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We derive an alternative formulation of the turbulent kinetic energy equation for flows
with strong near-wall density and viscosity gradients. The derivation is based on a scaling
transformation of the Navier-Stokes equations using semi-local quantities. A budget
analysis of the semi-locally scaled turbulent kinetic energy equation shows that for several
variable property low-Mach-number channel flows, the ‘leading-order effect’ of variable
density and viscosity on turbulence in wall bounded flows can effectively be characterized
by the semi-local Reynolds number. Moreover, if a turbulence model is solved in its
semi-locally scaled form, we show that an excellent agreement with direct numerical
simulations is obtained for both low- and high-Mach-number flows, where conventional
modelling approaches fail.

Key words: compressible boundary layers, turbulence modelling, turbulent boundary
layers

1. Introduction

Turbulent flows with variable thermophysical properties are common in nature and
engineering applications. For example, the density or viscosity significantly changes
in flows of supersonic aircraft, rocket propulsion systems, heat exchangers, chemically
reacting flows, or the flow in the Sun’s convection zone. In general, strong thermophysical
property variations alter the conventional behaviour of turbulence and cause scaling laws
of constant property flows to fail (Bradshaw 1977; Lele 1994; Coleman et al. 1995; Duan
et al. 2010; Lee et al. 2013; Modesti & Pirozzoli 2016). From past studies it is known that
differences between adiabatic supersonic boundary layers and incompressible isothermal
flows can be corrected by simply accounting for mean density variations — an example is
the van Driest velocity transformation — as long as the turbulent Mach number remains
small, M’ < 0.3 (Smits & Dussauge 2006). This is known as Morkovin’s hypothesis
(Morkovin 1962). However, for flows with strong wall heat transfer, the van Driest
velocity transformation fails to provide a reasonable collapse (Duan et al. 2010; Modesti &
Pirozzoli 2016). Recently, Trettel & Larsson (2016) and Patel et al. (2016) have proposed
a transformation that provides a collapse for supersonic channel flows with isothermal
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walls, and low-Mach-number volumetrically heated channel flows. Nevertheless, despite
the universal scaling law for the mean velocity, it is still not clear how these recent
advances can be used to inform models for predicting turbulent statistics. For example,
turbulence models still remain incapable to provide reasonable results for wall bounded
flows with strong heat transfer (Huang et al. 1995; He et al. 2008). This has been mostly
attributed to effects caused by compressibility, expressed by the dilatational dissipation,
pressure work, pressure dilatation and diffusion, etc. Most of these compressible effects,
however, remain small in compressible wall bounded flows (Huang et al. 1995; Duan et al.
2010) and the reason for the failure of turbulence models is yet unknown.

In our recent work (Patel et al. 2015), we provided a mathematical basis for the
application of semi-local scaling laws as proposed by Huang et al. (1995). It was based on
rescaling the Navier-Stokes equations using semi-local quantities (e.g., local mean values
of density, p, and viscosity, u, etc.), after which an evolution equation for the turbulent
velocity fluctuations was derived. In this equation, the viscous terms scale with the semi-
local Reynolds number and the production of turbulent fluctuations is governed by the
gradient of the density weighted velocity, i.e. the van Driest velocity transformation. The
semi-local Reynolds number is defined as

. () /Pw
T ) b

where (-) denotes Reynolds averaging, the subscript w indicates quantities at the isother-
mal wall (no averaging at the wall is required) and Re; = pyUryh/ i, is the friction
Reynolds number based on the friction velocity, u,,, and a characteristic length, h. The
van Driest velocity transformation (in differential form) is given by

d(u’”) = /) [pw d((u) /us,). (1.2)

Using several direct numerical simulations (DNS) of turbulent channel flows with fluids
that have different constitutive relations for density and viscosity, we showed that for
cases with similar ReX profiles, similar turbulent statistics are obtained. Moreover, in
Patel et al. (2016), it was shown that the viscous stress is a universal function in the
inner layer, which expressed in semi-local parameters is (7)) = 1/Rex(d (u"?) /dy).
Therefore, the van Driest velocity is not an independent quantity and the main parameter
that governs turbulence in variable property flows is ReX.

Here, we aim to extend the semi-local scaling framework to derive a semi-locally scaled
(SLS) evolution equation for the turbulent kinetic energy (TKE). We will show that
also for the SLS TKE equation the viscous terms scale with Re; and the turbulence
production is governed by the gradient of the van Driest velocity. We will then use the
SLS TKE in conjunction with a turbulence model to simulate several fully developed
turbulent flows, ranging from volumetrically heated flows at low Mach (Ma) numbers to
a fully compressible Ma=4 case in a channel with isothermal walls provided by Trettel
& Larsson (2016).

Re

Re,, (1.1)

2. The SLS TKE equation

As in Patel et al. (2015), we apply a semi-local scaling transformation to the Navier-
Stokes equations for density p, dynamic viscosity u, velocity u; and pressure p, defined
as

/3 - P/ <P>, ﬂ - N/ </L>a U = ui/u-ra and p = p/(< > *2)a (21)

where (p), (i) and u} are the Reynolds averaged values of local density, local viscosity
and semi-local friction velocity uf = /7, / (p), with 7, the averaged wall shear stress.
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The spatial coordinates are normalized as & = x/h. Applying the scaling transformation
to the continuity equation and assuming that the averaged wall shear stress 7, is constant
or changes slowly in the streamwise direction, we obtain (cf. Appendix A)

LO0p  Opu;

1 9{p) _
ot om TP e
———

d;

(2.2)

with ¢ = h/uX. The additional term, d;, is the result of the semi-local scaling transfor-
mation, which contains the gradient of the Reynolds averaged density. Accordingly, the
SLS momentum equations in non-conservative form are given as (cf. Appendix B)

é)ul 8111 (9]3 aﬂ'j _ 6D
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with the stress tensor 7;; = f[i/Re} [(01;/0%; + 0U;/0%;) — 2/3(0Uk/0%r)0i5]. If com-
pared with the conventional form, two additional terms appear, namely, pt;1;d; and
aijDij, where Dj; = fi/ ReX [(tud; + jd;) — 2/3(ukdk di;]. It should be noted the effec-
tive viscosity in 7;; is proportional to 1/ReZ. fi is a normalized arbitrary body force.

Given (2.2) and (2.3), we can now derive the SLS TKE equation using a standard
procedure by first multiplying the momentum equation (2.3) with the Favre fluctuating
velocity 4; and then Reynolds averaging the product. To highlight distinct differences
in the derivation when using the SLS Navier-Stokes equations, this procedure is outlined
for the terms on the left-hand-side of (2.3), while the derivation of the other terms closely
follows the standard procedure and is thus not shown. The Favre decomposition is used
for the velocity, while the Reynolds decomposition is used for all other quantities, which
for an arbitrary quantity ¢ are given as ¢ = {¢} + ¢” and ¢ = (¢) + ¢’ respectively.
It is important to note that the Favre mean is {¢} = (p¢) / (p), which, with the locally
scaled density, can also be expressed as {¢} = (p¢); an identity we will use throughout
the derivation of the SLS TKE equation. In addition, {p¢") = 0.

Multiplying the first term in (2.3) by @} and Reynolds averaging the product gives

(pky={k} 1)
+* A//Aaﬂi _ *a<;ﬁﬁ‘” H> k’t* ap 2.4

with the definition of the TKE k = @/ a;’ /2. For the convection term, we obtain

(oot ) = a2« o () + i) - (B2) - 29)

(IT)

The first term on the right-hand-side of (2.5) represents turbulence production as a
function of SLS quantities. As we will see later, it is crucial to express the partial
derivative of the SLS mean velocity in terms of the density-weighted partial derivative of
velocity using the van Driest transformation given by (1.2). With the additional relation

VPwlir, = +/{p)uX, this leads to

) () D) [Hplu)  {uly /@) ,
a{uz} o 8? - 9 Puw Ury pwauTw n Urgy 9 Puw 8{uzD}

_ 1yd;. (2.
0%, 0%, 0%, 0%, 0%, g, Tltld (26)
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The turbulence production in (2.5) can then be written as the sum of two terms, namely

{ "5 //} {ui} { "5 //}a{u }+{ " N}{uz}dj, (27)
%,_/
—f_’ (111)

_p,

with P, as the product of Reynolds stress and van Driest velocity gradient, and an
additional term (III) that can be large in magnitude, as it is the product of Reynolds
stress, Favre averaged velocity and density gradient. However, as we will see later, this

term will cancel. The third term in the momentum equation, multiplied by @, gives
— (0] pta;) d; = — {ala ”}{uz}d —2{uj}{k}d — 2{u"k}d (2.8)
_,_/
Iv)

We can now proceed and sum the individual terms. For example, the addition of (I)
+ (II) allows us to substitute the continuity equation (2.2) and we obtain

- <k <t:% + %» = {a;Hk}d; + {@]k}d;. (2.9)

As mentioned earlier, term (IIT) cancels with (IV) since we expressed the velocity gradient
in the turbulence production as a function of the van Driest velocity. Summing up all
remaining terms, including the conventional decomposition for the pressure and the
viscous terms we omitted earlier, results in the SLS TKE equation, given as

o(ky | o) _ 5

-~ — e+ T +CL+D 2.10
Y 0%, €k + 1L + Cg + Dy, (2.10)
with production P, = —{aja)}o{uyP} /02y, dissipation per unit volume £ =

<T 0a}/0%;), diffusion (decomposed into viscous diffusion, turbulent transport
and pressure diffusion) Tj = o((usrly — {ﬂ”fc} — (p'i;))/di;, compressibility

i'ig

Gy = (p'ous/0iy) — (0]) 8(p)/0; + (af) D(7i;)/02;, and terms related to the mean
density gradient Dy, = ({uj}{k} + {u;-’k})dj — (4! dD;;/9%; ). The result is an evolution
equation in which the varying density has been absorbed into the van Driest velocity
for the production Pk, and the semi-local Reynolds number into the dissipation £; and
viscous diffusion. The TKE equation is thus essentially equivalent to its incompressible
form, except for the additional terms Dy, and ék, which both can be considered to be
small, as we will see later. Since the van Driest velocity is not an independent variable
(Patel et al. 2016), this derivation suggests that the “leading order effect” on turbulence
in variable property flows can be characterized by ReX.

Another intriguing observation is that the TKE equation can be used in its ‘incom-
pressible’ form to model variable property turbulent channel flows. To do so, the velocity
in the TKE production term and the viscosity in the viscous terms have to be replaced
by the van Driest transformed velocity and the semi-local Reynolds number respectively.
Both hypotheses will be tested on flow cases that will be introduced next.

3. Turbulent channel flows with variable properties

Table 1 summarises five turbulent channel flows. The first case, CP, corresponds to a
reference flow with constant properties at Re, = 395. The next three cases have been
obtained by solving the low-Mach-number approximation of the Navier-Stokes equations,
whereby the flows have been volumetrically heated (constant volumetric heat source
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Case p/pw 1/ fw Ref,  Rei.

CcpP 1 1 395 395

CRe* (T/Tw)™" (T/Tw)™ %" 395 395

GL (gas-like) (T/Tw)™* (T)Tw)"" 950 137

LL (liquid-like) 1 (T/Tw)™" 150 943
7

T&L (My =4) o« p(T/Tw)™"  (T/Tw)"™ 1017 203

TABLE 1. Investigated cases: CP - constant property case with Re, = 395; CReX - variable
property case with constant Re} (= 395) across the channel; GL - case with gas-like property
variations; LL - case with liquid-like property variations; T&L - fully compressible turbulent
channel flow with a bulk Mach number of 4 from Trettel & Larsson (2016). The columns report
the constitutive relations for density p and viscosity p as a function of temperature T'. The
semi-local friction Reynolds numbers at the wall and channel center are given by Rej, and
Re7 ., respectively.

GL (gas-like) (c) LL (liquid-like)

0.71 /o 0.98 1.14 B/ pw 2.85 0.15 B/t 0.45

FIGURE 1. Contour plots of instantaneous density p (top half) and dynamic viscosity u (lower
half) for cases CReX (a), GL (b), and LL (c).

in the energy equation) and both walls are kept at a constant temperature. Different
constitutive relations for density, p, and viscosity, u, as a function of temperature, T',
were used. The case CReX corresponds to a flow for which density and viscosity are
decreasing away from the wall (figure 1(a)), such that the semi-local Reynolds number
Ref is constant across the whole channel height, meaning that \/(p) /pw = (i) /tw-
Although this case has arbitrary thermophysical properties, it is worthwhile to mention
that it bears similarities to supercritical fluids, for which both density and viscosity
decrease when heated across the pseudo-critical temperature (Peeters et al. 2016; Nemati
et al. 2016). Cases GL and LL (figure 1(b) and (c)) are flows with gas-like and liquid-like
property variations that both have large gradients in Re}. More details on the governing
equations and the numerical scheme can be found in Patel et al. (2015, 2016). The last
case in table 1 (case T&L) is a fully compressible turbulent channel flow with isothermal
walls, a bulk Mach number of 4 and a wall-based friction Reynolds number of 1017
(Trettel & Larsson 2016).

The largest decrease of density (pw/ (p.) =~ 8.5) is obtained for case CReZ, while
for cases GL and T&L the density decreases approximately by a factors 5 and 3.6
respectively (figure 2(a)). The profiles for viscosity are shown for the sake of completeness
in figure 2(b). However, the most important parameter for the characterization of variable
property flows is the semi-local Reynolds number shown in figure 2(c). It can be seen
that the cases GL and T&L show similar decreasing Re} profiles, while Re for case LL
increases. The case CReX has a constant Re} profile by construction and collapses with
the constant property case CP. The streamwise velocity profiles are shown in figure 2(d-f).
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FIGURE 2. Averaged profiles for density (a), viscosity (b), and semi-local Reynolds number (c),
velocity (d), van Driest transformed velocity (e), and universal velocity scaling (f) for DNS cases
presented in table 1.

It should be noted that, even if the velocity (u) for case CRe} is considerably higher than
for case CP, the van Driest velocity transformation is capable of providing a collapse with
the constant property universal velocity profile. This is not the case for flows that have
gradients in ReX (GL, LL and T&L) since the viscous scales for these cases are changing.
On the other hand, the universal velocity scaling proposed by Trettel & Larsson (2016),
and later independently derived by Patel et al. (2016), provides a good collapse for all
cases (figure 2(f)). It should be noted that the normalized wall-normal coordinates are

* = Re,y/h, and y* = Re’y/h. Since in Patel et al. (2016) the universal transformation
has been derived by rescaling the Navier—Stokes equations using local mean properties
(similarly to the SLS TKE equation), the universal velocity transformation can also be
expressed in terms of the van Driest velocity and the semi-local Reynolds number, as

4. The SLS TKE budgets

The budget equation for the SLS TKE for fully developed turbulent channel flows can
be written as
Py —éx+Tx + Cp + Dy = 0. (4.1)
The budgets for the cases CP, CRe}, GL and LL are shown in figure 3, where they have
been scaled by ReZ. Despite the large variations in density and viscosity for case CReZ,
Py, and &, are overlapping with case CP (symbols in figure 3a), since for both cases the
Rex profiles are constant and equal. This confirms that also turbulence production and
dissipation are similar for cases with similar ReZ profiles (Patel et al. 2015). However, the
diffusion is slightly affected by strong property gradients at the location of the production
peak at y* &~ 12. In general however, Cy and Dy, are small for cases CRe: and GL, and for
cases CP and LL they are zero, since the density is constant. Based on this observation
we can assume that the additional terms, Dk and Ck, have a minor effect on the evolution
of the SLS TKE for the cases presented herein. In general, it is accepted that for wall
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(a) CP & CRe: (b) GL (c) LL
0.3l v vl v ol | — wl
-0.3 T ERRR| N T T T = B T T T
10° 10 102 10° 10 10? 10° 10t 107 10°%
v v v

FIGURE 3. Semi-locally scaled turbulent kinetic energy budgets, equation (4.1). (a) case CP
(symbols) and CReX (lines), (b) case GL, and (c) case LL.

bounded flows, the compressibility term Cj, in the traditional budget equation is negligible
if compared with the other terms (Morinishi et al. 2004; Duan et al. 2010).

It should be noted that the key difference, if compared with the conventional semi-local
scaling of the budget terms as given in Morinishi et al. (2004), Foysi et al. (2004) and
Duan et al. (2010), is that here we do not scale the individual terms, but we evaluate the
budget terms in the TKE equation using SLS variables (e.g. 12:, D, [i, ete.). Tt is possible
to show that for the production, both approaches are equivalent, since Py /({p) u®/8%) =
Py/Rer, with 8% = h/Re’ and P, the production term in the traditional TKE equation.
However, for the other terms, the conventional semi-local scaling approach and the one
presented herein are not equivalent. The SLS TKE equation additionally allows us to
clearly distinguish effects related to different distributions of Re} from effects that are
reflected in the terms Ck and Dk (in situations where these terms are larger).

5. Turbulence modelling

Most turbulence models are based on the k& — ¢ model. However, the standard k — ¢
model gives unacceptable results for the turbulent shear stress in the near wall region.
Numerous remedies (damping functions, etc.) have been proposed, but these corrections
usually negatively affect the accuracy of the modelled TKE. A model that preserves the
accuracy of the TKE and also provides accurate results for the turbulent shear stress
is the model proposed by Durbin (1995); Lien & Kalitzin (2001). Besides the TKE k&
and the dissipation e, this model solves two additional equations, namely a transport
equation for the wall normal velocity fluctuation, v’?, which is an appropriate velocity
scale for turbulent transport towards the wall, and an elliptic relaxation equation that
essentially models the pressure strain correlation that appears in the evolution equation
of v'2. For a fully developed turbulent flow in a channel, the equations for k, €, v’ and
f read (the notation of the averaging operators is omitted for brevity)

=0y [(u + pt/ok) Oyk] = P, — pe
0,11+ /02) 0] = 3 (Cor Py~ Ce)
L20%f — f = £[(C1 = 6) % — 2(C1 = 1)] -
—8y [(w+ pe/ok) 00" ] = pk f — 6pv"* %
with 7 = max(k/e, 61/1/(pe)), L = 0.23 max(k®/?/e,70/(u/p)3/e) and the eddy

viscosity p¢ = Cp,pv™T. Using the Boussinesq approximation, the turbulent shear stress

is approximated by (pu’v”) = —ps0y (u) and the production can be expressed as

(5.1)
(5:2)
Co 1k (5.3)
(5.4)

B W R
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Py = ut(dyu)?. The wall boundary condition for the dissipation is &, = (uw/pw)é)iQk,
while all other quantities are set to zero. The model coefficients are C,, = 0.22, 03, = 1.0,
0. =13,0, =14, Cy =0.3, Coy = 1.4(1 + 0.045/k/v"?) and Czp = 1.92.

The corresponding Reynolds/Favre averaged streamwise momentum equation, using
the Boussinesq assumption to approximate the turbulent shear stress, reads

By [+ 1) Dyl = — . (5.5)

Since the aim of this study is to investigate the effect of variable properties on turbulent
velocity scales, we do not consider the energy equation. Instead we directly prescribe the
averaged density and viscosity profiles from DNS. This allows us to study how variable
properties affect turbulence, without including compounding errors that originate from
modelling the wall-normal turbulent heat flux in the energy equation, commonly approx-
imated by the ratio of the eddy viscosity and the turbulent Prandtl number. It should
be noted that if the eddy viscosity is accurately modelled (as we will show below) and
the turbulent Prandtl number is constant and known, the energy equation will provide
accurate profiles for density and viscosity. Equations (5.1)-(5.5) can be solved to provide
approximate solutions of turbulent statistics in variable property channel flows — if the
density and viscosity profiles are provided as an input from the DNS.

On the other hand, instead of using the conventional compressible formulation of the
turbulence model (5.1)-(5.4), we can solve it in its SLS form. For the channel cases
investigated here, we can assume that Dy, and Ci can be neglected (see §4). Moreover,
following a pragmatic approach, we assume that, analogously to the TKE equation (2.10),
the supporting model equations for e, v2 and f can be expressed in their semi-local
formulation as well. We make additionally use of common modelling assumptions, e.g.
p' < {p), and that the molecular and turbulent diffusion can be approximated by the
gradient diffusion hypothesis. Then, the only changes that need to be made to solve a
turbulence model in its SLS form for fully developed turbulent channel flows are to

e set p=1,
replace p by 1/Re} (assuming that p/ < (u), such that g =1+ p// (u) = 1),

e replace Ju in Py, by ou¥P
e and, if a model makes use of T, replace it by y*.

The corresponding momentum equation can be solved in either its conventional (5.5) or
its SLS form, i.e. @y [(1/Re} + fur) Oyu”P| = —pf, = —1. In the latter, it can be seen
that, indeed the only parameter that governs the turbulence model and the momentum
equation is ReX. If the momentum equation is solved in its conventional form, the SLS
eddy viscosity fi+, which is provided by the turbulence model, has to be transformed to
the conventionally scaled form by ¢ = (p) hulfi;. This relation can be obtained using
the same normalization as introduced in (2.1). Nevertheless, it can be shown that both
formulations of the momentum equation lead to equivalent results.

The results of the conventional compressible form and the SLS form are presented
in figure 4 and compared with results from the DNS. Evidently, in contrast to the
conventional formulation of the turbulence model, the SLS formulation significantly
improves the results. For example, the conventional model fails to provide reasonable
results, even for a case with constant ReX (case CRe}), which, compared with case CP,
has quasi-similar profiles of the viscous scales (see Patel et al. (2016)) and the SLS budgets
(figure 3). Moreover, for case GL and the supersonic turbulent channel flow case T&L the
results with the SLS formulation improve considerably. In particular, the velocity (u*)
and {k} close to the wall (row 1 and 3) show a very good agreement with DNS. Since
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the density is constant for case LL, both approaches give equivalent result and agree well
with DNS.

6. Conclusion

In summary, we have derived an alternative form of the TKE equation for wall
bounded flows with strong near-wall density and viscosity variations, which is based on a
simple scaling transformation of the Navier-Stokes equations using semi-local quantities.
The resulting SLS evolution equation clearly indicates that the ‘leading-order effect’ of
variable properties on turbulence can distinctively be characterized by the semi-local
Reynolds number, and that higher-order effects, such as solenoidal dissipation, pressure
-work, -diffusion and -dilatation, are indeed small and that they play a minor role
in modulating turbulence for the cases investigated herein. Moreover, if a turbulence
model is solved in its SLS form, instead of its conventional compressible form, we
showed that an excellent agreement with DNS can be obtained. We anticipate that
the formulation of the SLS turbulent kinetic energy, also has the potential to allow
for better characterizations and improved turbulence modelling of more complex flow
configurations, such as developing supersonic boundary layers, or strongly heated or
cooled flows with fluids close to their vapour-liquid critical point. Yet, this will have to
be explored in future studies, especially for general geometries.

We thank Andrew Trettel and Johan Larsson for kindly providing data for the super-
sonic turbulent channel flow. We also acknowledge the access to large scale computing
facilities from the Netherlands Organisation for Scientific Research (NWO) through the
grant with the dossier number SSH-223-13.

Appendix A. Derivation of the SLS continuity equation

By applying the scaling transformation to the continuity equation, we may write

*

Oprp  Op)puri) _ ) Ob  {p)us Ot \ i Op)us _ gy

o T hom o T h om, T h on

With the definition of the semi-local friction velocity ur = +/7y/ (p) and with the
assumption that the averaged wall shear stress 7, is constant (valid for fully developed
channel flows), or that 7, changes slowly in streamwise direction, the spatial derivative
in the last term of (A1) can be written as

3 (p) ux \/— V) 0lp) 1 V7w dp) 1 ,9(p)
o, VT = Vw0 axz T2 /) i 27 0a, (A2)

Substituting the final expression of (A2) into (A1), and multiplying the result by
h/({p)ur), gives the semi-locally scaled continuity equation (2.2).

Appendix B. Derivation of the SLS momentum equation
By applying the scaling transformation to the non-conservative form of the momentum
equation, we may write

i oo Ourl _ 9(p)upp | Doy ot
phuzp gy + o Pty = = haa T o, TP (B1)

arbitrary body force. Again making use of the assumption that 7, is constant, it is
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first convenient to express the spatial gradient of u: as

out 8\/1 8\/1 p) d{p 1urd
&fcz p> &’Ez ) Oy
with d; = 0z,{(p)/(2 <p>) Now, applying the product rule for the spatial derivative in the

advection term (second term in (B 1)) and using the result of (B 2), we can write

Ok (p)ur® (. dd
77 P A U e . . B

In a similar fashion, we may also use the product rule for the derivatives in 6;; and use
(B 2) to obtain

() it [O0; | 0d; 2 Di
h 6$j 6.%1 3 6$k

Uij =

5i; — <aidj +iijd; — gakdkaij)] . (B4)

Making use of (B3) and (B4), multiplying (B1) by h/({p)u*?), and considering that
(p)ur® = 7, (such that it can be moved across derivatives), one obtains the SLS

momentum equation (2.3), where the viscous stresses (B4) are scaled by 1/ReZ, with
Re* = (p)uth/ (). Note, the arbitrary forcing is normalized as f; = f;(h/ux?).
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