a- and b-axes that ap-
pears below 120 K and persists down to low temperature may arise from differences in
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Figure 4.3: a) Optical microscopy picture of
a star sample, displaying two arrays of rect-
angular cavities covered by a flake of CrPS4.
In the lower left corner of the flake, the frac-
ture angle is highlighted and measured to
be 67.5°. From this and the opposite angle
of 112.5° the crystallographic axes are deter-
mined. The crystallographic a- (red) and b-
axis (green) are indicated by colored arrows.
The cavity highlighted red and green respec-
tively correspond to the cavity with its short
axis aligned along the a- (0°) and b-axis (90°)
respectively. The scale bar is 20 µm. b) Res-
onance frequency as a function of tempera-
ture between 6 and 60 K for two cavities of
the same flake with their short axes aligned
along the crystallographic a-axis (red) and
b-axis (green). There is a clear difference
between the two directions, with the a-axis
showing no significant change in resonance
frequency, and the b-axis showing a tran-
sition behavior similar to that seen in cir-
cular drums (figure 4.2) when crossing the
phase transition (black dashed line). c) Rel-
ative frequency change (color coded) with
respect to 60 K as a function of temperature.
The angle corresponds to the angle the short
axis of the cavity makes with the crystallo-
graphic a-axis; the cavity with the short axis
parallel to the crystallographic a-axis corre-
sponds to 0°. Data shown in panels b) and
c) correspond to a 75 nm thick CrPS4 flake.

the Grüneisen parameter along the different crystal axes, which leads to an increasing
anisotropy that eventually can contribute to the magnetic phase transition at lower tem-
perature. These results may motivate further research on the CrPS4 properties at tem-
peratures well above the magnetic transition.

4.2.3. PHASE TRANSITION

Above about 120 K, figure 4.4a shows that the frequencies along the a- and b-axis exhibit
the same temperature dependence. This indicates an equal expansion of the lattice for
both axes as temperature decreases. However, around 120 K, the distance between the
green and red curves starts to become larger, indicating a smaller expansion rate for
the b-axis. Indeed, at T ≃ 80 K we observe an upturn in the slope for the b-axis in the
resonance frequency vs. temperature dependence, shifting from a positive slope at low
temperatures, which indicates an expansion of the b-axis while cooling down from 80 K
to 6 K, in line with the neutron experiments in bulk CrPS4 reported by Calder et al. [81]
or Peng et al. [93], to a negative one, indicating a compression of the b-axis while cooling
from room temperature down to 80 K. This structural anisotropy enhancement around
120 K is to our knowledge unreported in literature. This increased anisotropy and ex-
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b)

a)
Figure 4.4: a) Relative change in resonance
frequency w.r.t. its value at 200 K as a func-
tion of temperature between 6 and 200 K
for two cavities of the same flake with their
short axis aligned along the crystallographic
a-axis (red) and b-axis (green). The data is
the extended version from the data shown
in figure 4.3.b and serves to highlight that for
temperatures above 120 K the two axes have
the same behavior. b) Top panel: deriva-
tive of the frequency squared with respect
to temperature as a function of temperature
of a circular cavity (blue) and averaged over
all rectangular cavities in a star sample (or-
ange). The average shows a peak around
25 K, whereas the circular cavity has a peak
closer to 30 K. Middle panel: derivative of
the frequency squared with respect to tem-
perature as a function of temperature for
two rectangular cavities with their short axis
aligned along the a- (red) and b-axis (green)
respectively. The a-axis shows no clear vari-
ation with temperature whereas the b-axis
shows a peak around 25 K. Bottom panel:
difference between the change in frequency
squared for two rectangular cavities with
their short axis aligned along the b- and a-
axis respectively. The bulk transition tem-
perature is indicated with the vertical black
dashed line. Data shown in panels a) and
b)-c) correspond to a 120 nm and 75 nm
thick CrPS4 flake, respectively.

pansion of the quasi-1D chains along the b-axis upon cooldown illustrates the interplay
between lattice parameters and magnetic order that, based on the change in slope of
the f0(T ) curve, indicates that magnetic ordering also has a substantial influence on the
lattice parameters, leading to further chain expansion.

Near the magnetic phase transition, the change in frequency for the green curve (b-
axis) is even more pronounced. In contrast, the red curve (a-xis) shows a flattening off as
temperature decreases with no clear features. To further characterise the behavior near

the transition we investigate the temperature derivative of the frequency squared,
d f 2

0
dT ,

as it is shown that this quantity is proportional to the specific heat [22]. It is expected to

have an anomaly at the phase transition. Plotting the
d f 2

0
dT as a function of temperature,

figure 4.4b, we find that in the case of a circular drum this
d f 2

0
dT exhibits a peak around

30 K, below the expected transition temperature of 34 K. An even lower peak at 26 K
is found for the average behaviour of a star sample, which is calculated by adding up
the response of all cavities with different angles and dividing the total by the number of
cavities involved.

Comparing the
d f 2

0
dT of the two different crystallographic axes a peak around 26 K is
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present for the b-axis while no such feature is present along the a-axis, see the middle
panel of figure 4.4b. The fact that no sign of the phase transition is visible in the a-axis

can be understood from the fact that the coupling between
d f 2

0
dT and the specific heat

is dependent on the TEC. Since the TEC along the a-axis around the transition is very
small, as can be seen from the fact that the frequency does not vary with temperature,
this coupling along the a-axis is extremely weak.

Since
d f 2

0
dT is proportional to the TEC of the material [22], the data of figure 4.4b can be

used to estimate the TEC along the two crystalline directions. By using the approximate
frequency for a rectangular drum of high aspect ratio [34]:

f0 ≈ 1

2

√
E

ρw2 ϵ, (4.2.1)

we find an adjusted formula for the TEC in rectangular drums,

α=−4ρw2

E

d f 2
0

dT
(T )+αSi(T ). (4.2.2)

Here,α is the TEC, E is the Young’s modulus, ρ the density, and w the length of the cavity
along its short direction. CrPS4 is expected to have an anisotropic Young’s modulus [94],
with the values along the a- (Ea) and b-axis (Eb) being respectively Ea = 99.23 GPa and
Eb = 64.53 GPa, (see section 4.A.3) [95]. The values for the density, (ρ), and the width
of the cavity, (w), are 2.9× 103 Kg m−3 [96], and 4 µm, respectively. For αSi(T ) we use

the data of Lyon et al. [97]. At 26 K, the temperature of the peak in
d f 2

0
dT , this results in a

TEC along the a- and b-axis of 2×10−8 and −4×10−5 K−1, see section 4.A.3. This large
difference in TEC between the a- and b-axis, of 3 orders of magnitude, highlights the
importance of anisotropy of CrPS4.

The reason for the discrepancy between the peak in
d f 2

0
dT and the expected transition

temperature is unclear but can have several origins. It can be that the transition temper-
ature is shifted from the bulk value simply by going to thinner samples of the material
as it transitions to the value of a monolayer. However, the samples in this study are still
quite thick, ranging from 40 to 165 nm, for which such a large effect would be surprising.

Another reason for the deviation from bulk value can be that the strain in these sam-
ples shifts the transition temperature [22, 48]. Since we do not apply any external strain,
the strain responsible for this shift at the transition temperature should be due to the
thermal expansion induced strain accumulated upon cooldown of the samples or by
strain induced during fabrication. However, the strain required to account for the ob-
served shift is much larger than can be rationalized by the temperature induced strain
or is generally observed from fabrication induced strain.

A third reason can be that there is an additional contribution in the
d f 2

0
dT which dom-

inates the peak caused by the anomaly in the specific heat. Magnetostriction, which
couples the strain in the system and the magnetic order and is present below the tran-
sition, can give such a contribution. Since strain, or equivalently pressure, modifies the
bond distances and with that the superexchange pathways, and via the Goodenough-
Kanamori-Arderson superexchange mechanism the magnetic exchange. An example of
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which is reported by Bud’ko et al. [80], showing a suppression of the Néel temperature
of bulk CrPS4 while applying hydrostatic pressure.

Assuming the magnetostrictive coupling coefficient to be temperature independent

we expect a peak in the
d f 2

0
dT which coincides with the steepest slope in the order param-

eter. The temperature dependence of the order parameter corresponds with the slope of
∆ f 2

0b −∆ f 2
0a, see the bottom panel of figure 4.4b, as this quantity is proportional to the

order parameter squared, L2, [34]. So the curve in this figure gives an impression of the
temperature dependence of the order parameter. Surprisingly the curve does not follow
the standard shape from mean-field theory as the change at the transition temperature
is not as abrupt. A possible explanation is the anisotropy that is not due to the magnetic
order present in the system, but further research is needed to verify this. Comparing
the point of steepest slope of ∆ f 2

0b −∆ f 2
0a with the observed peak of the star sample in

figure 4.4b we find that they coincide at 26 K. This suggest that magnetostriction has a

significant influence on the peak in
d f 2

0
dT .

4.3. CONCLUSION
In conclusion, we have probed by nanomechanical resonators a large structural anisotropy
in thin layers of the van der Waals metamagnet CrPS4. While cooling down, we observe
a continuously increasing tensile strain along the a-axis, but a decreasing tensile strain
along the b-axis, that is largely enhanced upon the magnetic phase transition. This sug-
gests an increase in the distances between the Cr3+ ions along the quasi-1D chain di-
rection. Our results highlight CrPS4 as a van der Waals magnet that is relevant for low-
dimensional magnetism due to its marked anisotropic behaviour, in stark contrast with
the most common isotropic 2D magnets, such as CrI3 [98]. We also show that when using
nanomechanical resonators for studying van der Waals magnets, careful choice of geom-
etry is needed to account for anisotropic effects. This provides an important insight for
future research directions, such as the anisotropic mechanical coupling in van der Waals
heterostructures formed by distinct 2D materials or the role of collective excitations, like
magnons or excitons, in the 2D limit.

4.4. EXPERIMENTAL SECTION

4.4.1. CRYSTAL GROWTH

Crystals of CrPS4 are grown following a solid-state reaction inside a sealed evacuated
quartz tube (pressure 5×10−5 mbar, length: 50 cm, internal diameter: 14 mm) with a sto-
ichiometric amount of Cr (99.99 %, Alfa-Aesar), P (> 99.99%, Sigma-Aldrich) and S (99.99
%, Sigma-Aldrich). A three-zone furnace is used, with the material placed in the leftmost
zone, with a temperature gradient of 750/650/700 °C. The temperature is kept constant
for 21 days and rapidly quenched into water. With this process crystals with a length
up to several centimetres are obtained. The obtained crystals were analyzed by energy-
dispersive X-ray spectroscopy and by powder X-ray diffraction. The amount of elements
obtained was Cr: 23.3±0.5%, P: 14.8±0.4% and S: 61.8±1.5%, in good agreement with
the expected ones (Cr: 24.6%, P: 14.7% and S: 60.7 %). The refinement of the X-ray pat-
tern (ICSD 25059) revealed a monoclinic C face center crystal system with C121 space
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group and a unit cell determined by α = γ = 90° and β = 91.99(1)° and a = 10.841(9) Å,
b = 7.247(6) Å and c = 6.100(5) Å. The obtained results are in accordance with the ones
reported in the literature [75].

4.4.2. BULK MAGNETIC MEASUREMENTS
Variable-temperature (2−300 K) direct current (d.c.) magnetic susceptibility measure-
ments were carried out in an applied field of 1.0 kOe with a SQUID magnetometer (Quan-
tum Design MPMS-XL-5).

4.4.3. SAMPLE FABRICATION
Substrates consist of thermal SiO2 of 285 nm thickness, grown on highly doped (Si++)
silicon. The rectangular cavities are defined via e-beam lithography using AR-P 6200 re-
sist. After development, the exposed SiO2 areas are fully etched via reactive ion etching.
The AR-P 6200 resist is stripped in PRS-3000 and the sample is cleaned in an O2 plasma
before stamping. The exfoliation and transfer of multi-layer CrPS4 flakes are done using
a combination of polydimethylsiloxane (PDMS) and polycarbonate (PC) transfer meth-
ods. First, CrPS4 crystals are exfoliated onto the PDMS through scotch tape. Selected
flakes are then transferred to the star-shaped cavities in the SiO2/Si substrate. For trans-
fer of circular drum samples, the CrPS4 crystals are exfoliated using scotch tape directly
on un-etched Si/SiO2 substrates. Selected flakes are then transferred to circular-shaped
cavities in the SiO2/Si substrate using PC on PDMS [99].

4.4.4. LASER INTERFEROMETRY
Samples are mounted on a heater stage which is cooled down to 4 K using a Montana
Instruments Cryostation s50 cryostat with optical access. A blue diode laser (λ= 405 nm)
is used to excite the membrane optothermally via AC power modulation from a vector
network analyzer (VNA). Displacements are detected by focusing a red He-Ne laser beam
(λ = 632 nm) on the cavity formed by the membrane and Si substrate. The reflected
light, which is modulated by the position-dependent membrane motion, is recorded by
a photodiode and processed by a phase-sensitive VNA. Laser spot size is ∼ 1µm.

4.4.5. ATOMIC FORCE MICROSCOPY
Samples are mounted in a Cypher AFM platform from Asyllum Research under atmo-
spheric conditions and scanned using Bruker FASTSCAN-A tips. In order to minimise
contamination of the samples AFM was performed after all other measurements.

REFERENCES
16. Mermin, N. D. & Wagner, H. Absence of Ferromagnetism or Antiferromagnetism in

One- or Two-Dimensional Isotropic Heisenberg Models. Phys. Rev. Lett. 17, 1133
(Nov. 1966).

22. Šiškins, M. et al. Magnetic and electronic phase transitions probed by nanome-
chanical resonators. Nat. Commun. 11, 2698 (June 2020).



REFERENCES

4

69

34. Houmes, M. J. A. et al. Magnetic order in 2D antiferromagnets revealed by spon-
taneous anisotropic magnetostriction. Nat. Commun. 14, 8503 (Dec. 2023).

48. Šiškins, M. et al. Nanomechanical probing and strain tuning of the Curie tempera-
ture in suspended Cr2Ge2Te6-based heterostructures. npj 2D Mater. Appl. 6 (June
2022).

59. Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D mate-
rials and heterostructures. Nat. Nanotechnol. 14, 408–419 (May 2019).

66. Houmes, M. J. A. et al. Highly Anisotropic Mechanical Response of the Van der
Waals Magnet CrPS4. Adv. Funct. Mater. 34, 2310206 (2024).

67. Da Gao, Z. et al. Anisotropic Mechanics of 2D Materials. Adv. Eng. Mater. 24, 2200519
(Nov. 2022).

68. Uniaxial negative thermal expansion behavior of β-CuSCN. Appl. Phys. Lett. 118,
222105 (May 2021).

69. Diederich, G. M. et al. Tunable interaction between excitons and hybridized magnons
in a layered semiconductor. Nat. Nanotechnol. 18, 23–28 (Dec. 2022).

70. De Wal, D. K. et al. Long-distance magnon transport in the van der Waals antifer-
romagnet CrPS4. Phys. Rev. B 107, L180403 (May 2023).

71. Hwangbo, K. et al. Highly anisotropic excitons and multiple phonon bound states
in a van der Waals antiferromagnetic insulator. Nat. Nanotechnol. 16, 655–660
(Mar. 2021).

72. Kang, S. et al. Coherent many-body exciton in van der Waals antiferromagnet NiPS3.
Nature 583, 785–789 (July 2020).

73. Boix-Constant, C. et al. Probing the Spin Dimensionality in Single-Layer CrSBr Van
Der Waals Heterostructures by Magneto-Transport Measurements. Adv. Mater. 34,
2204940 (Oct. 2022).

74. Bae, Y. J. et al. Exciton-coupled coherent magnons in a 2D semiconductor. Nature
609, 282–286 (Sept. 2022).

75. Peng, Y. et al. Magnetic Structure and Metamagnetic Transitions in the van der
Waals Antiferromagnet CrPS4. Adv. Mater. 32, 2001200 (July 2020).

76. Riesner, M. et al. Temperature dependence of Fano resonances in CrPS4. J. Chem.
Phys. 156, 54707 (Feb. 2022).

77. Gu, P. et al. Photoluminescent Quantum Interference in a van der Waals Magnet
Preserved by Symmetry Breaking. ACS Nano 14, 1003–1010 (Jan. 2020).

78. Lee, J. et al. Structural and Optical Properties of Single- and Few-Layer Magnetic
Semiconductor CrPS4. ACS Nano 11, 10935–10944 (Nov. 2017).

79. Diehl, R. & Carpentier, C.-D. The structural chemistry of indium phosphorus chalco-
genides. Acta Crystallogr. B34, 1097 (Apr. 1978).

80. Bud’Ko, S. L., Gati, E., Slade, T. J. & Canfield, P. C. Magnetic order in the van der
Waals antiferromagnet CrPS4: Anisotropic H-T phase diagrams and effects of pres-
sure. Phys. Rev. B 103, 224407 (June 2021).



4

70
4. HIGHLY ANISOTROPIC MECHANICAL RESPONSE OF THE VAN DER WAALS

MAGNET CRPS4

81. Calder, S. et al. Magnetic structure and exchange interactions in the layered semi-
conductor CrPS4. Phys. Rev. B 102, 024408 (July 2020).

82. Kim, S. et al. Photoluminescence Path Bifurcations by Spin Flip in Two-Dimensional
CrPS4. ACS Nano 16, 16385–16393 (Oct. 2022).

83. Son, J. et al. Air-Stable and Layer-Dependent Ferromagnetism in Atomically Thin
van der Waals CrPS4. ACS Nano 15, 16904–16912 (Oct. 2021).

84. Wu, F. et al. Gate-Controlled Magnetotransport and Electrostatic Modulation of
Magnetism in 2D Magnetic Semiconductor CrPS4. Adv. Mater., 2211653 (June 2023).

85. Qi, S. et al. Giant electrically tunable magnon transport anisotropy in a van der
Waals antiferromagnetic insulator. Nat. Commun. 14, 1–8 (May 2023).

86. Lee, M. et al. Study of charge density waves in suspended 2H-TaS2 and 2H-TaSe2
by nanomechanical resonance. Appl. Phys. Lett. 118, 193105 (May 2021).

87. López-Cabrelles, J. et al. Chemical Design and Magnetic Ordering in Thin Lay-
ers of 2D Metal-Organic Frameworks (MOFs). J. Am. Chem. Soc. 143, 18502–18510
(Nov. 2021).

88. Davidovikj, D. Two-dimensional membranes in motion PhD thesis (TU Delft, 2018).

89. Li, B.-L. et al. Very high-frequency, gate-tunable CrPS4 nanomechanical resonator
with single mode. Opt. Lett. 48, 2571–2574 (May 2023).

90. Dove, M. T. & Fang, H. Negative thermal expansion and associated anomalous
physical properties: review of the lattice dynamics theoretical foundation. Rep.
Prog. Phys. 79, 066503 (May 2016).

91. Colossal positive and negative thermal expansion in the framework material Ag3[Co(CN)6].
Science 319, 794–797 (Feb. 2008).

92. Das, D., Jacobs, T. & Barbour, L. J. Exceptionally large positive and negative anisotropic
thermal expansion of an organic crystalline material. Nat. Mater. 9, 36–39 (Nov.
2010).

93. Peng, Y. et al. Controlling Spin Orientation and Metamagnetic Transitions in Anisotropic
van der Waals Antiferromagnet CrPS4 by Hydrostatic Pressure. Adv. Funct. Mater.
32, 2106592 (2022).

94. Joe, M., Lee, J. & Lee, C. Dominant in-plane cleavage direction of CrPS4. Comput.
Mater. Sci. 162, 277–280 (2019).

95. Joe, M. et al. A comprehensive study of piezomagnetic response in CrPS4 mono-
layer: Mechanical, electronic properties and magnetic ordering under strains. J.
Condens. Matter Phys. 29 (Aug. 2017).

96. Villars, P. PAULING FILE in: Inorganic Solid Phases, SpringerMaterials (online database),
Springer, Heidelberg (ed.) SpringerMaterials.

97. Lyon, K. G., Salinger, G. L., Swenson, C. A. & White, G. K. Linear thermal expansion
measurements on silicon from 6 to 340 K. J. Appl. Phys. 48, 865–868 (Mar. 1997).

98. Wahab, D. A. et al. Quantum Rescaling, Domain Metastability, and Hybrid Domain-
Walls in 2D CrI3 Magnets. Adv. Mater. 33, 2004138 (Feb. 2020).



REFERENCES

4

71

99. Zomer, P. J., Guimarães, M. H. D., Brant, J. C., Tombros, N. & van Wees, B. J. Fast
pick up technique for high quality heterostructures of bilayer graphene and hexag-
onal boron nitride. Appl. Phys. Lett. 105, 013101 (July 2014).



4

72
4. HIGHLY ANISOTROPIC MECHANICAL RESPONSE OF THE VAN DER WAALS

MAGNET CRPS4

4.A. SUPPLEMENTARY INFORMATION

4.A.1. CIRCULAR DRUMS
This section contains additional measurements on circular drum samples. Figure 4.5
shows the atomic force microscopy (AFM) data, which is used to determine the thickness
of the CrPS4 flakes. The results of these measurements are summarised in table 4.1.
Figure 4.6 shows additional frequency vs. temperature data similar to that of figure 4.2c
of the main text. Note that although there are some variations, such as the absolute value
of the frequency the overall behaviour is the same between these measurements despite
varying thickness and radii. This shows that the observed behaviour is robust.

Figure 4.5: a1,b1,c1) show AFM height data, AFM phase data, optical image of drum 1. The AFM data corre-
sponds to the yellow outlined area in c1. The thickness of the flake is determined using the height distribution
taken in the black dashed box in figure a1; the resulting distribution is shown in the inset in c1. a2, b2, c2, a3,
b3, c3) show the same information as a1, b1, c1 for drum 2 and 3, respectively.

Sample name Drum 1 Drum 2 Drum 3
Thickness (nm) 120 80 40
Radius (µm) 3 1 1

Table 4.1: Summary of AFM data for circular drums, showing the thickness and radius.
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Figure 4.6: a, b, c) Additional frequency versus temperature measurements for drums 1, 2, and 3 respectively.
The sweeps started at 6 K and the temperature was increased to 60 K and then returned to 6 K. The red points
correspond with the heating cycle from 6 to 60 K and the blue points correspond with the cooling cycle from
60 to 6 K. No thermal hysteresis is observed.

4.A.2. STAR SAMPLES
This section contains additional measurements on star samples. Figure 4.7 shows the
atomic force microscopy (AFM) data, which is used to determine the thickness of the
CrPS4 flakes. The results of these measurements are summarised in table 4.2. Figure 4.8
shows the frequency versus temperature data of stars 1 and 2. Since the alignment of
star 1 with the crystal is slightly worse than that of star 2, meaning no cavity is perfectly
aligned along either the a- or b-axis, there is some softening observable in the frequency
data for all frequencies. Since star 2 is not completely covered by the CrPS4 flake, the
angular resolution of its data is lower. Despite this, similar behaviour is observed in both
stars. Figure 4.9 shows the frequency data for the a- and b-axis of all stars. All stars show
very similar behaviour despite differences in thickness and geometry. Note that with the
exception of star 4 all stars show a relative shift of about 4.5 MHz for the b-axis from 6 to
60 K. The reason for the deviation of star 4 is unknown but could be caused by its larger
thickness.

Sample name Star 1 Star 2 Star 3 Star 4 Star 5
Thickness (nm) 75 76 103 165 70
Width (short side) (µm) 5 4 2 4 4
Length (long side) (µm) 10 12 10 12 12

Table 4.2: Summary of AFM data for star samples, showing the thickness, width, and length.
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star 2

Star 1
30 μm

30 μm

20 μm

a1 b1 c1

a2 b2 c2

a4 b4 c4

a5 b5 c5

a3 b3 c3

Figure 4.7: a1,b1,c1) AFM height data, AFM phase data, optical image of star 1. The AFM data corresponds to
the yellow outlined area in c1. The thickness of the flake is determined using the height distribution taken in
the black dashed box in figure a1, the resulting distribution is shown in the inset in c1. The measured fracture
angles are indicated and labeled, these are used to determine the crystallographic a- and b-axis indicated by
the red and green arrows, respectively. a2-5,b2-5,c2-5) show the corresponding information as a1, b1, c1 for
stars 2, 3, 4, and 5, respectively.
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Figure 4.8: a) Left panel: Change in resonance frequency relative to 60 K as a function of temperature
(∆ f0(T )= f0(T ) − f0(T=60 K)), between 6 and 60 K for two cavities of star 1 with their short axes aligned along
the crystallographic a-axis (red) and b-axis (green). No thermal hysteresis effects are observed. Center panel:
Relative frequency change (color coded) with respect to 60 K as a function of temperature. The angle corre-
sponds to the angle the short axis of the cavity makes with the crystallographic a-axis; the cavity with the short
axis parallel to the crystallographic a-axis corresponds to 0deg. Right panel: Same data as the center panel
now plotted with the relative frequency change on the vertical axis and angle on the horizontal axis. The tem-
perature is color-coded. b) Shows the corresponding data as in a) for star 2.

4.A.3. PHASE TRANSITION

DATA FILTERING

To limit the effect of noise in calculating the
d f 2

0
dT we first apply a smoothing step to the

frequency data before squaring and taking the temperature derivative. Without this step
features are lost in the noise, particularly in the case of the circular drum. This smoothing
is done using a Savitzky-Golay filter with a window size of 3 and degree 1 polynomial.
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Figure 4.9: a,b,c,d,e) Top panel: Resonance frequency as a function of temperature between 6 and 60 K for two
cavities with their short axes aligned along the crystallographic a-axis (red) and b-axis (green). of the stars 1, 2,
3, 4, and 5, respectively. Botom panel: shows the same data as the top panel now plotted as relative resonance
frequency change relative to 60 K, the color coding is the same as in the top panel.

YOUNG’S MODULUS

Joe et al.[95], use density functional theory to calculate the elastic constants of CrPS4,
from these we calculate the a- and b-axis Young’s modulus as

Ea = C11C22 −C 2
12

C22
, (4.A.1)

Eb = C11C22 −C 2
12

C11
, (4.A.2)

where Ea,b is the Young’s modulus along the a- resp. b-axis and C is the elasticity tensor.
For C11 = 114.4 GPa, C22 = 74.4 GPa, and C12 = 33.6 GPa we find Ea = 99.23 GPa and
Eb = 64.53 GPa.

THERMAL EXPANSION COEFFICIENT

Figure 4.10 shows the same data as the middle panel of figure 4.4b of the main text, con-
verted to a thermal expansion coefficient (TEC) as described in the main text, equation
(4.2.2). Apart from the minimum in the b-axis around 26 K, there also appears to be
a kink around the phase transition temperature, indicated by the vertical black dashed
line. This is an indication of the added contribution of magnetostriction to the TEC.
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Figure 4.10: The thermal expansion coefficient of a- (red) and b-axis (green) between 6 and 60 K as determined

from
d f 2

0
dT data using equation (4.2.2), as explained in the main text. The black dashed line indicates the bulk

transition temperature.
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5
THERMO-MAGNETOSTRICTIVE

EFFECT FOR DRIVING

ANTIFERROMAGNETIC 2D
MATERIAL RESONATORS

Magnetostrictive coupling has recently gained interest as a sensitive method for study-
ing magnetism in 2D materials by mechanical means. However, its application in high-
frequency magnetic actuators and transducers requires rapid modulation of the mag-
netic order, which is difficult to achieve with external magnets, especially when dealing
with antiferromagnets. Here, we optothermally modulate the magnetization in antifer-
romagnetic 2D material membranes of metal phosphor trisulfides (MPS3), to induce a
large high-frequency magnetostrictive driving force. From the analysis of the temperature-
dependent resonance amplitude, we provide evidence that the force is due to a thermo-
magnetostrictive effect, which significantly increases near the Neél temperature, due to
the strong temperature dependence of the magnetization. By studying its angle depen-
dence, the effect is observed to follow the anisotropic magnetostriction of the crystal lattice.
The presented results show that the thermo-magnetostrictive effect results in a strongly en-
hanced thermal expansion force near the critical temperature of magnetostrictive 2D ma-
terials, which can enable more efficient actuation of nano-magnetomechanical devices
and can also provide a route for studying the high frequency coupling between magnetic,
mechanical and thermodynamic degrees of freedom down to the 2D limit.

Parts of this chapter have been published in [23].
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5.1. INTRODUCTION
Given the strong interest in applications of magnetic devices for sensing, data storage
and spintronics, two-dimensional (2D) magnetic materials have been subject of exten-
sive research [100]. However, testing the magnetic properties of suspended 2D materials
is challenging due to the small sample volumes, which result in small signals. As an al-
ternative to optical and electronic techniques, recently several works have promoted the
use of nanomechanical methods for probing magnetic and thermodynamic properties
of suspended 2D membrane resonators such as graphene [101], MoS2 [102] and MoSe2

[103]. Owing to the strong magnetostrictive coupling between mechanical strain, and
magnetism in certain 2D materials [22, 49], nanomechanics has also been used to probe
magnetic properties [21, 22, 49, 104], and anisotropies [34]. Instead of probing mag-
netism by mechanical resonance, in this chapter, we demonstrate the inverse mecha-
nism: driving mechanical resonators via 2D magnetic order through magnetostriction.

Magnetostriciton is the coupling between magnetic order and strain in a crystal. This
means that when a crystal is strained its magnetic order changes as well as the reverse,
a change in the magnetic order causes a change in the strain in the crystal. This second
relation can be seen as a way to provide a driving force to a drum resonator by modu-
lating the magnetic order in the resonator. Using an external magnetic field to provide
such a driving force is non trivial, as it requires a strong magnetic field, especially for an-
tiferromagnetic materials as studied in this case, and a modulation of the field at a high
frequency, for nanomechanical drum resonators typically in the order of 1-100 MHz.

Therefore using the internal magnetic order of the material provides a simpler way
to achieve such magnetostrictive driving, as this internal order can be modulated using
temperature. As the magnetic order is particularly sensitive to changes in temperature
just below the transition temperature this way of actuation will be most efficient in that
temperature regime. In this chapter we modulate optothermally the temperature of the
suspended 2D membranes of antiferromagnetic MPS3 (M = Fe, Co, Ni) compounds, al-
lowing for the magnetization to be varied at high frequencies, causing a large magne-
tostrictive enhancement of the driving force. We also show that the anisotropy of this
driving force corresponds with the anisotropy of the magnetostriction coefficients.

5.2. METHODS AND RESULTS
As in previous chapters the resonators were fabricated using dry transfer of exfoliated
crystal flakes using PDMS as transfer polymer on pre-etched substrates of Si with 285
nm of thermally grown SiO2. A representative sample is shown in figure 5.1a with a
schematic cross-section shown in figure 5.1b.

The technique used to study the motion of the suspended MPS3 membranes is the
same as discussed in previous chapters. Using a power modulated blue laser the temper-
ature of the membrane is modulated. Throughout this chapter the power modulation
voltage, Vin, is held at a constant amplitude. The frequency dependent motion of the
membrane is read out using a red laser in the interferometric readout scheme, see 1.4.2.
The voltage readout by the detector photodiode will be referred to as Vout . The optical
actuation power, Pω, provided by the blue laser is modulated at an angular frequency,ω,
so we will model this as Pω = P0(Vin)e iωt , where P0(Vin) is the magnitude of the power
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Figure 5.1: Thermal response characterization of magnetic membranes. (a) Optical image of a FePS3 mem-
brane resonator (sample Fe-1 in Table 5.1). The scale bar is 6µm. (b) Schematic illustration of the system under
study: MPS3 membrane is optothermally actuated via a power modulated blue laser, Pω, and its out-of-plane
displacement, zω, is detected interferometrically with a red laser. The red arrows show the expansion direc-
tion. (c) Measured amplitude of the fundamental resonance peak (at 120 K) and fit (drawn line) used to extract
the resonance frequency, ω0/2π, whose position is indicated by the vertical dashed line. (d) Block diagram
showing how thermal expansion forces, Fth, and magnetostriction forces, Fms, arise from the optothermal
actuation and contribute to the membrane’s motion. Tω and Lω indicate the modulation of temperature and
magnetic order parameter respectively. (e) Schematic plot of the blue laser power, Pω, and out-of-phase forces,
Fth, Fms, resulting from the time delay τ due to heat diffusion.

modulation which is set by the power modulation voltage. When driven at resonance the
frequency response, zω ∝ Vout/Vin , shows a characteristic resonance peak, as shown in
figure 5.1c, from which the resonance frequency, ω0/2π, and Q-factor of the resonator
can be extracted by fitting a damped harmonic oscillator model.

The force actuating the membrane arises from the delay in the modulation of the
temperature, caused by optical absorption of the blue laser, schematically shown in fig-
ure 5.1d. This delay in the actuation results in a peak in the imaginary part of the fre-
quency response which is know as a thermal peak [101]. This peak occurs at an angular
frequency far below the resonance frequency, ωth << ω0 and corresponds to a charac-
teristic thermal time constant, ωth = 1/τ . The low frequency response can be described
by [101]:

zω = A

1+ iωτ
, (5.2.1)

where the amplitude A is proportional to the driving force and τ is the membrane’s ther-
mal time constant, which is proportional to the material’s thermal diffusivity [105, 106].
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A

Figure 5.2: Thermal response vs. temperature. Measurement data and analysis from FePS3 sample Fe-1. (a)
Measured real and imaginary component of zω as a function of frequency at different temperatures (T = 90 K
bottom panel, T = 105 K middle panel, T = 120 K top panel, fit parameters are respectively τ= 267,634 and 420
ns and A =−0.28,−1.11 and −0.24 mV/V). The black solid line indicates the fit to A/(1+ iωτ), used to extract
τ and A. Vertical dashed lines highlight the frequency position of the thermal peak, ωth/(2π) = 1/(2πτ). (b-c)
Thermal time constant, τ and thermal peak amplitude, A as a function of temperature, extracted from data
like in (a). Vertical dashed line indicates the transition temperature, TN.

We will assume that the time delay between the optical power and the membrane re-
sponse is dominated by thermal effects [101], see section 5.A.2 for further discussion.

In order to resolve both the resonance frequency and the lower frequency thermal
behaviour a wide frequency window is used to measure the frequency response. Figure
5.2a shows three measurements of the frequency response of a FePS 3 circular drum res-
onator, taken at temperatures of 120, 105, and 90 K, as well as a fit using (5.2.1). Using this
fit to extract the thermal time constant and the amplitude of the thermal peak we can in-
vestigate their temperature dependence, shown in figure 5.2b and 5.2c, respectively. The
thermal time constant, figure 5.2b, exhibits a peak with a maximum at the transition
temperature of FePS3, indicated by the black dashed line. The amplitude, 5.2c, shows a
large dip with a minimum just below the transition temperature, with a value that is 20
times larger than the one at 70 K, well below the magnetic transition. In the following
sections we will discuss these results in more detail.

5.3. THERMAL TIME CONSTANT

Given that the specific heat of FePS3 shows a peak near the antiferromagnetic phase
transition [22], it is of interest whether the peak in the thermal time constant in figure
5.2b can be accounted for by the anomaly in the specific heat. The thermal time constant
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of a circular membrane is approximately given by [102]:

τ= r 2ρcv

µ2κ
, (5.3.1)

where r is the membrane’s radius, cv , ρ and κ are the material’s specific heat, density and
thermal conductivity and µ2 is a constant related to the membrane geometry. In figure
5.3a we plot the literature values [107] of the thermal conductivity κ(T ) of bulk FePS3

and the material’s specific heat cv ∝ dω2
0

dT
calculated from the measured resonance fre-

quency,ω0/2π, according to the methodology outlined in [22], see section 5.A.3. In figure
5.3b, we use (5.3.1) with r = 3µm, ρ = 3375 kg m−3, µ2 = 10 and the values of κ and cv

shown in figure 5.3a, to calculate the thermal time constant τ (black curve) and com-
pare it to the measured values (red dots). Equation (5.3.1) yields a good correspondence
with the experimental data, reproducing the peak shape as well as its magnitude. The
qualitative correspondence between the modeled and measured data for τ(T ) in figure
5.3b provides evidence that the measured peak in the thermal time constant is due to
the peak in specific heat near TN. Further analysis of the thermal properties of the mem-
branes can be found in figure 5.7 and 5.8.

[12]

ba

k cv

Figure 5.3: Thermal time constant model. Measurement data and analysis from FePS3 sample Fe-1. (a) Bulk
thermal conductivity, κ, (black) from [107] (data adapted with permission) and measured specific heat, cv ,
(green) extracted from the resonance frequency, ω0(T )/2π, as described in [22] for FePS3. (b) Thermal time
constant for the same sample as in (a), calculated from (5.3.1) (black line), with µ2 = 10, cv and κ from (a) and
measured (red dots).

5.4. AMPLITUDE RESPONSE
We now turn to the large enhancement of the resonator’s amplitude near TN observed
in figure 5.2c. To understand this enhancement we first note that the peak height A(T )
is determined at a frequency ωth = 1/τ which is far below the resonance frequency. At
this frequency, the effects of mass and damping can be neglected and the resonator be-
haves as a spring with stiffness k, and displacement zω,th = Fω,th/k ∝ A. Since ω2

0 ∝ k
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and there is no peak in the resonance frequency near TN, see figure 5.6 in section 5.A.3,
we conclude that the peak in A(T ) should be attributed to a large enhancement in the
driving actuation force near TN.

The proposed actuation mechanism is schematically depicted in figure 5.1d-e. The
absorption of the power-modulated laser light supplies a time-dependent heating power
to the membrane. As a consequence, heat flows from the center of the membrane to the
substrate in a time scale determined by the materials’ thermal time constant τ. Nor-
mally, the resulting temperature rise, Tω, increases the lattice vibrations that result in an
enlarged lattice constant, proportionally to the effective lattice thermal expansion co-
efficient α of the membrane. However, in the case of an antiferromagnetic membrane
below the Néel temperature, Tω also changes the (staggered) magnetization order pa-
rameter, L. If the material is magnetostrictive, then its lattice expands proportionally to
λL2, where λ is the effective magnetostriction coefficient of the membrane.

Thus, when the temperature is optothermally modulated below TN, the membrane
is actuated both by the lattice thermal expansion force, Fth, and by the magnetostrictive
force Fms, which are both delayed by the characteristic time constant τ with respect to
the heating power Pω, as shown in figure 5.1e. Since the slope of the magnetization ver-
sus temperature curve, L(T ) is steepest just below TN, it is expected that the contribution
of Fms will also be largest in this temperature range, see below, consistent with the peak
in A(T ) observed in figure 5.2c.

To analyze the data and models in more quantitative detail, we derive the follow-
ing equation for the low-frequency (ω≪ω0) mechanical displacement spectrum, zω, in
section 5.A.5:

zω =
(
α+λdL2

dT

)
RP0

1+ iωτ
, (5.4.1)

where R is the membrane’s thermal resistance. As (5.4.1) shows, the thermal peak ampli-
tude A(T ) = Im(zω) at ω= 1/τ, is determined by two terms: one containing the effective
thermal expansion coefficient α, and the other containing the temperature derivative
of the magnetic order parameter L2. The coefficient α can be expressed in terms of the

specific heat considering the thermodynamical relation α = γ

3K VM
cv , where γ is the

Grüneisen parameter, K the bulk modulus, and VM the molar volume. Assuming that
the isotropic contributions to the thermal expansion causing the membrane’s motion
are only determined by the phononic lattice contribution, then α∝ cDebye, where cDebye

is the Debye specific heat:

cDebye(T ) ∝ T 2
∫ ΘD /T

0

x3ex

(ex −1)2 d x . (5.4.2)

For the analysis of the FePS3 data we use a Debye temperature ΘD = 236 K [53], while
for CoPS3 we useΘD = 262 K as estimated from the material bulk modulus[57]. To fit the
data using (5.4.1), we employ the method from [34] to extract L2, from the angle-resolved
resonance frequency of rectangular resonators, see section 5.A.6 for more details on this
analysis. Figure 5.4a shows the fits of the A(T ) data of a rectangular CoPS3 resonator of

sample Co-1, which is shown in figure 5.4c, to A(T ) = a1cDebye + a2
dL2

dT
with a1 and a2

as fit parameters. The dashed lines highlight the individual contributions to A from the
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Figure 5.4: Actuation mediated by the magnetostriction effect. (a) Measured thermal peak amplitude, A,

(orange) with fit to a1cDebye +a2
dL2

dT (black) on a rectangular resonator of the CoPS3 sample Co-1, where a1
and a2 are fit parameters. The dashed colored lines indicate the individual contributions of the Debye term
(light red) and magnetostriction term (light blue). (b) Same as (a) for FePS3 sample Fe-1. (c) Optical image of
the star-shaped array resonators of CoPS3 (sample Co-1) measured to investigate angle dependance of a1(θ)
and a2(θ). Scale bar is 12 µm. The arrows indicate the crystallographic directions a and b.(d-e) Polar plots of
a1 in orange (d) and a2 in blue (e) as extracted from fits to A(θ) for sample Co-1. In (e) the red curve is a fit to
b1 sin2 θ+b2 cos2 θ. The angle θ is defined with respect to the crystallographic b-axis.

thermal expansion (light red) and magnetostriction force (light blue). The fitted curve
(black) corresponds well to the measured A(T ) data, providing evidence of the correct-
ness of (5.4.1) and the applicability of the presented analysis. Figure 5.4b shows the same
analysis on A(T ) for FePS3 sample Fe-1, again resulting in a good correspondence to the
data. In this case, since A(T ) is measured on a circular FePS3 drum on which L(T ) is dif-
ficult to obtain using the method from [34], L2 is calculated from resonance frequency
measurements on separate rectangular FePS3 resonators (as shown in figure 5.12 of sec-
tion 5.A.6), assuming the same temperature dependence of the magnetization holds for
the circular resonator. Section 5.A.7 shows additional data on all rectangular cavities of
sample Co-1 (figure 5.13), as well as another FePS3 drum (sample Fe-2 in figure 5.14) and
NiPS3 drums (samples Ni-1,2,3 in figure 5.15), demonstrating the reproducibility of the
effect.

5.5. ANISOTROPY
In [34] it was shown that the magnetostriction coefficient in MPS3 materials is anisotropic,
therefore it is interesting to investigate if the thermo-magnetostrictive driving force also
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depends on the crystal orientation. We study this by applying the aforementioned anal-
ysis to determine the a1 and a2 fit parameters for all rectangular CoPS3 resonators of
sample Co-1. As derived in section 5.A.8, the parameters are expected to follow the an-
gular dependence described by:

a1 =−P0EηphRph

(1+ν)
, (5.5.1)

a2 =−P0EηmRm

(1−ν2)

[
(λa +νλb)sin2θ+ (λb +νλa)cos2θ

]
, (5.5.2)

where ηph and ηm are respectively the fractions of heat absorbed by the phononic and
magnetic baths, ν is the Poisson ratio, E is the Young’s modulus, λa,b are the magne-
tostriction coefficients along the a and b crystallographic axes, and θ is defined with
respect to the b direction. Thus, from (5.5.1) we expect a1 to be isotropic, which agrees
with the polar plot in figure 5.4d showing the extracted a1 parameters from the fit to
angle-resolved data measured on the rectangular CoPS3 resonators. Similarly, a2(θ) re-
produces the anisotropic function (5.5.2), as shown via a fit (red line in figure 5.4e) to a
function of the form b1 sin2θ+b2 cos2θ. The qualitative agreement with (5.5.2) provides
additional evidence that the driving force is of magnetostrictive origin, and is consistent
with earlier observations of the anisotropy in the magnetostriction coefficient of CoPS3

[34].

5.6. CONCLUSION
We present evidence that resonators of antiferromagnetic 2D materials can be driven via
a thermo-magnetostrictive effect. The effect was shown to be present in FePS3, CoPS3,
and NiPS3 resonators, and can lead to strong enhancement of the thermomechanical
force below the Neél temperature, because its magnitude scales with the temperature

derivative of the square of the staggered magnetization
dL2

dT
. Despite its magnetic na-

ture, the effect does not require application of external magnetic fields, and is also effec-
tive in antiferromagnetic materials, because the magnetic order is varied by optothermal
modulation.

As a consequence of the anisotropy in the magnetostriction coefficient, we observe a
strong crystal orientation dependence in the amplitude of the thermo-magnetostrictive
driving force. Besides providing a route towards driving magnetic nanomechanical res-
onators, the observed high-frequency magnetostrictive effects can provide further in-
sights into the interplay between motion, thermodynamics, magnetic order, and me-
chanical strain in the 2D limit.
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5.A. SUPPLEMENTARY INFORMATION

5.A.1. EXPERIMENTAL METHODS AND MEASURED SAMPLES

SAMPLE FABRICATION

MPS3 flakes are stamped onto a substrate of 285 nm thermal SiO2, grown on highly
doped (Si++) silicon. Cavities are defined via e-beam lithography using AR-P 6200 re-
sist. After development, the exposed SiO2 areas are fully etched via reactive ion etching.
The AR-P 6200 resist is stripped in PRS-3000 and the sample is cleaned in an O2 plasma
before stamping. The exfoliation and transfer of multi-layer MPS3 flakes is done using
a PDMS transfer method. First, MPS3 crystals are exfoliated onto the PDMS through
scotch tape. Selected flakes are then transferred either on the circle-shaped or on the
star-shaped cavities in the SiO2/Si substrate.

LASER INTERFEROMETRY

The samples are mounted in a 4K cryostat (Montana Instruments Cryostation s50) with
optical access. An intensity-modulated blue laser (405 nm) causes the membrane to heat
up, resulting in its deflection due to thermal expansion. The motion of the membrane
is detected via cavity optomechanics using a red He-Ne laser (632 nm). The suspended
membrane acts as a moving mirror and the bottom of the cavity as a fixed mirror in a
low-finesse Fabry-Perot cavity. The reflected red laser light from the cavity is redirected
to a photodetector, which is connected to a vector network analyzer (VNA) in order to
measure transmission between the blue laser modulation and the signal on the pho-
todetector in a homodyne detection scheme. The sample is mounted on a heater stage
used to control the sample local temperature inside the cryostat with 10 mK precision.
Measurements are performed at incident laser power of < 10 µW for the red laser and
< 1 µW for the blue laser. Figure 5.5 shows a schematic of the experimental setup de-
scribed.

Vector 
Network 
Analyzer

HeNe Laser

Cryostation
Cold 
Mirror

Polarizing 
Beam Splitter

Laser 
Diode Photodiode

50x
Lens

λ/4

MPS3

SiO2 Si

OUTPUT
INPUT

Figure 5.5: Experimental setup. Schematic of the interferometry setup.
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CRYSTAL GROWTH

Crystal growth of MPS3 (M = Ni, Fe, Co) was performed following a solid-state reaction
inside a sealed evacuated quartz tube (pressure ∼ 5×10−5 mbar). I2 was used as a trans-
port agent to obtain large crystals. A three zone furnace was used, where a tube with the
material was placed in the leftmost zone. The leftmost side was then heated up to 700
◦C in 3 hours so that a temperature gradient of 700 / 650 / 675◦C was established. The
other two zones were heated up in 24 hours from room temperature to 650 ◦C and kept at
that temperature for one day. The temperature was kept constant for 28 days and cooled
down naturally. With this process crystals with a length up to several centimeters are
obtained. Detailed description of the crystal growth and characterization can be found
in earlier work [22].

MEASURED SAMPLES

Table 5.1 shows an overview of the measured samples of MPS3 resonators, along with
their dimensions and flake thickness as measured via atomic force microscopy.

Sample Material Resonator geometry Dimensions t (nm)

Fe-1 FePS3 Circular drum r = 6µm 16

Fe-2 FePS3 Circular drum r = 4µm 21

Fe-3 FePS3 Star cavity array w = 2µm, l = 16µm 40

Co-1 CoPS3 Star cavity array w = 2µm, l = 16µm 30

Ni-1 NiPS3 Circular drum r = 4µm 16

Ni-2 NiPS3 Circular drum r = 4µm 20

Table 5.1: Measured samples. Overview of the MPS3 samples studied. Reported are the material, the res-
onator’s geometry, the resonator’s dimensions (radius, r , for circular drums and width, w , and lenght, l , for
rectangular membranes in star cavity) and thickness, t , as determined by atomic force microscopy.

5.A.2. SOURCES OF DELAY BETWEEN MEMBRANE DISPLACEMENT AND OP-
TICAL ACTUATION

In the following, we discuss the possible sources for time delay between the modula-
tion of the actuating blue laser and the membrane displacement. As argued in [101],
the heating power caused by the modulated intensity can be treated as instantaneous as
photoexcited carriers lose their energy to phonons on time scales of a few picoseconds.
Then, the heating power will increase the membrane temperature in a time scale deter-
mined by the membrane thermal time constant τ. Thus, the resulting force acting on the
membrane will also be delayed by τwith respect to the optical actuation. Additional me-
chanical delays are neglected, since for frequencies far below the membrane’s resonance
frequency, the membrane motion will be in phase with the actuating force.

Other sources of delay, intrinsic to the measurement setup are taken into account by
pointing directly the blue laser to the photodiode to obtain a calibration curve cω for the
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frequency response fω. The corrected frequency response is given by

fcorr, ω = fω
cω

. (5.A.1)

This,leaves the thermal time constant of the system as the dominant source of delay. Ad-
ditional delays between the change in temperature and change in magnetization causing
the magnetostriction force are neglected as the data is well represented by a single time
constant model.

5.A.3. SPECIFIC HEAT FROM RESONANCE FREQUENCY
Following the model from [22], we derived the specific heat cv from the temperature
derivative of the resonance frequency f0 =ω0/2π as

cv = 3

(
αSi − 1

ξ2

d f 2
0

dT

)
EVM

3γ(1−2ν)
, (5.A.2)

where αSi is the thermal expansion coefficient of Si, E is the Young’s modulus, ν is the

Poisson ratio, γ ≈ 3

2

1+ν
2−3ν

is the Grüneisen parameter, VM is the molar volume and ξ =
2.4048

πd

√
E

ρ(1−ν)
, with ρ the density of the material and d the diameter of the circular

resonator.
The cv of FePS3 shown in figure 5.3a is computed via (5.A.2) from the resonance fre-

quency data shown in figure 5.6, with E = 103 GPa, ν= 0.304, ρ = 3375 kg m−3.
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Figure 5.6: Data on ω0/2π for sample Fe-1 a). Temperature dependent resonance frequency, ω0(T )/2π of
sample Fe-1. b). Derivative of the frequency squared with respect to temperature of ω0/2π from (a).

5.A.4. THERMAL CONDUCTIVITY FROM THERMAL TIME CONSTANT
Instead of using the literature value of κ to determine τ as done in the main text, we
could also use the measured value of τ to estimate the membrane’s thermal conductivity
κ. Such an analysis would be of particular interest for materials whose bulk values of
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κ are not reported, like for CoPS3, or to study thermal conductivity in the thin limit.
However, we note that prior knowledge of the material’s mechanical properties, such as

Young’s modulus and Poisson ratio, are needed to estimate cv from
dω2

0

dT
. We also note

that more clarification is needed to account for the relatively high value of the parameter
µ2 = 10 compared to previous work [102], where a value of µ2 = 5 was found close to
the theoretical value for a circular membrane of µ2 = 5.783. Despite the fact that we
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Figure 5.7: Angle-resolved thermal time constant in CoPS3 resonators. Thermal time constant rectangular
cavities at different orientation with respect to the crystallographic axis of the Co-1 sample.

do not yet obtain a full quantitative agreement between the model and theory, here we
present an estimate of the angle-resolved thermal conductivity, k, of CoPS3 from the
thermal time constants, τmeasured on the rectangular resonators of sample Co-1 (these
are shown in figure 5.7). We calculate k as [106]

k = w2ρcv

π2τ
, (5.A.3)

where w = 2 µm is the width of the resonator, ρ = 3257 kg m−3, and cv is the bulk specific
heat taken from [58]. The resulting k for all resonators is shown in figure 5.8.
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Figure 5.8: Angle-resolved thermal conductivity in CoPS3 resonators. Estimated thermal conductivity of
rectangular cavities at different orientation with respect to the crystallographic axis of the Co-1 sample. The
thermal conductivity is calculated from τ data shown in figure5.7 using (5.A.3)

5.A.5. OPTOTHERMAL ACTUATION OF MAGNETIC MEMBRANES

Here we derive (5.4.1) of the main text. Let us consider the temperature dynamics of the
system under optothermal actuation from the power-modulated blue laser, Pω = P0e iωt .
We start by treating separately the temperature dynamics of the magnetic and phononic
systems as Tω,ph and Tω,m, as illustrated in figure 5.9. The fraction of power absorbed
from Pω by each system is determined by the phononic absorption fraction, ηph, and
magnetic absorption fraction, ηm. The temperature dynamics of the two systems is ex-
pressed as a simple RC system:

Cph
dTω,ph

d t
+ 1

Rph
Tω,ph = P0e iωt , (5.A.4)

Cm
dTω,m

d t
+ 1

Rm
Tω,m = P0e iωt , (5.A.5)

where C and R are the system’s thermal capacitance and thermal resistance. Thus, the
temperature dynamics of the phononic and magnetic systems is given by:

Tω,ph = ηphRph

1+ iωτph
P0e iωt , (5.A.6)
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Cph Cm RmRph

ph m

P

Figure 5.9: Equivalent circuit illustration of the phononic and magnetic thermal system. The input power,
Pω, from the blue laser is absorbed with different fractions, ηph and ηm, by the phononic and magnetic sys-
tems. The corresponding temperature dynamics is determined by the system thermal resistance, R, and ca-
pacitance, C .

Tω,m = ηmRm

1+ iωτm
P0e iωt , (5.A.7)

where τph = RphCph and τm = RmCm are the time constants of the two systems.

Below TN, the temperature modulation Tω determines changes in the thermal ex-
pansion force, Fth = αT , where α is the thermal expansion coefficient and the magne-
tostriction force, Fms =λL2(T ), where λ is a magnetostriction coefficient and L the order
parameter. When ω≪ ω0, the membrane behaves simply as a spring with stiffness k,
such that its motion is given by zω = Fω/k. Thus, given the force modulation resulting
from Tω we get

zω = 1

k

(
αTω,ph +λ

dL2

dTω,m
Tω,m

)
. (5.A.8)

Substituting (5.A.6) and (5.A.7) in (5.A.8) yields:

zω = 1

k

(
α
ηphRphP0

1+ iωτph
+λ dL2

dTω,m

ηmRmP0

1+ iωτm

)
. (5.A.9)

Since the measured data is well represented by a single time constant model, we assume
that the temperature dynamics of the phononic and magnetic systems are the same,
τph = τm and ηph = ηm. Thus, (5.A.9) is (5.4.1) of the main text.

5.A.6. ORDER PARAMETER FROM RESONANCE FREQUENCY

As derived in [34], the general equation of the resonance frequency, fθ, of a magnetic
rectangular membrane oriented at an angle θ with respect to the crystalline axes is given
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by:

fθ(T ) = 1

2

√
E

ρw2(1−ν2)

[
(sin2θ+νcos2θ)(ϵ̄a +ϵλ,a)+ (cos2θ+νsin2θ)(ϵ̄b +ϵλ,b)

]
,

(5.A.10)
where ϵ̄a,b = ϵ0,a,b+ϵα,a,b , with ϵ0,a,b the residual fabrication strain and ϵα,a,b the thermal
expansion strain and ϵλ,a,b =λa,bL2 are the magnetostrictive strain along the a-axis and
b-axis. Under the assumption that the only anisotropic temperature-dependent contri-
bution to the total strain comes from magnetostriction (ϵα,a = ϵα,b), we have

f̃ 2
a − f̃ 2

b = E

4ρw2(1+ν)
(λa −λb)L2 , (5.A.11)

where f̃ 2 = f 2(T )− f 2(T0), with T0 a reference temperature, is the pretension corrected
resonance frequency.
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Figure 5.10: Magnetostriction force from resonance frequency of CoPS3. Measurements and analysis per-
formed on sample Co-1. (a) Bare resonance frequency, fθ(T ), measured on rectangular membranes oriented
along the main crystallographic axes. (b) Pretension corrected resonance frequency, f̃ 2 = f 2(T )− f 2(T0), with
T0 = 140K. (c) Difference between corrected resonance frequencies, f̃ 2

a − f̃ 2
b , proportional to the magnetic or-

der parameter, L2. The inset shows the CoPS3 sample Co-1. (d) The temperature derivative of (c).

We use (5.A.11) to extract magnetostriction force, Fms ∝ dL2

dT
, used to model the
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thermal peak amplitude, A(T ), in the main text. Figure 5.10 shows the steps of this anal-
ysis for the Co-1 sample, also shown in the inset of figure 5.10c. The bare resonance
frequencies fa and fb measured on rectangular cavities oriented along a and b crys-
tallographic axis are shown in figure 5.10a. First, we compute the pretension corrected
resonance frequency, shown in figure 5.10b, with T0 = 140 K, to remove the contribu-
tion of ϵ0 in (5.A.10). Then, following (5.A.11), the difference between f̃ 2 for membranes
oriented along different axes is proportional to L2 (figure 5.10c). Finally, the tempera-
ture dependance of the magnetostriction force Fms is found by taking the temperature
derivative of f̃ 2

a − f̃ 2
b , as shown in figure 5.10d.

Figure 5.11 shows how the resulting magnetostriction force is combined with the De-
bye model of specific heat to fit the experimental data of the thermal peak amplitude of
a rectangular membrane of sample Co-1. The results of this analysis performed for all
rectangular membranes of sample Co-1 are shown in figure 5.13.
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Figure 5.11: Model for thermal peak amplitude. Thermal peak amplitude fit on a rectangular resonator of
sample Co-1. (a) Debye model of the phononic specific heat with ΘD = 262 K. (b) Magnetostriction force ex-
tracted from antiferromagnetic order parameter, L. (c) Thermal peak amplitude data (orange dots) compared
to model (black) and contributions from phononic specific heat (light red) and magnetostriction force (light
blue).

In figure 5.12, we show the same analysis as done in figure 5.10 for the FePS3 sample
Fe-3. We use the resulting temperature dependence of the magnetostriction force from
figure 5.12d to model the thermal peak amplitude data of the FePS3 sample Fe-1 in figure
5.4 and of the sample Fe-2 in figure 5.14.
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Figure 5.12: Magnetostriction force from resonance frequency of FePS3. Measurements and analysis per-
formed on sample Fe-3 (a) Bare resonance frequency, fθ(T ), measured on rectangular membranes oriented
along the main crystallographic axes. (b) Pretension corrected resonance frequency, f̃ 2 = f 2(T )− f 2(T0), with
T0 = 140K. (c) Difference between corrected resonance frequencies, f̃ 2

a − f̃ 2
b , proportional to the magnetic or-

der parameter, L2. The inset shows the FePS3 sample Fe-3. (d) The temperature derivative of (c).

5.A.7. ADDITIONAL DATA ON MPS3 RESONATORS

Figure 5.13 shows the result of the analysis done in section 5.A.6 for the thermal peak am-
plitude measured on all rectangular cavities of sample Co-1. The resulting fit parameters
a1(θ) and a2(θ) are listed in table 5.2 plotted in figure 5.4d-e.

Figures 5.14-5.15 show additional data on FePS3 (sample Fe-2) and NiPS3 (sample
Ni-1,2) resonators. Interestingly, in NiPS3 no peak is observed at the phase transition on
the thermal time constant data. The large enhancement of the thermal peak amplitude,
A is still observed. Further analysis and theoretical work on thermal peak amplitude
data might allow the extraction of the order parameter, L, of NiPS3 from the measured A
instead.

Angle 0◦ 30◦ 60◦ 90◦ 120◦ 150◦ 180◦ 210◦ 240◦ 270◦ 300◦ 330◦

a1 -0.29 -0.29 -0.29 -0.31 -0.31 -0.31 -0.29 -0.29 -0.29 -0.30 -0.31 -0.29

a2 0.19 0.20 0.29 0.31 0.33 0.28 0.18 0.23 0.18 0.33 0.32 0.25

Table 5.2: Angle-resolved fit parameters a1 and a2 Fit parameters a1 and a2 for the plots in figure 5.11.
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Figure 5.13: Angle-resolved thermal peak amplitude in CoPS3 resonators. Thermal peak amplitude data
(orange dots) compared to model (black) for rectangular cavities at different orientation with respect to the
crystallographic axis of the Co-1 sample.

5.A.8. ANGLE-RESOLVED MEMBRANE DISPLACEMENT
Here we derive the expression of a1(θ) and a2(θ) used in the main text. Given the stress
σ on a rectangular membrane oriented at an angle θ with respect to the crystalline axis:

σx =σa cos2θ+σb sin2θ, (5.A.12a)

σy =σa sin2θ+σb cos2θ. (5.A.12b)

If such stress is time dependent, it will actuate the membrane as z(t ) = γwσx +γlσy ,
where γw and γl are effective expansion coefficients. From the constitutive equations of
the materials, we can write

c1 = E(ϵ0,a +ϵα,a +ϵλ,a)

= E

(
ϵ0,a −

∫ T1

T0

αa(T )dT −λaL2(T1)

)
=σa(T1)−νσb(T1) , (5.A.13a)

c2 = E(ϵ0,b +ϵα,b +ϵλ,b)

= E

(
ϵ0,b −

∫ T1

T0

αb(T )dT −λbL2(T1)

)
=σb(T1)−νσa(T1) , (5.A.13b)

where ϵ0 is residual fabrication strain at T = T0, α is the thermal expansion coefficient, λ
the magnetostriction coefficient and E is the Young’s modulus, which is assumed to be
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Figure 5.14: Additional data on FePS3 resonators. Measurements data and analysis performed on sample Fe-
2. (a) Temperature dependent resonance frequency, f0(T ). The inset shows the FePS3 sample Fe-2. Scale bar is
4 µm. b Derivative with respect to temperature of f0 from (a). (c) Comparison between measured τ (red dots)
and model (black line). The model is calculated from Eq. 1 from the main text with cv from d f 2/dT in (b), κ
from bulk [107] and µ2 = 10. (d) Thermal peak amplitude data (orange dots) compared to model (black).
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(Right) Thermal peak amplitude of the NiPS3 resonators.
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isotropic. We can thus write

σa = c1 +νσb , (5.A.14a)

σb = c2 +νσa , (5.A.14b)

which can be combined in the following expressions for σa and σb :

σa = c1 +νc2

1−ν2 , (5.A.15a)

σb = c2 +νc1

1−ν2 . (5.A.15b)

We consider separately the temperature dynamics of the magnetic and phononic sys-
tems as Tω,m and Tω,ph as in 5.A.7 and 5.A.6. The membrane displacement can thus be
expressed as

zθ(t ) = γwσx (Tω,ph(t ),Tω,m(t ))+γlσy (Tω,ph(t ),Tω,m(t ))

≈ γw

[
∂σx

∂Tω,ph
Tω,ph(t )+ ∂σx

∂Tω,m
Tω,m(t )

]
+γl

[
∂σy

∂Tω,ph
Tω,ph(t )+ ∂σy

∂Tω,m
Tω,m(t )

]
. (5.A.16)

Assuming that thermal expansion is isotropic (αx =αy ) and that it only depends on Tω,ph

and that magnetostriction only depends on Tω,m we have

∂c1

∂Tω,ph
=−Eα(Tω,ph) ,

∂c1

∂Tω,m
=−Eλa

∂L2

∂Tω,m
(Tω,m) , (5.A.17a)

∂c2

∂Tω,ph
=−Eα(Tω,ph) ,

∂c2

∂Tω,m
=−Eλb

∂L2

∂Tω,m
(Tω,m) , (5.A.17b)

Thus, combining (5.A.16) and (5.A.17) we get:

zθ(t ) =− P0E

(1−ν2)

[
(γw +γl )ηphRph(1+ν)

1+ iωτph
α+

+ ηmRm

1+ iωτm

(
(γw (λa +νλb)+γl (λb +νλa))cos2θ

+ (γw (λb +νλa)+γl (λa +νλb))sin2θ
)]

. (5.A.18)

For high aspect-ratio rectangular membranes (w ≪ l ), it is possible to neglect the force
along the long axis γw ≪ γl such that

zθ(t ) =− P0γl E

(1−ν2)

[
ηphRph(1+ν)

1+ iωτph
α

+ ηmRm

1+ iωτm

(
(λb +νλa)cos2θ+ (λa +νλb)sin2θ

)]
, (5.A.19)

from which (5.5.1) and (5.5.2) for a1(θ) and a2(θ) of the main text are extracted.
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6
NONLINEAR DYNAMICS AND

MAGNETO-ELASTICITY OF

NANODRUMS NEAR THE PHASE

TRANSITION

Nanomechanical resonances of two-dimensional (2D) materials are sensitive probes for
condensed-matter physics, offering new insights into magnetic and electronic phase tran-
sitions. Despite extensive research, the influence of the spin dynamics near a second-order
phase transition on the nonlinear dynamics of 2D membranes has remained largely un-
explored. Here, we investigate nonlinear magneto-mechanical coupling to antiferromag-
netic order in suspended FePS3-based heterostructure membranes. By monitoring the mo-
tion of these membranes as a function of temperature, we observe characteristic features
in both nonlinear stiffness and damping close to the Néel temperature TN. We account
for the experimental observations with an analytical magnetostriction model in which
these nonlinearities emerge from a coupling between mechanical and magnetic oscilla-
tions, demonstrating that magneto-elasticity can lead to nonlinear damping. Our find-
ings thus provide insights into the thermodynamics and magneto-mechanical energy dis-
sipation mechanisms in nanomechanical resonators due to the material’s phase change
and magnetic order relaxation.

Parts of this chapter have been published in [108].
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6.1. INTRODUCTION

T HE mechanical properties of two-dimensional (2D) materials have been extensively
studied [109, 110] due to their potential for use in a variety of applications, such as

sensing [110–112] and energy transduction [113–115]. Owing to its superior sensitivity
to applied forces, the motion of these membranes can be coupled to various degrees
of freedom [113, 115], ranging from coupling to photons [116, 117], phonons [118–120]
and electrons [21, 121, 122], to an interaction between multiple resonators at a distance
[120, 123]. Their small mass and ultra-thin nature also make them highly susceptible
to geometric nonlinearities [124], leading to internal resonances [125, 126] and various
nonlinear dissipation mechanisms [114, 118, 125, 127] that can dictate their motion dy-
namics at relatively small amplitudes.

Recently, there has been a growing interest in using nanomechanical vibrations of
2D materials as practical nodes for inferring elastic and thermodynamic properties of
2D membranes [113]. Examples include nonlinear dynamic characterization of their
elastic properties [124], probing magnetic [22, 34, 49, 87, 104, 128, 129] and electronic
phase transitions [21, 22]. Among them, the ability of these membranes to detect the
magnetic phase change in the absence of an applied magnetic field [22, 87, 104] has
opened up new avenues for developing self-sensitive magnetic nano-electromechanical
(NEMS) devices [113, 115]. This approach relies on the coupling between the magnetic
and mechanical properties of the 2D material, which allows for highly sensitive detec-
tion of magnetisation [34, 49] and thermodynamics of magnetic phases [22, 104]. Fur-
thermore, since these freestanding 2D materials are easily driven to the nonlinear regime
of mechanical motion [124, 125], the comprehensive studies and analysis of nonlinear
dynamics become important given that their magneto-elastic interactions and micro-
scopic dissipation pathways are inherently linked.

Here, we explore the effect of magneto-elastic coupling and magnetic order on the
nonlinear dynamics of antiferromagnetic membranes made of FePS3-based heterostruc-
tures. We study the changes in both nonlinear stiffness and nonlinear damping as a re-
sult of the antiferromagnetic phase transition near the Néel temperature TN of FePS3 [22,
38]. Consequently, we describe these experimental observations with a magnetostric-
tion model, revealing and providing a description of the magneto-mechanical dissipa-
tion mechanism as a previously unexplored source of nonlinear damping in 2D material
membranes.

6.2. MEASUREMENT SETUP
We create a freestanding membrane by suspending a 9.5±0.6 nm thin layer of FePS3 over
a pre-defined circular cavity with a radius, r = 1.5 µm, in a Si/SiO2 substrate, figure 6.1.
We cover the FePS3 membrane with multi-layer graphene (MLG) of 2.0±0.7 nm thick-
ness in order to electrically contact the membrane and improve thermal conductivity of
the structure [101, 130]. These MLG/FePS3 heterostructure membranes are then placed
in an optical closed-cycle cryostat chamber and cooled to cryogenic temperatures. The
temperature of the sample is controlled using a local sample heater located directly un-
der the sample. We interferometrically measure the amplitude of the membrane’s funda-
mental mode of vibration, x, in response to the low-power opto-thermal drive at several
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Figure 6.1: Membrane resonator made of MLG/FePS3 heterostructure. a Schematic of the laser interferometer
measurement setup, see section 6.8. PD is the photodiode, LD - the laser diode, CM - the cold (dichroic) mirror,
PBS - the polarized beam splitter, VNA - the vector network analyzer. b Optical image of the sample. c The
measured fundamental resonance peak of the membrane (filled grey dots) at opto-thermal drive excitation
power Pac = 0 dBm. The solid blue line is fit of the linear damped harmonic oscillator model. The inset shows
the schematic of the device cross-section. A vertical dashed line indicates extracted ω0. d The resonance
frequency ω0 as a function of temperature, extracted from the fit similar to (c) (filled blue dots). Connected
grey dots are the corresponding derivative of the f 2

0 . A vertical dashed line indicates TN.

temperatures [22, 131], see section 6.8 and figure 6.1a-c. By fitting the measured reso-
nance peak (grey-filled dots) to the linear harmonic oscillator model (solid blue line) we
extract the corresponding resonance frequencyω0(T ) = 2π f0(T ), as shown in figure 6.1c.

We measure f0(T ) in the temperature range from 52 to 150 K as shown in figure 6.1d.
In the vicinity of T ∼ 110 K (vertical dashed line in figure 6.1d) the resonance frequency
f0(T ) exhibits the antiferromagnetic-to-paramagnetic phase transition-related anomaly.
This becomes even more prominent in the temperature derivative of f 2

0 (T ) (filled grey
dots in figure 6.1d). This quantity, the temperature derivative of f 2

0 (T ), is related to spe-
cific heat cv (T ) of the material through thermal expansion coefficient and Grüneisen

parameter [22]. Thus, the temperature at which the discontinuity in −d f 2
0 (T )
dT occurs can

be used as a measure of TN [22, 104]. This is further supported by the fact that the mea-
sured TN also corresponds to a peak in inverse quality factor Q−1(T ), which is expected
to arise near the phase transition temperature [22, 104, 123], see section 6.A.1.

After characterising the dynamics of the membrane in the linear regime and at a low
opto-thermal driving force, we increase the drive from 0 to 8 dBm to achieve higher force
levels and observe features of the nonlinear motion [124]. Figure 6.2a displays a Duffing
response measured at T = 52 K and 8 dBm. By varying the direction of the frequency
sweep the bi-stability of the amplitude behaviour becomes clear. By further increasing
Pac, we observe a corresponding decrease in responsivity of the resonance peak, shown
in figure 6.2b. This indicates the presence of nonlinear damping in the system, which
becoming more apparent at higher amplitudes of motion [125]. We measure the ampli-
tude of membrane motion around f0(T ) at a drive power of 8 dBm in the temperature
range from 52 to 150 K. The result of which is shown in figure 6.2c. The vertical dashed
line indicates the measured f0(T ) in the linear regime from figure 6.1d.

Two noteworthy observations can be made: first, the position of the resonance peak
at a higher driving power is shifted to higher frequencies near TN, indicating a change in
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linear membrane stiffness k1, corresponding to a change in the strain [22]; secondly, the
peak amplitude of the Duffing response and its associated frequency change depend-
ing on the magnetic state of the membrane with the largest effect near TN, indicating
a change in nonlinear membrane stiffness k3 [124], see figure 6.2c and section 6.A.2.
In order to exclude optical effects coming from the excitation laser as a cause of this
behaviour, we performed control experiments on multiple samples using both optical
and electrical excitation, where an AC voltage Vac signal is applied between the global Si
backgate of the chip and the conducting top layer of MLG. Since we obtain similar re-
sults for both the electrostatic and the optothermal drive we conclude that the reported
observations are intrinsic to the resonator and not related to the driving mechanism, see
section 6.A.3.
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6.3. FITTING NONLINEAR RESPONSE
We utilize a dedicated algorithm to fit the measured nonlinear response at different tem-
peratures in the vicinity of TN. Our approach involves fitting the experimental data with
the Duffing-van der Pol equation, see equation (6.8.7) and section 6.A.4, as depicted
in figure 6.3a. To avoid an over-parameterised fitting procedure and reduce the uncer-
tainty of the fit, we first extract quality factors Q(T ) and ω0(T ) from the linear resonance
peak at low drive levels. Next, we extract the relative driving force Fω(T ) by fitting the
off-resonance response to a harmonic oscillator model. After obtaining all the linear
parameters, we extract the Duffing term k∗

3 (T ) at Pac = 10 dBm from the slope of the
backbone curve of the nonlinear frequency response [125], figure 6.3b. Consequently,
we fix this value while fitting the forward frequency sweep response, thereby extracting
the van der Pol-type nonlinear damping term η∗nl(T ) using an optimizer algorithm, see
section 6.A.4. Figure 6.3c shows the extracted nonlinear damping term for the temper-
ature range 52− 150 K. At a higher driving power and as the temperature decreases, a
sharp drop in k∗

3 (T ) is observed at T < TN. This feature coincides with a peak in η∗nl(T )
at approximately the same temperature.

6.4. THEORETICAL MODEL
The pronounced features in both k∗

3 (T ) and η∗nl(T ) close to TN shown in figure 6.3b and
c indicate the softening of nonlinear stiffness as well as a prominent increase in the non-
linear dissipation in the antiferromagnetic phase of FePS3, suggesting the magnetic ori-
gin of the effect. Therefore, we model the system by considering the elastic potential
energy as a function of the membrane displacement at its centre, Uel, and the magnetic
free energy, Um, of FePS3, coupled via spontaneous magnetostriction, Ums [22, 34, 55],
see section 6.A.5:

UT =Uel +Um +Ums

=
[

k1

2
x2 + k3

4
x4

]
+[

Um,0 + a (T −TN)

2
L2 + B

4
L4

]
+

[
λi jσi j (x)

2
L2

]
,

(6.4.1)

where σi j (x) is the amplitude-dependent stress tensor, L the antiferromagnetic order
parameter in the direction of the easy-axis of FePS3, λi j the magnetostriction tensor,
Um,0 is the magnetic energy in the paramagnetic state, and a, B are phenomenologi-
cal positive constants [55, 134]. By minimizing equation (6.4.1) with respect to L at a
static deformation ω = 0, the ground state order parameter L0 is obtained, see section
6.8 and section 6.A.5. When the membrane is in motion and the magnetic system is out
of equilibrium, the order parameter is stress- and time-dependent, L(t ) ≃ L0+Lω(t ). The
rate at which L(t ) approaches the ground state L0, figure 6.3f, is described by the kinetic
equation [135–137]:

dL

dt
=−κ∂UT

∂L
, (6.4.2)

where t is the time and κ the phenomenological kinetic coefficient, which we assume to
be temperature-independent for simplicity.
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Figure 6.3: Temperature dependence of the nonlinear stiffness k∗
3 and nonlinear damping η∗nl of a magne-
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forward frequency sweep (black solid lines) and backward frequency sweeps (grey solid lines) at Pac = 10 dBm
and the temperature point indicated. The right side of the panel, light blue region, schematically indicates
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the fits shown in (a), normalized by the value at 53 K. c Connected blue dots - the measured η∗nl(T ), extracted
from the fits shown in (a), normalized by the value at 53 K. d and e Solid magenta lines - the nonlinear stiffness
and nonlinear damping model of equations (6.4.6) and (6.4.7) respectively at ω = ω0(T ) from figure 6.1d and

τ−1(T ) = 2κa
(
T∗

N −T
)

from Zhou et al. [132] for h = 9.5 nm, solid light lines - the model of equations (6.4.6)

and (6.4.7) at the same ω = ω0(T ) and τ = 0, see section 6.A.5. Dashed light line in (d) - non-magnetic k3(T )
slope extracted by a linear fit to T > 110 K region in (b). Vertical dashed orange lines in (d) and (e) - the tem-
perature point at which 2ω0τ = 1, producing a maximum in the nonlinear damping η∗nl(T ). f Schematic of
the magnetic free energy of the system with un-relaxed (orange dot) and relaxed ground (blue dot) states indi-
cated. Magnetic sub-lattice relaxation dynamics is accompanied by a slow interlayer shear deformation with a
change in the monoclinic angle β [132, 133] schematically indicated in insets, which hypothetically may have
the dominant contribution to τ.
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We further describe the driven coupled magneto-mechanical system by linearizing
equation (6.4.2) near L0 together with obtaining the equation of motion associated with
the generalized coordinate, x. We define the Lagrangian L = 1

2 mẋ2 −UT and use the
Euler-Lagrange equations to obtain a system of coupled dynamic equations:

L̇ω+ Lω
τ

+λκL0σω = 0, (6.4.3)

mẍ +k1x +k3x3 + λ

2
L2 ∂σ(x)

∂x
= Fω cos(ωt ) (6.4.4)

−
(

mω0

Q
+ηnlx

2
)

ẋ,

where σ=σ0+σω with static σ0 and dynamic σω stress contributions, Fω the amplitude
of periodic driving force, λ the phenomenological magnetostriction coefficient that cor-
responds with the coupling of in-plane membrane stress to the order parameter in the

direction of the easy axis L and τ= [
2κa

(
T ∗

N −T
)]−1, the magnetic relaxation time con-

stant of the FePS3 layer [132, 135, 136], see section 6.8 and section 6.A.5.
Typically, magnetic relaxations in antiferromagnets occur on timescales of the order

of picoseconds [40, 60, 138]. However, in the case of FePS3 long nanosecond-scale re-
laxation times are required to relax the magnetic sub-lattice near TN due to the strong
coupling between the ordering of spins and the lattice, particularly to the slow process
of interlayer shear[132, 133], schematically shown in figure 6.3f. We hypothesise that
this slow spin-shear relaxation mechanism in FePS3 may have the dominant contribu-
tion to the magnetic time constant τ in equation (6.4.3), and hereinafter consider the
experimentally measured spin-shear τ(T ) from the work of Zhou et al. [132], see section
6.A.5. The Lω term then induces oscillations in L, which can lag the membrane motion
at sufficiently large τ [132, 133] producing a delay in the coupled magneto-mechanical
system.

Solving the coupled system of equations (6.4.3) and (6.4.4) using the harmonic bal-
ance method, we obtain the steady-state amplitude-frequency response, see section 6.8
and section 6.A.5. We find that when the membrane is in motion, the linear and nonlin-
ear stiffness as well as the nonlinear damping coefficients are renormalized by the ad-
ditional magnetic terms, which yield the following steady-state equation of Duffing-van
der Pol type [125]:(

3k∗
3

4
a3

s +m(ω2
0 −ω2)as

)2

+
(
η∗nla

3
s +

mω0

Q
as

)2

ω2 = F 2
ω, (6.4.5)

in which, x = as cos(ω0t ), with as the steady-state amplitude, m the effective mass of the
resonator, mω2

0 = k∗
1 = k1+λL2

0
Ec3
2r 2 the renormalized linear stiffness, k∗

3 the renormalized
nonlinear stiffness:

k∗
3 =

{
k3 − λ2

12B
E 2c2

3
r 4

1
1+4ω2τ2 T < T ∗

N

k3 T > T ∗
N,

(6.4.6)

and η∗nl the magnetic nonlinear damping term of van der Pol type [125, 139]:

η∗nl =
{
ηnl + λ2

2B
E 2c2

3
r 4

τ
1+4ω2τ2 T < T ∗

N

ηnl T > T ∗
N,

(6.4.7)
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where E is the Young’s modulus and c3 the geometric numerical factor which depends
on membrane’s Poisson ratio [124].

6.5. DISCUSSION

Renormalization of k∗
1 and k∗

3 leads to two important consequences. First, since the
magnetostriction term is quadratic in L, it has the same functional form as the quadratic
k1 term in the magnetic energy and, since k1 depends on the Néel temperature, it can
therefore be considered as a renormalization of TN. Thus, strain alters the transition

temperature as T ∗
N = TN − λi jσi j (x)

a , with a a positive constant, which was previously
demonstrated by applying a static external force [22]. Consequently, particularly at high
amplitude of oscillations, the change of stress due to the membrane motion results in
an additional strain compared to the static case, see section 6.A.5 for more details. This
strain can reach up to 0.03% in similar systems [140] and consequently reduce T ∗

N of
FePS3 by a few Kelvins [22]. This produces a corresponding change in k1 and a shift
of the phase transition, as well as the feature of f0(T ) present near TN, thereby causing
the above-mentioned shift of the resonance curve with respect to f0 at a higher driving
power in figure 6.2c, see section 6.A.5. The contribution of the order parameter on effec-
tive linear stiffness k∗

1 ∝ L2
0 is studied and described in detail in a previous work [34].

Second, unlike the renormalization of k1, which is independent of dynamics of the
order parameter L, the renormalization of the nonlinear parameters k3 and ηnl arise
from the modulation of the order parameter. As a result, both k∗

3 and η∗nl depend on the
characteristic time scales of the coupled dynamic system: τ andω. As follows from equa-
tion (6.4.6), k∗

3 starts to decrease with δk∗
3 ∝− 1

1+4ω2τ2 when T < T ∗
N. The same magnetic

contribution also leads to a substantial nonlinear damping η∗nl at T < T ∗
N, which scales

as δη∗nl ∝ τ
1+4ω2τ2 and peaks at 2ωτ≃ 1, see section 6.8 and section 6.A.5. This behaviour

can be understood intuitively: magnetostriction mediates the exchange of the mem-
brane’s mechanical energy with a coupled magnetic reservoir, which happens twice for
one period of motion due to symmetrical modulation of stress in the up-down geome-
try of its deflection. If membrane oscillations are much faster than the energy exchange
rate to a coupled magnetic reservoir, i.e, if 2ω≫ 1/τ, there is not enough time for it to
relax and dissipate energy. On the contrary, when the oscillations are at a much slower
timescale 2ω≪ 1/τ, the energy exchange follows the oscillations with a negligible delay,
again resulting in minimal dissipation [139]. Thus, the nonlinear damping due to cou-
pling to the order parameter peaks when the relaxation delay is significant and 2ωτ≃ 1.

Figures 6.3d and e show the derived values for k∗
3 (T ) and η∗nl(T ) as described by equa-

tions (6.4.6) and (6.4.7) for ω=ω0, next to the measured k∗
3 (T ) and η∗nl(T ) in figure 6.3b

and c. We assume the non-magnetic Duffing constant k3 to be temperature dependent,
providing the additional background-slope in k∗

3 (T ) below and above T ∗
N. As shown in

figure 6.3b with a solid magenta line, equation (6.4.6) reproduces the measured decrease
of k∗

3 in the proximity of T ∗
N. The model also reproduces the measured peak in η∗nl(T ) at

2ω0τ = 1 as seen in figure 6.3c. Notably, in a hypothetical case where τ is sufficiently
small, i.e., τ = 0 in equations (6.4.6) and (6.4.7), the model predicts the discontinuous
decrease in k∗

3 (T ) at T ∗
N shown in figure 6.3d, while the magnetic contribution to η∗nl(T )

completely vanishes as shown in figure 6.3e with light magenta lines.
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6.6. MICROSCOPIC ORIGINS

In discussing the physical interpretation of the origin of this nonlinear damping, its mi-
croscopic mechanism should be envisioned as a consequence of a nonlinear oscillator’s
excited vibrational modes scattering off its magnetic energy reservoir [118, 141]. This in-
teraction then is accompanied by the energy transfer of two oscillation quanta (2ω0) for
nonlinear damping [141]. Importantly, a rather general form of the free energy equation
and low order of the coupling term suggests that similar effects may appear in systems
with other types of non-magnetic phase transitions, for instance, charge density wave
[22] or by coupling the mechanical motion to an electronic energy reservoir. Interest-
ingly, this mechanism also finds macroscopic similarities to magnetic internal friction
arising due to a delay in Young’s modulus relaxation near TN which occurs in large-scale
magnetic solids [136, 137, 142–145]. However, the crucial distinction at the nanoscale is
that it affects different mechanical properties at twice the resonance frequency.

Our analysis predicts the observed nonlinear effect in this system appearing solely as
a result of modulation of the antiferromagnetic order parameter, L, with dynamic strain
via magnetostriction, delayed by a suggested spin-shear relaxation, τ [132, 133]. This is
consistent with the fact that in the presented model if λ = 0 all magnetic contributions
to both k∗

3 and η∗nl vanish. We note that deviations between theoretical estimates of non-
linear stiffness and damping with experimental data can have multiple sources. Among
these are modal interactions of non-magnetic nature in the experiments [125] that have
not been accounted for in the model. In addition, deviations near T ∗

N may originate in
the mean-field approximation of Landau’s theory of phase transition, which is not an
exact description of van der Waals antiferromagnets in the critical region and rather de-
scribes the overall temperature behaviour [34]. Additional effects could also contribute
to difference between the presented model and the observations, such as a similar re-
laxation originating from the thermoelasticity in the system [22]. However, recent exper-
iments show that thermal relaxation time-scales in membranes of FePS3 are up to two
orders of magnitude slower [23] than the spin-shear relaxation-related τ considered in
this work for comparable sample thicknesses [132]. Therefore, the presence of substan-
tial linear thermoelastic damping and the probed nonlinear damping near TN are not
expected to be a direct consequence of one another [22, 23]. This is further supported by
the fact that magneto-mechanical coupling and the associated relaxation mechanisms
do not lead to any linear damping terms analytically, see section 6.A.5. Another contri-
bution may come from different nonlinear effects, such as nonlinearities in optothermal
response [146, 147], or terms resulting from the nonlinearities in magnetostrictive actu-
ation force [23] present near the magnetic phase transition. Quantitatively evaluating of
all these potential causes will require further experimental evidence.

6.7. CONCLUSION

In conclusion, we demonstrated nonlinear nanomechanical coupling to antiferromag-
netic order in FePS3-based heterostructure membranes. We provide both experimental
evidence and a theoretical descriptions of the mechanism responsible for the renormal-
ization of the nonlinear parameters. We demonstrate a previously unexplored magneto-
mechanical dissipation mechanism supported by a phenomenological theory that ac-
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counts for magnetostriction. We show that magnetostrictive coupling strongly affects
the nonlinear dynamics of magnetic membranes near the magnetic phase transition
temperature, even in the absence of an external magnetic field. Our discoveries offer a
new understanding of the thermodynamics and energy-dissipation mechanisms related
to magneto-mechanical interactions in 2D materials, which is important for future stud-
ies of more intricate magnetic systems, such as 2D quantum phases and moiré magnets
[148], as well as the development of novel magnetic NEMS and spintronic devices.

6.8. METHODS

6.8.1. SAMPLE FABRICATION AND CHARACTERISATION

We pre-pattern a diced Si/SiO2 wafer with circular holes using e-beam lithography and
reactive ion etching. The holes have a radius of r = 1.5 µm and a cavity depth of 285
nm, and the SiO2 layer acts as electrical insulation between the 2D material membranes
and the bottom Si electrode. For electrostatic experiments, Pd electrodes are patterned
on top of Si/SiO2 chips using a lift-off technique to establish electrical contact with the
samples. To create suspended membranes, thin flakes of FePS3 and graphite crystals
are mechanically exfoliated and transferred onto the chip using an all-dry viscoelastic
stamping method [149] immediately after exfoliation. Flakes of van der Waals crystals
are exfoliated from high-quality synthetically grown crystals with known stoichiometry,
and deterministic stacking is performed to form heterostructures. To prevent degrada-
tion, samples are kept in an oxygen-free or vacuum environment directly after the fab-
rication. Atomic Force Microscopy (AFM) height profile scans and inspection are per-
formed in tapping mode on a Bruker Dimension FastScan AFM. Error bars on reported
thickness values are determined by measuring multiple profile scans of the same flake.

6.8.2. LASER INTERFEROMETRY MEASUREMENTS

The sample is mounted on a x y piezo-positioning stage inside a dry optical 4 K cryo-
stat Montana Instruments Cryostation s50. Temperature sweeps are carried out using
a local sample heater at a rate of ∼ 3 K min−1 while maintaining the chamber pressure
below 10−6 mbar. During data acquisition, the temperature is maintained constant with
∼ 10 mK stability. A power-modulated blue diode laser with a wavelength of 405 nm
is used to optothermally excite the membrane’s motion, and the resulting membrane
displacement is measured using an interferometric detection with a He–Ne laser beam
of 632 nm. The interferometer records the interfering reflections from the membrane
and the Si surface underneath. The data is processed by a vector network analyzer Ro-
hde & Schwarz ZNB4. All measurements are conducted with incident laser powers of
Pred ≤ 8 µW and Pblue ≤ 35 µW, with a laser spot size of ∼ 1 µm. To ensure accuracy in
the data acquisition, it is verified that resonance frequency changes due to laser heating
are insignificant for all membranes for applied powers upto 15 dBm.

6.8.3. DERIVATION OF ORDER PARAMETER DYNAMICS

In the derivation of antiferromagnetic order parameter relaxation dynamics, we follow
closely the approach of Landau-Khalatnikov [135] and Belov-Kataev-Levitin [136, 137].
For simplicity, we assume bi-axial in-plane membrane stress σ(x) =σxx =σy y . First, we
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derive σ(x), assuming x = as cos(ω0t ), as [124, 140]:

σ(x) =σp + Ec3

2r 2 x2

=
[
σp + Ec3

4r 2 a2
s

]
+

[
Ec3

4r 2 a2
s cos(2ω0t )

]
=σ0 +σω(t )

(6.8.1)

where as is the steady-state amplitude, σp the pre-stress in the membrane due to the
fabrication process, and σ0and σω(t ) are the static and the dynamic stress terms. Then,
we derive L0, the antiferromagnetic order parameter in the ground state, by minimizing
the total energy of the magneto-mechanical system (6.4.1) with respect to L at constant
bi-axial stress σ0 such that:

∂UT

∂L
= ∂ (Um +Ums)

∂L
= 0, (6.8.2)

resulting in

L2
0 =

a(TN −T )−λσ0

B
= a(T ∗

N −T )

B
, (6.8.3)

where λ is a specific magnetostriction coefficient of the λi j tensor that describes cou-
pling of bi-axial in-plane membrane stress σ0 to the order parameter L0 in the direction
of the easy axis.

Using this result we linearize the unrelaxed L as L ≃ L0+Lω, where Lω is the time- and
amplitude-dependent dynamic term. When the membrane is in motion and L is out of
the equilibrium, the rate of relaxation of L to the equilibrium L0 is set by the kinetic
equation (6.4.2), which using equation (6.8.1) leads to:

dL

d t
= dLω

d t
=−κ∂ (Um +Ums)

∂L
. (6.8.4)

This equation can be simplified by a Taylor expansion around L0 assuming Lω≪ L0:

dLω
d t

= L̇ω ≃−κ[
2BL2

0Lω+λL0σω(t )
]

, (6.8.5)

which rearranges to equation (6.4.3), by taking τ= 1
2κa

(
T ∗

N−TN
) [135]. We note that when

Lω ≈ L0 at T ≈ T ∗
N, higher-order (quintic) nonlinear terms can appear in the motion of

the magnetic membrane. We discard these for simplicity.

6.8.4. AMPLITUDE OF NONLINEAR RESONANCE PEAK
We start by solving the first-order differential equation (6.4.3) to obtain the steady-state
solution for Lω in terms of τ:

Lω,ss =−λκL0
Ec3

4r 2

τ [cos(2ωt )+2τωsin(2ωt )](
1+4τ2ω2

) a2
s . (6.8.6)

We keep the assumption of periodic motion in the form of x = as cosωt and plug in the
steady state solution in equation (6.4.4) such that Lω = Lω,ss. Next we use harmonic
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balance method to obtain the amplitude-frequency equation 6.4.5, considering only the
fundamental harmonic ω0, see section 6.A.5:

a6
s

(
9γ2

16
+ ξ2

nlω
2

16

)
+a4

s

(
3γ(ω2

0 −ω2)

2
+ ξnlω0ω

2

2Q

)
+

a2
s

(
(
ω0ω

Q
)2 + (ω2

0 −ω2)2
)
=

(
Fω
m

)2

,

(6.8.7)

where ω2
0 = 1

m

(
k1 +λL2

0
Ec3
2r 2

)
is the re-normalized resonance frequency, γ= k∗

3
m the mass-

normalized Duffing coefficient and ξnl = η∗nl
m the mass-normalized nonlinear damping

coefficient with k∗
3 and η∗nl from equations (6.4.6) and (6.4.7), respectively. Further de-

tails of the derivation and fitting procedure can be found in section 6.A.5.
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6.A. SUPPLEMENTARY INFORMATION

6.A.1. MECHANICAL DISSIPATION IN LINEAR AND NONLINEAR REGIME

We plot the mechanical dissipation, the inverse of a quality factor Q−1(T ) of the MLG /
FePS3 resonator from figure 6.1 in figure 6.4a. A notable peak is visible at TN = 110 K. We
attribute this to an increase of the thermoelastic damping [106, 150] expected near the
TN in magnetic resonators, as Q−1 ∝ cv (T )T , where cv (T ) is the temperature-dependent
specific heat of FePS3 [22, 104, 123].
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Figure 6.4: Measured mechanical dissipation in linear and nonlinear regime. a Inverse quality factor Q−1 of
the MLG/FePS3 membrane (sample 1) from figure 6.1 of the main text. b Normalized amplitude at 10 dBm
drive for the forward frequency sweep measurement of the same sample from figure 6.1 of the main text.

The mechanical dissipation at higher drive level and in the nonlinear regime (Pac =
10 dBm) is also manifested as a decrease of maximal measured amplitude for the for-
ward frequency sweep, which is shown in figure 6.4b for the same resonator as shown in
figure 6.1. A notable anomaly is visible at TN = 110 K, which we attribute to the observed
increase of nonlinear damping as previously discussed.

6.A.2. RENORMALIZATION OF THE DUFFING RESPONSE THROUGH PHASE

TRANSITION
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Figure 6.5: The measured resonance peak amplitudes at 8 dBm drive for 71, 111 and 121 K temperature points
from figure 6.2c of the main text, superimposed for ease of comparison.
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Figure 6.6: Additional measurements on FePS3/MLG samples. a-f The FePS3/MLG sample from the main
text measured under electrostatic excitation Vac applied to the bottom gate electrode with a DC offset Vdc =
10 V. a Optical image of the sample. b Measured resonance frequency of the fundamental membrane mode
f0 as a function of temperature. c-f The Duffing effect and amplitude-frequency branches of the resonance
peak at higher drive (Pac) measured for forward (c) and backward frequency sweep. e-f The colour map of
the normalized amplitude measured as a function of temperature in forward (e) and backward (f) frequency
sweep regime around linear resonance frequency f0 from (b). g-l and m-r present the data on two additional
FePS3/MLG samples measured under opto-thermal excitation. g-l and m-r follow the same structure as (a-f).
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6.A.3. REPRODUCIBILITY OF THE RESULTS
We have performed additional control experiments on multiple FePS3/MLG samples,
summarised in figure 6.6, using both optothermal and electrostatic excitation, where an
AC voltage, Vac, is applied between the Si backgate of the chip and the conducting top
layer of MLG. Since we obtain similar results for the electrostatic drive as for optothermal
drive we conclude that the reported observations are intrinsic to the resonator and not
related to the driving mechanism.

We note that the qualitatively different behaviours of f0(T ), displayed in figures 6.6b,
h, and m, can be well understood considering the interplay between thermal expansion
coefficients of materials involved: FePS3, graphene and Si substrate. The resonance fre-
quency of a heterostructure membrane f0,h(T ) can be modelled considering the total
thermally accumulated tension of the FePS3/MLG heterostructure as a sum of individ-
ual tensions in each layer, assuming that the slippage between the layers is negligible
[104]:

f0,h(T ) =
√(

2.4048

2πr

)2 nth(T )

ρh
+ f 2

0 (T0),

=
√(

2.4048

2πr

)2 1

ρ1h1 +ρ2h2

[
E1h1

(1−ν1)
ϵth,1(T )+ E2h2

(1−ν2)
ϵth,2(T )

]
+ f 2

0 (T0).

(6.A.1)

Here, f0(T0) is the resonance frequency at a reference temperature T0 (e.g. room tem-
perature) accounting for the contribution of the pre-tension and the bending rigidity,
E the Young’s modulus, ν the Poisson ratio, h the layer thickness, ρ the mass density,
nth(T ) = Eh

(1−ν)ϵth with the thermally accumulated tension at temperature Ti ,

ϵth = −∫ Ti
T0

(αmaterial(T )−αSi(T )) dT [22, 151], αSi(T ) the literature values for the ther-
mal expansion coefficient of the Si substrate [152], and αmaterial(T ) the temperature de-
pendent thermal expansion coefficient of either FePS3 [22] or graphene [153], shown in
figure 6.7a.

Thus, we attribute the observed differences in f0(T ) trends to a large contribution
of αMLG(T ) to the total in-plane stress of the membrane, especially at T < TN,largely de-
pending on the material’s thickness ratio. We demonstrate this by plotting equation (6.A.1)
in figure 6.7b for two different thicknesses of MLG layer. We use EFePS3 = 103 GPa, ρFePS3 =
3375 kgm−3, νFePS3 = 0.304 for FePS3 [22]. and EMLG = 1 TPa, ρMLG = 2260 kgm−3,
νMLG = 0.19 for graphene [154]; From figure 6.7b it is apparent that for the thinner MLG
layer in the heterostructure, f0(T ) is expected to monotonically increase with decreasing
temperature, similar to samples 1, 3 shown in figure 6.6, while for the thicker MLG layer
case, a non-monotonic behaviour can be expected, similar to sample 2.

However, due to the effect of anisotropic magnetostriction found in previous works
[34], a downward trend in the frequency response f0(T ) of FePS3-based membrane res-
onators with decreasing temperature can appear near TN when stress along the b-axis
of the FePS3 crystal dominates, for instance, due to its uneven distribution during the
device fabrication. A similar feature in f0(T ) was measured around T ∼ 110 K shown in
figure 6.1d, as also depicted in figure 6.8a.

Utilizing the same material parameters as above and assuming that accumulation of
strain in FePS3 layer of this membrane is dominated by the thermal expansion coeffi-
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Figure 6.7: Temperature dependence of thermal expansion and resonance frequency of FePS3/MLG het-
erostructure membranes. a Linear thermal expansion coefficients of FePS3 [22], graphene [153] and Si sub-
strate [152]. b The resonance frequency model of equation (6.A.1) as a function of temperature and thicknesses
of FePS3 and MLG, calculated using the data from (a).

cient along the b-axis of FePS3 crystal (shown in figure 6.8b as taken from Houmes et al.
[34]), we calculate the predicted f0(T ) using equation (6.A.1) and plot it in figure 6.8c. We
note that the behaviour illustrated in figure 6.1d can be explained and reproduced well
using this approach, as the model follows the experimentally measured trend closely,
including region near T ≈ TN, as demonstrated in figure 6.8d.

6.A.4. EXTRACTING EXPERIMENTAL PARAMETERS
To monitor the change in the stiffness and dissipation of the resonator, we fit the exper-
imental frequency responses to equation (6.8.7) and extract Q, γ, ξnl, Fω/m and ω0. The
fitting is done sequentially. First, Q factors are extracted from the linewidths of linear res-
onance curves at low drive levels, before the onset of nonlinearity. Next, ω0 is extracted
from the peak frequency at low drive levels, assuming it stays constant with increasing
drive levels. However, we have sometimes also observed dependency of the fundamental
frequency on drive level, possibly due to overheating from the optothermal drive. Thus,
we extracted ω0 for each drive level separately. At the drive levels where the response is
nonlinear, we correct for the ω0 using the inflection of the nonlinear resonance curve,

such that d 2as
dω2 |ω0 ≈ 0, or using the saddle-node bifurcation of the lower solution branch,

obtained in the reverse sweep.
After obtaining Q and ω0, it is possible to extract Fω/m by fitting the off-resonance

response to a harmonic oscillator model, such that ẍ+ ω0
Q ẋ+ω2

0x = Fω
m . After obtaining all

the linear parameters, we extract nonlinear parameters γ and ξnl. Normalized Duffing
coefficientγ is estimated by using the slope of the square of the frequency response since
γ= (8ω0/3)(ωmax −ω0)/a2

s,max [155], where ωmax is the frequency and amax is the ampli-
tude of the experimental nonlinear resonance peak. Finally, we find ξnl by matching the
peak amplitude i.e., saddle-node bifurcation of the higher solution branch, and by using
an optimizer that minimizes the objective fobj = |asim

s,max(ξnl)−as,max|, where asim
s,max is the

peak amplitude of the simulated model. In figure 6.9, we provide additional examples of
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the experimental forward frequency sweep response, whereas the orange line is in the reverse sweep response.
Black circles are the simulated model response.

6.A.5. MAGNETOSTRICTIVE MODEL: DERIVATION OF NONLINEAR STIFFNESS

AND DAMPING

DYNAMICS OF ANTIFERROMAGNETIC ORDER PARAMETER

In the derivation of antiferromagnetic order parameter relaxation dynamics, we follow
closely the approach of Landau-Khalatnikov [135] and Belov-Kataev-Levitin [136, 137].
The total potential energy of the system can be written as:

UT =Uel +Um +Ums, (6.A.2)
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where Uel is elastic potential energy, Um free energy of an antiferromagnet and Ums is
magnetostrictive coupling energy term. These take form of:

Uel =
k1

2
x2 + k3

4
x4,

Um =Um,0 + A

2
L2 + B

4
L4,

Ums =
λi j

2
σi j (x)L2,

(6.A.3)

where k1 and k3 are linear and nonlinear stiffness, Um,0 is the magnetic free energy in a
paramagnetic state, L is an antiferromagnetic order parameter along the easy-axis of an-
tiferromagnet, while A and B are phenomenological constants, λi j is the tensor of phe-
nomenological magnetostrictive coefficients, σi j (x) is stress tensor modulated by the
membrane deflection x. For notational convenience, we write λi j , dropping the third
and fourth index of λi j kl as only the component where kl corresponds to the easy axis
contributes.

Let us first consider the magnetic energy terms Um+Ums that describe the antiferro-
magnetic phase for uni-axial magnetic anisotropy:

Um +Ums =Um,0 + A

2
L2 + B

4
L4 + λ

2
L2σ(x), (6.A.4)

where B > 0, σ(x) = σxx = σy y is the in-plane bi-axial stress and λ the specific magne-
tostriction coefficient of λi j that describes the coupling of in-plane membrane stress to
the order parameter in the direction of the easy axis. In the zero stress condition with

σ= 0 the energy minimum thus shall have extrema that satisfy
∂(Um−Um,0)

∂L = 0, where the
A > 0 condition describes a disordered (paramagnetic) phase and the A < 0 condition an
ordered (antiferromagnetic) phase. Consequently, A = 0 describes the transition point
between these phases. We thus define the antiferromagnetic transition temperature or
Néel temperature TN such that it leads to A = 0 at TN as:

A = a(T −TN)2β, (6.A.5)

where a is a positive phenomenological constant, T is temperature and β= 0.5 the criti-
cal exponent [55]. By plugging equation (6.A.5) to (6.A.3), we write a full equation for the
total potential energy:

UT =Uel +Um +Ums

=
[

k1

2
x2 + k3

4
x4

]
+

[
Um,0 + a

2
(T −TN)L2 + B

4
L4

]
+

[
λ

2
L2σ(x)

]
.

(6.A.6)

We minimize UT with respect to L to find the values of the order parameter in the ground
state under the static stress condition σ=σ0. This leads to:

∂UT

∂L
= a (T −TN)L+BL3 +λLσ0 = 0, (6.A.7)
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where σ0 is the static stress term of the total in-plane membrane stress, defined as, as-
suming the flat membrane case and x ≈ as cos(ωt ) [124, 140]:

σ(x) =σp + Ec3

2r 2 x2

=
[
σp + Ec3

4r 2 a2
s

]
+

[
Ec3

4r 2 a2
s cos(2ωt )

]
=σ0 +σω(t ),

(6.A.8)

where σp is the pre-stress in the membrane due to the fabrication process, σω(t ) the
dynamic stress terms, E the Young’s modulus, r the membrane radius, as the steady-
state amplitude, t the time,ω the drive frequency, and c3 the geometric numerical factor
that depends on membrane’s Poisson ratio [156].

Equation (6.A.7) then leads to the antiferomagnetic order parameter in the ground
state:

L0 =±
√

a(TN −T )−λσ0

B
=±

√
a(T ∗

N −T )

B
. (6.A.9)

Consequently, one can show that magnetostriction produces the shifted Néel tempera-
ture T ∗

N as a function of σ0:

T ∗
N = TN − λσ0

a
. (6.A.10)

One can notice that sinceσ0 depends both onσp and as, a larger steady-state amplitude
as expected in nonlinear regime (in comparison to a linear regime) would produce a
higher stress levelσ0. This can accordingly cause a shift of T ∗

N which leads to a resonance
frequency difference between different excitation levels near T ∗

N, as shown in figure 6.2c.
In contrast, a stressed antiferromagnet in motion satisfies the following relation be-

tween L and TN:

L(t )2 = a(TN −T )−λ (σ0 +σω(t ))

B
∼= (L0 +Lω(t ))2 , (6.A.11)

where Lω(t ) is the dynamic term of the antiferromagnetic order parameter L. When the
membrane is in motion, the time dependence of L is related to the energy UT by the
kinetic equation [135–137]:

dL

d t
=−κ∂UT

∂L
, (6.A.12)

where κ is the kinetic coefficient, that is assumed to be free of anomalies near TN [135].
Since, from equation (6.A.11), L(t ) = L0 +Lω(t ) is a sum of the equilibrium L0 and the
additional dynamic term Lω(t ), produced by the small oscillating stresses σω(t ), we can

expand ∂UT
∂L using a Taylor series around L0:

dL

d t
∼=−κ

[
∂UT

∂L
|L0 +

∂2UT

∂L2 |L0 (L−L0)+ ...

]
, (6.A.13)

and obtain, assuming Lω≪ L0:

−dLω
d t

∼= 2κBL2
0Lω+κλL0σω(t ). (6.A.14)
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As originally shown by Landau and Khalatnikov [135], the time constant τ, that describes
the relaxation of the antiferromagnetic order parameter due to its dynamic term [136,
137], can be found from equation (6.A.14) as:

τ=
{ 1

2κa
(
T ∗

N−T
) T < T ∗

N

∞ T > T ∗
N,

(6.A.15)

which further simplifies equation (6.A.14) to:

L̇ω+ Lω
τ

+κλL0σω(t ) = 0. (6.A.16)

STEADY-STATE EQUATIONS

We use the method of harmonic balancing to solve for the steady-state amplitude of
equation (6.4.4). We approximate the motion by a single harmonic such that
x ≈ as cos(ωt +ψ) where as is the steady-state amplitude. In order to obtain the steady-
state response of the mechanical degree of freedom x, that is coupled to the magnetic
order, we define the Lagrangian L = 1

2 mẋ2 −UT, and use the Euler-Lagrange equation
as follows:

d

d t

∂L

∂ẋ
− ∂L

∂x
= 0, (6.A.17)

which yields:

mẍ +k1x +k3x3 + λ

2
(L0 +Lω)2 ∂σ

∂x
= 0, (6.A.18)

where k1 = mω2
0. Assuming that L0 ≫ Lω and including linear dissipation related to the

quality factor Q, nonlinear damping of van der Pol type [118, 125, 157] ηnl and periodic
forcing with amplitude Fω, frequency ω, and phase ψ, coupled equations of motion can
be written in the following form:{

mẍ +k1x +k3x3 + λ
2

(
L2

0 +2L0Lω
)
∂σ
∂x = Fω cos(ωt +ψ)− mω0

Q ẋ −ηnlx
2ẋ,

L̇ω+ Lω
τ +κλL0σω(t ) = 0.

(6.A.19)

To solve for the steady-state response of the mechanical degree of freedom coupled
to the magnetic order, we start by solving the first-order differential equation (6.A.19).
Using equations (6.A.15) and (6.A.8), we obtain the steady-state solution for Lω in terms
of τ:

Lω,ss =−λκL0
Ec3

4r 2 [cos(2ωt )+2τωsin(2ωt )]
τ

1+4τ2ω2 a2
s ,

=−λκL0

[
σω(t )−τ∂σω(t )

∂t

]
τ

1+4τ2ω2 .
(6.A.20)

Consequently, to apply the method of harmonic balancing to the equation (6.A.19), we
keep the assumption of periodic motion at the steady state in the form of x = as cosωt
and plug in the steady state solution of Lω, such that Lω = Lω,ss. Considering only the
fundamental harmonic ω and discarding higher order harmonics, we find:
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[(
3k3

4
− λ2

4B

E 2c2
3

4r 4

1(
1+4τ2ω2

))
a3

s +m(ω2
0 −ω2)as

]
cosωt− (6.A.21)[(

ηnl +
λ2ω

2B

E 2c2
3

r 4

τ(
1+4τ2ω2

))
a3

s +
mω0ω

Q
as

]
sinωt = Fω cosψcosωt −Fω sinψsinωt .

We equate the coefficients of the fundamental harmonic, namely sinωt and cosωt on
both sides and obtain the following steady-state amplitude equation:

((
3k3

4
− λ2

16B

E 2c2
3

r 4

1(
1+4τ2ω2

))
a3

s +m(ω2
0 −ω2)as

)2

(6.A.22)

+
((
ηnl +

λ2ω

2B

E 2c2
3

r 4

τ(
1+4τ2ω2

))
a3

s +
mω0

Q
as

)2

ω2 = F 2
ω,

whereω2
0 = 1

m

(
k1 +λL2

0
Ec3
2r 2

)
is the re-normalized resonance frequency. From the steady-

state amplitude equation, it is possible to see that the coupling to the magnetic order
leads to a re-normalized nonlinear damping term η∗nl of a van der Pol type [118, 125, 157]
at T < T ∗

N such that:

η∗nl =
ηnl + λ2

2B
E 2c2

3
r 4

τ

(1+4τ2ω2) T < T ∗
N

ηnl T > T ∗
N

. (6.A.23)

Similarly, due to the coupling, the nonlinear stiffness of the Duffing type k∗
3 is re-scaled,

such that:

k∗
3 =

k3 − λ2

12B
E 2c2

3
r 4

1
(1+4τ2ω2) T < T ∗

N

k3 T > T ∗
N

, (6.A.24)

and the linear stiffness k∗
1 as:

k∗
1 =

{
k1 +λL2

0
Ec3
2r 2 T < T ∗

N

k1 T > T ∗
N

. (6.A.25)

Thus, the dynamics of the membrane can be effectively described using a single non-
linear differential equation with renormalized linear stiffness as well as Duffing and van
der Pol nonlinear damping terms:

mẍ +k∗
1 x +k∗

3 x3 = Fω cos(ωt )− mω0

Q
ẋ −η∗nlx

2ẋ, (6.A.26)

where ω2
0 =

k∗
1

m is the renormalized resonance frequency.
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It is worth noting from equation (6.A.23) that η∗nl is significant near 2τω≈ 1 and peaks
at 2τω = 1 [141]. In previous work of Zhou et al. [132], it was shown that in FePS3 the
longest magnetostriction-caused lattice relaxation time constant is related to modula-
tion of the monoclinic lattice angle by interlayer spin-shear coupling, which can be in
the order of several tens of nanoseconds near TN [132, 133]. These relaxation timescales
are indeed expected to lead to 2τω ≈ 1 and thus hypothetically can cause significant
nonlinear damping within the measured range of ω.
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Figure 6.10: Thickness-normalized relaxation time constants τ(T ) reported on samples of various sample
thicknesses h from Zhou, F. et al [132]. Solid magenta line - a fit equation (6.A.15) to the data points, with
T∗

N = 115 K and κah = 0.232±0.019 ms−1K−1.

We further hypothesise that the spin-shear relaxation τ(T ) from the work of Zhou
et al. [132] has the dominant contribution to our experimentally observed delay. By
fitting experimental data from Zhou et al. [132] to equation (6.A.15), see figure 6.10, we
plot the expected temperature dependence of k∗

3 (T ) and η∗nl(T ) in figure 6.11 for h = 9.5
nm, assuming a minor temperature dependence of k3(T ) due to other effects of a non-
magnetic nature.

It is worth noting that when τ is insignificant, i.e., τ≈ 0, equation (6.A.24) simplifies
to: {

k∗
3 = k3 − λ2

12B
E 2c2

3
r 4 T < T ∗

N

k∗
3 = k3 T > T ∗

N

. (6.A.27)

This will produce the corresponding behaviour near the phase transition, that we show
in figure 6.12 for k∗

1 (T ) and k∗
3 (T ), while the magnetic contribution to η∗nl(T ) becomes

zero.
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40. Němec, P., Fiebig, M., Kampfrath, T. & Kimel, A. V. Antiferromagnetic opto-spintronics.
Nat. Phys. 14, 229–241 (Mar. 2018).

41. Rahman, S., Torres, J. F., Khan, A. R. & Lu, Y. Recent Developments in van der Waals
Antiferromagnetic 2D Materials: Synthesis, Characterization, and Device Imple-
mentation. ACS Nano 15, 17175–17213 (Nov. 2021).

42. Mertens, F. et al. Ultrafast Coherent THz Lattice Dynamics Coupled to Spins in the
van der Waals Antiferromagnet FePS3. Adv. Mater., 2208355 (2022).

43. Boix-Constant, C. et al. Probing the Spin Dimensionality in Single-Layer CrSBr van
der Waals Heterostructures by Magneto-Transport Measurements. Adv. Mater. 34,
2204940 (2022).

44. Esteras, D. L., Rybakov, A., Ruiz, A. M. & Baldoví, J. J. Magnon Straintronics in the
2D van der Waals Ferromagnet CrSBr from First-Principles. Nano Lett. 22, 8771–
8778 (2022).

45. Wang, Y. et al. Strain-Sensitive Magnetization Reversal of a van der Waals Magnet.
Adv. Mater. 32, 2004533 (2020).

46. Ni, Z. et al. Imaging the Néel vector switching in the monolayer antiferromagnet
MnPSe3 with strain-controlled Ising order. Nat. Nanotechnol. 16, 782–787 (Apr.
2021).

47. Cenker, J. et al. Reversible strain-induced magnetic phase transition in a van der
Waals magnet. en. Nat. Nanotechnol., 1–6 (Jan. 2022).

48. Šiškins, M. et al. Nanomechanical probing and strain tuning of the Curie tempera-
ture in suspended Cr2Ge2Te6-based heterostructures. npj 2D Mater. Appl. 6 (June
2022).

49. Jiang, S., Xie, H., Shan, J. & Mak, K. F. Exchange Magnetostriction in Two-Dimensional
Antiferromagnets. Nat. Mater. 19, 1295–1299 (June 2020).

50. Chittari, B. L. et al. Electronic and magnetic properties of single-layer MPX3 metal
phosphorous trichalcogenides. Phys. Rev. B 94 (Nov. 2016).

51. Wildes, A. R., Simonet, V., Ressouche, E., Ballou, R. & McIntyre, G. J. The magnetic
properties and structure of the quasi-two-dimensional antiferromagnet CoPS3. J.
Phys. Condens. Matter. 29, 455801 (Oct. 2017).

52. Joy, P. A. & Vasudevan, S. Magnetism in the layered transition-metal thiophos-
phates MPS3 (M=Mn, Fe, and Ni). Phys. Rev. B 46, 5425–5433 (Sept. 1992).



138 BIBLIOGRAPHY

53. Takano, Y. et al. Magnetic properties and specific heat of MPS3 (M=Mn, Fe, Zn). J.
Magn. Magn. Mat. 272-276, E593–E595 (May 2004).

54. Šiškins, M. et al. Highly Anisotropic Mechanical and Optical Properties of 2D Lay-
ered As2S3 Membranes. ACS Nano 13, 10845–10851 (Aug. 2019).

55. Landau, L. D., Pitaevskii, L. P. & Lifshitz, E. M. Electrodynamics of continuous me-
dia 2nd ed. (Butterworth, New York, 1984).

56. Bunch, J. S. et al. Electromechanical Resonators from Graphene Sheets. Science
315, 490–493 (2007).

57. Gui, Q. et al. Extrinsic-Structured Bimetallic-Phase Ternary Metal Phosphorus Trisul-
fides Coupled with N-Doped Graphitized Carbon for Superior Electrochemical
Lithium Storage. Adv. Energy Mater. 11, 2003553 (Jan. 2021).

58. Liu, Q. et al. Magnetic order in XY-type antiferromagnetic monolayer CoPS3 re-
vealed by Raman spectroscopy. Phys. Rev. B 103, 235411 (June 2021).

59. Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D mate-
rials and heterostructures. Nat. Nanotechnol. 14, 408–419 (May 2019).

60. Afanasiev, D. et al. Controlling the anisotropy of a van der Waals antiferromagnet
with light. Sci. Adv. 7, eabf3096 (June 2021).

61. Kim, K. et al. Suppression of magnetic ordering in XXZ-type antiferromagnetic
monolayer NiPS3. Nat. Commun. 10, 345 (Jan. 2019).

62. Yao-Dong, D. et al. A Mössbauer study of the magnetic coupling in iron phospho-
rous trisulfides. Chinese Phys. 13, 1652 (2004).

63. Zhang, Q. et al. Observation of Giant Optical Linear Dichroism in a Zigzag Antifer-
romagnet FePS3. Nano Lett. 21, 6938–6945 (2021).

64. Zhang, R. & Willis, R. F. Thickness-Dependent Curie Temperatures of Ultrathin
Magnetic Films: Effect of the Range of Spin-Spin Interactions. Phys. Rev. Lett. 86,
2665–2668 (May 2001).

65. Bunch, J. S. Mechanical and electrical properties of graphene sheets (Ph.D. thesis,
Cornell University Ithaca, NY, 2008).

66. Houmes, M. J. A. et al. Highly Anisotropic Mechanical Response of the Van der
Waals Magnet CrPS4. Adv. Funct. Mater. 34, 2310206 (2024).

67. Da Gao, Z. et al. Anisotropic Mechanics of 2D Materials. Adv. Eng. Mater. 24, 2200519
(Nov. 2022).

68. Uniaxial negative thermal expansion behavior of β-CuSCN. Appl. Phys. Lett. 118,
222105 (May 2021).

69. Diederich, G. M. et al. Tunable interaction between excitons and hybridized magnons
in a layered semiconductor. Nat. Nanotechnol. 18, 23–28 (Dec. 2022).

70. De Wal, D. K. et al. Long-distance magnon transport in the van der Waals antifer-
romagnet CrPS4. Phys. Rev. B 107, L180403 (May 2023).



BIBLIOGRAPHY 139

71. Hwangbo, K. et al. Highly anisotropic excitons and multiple phonon bound states
in a van der Waals antiferromagnetic insulator. Nat. Nanotechnol. 16, 655–660
(Mar. 2021).

72. Kang, S. et al. Coherent many-body exciton in van der Waals antiferromagnet NiPS3.
Nature 583, 785–789 (July 2020).

73. Boix-Constant, C. et al. Probing the Spin Dimensionality in Single-Layer CrSBr Van
Der Waals Heterostructures by Magneto-Transport Measurements. Adv. Mater. 34,
2204940 (Oct. 2022).

74. Bae, Y. J. et al. Exciton-coupled coherent magnons in a 2D semiconductor. Nature
609, 282–286 (Sept. 2022).

75. Peng, Y. et al. Magnetic Structure and Metamagnetic Transitions in the van der
Waals Antiferromagnet CrPS4. Adv. Mater. 32, 2001200 (July 2020).

76. Riesner, M. et al. Temperature dependence of Fano resonances in CrPS4. J. Chem.
Phys. 156, 54707 (Feb. 2022).

77. Gu, P. et al. Photoluminescent Quantum Interference in a van der Waals Magnet
Preserved by Symmetry Breaking. ACS Nano 14, 1003–1010 (Jan. 2020).

78. Lee, J. et al. Structural and Optical Properties of Single- and Few-Layer Magnetic
Semiconductor CrPS4. ACS Nano 11, 10935–10944 (Nov. 2017).

79. Diehl, R. & Carpentier, C.-D. The structural chemistry of indium phosphorus chalco-
genides. Acta Crystallogr. B34, 1097 (Apr. 1978).

80. Bud’Ko, S. L., Gati, E., Slade, T. J. & Canfield, P. C. Magnetic order in the van der
Waals antiferromagnet CrPS4: Anisotropic H-T phase diagrams and effects of pres-
sure. Phys. Rev. B 103, 224407 (June 2021).

81. Calder, S. et al. Magnetic structure and exchange interactions in the layered semi-
conductor CrPS4. Phys. Rev. B 102, 024408 (July 2020).

82. Kim, S. et al. Photoluminescence Path Bifurcations by Spin Flip in Two-Dimensional
CrPS4. ACS Nano 16, 16385–16393 (Oct. 2022).

83. Son, J. et al. Air-Stable and Layer-Dependent Ferromagnetism in Atomically Thin
van der Waals CrPS4. ACS Nano 15, 16904–16912 (Oct. 2021).

84. Wu, F. et al. Gate-Controlled Magnetotransport and Electrostatic Modulation of
Magnetism in 2D Magnetic Semiconductor CrPS4. Adv. Mater., 2211653 (June 2023).

85. Qi, S. et al. Giant electrically tunable magnon transport anisotropy in a van der
Waals antiferromagnetic insulator. Nat. Commun. 14, 1–8 (May 2023).

86. Lee, M. et al. Study of charge density waves in suspended 2H-TaS2 and 2H-TaSe2
by nanomechanical resonance. Appl. Phys. Lett. 118, 193105 (May 2021).

87. López-Cabrelles, J. et al. Chemical Design and Magnetic Ordering in Thin Lay-
ers of 2D Metal-Organic Frameworks (MOFs). J. Am. Chem. Soc. 143, 18502–18510
(Nov. 2021).

88. Davidovikj, D. Two-dimensional membranes in motion PhD thesis (TU Delft, 2018).



140 BIBLIOGRAPHY

89. Li, B.-L. et al. Very high-frequency, gate-tunable CrPS4 nanomechanical resonator
with single mode. Opt. Lett. 48, 2571–2574 (May 2023).

90. Dove, M. T. & Fang, H. Negative thermal expansion and associated anomalous
physical properties: review of the lattice dynamics theoretical foundation. Rep.
Prog. Phys. 79, 066503 (May 2016).

91. Colossal positive and negative thermal expansion in the framework material Ag3[Co(CN)6].
Science 319, 794–797 (Feb. 2008).

92. Das, D., Jacobs, T. & Barbour, L. J. Exceptionally large positive and negative anisotropic
thermal expansion of an organic crystalline material. Nat. Mater. 9, 36–39 (Nov.
2010).

93. Peng, Y. et al. Controlling Spin Orientation and Metamagnetic Transitions in Anisotropic
van der Waals Antiferromagnet CrPS4 by Hydrostatic Pressure. Adv. Funct. Mater.
32, 2106592 (2022).

94. Joe, M., Lee, J. & Lee, C. Dominant in-plane cleavage direction of CrPS4. Comput.
Mater. Sci. 162, 277–280 (2019).

95. Joe, M. et al. A comprehensive study of piezomagnetic response in CrPS4 mono-
layer: Mechanical, electronic properties and magnetic ordering under strains. J.
Condens. Matter Phys. 29 (Aug. 2017).

96. Villars, P. PAULING FILE in: Inorganic Solid Phases, SpringerMaterials (online database),
Springer, Heidelberg (ed.) SpringerMaterials.

97. Lyon, K. G., Salinger, G. L., Swenson, C. A. & White, G. K. Linear thermal expansion
measurements on silicon from 6 to 340 K. J. Appl. Phys. 48, 865–868 (Mar. 1997).

98. Wahab, D. A. et al. Quantum Rescaling, Domain Metastability, and Hybrid Domain-
Walls in 2D CrI3 Magnets. Adv. Mater. 33, 2004138 (Feb. 2020).

99. Zomer, P. J., Guimarães, M. H. D., Brant, J. C., Tombros, N. & van Wees, B. J. Fast
pick up technique for high quality heterostructures of bilayer graphene and hexag-
onal boron nitride. Appl. Phys. Lett. 105, 013101 (July 2014).

100. Wang, Q. H. et al. The Magnetic Genome of Two-Dimensional van der Waals Ma-
terials. ACS Nano 16, 6960–7079 (2022).

101. Dolleman, R. J. et al. Optomechanics for thermal characterization of suspended
graphene. Phys. Rev. B 96, 165421 (Oct. 2017).

102. Dolleman, R. J. et al. Transient thermal characterization of suspended monolayer
MoS2. Phys. Rev. Mater. 2, 114008 (Nov. 2018).

103. Morell, N. et al. Optomechanical Measurement of Thermal Transport in Two-Dimensional
MoSe2 Lattices. Nano Lett. 19, 3143–3150 (2019).

104. Šiškins, M. et al. Nanomechanical probing and strain tuning of the Curie tempera-
ture in suspended Cr2Ge2Te6-based heterostructures. npj 2D Mater. Appl. 6 (June
2022).

105. Zener, C. Internal Friction in Solids I. Theory of Internal Friction in Reeds. Phys.
Rev. 52, 230–235 (Aug. 1937).



BIBLIOGRAPHY 141

106. Lifshitz, R. & Roukes, M. L. Thermoelastic damping in micro- and nanomechani-
cal systems. Phys. Rev. B 61, 5600–5609 (Feb. 2000).

107. Haglund, A. Thermal Conductivity of MXY3 Magnetic Layered Trichalcogenides (Ph.D.
thesis, University of Tennessee, Knoxville, 2019).

108. Šiškins, M. et al. Nonlinear dynamics and magneto-elasticity of nanodrums near
the phase transition 2023. arXiv: 2309.09672 [cond-mat.mes-hall].

109. Androulidakis, C., Zhang, K., Robertson, M. & Tawfick, S. Tailoring the Mechanical
Properties of 2D Materials and Heterostructures. 2D Mater. 5, 032005 (June 2018).

110. Jiang, H., Zheng, L., Liu, Z. & Wang, X. Two-dimensional materials: From mechan-
ical properties to flexible mechanical sensors. InfoMat 2, 1077–1094 (Dec. 2019).

111. Lemme, M. C. et al. Nanoelectromechanical Sensors Based on Suspended 2D Ma-
terials. Research 2020, 8748602 (July 2020).
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