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Executive Summary

Solar sailing is a propellantless propulsion method based on the use of large reflective surfaces to maximize

the effect of solar radiation pressure on spacecraft. Despite the wealth of research on solar-sail mission design

in the literature, there is a clear lack of studies on the effects of uncertainties for these missions, especially for

those in the near-Earth environment. This gap in the literature might appear surprising, as sailcraft behaviour

is complex and difficult to predict from Earth, and thus solar-sail mission design is bound to be burdened with

uncertainties.

This thesis addresses the significance of uncertainty quantification in solar-sail missions, focusing on

the uncertainties associated with the sail’s optical coefficients, structural deformation, and attitude pro-

files for missions in the near-Earth environment. The analysis is presented for sailcrafts in low-Earth Sun-

synchronous orbits that use locally-optimal steering laws to increase their altitude or inclination [1, 2], a set

of conditions that are inspired by the future Advanced Composite Solar Sail System mission [3].

The solar-sail dynamics are modelled considering the Earth’s gravitational, solar radiation pressure, and

aerodynamic accelerations. The solar radiation pressure acceleration is computed through the Generalized

Sail Model devised by Rios-Reyes and Scheeres [4], which is used to model the acceleration of non-ideal,

non-flat sails efficiently. The shape of the sail is assumed to follow the deformation model presented by Gau-

vain and Tyler for the Solar Cruiser spacecraft [5], which features parabolic boom deflection and membrane

billowing. The aerodynamic acceleration is computed through the non-rotating flat-plate hyperthermal free-

molecular flow model proposed by Storch [6]. Finally, the attitude uncertainty is modelled through two an-

gular offsets from a nominal direction, whose evolution’s are described as Ornstein-Uhlenbeck processes [7].

The analyses performed in this thesis aim to quantify the uncertainties in the altitude-increase and

inclination-changing capabilities of solar sails, given some known uncertainties in the sail model parame-

ters and attitude control profile. To achieve this, two uncertainty propagation methods are used, namely the

Gauss von Mises and Monte Carlo methods. The former is a very computationally efficient σ-point method

specifically designed for perturbed two-body problems [8]. The Monte Carlo method, on the other hand,

achieves a higher accuracy at the cost of a larger computational effort. In light of this, the Monte Carlo method

is used to validate the Gauss von Mises method or whenever the latter method cannot be employed.

The findings highlight the substantial impact of uncertainty in the sail’s optical coefficients on mission

performance. By considering uncertainties corresponding to the current state of the art in solar-sail manufac-

turing, it was found that the maximum altitude gain achievable by sailcraft in Earth-bound orbit is associated

with a significant uncertainty, which can reach values even in the order of 8.1% of the altitude increase found

when no uncertainties are accounted for. On the other hand, for the case of inclination-increase maneu-

vers, a worst-case uncertainty of 16.5% is found. The largest uncertainties in altitude gain appear for orbits

with a local time of the ascending node at approximately 6 AM or 6 PM. For sailcraft performing inclination-

increasing maneuvers, the largest uncertainties in mission performance appear for orbits with local time of

the ascending node at approximately 2 AM and 2 PM. Among all optical coefficients, the uncertainty in spec-

ularity played the largest role in performance uncertainty, followed by the uncertainty in reflectivity. The sail’s

structural deformation was found to have a minimal impact on the performance uncertainty.

The analysis on attitude uncertainty revealed that the magnitude and speed of change of the solar-sail at-

titude offset from a nominal profile strongly impact the mean and spread of the distributions of the achieved

altitude and inclination gains. The Ornstein-Uhlenbeck process was found to be an effective tool in mod-

elling angular offsets with varying characteristics, demonstrating its flexibility and suitability for the analyses
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at hand.

To the best of the author’s knowledge, research on the effects of uncertainties on the solar-sail dynam-

ics and mission design has been conducted only to a limited-first order extent for Earth-bound missions.

In light of this, the findings presented in this thesis provide a thorough insight into this topic. This work

highlights the importance of characterizing this uncertainty, and it provides valuable insights for improved

mission planning, risk assessment, and decision-making. It additionally demonstrates novel techniques for

the modelling and propagation of uncertainties, such as the use of the Ornstein-Uhlenbeck process and the

Gauss von Mises method.
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A
Introduction

Space exploration captivates our imagination and drives our inquisitiveness, compelling us to extend the

frontiers of knowledge and embark on journeys into uncharted territories. This thesis delves into the field

of solar sailing, an innovative concept in space propulsion that harnesses the power of sunlight to traverse

the vast expanse of space. In particular, the many uncertainties associated with this nascent technology are

investigated, and their impact on mission performance in the near-Earth environment is quantified.

A.1. Solar sailing
Solar sails represent a promising form of spacecraft propulsion offering an alternative to conventional meth-

ods that rely on the expulsion of reaction mass. Indeed, these solar sails harness the inherent momentum

carried by solar photons, enabling spacecraft to traverse space without the need for propellant-based sys-

tems, in a similar fashion to how ships navigate the oceans.

The physical principle underlying solar sailing is solar radiation pressure (SRP), wherein photons trans-

fer momentum to the sail when they are reflected or re-emitted from the sail, thus generating a propulsive

acceleration. To maximize this acceleration, solar sails necessitate the interception of a significant number

of photons, thus requiring the use of large sail surfaces. By increasing the sail area, the total momentum

imparted by the photons is amplified, therefore resulting in enhanced acceleration and travel capabilities.

The reflectivity of the sail’s surface also plays a significant role in maximizing propulsion. A solar sail

should function as a near-perfect reflector, ensuring minimal energy loss during the reflection process. This

requirement calls for the development of advanced materials and coating techniques that can achieve high

reflectivity across a broad range of wavelengths, while also being able to withstand thermal and structural

loads. By reflecting photons with minimal absorption or scattering, solar sails maximize the momentum

transfer from the incoming sunlight into a desired thrust direction.

Critical to the success of solar sails is the consideration of their mass. To achieve optimal acceleration,

solar sails must be constructed using lightweight materials that minimize the overall mass of the spacecraft-

sail system. Low masses and moments of inertia allow the solar sail to respond more efficiently to the pressure

exerted by sunlight as well as to control efforts, which translates into greater propulsion and maneuverability.

Control over the orientation of the solar sail is crucial to maneuvering: Sailcraft can increase or reduce

the generated SRP acceleration, as well as orient it in a desired direction, by modifying the sail’s attitude with

respect to the incident sunlight. However, not all thrust directions are possible, as the thrust generated by

SRP cannot be directed opposite to the direction of sunlight. Thus, unlike traditional propulsion methods,

1
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thrust magnitude and direction are not only intrinsically coupled, but also highly constrained.

Unlike conventional propulsion systems that rely on finite resources or chemical reactions, solar sails

harness the inexhaustible power emitted by the Sun, which might enable previously unthought-of mission

durations. Decades long station-keeping, both around planetary bodies or around Lagrange points, might

only be achievable through solar sails [1–3]. Travel to distant starts, which would take decades even at rela-

tivistic velocities, may be enabled through solar photonic assists or laser-propelled light sails [4].

In summary, solar sails are a groundbreaking propulsion technology that leverages the momentum of

photons to navigate space. Through strategic sail design, lightweight materials, high reflectivity, and pre-

cise control over its orientation, solar sails unlock new avenues for efficient interplanetary travel and orbital

maneuvering. Thus, as humanity continues to push the boundaries of exploration, solar sailing stands as a

promising frontier, enabling us to venture further into the cosmos.

A.2. Solar-sailing heritage
The concept of solar sailing originated in the early 20th century, when visionaries such as Fridrickh Tsander

and Konstantin Tsiolkovsky pondered the possibility of utilizing the pressure of light for space travel [5]. Tsi-

olkovsky introduced the idea of propulsion through light as early as 1921, while Tsander developed more

practical solar-sailing concepts in 1924. However, it was not until the 1950s that solar sailing regained the

attention of the scientific community. In 1951, Carl Wiley published his theoretical research on feasible so-

lar sailing, where he showed considerable optimism about the concept. In 1958, similar optimism would be

shared by Richard Gawkin, who remarked on the elegance of solar sails arguing that the inherent practical

difficulties of solar sailing were relatively small compared to other challenges associated with space travel.

Research on solar sailing would continue during the following decades, with each study further proving

the potential of solar sailing. In 1976, Jerome Wright and Janice Warmke found a trajectory that would allow

a spacecraft propelled solely through a solar sail to rendezvous with the Haley comet at its perihelion in only

4 years [6]. Because this perihelion passage occurred in 1986, this would require a 1982 launch, allowing

for 6 years of mission development. Given the incredible scientific value of a rendezvous with the comet,

the National Aeronautics and Space Administration (NASA) started working on the mission in the same year,

1976 [5]. Two propulsion systems were considered to reach the Haley comet: on the one hand, a solar sail,

and, on the other, a more traditional solar-electric propulsion system. However, given the higher technology

readiness level of solar-electric propulsion and, therefore, its lower mission risks, in 1977 NASA opted to drop

the solar-sail concept. In spite of this, the entire mission would be cancelled a short time later due to cost

issues, and NASA never achieved rendezvous with the comet.

Despite the fact that a solar sail never saw the light of space in the 1980s, the Halley comet’s mission

concept boosted interest for the technology. During the 1980s and 1990s further research was conducted on

several solar-sail mission concepts, for applications both in the Earth-Moon environment and interplanetary

regime. It was during the 1990s, however, that the first experiments on deployment of gossamer structures

took place. Cosmonauts aboard the MIR space station observed the successful spin-deployment of a stowed

reflector surface. Shortly after, an inflatable antenna was deployed during a Space Shuttle mission, which

demonstrated the potential of deployable thin structures in space.

The first attempt at deploying an actual solar sail, a thin reflective surface whose main goal is propulsion

through radiation pressure, took place in 2005, when the Planetary Society launched their solar sail in a sub-

orbital rocket. However, the launcher promptly failed and thus the mission was lost [9]. The first successful

solar-sail mission came only five years later, when the Japan Aerospace Exploration Agency made history

with the deployment of the IKAROS solar power sail [10]. They demonstrated the feasibility of solar sailing

for interplanetary propulsion and attitude control through a fly-by mission to Venus. Figure A.1 shows a

photo of the deployed sail in space. A year later, NASA would also achieve success through the NanoSail-
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Figure A.1: Deployed IKAROS sail in space. Image

credit JAXA [7].

Figure A.2: Fully deployed NanoSail-D. Image credit

NASA [8].

D2 mission, a solar sail in low Earth orbit whose main goal was to demonstrate the feasibility of drag sails for

faster debris reentry [11]. Figure A.2 shows the deployed NanoSail-D spacecraft on Earth, which had the same

configuration as NanoSail-D2.

In 2015, the Planetary Society would finally achieve successful sail deployment in low Earth orbit through

the Light-Sail 1 mission, which re-entered the atmosphere after just a week in orbit [12]. Its successor, Light-

Sail 2, remained in orbit from its launch date in June 2019 until reentry on November 2022 [13]. During this

period, the Planetary Society was able to downlink images of the sail, which would later be used to study the

deployment performance and degradation of the sail in orbit. Furthermore, they were able to perform orbit

raising by a measurable amount through a solar sail, thus becoming the first mission to prove the feasibility

of solar sailing as a propulsion mechanism for missions in low Earth orbit [14].

In November, 2022, the Near-Earth Asteroid (NEA) Scout mission, a CubeSat designed to fly-by and return

data from a near-Earth asteroid, was launched. Unfortunately, the NEA Scout team was unable to make

contact with the spacecraft, and the mission was considered lost in December, 2022, without ever leaving

the Earth-Moon system [15]. Finally, solar sailing has also gained some traction on the private sector, with

the newly founded “Gama” start-up promising “low-cost, reliable and scalable solar sails” for the exploration

of the Solar System [16]. In January, 2023, they successfully launched and deployed their “Gama Alpha” 6U

CubeSat, which was equipped with a 73.3 m2 solar sail.

A.3. Future solar sailing missions
It took almost a century for solar sailing to evolve from the imagination of early space pioneers to reality,

and it is hard to imagine what humanity will achieve in the next century through solar sailing. The solar-sail

missions mentioned in the previous section proved that solar sailing has great mission-enabling potential,

which will be tested in the future missions discussed in this section.

The Advanced Composite Solar Sail System (ACS3) mission will likely be the next solar-sail-propulsed

spacecraft to be launched from the Earth [17, 18]. The ACS3 mission is a collaborative project lead by a team

at NASA Langley; its primary objective will be the demonstration of the use of composite, hollow structural

support booms. These have the advantage of being lighter and more easily stowed than metallic booms, while

also reducing by two orders of magnitude the thermal deformations in space. While the ACS3 mission will

feature a solar sail of approximately 75 m2, the demonstrated boom technology will be able to support sail

sizes of 500 m2, and follow-on composite technologies are expected to be able to enable the deployment of

sails with areas up to 2,000 m2.

NASA’s Marshall Space Flight Center’s Solar Cruiser mission is intended to be a technological follow-up on
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the failed NEA Scout mission, mounting a much larger 1,653 m2 sail supported by composite booms [19]. The

mission objective is to demonstrate several key technologies for the future of solar sailing, such as precise atti-

tude control through active mass translation and reflective control devices on the sail. Its proposed trajectory

features a temporary stay in a sub-L1 orbit, followed by a prolonged heliocentric inclination-increase maneu-

ver. Consequently, this mission shall also demonstrate the use of solar sails for stabilized orbiting of Lagrange

points and the achievement of high-inclination heliocentric orbits. Solar Cruiser is expected to serve as a

pathfinder mission for a follow-on solar-sail mission to be placed in a high-inclination solar orbit [20]. This

mission would be the first to produce images of the Sun’s polar regions, which would be of incredible value to

the heliophysics science community.

The Japan Aerospace Exploration Agency (JAXA) has also shown interest in developing new solar-sail mis-

sions. Their Oversize Kite-craft for Exploration and AstroNautics in the Outer Solar System (OKEANOS) was

a proposed L-class mission that used a 2000 m2 sail to produce thrust through photon reflection and power

through ultra-thin solar cells embedded in the sail surface [21]. The sail would have rendezvous with a Trojan

asteroid, where it would have released a lander to perform in-situ sample science. Unfortunately, this mis-

sion was not selected for launch due to cost concerns. However, many of the technologies developed during

its conception will enable the future generation of JAXA solar sail missions. Some of the early mission con-

cepts include the use of solar sails to enable the next JAXA sample-return mission or a 6U solar sail CubeSat

deployed as a piggyback payload of a Lunar-bound spacecraft [22].

The private company Gama also has plans for future missions. While they are working on “Gama Beta”, a

mission to demonstrate navigation of commercial solar sails, their more ambitious plans envision a 2030 mis-

sion, “Gama Epsilon”, which aims to be the first space exploration mission ever to reach the Oort Cloud [16].

Other organizations aim for scientific targets even further away than the Oort cloud. The “Breakthrough Ini-

tiatives”, for example, are a suite of privately-funded space science programs, among which is the “StarShot”

project, which aims to visit our neighbouring star system, Alpha Centauri [4]. Their mission proposal con-

sists of hundreds of ultra-light nanocrafts equipped with lightsails propelled by lasers beamed from the Earth.

With a theoretical maximum speed of 100 million miles an hour, i.e., 20% of the speed of light, this constel-

lation of sailcraft would reach Alpha Centauri in only 20 years. In this way, the constellation would then be

able to send back to Earth images of the planet “Proxima b”. However, as one might imagine, this project has

a significant number of technological challenges.

A.4. Sources of uncertainty in solar sailing
In contrast to the optimism of the early pioneers of solar sailing, real sailcraft missions have proved to be

extremely difficult to design and fly. On the one hand, this has been due to the technological burdens asso-

ciated with deploying large lightweight, flexible structures in space, and controlling them accurately. On the

other hand, these systems are also associated with several uncertainties, which render the design of solar-sail

missions highly challenging.

The force that a solar sail is able to produce depends on many factors. One of these is the amount of sun-

light that reaches the sail, which depends on the distance from the sail to the Sun, the Sun’s activity, and the

potential shadowing of this light due to occulting bodies. Assuming that the position of the sail is known, one

could assume that the distance between the Sun and the sail can be estimated with considerable accuracy. In

contrast, the solar activity, or more specifically the Total Solar Irradiance (TSI), is very complicated to predict

accurately. As shown in Figure A.3, the TSI presents significant rapidly and randomly evolving changes, with

values approximately 1 W{m2 smaller or larger than its yearly average. In light of this and the difficulty in pre-

dicting such alterations in the solar radiation intensity, it is inevitable to consider the TSI as an uncertainty in

the solar-sail dynamics.

Shadowing of the sunlight due to the presence of the Earth and other celestial bodies is an additional
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Figure A.3: Total Solar Irradiance (TSI) at 1 AU from the Sun in the 2004-2020 period. Data obtained from the

SORCE mission TIM instrument [23]. The yellow line represents the average during this period.

source of uncertainty. Srivastava et al. [24] conducted a study on how the conical and cylindrical shadow

models were able to predict eclipse times compared to onboard data from four low Earth orbit satellites. Ac-

cording to their findings, the cylindrical model tends to miss the entry and exit epochs by periods of 10 ´ 5 s,

while the conical model achieves errors of approximately 5 s. For reference, these satellites spend an average

period of 16 ´ 22 s in penumbra during each orbit, while umbra occurs for approximately 35 min. On the

other hand, the work of Vokrouhlicky et al. [25] showed the effects of Earth oblateness and the atmosphere

(Rayleigh scattering) on the effective shadow factor. They conducted long-term propagations including or ig-

noring these effects and concluded that, while considering Earth oblateness did not have a significant effect

on the orbit, the atmospheric effects did have a noticeable impact [25–27]. However, their models for Rayleigh

scattering heavily depend on several atmospheric parameters, which given the atmosphere seasonal and ge-

ographical dependencies and generally chaotic behaviour, should be treated as uncertain values [27]. Finally,

Srivastava et al. [24, 28] considered the effects of Lunar eclipses on the solar radiation pressure and found

that these eclipses are rare (between 0 and 4 per year), short (a few tens of minutes), and usually only partial;

therefore, they are generally safe to neglect. Overall, however, it is clear that shadowing is difficult to predict

and represent another potential source of uncertainty.

The solar radiation pressure that a sail is able to generate is also strongly dependant on its optical char-

acteristics. The degree to which a sail is able to reflect, diffract, or absorb incoming photons depends on

many factors, such as the materials being used, the degradation of the sail, imperfections in the surface

(such as tears and wrinkles), the sail’s attitude relative to the incoming photons, and so forth. In 2015 and

2017, Heaton and Artusio-Glimpse [29, 30] published two reviews of the optical coefficients used in the NASA

solar-sail standard model, which corresponds with the optical coefficients of the NEA Scout sail. They col-

lected data from tests performed on a specific film material and published values for the obtained effective

optical coefficients. Because these results are material-dependant, they are not generally applicable to all

solar-sail missions. Nevertheless, an important qualitative conclusion can be drawn: determining a sail’s

optical coefficients is an empirical process with associated uncertainty. On the other hand, several authors

have remarked on the significant effects of solar-sail degradation for long-term missions, which cause a con-

tinuous change in the optical coefficients [31–33]. Because these models have not been verified yet through
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Figure A.4: Commanded and real attitude profile of the LightSail-2 mission. Figure extracted, as is, from

Reference [35].

(a) Solar flux index. (b) Geomagnetic activity index.

Figure A.5: Historic data of the daily average F10.7 and AP indices. The yellow line represents a 2-year moving

average. Data from the National Centers for Environmental Information (NCEI) database [37].

mission data, it would also be sensible to treat the solar-sail degradation process as uncertain.

Finally, one of the largest unknowns in the design of real solar-sail missions is the shape that the sail’s

membrane assumes after its in-orbit deployment [34]. Indeed, predicting the behavior of the sail during

and after its deployment is a highly complex task, as performing ground tests that perfectly replicate zero-

gravity conditions is impossible. Despite this, different factors can be considered which affect the sail shape.

For example, tension imbalance between support booms can lead to sail membranes being slightly skewed,

while thermal deformation and aerodynamic or radiation pressure lead to boom bending and membrane

billowing. Also, deployment errors and unexpected buckling can lead to deployed booms of different lengths.

Finally, rapid maneuvers can cause the sail film and booms to flex and change shapes until they stabilize

again. All these phenomena alter the effective surface of the sail and reflection angle with respect to sunlight,

thus changing the acceleration produced. As such, it is necessary to consider the sail’s shape in orbit as a

highly uncertain parameter.

All the previously mentioned sources of uncertainty not only affect the force that a sail is able to produce,

but also its torque. This, coupled with other factors such as sensor or actuator error, leads to the real attitude

profile of a sail differing from its commanded profile. Recent flight data from the LightSail-2 mission supports

this argument, as it has shown how difficult it is for solar sails to adhere even to a simple "on-off" commanded

attitude profile, see Figure A.4. Moreover, following a similar rationale, the control design for the NEA Scout

mission took these expected uncertainties into account and developed robust control algorithms accordingly

[36]. In light of the above, a certain degree of uncertainty ought to be considered also in the attitude of a solar

sail and, in particular, in its ability to follow a nominal control profile.

The large surface area of solar sails not only makes them sensitive to radiation pressure, but also causes
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Figure A.6: Mean and 3-σ dispersion of East-West wind speed in January according to the MET-07 model.

Data from Reference [38].

significant aerodynamic forces on the spacecraft. These aerodynamic forces are usually difficult to predict

given how they depend on the generally chaotic behaviour of the atmosphere as well as the surface prop-

erties of the spacecraft. The atmospheric density on the thermosphere, for instance, largely depends on the

geomagnetic (AP) and solar activity (F10.7) indices. Figure A.5 shows the evolution of these parameters during

the past decades [37]. While some general trends can be appreciated, it is also apparent that the behaviour is

chaotic and hard to predict accurately. This, in turn, makes atmospheric density predictions highly uncertain.

Similarly, the local wind speed that a sail might be subject to in the thermosphere depends on many

factors. Figure A.6 displays the mean and 3-σ dispersion of the East-West wind according to the Marshall

Engineering Thermosphere 07 (MET-07) model, and similar results can be obtained for the North-South and

upward wind. As seen in the figure, the uncertainty associated with the wind is significant. This, in turn,

impacts the velocity of the impinging flow on the sail and therefore the aerodynamic force produced.

Additionally, the shape and building materials of the spacecraft also introduce uncertainty in the aero-

dynamic forces. Among other factors, the drag and lift coefficients of the sail depend on the momentum

accomodation coefficients of its surface. However, the literature on these coefficients suggests that they are

very difficult to estimate: they depend on the surface material (and its degree of contamination), on the com-

position of the air (and thus altitude in the atmosphere), on the velocity of the impinging molecules, and

on their incidence angle [39–41]. Knechtel and Pitts [42] performed an in-depth experimental study of the

momentum accommodation coefficients for nitrogen ions impacting on aluminum. They found that these

coefficients depend very strongly on the energy of the ions and the incidence angle. For instance, they re-

ported a change in the normal coefficient from 0.4 to 0.15 when the incidence angle changes from 20 to 50

degrees. Additionally, a more expansive study was completed by Cook and Hoffbauer [39] including different

gases and surface materials, which highlighted the strong dependence of these coefficients on these factors.

All these studies indicate that any estimate of these coefficients is likely strongly uncertain. These findings,

along with the already discussed uncertainty in sail shape, indicate that the drag and lift coefficients of the

sail are bound to be uncertain.

Finally, other perturbing accelerations in the solar-sail dynamics are affected by uncertainty. Among these

is the planetary radiation pressure acceleration, i.e., the acceleration due to the radiation reflected and re-

emitted by planetary bodies. To this date, analyses on the effect of the planetary radiation pressure acceler-

ation on the sailcraft dynamics have been conducted only to a limited extent. There are only a few studies

in the literature providing models to predict this perturbing acceleration and quantifying their accuracy. As

such, there are very few papers in the literature suggesting models and quantifying their error. The most

accurate models available are arguably those that consider empirical albedo and infrared radiation maps,

assuming a non-ideal sail model [43]. Nevertheless, while these empirical maps provide a way to capture

the geographical variability of the Earth’s albedo index and infrared radiation intensity, one finds that these
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parameters also depend on other factors, such as the light scattering properties of the atmosphere, cloud

coverage, time of the year, and so forth [44]. Because of its complex behaviour, it is difficult to exactly predict

the Earth’s albedo at future dates. This, along with the uncertainties on solar activity and sail configuration

already discussed, makes planetary radiation pressure highly uncertain. Moreover, the lack of mission data to

verify these models suggests that there might be other uncertainties that are yet to be discovered and quan-

tified. The upcoming ACS3 mission may be the first solar sail to employ calibration steering laws to provide

some insight into the real forces caused by planetary radiation pressure on sailcraft [45].

In conclusion, the forces acting on a solar sail in the Earth environment are riddled with uncertainty.

While future technology development and experimental data will help ameliorate the effects of these uncer-

tainties, currently the design of solar sail missions should take into account these uncertainties and plan for

their effect on mission performance.

A.5. Studies on uncertainty in solar sailing
The issue of significant uncertainties in solar-sail mission design has been identified and investigated in the

literature before. For instance, Yamaguchi et al. [46] discussed the challenges of developing precise solar-sail

force models on the ground and proposed estimation strategies based on orbital data. They argued that cer-

tain factors that influence the solar radiation pressure force, like wrinkles, billowing, or material degradation,

are difficult to predict on ground, and thus should be treated as uncertain parameters to be estimated from

flight data.

Eldad et al. [47] developed robust attitude control algorithms that account for uncertainties in sail defor-

mation, moment of inertia, and effective reflectivity. They remark on the difficulties of ground-testing fully

deployed sails, as sail structures are designed for zero-gravity environments. Consequently, fully character-

izing their flexible behaviour, and thus their shape and torque, is impossible. In response, they argued for a

robust attitude control strategy that would account for this uncertainty.

Nicolai et al. [48] presented a study on the impact of uncertain optical parameters and solar irradiance on

heliocentric solar-sail trajectories. Their study was the first to attempt to quantify the impact of thrust vector

uncertainty on solar-sail trajectories. In doing so, they neglected degradation effects on the sail material,

billowing of the structure, and did not consider any kind of attitude uncertainty. They employed a generalized

polynomial chaos procedure for uncertainty propagation and showed that the specularity optical coefficient

constitutes the largest source of uncertainty for heliocentric trajectories.

Finally, Oguri et al. [36] devised a robust trajectory design for the NEA Scout mission, considering un-

certainty in the SRP thrust vector. They developed robust attitude profiles under the assumption that the

generated force magnitude and direction might be uncertain. Based on estimates from the NEA Scout guid-

ance, navigation and control team, they assumed a pointing error with standard deviation of 1.5 deg and

thrust magnitude error of 1.5%. Their stochastic approach achieved resilient trajectories able to meet the

mission requirements.

As one can see, the current body of research concerning uncertainty in solar sails encompasses only helio-

centric trajectories, neglecting the Earth’s orbital domain. In light of this, the research presented in this thesis

aims to fill this knowledge gap by investigating the impact of uncertainty in this uncharted environment.

A.6. Uncertainty propagation
Uncertainty propagation algorithms allow one to propagate some known uncertainty about a system so as

to determine the uncertainty in some figure of merit that is of interest. For example, when the solar-sail dy-

namics are considered, uncertainties in the sail’s optical coefficients and attitude can be propagated to assess

their impact on a sailcraft’s ability to raise its orbit, as indicated by the altitude increase achieved after a given

amount of time. The distribution of the input uncertainties must be known a priori, while the distribution
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of the output uncertainty is approximated by the results of the uncertainty propagation process. There exist

many uncertainty propagation methods in the literature, the most significant of which are presented here-

inafter.

Solving the Fokker-Planck equation allows one to obtain exact solutions to the evolution of uncertainty,

but this method is still considered computationally prohibitive for astrodynamics [49, 50]. In contrast, lin-

earization methods linearize the dynamics in order to find an analytical expression for the propagation of

covariance matrices, which make them very computationally efficient [51, 52]. However, these methods gen-

erally lack accuracy for very non-linear systems like the perturbed two-body problem.

Sample-based methods are those algorithms that propagate a finite number of samples of the input un-

certainty to obtain information about the output uncertainty. Monte Carlo (MC) simulations are the most

well-known sample-based technique for uncertainty propagation; the rely on randomly drawing a large amount

of samples from the input uncertainties. σ-point methods, on the other hand, employ a small set of samples

chosen ad hoc to produce as much information about the output distribution as possible. These methods

make assumptions about the shape of the output distribution, which can be a source of inaccuracy if the

chosen shape does not correspond with the real shape of the distribution.

The unscented transform method is an example of a σ-point method. This algorithm is based on a gen-

eralization of the Kalman filter for non-linear systems and it assumes that the output distribution is normally

distributed [53, 54]. For perturbed two-body problems, however, this assumption is not justified, as orbital

uncertainties usually lie on a non-Gaussian banana-shaped arc [55]. The Gauss von Mises (GVM) method,

another σ-point algorithm, aims to account for this effect by carefully selecting the system with which to

represent the spacecraft’s state and by assuming a different output distribution shape [56].

Polynomial chaos expansion methods approximate the map that propagates inputs to outputs of interest

through a finite series of polynomials [57, 58]. However, the computational cost of the PCE method grows

exponentially with the number of dimensions of the problem and the desired accuracy, which leads to large

computational costs for astrodynamic problems [55].

The previously discussed linearization methods can be understood as a first-order Taylor expansion method

of the solution of the propagation. Other methods attempt to provide higher-order expansions to improve on

the accuracy of linearization methods. Both the state-transition tensor and differential algebra methods aim

to achieve this. The state-transition tensor method is based on integrating partial derivatives of the system’s

dynamics along the trajectory [59]. Differential algebra, on the other hand, avoids the issue of having to find

analytical expressions for the partial derivatives of the dynamics. Instead, it leverages a new set of algebra

that is capable of obtaining a Taylor expansion for an arbitrarily complex function by building from the Tay-

lor expansions of a limited set of fundamental functions [60].

This work focuses on the use of the MC and GVM methods for uncertainty propagation. As a σ-point

method, the GVM method is very computationally efficient and allows one to treat the propagation as a

black-box. The MC method, on the other hand, is used whenever the GVM method is not applicable and

as a validation tool for the GVM method. Despite its large computational cost, the MC method has been

chosen as it can provide high-fidelity results, is very simple to implement, and is well understood in the engi-

neering community. As such, this thesis stands to provide the first validation of the efficient GVM method for

uncertainty propagation for solar-sail mission design.

A.7. Research questions
This section introduces the research questions to be addressed in this thesis. These questions were drawn

after analyzing the previously discussed existing knowledge gaps in the literature and considering what might

be of interest for future solar-sail missions in the near-Earth environment.

• Q1. Which of the uncertainty sources affecting the solar radiation pressure acceleration is the strongest?
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• Q2. How does each of the sources of uncertainty affect the achievable altitude and inclination change

after a maneuver (which are key figures of merit)?

• Q3. Is there significant coupling between different uncertainty sources? To what extent can one ap-

proximate the combined effect of all uncertainty sources be approximated by considering a reduced

number of sources (can some sources of uncertainty be neglected)?

• Q4. How does the uncertainty in figures of merit evolve in time?

• Q5. Is the Gauss von Mises uncertainty propagation method an accurate estimator of uncertainty?

• Q6. How does the answer to previous questions change when considering different orbits, mission

dates, or figures of merit?

A.8. Thesis structure
Hereinafter the main content of the thesis is presented. This content is structured as a paper, which will be

submitted to a relevant journal following the defense of this thesis. In light of this, the “Paper” Chapter B is

organized in a format amenable for publication. It features a brief introduction, Section 1, which might re-

estate some of the concepts introduced in the thesis’ “Introduction” Chapter A. This is followed by a section

on the dynamical models considered in this work, introducing relevant reference frames, forces acting on the

sail, and attitude control algorithms, see Section 2. Then, a section on uncertainty modelling is presented,

which describes the sail’s optical coefficient, shape, and attitude uncertainties, see Section 3. This section

also covers the uncertainty propagation algorithms used in the rest of the work. Following, Sections 4 and 5

present the analysis on the effect of these uncertainties on selected figures of merit for mission design. Some

brief conclusions to the work presented in the paper are given next, see Section 6, which are immediately

followed by the more expansive “Conclusion” Chapter C. This focuses on conclusions of the entire thesis

project, addressing how the research questions were answered and possible future work on the topic. Finally,

a series of appendices are presented, see Appendices D-J. These mostly cover implementation details and

further details on the methodology that were deemed not crucial for the paper to be published.
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Abstract

Solar sailing is a promising propellantless propulsion method that employs large reflective

surfaces to harness solar radiation pressure for spacecraft propulsion. Despite the fact that

several solar-sail near-Earth missions will launch in the coming years, there is notable lack

of published studies on the uncertainties associated with missions of this kind. This paper

addresses this gap in knowledge by quantifying uncertainties related to the solar sail’s op-

tical coefficients, structural deformations, and attitude profiles. Through two uncertainty

propagation methods, namely Monte Carlo simulations and the Gauss von Mises method,

the study reveals the significant impact of the optical coefficient uncertainties on mission

performance. The results indicate a worst-case 3-σ uncertainty of 8.1% in altitude gain and

16.5% uncertainty in inclination gain for the NEA Scout solar sail model. Specularity coef-

ficient uncertainty emerges as the primary driver of performance uncertainty among the

analyzed optical coefficients. Structural deformation, on the other hand, exerts minimal

impact. Uncertainty in the attitude profile is modelled through Ornstein-Uhlenbeck pro-

cesses and is found to impact mean mission performance as well as introduce performance

uncertainty. Overall, this work demonstrates the critical importance of characterizing un-

certainties and provides insights crucial for mission planning and decision-making.

Keywords: Solar sailing; near-Earth environment; Uncertainty quantification; Gauss von

Mises; Stochastic Differential Equation

1. Introduction
Solar sailing is a concept that originated in the early 20th century and has since drawn

the interest of space enthusiasts and researchers. A solar sail offers a promising means of

propellantless propulsion by harnessing the pressure of light for space travel. While solar

sailing missions have demonstrated remarkable achievements in the last two decades, the

design and execution of real sailcraft missions remain challenging. These challenges stem,

among others, from the technological complexities of deploying and controlling large flex-

ible structures in space, as well as the uncertainties inherent to solar-sail systems. This
1Corresponding author: juan@garciabonilla.com
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papers addresses these uncertainties, hoping to provide a comprehensive understanding

of their effect on solar-sail missions in the near-Earth environment.

One primary source of uncertainty in solar sailing lies in the estimation of the solar ra-

diation pressure (SRP) acceleration. The acceleration generated by a solar sail depends on

multiple factors, including the amount of light reaching the sail, which is influenced by the

distance from the Sun, solar activity, and potential shadowing due to occulting bodies. The

solar irradiance, which depends on the solar activity, exhibits complex temporal variations

that are challenging to predict accurately [1]. Moreover, shadowing caused by the Earth or

other celestial bodies introduces additional uncertainty, as estimating the exact duration

and impact of shadowing events is inherently difficult [2].

Uncertainty is also present in knowledge of the optical characteristics of the sail’s surface

and their variation in time. Factors such as the sail’s material properties, its degradation,

surface imperfections, and attitude relative to incoming photons influence the reflectivity,

diffraction, and absorption of light. Determining precise optical coefficients is an empirical

process, subject to uncertainty and continuous change due to material degradation over

time [3–5].

Sail deployment and control in space present further challenges. The behavior of sail

membranes and supporting structures in zero-gravity environments is difficult to predict

accurately from Earth. Factors such as tension imbalances, thermal deformations, aerody-

namic pressures, and deployment errors can affect the sail’s shape, leading to uncertainties

in its effective illuminated surface and therefore the exerted force and torque [6].

The attitude control of a solar sail is also subject to uncertainties. Attitude data from the

LightSail-2 mission has demonstrated that real sailcraft often deviate from nominal atti-

tude profiles due to the complexity of maintaining precise control of these structures with

large moments of inertia [7]. Deviation from the desired attitude introduces uncertainties

in the generated acceleration and thus in the overall mission performance.

Existing studies have shed light on uncertainty in solar sailing, solely focusing on he-

liocentric trajectories and neglecting the Earth’s orbital domain [1]. This paper aims to fill

this knowledge gap by investigating the impact of uncertainty in Earth-bound solar sail

missions. In particular, three primary sources of uncertainty are considered, namely the

uncertainties in the optical coefficients, sail deformation, and attitude errors. Quantifying

the effects of these uncertainties on mission performance will contribute to improve the

design capabilities of future solar-sail missions and, in particular, their robustness. This

will allow space agencies and companies to exploit the full potential of solar sailing and

enable novel mission applications.

Following this introduction, the next sections discuss the models, analyses, results and

conclusions of this paper. The dynamical model considered in this work is presented in

Section 2, where the relevant reference frames, solar-sail accelerations, and attitude control

algorithms are introduced. Then, a section discussing the modeling and propagation of the

solar sail’s optical coefficient, shape, and attitude uncertainties is presented, see Section 3.
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SailSun

Figure 1: Sketch of relevant vectors for the dynamics

of a solar sail.
Figure 2: Sail-fixed reference frame OF px̂F , ŷF , ẑF q.

Results for the effect of these uncertainties on selected figures of merit (FoMs) for mission

design are presented in the following sections, see Sections 4 and 5. Some brief conclusions

to the work presented in the paper are given next, see Section 6.

2. Dynamical model
This section introduces the relevant reference frames used in this paper, followed by a com-

prehensive review of the models used to compute the acceleration acting on the sail. Fi-

nally, the attitude control algorithms considered are explained.

2.1. Reference frames

This section introduces the reference frames used in this paper to express the dynamics of

the solar sail.

Earth-Centered Inertial reference frame

The Earth-Centered Inertial (ECI) reference frame, OI px̂I , ŷI , ẑI q, is an inertial frame cen-

tered at the Earth’s center of mass, used to propagate the dynamics of the sailcraft. The

frame has its x̂I axis pointing towards the mean vernal equinox on January 1st, 2000 (J2000).

The ẑI axis is perpendicular to the mean equatorial plane on J2000 and points towards the

North Hemisphere. Finally, the ŷI axis completes the right-handed reference frame.

Sail-fixed reference frame

Figure 1 shows the vectors used in the definition of the sail-fixed reference frame. Note

that, while this work assumes that the solar sail may be deformed, a flat (undeformed) sail

plane is still used throughout this paper for the development of theory. n̂ is the normal

vector to this sail plane, with positive component in the direction of the Sun, r̂@ indicates

the sail-to-Sun direction, and t̂ is the tangent vector to the sail plane, which is contained in

the plane defined by n̂ and r̂@ and points away from the Sun. Finally, α is the pitch angle,

defined as the angle between ´n̂ and r̂@.
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Figure 3: Sunlight reference frame and solar-sail control angles: the pitch angle α and clock angle δ.

The sail-fixed reference frame, OF px̂F , ŷF , ẑF q, is a non-inertial reference frame centered

at the spacecraft. As displayed in Figure 2, the ẑF axis points in the direction of the solar-

sail normal vector n̂, the x̂F axis points along the direction of one of the booms of the sail

(arbitrarily chosen, without loss of generality), and finally, ŷF completes the right-handed

reference frame.

Radial-Transverse-Normal reference frame

The Radial-Transverse-Normal (RTN) reference frame, ORTNpx̂RTN, ŷRTN, ẑRTNq, is a

non-inertial reference frame centered at the spacecraft. The x̂RTN axis points along the

position of the spacecraft in the ECI reference frame, r̂. The ẑRTN axis is directed along the

orbital angular momentum vector, ĥ “ pr ˆ vq{||r ˆ v||, where r and v are the position and

velocity vectors of the sailcraft. The ŷRTN axis completes the right-handed reference frame.

Sunlight reference frame

The Sunlight reference frame, OSpx̂S , ŷS , ẑSq, is a non-inertial reference frame centered at

the spacecraft, first introduced by Macdonald and McInnes [8]. The x̂S axis points in the

Sun-to-sailcraft direction (i.e., the direction of sunlight). The ŷS axis corresponds to the

heliocentric velocity vector of the Earth, and the ẑS axis completes a right-handed reference

frame.

This reference frame is used to define the sail’s control angles, namely the pitch angle α

and clock angle δ, as shown in Figure 3. Within this frame, the pitch angle α is the angle

between the sail’s normal, ´n̂, and the x̂S axis, while the clock angle δ is measured between

the ẑS axis and the projection of the opposite to the normal direction, ´n̂, to the pŷS , ẑSq

plane.

Angular offset reference frame

The angular offset reference frame, Ooffpx̂off, ŷoff, ẑoffq, is a non-inertial reference frame cen-

tered at the spacecraft that is used to conveniently define angular offsets from a reference

direction, λ̂nom. Within this frame, the ẑoff axis corresponds to the reference direction,

ẑoff “ λ̂nom, and the x̂off axis is directed perpendicular to ẑoff and lies in the plane defined
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by ẑI and r@:

x̂off “
λ̂nom ˆpẑI ˆ r@q

ˇ

ˇ

ˇ

ˇλ̂nom ˆpẑI ˆ r@q
ˇ

ˇ

ˇ

ˇ

(1)

Finally, the ŷoff axis completes the right-handed reference frame.

Because the Sun’s position in the inertial reference frame remains approximately con-

stant for short periods of time, the vector pẑI ˆ r@q can also be considered constant. More-

over, the use of the Sun’s position, r@, makes it so that the reference frame is never ill-

defined for the case of λ̂nom “ n̂ and small pitch angles, α.

2.2. Equations of Motion

The dynamics of the solar sail are expressed in the ECI reference frame through the follow-

ing equation of motion:

dv

d t
“ atotal “

GMC

r 3
r ` aJ2 ` aSRP ` aaero (2)

where GMC “ 398600.4415 km3{s2 is the Earth’s gravitational parameter [9], r is the mag-

nitude of r, i.e. the distance between sailcraft and the Earth, aJ2 is the acceleration due

the Earth’s gravitational J2 spherical harmonics coefficient, aSRP is the SRP acceleration,

and aaero is the aerodynamic acceleration. Expressions for these accelerations are given in

the following sections. Note that for this first investigation into uncertainty quantification

in the solar-sail near-Earth orbital dynamics, accelerations with smaller magnitude due to

planetary radiation pressure, third-body effects, and higher-order Earth gravity terms are

neglected.

J2 perturbation

The J2 acceleration, aJ2 , is modelled as per Eq. 20.6 in Reference [9]:

aJ2 “ ´∇
„

1

2
GMCJ2

R2
C

r 3

ˆ

3
z2

r 2
´ 1

˙ȷ

(3)

where z is coordinate of the spacecraft position vector along ẑI , and RC is the reference

radius of the Earth and J2 is the Earth’s J2 gravitational coefficient, both taken from the

GGM03 model [10].

Solar radiation pressure acceleration

The SRP acceleration, aSRP, is modelled through the Generalized Sail Model developed by

Rios-Reyes and Scheeres [11]. This method can compute the SRP acceleration of non-ideal,

non-flat solar sails at small computational costs under the following assumptions: the sail

shape is fixed over time, the same side of the sail is always illuminated, and there is no

self-shadowing. Being a non-ideal SRP model, this method allows to compute the SRP ac-

celeration accounting for reflection, refraction, and re-radiation of photons. According to

this model, the differential SRP force, dFSRP, produced by a differential area of sail dA is

given by:

dFSRP “ PdA
“

´
`

a1 cos2α` a2 cosα
˘

n̂ ` a3 cosαsinαt̂
‰

(4)
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where P is the SRP at the sailcraft location, n̂ is the normal direction to this differential area,

and the a1, a2, and a3 coefficients are given by:

a1 “ 1 `ρs a2 “ B f p1 ´ sqρ`p1 `ρq
ε f B f ´εbBb

ε f `εb
a3 “ 1 ´ρs (5)

whereρ is the fraction of photons that are reflected (reflectivity); s is the fraction of reflected

photons that are reflected specularily (specularity); B f and Bb are the Lambertian coeffi-

cient describing the sail’s deviation of the front (illuminated) and back (non-illuminated)

sides from Lambertian surfaces, respectively; and ε f and εb are the emissivity coefficients

for the sail’s front and back sides, respectively. If one were to integrate over the surface of

the solar sail one would obtain the total acceleration exerted by the sail, independently of

its shape.

Rios-Reyes and Scheeres developed an analytical formula for this acceleration, assum-

ing that the surface can be expressed through its local normal vector at any point in the sail

plane [11]:

aSRP “
PA

m
ν
“

J2 ¨ r̂@ ´ 2r̂@ ¨ J3 ¨ r̂@ ´
`

J1 ¨ r̂@

˘

r̂@

‰

(6)

where m is the mass of the sailcraft, ν is the shadow factor, Jk are tensors of k-th order

defined by the geometry and optical properties of the sail, and A is the projected area of

the sail on the sail plane. When the vector r̂@ is expressed in the sail-fixed reference frame

presented in Section 2.1, the tensors Jk are independent of the position and orientation of

the sail. These tensors are given by the formulas:

J1 “
1

A

ż

A
a3n̄dA J2 “

1

A

ż

A
a2n̄ b n̄dA J3 “

1

A

ż

A
ρsn̄ b n̄ b n̄dA (7)

where b is the outer product (thus J2 is a 3 ˆ 3 dyadic and J3 is a 3 ˆ 3 ˆ 3 triadic), and n̄ is

the local normal to the surface.

The shadow factor, ν, is used to account for the potential shadowing of the sailcraft due

to the presence of the Earth and Moon. In this paper, the so called conical shadow model

described in References [12] and [13] is used to obtain the value of ν, which is equal to

0 when in umbra, between 0 and 1 when in penumbra, and 1 when the sailcraft is com-

pletely illuminated. Within this model, both the umbra and penumbra regions are mod-

elled as cones whose geometry is uniquely determined by the occulting body and the Sun’s

diameter and the distance between them [13].

Solar Radiation Pressure

According to McInnes, the SRP P at a distance r@ from the Sun can be expressed as [14]:

Ppr@q “ P ˚pr@q ¨ F pr@q (8)

where P ˚pr@q is the radiation pressure of a point source [11, 14]:

P ˚pr@q “
I@,1AU

c

ˆ

1 AU

r@

˙2

(9)
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Figure 4: Deformed sail with boom length of 30 m, boom tip displacement of 0.08 m, and billow displacement

of 0.05 m, as per the Solar Cruiser model of Gauvain and Tyler [6]. Isometric view on the left and side views of

the tip-displaced, billowed, and tip-displaced+billowed sail on the top, center, and bottom right, respectively.

with I@,1AU the Total Solar Irradiance (TSI) at a distance of 1 astronomical unit (AU) from

the Sun, c the speed of light, and F pr@q a correction factor accounting for the finiteness of

the solar disk as seen from the sailcraft, which is assumed to be F « 1 in this work given the

large distance between Sun and the Earth. Note that, while the TSI varies noisily depending

on the solar activity, a constant value of 1360.88 W{m2 is assumed in this work. This value

corresponds to the average TSI over the 2004-2020 period, as obtained from the SORCE

mission TIM instrument [15].

Sail shape model

Equation 7 defines the Jk tensors as a function of the solar sail’s shape. This study assumes

that the sail is deformed according to the model presented by Gauvain and Tyler for the So-

lar Cruiser sailcraft [6]. This shape assumes a four-quadrant sail with booms along the diag-

onals. These booms are assumed to deform parabolically due to the thermal loads caused

by the difference in temperature between the sunlit and dark sides of the sail. Moreover,

a billowing effect is also considered to account for scenarios where the deflected booms

produce reduced tension on the membrane. Figure 4 displays a deformed sail with this

shape, as well as side views to clearly show the effects of billowing and tip displacement,

both individually and collectively.

Assuming that the four booms are deflected equally, the surface of a quadrant of the sail

can be expressed as [6]:

∆zpprp ,θpq “ ´∆ztip

´rp

l

¯2
´∆zbillow

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

sinp2θpqsin

¨

˝

rp

2
3

´

l?
2

¯

π

2

˛

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(10)

where ∆zp ă 0 is the displacement of point p along the ẑF axis of the sail-fixed frame;

prp ,θpq is the position in polar coordinates of point p in the plane that the sail would lie

in if it were undeformed, with θp P r0, 90s deg; ∆ztip ą 0 is the displacement of the booms’
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Sail

Figure 5: Direction of the aerodynamic drag, D̂, and lift, L̂, for a flat sail with angle of attack βattack.

tips; ∆zbillow ą 0 is the maximum displacement due to billowing; and l is the boom length,

corresponding to the sail’s half-diagonal length.

Given the analytical formula for the surface of the sail, it is possible to discretize this sur-

face into a finite number of triangular flat mesh elements, Nfaces. From the area of each of

these triangles, Ai , and their normal vectors, n̄i , it is possible to approximate the Jk tensors

as:

J1 «
1

A

Nfaces
ÿ

i

a3n̄i Ai J2 «
1

A

Nfaces
ÿ

i

a2n̄i b n̄i Ai J3 «
1

A

Nfaces
ÿ

i

ρsn̄i b n̄i b n̄i Ai (11)

In this paper, the sail is modeled with 10,000 faces, which is computationally inexpen-

sive and shown to produce relative errors in the SRP acceleration of less than 10´5%.

Aerodynamic acceleration

The aerodynamic acceleration, aaero, is obtained by assuming a non-rotating flat sail in

hyperthermal free-molecular flow. The non-rotating sail assumption is justified given the

small angular rate of the sail compared to its orbital velocity. Moreover, given that the aero-

dynamic acceleration is an order of magnitude weaker than the SRP acceleration, the sail’s

deformation is considered negligible when computing the aerodynamic acceleration. Fur-

thermore, the effect of wind in the upper atmosphere is neglected so that the spacecraft’s

velocity is equal and opposite to the impinging flow velocity.

The assumption of a hyperthermal free-molecular flow has been used often in the liter-

ature to describe the dynamics of air particles relative to a sailcraft in Earth orbit [16, 17].

It assumes the random thermal motion of the air molecules to be much slower than the

velocity of the spacecraft and is valid for large Knudsen numbers, meaning that the fluid-

continuum assumption of the air is no longer applicable [18].

Storch [18] provides the following formula for the aerodynamic acceleration of a flat

plate under these assumptions:

aaero “
ρaerov2 A

2m
rCD D̂ ` CLL̂s (12)
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where ρaero is the atmospheric density, v is the spacecraft’s inertial speed, D̂ and L̂ are the

drag and lift directions, and CD and CL are the drag and lift coefficients. The drag direction,

D̂, points opposite to the direction of the velocity vector, v. The lift direction, L̂, on the

other hand, is contained in the plane defined by the velocity vector and the sail’s normal.

Its direction is perpendicular to the velocity vector, and meets the condition L̂ ¨ n̂in ě 0,

where n̂in is the inner sail normal with respect to the incident flow (D̂ ¨ n̂in ě 0), see Figure

5. These conditions can be expressed as:

L̂ “ signpL̃ ¨ n̂inq ¨
L̃

||L̃||
where L̃ “ v̂ ˆpv̂ ˆ n̂inq (13)

The drag and lift coefficients, CD and CL , respectively, are given by [18]:

CL “

”

σn
vw

v
`p2 ´σn ´σt qsinβattack

ı

sinp2βattackq

CD “ 2
”

σt `σn
vw

v
sinβattack `p2 ´σn ´σt qsin2βattack

ı

sinβattack

(14)

where βattack is the angle of attack of the sail, see Figure 5; σn and σt are the normal and

tangential momentum accommodation coefficients; and vw is the average normal veloc-

ity of diffusely reflected molecules which are in thermal equilibrium with the surface, and

which is given by [18]:

vw “

b

πRTw {2 (15)

where R is the gas constant and Tw is the mean surface temperature.

Estimating the momentum accommodation coefficients, σn and σt , is complicated;

they depend on the surface material and its degree of contamination, the composition of

the air (which is related to the sailcraft’s altitude), the velocity of the impinging molecules,

and their incidence angle [19–21]. Much like previous research on trajectory design [22–24],

this work avoids this complexity by assuming these coefficients to be constant and equal to

σn “σt “ 0.8.

The surface temperature of the sail, Tw , and therefore the average normal velocity vw ,

see Eq. 15, also depend on several factors: the distance from the Sun, membrane mate-

rials, sunlight incidence angle, and whether the sail is in eclipse. Kang et al. provide sail

temperature minima and maxima for different orientations and sail materials according to

environmental thermal analysis performed with a finite element solver [25]. Similar to the

approach used for the momentum accomodation coefficients, in this paper this complexity

is avoided by assuming a constant value for the ratio between the average normal velocity

and the flow’s velocity of vw {v “ 0.05, based on References [23] and [24].

Finally, the atmospheric density, ρaero, is computed using the 1976 U.S. Standard At-

mosphere [26]. This exponential model is chosen due to its simplicity compared to other

alternatives, such as the Marshall Engineering Thermosphere 07 (MET-07) or the Naval Re-

search Laboratory Mass Spectrometer and Incoherent Scatter Radar Extended (NRLMSISE-

0) [27, 28].
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2.3. Attitude Control

Both the SRP and aerodynamic accelerations strongly depend on the attitude of the sail.

Because of this, attitude control is the primary control strategy for solar-sailcraft. This pa-

per considers ideal locally optimal steering laws for planet-centered solar sailing, as de-

scribed by Macdonald and McInnes [8, 29]. Fundamental to this family of control laws is

determining the unit vector, λ̂œ, along which one needs to maximize the SRP acceleration

in order to maximize the rate of change of the orbital element œ. Each orbital element has

a different expression for λ̂œ, which depends only on the instantaneous state of the space-

craft. From the reference vector expressed in the sunlight reference frame, λ̂œ, it is possible

to derive the locally optimal control angles as follows:

tanα“
´3cos α̃`

a

9cos2 α̃` 8sin2 α̃

4sin α̃
where α̃“ arccos

`

λ̂œ,x
˘

(16)

δ“ arccos

¨

˚

˝

λ̂œ,z
b

λ̂2
œ,y ` λ̂2

œ,z

˛

‹

‚
(17)

From these control angles, it is possible to obtain the optimal sail normal direction in

the sunlight reference frame:

n̂optimal “ ´

»

—

–

cosα

sinαsinδ

sinαcosδ

fi

ffi

fl
(18)

Macdonald and McInnes [8, 29] provide expressions for the unit vector λ̂œ for various

orbital parameters. These are given as a function of the instantaneous modified equinoc-

tial elements, tpeq, feq, geq,heq,keq,ℓequ, defined in Reference [30]. Of interest to this work

are the expressions of λ̂œ for the semi-major axis (SMA), a, and the inclination, i . Within

the RTN frame, these directions are indicated as λRTN
a and λRTN

i , respectively, and their

definition is given by [8, 29]:

λRTN
a “

»

—

–

feq sinℓeq ´ geq cosℓeq

1 `p feq cosℓeq ` geq sinℓeqq

0

fi

ffi

fl
(19)

λRTN
i “

»

—

–

0

0

signpheq cosℓeq ` keq sinℓeqq

fi

ffi

fl
(20)

Note that λRTN
a and λRTN

i must be converted to the sunlight reference frame, see Section

2.1, before being used in Eqs. 16 and 17.

When the sail is in umbra (complete shadow), the SRP acceleration generated by the sail

is zero. In this case, the locally optimal control law is ignored and the sail is oriented edge-

wise to the direction of velocity to minimize atmospheric drag, with its normal direction,

n̂, parallel to the angular momentum direction, ĥ.
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Plane 1

Plane 1
Plane 2

Plane 2

Figure 6: Sketch of how the offset normal, n̂off, is built from the intersection of two planes.

3. Uncertainty
This section encompasses the modelling of uncertainties and their propagation into FoMs.

3.1. Constant random value uncertainties

In this paper, the uncertainties due to unknown sail deformation parameters (∆ztip, ∆zbillow)

and optical coefficients (ρ, s, B f , Bb , ε f , εb) are examined. These values are assumed to be

normally distributed random variables that remain constant during propagation.

The uncertainty in these input parameters is propagated into the uncertainty in some

FoM through Monte Carlo (MC) simulations and the Gauss von Mises (GVM) method [31].

A comprehensive review of these methods is presented in Section 3.3.

3.2. Stochastic process uncertainties

In order to consider uncertainties in the attitude control of the sail over the mission profile,

some simulations presented in this paper also consider an attitude offset with respect to

the nominal attitude profile (given by the ideal locally optimal steering laws). This attitude

offset is used to represent more realistic attitude profiles, such as those found in solar-sail

missions with imperfect guidance, navigation and control systems [7].

Definition of the angular offset

The attitude offset is defined by means of the offset normal direction, n̂off, which represents

the actual sail normal direction as opposed to the nominal one provided by the ideal locally

optimal steering laws, n̂nom. To define the offset normal direction, two parameters, γ1 and

γ2, are used, which represent angular displacements along two perpendicular directions

with respect to n̂nom, see Figure 6. When the angular offset reference frame presented in

Section 2.1 is considered with λnom “ n̂nom “ ẑoff, these two directions correspond to the

x̂off and ŷoff axes.

Given the above, two planes can be constructed, whose normals are given by:

n̂plane,1 “ sinγ1ẑoff ` cosγ1x̂off (21)

n̂plane,2 “ sinγ2ẑoff ` cosγ2ŷoff (22)
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Finally, the offset normal direction, n̂off, can be found from the intersection of these two

planes, i.e., n̂off “ n̂plane,1 ˆ n̂plane,2. Figure 6 illustrates how these planes are uniquely de-

fined from the orthogonal offset angles, γ1 and γ2, in the angular offset reference frame.

Note that for the case where the offset angles are zero, the offset normal coincides with the

nominal normal.

Evolution of the angular offset

The angular offsets, γ1 and γ2, are assumed to vary randomly in time and thus are mod-

elled as independent and identical stochastic Ornstein-Uhlenbeck processes [32]. These

processes can be regarded as variations of “random walks” (Wiener) processes, in which

there is a tendency to drift towards the mean value γ1 “ γ2 “ 0. This tendency towards zero

simulates a sail attitude that constantly tries to “target” the nominal attitude. Ornstein-

Uhlenbeck processes are defined by the following stochastic differential equation [32]:

dγi “ ´θγi d t `σdβBr,i ptq (23)

where θ and σ are the characteristic parameters of the Ornstein-Uhlenbeck process, and

βBrptq is a one-dimensional Brownian motion process. An important characteristic of these

processes is that they have a bounded stationary standard deviation, given by σst “σ{
?

2θ.

Because the angular offsets, γ1 and γ2, determine the direction of the sail normal and,

therefore, the accelerations experienced by the sailcraft, Eqs. 2 and 23 are coupled. Con-

sequently, they must be propagated in parallel through the following system of differential

equations:

d
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ffi

ffi
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fi
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fl
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dβBr,1ptq

dβBr,2ptq

ȷ

(24)

Due to the presence of stochastic differential equations in the above system of equations,

propagation must be performed using a stochastic integrator. In this paper, the weak third-

order, additive-noise stochastic integrator proposed by Debrabant is used with a time step

of h “ 16 s [33].

3.3. Uncertainty propagation

Uncertainty propagation algorithms allow one to propagate some known uncertainty about

a system so as to determine the uncertainty in some FoM that is of interest. For example,

when the solar-sail dynamics are considered, uncertainties in the sail’s optical coefficients

and attitude can be propagated to assess their impact on a sailcraft’s ability to raise its orbit,

as indicated by the altitude increase achieved after a given amount of time. The distribu-

tion of the input uncertainties must be known a priori, while the distribution of the output

uncertainty is approximated by the results of the uncertainty propagation process. There
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exist many uncertainty propagation methods in the literature, but this work focuses on the

use of two sample-based methods: the MC method and GVM method.

Sample-based methods are those algorithms that propagate a finite number of samples

of the input uncertainty to obtain information about the output uncertainty. MC simu-

lations are the most well-known sample-based technique for uncertainty propagation. In

MC simulations, many samples are drawn randomly from the input uncertainties. σ-point

methods, on the other hand, employ a small set of samples chosen ad hoc to produce as

much information about the output distribution as possible. σ-point methods make as-

sumptions about the shape of the output distribution, which can be a source of inaccuracy

if the chosen shape does not correspond with the real shape of the distribution.

The GVM method is of interest to this work because, as a σ-point method, it is very

computationally efficient and allows one to treat the propagation as a black-box. The MC

method, on the other hand, is used whenever the GVM method is not applicable and as a

validation tool for the GVM method. Despite its large computational cost, the MC method

has been chosen as it can provide high-fidelity results, is very simple to implement, and is

well understood in the engineering community.

Monte Carlo method

MC simulations are a well-known method for obtaining the probability density function of

a random variable Y that is the result of an arbitrary map ϕ such that Y “ ϕpX q. Its im-

plementation is very simple: one only needs to draw a set of Nsamples independent samples

of the random variable X piq and then compute the corresponding results Y piq of the map

ϕ. Given the law of large numbers, it is possible to prove that by increasing the number of

samples, Nsamples, the distribution of Y piq will approximate the real distribution Y almost

surely (as long as Y has existing and finite moments) [34].

Given a set of output samples,
␣

Yp1q,Yp2q, . . . ,Ypiq, . . . ,YpNsamplesq
(

where Ypiq PRn , then the

mean vector of the distribution, µY PRn , can be approximated as [35]:

µY «
1

Nsamples

Nsamples
ÿ

i“1

Ypiq (25)

while the covariance matrix, ΣY PRnˆn , is approximated by:

ΣY «
1

Nsamples ´ 1

Nsamples
ÿ

i“1

”

Ypiq ´µY

ı”

Ypiq ´µY

ıT
(26)

From the covariance matrix, ΣY, one may obtain the standard deviation of the i -th ele-

ment of the random variable vector Y by taking the square of the i -th diagonal element of

ΣY, i.e., σYi “
a

ΣY,pi ,iq.

Gauss von Mises method

The Unscented Transform method is an example of a σ-point method. This algorithm is

based on a generalization of the Kalman filter for non-linear systems and it assumes that
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the output distribution is normally distributed [36, 37]. For perturbed two-body problems,

however, this assumption is not justified, as orbital uncertainties usually lie on a non-

Gaussian banana-shaped arc [35]. The GVM method, another σ-point algorithm, aims to

account for this effect by carefully selecting the coordinate system with which to represent

the spacecraft’s state and by assuming a different output distribution shape [38].

Horwood and Poore proposed using the GVM joint distribution on an orbital element

space [31]. Let X P Rn and τ P S be random variables2 jointly distributed according to a

GVM distribution. Then, their probability density function (pdf) is given by:

GVMpX,τq “NXpµG,ΣGq ¨VMτpΘGpXq,κGq (27)

where NXpµG,ΣGq refers to the pdf of a Gaussian distribution with mean µG and covari-

ance matrix ΣG, and VMτpΘGpXq,κGq refers to the pdf of the von Mises distribution with

parameters ΘGpXq and κG. The parameter ΘGpXq is given by:

ΘGpXq “αG `βT
Gz `

1

2
zTΓGz where z “ S´1

G
pX ´µGq and ΣG “ SGST

G (28)

In Eqs. 27 and 28, µG P Rn , ΣG P Rnˆn must be symmetric positive-definite, αG P R,

βG PRn , ΓG PRnˆn must be symmetric, κG ą 0, and the matrix SG must be lower-triangular,

which means that SG can be generated from the Cholesky decomposition of ΣG.

The GVM distribution presents attractive properties. For example, it satisfies the peri-

odicity property, so that pdfpX,τq “pdfpX,τ` 2πq. This means that the τ variable can be

treated as the fast-changing angular variable of an orbital element set, while the variable X

can absorb the remaining elements. Moreover, the parameter ΓG can be tuned so that the

distribution takes the “banana” shape distinctive to the (perturbed) two-body problem.

Horwood and Poore provide a formulation to apply the well known σ-point methodol-

ogy to the GVM distribution. They provide formulas for the equivalent 3rd degree method,

which similarly to its Gaussian counterpart, requires only 2n ` 3 samples to propagate,

where n is the number of uncertain parameters in the system. Higher order methods are

also derivable, but they are not included in the original paper.

The GVM method can be applied as follows. One assumes a known initial distribution

that is Gaussian in the Cartesian space, which can be approximated as a GVM distribution

through the method given by Horwood and Poore [31]. Once this distribution is known, the

appropriate σ-points and their weights are computed according to the formulas by Hor-

wood and Poore. Each σ-point is converted from the orbital element space to the Carte-

sian state and then propagated through the relevant ordinary differential equations. Once

propagated, these points are reconverted to the orbital element space and the final GVM

distribution is recovered from the transformed σ-points by finding the optimal values of

αG, βG, and ΓG through an optimization process. The final GVM distribution can then be

converted to a Gaussian distribution in the Cartesian space, if necessary, or sampled at a

very small computational cost.
2The notation τ PS is used to convey that the parameter τ is defined in the circle S. Thus, the full state definition pX,τq PRn ˆS is given

in a hyper-cylindrical space where τ is the angular parameter.
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In practice, Horwood and Poore observe that the GVM method can extend the effective

life of the Unscented Transform with almost the same computational costs (the same num-

ber of σ-points, but with a slight overhead due to the optimization problem associated with

recovering the final GVM distribution). They found that the GVM technique could provide

accurate depictions of the uncertainty for periods up to eight times larger than the Un-

scented Transform [31].

4. Analysis of constant random value uncertainties
This section covers selected results from an analysis on the effect of constant random value

uncertainties on the uncertainties of two FoM uncertainties. These FoMs are the altitude

increase (i.e., SMA increase) and inclination increase obtained after maneuvering using the

ideal locally optimal orbit-raising and inclination-raising steering laws, respectively. Note

that, given that the studied orbits are approximately circular, one should understand the

altitude of the orbit simply as the SMA minus the Earth’s radius.

First, in-depth studies are presented for two specific orbits: different uncertainty sources

are studied independently and later coupled, and the time evolution of the uncertainty is

analyzed. Three test cases are considered for this analysis. In the first two, orbits with Local

Time of the Ascending Node (LTAN) either at 6AM or 12AM are considered and the sailcraft

employs an orbit-raising steering law. The third test case, on the other hand, considers

an initial LTAN at 12 AM and an inclination-increase steering law. All test cases consider

November 1st 2023 as the simulation (mission) start date, i.e., the current estimated launch

date of the ACS3 mission. For the first two cases, the FoM is the altitude gain, and for the

third case the FoM is the inclination gain. After this detailed study, a parametric analysis of

the influence of the orbit’s initial LTAN and the mission start date on the uncertainty of the

FoMs is presented.

4.1. Nominal scenarios

The test case presented in this section is inspired primarily by the ACS3 mission. Simi-

larly to this mission, circular Sun-Synchronous orbits with the following classical orbital

elements are considered:

␣

a,e, i ,Ω,ω, f̄ , t
(

0 “ t7071 km, 0, 98.16 deg, ΩpLTAN,Mq, 0 deg, 0 deg, 2023{M{01u (29)

where multiple right ascension of the ascending node and initial times are studied. The

right ascension of the ascending node, Ω, is a function of the LTAN of the orbit and the

month, M, when propagation takes place, while the initial time is the first day of the se-

lected month in 2023. LTANs at approximately 6 AM and 6 PM tend to have the shortest

time (or no time) in the Earth’s shadow, while LTANs at approximately 12 AM and 12 PM

have the longest time in shadow.

Table 1 shows the nominal parameters that define the solar sail considered in this paper.

The sail’s loading parameter, σload, which is the ratio between the sail’s mass to its area, and
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Table 1: Nominal solar-sail parameters considered in this paper.

σload [kg{m2] l [m] ρ [-] s [-] B f [-] Bb [-] ε f [-] εb [-] ∆zbillow [m] ∆ztip [m]

0.20266 7.0 0.91 0.89 0.79 0.67 0.025 0.27 0.0117 0.0187

Figure 7: Nominal (uncertainty-free) increase in altitude and inclination using the orbit-raising and inclina-

tion raising steering law for 10 days, with initial LTAN at 12AM and simulation start date on November 1, 2023.

its boom length, l , are obtained from data relevant to the Advanced Composite Solar Sail

(ACS3)3. The sail’s optical coefficient data is obtained from the NEA Scout solar sail model

[4]. Finally, the nominal tip displacement and billowing are taken as the nominal values for

these values presented in Reference [6] but scaled by 7{30, which is the ratio between the

boom length of the sail considered in this paper and the boom length of the sail considered

in Reference [6].

Figure 7 shows the altitude and inclination increase of two example nominal scenar-

ios/orbits when employing the orbit-raising and inclination-increase steering laws, respec-

tively, for an LTAN at 12AM and simulation start date on November 1, 2023. As one can

see, the inclusion of J2 perturbations introduces a strong oscillatory behaviour in both the

altitude and inclination. Because this renders the retrieval of the effective altitude and in-

clination increases more challenging, in this paper an averaging procedure is performed to

remove these oscillations, hence yielding a more accurate depiction of the orbital changes

due to the solar sail. As can be observed in the figure, the averaged increases were found

to be linear for both orbital elements. Similar linear behaviour was found for all nominal

scenarios studied in this paper.

In this paper, the FoMs considered are the averaged altitude and inclination increase

obtained after maneuvering through the locally optimal steering laws for some days, ∆h

and ∆i , respectively. Because these FoM are generally randomly distributed, one may talk

about the mean, µ∆h and µ∆i , and standard deviation, σ∆h and σ∆i , of their distributions.

Moreover, these FoM might sometimes be scaled by the averaged nominal FoM, ∆hnom or

∆inom, as obtained in the nominal case (without perturbations) and as presented in the

“Averaged” lines in Figure 7.

Table 2 shows the sail parameter uncertainties studied in this paper. These parameters

3Data taken from communication with the ACS3 team at NASAs Langley Research Center.
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Table 2: Standard deviations for the uncertain sail parameters studied in this paper. Note that σ2 “ 2σ1.

ρ [-] s [-] B f [-] Bb [-] ε f [-] εb [-] ∆zbillow [m] ∆ztip [m]

σ1 0.005 0.045 0.05 0.05 0.005 0.005 0.00585 0.00935

σ2 0.01 0.09 0.1 0.1 0.01 0.01 0.0117 0.0187

Table 3: σ∆h according to the MC method and relative difference for this value according to the MC and GVM

methods. Different input uncertainties are considered individually for a solar sail in an orbit with 6 AM LTAN.

σ1 σ2

σ∆h,MC [m]
σ∆h,GVM ´σ∆h,MC

σ∆h,MC
[%] σ∆h,MC [m]

σ∆h,GVM ´σ∆h,MC

σ∆h,MC
[%]

s 583.7 2.32 991.3 3.97

ρ 182.2 1.31 372.6 -1.31

B f 94.65 1.51 177.7 8.73

Bb 71.99 1.83 146.6 0.19

ε f 36.57 -0.46 68.77 6.58

εb 3.41 -1.44 6.593 2.74

∆zbillow 0.1174 -100.00 0.7555 -73.67

∆ztip 0.04514 -100.00 0.2996 -73.82

are considered normally distributed with standard deviation σ1 or σ2. The σ1 distribution

of the optical coefficients is obtained from data published for the NEA Scout solar sail [4].

On the other hand, the standard deviation of the deformation parameters is set to half of

their nominal value. This causes the parameters to appear with 95% probability within

zero and twice of their nominal value when drawn from the normal distribution. In their

parametric study, Gauvain and Tyler [6] considered values for these parameters between

zero and twice of their nominal value. Finally, a second set of standard deviations, σ2, is

considered, which is twice the values of σ1. This is done to test the limits of the GVM and

represent missions in which the sail characteristics are not so finely known as for NASA’s

NEA Scout and Solar Cruiser.

A fixed-step Runge-Kutta integrator of order 8 with time step 64 s is used, which was

found to create integration position errors below 10 m after 10 days of maneuvers. When-

ever the MC method is used, 1000 samples are employed.

4.2. Uncertainty due to uncoupled uncertainties

This section presents the uncertainty in the FoM after 1 day of maneuvers due the input

uncertainties displayed in Table 1. Each source of uncertainty is studied independently,

and two standard deviations are considered for each input uncertainty, σ1 and σ2.

Tables 3, 4 and 5 show the standard deviation of the FoM caused by each input un-

certainty, as well as the relative error of the GVM method with respect to the MC method

when obtaining this value. The tables provide a clear hierarchy of the most impactful input

uncertainties. Independently of the LTAN and the FoM under analysis, the uncertainty in
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Table 4: σ∆h according to the MC method and relative difference for this value according to the MC and GVM

methods. Different input uncertainties are considered individually for a solar sail in an orbit with 12 AM

LTAN.

σ1 σ2

σ∆h,MC [m]
σ∆h,GVM ´σ∆h,MC

σ∆h,MC
[%] σ∆h,MC [m]

σ∆h,GVM ´σ∆h,MC

σ∆h,MC
[%]

s 267.3 1.39 436.9 6.89

ρ 108.2 1.17 221.3 -1.61

B f 62.23 4.09 121.4 5.61

Bb 50.2 -1.59 96.24 2.69

ε f 24.1 1.09 48.83 -0.02

εb 2.237 1.70 4.668 -2.15

∆zbillow 0.08068 -100.00 0.4225 -72.00

∆ztip 0.02729 -100.00 0.1937 -75.91

Table 5: σ∆i according to the MC method and relative difference for this value according to the MC and GVM

methods. Different input uncertainties are considered individually for a solar sail in an orbit with 12 AM

LTAN.

σ1 σ2

σ∆i ,MC [milli deg]
σ∆i ,GVM ´σ∆i ,MC

σ∆i ,MC
[%] σ∆h,MC [milli deg]

σ∆i ,GVM ´σ∆i ,MC

σ∆i ,MC
[%]

s 0.8169 10.03 1.501 3.53

ρ 0.2607 -2.81 0.5185 -2.51

B f 0.1304 -3.98 0.2363 6.13

Bb 0.09694 -0.95 0.1955 -1.67

ε f 0.04677 1.94 0.09428 0.58

εb 0.004428 -1.22 0.008791 -0.15

∆zbillow 0.0001672 -100.00 0.001045 -73.60

∆ztip 0.00006113 -100.00 0.0004102 -73.61
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Figure 8: Distribution of the FoMs after 10 days of maneuvers according to MC and GVM simulations. Results

are presented for three different specularity standard deviations, σs , and for different LTANs and control laws.

specularity has the strongest effect, followed by the uncertainty in reflectivity. On the other

hand, the uncertainty due to the emissivity coefficients and the deformation parameters is

considerably smaller. The impact of the deformation is almost negligible, a finding that co-

incides with previous research suggesting that small deviations from flatness in solar sails

barely impact the acceleration produced by them [39].

Tables 3, 4 and 5 additionally reflect that the GVM method provides relatively accurate

estimates of the MC method’s standard deviations (taken as ground truth) independently

of the input uncertainty, its magnitude, the orbit’s initial LTAN, or the FoM under study, al-

though requiring a computational cost orders of magnitude smaller than MC simulations.

The most notable exception to this statement appears for the deformation parameters,

∆zbillow and ∆ztip, whose influence is so small that the GVM method fails to capture any

influence at all.

4.3. Detailed analysis of the uncertainty in specularity

The previous section provided a first order characterization of the impact of every input

uncertainty on the FoMs. This section, in turn, provides a deeper exploration of the FoM

distributions due to a single uncertain input, the specularity, which proved to be the most

impactful system uncertainty.

Figure 8 shows the distribution of the FoMs after 10 days of maneuvers for the sail pa-

rameters given in Table 1 and three specularity standard deviations, σs “ t0.3,0.6,0.9u. In

order to display the results more intuitively, the FoMs are provided in terms of relative dif-

ference with respect to the FoMs of the nominal cases. By doing so, the plots of Figure 8
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Figure 9: Distribution of the altitude increase due to a specularity standard deviation of σs “ 0.06 for an initial

LTAN at 6 AM.

clearly show how much the uncertainty in specularity causes results that under-perform

or over-perform compared to the nominal cases. If a larger specularity is considered, for

instance, then a more performant sail is obtained and thus above-nominal gains are ob-

tained. The opposite is true for smaller-than-nominal specularities.

The plots of Figure 8 show that the FoM distributions approximately follows a normal

distribution, independently of the LTAN or the FoM considered. Moreover, the GVM method

is capable of accurately capturing the same behaviour as the more computationally expen-

sive MC simulations, as the GVM and MC distributions assume similar mean and standard

deviation values independently of the standard deviation of the specularity. The main dis-

crepancy between the MC and GVM distributions take place for positive relative FoM gains;

the truncation behaviour that the MC method exhibits is not captured by the GVM method.

This is likely because, when the MC method is used, random samples of the specularity co-

efficient are drawn. Whenever these samples have non-physical values, i.e., s ą 1, then the

sample is re-drawn, which causes the effective distribution of specularity resemble a trun-

cated normal distribution. This truncation permeates to the FoM distribution. However,

this behaviour is missed by the GVM method, as all GVM samples (σ-points) are all within

physical limits, and thus the GVM method has no knowledge of the truncation.

To better examine how the FoMs vary in time, Figure 9 shows the time evolution of the

altitude distribution particularly for the case with σs “ 0.06 and LTAN at 6AM. The fig-

ure shows how the altitude gain distribution remains normal at different times along the

propagation (1, 5, and 10 days from the simulation start), with the results from the GVM

method once again closely agreeing with the results from MC simulations. Interestingly,

the spread of the distributions remains essentially the same for the three times shown in

the figure. This suggests that the standard deviation of the altitude gain, σ∆h , grows at the

same rate as the nominal value, ∆hnom, and thus their ratio, σ∆h{∆hnom, remains constant
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Figure 10: Evolution in time of σ∆h and σ∆i for different values of σs . The shaded areas represent the 95%

confidence intervals of the MC results.

in time. Because this nominal value, ∆hnom, was found to grow linearly in time, see Sec-

tion 4.1, one could expect σ∆h to also grow linearly. The left plot of Figure 10 confirms this

hypothesis, meaning that, for example, if the standard deviation after 1 day of maneuvers

is 100 m, then one could expect a standard deviation of 1 km after 10 days of maneuvers.

As shown in the figure, the slope of these trends is driven by the standard deviation of the

input uncertainty, the specularity. Larger input uncertainties lead to faster growing altitude

uncertainties. The center and right plots of this figure additionally show that the standard

deviation of the distribution of the FoM grows linearly independently of the LTAN or the or-

bital element studied. Note, however, that the LTAN does seem to affect the rate of increase

of the standard deviation, as one can observe by comparing the left and center plots of the

figure.

4.4. Uncertainty due to coupled uncertainties

Sections 4.2 and 4.3 dealt with the effects of individual input uncertainties on the uncer-

tainty of the altitude or inclination increase. In contrast, this section discusses the effects

of multiple input uncertainties acting simultaneously on these FoMs.

Figure 11 shows the distributions of the FoMs after 10 days of propagation for different

sets of input uncertainties and LTANs, using the MC and GVM methods. The three sets of

uncertainties considered are (from top to bottom): all uncertainties shown in Table 1, un-

certainty only in specularity and reflectivity, and uncertainty only in specularity. All input

uncertainties are normally distributed with standard deviations given by the row σ1 of Ta-

ble 1. As observed in the figure, the distribution obtained for “specularity and reflectivity”

largely resembles the distribution when considering all uncertainties. This indicates that

the specularity and reflectivity are very clearly dominant, with other uncertainties being

essentially negligible. This is in-line with previous research on sail optical coefficient un-

certainty, which found that specularity and reflectivity are the most significant uncertain
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Figure 11: Distribution of the altitude and inclination increase after 10 days of maneuvers according to GVM

and MC simulations for solar sails at different LTANs. Results are presented for different sets of input uncer-

tainties.

optical coefficients when considering heliocentric trajectories [1]. These results demon-

strate that analysis effort might be saved if the most dominant input uncertainties (or, al-

ternatively, the negligible ones) are identified early on. Moreover, once again, the results

from the GVM method seem to agree with those of the MC simulations.

It is important to highlight that these results indicate a 7.5% 3-σ uncertainty in altitude

gain or a 9% 3-σ uncertainty in inclination gain due to the optical coefficient uncertainties

found for the NEA Scout solar-sail model. For instance, if the nominal altitude increase

was 10 km, this would translate to a 3-σ uncertainty of 750 m in the altitude increase. Such

uncertainty could potentially have significant and detrimental effects on mission perfor-

mance.

4.5. Effect of LTAN and mission date

Previous sections have presented results related to the distribution of the FoMs for solar

sails in two orbits: one in a 6AM-LTAN orbit, and the other in a 12AM-LTAN orbit, and

both during November 2023. This section aims to study the effect of considering many

different orbit LTANs and simulation start times over the year on the distribution of the

FoMs. In particular, the normalized standard deviation of these distributions, σ∆h{∆hnom

and σ∆i {∆inom, is analyzed, as it was shown in Section 4.4 to remain constant in time. Nev-

ertheless, all results presented in this section are obtained for sail orbits after 10 days of

maneuvers. Moreover, all uncertainties shown in Table 2 are considered, with standard

deviation as shown in the σ1 row of the table.
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Figure 12: Normalized standard deviation of the altitude gain. Results of the left plot obtained for a simulation

start date on November 1, 2023. Results of the right plot obtained for a 12 AM LTAN. The shaded regions

represent the 95% confidence interval of the MC results.
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Figure 13: Normalized standard deviation of the altitude gain obtained for different LTANs and months of

propagation.

Figure 12 displays the effect of different initial LTANs and simulation times on the stan-

dard deviation of the altitude increase, σ∆h{∆hnom. As one can see on the left plot, the

largest standard deviations are found for orbits with LTANs at approximately 6 AM and 6

PM, which correspond to orbits that spend the shortest periods of time in shadow. These

orbits also correspond to the largest nominal increase in altitude, ∆hnom. In contrast, the

right plot of this figure shows no strong correlation between the month during which prop-

agation happens and the normalized standard deviation. Both the standard deviation, σ∆h ,

and the the nominal increase, ∆hnom, are largest near the Earth’s perihelion, in January.

However, because they seem to grow at a similar same rate, the obtained normalized stan-

dard deviation, σ∆h{∆hnom, remains approximately constant throughout the year.

Finally, it is worth noting that the results found through the GVM method generally re-

main within the confidence interval of the MC results. This indicates that the GVM method

can provide accurate estimates of the FoM distribution independently of the LTAN or month

of propagation.

Figure 13 shows the joint influence of the orbit’s initial LTAN and the month of propa-

gation on the normalized standard deviation of the altitude increase. These results were

produced through the GVM method for the sake of computational efficiency. As one can
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Figure 14: Normalized standard deviation of the inclination gain. Results of the left plot obtained for a simu-

lation start date on November 1, 2023. Results of the right plot obtained for a 12 AM LTAN. The shaded regions

represent the 95% confidence interval of the MC results.

see, the largest normalized standard deviations take place for LTANs close to 6 AM and 6

PM. However, there is a noticeable interaction with the month. For instance, the normal-

ized standard deviation is smaller for January or December for a 6 AM LTAN than for April

or September at the same LTAN. Also, it should be noted that symmetry is found with re-

spect to the July’s horizontal line. Given that the Earth’s orbit aphelion occurs in the begin-

ning of July, this suggests that this symmetry is caused by the symmetry in the Earth’s orbit

around the Sun. In general, one can say that the standard deviation of the altitude increase

is bounded between 1.5% and 2.7% of the nominal altitude increase. Thus, the worst-case

3-σ uncertainty for the altitude gain was found to be 8.1%.

Figure 14 shows the influence of the initial LTANs and simulation times on the normal-

ized standard deviation of the inclination gain, σ∆i {∆inom. The left plot reveals that, inter-

estingly, the largest normalized standard deviations appear for the orbits with the smallest

nominal inclination gain, ∆inom, which are found for LTANs approximately at 2 AM and 2

PM. This goes in contrast with the results found for the normalized standard deviation of

the altitude gain, σ∆h{∆hnom, which was maximum when the nominal altitude gain was

also maximum. These results prove advantageous for mission design, as orbit LTANs that

feature the largest nominal inclination change also have the lowest (relative) inclination

uncertainty. The right plot of Figure 14 shows how the mission date impacts the inclination

gain distribution. While the impact of this factor is smaller than the LTAN’s, there is still

some noticeable influence.

Figure 15 shows the joint influence of the orbit’s initial LTAN and the mission date. Sim-

ilarly to the results presented in Figure 13, these results were generated through the GVM

method. Two narrow bands, at approximately 2 AM and 2 PM LTAN, feature the largest

normalized standard deviations. Within these bands, the mission date has a significant im-

pact: for an orbit with LTAN at 3 PM, the normalized standard deviation is over 5% during

October but only 3% in July. These results display the same symmetry across the July hori-

zontal line as those shown in Figure 13. One should also note that the normalized standard

deviation of the inclination has a larger range of possible values than the normalized stan-

dard deviation of the altitude: between 0.9% and 5.5%. Thus, the worst-case scenario for



40 B. Paper

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23
LTAN

JAN
FEB

MAR
APR
MAY
JUN
JUL

AUG
SEP
OCT
NOV
DEC

M
on

th

1

2

3

4

5

i/
i n

om
 [%

]

Figure 15: Normalized standard deviation of the inclination gain obtained for different LTANs and months of

propagation. Results obtained through the GVM method.

the inclination increase presents a 3-σ uncertainty in inclination gain of 16.5%.

5. Analysis of stochastic process uncertainties
Previous sections dealt with constant random value uncertainties, where certain system

parameters, such as the reflectivity or the billowing of the sail, were random but fixed dur-

ing propagation. In contrast, this section discusses results for the uncertainty caused by

considering a randomly evolving offset on the nominal attitude profile, as described in Sec-

tion 3.2. The same test case as presented in Section 4.1 is used.

5.1. Evolution in time of the figure of merit distribution

This section presents the distribution of the FoMs due to attitude uncertainty and how

it evolves in time for selected orbit LTANs, for four sets of Ornstein-Uhlenbeck parame-

ters, and a simulation start date on November 1, 2023. Further study into the effect of the

Ornstein-Uhlenbeck parameters is shown in Section 5.2, while the impact of the orbit LTAN

and mission date is discussed in Section 5.3.

Figure 16 shows how different values of the Ornstein-Uhlenbeck parameters, θ and σst,

affect the evolution of the distribution of the FoMs in time. Unlike previous results, the

FoM distribution generally remains below the nominal FoM, as the nominal solution is ob-

tained with a near-optimal steering law and any offset from this attitude profile is expected

to worsen the performance of the trajectory. This makes the distribution heavily skewed

towards negative values, see Figure 16. Note that, unlike for previous result shown in this

paper, the standard deviation seems to differ between times, even when normalized by the

nominal increase in FoM. The mean also behaves differently than in previous results; in

this case, it does not coincide with the nominal increase in FoM, but it is smaller.

Figure 17 shows the evolution in time of the normalized relative mean, µ∆h or µ∆i , and

normalized standard deviation, σ∆h or σ∆i , of the distributions. Studying the distributions’

means holds significance due to its deviation from the nominal values, ∆hnom or ∆inom, as

illustrated in Figure 16. As seen in the top three plots, the normalized mean remains ap-
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Figure 16: Distribution of the FoM increase after 1, 5, and 10 days of maneuvers for different Ornstein-

Uhlenbeck parameters, θ and σst.
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bution of the FoM for different Ornstein-Uhlenbeck parameters θ and σst.
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Figure 18: Evolution of the sail’s attitude for different values of σst and θ. The “Nominal” line indicates the

direction without random offset.

proximately constant in time, it is always below the nominal performance (µ∆h ă ∆hnom;

µ∆i ă ∆i nom), and it seems to strongly depend on the σst parameter and less on the θ pa-

rameter. The normalized standard deviation, on the other hand, seems to be largest at the

start of the mission, and it goes down and stabilizes as time passes. Moreover, it appears to

be impacted by both the σst and θ parameters.

5.2. Effect of the Ornstein-Uhlenbeck parameters

The previous section provided some intuition on the effect of the Ornstein-Uhlenbeck pa-

rameters, σst and θ, on the distribution of the FoM increase. This section extends this un-

derstanding by studying the behaviour of both the mean, µ∆h or µ∆i , and standard devia-

tion, σ∆h or σ∆i , as a function of the Ornstein-Uhlenbeck parameters.

Figure 18 shows the impact of the Ornstein-Uhlenbeck parameters θ and σst on the z

component of the sail normal direction in the ECI reference frame when using the orbit-

raising steering law for the nominal direction. This explanatory figure illustrates the evolu-

tion of the sail normal direction for six different combinations of the Ornstein-Uhlenbeck

parameters during a 10-hour time window. By comparing these examples with the nomi-

nal evolution for this parameter, one can better understand the influence of θ and σst on

the sail’s behavior. The effect of the stationary standard deviation σst is relatively easy to

understand: larger values of this parameter mean that the offset direction will generally be

further away from the reference direction. The θ parameter, on the other hand, influences

how rapidly the offset changes. As seen for the lines corresponding to θ “ 10´2, the be-

haviour is clearly “noisy”, with the offset rapidly moving above and below the reference. In

constrast, for θ “ 10´6, the offset evolves so slowly that it appears almost constant during

the 10-hour window plotted in Figure 18. The line for θ “ 10´4 represents a middle point:

it is not as “noisy”, but one can see it move with respect to the reference.

Figure 19 reveals the strong relationship between the stationary standard deviation σst

and the mean gain in altitude, µ∆h , or inclination, µ∆i . In contrast, the parameter θ seems

to have a less significant effect on this metric. As such, one concludes that mean perfor-
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Figure 19: Mean FoM increase after 10 days of maneuvers as a function of the Ornstein-Uhlenbeck parameter

σst for different values of θ.
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Figure 20: Normalized standard deviation of the FoM increase after 10 days of maneuvers as a function of the

Ornstein-Uhlenbeck parameter θ for different values of σst.

mance loss due to uncertain attitude is mainly driven by the stationary standard deviation

of the attitude with respect to the optimal control profile.

On the other hand, Figure 20 shows that both parameters θ and σst affect the spread

of the altitude, σ∆h , or inclination, σ∆i , gain distributions. Perhaps unsurprisingly, larger

values of the standard deviation of the attitude uncertainty σst lead to larger values of the

standard deviation of the FoMs. In contrast, when considering smaller values of θ, there is a

notable increase in the normalized standard deviation of the FoM gain. These smaller val-

ues of θ correspond to attitude offsets that evolve at a significantly slower pace, eventually

reaching a point where they remain relatively constant over long periods of time. Conse-

quently, the attitude profiles across different propagations exhibit substantial dissimilari-

ties, resulting in a larger standard deviation in the FoM gain. Conversely, larger values of θ

yield rapidly changing attitude offsets, which, on the long run, end up counteracting each

other. As a result, individual propagations exhibit comparable attitude profiles, leading to

a reduced standard deviation of the FoM increase.

Together, Figures 19 and 20 paint a positive picture for mission designers in terms of

the effect of perturbed attitude profiles. As long as the stationary standard deviation of the
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Figure 21: Normalized relative mean of the altitude gain after 10 days of maneuvers obtained for different

LTANs and months of propagation.
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Figure 22: Normalized standard deviation of the altitude gain after 10 days of maneuvers obtained for differ-

ent LTANs and months of propagation.

attitude error, σst, is kept relatively low, between 1 and 2 degrees, the mean performance

loss is expected to remain quite low, at most at 2%. The uncertainty remains even lower,

with a standard deviation of at most 1% of the magnitude of the nominal performance.

5.3. Effect of LTAN and mission date

Previous results for the impact of the attitude offset were shown for a mission starting on

November 1, 2023 and two initial orbit’s LTANs: 6 AM and 12 AM. In contrast, this section

studies the influence of different mission dates and sail’s orbit LTANs while assuming the

following arbitrary Ornstein-Uhlenbeck parameters: σst “ 3 deg and θ “ 10´6.

Figures 21 and 22 show the dependency of the normalized relative mean and normal-

ized standard deviation of the altitude increase, respectively, on the mission date and LTAN.

Neither of these figures reveal a strong correlation between the FoM and the mission date

or LTAN. In general, one can say that the mean altitude increase is between 0.7% and 1.5%

lower than the nominal altitude increase, while the standard deviation of this metric is

bounded between 0.5% and 1.7% of the nominal increase.

Figures 23 and 24, on the other hand, show the join effect of the mission date and LTAN

on the normalized relative mean and normalized standard deviation of the inclination in-
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Figure 23: Normalized relative mean of the inclination gain after 10 days of maneuvers obtained for different

LTANs and months of propagation.
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Figure 24: Normalized standard deviation of the inclination gain after 10 days of maneuvers obtained for

different LTANs and months of propagation.
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crease. Figure 23 reveals that the largest mean performance loss and standard deviation

appear for LTANs approximately at 2 AM and 2 PM. These LTANs coincide with the orbits

that show the lowest nominal inclination increase, which is advantageous to mission de-

sign, as smaller performance losses and uncertainties are found for the orbits with largest

nominal inclination increase. Generally, one finds the normalized mean performance loss

to be between 0.6% and 2.2%, while the normalized standard deviation remains between

0.5% and 3.25%.

6. Conclusion
In conclusion, this paper sheds light on the significance of uncertainty in solar-sail mission

design. The findings highlight the substantial impact of uncertainty in the sail’s optical co-

efficients on mission performance when attempting to increase the orbital altitude or in-

clination. When considering the optical coefficients’ uncertainties published of NEA Scout

solar-sail model, a worst-case 3-σ altitude gain uncertainty of 8.1% was observed. Simi-

larly, a worst-case 16.5% 3-σ uncertainty on the inclination gain was found. The largest

uncertainties in altitude gain appeared for orbits with Local Time of the Ascending Node

(LTAN) at approximately 6 AM or 6 PM. For sailcraft performing inclination-increasing ma-

neuvers, the largest uncertainties in mission performance appeared for orbits with LTANs

at approximately 2 AM and 2 PM. The uncertainty in specularity played the largest role in

performance uncertainty out of the analyzed optical coefficients, followed by uncertainty

in reflectivity. The sail’s structural deformation was found to have minimal influence on

the performance uncertainty.

The study on attitude uncertainty revealed not only its impact on mission performance

uncertainty, but also highlighted that assuming an ideal control profile most often leads to

overestimated performance expectations. By incorporating the Ornstein-Uhlenbeck pro-

cess with tunable parameters, different types of error in attitude profiles were modelled,

resulting in distributions of the mission performance metrics with different means and

spreads. The mission performance uncertainty due to attitude uncertainty was found to

depend weakly on the initial LTAN and mission date, and strongly on the

Ornstein-Uhlenbeck parameters, which define the nature of the attitude error. For the an-

alyzed Ornstein-Uhlenbeck parameters, a worst-case mean performance loss of 1.5% was

found for the altitude gain and of 2.2% for the inclination change. Furthermore, a worst-

case 5.1% and 9.75% 3-σ uncertainty was observed for the altitude and inclination gains,

respectively.

The Gauss von Mises method proved to be an efficient and effective uncertainty propa-

gation technique, demonstrating its accuracy at a considerably smaller computational cost

than MC simulations. Future research might expand on the analysis presented in this study

by considering other orbits, nominal conditions, control laws, and FoMs to analyze. Such

endeavors will further enhance our understanding of uncertainty in solar-sail mission de-

sign and contribute to the development of more robust and reliable missions.
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C
Conclusion

This chapter builds upon the conclusion presented in the “Paper” Chapter B of this thesis by evaluating how

the thesis’ research questions were answered, as well as through a detailed future work discussion.

C.1. Research questions
In light of the results and conclusions presented in this thesis, we re-visit the research questions posed in the

“Introduction” Chapter A and evaluate how they have been answered through the work presented.

Q1. Which of the uncertainty sources affecting the solar radiation pressure acceleration is the strongest?

Section 4.2 discusses which of the sail optical coefficient or deformation parameters are the most influential

uncertainty sources. The results show that the specularity is the most significant source of uncertainty, fol-

lowed by the reflectivity. On the other hand, Section 5.2 evaluates the effects of the attitude uncertainty on

the mean and standard deviation of the figures of merit, which strongly depend on the Ornstein-Uhlenbeck

parameters selected. Thus, whether the attitude offset is a stronger uncertainty than the sail’s optical coeffi-

cients or deformation depends on the nature of the offset.

Q2. How does each of the sources of uncertainty affect the achievable altitude and inclination change after

a maneuver (which are key figures of merit)?

Sections 4.3 and 4.4 reveal that the influence of the uncertain sail optical coefficients and deformation pa-

rameters causes the figures of merit to behave as normal distributions, with the mean value being approx-

imately equal to the nominal value. For large uncertainties, on the other hand, more complex behaviours

appear, such as truncation and skewness of the distribution. Section 5.1, on the other hand, shows that un-

der uncertain attitude, the figures of merit distributions skew towards the negative values. The mean of these

distributions lays below the nominal performance, as this uncertainty causes a deviation from a near-optimal

control profile.

Q3. Is there significant coupling between different uncertainty sources? To what extent can one approxi-

mate the combined effect of all uncertainty sources be approximated by considering a reduced number of

sources (can some sources of uncertainty be neglected)?

Section 4.4 analyzes the combined effect of the uncertainty in the sail’s optical coefficients and deformation

parameters, and compares it to the effect of only uncertain specularity and uncertain specularity and re-

flectivity. It was found that there is no significant coupling, and the emissivity, Lambertian coefficient, and
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deformation uncertainties can be effectively neglected. No analysis of the coupled effect of uncertain attitude

and uncertain sail optical coefficients and deformation parameters was produced, and thus could be an area

of future work.

Q4. How does the uncertainty in figures of merit evolve in time?

Section 4.3 details how the distribution of the figure of merit due to uncertain specularity behaves at different

points in time. It was found that, once scaled by the nominal figure of merit gain at each time, the distribution

is independent of the simulation time. It was found that the standard deviation of the distribution of the

figure of merit grows linearly in time, with the speed of growth being driven by the strength of the source of

uncertainty. Considering the strong dominance of the specularity uncertainty, one might safely extrapolate

these findings to the rest of constant random value uncertainties. Section 5.1 presents a more complex picture

of the time evolution of the uncertainty distribution in time due to attitude uncertainty. While the normalized

relative mean was found to be constant in time, the normalized standard deviation of the distributions was

found to decrease in time until it approaches a stationary value.

Q5. Is the Gauss von Mises uncertainty propagation method an accurate estimator of uncertainty?

The Gauss von Mises method was used alongside the Monte Carlo method for the results shown in Section 4.

Thus, since the results of the Monte Carlo simulations can be treated as truth values, all the results presented

in Section 4 serve as a validation mechanism for the Gauss von Mises method. In general, the Gauss von Mises

method was found to be accurate for the orbits and figures of merit considered, as it was able to capture the

mean and standard deviations accurately. It was also found capable of accurately capturing the shape of

the distribution, provided it was approximately normal. In terms of computational cost, the Gauss von Mises

method proved to be orders of magnitude faster than the Monte Carlo method, which highlights its usefulness

for preliminary uncertainty analysis. Future work should analyse whether the Gauss von Mises method is

capable of capturing the distribution of figures of merit that do not behave as simple normal distributions.

Q6. How does the answer to previous questions change when considering different orbits, mission dates,

or figures of merit?

Sections 4.2, 4.3, 4.4, and 5.2 presented detailed results for two orbit’s local time of the ascending node (LTAN),

6 AM and 12 AM, and for two different steering laws and figures of merit. Section 4.5 and 5.3 presented

results for different combinations of orbit LTAN and mission dates for these two steering laws and figures

of merit. Through these results, conclusions on the influence of these factors were drawn. However, a Sun-

synchronous 700-km-high orbit was always assumed, as well as only two locally-optical steering laws and

their corresponding figures of merit. Future work should consider a more diverse family of orbits and control

laws.

C.2. Future work
The results presented in this thesis open the door for several areas of further research that would serve to

improve our understanding of uncertainties in solar sailing in the near-Earth environment. These are briefly

covered in this section, subdivided into three thematic areas: study of different orbits, study of different un-

certainties, and validation of the results.

C.2.1. Study of different orbits
The results presented in this thesis focused on solar sails in Sun-synchronous orbits because these are or-

bits of special interest to solar-sail missions, including the upcoming Advanced Composite Solar Sail Sys-

tem (ACS3) mission [1]. A nominal altitude of 700 km was assumed based on early launch opportunities for

the ACS3 mission, which additionally introduced significant aerodynamic forces on the sail. Finally, simple
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Figure C.1: Top graph represents the difference between the TSI and the TSI half-year mean. Bottom graph is

a realization of an Ornstein-Uhlenbeck process with σ“ 0.0294 day´1{2 and θ “ 0.1525 day´1. Black dashed

lines represent the stationary standard deviation.

orbit-raising or inclination-changing locally-optical steering laws were considered. Further research on un-

certainties for solar sails should deviate from these assumptions by considering different nominal conditions

in order to expand our understanding of the behaviour of solar sails in the near-Earth environment.

Given the large area of solar sails, aerodynamic forces stand to have a significant influence on the tra-

jectory of sailcraft. As such, studying different orbital altitudes would be of particular interest for solar sail

missions in low-Earth orbit, especially if these studies include uncertain aerodynamic forces. Similarly, this

thesis considered only the family of Sun-synchronous orbits, but solar-sail missions may develop in other

orbits around the Earth in the near future, and thus should be investigated. For instance, there has been

some interest on the de-orbit of debris in geostationary orbit through solar sails [2, 3]. The conditions in geo-

stationary orbit are very different from low-Earth Sun-synchronous orbits, and thus a dedicated unceratinty

study should be considered, especially under the strict requirements of rendez-vous operations.

This study focused on two control laws and two figures of merit for analysis. However, future missions

might follow other steering laws and have other mission objectives. The TugSat concept, for instance, aims

to rendez-vous with spacecraft in geostationary orbit using a control law capable of targeting a specific semi-

major axis, eccentricity, inclination, and longitude [2]. The position and velocity errors with respect to the

desired rendez-vous point might be interesting figures of merit to analyze in this scenario. On the other

hand, mission planning for the ACS3 mission has additionally considered especial control maneuvers used

to calibrate the force produced by the solar sail while in orbit [4]. The objective of these calibration orbits is

to minimize all forces except one, which should be maximized in order to better characterize it. As such, it

might be of interest to study how the uncertainties cause the other forces to appear, and thus quantify the

level of “noise” that should be expected on the measurements of the force of interest.

C.2.2. Other sources of uncertainty
The introduction to this thesis, see Chapter A, covered many sources of uncertainty for solar sails in the near-

Earth environment. Only a selection of these, those which were deemed the most influential, were studied

in detail in this thesis, so future work might expand on the analysis presented here by considering other of

sources of uncertainty.

The Total Solar Irradiance (TSI) of the Sun, which affects the magnitude of the solar radiation pressure,

behaves in an unpredictable manner. A previous study for uncertainty in heliocentric orbits analyzed the

uncertainty due to this factor, and found it to be more influential than the emissivity or Lambertian coefficient

optical coefficients [5]. Their approach, however, considered the TSI to be constant during propagation,

unlike the random behaviour exhibited in empirical data, see Figure A.3. Future work could use Ornstein-

Uhlenbeck stochastic processes to generate a more realistic model of the erratic behaviour of the TSI, see
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Figure C.1. Moreover, the times when spacecraft enter and exit the penumbra and umbra of the Earth are

hard to predict exactly [6]. Thus, high-accuracy uncertainty studies might also considered these times to be

uncertain.

Aerodynamic forces also represent a strong source of uncertainty for solar sails. As it was discussed in

the introduction to this thesis, the drag and lift coefficients of the sail depend on a variety of factors that are

hard to estimate, and thus are bound to be uncertain. The atmospheric density and winds are also difficult to

predict given the inherent chaotic behaviour of the atmosphere and of the factors that influence it, such as the

solar and geodetic activity coefficients. This makes studying this source of uncertainty critical for missions

that operate at low altitudes, such as those intended for debris de-orbit [7, 8].

This thesis presented a simple analysis of the effects of uncertain sail shape. The model employed only

considered boom bending and membrane billowing due to thermal deformations. However, engineers from

the ACS3 mission have remarked on the many possible sources of uncertainty for the shape of a sail in or-

bit. Thus, it would be of interest to consider a more complex shape model for the sail, with more parameters

to consider uncertain. Instead of a single square membrane, the sail might be broken down into individual

quadrants, which is a closer representation to sails used in missions like the ACS3 mission. Each quadrant

might feature differently deflected support booms, displaced connection points, irregular membrane ten-

sioning, incomplete deployment, and so forth. Moreover, tears and holes might appear in the membrane at

random points, which would impact the effective sail shape.

C.2.3. Validation of the results
The quality and completeness of the results presented might be increased through a series of validation pro-

cesses. Validation with mission data should be a priority, and might be possible in the near future assuming

success of the ACS3 mission. Barring the use of empirical data, these results might be validated by employing

more accurate dynamical models and asserting that the results do not change meaningfully under these high-

fidelity dynamics. Such higher-fidelity models can include the consideration of planetary radiation pressure

force, higher-order gravity terms, the use of more complex atmospheric models, and higher-fidelity drag and

lift coefficient models.

Moreover, the results presented in this study assumed a prescribed, albeit sometimes perturbed, attitude

profile. Future studies might consider the coupled propagation of the attitude and position of the sail. This

stands to be especially interesting for studies of uncertain sail shapes, as the shape of the sail affects mostly

the torque generated by the sail, and not so much the force [9]. Finally, the coupled effect of uncertain sail

optical coefficient, deformation parameters, and attitude offset might be studied, and the conclusion that

there exist no significant coupling between uncertainties revisited.
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D
Simulation Setup

This appendix introduces the software used to produce the results shown in this thesis. The first section

introduces the Basilisk framework, the selected tool to perform dynamics simulation and propagation, while

the second section details the specific Basilisk-based implementation used in this work.

D.1. The Basilisk framework
All results presented in this thesis were obtained through simulations using the Basilisk spacecraft simulation

framework [1]. Basilisk is a highly-modular tool that allows users to model and efficiently propagate the

dynamics of complex spacecraft in arbitrary environments. The tool is composed of atomic “modules” that

perform some operation on data and “messages” that are used to pass data around modules.

All modules, messages, and the simulation architecture, are written in C++ or C, which means that Basilisk

is very performant. However, users of Basilisk configure their simulations through Python scripts, which

makes Basilisk more accessible to the average engineer. Each module and message is exposed to Python

through the SWIG tool (Simplified Wrapper and Interface Generator) [2]. Users can configure and connect

these exposed modules however they please in order to reach their simulation objectives. Thus, assum-

ing that Basilisk has all necessary modules available out-of-the-box, one can write simulation scripts purely

through Python, without need of knowing, writing, or compiling C/C++ code. The approach of using C/C++

for the computationally expensive operations and Python for easy configuration of the simulations is also

used by Tudat, the Delft University of Techonology astrodynamics toolbox [3].

Performing all simulations through Basilisk instead of writing a custom astrodynamics simulation soft-

ware comes with significant advantages. Establishing a new flexible and efficient simulation architecture in

C++ is a complex task that would have been out of scope for this project. Implementation time was saved by

leveraging out-of-the-box modules, developing new code from the existing codebase, and making use of the

Basilisk testing suite for validation. Finally, the Basilisk development team was regularly available to provide

advice during the implementation of new code.

The results presented in this thesis required the implementation of several custom C++ modules. Many

solar sail dynamic models were not available out-of-the-box for Basilisk, as this is the first research of this kind

completed with the tool. Moreover, Basilisk was written under the assumption of deterministic dynamics. It

was necessary to extend the Basilisk state machine and integrator suite to handle the integration of stochastic

differential equations.
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Figure D.1: Diagram of the Basilisk simulation setup.

D.2. Basilisk setup
Figure D.1 shows the Basilisk setup used to obtain the results presented in this work. The blocks shown

in the figure correspond to individual “modules”, while arrows represent the flow of information through

“messages”. Blocks with rounded blue contours required none or minimal modifications to existing modules.

Blocks with square red contours were written from the ground up or involved heavy modification to existing

code. Blocks that alternate rounded blue and square red contours involved a refactor and slight improvement

of existing code.

The following enumeration briefly covers the functionality of each module. Underlined items correspond

to modules that required significant implementation effort, i.e. the blocks with square red contour in Figure

D.1:

• sailDynamicObject: this module represents the solar sail. Its main purpose is to keep track of the state

of the spacecraft at any point in time. It works closely with the integrator to update the spacecraft’s

state and output it to other modules in the scenario that need state information. The way the objects

of this kind handle states was adapted to support having a prescribed attitude profile and stochastic

states (used for the γ1 and γ2 offsets, see Section 3.2).

• Integrator: while Basilisk had pre-existing integration capabilities, part of the work of this thesis was

rewriting all existing integrators to more modern and maintaible C++. Moreover, stochastic integrators

were not supported. This work involved the implementation from the ground up of the stochastic

integrator discussed in Appendix F.

• gravityEffector: this module produces the gravity force vector given the position of the spacecraft with

respect to the Earth. During this work, this module was completely refactored. While this was not nec-

essary for the completion of the thesis, the module was originally written several years ago and with

poor coding practices. As a contribution to the Autonomous Vehicle Systems Laboratory, which main-

tains Basilisk and hosted the author during the completion of their thesis, the module was rewritten in

a more maintainable and modular way.

• dragDynamicEffector: this module produces the aerodynamic force vector given the velocity of the
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spacecraft, the atmospheric density, and the attitude of the sail. Existing drag models in Basilisk used

a simple cannonball model or a computationally-expensive facet-based drag model. For this work, the

flat plate hyperthermal free-molecular flow model introduced in Section 2.2 was implemented.

• exponenAtmosphere: this module produces the atmospheric density at a given altitude according to

the 1976 U.S. Standard Atmosphere.

• radPressureEffector: this module produces the SRP force vector given the position of the Sun with re-

spect to the sail, the attitude of the sail, and the shadow factor, ν. Basilisk supported three SRP models:

a simple cannonball model, a look-up model, and a GPU-enabled pure-reflective faceted model. Two

new SRP models were implemented: a simple flat sail with specular and diffuse reflection on one side

and emissivity on both sides, and the Generalized Sail Model introduced in Section 2.2.

• spiceInterface: this module produces the position of the Sun with respect to the Earth at any point in

time by interfacing with the SPICE SPK toolkit.

• eclipse: this module generates the shadow factor, ν, given the position of the Sun according to the

conical shadow model, as introduced in Section 2.2.

• locallyOptimalAttitude: this module computes the locally optimal sail normal direction given the po-

sition of the sail, as shown in Section 2.3. However, if the sail is in umbra, ν “ 0, the sail is oriented

edgewise to the atmospheric flow to minimize drag. This module was written from the ground up.

• attitudeOffset: this module takes a nominal direction, n̂nom, and the values of the angles γ1 and γ2

and applies the corresponding offset through the procedure described in Section 3.2. This module was

written from the ground up.
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Experiment Setup

Appendix D covered the Basilisk setup used to propagate the state of a solar sail for a certain period. In order

to produce the results shown in this work, however, many such propagations were required. This appendix

provides a glimpse into the ecosystem of utilities used to efficiently manage and post-process these propaga-

tions.

E.1. Simple propagations
A “simple propagation" experiment corresponds to a single integration of the dynamics of a solar sail. While

the setup presented in Section D is the same for all propagations, it is possible to define different initial con-

ditions, sail configurations, dynamical models, and so forth to produce different results.

1 scenario_config = ScenarioConfiguration (
2 dynamics = DynamicalModel (
3 gravity = GravityModel .J2 ,
4 aero= AerodynamicModel . FLAT_PLATE_EXPONENTIAL ,
5 solar = SolarPressureModel . GSM_CONICAL_SHADOW ,
6 ),
7 integration = Integration (
8 integrator_type = IntegratorType .RKF78 ,
9 time_step =10 , # s

10 simulation_time =(10*24*3600) , # s
11 abs_tol =0, # turns off adaptive time steps
12 rel_tol =0, # turns off adaptive time steps
13 ),
14 sail= SailConfiguration (
15 description ="ACS3",
16 mass =15 , # kg
17 area =80 , # m^2
18 reflectivity =0.91 ,
19 specularity =0.89 ,
20 front_lambertian_coefficient =0.79 ,
21 back_lambertian_coefficient =0.67 ,
22 front_emissivity =0.025 ,
23 back_emissivity =0.27 ,
24 billow =0.05 , # m
25 tip_offset =0.08 , # m
26 ),
27 initial_conditions = InitialConditions . for_sso_circular_orbit (
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28 description ="Dawn -Dusk Sun Syncronous Circular Orbit ",
29 initial_time ="2023 11 1 00:00:00 ",
30 a =(6371 + 700) * 1000 , # altitude 700 km
31 ltan =6,
32 f=0,
33 ),
34 control = Control . LOCALLY_OPTIMAL_SEMIMAJOR_AXIS ,
35 stochastic_uncertainties =[ UncertainAttitude . from_stationary_std (
36 offset_theta =1e-5,
37 offset_stationary_std =3 / 180 * np.pi ,
38 )],
39 outputs =[
40 Output .TIME ,
41 Output . POSITION_AND_VELOCITY ,
42 Output . ORBITAL_ELEMENTS ,
43 Output . CONTROL_ANGLES ,
44 ModifiedOutput (
45 operation = OutputModificationOperation . LINEARIZE ,
46 output = Output . ORBITAL_ELEMENTS ,
47 ),
48 ],
49 )

Listing E.1: Python code required to configure a simple propagation experiment through the utility classes

and methods developed for this thesis.

Listing E.1 shows an example of how a simple propagation might be configured. ScenarioConfigure
are dataclass-like objects created for this thesis that encapsulate other custom sub dataclass-like objects.

The first of such objects is the DynamicalModel object, which allows one to choose what dynamics to use

for propagation. The Integration object allows control over the integrator and the total simulation time.

SailConfiguration allows one to specify the parameters describing the solar sail. InitialConditions
objects store the initial date, position, and velocity of the sail, but they can be defined through a variety of

helper methods, such as from_orbital_elements or for_sso_circular_orbit. The Control object is a

simple enumerator that allows one to choose whether to use locally optimal semi-major axis or inclination

control. The stochastic_uncertainties parameter accepts an optional sequence of uncertainties defined

through stochastic processes (only the attitude uncertainty, as discussed in Section 3.2, is available). Finally,

the outputs parameter allows one to define what results to extract from the simulation.

1 scenario = Scenario ( scenario_config )
2 scenario . execute ()
3 t, a = scenario . get_outputs_with_name ("time", " semimajor_axis ")

Listing E.2: Python code required to run a simple propagation and extract results through the utility classes

and methods developed for this thesis.

Given this configuration, one can propagate the scenario using the code shown in Listing E.2. The object

Scenario creates the relevant Basilisk modules, configures them with the values provided in

scenario_config, and connects them following the diagram shown in Appendix D. Once the simulation

has run, outputs can easily be extracted from the scenario object for post-processing.

E.2. Monte Carlo simulations
While simple propagations are useful to provide context for a specific set of conditions, the main focus of this

work is the study of uncertainty through sample-based uncertainty propagation methods, see Section 3.3.

As such, it is necessary to run multiple simulations, possibly changing the scenario configuration every time
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to account for the uncertainties in the system. In order to facilitate defining, running, storing, loading, and

post-processing Monte Carlo experiments, a series of utility objects and functions have been created.

1 experiment = MonteCarloExperiment (
2 description ="Sail at DD SSO , on Nov 1st , with uncertain reflectivity and

specularity ",
3 nominal_scenario = scenario_config ,
4 rv_uncertainties =[ SailRVUnceratinty (
5 reflectivity_std =0.005 ,
6 specularity_std =0.045 ,
7 )],
8 options = MonteCarloOptions (
9 n_samples =1000 , jobs =14 , chunk_size =5

10 ),
11 )
12

13 experiment . run_or_load ( save_folder =" dd_sso_nov_ref_spc ")

Listing E.3: Python code required to configure and run a Monte Carlo experiment through the utility classes

and methods developed for this thesis.

A Monte Carlo experiment is defined through code resembling the excerpt shown in Listing E.3. The

nominal scenario must be provided, as well as the random value uncertainties to consider, see Section 3.1. In

the example shown in Listing E.3, a SailRVUnceratinty object is provided as a random value uncertainty,

which will modify the scenario by randomly changing the optical coefficients of the sail according to a normal

distribution with the provided standard deviations. In this case, only reflectivity and specularity are randomly

modified. Finally, MonteCarloOptions must be passed to configure the number of samples to use as well as

the parallization options.

The first time the code is run, the method run_or_load will run the Monte Carlo experiment and save the

results in a folder. This folder will store the results for each individual sample run, as well as the overall mean

and covariance matrix obtained from them. Moreover, text representations (serializations) of the nominal

scenario configuration and random value uncertainty objects are saved for reference, as well as the SHA256

hash of these texts.

Once the experiment has been run and saved, re-running the code will only generate the SHA256 hash

of the given nominal scenario and uncertainties, compare this hash to the saved hash, and load the cached

results only if the hashes coincide. If the hashes are different, however, the experiment is re-run. This only

happens when the experiment configuration, i.e., the nominal scenario or the uncertainties, have been mod-

ified and thus the cached results are outdated.

E.3. Gauss von Mises experiments
A set of utility objects and functions very similar to those defined for Monte Carlo experiments are imple-

mented for Gauss on Mises experiments.

1 experiment = GaussVonMisesExperiment (
2 description ="Sail at DD SSO , on Nov 1st , with uncertain reflectivity and

specularity ",
3 nominal_scenario = scenario_config ,
4 rv_uncertainties =[ SailRVUnceratinty (
5 reflectivity_std =0.005 ,
6 specularity_std =0.045 ,
7 )],
8 options = GaussVonMisesOptions (
9 jobs =14 , chunk_size =5

10 ),
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11 )
12

13 experiment . run_or_load ( save_folder =" dd_sso_nov_ref_spc ")

Listing E.4: Python code required to configure and run a Gauss von Mises experiment through the utility

classes and methods developed for this thesis.

Listing E.4 displays the code used to define and run/load a Gauss von Mises experiment. The result-

caching algorithm for Gauss von Mises results is very similar to that of Monte Carlo results, except that

Gauss von Mises results additionally store the distribution parameters obtained through the Gauss von Mises

method, µG, ΣG, αG, βG, ΓG, and κG, see Section 3.3. Additionally, note that the number of samples are not

defined in GaussVonMisesOptions, as this number is prescribed by the method.



F
Stochastic Integrator

A stochastic integrator is required to integrate the trajectory of spacecraft whose dynamics are defined by

stochastic differential equations, for instance, if they have a randomly evolving attitude profile as described

in Section 3.2. In this paper, the weak third-order, additive-noise stochastic integrator proposed by Debra-

bant [4] is used. Integrators that assume additive noise require the dynamics to have a "diffusion" term that

does not depend on the state of the system, where the "diffusion" term is the rapidly varying random com-

ponent of the dynamics [5]. For the case of the Ornstein-Uhlenbeck processes presented in Section 3.2, this

is the “σdβBr” term, which meets the definition of additive noise as σ is constant. The integrator proposed

by Debrabant was chosen because it achieves a high weak order while not being exceedingly complex to im-

plement.

The concept of a weak third-order integrator is related to the convergence of the algorithm. For determin-

istic integrators, such as the commonly used Runge-Kutta integrators, the order of the method indicates the

relationship between the time step used for integration and the numerical error introduced at each step. This

error evolves exponentially with respect to the time step, with the exponent being the order of the method:

|y ´ ỹp∆tq| ď C∆tΠ (F.1)

where y is the real solution of the integration, ỹp∆tq is the approximation produced by the integrator using

time step ∆t , Π is the order of the method, and C is some constant. This means, for example, that halving the

time step used in a third-order deterministic integrator will lead to estimating y 23 “ 8 times more accurately.

Defining measures of converge for stochastic integrators is more complicated. Because the process is

inherently random, the solution of the integration, Y ptq, as well as the approximation produced by the inte-

grator, Ỹ p∆tqptq, are random variables. Thus, one can define two orders of convergence, the weak order and

the strong order. Of interest to this work is the weak order. Formally, one says that a discrete approximation

Ỹ p∆tqptq with time step ∆t converges weakly with order Λ at time t f for each function g PC
2pΛ`1q

P
1 if one can

find a constant C such that [5]:

|Erg pY pt f qqs´ Erg pỸ p∆tqpt f qqs| ď C∆tΛ (F.2)

where Ers represents the expected (mean) operator.

The functional space C
2pΛ`1q

P contains all polynomials, which means that any moment (mean, variance,

standard deviation...) may be approximated with an error bound by C∆tΛ for a discrete approximation

1The functional space Cn
P represents the space of n-times continuous differentiable functions which, together with their partial deriva-

tives of order up to n, have polynomial growth.
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Table F.1: Modified Butcher table for the coefficients of a stochastic Runge-Kutta method in the form shown

in Eqs. F.4 and F.5.

c1 a11 a12 . . . a1s d1 d˚
1

c2 a21 a22 . . . a2s d2 d˚
2

...
...

...
. . .

...
...

...

cs as1 as2 . . . ass ds d˚
s

b1 b2 . . . bs

Table F.2: Coefficients of the weak third-order method developed by Debrabant in the modified Butcher table

format shown in Table F.1 [4].

0 0 0 0 0

1 1 0 0 0
d d˚

1/2 3/8 1/8 0 0

1 -0.4526683126055039 -0.4842227708685013 1.9368910834740051 0

1/6 -0.005430430675258792 2/3 0.1720970973419255

d “ r´0.01844540496323970,0.8017012756521233,0.5092227024816198,0.9758794209767762sT

d˚ “ r´0.1866426386543421,´0.8575745885712401,´0.4723392695015512,0.3060354860326548sT

scheme of weak order Λ. This means, for example, that halving the time step used in a weak third-order

stochastic integrator will lead to estimating the mean of the distribution 23 “ 8 times more accurately.

Let us consider a stochastic differential equation in the form:

d y “ f pt , yqd t `

m´1
ÿ

l“0

Σl dβ
plq

Br ptq ypt0q “ y0 for t P rt0, t f s (F.3)

where an m-dimensional Wiener process βBrptq P Rm is considered. The goal is to find a discretized solution

to this equation, y “
␣

y0 “ ypt0q, y1 « ypt1q, . . . , yn « yptnq, . . . , yN « ypt f q
(

, where tn`1 ´ tn “∆t .

Debrabant [4] proposes a family of s-stage stochastic Runge-Kutta methods that can be expressed in a

format similar to deterministic Runge-Kutta integrators:

yn`1 “ yn `∆t
s´1
ÿ

i“0

bi ki `
?
∆t

m
ÿ

l“0

Σl Jl (F.4)

where

ki “ f

˜

tn ` ci∆t , yn `∆t
i´1
ÿ

j “0

ai j k j `
?
∆t

m´1
ÿ

l“0

pdi Jl ` d˚
i J˚

l qΣl

¸

(F.5)

and where Jl and J˚
l are values that are independently drawn during every integration step from a random

distribution whose moments coincide with those of the standard normal distribution. The coefficients ai j ,

bi , ci , di , and d˚
i can be expressed in the format of a modified Butcher table, see Table F.1. They are depen-

dent on the specific stochastic Runge-Kutta method being used. Table F.2 shows the coefficients found by

Debrabant for their weak third-order method. Note that the method is explicit because ai j “ 0 for j ě i .



G
Verification and Validation

Given the large amount of software that had to be written during this thesis, a thorough verification and

validation campaign is essential to guarantee the correctness of the results. This appendix briefly covers

how such a campaign was implemented. The appendix is divided into three sections, each focused on the

verification and validation of a different set of implementations: those related to the dynamics, the stochastic

integrator, and finally to the Gauss von Mises method.

G.1. Dynamics
As discussed in Appendix D, all necessary dynamical models were implemented through Basilisk. Several

Basilisk modules were written, which were independently verified. The Basilisk software has an automated

testing policy, which means that if one defines verification tests for a module, all such tests will be automati-

cally run every time the testing suite is run. This ensures the continuous correct integration of all modules.

A key component of the verification and validation campaign for the dynamics has been access to a set of

reference solutions. Carzana provided six propagations of a solar sail trajectory using different initial condi-

tions and the locally optimal inclination or semi-major axis control laws. These solutions not only contained

the state of the sail along its trajectory, but also the control angles of the sail, normal direction of the sail,

shadow factor, atmospheric density, and forces acting on the sail, broken down into atmospheric forces, SRP

forces, and gravity forces. This information was used to verify and validate the dynamics.

G.1.1. Verification
The verification of each module, as defined in Appendix D, consisted of:

• gravityEffector: Existing Basilisk tests for the module were used to verify that the refactor did not in-

troduce bugs on the gravitational models.

• Deterministic integrators: Existing Basilisk tests for the deterministic integrators were used to verify

that the refactor did not introduce bugs.

• dragDynamicEffector:

– Check that the drag and lift forces are produced in the correct direction for certain simple sail

attitudes:

˛ Sails parallel to the flow ought to produce no lift or drag.
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˛ Sails perpendicular to the flow should produce drag in the direction of the flow and no lift.

˛ Sails with a positive angle of attack should produce lift in the upward direction and drag in

the direction of the flow.

– Comparison of force results generated by the (C++) module and an equivalent Python implemen-

tation of the same formulas.

– Comparison of the force results generated by the module and the reference results provided by

Carzana at five different points in time during propagation for the six reference solutions.

• radPressureEffector: Only tests for the Generalized Sail Model are discussed, as the flat sail model was

not used to obtain any results shown in this work:

– Test that the produced SRP force is contained in the plane defined by the sail’s normal and the

direction of sunlight, which would be expected given the symmetry of the sail shape, and verifies

the assumption that the “roll" angle of the sail may be ignored.

– Test that the force obtained through the Generalized Sail Model for a (non-)ideal flat sail cor-

responds to the force produced by a (non-)ideal flat sail, as defined by the Equations shown in

Reference [6].

– Test that the force obtained through the Generalized Sail Model for an ideal non-flat sail cor-

responds to the force produced by the faceted specular-reflective SRP model implemented in

Basilisk.

– Test that the force obtained through the Generalized Sail Model for an ideal flat sail corresponds

to the force provided by Carzana at five different points in time during propagation for the six

reference solutions.

• locallyOptimalAttitude: Verify that the optimal normal direction produced by the module corresponds

to the optimal normal direction provided by Carzana at five different points in time during propagation

for the six reference solutions, which includes different shadow conditions and the semi-major axis and

inclination optimal control laws.

• attitudeOffset:

– Assert that when there is no angular offset, γ1 “ γ2 “ 0, the offset direction is the same as the

nominal direction, n̂off “ n̂nom.

– Verify that the projection of the offset direction, pn̂nom, on the x̂off, ẑoffq plane is angled by γ1 with

respect to the pŷoff, ẑoffq plane.

– Verify that the projection of the offset normal, n̂off, on the pŷoff, ẑoff plane is angled by γ2 with

respect to the px̂off, ẑoffq plane.

• exponenAtmosphere, spiceInterface, eclipse: Assumed verified given that they were existing modules

in Basilisk with associated unit tests.

G.1.2. Validation
The dynamics were validated by ensuring that the complete simulation setup could replicate the results for

the reference solutions provided by Carzana. The comparison is performed for a solar sail starting in a circular

Sun-synchronous orbit with an LTAN at 9 AM. The following initial conditions are used:

␣

a,e, i ,Ω,ω, f̄ , t
(

0 “ t6598.1363 km, 0, 96.395 deg, 325.5833deg, 0 deg, 0 deg, 2023{04{01u (G.1)
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Figure G.1: Pitch, α, and clock, δ, angles for the validation scenario using the locally optimal semi-major axis

control law. Shaded regions represent periods of umbra.

Two accelerations are considered: the ideal SRP acceleration and central gravity of the Earth. Two cases

are studied: one using the locally optimal steering law to maximize the semi-major axis and the other em-

ploying the locally optimal steering law to maximize the inclination.

Figures G.1 and G.2 compare the results obtained from the Basilisk-based implementation with the ref-

erence solutions for the case of the locally optimal semi-major axis control law. As one can see, both prop-

agations agree closely. The control law is followed closely, and as a result, the state of the spacecraft also

behaves in a very similar manner. Small differences can be appreciated, which are likely due to slight dy-

namical modelling differences between the Basilisk implementation and the dynamics used to produce the

reference. For instance, the Basilisk implementation considers a SRP that scales with the square of the dis-

tance between Sun and the Earth, while the reference implementation uses a constant SRP. Moreover, the

Basilisk implementation uses SPICE to compute the position of the Sun, while the reference implementation

uses analytical formulas from the Astronomical Almanac to compute this position. Other processes, such as

integration error or numerical rounding error, may also contribute to the differences displayed. Finally, note

that even though the inclination and the longitude of the ascending node are not shown in Figure G.2, they

remain constant for both the reference and obtained results.

Similarly to Figures G.1 and G.2, Figures G.3 and G.4 compare the results obtained from the Basilisk-based

implementation with the reference solutions for the case of the locally optimal inclination control law. One

finds that the obtained and reference results are also in close agreement for this validation scenario.

G.2. Stochastic Integrator
Stochastic integrators are complex numerical algorithms used to produce sample solutions to a set of stochas-

tic differential equations. This thesis involved the implementation of the weak third order integrator dis-

cussed in Appendix F. The equations presented in that appendix, however, are modifications of the equations

presented in the original paper by Debrabant [4]. This was done so that the modified equations more closely

resemble those of the deterministic Runge-Kutta method, which made implementation within Basilisk sim-

pler and more consistent with existing algorithms. Because of this, verification and validation serve to assert

that the derivation of these equations and their subsequent implementation was performed correctly.
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Figure G.2: Semi-major axis increase, ∆a, eccentricity, e, argument of the periapsis, ω, and true anomaly, f̄ ,

for the validation scenario using the locally optimal semi-major axis control law. Shaded regions represent

periods of umbra.
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Figure G.3: Pitch, α, and clock, δ, angles for the validation scenario using the locally optimal inclination

control law. Shaded regions represent periods of umbra.



G.2. Stochastic Integrator 69

0.0000

0.0025

0.0050

0.0075

i [
º]

0.0000

0.0001

0.0002

e 
[-]

0 6 12 18 24
Time [hour]

0

30

60

90

 [d
eg

]

0 6 12 18 24
Time [hour]

0
90

180
270
360

f [
de

g]

Obtained Validation

Figure G.4: Inclination increase, ∆i , eccentricity, e, argument of the periapsis, ω, and true anomaly, f̄ , for

the validation scenario using the locally optimal inclination control law. Shaded regions represent periods of

umbra.

The following linear system of stochastic differential equations with three-dimensional noise was used

during verification and validation:

d

»

—

–

x1

x2

x3

fi

ffi

fl
“

»

—

–

´0.5x1

´0.01x1 ´ 0.75x2

1.5x3

fi

ffi

fl
d t `

»

—

–

´0.1 0 0

0.05 1{30 0

0 0 0.1

fi

ffi

fl

»

—

–

dβBr,1ptq

dβBr,2ptq

dβBr,3ptq

fi

ffi

fl
(G.2)

with initial conditions: rx1, x2, x3s
T
0 “ r0,0,0.1s

T . Note that x3 is uncoupled from x1 and x2. For this simple

case, one can prove that the analytical expression for the mean of x3 is:

µx3 ptq “ 0.1e1.5t (G.3)

G.2.1. Verification
The stochastic integrator used in this work was implemented in C++ as a Basilisk module following the equa-

tions presented in Appendix F. To verify this implementation, a parallel implementation on Python using the

original equations by Debrabant was created [4]. Verification thus consisted on asserting that a single step of

the integrator produced the same results for the C++ and Python implementations. The stochastic differential

equation shown in Eq. G.2 was used for this.

G.2.2. Validation

Ornstein-Uhlenbeck process

Of particular interest to this work is the correct integration of Ornstein-Uhlenbeck processes, which are used

to model random angular offsets, see Section 3.2. It is known that an Ornstein-Uhlenbeck process defined by

the following stochastic differential equation:

dγ“ ´θγd t `σdβBrptq (G.4)

has a stationary mean value of µ “ 0 and stationary standard deviation of σst “ σ{
?

2θ. Thus, the stochastic

integrator should be able to produce solutions with the same mean and standard deviation for t " t0.
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Figure G.5: Integration of an Ornstein-Uhlenbeck process, γ, with µ “ 0, θ “ 10´2, and σst “ 0.5 using the

stochastic integrator described in Section F with time step ∆t “ 0.1. The stationary mean and standard devi-

ation of the simulated process are shown as yellow and red lines, respectively.

Figure G.5 shows a sample propagation of an Ornstein-Uhlenbeck process. The stationary mean and

standard deviation of the simulated process are µsim “ 0.0101 and σsim,st “ 0.5035, which represent reason-

able deviations from the (arbitrarily chosen) nominal values: µ“ 0 and σst “ 0.5. Thus, it is validated that the

stochastic integrator can produce simulations of the Ornstein-Uhlenbeck process with its expected proper-

ties.

Evolution of the error with respect to the time step

As discussed in Appendix F, an integrator of weak order Λ using time step ∆t can produce discrete approxi-

mations, Ỹ p∆tqptq, to the process Y p∆tqptq with an error bound as:

|Erg pY pt f qqs´ Erg pỸ p∆tqpt f qqs| ď C∆tΛ (G.5)

where C is some constant and g pxq is a function in a family of functions that contains all polynomials. One

such polynomial is the first-degree polynomial, such that g pxq “ x. Then, the above equation reduces to:

|ErY pt f qs´ ErỸ p∆tqpt f qs| “ |µY pt f q ´µỸ p∆tqpt f q| ď C∆tΛ (G.6)

which means that the integration error of the mean of the process is bounded by C∆tΛ. For the process

Y ” x3, as described in Eq. G.2, and a stochastic integrator of weak order Λ“ 3, one expects:

|µx3 pt f q´µ
x̃

p∆tq
3 pt f q

| “ |0.1e1.5t f ´µ
x̃

p∆tq
3 pt f q

| ď C∆t 3 (G.7)

Note that an anlytical solution for the mean of x3, µx3 pt f q, exists, while the mean of the approximation at

time t f , µ
x̃

p∆tq
3 pt f q

, must be obtained through a Monte Carlo simulation.

Given this knowledge, one can validate that the error of the implemented integrator follows the expected

trend shown in Eq. G.7. Figure G.6 displays the evolution of the error as a function of the time step for

∆t “ t2´4,2´3,2´2,2´1,20,21u. The mean of the approximation, µ
x̃

p∆tq
3 pt f q

, was obtained through a Monte

Carlo simulation with 105 samples; the 3σ standard error for this estimated mean is shown as whiskers. Two

exponential fits of the data are presented, one including and one ignoring the data point corresponding to

∆t “ 2. The first conclusion one may draw from this figure is that the integrator is “consistent”, as this is a

necessary condition for the error to converge to zero as ∆t Ñ 0. This data can also serve to validate the (weak)

order of the method. Figure G.6 shows two exponential fits, each with a different exponent, depending on the

data points considered. While it is not possible to determine the order exactly, this data allows us to estimate

that it is somewhere around the Λ“ 3 region, as expected.
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Figure G.6: Integrator error in the approximation of the mean of the process x3 for t f “ 2 as a function of the

time step.

G.3. The Gauss von Mises method
Section 3.3 briefly covers the Gauss von Mises method, with further details being available in Reference [7].

Given the complexity of this method, verification tests were implemented for each step in the algorithm.

Moreover, the original paper by Horwood and Poore showed an example of the performance of the GVM

method, which is here replicated for verification. Finally, validation of the GVM method is omitted from this

appendix, as the results shown in this thesis already serve to validate that the Gauss von Mises method can

replicate the results obtained from Monte Carlo simulations.

G.3.1. Verification
The implemented Gauss von Mises verification tests are:

• The computed weights of the samples must meet the theoretical constraints for the third-order quadra-

ture method, which are shown in Table 1 in Reference [7].

• Assert that if the Gauss von Mises distribution used to generate a set of σ-points is canonical, the gen-

erated σ-point samples are also in canonical form.

• Given an initial Gauss von Mises distribution of the state of the spacecraft, the relevant σ-point set is

generated. Then, this σ-point set is used to produce a Gauss von Mises distribution. Because the σ-

point were not propagated or modified in any way, the resultant Gauss von Mises distribution should

be the same as the initial Gauss von Mises distribution.

• In their original paper, Horwood and Poore show that the Gauss von Mises method can accurately es-

timate the propagation of state uncertainty for at least eight orbits under non-spherical gravity pertur-

bations. Figure G.7 shows the same results, replicated with the implementation of the GVM method

used in this work. Each of the contour lines encloses a region in which the spacecraft has a spe-

cific probability of appearing. From the innermost to the outermost contours, the probabilities are

10%, 30%, 50%, 70%, and 90%. This means that around 90% of the Monte Carlo points should rest

within the outermost countour line. As one can see, similarly to the results shown by Horwood and

Poore, there is a strong agreement between the GVM and MC methods.
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Figure G.7: Distribution of the state uncertainty of a spacecraft. Blue points represent 1000 samples obtained

through a Monte Carlo simulation, while the contours represent the probability density function of the state

as estimated by the Gauss von Mises method.



H
Integrator Selection

The Basilisk astrodynamics framework includes a set of adaptive and fixed-step Runge-Kutta integrators that

can be freely selected and configured by users. Moreover, a stochastic integrator has been implemented,

whose time step can also be configured. The selection of an integrator is critical to ensure that the numerical

error of the method is small enough not to contaminate the results presented in this work. Assuming that

this condition is met, the integrator should additionally be selected so that it is as computationally efficient

as possible.

H.1. Deterministic integrator
In this section, a reference scenario is propagated using different integrators and time steps. The compu-

tational cost and integrator error associated with each solution are recorded, and based on these results an

appropriate determinsitic integrator is selected. The reference scenario is a spacecraft using a solar sail with

the characteristics described in Table 1, in a Sun Synchronous Orbit with LTAN at 12 AM, using the semi-major

axis raising locally-optimal steering law, and for 10 days of propagation, which is considered representative

of all scenarios studied in this work.

The dynamical model used in this work neglects several perturbations in the near-Earth environment, or

otherwise performs significant simplifications. Among these are the simple exponential atmospheric model,

simplified aerodynamic coefficient model, neglection of third-body gravitational effects and higher-order

spherical harmonics for the Earth. Planetary radiation pressure is also ignored, which has been shown to

be able to cause perturbations in the order of hundreds of meters for solar sails in Sun Synchronous orbits

after 10 days of maneuvers [8]. Considering these modelling errors, an integrator error of at least an order

of magnitude lower than these errors is desired. Thus, the maximum integrator error allowed in this work is

10 m. The reference solution is obtained with a Runge-Kutta integrator of order 8 and time step of 1 second.

Figure H.1 shows the position error and computational cost of several integrators as a function of the

time step used. In this figure and in Table H.1 the notation "RKX" referes to a Runge-Kutta integrator of order

"X" and "RKFXY" refers to an adaptive Runge-Kutta integrator of orders "X" and "Y". As one can see, neither

the Runge-Kutta method of order 2 or the Euler method achieved the desired accuracy. With the exception

of the RKF45 method with tolerance 10´10, the adaptive Runge-Kutta methods seem to produce effectively

the same position error when using the same time step. This is due to the adaptive Runge-Kutta integrator

implementation in Basilisk; certain parameters, such as the position of the Sun, are only updated at the time

step of the simulation. Adaptive Runge-Kutta methods cannot control the simulation time step, they may
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Figure H.1: Position error and computational cost associated with different integrators as a function of the

time step. The maximum allowed error of 10 m is shown as a horizontal dashed line.

Table H.1: Position error and computational cost associated with each integrator when using the smallest

time step that produces an error below the accuracy requirement of 10 m.

Integrator Tolerance [-] Time Step [s] Position Error [m] Computational Cost [s]

RK4 - 8 5.94 8.93

RKF45 10´10 8 0.57 11.59

RKF45 10´13 64 5.93 4.96

RKF45 10´16 64 6.38 13.94

RKF78 10´10 64 6.39 2.27

RKF78 10´13 64 6.39 2.16

RKF78 10´16 64 6.38 5.46
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Figure H.2: Estimation error of the mean semi-major axis gain after 10 days of maneuvers for σst “ 5 deg,

different θ Ornstein-Uhlenbeck parameters, and integrator time steps.

only take smaller time steps between the larger, fixed simulation steps. This means that, independently of

the tolerance and order of the adaptive integrator, there is some unavoidable error that depends only on the

simulation time step.

Table H.1 shows the maximum time step required to achieve an integrator error below the required ac-

curacy. Again, most adaptive integrators show the same behaviour independently of the tolerance used. Be-

cause of this, it is often best to employ fixed-step integrators in Basilisk, as they have lower computational

overhead. As shown in the table, the "RKF78" method, which here acts effectively as a fixed-step Runge-Kutta

method of order 8 with time step 64 s has the lowest computational cost, and thus is the integrator used to

obtain the results shown in this project.

H.2. Stochastic Integrator
Determining the accuracy of a stochastic integrator is more complex than doing the same for a deterministic

integrator. Given the intrinsic randomness of the system, each propagation performed with a stochastic in-

tegrator produces a random trajectory. Thus, the error associated with a stochastic integrator is evaluated by

finding the error in the expected (mean) value of some function of the propagation. As discussed in Section

G.2.2, this error is a function of the time step used.

This section evaluates the error in the estimation of the mean of the distribution of the semi-major axis

after 10 days of maneuvers with a randomly evolving attitude offset, as described in Section 3.2. The test

scenario is a solar sail with the characteristics described in Table 1, in a Sun Synchronous Orbit with LTAN at

12 AM, using semi-major axis raising locally-optimal steering law. The Ornstein-Uhlenbeck parameter σst is

set to its maximum considered, 5 deg, while several θ parameters are considered.

Figure H.2 shows the error in the estimation of the mean as a function of the time step. As one can see, a

time step of 16 s creates mean errors below 0.5% for the four θ parameters considered, making this time step

an acceptable time step to generate the results shown in this work.



I
Shape Model Discretization

Section 2.2 introduced the shape model of the sail used in this thesis. Because the Generalized Sail Model

formulas cannot be solved analytically when using this shape model, a discretization of the shape is neces-

sary. The number of faces used in this discretization drives the discretization error introduced, as well as the

computational cost associated with generating the Jk tensors.

Figures I.1 and I.2 quantify the error that the discretization introduces for a sail with the following param-

eters: l “ 30 m, ρs “ 0.75, a2 “ 0.4, a3 “ 0.25, ∆ztip “ 0.08 m and ∆zbillow “ 0.05 m, see Section 2.2 for the

definition of these variables. Figure I.1 shows the absolute error in the Jk tensors, which as one can see, is

greatest for the J3 tensor and practically negligible for the J1 tensor. Figure I.2, on the other hand, shows the

relative error introduced in the SRP force for different pitch angles. Given the weak effect of the deforma-

tion in the total force, even low numbers of faces produce accurate results. In this thesis, shape models with

10,000 faces are used, which are shown to produce relative force errors with magnitude less than 10´5% and

take only 0.05 s to compute in a mainstream laptop.
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0 5000 10000 15000 20000 25000 30000 35000 40000
Nfaces [-]

10 6

10 5

10 4

10 3

||F
SR

P
F S

RP
,r

ef
|| 

/ |
|F

SR
P,

re
f||

 [%
] = 0 deg

= 30 deg
= 60 deg

Figure I.2: Relative error of the SRP force for differ-

ent pitch angles, α, as a function of the number of

triangles used to discretize the surface.

76



J
Solar Radiation Pressure acceleration

model

Section 2.2 briefly introduced the SRP acceleration model used in this thesis. This appendix expands this

section by providing additional explanations that was not deemed of interest for the paper. Moreover, Section

2 introduces the “Conical” shadow model, which is also briefly explained in this appendix.

Recall that the model used in this thesis is the Generalized Sail Model developed by Rios-Reyes and

Scheeres [9], which can account for deformed and non-ideal solar sails. Let us consider an infinitesimal

piece of sail, dA, whose orientation is fully defined by a normal vector n̂, as defined in Section 2.1. Then, the

SRP force on this infinitesimal piece of sail is given by:

dFSRP “ dFr ´ dFa ´ dFe (J.1)

where dFr is the force caused by reflection, dFa is the force due to absorption, and dFe is the force due to

emissivity (re-radiation). The total force due to reflection is given by [6]:

dFr “ PdA
“

´
`

ρs cos2α` Bfp1 ´ sqρ cosα
˘

n̂ ´ρs cosαsinαt̂
‰

(J.2)

where P is the SRP at the sailcraft location, ρ is the fraction of photons that are reflected (reflectivity), s is the

fraction of reflected photons that are reflected specularily (specularity), and B f is the Lambertian coefficient

describing the sail’s deviation of the front (illuminated) surface from a Lambertian surface. A Lambertian

surface has the same radiance in all directions [10].

The total force due to absorption is given by [6]:

dFa “ PdA
“

´cos2αn̂ ` cosαsinαt̂
‰

(J.3)

while the force due to emission is [6]:

dFe “ ´PdAp1 ´ρqp1 ´ρq
ε f B f ´εbBb

ε f `εb
cosαn̂ (J.4)

where Bb is the is the Lambertian coefficient of the back (dark) side of the sail; and ε f and εb are the emissivity

coefficients for the sail’s front and back sides, respectively.

Combining Eqs. J.1, J.2, J.3, and J.4 one reaches the previously introduced Eq. 4 for the differential SRP

force dFSRP produced by a differential area of sail dA:

dFSRP “ PdA
“

´
`

a1 cos2α` a2 cosα
˘

n̂ ` a3 cosαsinαt̂
‰

(J.5)
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Figure J.1: Schematic to determine the shadow factor as per the conical shadow model [11].

On the other hand, Figure J.1 can be used to further understand the “Conical” shadow model. This figure

shows the Earth and Sun’s disks from the perspective of the spacecraft. The triangle joining the disks’ centers

and the disks’ intersection has sides aν, bν, and cν. The area of intersection of the disks, Aν, is given by [11]:

Aν “ a2
ν cos´1

ˆ

xν

aν

˙

` b2
ν cos´1

ˆ

cν ´ xν

bν

˙

´ cνyν (J.6)

where

xν “
c2
ν ` a2

ν ´ b2
ν

2cν
and yν “

b

a2
ν ´ x2

ν (J.7)

If the Sun’s disk is completely covered by the Earth’s disk, then the shadow factor is ν“ 0. When the disks

do not intersect, then the shadow factor is ν “ 1. Finally, for the case of penumbra, as is shown in Figure J.1,

the shadow factor is given by [11]:

ν“ 1 ´
Aν

πa2
ν

(J.8)
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