
Challenge the future

Department of Precision and Microsystems Engineering

Topology Optimisation of Pressure-Actuated Soft Robots

Dehlia Hedera Iris Menger

Report no : 2024.005
Coach : Dr. Ir. S. Koppen
Professor : Prof. Dr. Ir. M. Langelaar
Specialisation : Computational Design and Mechanics
Type of report : Master Thesis
Date : 31st January



Topology Optimisation of Pressure-Actuated
Soft Robots

Thesis Document
Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science in Mechanical Engineering

Delft University of Technology

Department of Precision and Microsystems Engineering

Author:
Dehlia Hedera Iris Menger

4649451

Committee Members:
Prof. Dr. Ir. M. Langelaar

Dr. Ir. S. Koppen
Dr. Ir. R.A.J. van Ostayen

Dr. J. Wu



Copyright © Department of Precision and Microsystems Engineering (PME)

All rights reserved.



Contents

Acknowledgements v

Summary vii

List of Figures xi

List of Tables xvi

1 Introduction 1

2 Linear topology optimisation 6
2.1 Topology optimisation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Linear solid mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Linear solid mechanics in COMSOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Topology optimisation problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.2 Compliant Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Linear topology optimisation for design-dependent pressure loads 11
3.1 Modelling design-dependent pressure loads . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Topology optimisation formulation of pressure-actuated compliant mechanisms . . . . 14

4 Nonlinear topology optimisation for design-dependent pressure load 15
4.1 Nonlinearities of solid mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1 Geometric nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.2 Hyperelastic material model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1.3 Force nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Nonlinear solid mechanics formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 Solid mechanics formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.4 Nonlinear solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Wang Method 22
5.1 Interpolation of the kinematic parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2.1 C-beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2.2 Topology optimisation of a cantilever beam . . . . . . . . . . . . . . . . . . . . . . 27

5.2.3 Topology optimisation of an inverter . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Case study nonlinear topology optimisation pressure-actuated compliant mechanism 35
6.1 Pressure-actuated inverter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.1.1 The deformation-independent load analysis . . . . . . . . . . . . . . . . . . . . . 39

6.1.2 The follower force analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2 Pressure-actuated compliant gripper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2.1 The deformation-independent load analysis . . . . . . . . . . . . . . . . . . . . . 43

6.2.2 The follower force analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.3 A member of the pneumatic networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.4 Multi-material pressure-actuated compliant gripper . . . . . . . . . . . . . . . . . . . . . 47

7 Discussion 49

8 Conclusions and recommendations 52

References 56

iii



Contents iv

A Topology optimisation process 58
A.1 Design parameterisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.1.1 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.1.2 Non-linear Projection techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A.2 Finite element analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A.3 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A.3.1 Sensitivity analysis of structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A.3.2 Sensitivity analysis of compliant mechanism . . . . . . . . . . . . . . . . . . . . . 63

A.4 Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

B The validation of the Darcy method 65
B.1 Completely solid Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

B.2 Beam with solid and void halves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

B.3 Beam with solid semicircle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

B.4 Beam with gradual transition from solid to void . . . . . . . . . . . . . . . . . . . . . . . 69

B.5 Solid beam with intermediate values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

C Intermediate values interpolation factor for C-beam with Wang method 72

D Parameter study of the Wang method 74
D.1 Implementation of a Helmholtz filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

D.2 Changing the steepness of the Heaviside function . . . . . . . . . . . . . . . . . . . . . . 75

D.3 Changing the threshold of the Heaviside function . . . . . . . . . . . . . . . . . . . . . . 76

D.4 Changing the penalisation factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

D.5 Adding Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

D.6 Topology optimisation of cantilever beam including the Wang method . . . . . . . . . . 80

E The codes of MATLAB 81
E.1 Code for the linear material model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

E.2 The code for the element material model interpolation method . . . . . . . . . . . . . . . 82



Acknowledgements

This section is dedicated to acknowledging the instrumental contributions of individuals who have

significantly enriched my research experience throughout this thesis. I am grateful for the opportunity

and wish to express my gratitude to my supervisors, Matthĳs Langelaar and Stĳn Koppen. The success

of this thesis owes much to their guidance, expertise, support, and thorough checking of my work.

Furthermore, I extend my appreciation to Ron van Ostayen. His comprehensive understanding and

expertise in COMSOL significantly contributed to the enhancement of my COMSOL skills. With his

instrumental guidance and remarkable ability to facilitate action and provide assistance, I could handle

the complexities of COMSOL. One example is that one day, the COMSOL server broke for the second

time. Despite numerous emails, the issue remained unresolved. However, after seeking Ron’s assistance,

the server was fixed within a day. This example is only one of the many.

My gratitude extends to Josh Pinskier, who assisted me with COMSOL and went above and beyond to

help me proceed with my studies in Australia. Although the plan to go to Australia did not become a

realisation, Josh’s support persisted. I also want to thank Prabhat Kumar for his shared knowledge and

keen interest in this thesis.

My heartfelt thanks extend to my old and new friends who patiently listened to my thesis struggles

and respected my choice to skip some late-night fun to start early in the mornings. Their knowledge,

support, and love throughout this journey have been unwavering. Their consistent encouragement has

been the driving force behind both my academic and personal growth. They made this experience

enjoyable and enriching.

Special appreciation goes to my family—Eric, Carin, Iris, Hedera, and Rutger—who supported me

unconditionally at every step. Their support took various forms, whether through wise advice from

different perspectives or financial support, and even in the form of enjoyable evenings filled with games

and delicious food. I also should not forget to thank the extended family—Koen and Ellen—for the

enjoyable conversations and moments.

Finally, I would like to thank Daniel for always being there and giving me a listening ear or a hug when

needed. His never-ending stories, wisdom, good advice, and love helped me through the frustrating

times.

Dehlia Hedera Iris Menger
Delft, January 2024

v



Contents vi



Abstract

Soft robots, characterised by compliant mechanisms (CMs) made from low-stiffness materials, offer

improved adaptability compared to traditional, rigid robots. These CMs are often actuated by pressure

loads. Moreover, soft robots provide new possibilities in the area of robotics. They can be used in search

and rescue and interact safely in collaboration with humans.

The current state-of-the-art in Topology Optimisation (TO) for design-dependent pressure-actuated

CMs (PACMs) relies heavily on linear models. The determination of design-dependent pressure loads

involves employing the Darcy method, which integrates Darcy’s law with the drainage term to obtain

the pressure field. Subsequently, the finite element method (FEM) is used to transform the pressure

field into consistent nodal forces. However, it is crucial to acknowledge that these linear models are

only valid for small displacements.

This thesis introduces a novel approach by incorporating nonlinearities into the solid mechanics of the

TO process for PACMs in conjunction with the Darcy method. Additionally, this work incorporates

nonlinearities into the solid mechanics of the TO process for PA multi-material compliant mechanisms,

presenting another novel method.

Four nonlinearities in the solid mechanics of PA soft robots may occur, two of which are addressed

in this thesis: geometric nonlinearities and a hyperelastic material model. Geometric nonlinearities

arise from large deformations caused by high applied pressures. The Neo-Hookean material model is

implemented to describe the low-stiffness material accurately.

The TO of pressure-actuated (PA) soft robots is simulated using COMSOL, a commercial software

program for multi-physics simulation. This research presents a detailed comparison between theoretical

predictions and practical outcomes as realised in COMSOL. Furthermore, this thesis includes a case

study validating the successful implementation of the new method, covering a PA inverter, a PA

compliant gripper, a PA member of the Pneumatic Networks, and a PA multi-material compliant gripper.

The obtained results indicate limitations on the allowable applied pressure loads for the mechanisms,

specifically in the case of the PA member of the Pneumatic Networks and a PA multi-material-compliant

gripper. However, the PA inverter and PA compliant gripper validate the expectation that incorporating

a hyperelastic material model yields significantly different results than the linear elastic material model.

Moreover, the TO with the hyperelastic material model can predict displacements more accurately than

the linear TO, as the differences between the displacements obtained from the TO and the analysis align

more closely.

The Wang method is investigated to observe its influence on the range of the applied pressure loads

during the TO of PA soft robots. The Wang method employs an interpolation technique that interpolates

between linear and nonlinear theories. In this approach, void elements are described using linear theory,

while solid elements are characterised by nonlinear theory. This interpolation method is developed to

address distorted elements during large displacements. It effectively extended the range of applied

loads during the TO of structures. However, it is found that this method does not influence the range of

the applied load during the TO of CMs.

vii



Nomenclature

Symbol Description unit
𝛽𝑘 Parameter to control the rate of change of the flow coefficient 𝐾 . . . . . . . . . . . . . . -

𝝌 Motion of the body x = 𝝌(X, 𝑡) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

𝝐 Linearised Green-Lagrange strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -

𝜂𝑘 Parameter to control when the flow coefficient 𝐾 changes from 𝐾𝑣 to 𝐾𝑠 . . . . . -

𝛾𝑒 Interpolation factor to interpolation between linear and nonlinear theory . . . . -

Γ Complete boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
2

Γ𝑒 Element boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
2

𝜅 Permeability of a material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N/m
3

𝜆 First Lamé parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N/m
2

𝜆𝑖 Eigenvalues of C with i = 1,2,3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

𝜇 Second Lamé parameter; shear modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N/m
2

𝜇 𝑓 Fluid viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N/m
2

s

∇ Gradient operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
−1

𝜈 Poisson ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -

𝜙 Interpolated strain energy density function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J/m
3

𝜙𝐻𝐸 Neo-Hookean strain energy density function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J/m
3

𝜙𝐿 Linear strain energy density function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J/m
3

𝜙𝑉𝐾 Saint Venant-Kirchhoff strain energy density function for small deformation . J/m
3

Π Total potential energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J

Π𝑒𝑥𝑡
External potential energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J

Π𝑖𝑛𝑡
Internal potential energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J

Ω Total domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
3

Ω0 Domain of the initial configuration of the body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
3

𝜕Ω0,𝜎 Boundary surface where the traction vector t is prescribed . . . . . . . . . . . . . . . . . . m
2

Ω𝑒 Element domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
3

𝝆 Vector of design variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -

𝜌𝑒 Value design variables of element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -

𝝈 Linear stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N/m
2

A Global flow matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -

A𝑒 Flow matrix of the element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -

b Body force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N

B Matrix of spatial derivatives of the matrix of shape functions . . . . . . . . . . . . . . . . m
−1

B𝑝 Matrix of spatial derivatives of the vector of shape functions . . . . . . . . . . . . . . . . . m
−1

C Right Cauchy-Green deformation tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -

C𝑚𝑖𝑛 Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/N

D Elastic modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N/m
2

𝐷𝑠 Drainage coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
2
N

−1
s
−1

𝑒 Element index parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -

𝐸 Young’s modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N/m
2

𝐸𝑒 Element Young’s modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N/m
2

𝐸0 Young’s modulus for the void elements (𝜌𝑒 = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N/m
2

𝐸𝑖 Young’s modulus for the solid elements (𝜌𝑒 = 1) with i=1 for a single material

problem and i=1,2 for a multi-material problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

N/m
2

E𝑊,𝑖 The ith strain interpolation method with i = 1,2,3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . -

E𝐺𝐿 Green-Lagrange strain tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -

𝑓0 Objective function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -

viii



Contents ix

f Global force vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N

f𝑑 Unit dummy load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N

f𝑒 Nodal force vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N

f𝑒𝑥𝑡 External force vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N

f 𝑓 𝑙𝑜𝑤,𝑒 Loading vector of the element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
3
/s

f 𝑓 𝑙𝑜𝑤 Global loading vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
3
/s

f𝑖𝑛𝑡 Internal force vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N

F Deformation gradient tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -

H𝑒 Conversion matrix from nodal pressures p𝑒 to the nodal loads f𝑒 𝑒 . . . . . . . . . . . m
2

H Conversion matrix from nodal pressures p to the nodal loads f . . . . . . . . . . . . . . . m
2

I Identity matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

𝐼1 First invariant of C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -

𝐼3 Third invariant of C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -

𝐾 Flow coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nm
4
/s

𝐾𝑠 Flow coefficient for solid elements (𝜌𝑒 = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nm
4
/s

𝐾𝑣 Flow coefficient for void elements (𝜌𝑒 = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nm
4
/s

K Global stiffness matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N/m

K𝑒 Element stiffness matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N/m

n Boundary normal vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -

N Matrix of Shape functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -

N𝑝 Vector of Shape functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -

𝑝 Penalisation factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -

p𝑜𝑢𝑡 Output pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N/m
2

p Pressure vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N/m
2

p𝑒 Nodal pressure values of the element N/m
2

q Darcy flux; volume velocity through porous medium . . . . . . . . . . . . . . . . . . . . . . . . m/s

qΓ Prescribed Darcy flux at the boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s

𝑄𝑑𝑟𝑎𝑖𝑛 Volumetric drainage per second per unit volume (Drainage term) . . . . . . . . . . . . 𝑠−1

𝑟 Ratio of input pressure to pressure at depth Δ𝑠 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

S Interpolated second Piola-Kirchhoff stress in the EMMI method . . . . . . . . . . . . . N/m
2

S𝐿 Linear second Piola-Kirchhoff stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N/m
2

S𝑁𝐿 Nonlinear second Piola-Kirchhoff stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N/m
2

Δ𝑠 Penetration depth of the pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

t Traction force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N

u Displacement vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

u𝑒 Nodal displacements vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

v Displacement vector due to the dummy load fd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

𝑉 Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
3

𝑉∗ Permitted volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
3

𝑊 𝑒𝑥𝑡
External work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J

𝑊 𝑒𝑥𝑡
𝑒 Element external work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J

𝑊 𝑖𝑛𝑡
Internal work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J

x Spatial coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

X Material coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m



List of abbreviations

Abbreviation Description
ALE Arbitrary Lagrangian-Eulerian

CM Compliant Mechanism

DOF Degree Of Freedom

FEA Finite Element Analysis

FEM Finite Element Method

GCMMA Global Convergent Method of Moving Asymptotes

MSE Mutual Strain Energy

PA Design-dependent Pressure-Actuated

PACM Design-dependent Pressure-Actuated Compliant Mechanism

PSBM Pseudo-Rigid Body Model

PneuNets Pneumatic Networks

SE Strain Energy

SEDF Strain Energy Density Function

SIMP Simplified Isotropic Material with Penalisation

TO Topology Optimisation

x



List of Figures

1.1 An example of a soft robot: a soft gripper picking up a raw egg. This figure is obtained

from Shintake et al. (2018) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 a) An example of a design problem with design-dependent pressure loading which are

the dash-dotted arrows on the pressure boundary Γ𝑝 . b) A possible outcome for the TO

problem of (a). Here, Γ𝑝𝑏 = the evolving pressure boundary. Γ𝑝0
= the zero pressure

boundary. Γ𝑢 = the boundary where displacements are fixed. 𝜌 = the material density.

Ω = the design domain. Ω𝑚 = the solid domain where 𝜌 = 1. Ω𝑣 = the void domain

where 𝜌 = 0. Ω𝑝 = the pressure domain where 𝜌 = 0. The figure is obtained from Kumar,

Frouws, et al. (2020). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 The different types of nonlinearities involved in the solid mechanics of the TO process

and their nonlinear relationship with the parameters of the solid mechanics. This figure

is obtained from Kim (2015) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Comparison of the original structure and the TO result of a bracket to demonstrate the

working principle of TO. These brackets are designed by COMSOL (2023). . . . . . . . . 6

2.2 The steps of the topology optimisation process . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 The Heaviside function for several values of 𝜂𝑘 and 𝛽𝑘 . . . . . . . . . . . . . . . . . . . 12

3.2 The schematic visualisation and the associated boundary condition of the beam corre-

sponding to Figure 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 The comparison of the pressure field obtained from the Darcy method without (a) and

with (b) a Drainage term. The applied pressure load is 1 × 10
4

Pa . . . . . . . . . . . . . 13

4.1 The schematic visualisation of a beam under compression . . . . . . . . . . . . . . . . . 17

4.2 The displacement of a beam under various applied loads, simulated using a linear elastic

material model in the solid mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3 The displacement of a beam under various applied loads, simulated using a Neo-Hookean

material model in the solid mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.4 The force-displacement curve for a cantilever beam with a linear (dotted line), geometric

nonlinear (circles), and Neo-Hookean material (squares) model under different applied

force values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.5 The left figure illustrates the initial state of a cantilever beam, while the right figure

depicts the beam subjected to a distributed load, highlighting the change in the direction

of the follower forces. This figure is obtained from Kim (2015) . . . . . . . . . . . . . . . 19

4.6 The difference between the obtained deformed mesh using a Total Lagrangian or Eulerian

formulation. The upper meshes present the Total Lagrangian formulation (L), while

the bottom meshes present the Eulerian formulation (E). This figure is obtained from

Belytschko et al. (2014). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.7 The difference between the deformed meshes obtained using the Updated Lagrangian

and ALE formulations. This figure is obtained from Stoker (1999). . . . . . . . . . . . . . 21

5.1 The schematic visualisation and corresponding boundary conditions of the C-beam,

where the grey part (𝛾𝑒 = 1) signifies a solid region, while the white part (𝛾𝑒 = 0) mimics

the void regions. This figure is based on the paper of Yoon et al. (2005) . . . . . . . . . . 24

5.2 The results obtained from the analysis of the C-beam are presented in (a) for the maximum

allowable applied load and in (b) for conditions exceeding the maximum allowable applied

load. The analysis incorporates a Neo-Hookean material model. . . . . . . . . . . . . . . 25

xi



List of Figures xii

5.3 The analysis results of a C-beam using different approaches: (a) Neo-Hookean material

model, (b) interpolation of only the SEDF, (c) interpolation of SEDF and the first strain

method, excluding the Second Piola-Kirchhoff stress, and (d) the Wang method. . . . . 26

5.4 Mesh of the maximum deformation obtained from the analysis of the C-beam with the

Wang Method using E𝑊,1 (a) and E𝑊,2 (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.5 The schematic visualisation and the associated boundary conditions of a cantilever beam. 27

5.6 The material distribution obtained from the linear TO of a cantilever beam. . . . . . . . 28

5.7 The material distribution obtained from the TO with a Neo-Hookean material model of a

cantilever beam under various values of the applied load. . . . . . . . . . . . . . . . . . 28

5.8 The deformed shape of the obtained design from the TO with a Neo-Hookean material

model of a cantilever beam under an applied load of 150 kN. The displacements are not

scaled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.9 The comparison between the results of the (a) linear TO and (b) TO with the Wang method

where 𝛾𝑒 is set to 0 for all elements for a cantilever beam under an applied load of 80 kN. 29

5.10 The comparison between the results of a TO of a cantilever beam with a Neo-Hookean

material model (a) and the Wang method where the interpolation factor 𝛾𝑒 is equal to 1

(b) of a cantilever beam under an applied load of 80 kN . . . . . . . . . . . . . . . . . . . 30

5.11 The material distribution obtained from the TO with the Wang method of a cantilever

beam under various values of the applied load. . . . . . . . . . . . . . . . . . . . . . . . . 30

5.12 The deformed shape of the filtered design obtained from the TO with the Wang method

of a cantilever beam under an applied load of 250 kN. The displacement is not scaled . . 31

5.13 The schematic visualisation and the corresponding boundary conditions of the inverter. 31

5.14 The material distribution obtained from the linear TO of an inverter under an applied

load of 0.02 N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.15 The displacement is illustrated, which validates the working principle of an inverter. . 32

5.16 The material distribution obtained from the TO with a Neo-Hookean material model of

an inverter under various values of the applied load . . . . . . . . . . . . . . . . . . . . . 33

5.17 The deformed shape of the obtained design from the TO with the Wang method of a

cantilever beam under an applied load of 0.4 N. The displacement is not scaled. . . . . . 33

5.18 The material distribution obtained from the TO with the Wang method of a cantilever

beam under an applied load of 0.02 N (a) and 0.4 N (b). . . . . . . . . . . . . . . . . . . 34

6.1 An example of the filtering design obtained from the TO, where the design variables are

thresholded at 0.5. (a) illustrates the material distribution obtained from the TO of a PA

inverter. (b) shows the filtered design used in the analyses. . . . . . . . . . . . . . . . . . 36

6.2 The schematic visualisation and the corresponding boundary conditions of PA inverter. 37

6.3 The material distribution obtained from the linear model of a PA inverter under two

different input pressure load values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.4 The material distribution obtained from the Neo-Hookean model for a PA inverter under

two different input pressure load values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.5 The error obtained when exceeding the maximum pressure load of 1 × 10
7
Pa for the

Neo-Hookean model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.6 The displacement in the analysis of the first TO iteration of the Neo-Hookean model for

an input pressure load of 5 × 10
7

Pa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.7 The difference between the obtained designs of the linear (red) and Neo-Hookean (grey)

model of the PA inverter under an input pressure load of 1 × 10
7

Pa. . . . . . . . . . . . . 38

6.8 The deformed design obtained from the linear model under an applied pressure load of

1 × 10
6

Pa serves to validate the working principle of a PA inverter. The displacement is

scaled by a factor of 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.9 The pressure field of the obtained result of the linear (a) and Neo-Hookean (b) model of

an PA inverter under an input pressure load of 1 × 10
7

Pa . . . . . . . . . . . . . . . . . . 39

6.10 The displacements obtained from the deformation-independent load analysis and the

expected displacements from the linear and Neo-Hookean model under different input

pressure loads values for a PA inverter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



List of Figures xiii

6.11 The difference between the displacements obtained from the deformation-independent

load analysis of the linear (red) and a Neo-Hookean (grey) model under an input pressure

load is 1 × 10
7
Pa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.12 The displacements obtained from the follower force analysis and the deformation-

independent load analysis of the linear and Neo-Hookean model under different input

pressure load values for a PA inverter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.13 The schematic visualisation and the corresponding boundary condition of a PA compliant

gripper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.14 The material distribution obtained from the linear model of a PA compliant gripper under

two different input pressure load values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.15 The material distribution obtained from the Neo-Hookean model of a PA compliant

gripper under two different input pressure load values. . . . . . . . . . . . . . . . . . . . 41

6.16 The difference between the obtained designs of the linear (red) and Neo-Hookean (grey)

models of a PA compliant gripper under an input pressure load of 1 × 10
7

Pa. . . . . . . 42

6.17 The deformed design obtained from the linear model under an applied pressure load of

1 × 10
6

Pa to validate the working principle of a PA compliant gripper. The displacement

is scaled by a factor of 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.18 The pressure field of the result of the linear (a) and a Neo-Hookean (b) model of a PA

compliant gripper under an applied force of 1 × 10
7

Pa . . . . . . . . . . . . . . . . . . . 43

6.19 The material distribution obtained from a Neo-Hookean model of a PA compliant gripper

under an input pressure load of 1 × 10
7
Pa with two areas circled. These circled areas

illustrate areas with similar values for the design variables. . . . . . . . . . . . . . . . . . 43

6.20 (a) The material distribution of the linear model of PA compliant gripper under an input

pressure load of 1 × 10
7

Pa with a mesh containing a maximum element size of 0.002 m.

(b) The corresponding pressure field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.21 The displacements obtained from the deformation-independent load analysis and the

expected displacements from the linear and Neo-Hookean model of a PA compliant

gripper under different input pressure load values. . . . . . . . . . . . . . . . . . . . . . 44

6.22 The difference between the displacements obtained from the deformation-independent

load analysis of the linear (red) and a Neo-Hookean (grey) model under an input pressure

load is 1 × 10
7
Pa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.23 The displacements obtained from the follower force analysis and the deformation-

independent load analysis of the linear and Neo-Hookean model under different input

pressure load values for a PA compliant gripper. . . . . . . . . . . . . . . . . . . . . . . . 45

6.24 The schematic visualisation of a member of a PneuNets . . . . . . . . . . . . . . . . . . . 45

6.25 The material distribution (a) and pressure field (b) obtained from the Neo-Hookean

model of a member of the PneuNets under an input pressure load of 1 × 10
5

Pa . . . . . 46

6.26 The deformed design obtained from the Neo-Hookean model under an input pressure

load of 1 × 10
5

Pa with different values for 𝑘𝑠𝑠 . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.27 The obtained values for the design variables 𝜌̄𝑖1 i.e. the material distribution (a) and

𝜌̄𝑖2 (b) for the linear model of a multi-material PA compliant gripper under an applied

pressure load of 5 × 10
5

Pa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.28 The obtained values for the design variables 𝜌̄𝑖1 i.e. the material distribution (a) and

𝜌̄𝑖2 (b) for the Neo-Hookean model of a multi-material PA compliant gripper under an

applied pressure load of 5 × 10
5

Pa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.29 The difference between the obtained designs of the linear (green) and the hyperelastic

(grey) model of a multi-material PA compliant gripper under an input pressure load of

5 × 10
5

Pa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.30 The deformed design obtained from the linear model under an applied pressure load of

5 × 10
5

Pa to validate the working principle of a multi-material PA compliant gripper.

The displacement is not scaled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.31 The pressure field obtained from the linear (a) and Neo-Hookean (b) model of multi-

material PA compliant gripper under an input pressure of 5 × 10
5

Pa . . . . . . . . . . . 48

7.1 The displacement of the analysis before the first TO iteration of the Neo-Hookean model

for a member of the Pneunets under a pressure load of 5 × 10
5

Pa . . . . . . . . . . . . . 51



List of Figures xiv

7.2 The displacement of the analysis for the first (a) and seventh (b) TO iteration of the

Neo-Hookean model for a member of the PneuNets under a pressure load equal to 1× 10
5

Pa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8.1 (a) the original initial values and (b) the alternative initial values for the design variables

of the TO of a PA compliant gripper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A.1 The topology optimisation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A.2 Comparison of the designs obtained from the TO of a cantilever beam without (a) and

with (b) filtering. These figures were generated using the 88-line code provided in the

paper by Andreassen et al. (2011). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.3 The main concept of FEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A.4 The mapping from the physical domain (x,y) into the standard element (𝜉, 𝜂) . . . . . . 61

A.5 a typical element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A.6 Part of the FEM process is presented: (a) discretisation of the model, (b) Assembly of the

elements after calculating the field variables of each element, (c) Boundary conditions are

applied, and the system of equation is solved. . . . . . . . . . . . . . . . . . . . . . . . . . 62

B.1 The schematic visualisation of the first scenario and its boundary conditions. . . . . . . 66

B.2 The obtained temperature field (a) and body load (a) from the analysis of the first scenario

of the HFM model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

B.3 The obtained pressure field (a) and body load (b) from the analysis of the first scenario of

the PDE model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

B.4 The schematic visualisation of the second scenario and its boundary conditions. . . . . . 67

B.5 The obtained temperature field (a) and body loads (b) from the analysis of the second

scenario of the HFM model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

B.6 The obtained pressure field (a) and body loads (a) from the analysis of the second scenario

of the PDE model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

B.7 The schematic visualisation of the third scenario and its boundary conditions. . . . . . . 68

B.8 The obtained temperature field (a) and body load (b) from the analysis of the third

scenario of the HFM model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

B.9 The obtained pressure field (a) and body load (b) from the analysis of the third scenario

of the PDE model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

B.10 The obtained body load from the analysis of the third scenario with a smaller circle of the

HFM model. The scaling factor is 3 × 10
−10

. . . . . . . . . . . . . . . . . . . . . . . . . . 68

B.11 The schematic visualisation of the fourth scenario and its boundary conditions. . . . . . 69

B.12 The obtained temperature field (a) and body load (b) from the analysis of the fourth

scenario of the HFM model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

B.13 The obtained pressure field (a) and body load (b) from the analysis of the fourth scenario

of the PDE model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

B.14 The pressure field (left column) and body loads (right columns) from the analysis of the

fifth scenario for different values of 𝛾 of the PDE model under an applied pressure of

1 × 10
4

Pa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

C.1 The analysis results of a C-beam, incorporating the Wang method with varying values of

𝛾𝑒 for the void region within the C-beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

D.1 The schematic visualisation of the cantilever beam and the associated boundary conditions 74

D.2 The results obtained from the TO of a cantilever beam incorporating the Wang method,

subjected to an applied force of 150 kN for varying values for 𝛽1. . . . . . . . . . . . . . . 76

D.3 The results of the TO of a cantilever beam incorporating the Wang method and is subjected

to an applied force of 150 kN, for varying values for 𝜂1, with 𝛽1 held constant at 100. . . 77

D.4 The results obtained from the TO of a cantilever beam, which incorporates the Wang

method and is subjected to an applied force of 250 kN for varying values of 𝜂1, with 𝛽1

held constant at 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



List of Figures xv

D.5 The results obtained from the TO of a cantilever beam incorporating the Wang method

and subjected to an applied force of 150 kN, for varying values for 𝑝, with 𝛽1 and 𝜂1 held

constant at 100 and 0.001, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

D.6 The TO results of a cantilever beam using the Wang method under a 150 kN applied

force, comparing implementations without (a) and with (b) projection. 𝛽1, 𝜂1, and 𝑝 are

held constant at 100, 0.001, and 3, respectively. . . . . . . . . . . . . . . . . . . . . . . . . 79

D.7 The results of the TO of a cantilever beam incorporating the Wang method and subjected

to various applied forces. 𝛽1, 𝜂1, and 𝑝 held constant at 100, 0.001, and 3, respectively. . 80



List of Tables

3.1 The meaning, notation and the units for the parameters used in Equation 3.1. . . . . . . 11

3.2 The meaning, notation and the units for the parameters used in Equation 3.4. . . . . . . 13

3.3 The meaning, notation and the units for the parameters used in Equation 3.6. . . . . . . 14

5.1 The notation and value for various parameters used to simulate the C-beam in COMSOL. 25

5.2 The maximum values of the applied loads 𝑓1 and 𝑓2 for the different material models of a

C-beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3 The notation and value for various parameters used to design the cantilever beam in

COMSOL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4 The notation and value for various parameters used to design the inverter in COMSOL. 31

6.1 The notation and value for various parameters used in the COMSOL models. . . . . . . 35

A.1 The meaning, notation and the units for the parameters used in Equation A.11. . . . . . 63

B.1 The description, notation, and value for various parameters used in the models in this

section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

C.1 The maximum applied load subjected to the C-beam incorporating the Wang method for

various values of 𝛾𝑒 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

D.1 The objective function values for various values of 𝛽1 for the TO of a cantilever beam

incorporating the Wang method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

D.2 The objective function values for various values of 𝜂1 for the TO of a cantilever beam

incorporating the Wang method. The applied load is equal to 150 kN. . . . . . . . . . . . 76

D.3 The objective function values and computational times for various values of 𝜂1 for the TO

of a cantilever beam incorporating the Wang method and the corresponding computation

times. The applied load is equal to 250 kN. . . . . . . . . . . . . . . . . . . . . . . . . . . 77

D.4 The objective function values for various values of 𝑝 for the TO of a cantilever beam

incorporating the Wang method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

D.5 The objective function values obtained from the TO of a cantilever beam incorporating

the Wang method, comparing implementations without and with projection. . . . . . . 79

xvi



1
Introduction

Currently, robots are indispensable in our society, used in applications for medicine, industrial

production, and agriculture. Conventional, rigid robots have been crucial in industry due to their

precision, high speed, and repeatability. These robots are built with rigid joints, such as revolute and

prismatic joints, limiting their degrees of freedom (DOFs). To function effectively, these rigid robots

require complex sensing and control systems. As the demand for more versatile and adaptable robots

grows, the focus has shifted towards soft robots.

Soft robots, known for their lightweight and flexible structures, offer new functionalities in robotics.

Examples of these functionalities are safe interaction with fragile objects and adapting to various shapes

and tasks, and their monolithic (compliant) design makes production using additive manufacturing

possible. Combining soft materials with advanced 3D and 4D printing makes it possible to create

soft robots for tasks like search and rescue and safe collaboration with humans (Pinskier and Howard

2022). In contrast to conventional robots that rely on sliding or rolling for motion, soft robots achieve

movement through their soft materials, which are materials with a low stiffness (Chen et al. 2020).

Figure 1.1 illustrates an example of a soft robot capable of picking up a raw egg.

Figure 1.1: An example of a soft robot: a soft gripper picking up a raw egg. This figure is obtained from Shintake et al. (2018)

Compliant mechanisms
Soft robots feature compliant mechanisms (CMs), which achieve motion through flexible components,

often replacing rigid elements. Not only are CMs simple designs, but the use of CMs also reduces main-

tenance requirements in engineering systems. The characteristics of CMs offer numerous advantages,

including friction-free motion, high precision, and the absence of assembly processes.

However, designing CMs remains a challenging task (Howell 2001). Various design methods are

available, with the Pseudo-Rigid-Body model (PRBM) and Topology optimisation (TO) being the

most common. In the PRBM Method, complex flexible structures are simplified by representing the

deflection path using the kinematics of a rigid-body mechanism, approximating the stiffness of the

flexible members by springs.

1
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This thesis will employ TO since it has demonstrated promising results in the design of soft robots

(Pinskier, Kumar, et al. 2023). In the TO process, designers divide the design domain into finite elements,

forming a mesh. Consequently, the material distribution is optimised to obtain the best objective

function.

The research topic in this thesis is modelling design-dependent pressure-actuated CMs (PACM 1)

using TO. This choice is driven by the observation that actuation primarily relies on design-dependent

loads during the TO of soft robots, which are more frequently used than actuation driven by design-

independent loading. Design-independent loads, such as constant forces, are independent of the

mechanism’s design during the TO. In contrast, design-dependent loads rely on the design and change

as the load boundary evolves throughout the TO process (Kumar and Langelaar 2022). Examples of

design-dependent loads include pneumatic or hydraulic pressures, which are design-dependent relying

on the problem statement.

Design-dependent pressure-actuated compliant mechanisms
PA compliant mechanisms (PACMs) are commonly used as soft robots. Incorporating these design-

dependent pressure loads into the formulations is crucial, as demonstrated by Kumar, Frouws, et al.

(2020). A schematic view in Figure 1.2 shows a design problem where pressure loads are applied on

boundary Γ𝑝 . The possible result of the TO of the problem of Figure 1.2a is illustrated in Figure 1.2b.

These subfigures serve the purpose of introducing the reader to the TO of PACMs.

(a) A pressure loading design problem (b) A possible outcome for TO problem of (a)

Figure 1.2: a) An example of a design problem with design-dependent pressure loading which are the dash-dotted arrows on the

pressure boundary Γ𝑝 . b) A possible outcome for the TO problem of (a). Here, Γ𝑝𝑏 = the evolving pressure boundary. Γ𝑝
0

= the

zero pressure boundary. Γ𝑢 = the boundary where displacements are fixed. 𝜌 = the material density. Ω = the design domain. Ω𝑚

= the solid domain where 𝜌 = 1. Ω𝑣 = the void domain where 𝜌 = 0. Ω𝑝 = the pressure domain where 𝜌 = 0. The figure is

obtained from Kumar, Frouws, et al. (2020).

Designing PACMs introduces challenges inherent to their complexity and soft robotic characteristics

(Kumar and Langelaar 2022; Kumar, Frouws, et al. 2020). These challenges include identifying the

pressure boundary, defining the relationship between the pressure and the design variables, calculating

load sensitivities, and incorporating nonlinearities.

The challenge in identifying the pressure boundary arises from the difficulty of determining the

solid-void boundary, primarily due to intermediate values for the design variables during the TO

process. The most recent TO methods for PACMs employ the Darcy method (Kumar, Frouws, et al.

2020; Kumar and Langelaar 2022) to overcome the first three challenges mentioned in the previous

paragraph. This method is detailed in Chapter 3 and provides the derivation of the relationship between

the pressure and the design variables. To better understand the load sensitivity derivation, readers are

referred to the work by Kumar, Frouws, et al. (2020).

1The reader should note that PA means design-dependent pressure-actuated
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The state-of-the-art in TO of PACMs primarily incorporates a linear model. However, Kumar and

Langelaar (2022) stated that incorporating full nonlinear mechanics in the design formulation has a

significant effect. They analysed the incorporation of geometric nonlinearities, a Neo-Hookean material

model, and a follower load on the obtained results from the TO of a PA inverter and PA compliant

gripper. The analysis revealed a 90% decrease in displacements for the PA inverter compared to the

linear analysis and a 76% decrease for the PA compliant gripper. Hence, their influence is significant and

crucial to consider. The reader should note that the objective function was a minimisation; therefore, a

decrease means improvement.

Despite these advancements, the challenges of incorporating nonlinearities caused by deformation-

dependent pressures, large displacements, and the use of low-stiffness materials in soft robots still need

to be addressed. The subsequent paragraph explains the four nonlinearities encountered in the solid

mechanics of PA soft robots.

The four nonlinearities in the solid mechanics of pressure-actuated soft robots
Designers encounter four types of nonlinearities in the solid mechanics of PA soft robots, categorised

based on the relationships between mechanical properties (Kim 2015), as illustrated in Figure 1.3. The

four nonlinearities are enumerated as follows:

1. Geometric nonlinearity Geometric nonlinearities arise when there is a nonlinear relation between

the strain and the displacement. They typically occur when structures and CMs undergo large

displacements due to their soft materials, leading to significant changes in the geometry (Holzapfel

2000). During TO, if large deformations occur, low-stiffness elements may experience excessive

distortion, potentially resulting in inverted elements. These distortions can introduce numerical

instabilities in the Newton-Raphson iterations (Wang, Lazarov, Sigmund, and Jensen 2014).

2. Material nonlinearity To accurately model the behaviour of soft materials, it becomes necessary to

implement hyperelastic materials. This implementation introduces the second type of nonlinearity,

known as material nonlinearity, which involves the nonlinear relationship between strain and

stress (Holzapfel 2000).

3. Boundary nonlinearity Boundary nonlinearities result from nonlinear boundary conditions,

representing a nonlinear connection between the displacement and the prescribed displacement.

When soft robots deform significantly, it is possible that (self-)contact can occur, leading to

boundary nonlinearities (Kim 2015).

4. Force nonlinearity The fourth type is force nonlinearity, characterised by nonlinear force boundary

conditions, representing a nonlinear relationship between the stress and the applied forces. This

nonlinearity is particularly relevant for PACMs, where the magnitude, direction, or location of the

pressure loads change due to deformation, resulting in force nonlinearities. Loads that exhibit

force nonlinearities are called follower forces (Kim 2015).

Figure 1.3: The different types of nonlinearities involved in the solid mechanics of the TO process and their nonlinear relationship

with the parameters of the solid mechanics. This figure is obtained from Kim (2015)

Literature review design-dependent pressure-actuated soft robots
Kumar, Frouws, et al. (2020) conducted a literature review on methods developed for the TO of PACMs.

They examined various existing approaches; however, they concluded that each method fell short in

addressing at least one of the first three challenges encountered when designing PACMs, mentioned on

page 2. Consequently, they developed an approach combining Darcy’s law with the drainage term to

handle pressure loads effectively.
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The method developed by Kumar, Frouws, et al. (2020) has demonstrated its effectiveness in three-

dimensional PA soft robots (Kumar and Langelaar 2021), multi-material pneumatically actuated soft

robots (Pinskier, Kumar, et al. 2023), and the TO of a member of the Pneumatic Networks (Kumar 2023).

Additionally, Kumar and Langelaar (2022) has developed a robust TO approach for synthesising PACMs

by modelling pressures using Darcy’s law. However, these papers do not include nonlinearities in the

solid mechanics.

Caasenbrood et al. (2020) incorporated nonlinearities into the solid mechanics for the TO of PA soft

robots. Nevertheless, Pinskier, Kumar, et al. (2023) stated that the results obtained from the method of

Caasenbrood et al. (2020) result in unrealistic designs with disconnected areas of pressure. Additionally,

a drawback is that the algorithm heavily depends on the user’s skills, making it difficult for a wide range

of users to utilise it successfully. The algorithm requires a high level of expertise to operate effectively,

and it contains complex parameters that are only adjustable with a deep understanding of the algorithm.

To the best of the authors’ knowledge, nonlinearities have not been implemented in the solid mechanics

of the TO of PA soft robots in conjunction with the Darcy method. Furthermore, to the best of the

authors’ knowledge, nonlinearities have not been implemented in the solid mechanics of the TO of

multi-material PA soft robots.

Contribution
For numerous systems, the linear theory sufficiently describes the behaviour of various systems in our

lives accurately. However, due to the large displacements possible in PA soft robots and the low stiffness

material used, the linear theory is not accurate enough to describe the behaviour of the PA soft robots

anymore. A ’reality’ gap can be encountered when using the linear theory in the TO to design PA soft

robots. This reality gap represents the mismatch between the behaviour of the simulated designs and

their actual functionality in real-world scenarios (Pinskier and Howard 2022). As discussed before, the

significance has been investigated by Kumar and Langelaar (2022). When accounting for nonlinearities,

the behaviour of the PA soft robots can be described more accurately, effectively bridging this gap.

This thesis builds upon the method developed by Kumar, Frouws, et al. (2020) by introducing geometric

nonlinearities and a hyperelastic material model to reduce the gap. Due to time constraints, force and

boundary nonlinearities have not been incorporated into solid mechanics.

The programs COMSOL and MATLAB are used in this thesis. COMSOL is a commercial software

program for multi-physics simulation and modelling. It is used for the modelling, simulation and

analysis of the soft robots. MATLAB is a widely used program for numerical computing, data analysis,

and mathematical modelling. It is used for deriving specific equations and calculations.

This thesis introduces a novel TO method for PA single-material and PA multi-material soft robots. The

method is developed in conjunction with the Darcy method and involves the incorporation of geometric

nonlinearities and a hyperelastic material model in solid mechanics. It is important to emphasise that

the TO method for PA single-material soft robots is specifically novel when combined with the Darcy

method, as previous approaches have already implemented geometric nonlinearities and a hyperelastic

material model. However, to the best of the author’s knowledge, this thesis introduces the first method

to incorporate these nonlinearities into the solid mechanics of the TO process for PA multi-material soft

robots.

Furthermore, it investigates how geometric nonlinearities and a hyperelastic material model can be

incorporated into the TO of soft robots in conjunction with the Darcy method in COMSOL. Implementing

the TO of PACM is highly user-dependent when using MATLAB, as it heavily relies on the user’s

skills, knowledge, and preferences. In contrast, COMSOL is a user-friendly program offering robust

model implementation. By ’robust,’ we mean that the implementation in COMSOL is significantly less

dependent on individual user factors, providing a more standardised and accessible approach. Users

can perform the TO of even the most complex geometries with only basic knowledge. Moreover, adding

solid mechanics and physics to these geometries is simple.
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Research questions
The aim of this thesis is to incorporate geometric nonlinearities and a hyperelastic material model into

the solid mechanics of the TO process for PA soft robots. This incorporation aims to provide a more

accurate description of their behaviour compared to linear models. Furthermore, the TO is performed

in conjunction with the Darcy method, and simulations are conducted using COMSOL.

To achieve the thesis aim, this research represents the following key questions:

SQ1 To what extent can geometric nonlinearities and a hyperelastic material model be incorporated
into the solid mechanics of the topology optimisation process for design-dependent pressure-
actuated soft robots in COMSOL?

During the modelling process in COMSOL, large applied pressure loads can result in large dis-

placements of the PACMs. As discussed in chapter 4, these large displacements result in inverted

elements, leading to numerical instabilities. These instabilities, in turn, limit the maximum applied

pressure load. This subquestion explores the feasibility of incorporating geometric nonlinearities

and a hyperelastic material model into the solid mechanics of the TO of PACMs. If feasible, the

study seeks to identify the allowable range of pressure load that can be applied to the system.

SQ2 How does integrating geometric nonlinearities and a hyperelastic material model influence the
design and behaviour of design-dependent pressure-actuated soft robots in COMSOL?

This investigation aims to determine the significance of incorporating geometric nonlinearities

and a hyperelastic material model. It seeks to assess how the obtained design and behaviour differ

from those obtained using TO with a linear elastic material model for PA soft robots.

SQ3 What techniques can be employed to improve the range of maximum applied pressure load for
the topology optimisation for design-dependent pressure-actuated soft robots, incorporating
geometric nonlinearities and a hyperelastic material model in the solid mechanics?

This subquestion investigates the possibilities of enhancing maximum pressure loads by effectively

handling inverted elements. Various techniques exist to address inverted elements and increase

the maximum applied pressure loads. This thesis explores the impact of the use of the Wang

method, which is explained in chapter 5.

Thesis outline
This thesis is structured as follows: Chapter 2 introduces TO, incorporating a linear elastic material

model. It is recommended that readers unfamiliar with TO and linear solid mechanics refer to this

chapter. In Chapter 3, the application of Darcy’s law to calculate pressure loads for linear TO is explained

for PACM. Chapter 4 delves into the nonlinearities that can occur in the solid mechanics of PA soft

robots, specifically those considered in this thesis, along with different descriptions of solid mechanics.

Chapter 5 presents the results obtained from the investigation of the Wang method. Chapter 6 discusses

the results obtained from the TO with geometric nonlinearities and the hyperelastic material model

incorporated in the solid mechanics across four examples of PACM. Finally, Chapter 7 provides the

discussion, and in Chapter 8, conclusions and recommendations are presented.
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Linear topology optimisation

TO was initially introduced by Bendsøe and Kikuchi (1988), who developed a homogenisation method

utilising the Finite Element Method (FEM). From that point onward, the field of TO experienced

significant growth. TO is a technique to determine the optimal distribution of material within a given

design domain. The aim of TO is to achieve the desired performance while minimising factors such as

weight, material usage, or other specified objectives. By systematically changing the distribution of

material, the method finds the configuration with the best objective function that meets the requirements

and constraints. TO has applications in various fields, including aerospace, automotive, architecture,

and bio-mechanics (Sigmund and Maute 2013). Figure 2.1 shows an example to demonstrate the working

principle of TO, where Figure 2.1a shows the original structure before the TO and Figure 2.1b shows the

structure obtained after the TO. The objective function of this TO problem is to minimise compliance.

(a) The original structure of the bracket (b) The TO result of the bracket

Figure 2.1: Comparison of the original structure and the TO result of a bracket to demonstrate the working principle of TO. These

brackets are designed by COMSOL (2023).

Numerous TO techniques have been developed, among which Simplified Isotropic Material with

Penalisation (SIMP) and the level set method are commonly used. For a comprehensive overview of

these obtained methods, the reader is referred to Sigmund and Maute (2013). This overview explains

and compares the different TO approaches in different fields.

This chapter is organised as follows: First, in Section 2.1, the steps involved in the TO process are discussed.

Next, Section 2.2 details linear solid mechanics, followed by a specific focus on its implementation in

COMSOL in Section 2.3. Lastly, Section 2.4 presents the TO problem formulations for structures and

CMs.

6
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2.1. Topology optimisation process
The TO process occurs in predefined steps, shown in Figure 2.2. First, the design problem is determined

using the FEM, which includes creating the mesh, defining material properties, and specifying boundary

conditions, all under the assumption of homogeneous material distribution. Then, the iterative part of

the process begins with the design parameterisation, where the design variables are chosen and specified.

Then, the Finite Element Analysis (FEA) is conducted, which computes the resulting displacements,

strains, and other parameters. After the FEA, the sensitivity analysis is performed. Finally, the objective

function and constraints are calculated. If the difference is marginal compared to the last iteration, the

mechanism is considered converged, and the iterative process stops, and the TO process is completed

(Bendøe et al. 2003). The specific steps of the TO process are explained in detail in Appendix A.

Initial FEM

Design parameterisation

FEA

Sensitivity analysis

Optimisation

convergence?

Post

processing

STOP

no

Yes

Figure 2.2: The steps of the topology optimisation process

2.2. Linear solid mechanics
The most common material model is the linear elastic material model, based on Hooke’s law, shown in

Equation 2.1. Hooke’s law relates the stress tensor to the strain tensor, where 𝝈, D, and 𝝐 represent

the stress, the elastic modulus, and the strain, respectively. The relation between the stress and the

strain is called a constitutive model (Cook et al. 2002). Additionally, in linear systems, the displacement

is assumed to be infinitesimal, meaning that the undeformed and the deformed models are almost

identical.

𝝈 = D : 𝝐 (2.1)

In linear cases, D and 𝝐 remain constant and are expressed by Equation 2.2 and Equation 2.3, respectively

(Cook et al. 2002). In Equation 2.2, 𝐸 and 𝜈 represent the Young’s modulus and the Poisson ratio,

respectively. Additionally, Equation 2.3 introduces u = [𝑢 𝑣], assuming the plane strain condition

where deformation in the out-of-plane direction is considered zero.
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It is important to note that for materials that do not exhibit linear elastic behaviour, like hyperelastic

materials, the assumption of D being constant breaks down. In such cases, more complex constitutive

models are required to accurately describe the behaviour of the material (Kim 2015). Nonlinear elastic

behaviour is discussed in chapter 4.

D =



𝐸 (𝜈−1)
(2 𝜈−1) (𝜈+1) − 𝐸 𝜈

(2 𝜈−1) (𝜈+1) − 𝐸 𝜈
(2 𝜈−1) (𝜈+1) 0 0 0

− 𝐸 𝜈
(2 𝜈−1) (𝜈+1)

𝐸 (𝜈−1)
(2 𝜈−1) (𝜈+1) − 𝐸 𝜈

(2 𝜈−1) (𝜈+1) 0 0 0

− 𝐸 𝜈
(2 𝜈−1) (𝜈+1) − 𝐸 𝜈

(2 𝜈−1) (𝜈+1)
𝐸 (𝜈−1)

(2 𝜈−1) (𝜈+1) 0 0 0

0 0 0
𝐸

2 (𝜈+1) 0 0

0 0 0 0
𝐸

2 (𝜈+1) 0

0 0 0 0 0
𝐸

2 (𝜈+1)


(2.2)

𝝐 =


𝑢,𝑋

1

2
(𝑢,𝑌 + 𝑣,𝑋) 0

1

2
(𝑢,𝑌 + 𝑣,𝑋) 𝑣,𝑌 0

0 0 0

 (2.3)

Calculation of the displacements
The principle of virtual work enables the calculation of the displacement field within a model, which is

presented in Equation 2.4. Here, 𝛿𝑊 𝑒𝑥𝑡
represents the virtual external work, shown in Equation 2.5

and 𝛿𝑊 𝑖𝑛𝑡
represents the virtual internal work, shown in Equation 2.6. The proof of Equation 2.5 and

Equation 2.6 have been omitted. For a more comprehensive and detailed explanation of the principle of

work, please refer to Cook et al. (2002).

𝛿𝑊 𝑒𝑥𝑡 − 𝛿𝑊 𝑖𝑛𝑡 = 0 (2.4)

𝛿𝑊 𝑒𝑥𝑡 =

∫
Γ

t · 𝛿u𝑑𝐴 +
∫
Ω

b · 𝛿u𝑑𝑉 (2.5)

where t represents the traction, acting on surface Γ, while b denotes the external body forces acting on

domain Ω.

𝛿𝑊 𝑖𝑛𝑡 =

∫
Ω

𝛿𝝐𝑇𝝈𝑑𝑉 (2.6)

The discretised form of Equation 2.5, expressed as Equation 2.7, is used to calculate the nodal forces,

shown in Equation 2.8. In these two equations, N represents the matrix of shape functions, and u𝑒
represents the nodal displacements vector.

𝑊 𝑒𝑥𝑡
𝑒 =

∫
Γ

𝛿u𝑇𝑒 N𝑇t𝑑𝐴 +
∫
Ω

𝛿u𝑇𝑒 N𝑇b𝑑𝑉 = 𝛿u𝑇𝑒 f𝑒 (2.7)

f𝑒 =
∫
Γ𝑒

N𝑇t𝑑𝐴 +
∫
Ω𝑒

N𝑇b𝑑𝑉 (2.8)

The element stiffness matrix can be calculated as expressed in Equation 2.9. B is constructed using the

derivatives of the shape function 𝑁 with respect to the standard element coordinates 𝜉and 𝜂. The nodal

forces and the element stiffness matrix can be transformed into the global force vector f and global

stiffness matrix K, respectively. With f and K, the deformation u can be calculated using Equation 2.10.

K𝑒 = 𝐸𝑒

∫
Ω

B𝑇DB𝑑𝑉 (2.9)

Ku = f (2.10)
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2.3. Linear solid mechanics in COMSOL
The strain in COMSOL is the linearised Green-Lagrange strain, equivalent to Equation 2.3. Furthermore,

the stress is presented with the Second Piola-Kirchhoff stress tensor S, which, in the case of the linear

elastic material model, is equivalent to Equation 2.1. Consequently, the linear strain energy density

function (SEDF) can be calculated, as shown in Equation 2.11. The SEDF is the body’s internal energy,

stored under deformation.

𝜙𝐿 =
1

2

S𝐿 : 𝝐 =
1

2

D : 𝝐 : 𝝐 (2.11)

Equation 2.11 is obtained from Gould (2013). Equation 2.11 is widely used and is also the default

of COMSOL. However, in chapter 5, the Saint Venant-Kirchhoff material model is utilised under the

assumption of small displacements, which can be used to describe a linear elastic material model. The

corresponding SEDF for the Saint Venant-Kirchhoff material model is expressed by Equation 2.12 (Gould

2013). Notably, 𝜙𝐿 and 𝜙𝑉𝐾 are equivalent, indicating that the outcome is identical. This equivalence is

validated through numerical analysis, as demonstrated by the MATLAB code presented in section E.1.

𝜙𝑉𝐾(𝝐) =
1

2

𝜆(𝑡𝑟(𝝐))2 + 𝜇𝝐 : 𝝐 (2.12)

The 𝑉𝐾 in the subscript of 𝜙𝑉𝐾 means that it is the SEDF of Saint Venant-Kirchhoff. In Equation 2.12, 𝜇
and 𝜆 present the Lamé parameters, given by Equation 2.13 and Equation 2.14, respectively. 𝜇 is called

the shear modulus and measures the resistance to changes in shear deformation, while 𝜆 is a measure

of the resistance to changes in the volume (Kim 2015).

𝜇 =
𝐸

2(1 + 𝜈) (2.13)

𝜆 =
𝐸𝜈

(1 + 𝜈)(1 − 2𝜈) (2.14)

Calculating stress can be approached in two equivalent ways. The first method employs Hooke’s law,

as defined in Equation 2.1. Alternatively, the stress can be determined by differentiating the SEDF

with respect to strain, leading to the second Piola-Kirchhoff stress tensor S𝐿 (Holzapfel 2000). This is

expressed in Equation 2.15, obtained from the paper of Holzapfel (2000).

S𝐿 = D : 𝝐︸︷︷︸
Method 1

=
𝜕𝜙𝐿(𝝐)
𝜕𝝐︸  ︷︷  ︸

Method 2

(2.15)

2.4. Topology optimisation problem formulation
While several TO categories exist, this thesis specifically focuses on the compliance TO and the TO of

CMs. This section presents the problem formulation for compliance TO and CMs in Subsection 2.4.1

and Subsection 2.4.2, respectively.

2.4.1. Structure
The TO formulation for the compliance optimisation is given by Equation 2.16. This TO problem seeks

a balance between K and the mass to achieve optimal structural performance, aiming to maximise

stiffness while minimising mass. The objective function is often expressed by minimising the compliance

C𝑚𝑖𝑛 = K−1
, equivalent to minimising the expression f𝑇u = u𝑇Ku. Additionally, it is important to note

that for design-independent loads, the loads do not depend on the design variables. However, when the

loads become design-dependent, they are influenced by the design variable 𝝆, as discussed in Chapter 3.

The variables 𝑉∗
and 𝑉 represent the permitted and actual volumes of the design, respectively.
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min

𝝆
𝑓0(u, 𝝆) = u(𝝆)𝑇K(𝝆)u(𝝆)

such that K(𝝆)u(𝝆) = f
𝑉(𝝆)
𝑉∗ − 1 ≤ 0

0 ≤ 𝝆 ≤ 1


(2.16)

2.4.2. Compliant Mechanism
Compared to compliance TO, the TO of CMs presents two conflicting objectives: the kinematic and

structural objectives. If the focus is solely on the structural objective, the mechanisms may become too

stiff, resulting in unwanted stress during deformation. Conversely, if the focus is only on kinematic

objectives, the necessary flexibility can be achieved, but this may lead to difficulties in resisting additional

loads (Frecker et al. 1997).

Maximising the mutual strain energy (MSE) increases flexibility, while minimising strain energy (SE)

maximises stiffness. Note that SE is defined as 𝑆𝐸 = 1

2
C𝑚𝑖𝑛 = 1

2
u𝑇Ku. This thesis employs the

multi-criteria formulation developed by Frecker et al. (1997) for the TO formulation of the CMs. The

multi-criteria formulation for the TO of CMs is expressed as Equation 2.17. In this equation, v represents

the displacement vector due to the unit dummy load f𝑑. This unit dummy load is a fictitious or simulated

load intentionally applied at a particular location to observe the behaviour of the CMs. It serves to

evaluate the resistance and response of the mechanisms under specific conditions. Additionally, the

variables 𝑉∗
and 𝑉 denote the permitted and actual volumes of the design, respectively. For a more

detailed derivation of the problem statement, the reader is referred to Frecker et al. (1997).

min

𝜌
𝑓0(u, 𝝆) = −𝑀𝑆𝐸(u, v, 𝝆)

2𝑆𝐸(u, 𝝆) = −v𝑇Ku
u𝑇Ku

such that K(𝝆)u(𝝆) = f
K(𝝆)v(𝝆) = f𝑑
𝑉(𝝆)
𝑉∗ − 1 ≤ 0

0 ≤ 𝝆 ≤ 1


(2.17)



3
Linear topology optimisation for

design-dependent pressure loads

Identifying the pressure boundary during TO presents a challenge. The existence of intermediate

values for design variables in this phase leads to the absence of a clearly defined solid-void boundary,

complicating the determination of the pressure boundary.

Kumar, Frouws, et al. (2020) introduced an approach for designing PA structures and CMs, effectively

addressing challenges posed by pressure loads. They applied the mathematical framework of Darcy’s

law to calculate pressure loads while treating all elements as porous media. These obtained pressure

loads depend on the design during the TO, a condition not addressed in chapter 2. This approach is

called the Darcy method. It is important to note that this chapter is based on a linear TO and is based on

the paper by Kumar, Frouws, et al. (2020).

This chapter is structured as follows: The Darcy method is explained in Section 3.1. Second, Section 3.2

provides the TO formulation for a PA structure and a PACM. Additionally, to validate the implementation

of the Darcy method in COMSOL, an investigation has been conducted in Appendix B for two different

COMSOL models.

3.1. Modelling design-dependent pressure loads
Darcy’s law describes the ability of a fluid to flow through a porous media and can be expressed using

Equation 3.1. The flow coefficient 𝐾 defines the ability of the fluid to permeate a porous medium. Solid

elements (𝜌𝑒 = 1) offer high resistance to flow, while void elements (𝜌𝑒 = 0) provide low resistance to

fluid flow. Table 3.1 provides the meaning and the units of the parameters used in Equation 3.1.

q = − 𝜅
𝜇 𝑓

∇𝑝 = −𝐾∇𝑝(x) (3.1)

Parameter Notation unit

Darcy flux q ms
−1

Pressure load gradient ∇𝑝 Nm
−3

Permeability 𝜅 m
2

Fluid viscosity 𝜇 𝑓 Pa s

Flow coefficient 𝐾 m
4
N

−1
s
−1

Table 3.1: The meaning, notation and the units for the parameters used in Equation 3.1.

11
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A Heaviside function is used to distinguish between void and solid elements, ensuring a differentiable

and smooth transition. Equation 3.2 shows the equation for the flow coefficient 𝐾 of element 𝑒, where

𝐾𝑣 and 𝐾𝑠 represent the flow coefficient of the void and solid elements, respectively. The desired ratio is

𝐾𝑠
𝐾𝑣

= 10
−7

, as explained by Kumar and Langelaar (2021).

𝐾(𝜌𝑒) = 𝐾𝑣 − (𝐾𝑣 − 𝐾𝑠)
tanh(𝛽𝑘𝜂𝑘) + tanh(𝛽𝑘(𝜌𝑒 − 𝜂𝑘))
tanh(𝛽𝑘𝜂𝑘 + tanh(𝛽𝑘(1 − 𝜂𝑘))

(3.2)

The Heaviside function is visually represented for various values of 𝜌0 and 𝛽1 in Figure 3.1. Essentially,

the Heaviside function takes on the value 0 when 𝜌𝑒 < 𝜂𝑘 and 1 when 𝜌𝑒 > 𝜂𝑘 . The steepness of the

transition from 0 to 1 is determined by the parameter 𝛽𝑘 . Figure 3.1 aims to provide insights into the

characteristics of the Heaviside function.

Figure 3.1: The Heaviside function for several values of 𝜂𝑘 and 𝛽𝑘

The drawback of using Equation 3.1 is that it gradually decreases the pressure load over the area,

leading to nodal forces within the material. However, nodal forces can only exist at the associated

pressure boundaries. To solve this issue, a drainage term, expressed in Equation 3.3, is added to induce

the pressure load to drop after the pressure boundary. This drainage term absorbs the flow after the

pressure boundary, preventing it from entering the material. The effect of the drainage term is illustrated

in Figure 3.3, with the corresponding schematic visualisation of the problem and its associated boundary

conditions shown in Figure 3.2.

𝑄𝑑𝑟𝑎𝑖𝑛 = −𝐷𝑐(𝜌𝑒)(p − p𝑜𝑢𝑡) (3.3)

where 𝐷𝑐 and p𝑜𝑢𝑡 represent the drainage coefficient and the external pressure load, respectively. The

drainage coefficient 𝐷𝑐 , as expressed in Equation 3.4, utilises a Heaviside function to achieve the

desired pressure load drop for an element with 𝜌𝑒 = 1. Additionally, 𝑑𝑠 regulates the thickness of the

pressure-penetration layer. Table 3.2 provides the meaning and units of the parameters presented in

Equation 3.4.

𝐷𝑐(𝜌𝑒) =
( 𝑙𝑛(𝑟)
Δ𝑠

)
2

𝐾𝑠︸       ︷︷       ︸
𝑑𝑠

tanh(𝛽ℎ𝜂ℎ + tanh(𝛽ℎ(𝜌𝑒 − 𝜂ℎ))
tanh(𝛽ℎ𝜂ℎ + tanh(𝛽ℎ(1 − 𝜂ℎ))

(3.4)
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Parameter Notation unit

Drainage coefficient 𝐷𝑐 m
2
N

−1
s
−1

Ratio of input pressure load to pressure load at

depth Δ𝑠
𝑟 -

Penetration depth of the pressure load Δ𝑠 m

Table 3.2: The meaning, notation and the units for the parameters used in Equation 3.4.

Figure 3.2: The schematic visualisation and the associated boundary condition of the beam corresponding to Figure 3.3

(a) Without a Drainage term (b) With a Drainage term

Figure 3.3: The comparison of the pressure field obtained from the Darcy method without (a) and with (b) a Drainage term. The

applied pressure load is 1 × 10
4

Pa

Calculation of the nodal forces
The mass conservation equation is used to determine the net flow of the system, as expressed in

Equation 3.5. Equation 3.6 represents the weak formulation of the mass conservation equation, which is

obtained by applying the Galerkin method to Equation 3.5. Table 3.3 provides the meaning and the

units of the parameters of Equation 3.6.

∇ · q −𝑄𝑑𝑟𝑎𝑖𝑛 = 0 (3.5)

∫
Ω𝑒

(𝐾 B𝑇𝑝B𝑝 + 𝐷𝑐 N𝑇
𝑝N𝑝) 𝑑Ω𝑒︸                                 ︷︷                                 ︸

A𝑒

p𝑒 =
∫
Ω𝑒

𝐷 N𝑇
𝑝p𝑜𝑢𝑡𝑑Ω𝑒 −

∫
Γ𝑒

N𝑇
𝑝qΓ · n𝑒 𝑑Γ𝑒︸                                            ︷︷                                            ︸

f 𝑓 𝑙𝑜𝑤,𝑒

(3.6)

It is assumed that p𝑜𝑢𝑡 and qΓ are both zero, leading to f 𝑓 𝑙𝑜𝑤,𝑒 = 0. The assumption of qΓ = 0 maintains

a steady-state condition. As a result, the pressure field can be determined by solving the global form of

Equation 3.6, as depicted in Equation 3.7. This global form results from the assembly of Equation 3.6.

Ap = f 𝑓 𝑙𝑜𝑤 = 0 (3.7)
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In Equation 3.7, A and f 𝑓 𝑙𝑜𝑤 denote the global flow matrix and the global loading vector, respectively.

The nodal forces for each element can now be calculated by combining the obtained pressure load from

Equation 3.7, the force equilibrium b𝑑𝑉 = −∇𝑝(x)𝑑𝑉 , and Equation 2.8. The equation representing

the nodal forces is expressed in Equation 3.8, where H𝑒 is the conversion matrix for the elements. The

stiffness matrix K and the displacement can be calculated similarly to Equation 2.9 and Equation 2.10,

respectively.

f𝑒 = −
∫
Ω𝑒

N𝑇∇𝑝(x)𝑑𝑉 = −p𝑒

∫
Ω𝑒

NB𝑝𝑑Ω𝑒︸         ︷︷         ︸
H𝑒

(3.8)

Parameter Notation unit

Vector of Shape functions N𝑝 -

Matrix of spatial derivatives B𝑝 = ∇N𝑝 m
−1

Domain of the element Ω𝑒 m
3

Boundary of the element Γ𝑒 m
2

Prescribed Darcy flux at the boundary qΓ m s
−1

Boundary normal vector n -

Pressure load of the element p𝑒 Pa

Flow matrix of the element A𝑒 m
5
N

−1
s
−1

Loading vector of the element f 𝑓 𝑙𝑜𝑤,𝑒 m
3

s
−1

Table 3.3: The meaning, notation and the units for the parameters used in Equation 3.6.

3.2. Topology optimisation formulation of pressure-actuated com-
pliant mechanisms

This section provides the TO formulation of PACMs. The TO formulation of the PA compliance

optimisation problem is omitted since it will not be used in this thesis. The reader is referred to Kumar,

Frouws, et al. (2020) for the TO formulation of the PA compliance optimisation problem.

Which TO approach is best suited for PACMs remains uncertain. Therefore, the multi-criteria formulation

is implemented, as it proved effective in the work by Kumar, Frouws, et al. (2020) and Kumar and

Langelaar (2022). The problem formulation for PACMs differs from that of CMs, primarily due to the

incorporation of the Darcy method. The Darcy method introduces additional constraints to the problem

formulation, as given in Equation 3.9. Here, A, p, and H represent the global flow matrix, the global

pressure load vector, and the global conversion matrix, respectively. It should be noted that H is the

assembly of H𝑒 and is independent of the design variables. For readers interested in the sensitivity

analysis of PACMs, comprehensive derivations can be found in Kumar, Frouws, et al. (2020).

min

𝜌
𝑓0(u, 𝝆) = −𝑀𝑆𝐸(u, v, 𝝆)

2𝑆𝐸(u, 𝝆) = −v(𝝆)𝑇K(𝝆)u(𝝆)
u(𝝆)𝑇K(𝝆)u(𝝆)

such that Ap(𝝆) = 0

K(𝝆)u(𝝆) = f(𝝆) = −Hp(𝝆)
K(𝝆)v(𝝆) = f𝑑
𝑉(𝝆)
𝑉∗ − 1 ≤ 0

0 ≤ 𝝆 ≤ 1


(3.9)



4
Nonlinear topology optimisation for

design-dependent pressure load

Many phenomena encountered in our daily lives exhibits nonlinear behaviour, such as inflating a

balloon or objects undergoing plastic deformation. Considering the impact of these nonlinearities when

designing and analysing mechanisms is crucial. However, this can be challenging, and explaining

nonlinearities requires understanding linear behaviour first. A system exhibits linear behaviour when

it follows the principles of superposition and homogeneity. Superposition means that the combined

response to multiple inputs equals the sum of their individual responses, while homogeneity states that

scaling the input results in proportional output scaling.

The paper by Kumar and Langelaar (2022) concludes that incorporating all nonlinearities in solid

mechanics is crucial when designing PACMs. This necessity is emphasised by their findings, where

a linear system, though offering a good approximation for the displacement of bodies like buildings,

proves insufficient to describe the behaviour of PACMs accurately. In their study, the authors conducted

a linear TO followed by a nonlinear analysis of the designs obtained from the TO. The results highlighted

significant differences due to nonlinearities in their system, reinforcing the importance of considering

all nonlinear aspects in PACM design.

In this chapter, Section 4.1 delves into the nonlinearities that can occur in the solid mechanics of soft

robots. Additionally, Section 4.2 introduces nonlinear solid mechanics, while Section 4.3 explores

various formulations of the solid mechanics. Finally, Section 4.4 discusses nonlinear solvers.

4.1. Nonlinearities of solid mechanics
As introduced, the TO of PACMs involves addressing four types of nonlinearities: geometric, material,

boundary, and force nonlinearities. This thesis concentrates explicitly on integrating geometric

nonlinearities (Subsection 4.1.1) and hyperelastic material models (Subsection 4.1.2) into the solid

mechanics of the TO process. Furthermore, force nonlinearities (Subsection 4.1.3) are introduced in the

analysis of the results obtained from the TO, though not incorporated into the solid mechanics of the

TO. It is important to note that this study does not incorporate both force and boundary nonlinearities

in the TO, as it is beyond the scope of the present research.

4.1.1. Geometric nonlinearity
Geometric nonlinearities occur when the relationship between the strain and the displacement is

nonlinear, resulting from large displacements. In such cases, a linear relationship cannot accurately

describe the behaviour because of the large displacements involved. The most common strain formulation

is the Green-Lagrange strain tensor E𝐺𝐿, which is expressed in Equation 4.1. Note that the nonlinear

part may be neglected when the displacement is significantly small such that
𝜕u
𝜕X ≪ 1, resulting in the

linearised Green-Lagrange strain, as shown in Equation 2.3.

15
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E𝐺𝐿 =
1

2

(F𝑇F − I)

=
1

2

(C − I)

=
1

2

( 𝜕u
𝜕X

+ 𝜕u𝑇

𝜕X︸      ︷︷      ︸
Linear

+ 𝜕u𝑇

𝜕X
𝜕u
𝜕X

)︸    ︷︷    ︸
Nonlinear

=


1

2
(2𝑢,𝑋 + (𝑢2

,𝑋
+ 𝑣2

,𝑋
)) 1

2
(𝑢,𝑌 + 𝑣,𝑋 + (𝑢,𝑋𝑢,𝑌 + 𝑣,𝑋𝑣,𝑌)) 0

1

2
(𝑢,𝑌 + 𝑣,𝑋 + (𝑢,𝑋𝑢,𝑌 + 𝑣,𝑋𝑣,𝑌)) 1

2
(2𝑣,𝑌 + (𝑢2

,𝑌
+ 𝑣2

,𝑌
)) 0

0 0 0



(4.1)

In Equation 4.1, F represents the deformation gradient and C denotes the right Cauchy-Green deformation

tensor, which is calculated as C = F𝑇F. F is the primary measure of deformation and can be defined as

Equation 4.2, where ∇u represents the gradient of the displacement field u.

F = I + ∇u (4.2)

4.1.2. Hyperelastic material model
Material nonlinearities arise when a nonlinear relationship exists between the strain and stress. In

Section 2.2, the constitutive model for a linear elastic material is shown in Equation 2.1. This relation

remains linear as long as D is constant; however, this condition does not hold for hyperelastic materials.

This thesis focuses solely on the hyperelastic material model due to its significant importance in

designing PA soft robots. Various nonlinear material models, such as hyperelasticity, viscoelasticity,

and elastoplasticity, exist to describe the nonlinear behaviour of materials. Among these models,

hyperelastic materials stand out as they can undergo large displacements without experiencing failure.

This characteristic makes them ideal for PA soft robots, where achieving large displacements is often

necessary for desired movements and functionalities (Caasenbrood et al. 2020).

Hyperelastic materials can undergo large deformations while returning to their original shape when

the load is removed. These materials are typically used to model rubber-like or soft tissues. One

characteristic of hyperelastic materials is their path-independence. This means that the energy required

to deform a hyperelastic material is solely determined by the final state of displacement and is not

influenced by how the material was loaded, up to a certain extent (Belytschko et al. 2014). This behaviour

is because the Second Piola-Kirchhoff stress S is equivalent to the derivative of the SEDF 𝜙 with respect

to the strain, as expressed in Equation 4.3 (Kim 2015). The subscript 𝑁𝐿 in S𝑁𝐿 denotes the nonlinear

Second Piola-Kirchhoff stress.

S𝑁𝐿 =
𝜕𝜙(E𝐺𝐿)
𝜕E𝐺𝐿

= 2

𝜕𝜙(C)
𝜕C

(4.3)

This formula is obtained from Holzapfel (2000). This thesis implements the Neo-Hookean material

model, chosen from a range of available hyperelastic material models, including the Saint-Venant-

Kirchhoff, Mooney-Rivlin, and Yeoh models. The selection of the Neo-Hookean material model is

supported by its demonstrated effectiveness in the literature (Conlan-Smith et al. 2018; Kumar and

Langelaar 2022; Dou et al. 2023)

Neo-Hookean material model
While the Neo-Hookean material model has various formulations for the SEDF, as discussed by Klarbring

et al. (2013), it is crucial to note that COMSOL utilises a specific SEDF, as expressed in Equation 4.4.

𝜙𝐻𝐸 =
1

2

𝜇(−3 + 𝐼1) − 𝜇 ln(
√
𝐼3) +

1

2

𝜆 ln(
√
𝐼3)2 (4.4)
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In Equation 4.4, 𝐼1 and 𝐼3 represent the first and third invariants of C, respectively. 𝐼1 is the trace of C
and can be calculated as shown in Equation 4.5, where 𝜆1 and 𝜆3 are two out of the three eigenvalues of

C. 𝐼3 is the determinant of C and can be expressed as Equation 4.6. Note that 𝐼3 will be equal to 1 if the

material is incompressible (Kim 2015).

𝐼1 = tr(C) = 𝜆2

1
+ 𝜆2

2
+ 𝜆2

3
(4.5)

𝐼3 = det(C) = 𝜆2

1
𝜆2

2
𝜆2

3
(4.6)

Modelling of a Neo-Hookean material model
When modelling a compressed beam in COMSOL, notable differences arise between using a linear,

geometric nonlinear, and Neo-Hookean material model. A schematic visualisation of the beam and

the corresponding boundary conditions are presented in Figure 4.1. The results for various values of

the applied load using a linear material model are depicted in Figure 4.2. In contrast, the results of a

Neo-Hookean material model are illustrated in Figure 4.3. The results of the beam incorporating the

geometric nonlinear material model are omitted for comparison in the figure. The reason for this is that

the maximum value of the applied load subjected to the beam is significantly smaller than that for the

Neo-Hookean and linear elastic material models.

Figure 4.1: The schematic visualisation of a beam under compression

(a) 𝑓 = 5 × 10
8

N

(b) 𝑓 = 3 × 10
9

N

(c) 𝑓 = 1 × 10
10

N

Figure 4.2: The displacement of a beam under various applied

loads, simulated using a linear elastic material model in the

solid mechanics

(a) 𝑓 = 5 × 10
8

N

(b) 𝑓 = 1 × 10
9

N

(c) 𝑓 = 3 × 10
9

N

Figure 4.3: The displacement of a beam under various applied

loads, simulated using a Neo-Hookean material model in the

solid mechanics
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If the applied load on the beam, incorporating a linear material model, is significantly large. In that

case, the compressed beam will eventually transition to the opposite side, as illustrated in the shift from

Figure 4.2b to Figure 4.2c. This figure shows that the beam has flipped to the other side of the fixed

boundary. In contrast, this flipping behaviour is absent when incorporating a Neo-Hookean material

model. In this case, the maximum applied force under compression is 3 × 10
9
N, as shown in Figure 4.3c.

The analysis will fail if this value is exceeded since a solution can not be found. In physical reality,

the flipping behaviour observed in the linear elastic material model is not feasible. As a result, the

Neo-Hookean material model better aligns with the actual behaviour of the beam, where such flipping

is absent.

The maximum applied force achievable for the beam, incorporating geometric nonlinearities in the

solid mechanics, is 5 × 10
8
N. Exceeding this limit results in distorted elements, leading to a failing

analysis. Due to the distorted elements, the maximum applied force is significantly lower compared

to the linear and Neo-Hookean material models. It is worth noting that geometric nonlinearities are

inherently incorporated into the solid mechanics when implementing the Neo-Hookean material model

in COMSOL. The introduction of the Neo-Hookean material model alongside geometric nonlinearities

notably expands the range of applied load values. Consequently, it can be concluded that incorporating

a Neo-Hookean material model increases stability when the structure undergoes large displacements.

Figure 4.4 illustrates a force-displacement curve for incorporating a linear elastic, geometric nonlinear,

and Neo-Hookean material model for a beam under compression and tension. When incorporating

a geometric nonlinear material model, the limitations of the model can be observed immediately.

Specifically under compression, the model with geometric nonlinearities cannot handle large forces

compared to the model with the Neo-Hookean material model. Moreover, significant deformations may

occur when considering a beam under tension with a Neo-Hookean material model. In contrast, the

stiffness becomes significantly large under compression, preventing the flipping behaviour observed in

the linear elastic material model.

Figure 4.4: The force-displacement curve for a cantilever beam with a linear (dotted line), geometric nonlinear (circles), and

Neo-Hookean material (squares) model under different applied force values.

4.1.3. Force nonlinearities
Force nonlinearities occur when the relationship between stress and applied force becomes nonlinear,

typically when the applied load or pressure depends on the deformation. These loads change in

magnitude, direction, and location as the structure or mechanism undergoes displacement (Kim 2015).

Loads that depend on the displacement are called follower forces. Figure 4.5 is an example to illustrate

the force nonlinearities.
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Force nonlinearities are commonly present when modelling PA soft robots since large displacements are

inevitable. Nevertheless, introducing force nonlinearities into TO can pose challenges for sensitivity

analysis and modelling. Addressing these challenges is crucial for the successful implementation of the

force nonlinearities.

Figure 4.5: The left figure illustrates the initial state of a cantilever beam, while the right figure depicts the beam subjected to a

distributed load, highlighting the change in the direction of the follower forces. This figure is obtained from Kim (2015)

4.2. Nonlinear solid mechanics formulations
In nonlinear solid mechanics, the Green-Lagrange strain and Second Piola-Kirchhoff stress represent the

strain and stress, respectively. Expressions for these quantities, along with the SEDF for a Neo-Hookean

material model, can be found in Equation 4.1, Equation 4.4, and Equation 5.1, respectively. This

section presents the derivation of the nonlinear stiffness matrix, based on Holzapfel (2000). For a more

comprehensive explanation, readers are encouraged to refer to Holzapfel (2000).

Hyperelastic materials are conservative, meaning the minimum potential energy principle can be

applied. The total potential energy can be calculated as the sum of the external potential energy, Π𝑒𝑥𝑡
,

and the internal potential energy Π𝑖𝑛𝑡
, as expressed in Equation 4.7. It is important to note that the

loads are not dependent on the displacement. In Equation 4.7, Ω0 is the surface area of the initial

configuration of the body, and Ω0,𝜎 is the boundary surface where the traction vector t is prescribed.

Π(u) = Π𝑖𝑛𝑡(u) +Π𝑒𝑥𝑡(u) =
∫
Ω0

𝜙(F(u))𝑑𝑉︸            ︷︷            ︸
Π𝑖𝑛𝑡

−
∫
Ω0

b · u𝑑𝑉 −
∫
𝜕Ω0,𝜎

t · u𝑑𝑆︸                                ︷︷                                ︸
Π𝑒𝑥𝑡

(4.7)

The principle of stationary potential energy, represented as 𝛿Π(u, 𝛿u), states that when potential energy

reaches a stationary point, the change in potential energy 𝛿Π(u, 𝛿u) is zero. 𝛿Π(u, 𝛿u) can be expressed

as Equation 4.8 (proof is omitted), where
𝜕𝜙
𝜕𝐹 =

𝜕𝜙
𝜕∇u

𝜕∇u
𝜕𝐹 =

𝜕𝜙
𝜕∇u .

𝛿Π(u, 𝛿u) =
∫
Ω0

𝜕𝜙(F(u))
𝜕𝐹

: ∇𝛿u𝑑𝑉 −
∫
Ω0

b · 𝛿u𝑑𝑉 −
∫
𝜕Ω0,𝜎

t · 𝜕u𝑑𝑆

=

∫
Ω0

𝜕𝜙(F(u))
𝜕∇u

: ∇𝛿u𝑑𝑉︸                       ︷︷                       ︸
𝛿Π𝑖𝑛𝑡

−
∫
Ω0

b · 𝛿u𝑑𝑉 −
∫
𝜕Ω0,𝜎

t · 𝜕u𝑑𝑆︸                                   ︷︷                                   ︸
𝛿Π𝑒𝑥𝑡

= 0

(4.8)

It is important to highlight that 𝛿Π𝑖𝑛𝑡 = 𝛿𝑊 𝑖𝑛𝑡
and 𝛿Π𝑒𝑥𝑡 = −𝛿𝑊 𝑒𝑥𝑡

. Consequently, the internal

and external forces, denoted by 𝑓 𝑖𝑛𝑡 and 𝑓 𝑒𝑥𝑡 respectively, can be determined using the relationship

𝛿𝑊 = 𝑓 𝛿u, as presented in Equation 4.9. This equation represents the principle of virtual work,

demonstrating the interchangeability of the principle of virtual work and the principle of minimum

potential energy for hyperelastic materials. Finally, the stiffness can be calculated as depicted in

Equation 4.10.

𝛿Π(u, 𝛿u) = 0 = 𝛿𝑊 𝑖𝑛𝑡 − 𝛿𝑊 𝑒𝑥𝑡 = (f𝑖𝑛𝑡 − f𝑒𝑥𝑡)𝛿𝑢 (4.9)

K(𝛿u) = 𝜕r
𝜕u

=
𝜕(f𝑖𝑛𝑡 − f𝑒𝑥𝑡)

𝜕u
(4.10)
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4.3. Solid mechanics formulation
The Lagrangian and Eulerian formulations are two widely used approaches to describe the governing

equations that describe the behaviour of physical systems. The choice of the formulation is essential for

accurately simulating the nonlinear analysis for large displacement (Belytschko et al. 2014). This section

discusses four different formulations: the Total Lagrangian, the Updated Lagrangian, the Eulerian, and

the Arbitrary Lagrangian-Eulerian (ALE) formulation. It is important to note that COMSOL uses the

Total Lagrangian formulation by default.

In the Total Lagrangian formulation, the reference (undeformed) configuration remains fixed throughout

the analysis. The displacement is described with respect to the initial configuration, and material

particles are tracked in the reference configuration. In the Updated Lagrangian formulation, the reference

configuration is initially fixed but is updated as the material deforms. Deformation is described with

respect to the current (deformed) configuration, and material particles are tracked in the reference

configuration as they move through space.

In the Eulerian formulation, the reference configuration remains fixed, and the observer is stationary in

space. Deformation is described in a fixed coordinate system, with the observer tracking how material

properties change at fixed spatial locations.

Figure 4.6 illustrates the distinctions between the obtained meshes from the Lagrangian and Eulerian

formulations. A drawback of the Lagrangian formulation is that it often proves ineffective in managing

problems with large deformation, as it can lead to element distortion, compromising accuracy and

stability. Consequently, the Eulerian formulation is often preferred in such scenarios, where elements

do not change shape since a fixed mesh is maintained. However, this requires a larger mesh to capture

significant displacements (Belytschko et al. 2014).

An advantage of the Lagrangian formulation is that the material coordinates align with the mesh

nodes, ensuring that boundary nodes always remain on the boundary. This alignment, however, is not

applicable to the Eulerian formulation, leading to difficulties in addressing moving boundaries and

interfaces (Belytschko et al. 2014).

Figure 4.6: The difference between the obtained deformed mesh using a Total Lagrangian or Eulerian formulation. The upper

meshes present the Total Lagrangian formulation (L), while the bottom meshes present the Eulerian formulation (E). This figure is

obtained from Belytschko et al. (2014).

The fourth formulation is the ALE formulation, combining advantages from the Lagrangian and Eulerian

formulations. The reference configuration is initially fixed in the ALE formulation but can be updated

as the material deforms. The deformation and the material particles are described with the current

(deformed) configuration (Stoker 1999).

Figure 4.7 illustrates the working principles of both the ALE and the Updated Lagrangian formulations.

Figure 4.7a presents the initial setup of the analysis. Figure 4.7b shows the solution of the mesh when

incorporating the Updated Lagrangian formulation. It is evident from this figure that, in the case

of the Updated Lagrangian formulation, the mesh results in a distorted element mesh. Figure 4.7c

demonstrates the results of incorporating the ALE formulation, where mesh distortion is effectively

prevented.
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(a) The initial setup (b) The updated Lagrangian formulation (c) The ALE formulation

Figure 4.7: The difference between the deformed meshes obtained using the Updated Lagrangian and ALE formulations. This

figure is obtained from Stoker (1999).

4.4. Nonlinear solvers
In many cases, finding exact solutions for nonlinear equations can be a challenging task. As a result,

researchers have developed various solution methods, with the Newton-Raphson method being the

most commonly used for solving nonlinear equations. Notably, the Newton-Raphson method is used by

default in COMSOL, and a brief introduction to this method is provided here. For a comprehensive

explanation of the Newton-Raphson method, readers are referred to the book of Belytschko et al. (2014),

which also serves as the basis for this section.

The Newton-Raphson method is a numerical technique for finding the solution of a function. The

method operates iteratively, beginning with an initial guess (𝑥0). At this point, the value 𝑓 (𝑥0) and the

derivative 𝑓 ′(𝑥0) of the function are evaluated. The subsequent step involves updating the initial guess

using the formula 𝑥1 = 𝑥0 − 𝑓 (𝑥0)
𝑓 ′(𝑥0) . This process iterates until the difference between consecutive guesses

is smaller than a specified tolerance.

Essentially, the Newton-Raphson method employs linear approximations of the function to guide the

search for the solution, enhancing accuracy with each iteration. The formula implicitly incorporates a

step size adjustment, where the ratio
𝑓 (𝑥0)
𝑓 ′(𝑥0) determines the magnitude of the step size applied to the

initial guess. This step size is crucial in guiding the search for the solution.

Despite its effectiveness, the Newton-Raphson method has some disadvantages. It can be sensitive to

the initial guess, converging slowly or failing to converge if the guess is far from the actual solution.

Furthermore, there exists a risk of convergence to local minima or maxima rather than the desired

solution. The performance of the method is also influenced by the smoothness of the function, and

noisy or irregular functions may lead to oscillations or divergence. Additionally, carefully considering

the step size is essential, as excessively large or small steps can impact convergence.

In response to the limitations of the Newton-Raphson method, various optimisation techniques have

been developed to enhance convergence and robustness. Notable among these are the Quasi-Newton

Raphson and Double Dogleg methods (Nocedal et al. 1999). These methods are also based on iterative

processes for finding the solution of a function but differentiate themselves through unique approaches

in updating the guesses.

While the Quasi-Newton Raphson and Double Dogleg methods offer valuable advantages, it is essential

to acknowledge their inherent limitations. In theory, the Double Dogleg method is expected to

outperform the Newton-Raphson method, but this superiority is not consistently observed across

all cases within COMSOL. In such instances, the Newton-Raphson method proves to be an effective

alternative. Fine-tuning the parameters within the Double Dogleg method has the potential to enhance

its performance and address the observed inconsistencies in different scenarios. However, this involves

a cumbersome process and relies heavily on user skills. Choosing an optimisation algorithm requires a

careful balance between the advantages and disadvantages inherent in each method.



5
Wang Method

Large displacements in mechanical systems can significantly alter the geometry of elements. As a result,

the void elements may experience excessive distortion during the TO process. When elements in a finite

element model experience excessive distortion, it can affect the convergence behaviour of the Newton-

Raphson iterations. Consequently, this leads to numerical instabilities in the Newton-Raphson iterations

(Wang, Lazarov, Sigmund, and Jensen 2014). Several approaches have been introduced to deal with

these numerical instabilities. However, these approaches have incorporated the St. Venant-Kirchhoff

material model. Unfortunately, this material model does not yield physically correct results for large

displacements, especially in compression, as discussed in the paper of Klarbring et al. (2013).

Wang, Lazarov, Sigmund, and Jensen (2014) developed a method to address the numerical instabilities

caused by the inversion of elements. The scheme operates by modelling void regions using linear theory

and solid regions using nonlinear theory. An advantage of this method is that it works effectively with

various hyperelastic material models.

In the FEA, the solid mechanics of the elements are interpolated between large and small displacement

formulations. This technique allows for the consideration of void regions when large displacements

occur. A linear model is applied explicitly to these regions to address numerical instabilities caused

by the void regions. This means that the material behaviour in the solid and void regions is treated

independently using different material models. This separation is crucial for achieving numerical

stability since it ensures that the material properties in void regions exert a controlled and predictable

influence on the solution due to the linear behaviour. This will contribute to a reliable and consistent

solution when significant geometric changes occur (Wang, Lazarov, Sigmund, and Jensen 2014).

In this thesis, the interpolation method is referred to as the Wang method, where strain, stress, and

SEDF are interpolated. It is important to note that in COMSOL, geometric nonlinearities are inherently

considered in the solid mechanics when incorporating a Neo-Hookean material model. Therefore, when

discussing the integration of the Neo-Hookean material model, geometric nonlinearities are already

taken into account in the solid mechanics.

The aim of this chapter is to address the third subquestion mentioned in the introduction by investigating

the potential extension of the range of maximum allowable pressure load applied to various structures

and mechanisms. Furthermore, the correct method for interpolating kinematic parameters remains

unclear based on the paper by Wang, Lazarov, Sigmund, and Jensen (2014). Therefore, it is necessary to

examine the appropriate interpolation method.

This chapter is structured as follows: First, in Section 5.1, the kinematic parameters of the solid mechanics

are interpolated. Second, Section 5.2 presents a case study where the Wang method is applied to a

C-beam, the TO of a cantilever beam, and the TO of an inverter.

22
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5.1. Interpolation of the kinematic parameters
The Wang method relies on interpolating between linear and nonlinear theories, necessitating the

interpolation of three essential kinematic parameters: the SEDF, Green-Lagrange strain, and Second-

Piola Kirchhoff stress tensor. It is crucial to interpolate all three components to ensure their compatibility

with the solid mechanics. Compatibility, in this context, means ensuring that these parameters align

smoothly with the principles of solid mechanics. If they are not compatible, the results may lack physical

feasibility or fail to represent the mechanical behaviour of the system accurately.

Subsection 5.2.1 demonstrates that the Wang method operates most effectively when interpolating all

three parameters. In this thesis, the Wang method employs the St. Venant-Kirchhoff material model

during small displacements and the Neo-Hookean material model for large displacements. The SEDF is

interpolated as expressed in Equation 5.1.

𝜙 = 𝜙
𝐻𝐸
(𝛾𝑒u) − 𝜙𝑉𝐾(𝛾𝑒u) + 𝜙𝑉𝐾(u) (5.1)

Here, 𝜙𝐻𝐸 represents the SEDF of a Neo-Hookean material model, as discussed in Subsection 4.1.2.

Additionally, 𝜙𝑉𝐾 is the SEDF of the St. Venant-Kirchhoff material model under the assumption of small

deformations, as described in Section 2.3. Note that the 𝜙𝑉𝐾 under the assumption of small deformation

equivalent is to Hooke’s law. The interpolation factor, 𝛾𝑒 , equals 0 for void elements and 1 for solid

elements. Its expression is shown in Equation 5.2, where 𝜌𝑒 represents the projected design variable, as

described in Subsection A.1.1, and 𝑝 is the penalisation factor.

𝛾𝑒 =
𝑡𝑎𝑛ℎ(𝛽1𝜂1) + 𝑡𝑎𝑛ℎ(𝛽1(𝜌̄𝑝𝑒 − 𝜂1))
𝑡𝑎𝑛ℎ(𝛽1𝜂1) + 𝑡𝑎𝑛ℎ(𝛽1(1 − 𝜂1))

(5.2)

The interpolation of the Second-Piola Kirchhoff stress tensor arises as a consequence of interpolating

the SEDF since the stress is the derivative of the SEDF with respect to the Cauchy-Green deformation

tensor C, as expressed in Equation 5.3.

S =
𝜕𝜙

𝜕E𝐺𝐿
= 2

𝜕𝜙

𝜕𝐶
= 2

(
𝜕𝜙

𝐻𝐸
(𝛾𝑒𝑢)

𝜕𝐶
−

𝜕𝜙𝑉𝐾(𝛾𝑒𝑢)
𝜕𝐶

+
𝜕𝜙𝑉𝐾(𝑢)

𝜕𝐶

)
(5.3)

The expressions for 𝜙 and S are lengthy; therefore, MATLAB is used to conduct these extensive

calculations. The detailed formulations for 𝜙 and S are provided in the MATLAB code, presented in

Section E.1.

The strain represents the third parameter requiring interpolation, which can be accomplished through

the three methods enumerated below. In the COMSOL models, the plane strain assumption is used,

meaning that all the z-components are zero.

1. The first strain interpolation method

The first method involves interpolating the strain equivalent to the SEDF, expressed in Equation 5.4.

Here, E𝐺𝐿 represents the Green-Lagrange strain, as defined in Equation 4.1, and 𝝐𝐿 represents the

linearised Green-Lagrange strain, as defined in Equation 2.3.

E𝑊,1 = E𝐺𝐿(𝛾𝑒u) − 𝝐𝐿(𝛾𝑒u) + 𝝐𝐿(u)

=


1

2
(2𝑢,𝑋 + (𝑢2

,𝑋
+ 𝑣2

,𝑋
)𝛾2

𝑒 ) 1

2
(𝑢,𝑌 + 𝑣,𝑋 + (𝑢,𝑋𝑢,𝑌 + 𝑣,𝑋𝑣,𝑌)𝛾2

𝑒 ) 0

1

2
(𝑢,𝑌 + 𝑣,𝑋 + (𝑢,𝑋𝑢,𝑌 + 𝑣,𝑋𝑣,𝑌)𝛾2

𝑒 ) 1

2
(2𝑣,𝑌 + (𝑢2

,𝑌
+ 𝑣2

,𝑌
)𝛾2

𝑒 ) 0

0 0 0


(5.4)

2. The second strain interpolation method

The second method involves directly interpolating the nonlinear component of the Green-Lagrange

strain, as expressed in Equation 4.1, as shown in Equation 5.5.

E𝑊,2 =


1

2
(2𝑢,𝑋 + (𝑢2

,𝑋
+ 𝑣2

,𝑋
)𝛾𝑒) 1

2
(𝑢,𝑌 + 𝑣,𝑋 + (𝑢,𝑋𝑢,𝑌 + 𝑣,𝑋𝑣,𝑌)𝛾𝑒) 0

1

2
(𝑢,𝑌 + 𝑣,𝑋 + (𝑢,𝑋𝑢,𝑌 + 𝑣,𝑋𝑣,𝑌)𝛾𝑒) 1

2
(2𝑣𝑌 + (𝑢2

𝑌
+ 𝑣2

𝑌
)𝛾𝑒) 0

0 0 0

 (5.5)
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3. The third strain interpolation method

The third method involves interpolating the deformation gradient as expressed by 𝐹 = 𝐼 + 𝛾𝑒∇𝑢, a

method based on the methodology presented by Dalklint et al. (2021). This approach results in

the strain expressed in Equation 5.6. However, it is essential to note that when 𝛾𝑒 equals 0, the

strain is 0, which can lead to numerical issues. It is anticipated that Dalklint et al. (2021) used an

alternative strain interpolation method. Consequently, this option is not further considered in this

thesis.

E𝑊,3 =


1

2
(2𝛾𝑒𝑢,𝑋 + (𝑢2

,𝑋
+ 𝑣2

,𝑋
)𝛾2

𝑒 ) 1

2
((𝑢,𝑌 + 𝑣,𝑋)𝛾𝑒 + (𝑢,𝑋𝑢,𝑌 + 𝑣,𝑋𝑣,𝑌)𝛾2

𝑒 ) 0

1

2
((𝑢,𝑌 + 𝑣,𝑋)𝛾𝑒 + (𝑢,𝑋𝑢,𝑌 + 𝑣,𝑋𝑣,𝑌)𝛾2

𝑒 ) 1

2
(2𝛾𝑒𝑣,𝑌 + (𝑢2

,𝑌
+ 𝑣2

,𝑌
)𝛾2

𝑒 ) 0

0 0 0

 (5.6)

The distinction between Equation 5.4 and Equation 5.5 lies in the scaling of the nonlinear part. In

Equation 5.4, the nonlinear part is scaled with 𝛾2

𝑒 , while in Equation 5.5, it is scaled with 𝛾𝑒 . The effects

of the first and second strain interpolation methods will be investigated in Subsection 5.2.1.

5.2. Case Study
The Wang method is applied to a case study based on three different problems to investigate the

effectiveness. The initial case involves the analysis of a C-beam, as discussed in Subsection 5.2.1. This

straightforward scenario is a preliminary test to validate the method’s effectiveness. Subsequently, a

study is conducted on the TO of a cantilever beam, explored in Subsection 5.2.2. The cantilever beam

is chosen due to its simplicity and well-known TO shape. Lastly, the third case involves the TO of an

inverter, presented in detail in Subsection 5.2.3.

The mesh employed in the models is the ’extra-fine-sized physics-controlled’ mesh generated by

COMSOL. Depending on the physics involved, COMSOL determines how to mesh the domain using

triangular elements with a maximum element size. This maximum element size is problem-dependent.

5.2.1. C-beam
The paper by Yoon et al. (2005) initially introduced the C-beam test, emphasising that void elements

exhibit distortion during large displacements, especially when accounting for geometric nonlinearities

in the solid mechanics. Building upon this, Wang, Lazarov, Sigmund, and Jensen (2014) further

demonstrated the effectiveness of this method by combining the C-beam test with the Wang method.

The schematic visualisation of the C-beam is presented in Figure 5.1. In this simulation, the solid beam

is represented by the grey region where 𝛾𝑒 = 1, while the white region, where 𝛾𝑒 = 0, simulates the

void region. Including the void region in the C-beam is crucial, as it allows us to demonstrate the

effectiveness of the Wang method in handling void regions.

Figure 5.1: The schematic visualisation and corresponding boundary conditions of the C-beam, where the grey part (𝛾𝑒 = 1)

signifies a solid region, while the white part (𝛾𝑒 = 0) mimics the void regions. This figure is based on the paper of Yoon et al.

(2005)
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The C-beam incorporating the Neo-Hookean material is simulated in COMSOL, where the notation and

values assigned to various parameters can be found in Table 5.1. The meshes of the results obtained

from the analysis are illustrated in Figure 5.2. In Figure 5.2a, the maximum deformation achievable

for the C-beam is shown, corresponding to a maximum applied load of ( 𝑓1 , 𝑓2) = (0.0009 N, 0.0099 N).

Exceeding this load would lead to the mesh shown in Figure 5.2b, with distorted elements causing

numerical instabilities and resulting in infeasible designs.

Parameter Notation Value

Maximum element size - 0.37 m

Young’s modulus solid region 𝐸1 1 N m
−2

Young’s modulus void region 𝐸0 1 × 10
−9

N m
−2

Out-of-plane thickness 𝑡 1 m

Poisson ratio 𝜈 0.3

Table 5.1: The notation and value for various parameters used to simulate the C-beam in COMSOL.

(a) The mesh for ( 𝑓1 , 𝑓2) = (0.0009, 0.0099) (b) The mesh for ( 𝑓1 , 𝑓2) = (0.001, 0.01)

Figure 5.2: The results obtained from the analysis of the C-beam are presented in (a) for the maximum allowable applied load and

in (b) for conditions exceeding the maximum allowable applied load. The analysis incorporates a Neo-Hookean material model.

Why is it necessary to interpolate the Green-Lagrange strain, the SEDF, and the Second Piola-Kirchhoff

stress? The answer to this question is provided in Figure 5.3. Figure 5.3a illustrates the C-beam

with a Neo-Hookean material model, thus without interpolation. Figure 5.3b illustrates the effect of

interpolating just the SEDF. Figure 5.3c illustrates the effect of the combination of interpolating the

SEDF and strain (E𝑊,1) but not the Second Piola-Kirchhoff stress. Figure 5.3d illustrates the effect of

interpolating the combination of the SEDF, strain (E𝑊,1), and the Second Piola-Kirchhoff stress (Wang

method). The maximum applied load for all models is listed in Table 5.2.

Material model 𝑓1 (N) 𝑓2 (N)

Neo-Hookean material model 0.0009 0.0099

Interpolation of the SEDF 0.0008 0.0018

Interpolation of the SEDF and E𝑊,1 0.0055 0.0145

Interpolation of the SEDF, E𝑊,1, and the Second

Piola-Kirchhoff stress (Wang method)

0.0055 0.0145

Table 5.2: The maximum values of the applied loads 𝑓1 and 𝑓2 for the different material models of a C-beam.
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Figure 5.3 illustrates the successful implementation of the Wang method for the analysis of the C-beam.

Clearly, the maximum allowable displacement is optimised in both Figure 5.3c and Figure 5.3d. However,

the latter exhibits a higher capability at handling distorted elements. Hence, if effective management of

distorted elements management is required, the Wang method is recommended.

(a) Hyperelastic material model; no interpolation (b) Interpolation of the SEDF

(c) Interpolation of the SEDF and the first strain method (d) The Wang method

Figure 5.3: The analysis results of a C-beam using different approaches: (a) Neo-Hookean material model, (b) interpolation of

only the SEDF, (c) interpolation of SEDF and the first strain method, excluding the Second Piola-Kirchhoff stress, and (d) the

Wang method.

It can be concluded that no difference is observed in the results between the Wang method using E𝑊,1

or E𝑊,2. In Figure 5.4, the results of the C-beam analysis using two variations of the Wang method

are depicted. Specifically, Figure 5.4a illustrates the outcome of the Wang method with E𝑊,1, while

Figure 5.4b presents the results for the Wang method incorporating E𝑊,2. Both strain methods yield

equivalent results and maximum allowable applied loads for the C-beam, specifically ( 𝑓1 , 𝑓2) = (0.0103,

0.0193).

The C-beam is constrained to values of either 0 or 1 for 𝛾𝑒 . However, a difference in the results will

become visible for intermediate values for 𝛾𝑒 , which can occur during TO. A study examines the impact

of the intermediate values, which is detailed in Appendix C. Nevertheless, the differences in the results

obtained from the TO of structures or CMs are marginal. Henceforth, the focus will solely be on E𝑊,1.

This choice ensures a consistent interpolation method for the SEDF, strain and Second Piola-Kirchhoff

stress.
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(a) Wang method with E𝑊,1 (b) Wang method with E𝑊,2

Figure 5.4: Mesh of the maximum deformation obtained from the analysis of the C-beam with the Wang Method using E𝑊,1 (a)

and E𝑊,2 (b).

5.2.2. Topology optimisation of a cantilever beam
This subsection presents results obtained from the TO with the Wang method incorporated into the

solid mechanics of a cantilever beam. The cantilever beam, chosen for its simplicity and well-known TO

shape, is schematically visualised in Figure 5.5 with associated boundary conditions. The notation and

value assigned to various parameters used in the COMSOL model can be found in Table 5.3. The results

are derived from fifty iterations of the Global Convergent Method of Moving Asymptotes (GCMMA)

algorithm, indicating that the TO likely reached convergence. The GCMMA is explained in Subsection

A.4. Additionally, the TO formulation aligns with the formulation stated in Subsection 2.4.1

Parameter Notation Value

Maximum element size - 0.01 m

Volume fraction volfrac 0.5

Young’s modulus solid region 𝐸1 3 × 10
9

N m
−2

Young’s modulus void region 𝐸0 3 × 10
3

N m
−2

Out-of-plane thickness 𝑡 0.1 m

Poisson ratio 𝜈 0.4

Table 5.3: The notation and value for various parameters used to design the cantilever beam in COMSOL.

Figure 5.5: The schematic visualisation and the associated boundary conditions of a cantilever beam.

In this section, the COMSOL model excludes a Helmholtz density filter or a projection on the design

variables. Integrating a Helmholtz density filter with the Wang method posed challenges, resulting

in unsolvable problems, which are investigated in Section D.1. Additionally, a parameter study on

the 𝛾𝑒 values was conducted to determine optimal settings, outlined in Appendix D. This study also

explored the use of a projection on the design variables, detailed in section D.5. However, implementing

a projection on the design variables led to significantly increased computational times, prompting the

decision to forego the use of a filter.
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The subsections are structured as follows: Initially, details on the TO with a linear elastic and Neo-

Hookean material model of a cantilever beam are presented, which serve as a reference for validating

the implementation of the Wang method. Finally, the Wang method is incorporated into the solid

mechanics of the TO process.

Linear topology optimisation
To establish a reference for the results obtained from the TO with the Wang method, the outcomes of the

linear model are first analysed, as illustrated in Figure 5.6. Specifically, this figure depicts the material

distribution obtained from the linear TO under an applied load of 400 kN. It is crucial to highlight that

in the linear TO, the results are load-independent. This figure serves the dual purpose of validating

and verifying the implemented numerical model in COMSOL, as it produces results identical to those

obtained with the 88-line MATLAB code outlined in the paper by Andreassen et al. (2011)

Figure 5.6: The material distribution obtained from the linear TO of a cantilever beam.

Topology optimisation with a Neo-Hookean material model
In this subsection, the Neo-Hookean material model is integrated into the TO process, and the results

are presented in Figure 5.7. Understanding these results is crucial for comparing the Wang method with

just a Neo-Hookean material model. The purpose is to assess the impact of the Wang method, which

should minimally influence the shape of the results when combined with a Neo-Hookean material

model. Therefore, Figure 5.7 serves as a reference to validate the correct implementation of the Wang

method in the TO of a cantilever beam.

(a) 𝑓 = 60 kN (b) 𝑓 = 80 kN

(c) 𝑓 = 120 kN (d) 𝑓 = 150 kN

Figure 5.7: The material distribution obtained from the TO with a Neo-Hookean material model of a cantilever beam under

various values of the applied load.
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The maximum applied load achievable during the TO of the cantilever beam is 150 kN, where the

obtained result is depicted in Figure 5.7d. The designs obtained from the TO are similar to those

reported in the literature, particularly in the work by Wang, Lazarov, Sigmund, and Jensen (2014). The

obtained design shown in Figure 5.7c and Figure 5.7d may be peculiar for readers unfamiliar with

the nonlinear TO of a cantilever beam. However, when the applied load is large, the optimisation

process creates a beam dangling from the truss structure. This dangling beam is a strategic response to

overcome the significant displacements and loads applied to the structure and will become longer for

an increasing applied load.

For clarity, Figure 5.8 illustrates the deformed shape resulting from the TO with a Neo-Hookean material

model of a cantilever beam under an applied load of 150 kN. This figure contributes to developing

an intuitive understanding of the results obtained from the nonlinear TO and the corresponding

displacements. It is important to note that the design presented in Figure 5.8 is a filtered design shown

in Figure 5.7d, where design variables are thresholded at 0.5. Consequently, values of design variables

lower than 0.5 are removed.

Figure 5.8: The deformed shape of the obtained design from the TO with a Neo-Hookean material model of a cantilever beam

under an applied load of 150 kN. The displacements are not scaled.

Topology optimisation with the Wang method
As explained, 𝛾𝑒 interpolates the solid mechanics between linear and nonlinear theory. However,

when 𝛾𝑒 is set to 0 for all elements of the domain, the model is equivalent to the linear elastic material

model. On the other hand, when 𝛾𝑒 is set to 1 for all elements of the domain, it corresponds to a model

incorporating the Neo-Hookean material model. These two comparisons are crucial for validating the

implementation of the Wang method. If either of these tests fails, it indicates an issue with the Wang

method implementation. It is important to note that when 𝛾𝑒 is set to 0 or 1 for all elements in the

domain, no interpolation occurs.

Consistent alignment is obtained between the Wang method, with 𝛾𝑒 set to 0 and 1, and the TO employing

linear elastic and Neo-Hookean material model, respectively, confirming the correct implementation of

the Wang method.

In Figure 5.9, the comparison is made between results obtained from the linear TO and the TO with

the Wang method where 𝛾𝑒 is set to 0 for all elements in the domain. This comparison illustrates the

equivalence of Figure 5.9a and Figure 5.9b. Additionally, the objective functions obtained for each TO

iteration are identical for both models.

(a) TO with a linear elastic material model (b) TO with the Wang method where 𝛾𝑒 = 0

Figure 5.9: The comparison between the results of the (a) linear TO and (b) TO with the Wang method where 𝛾𝑒 is set to 0 for all

elements for a cantilever beam under an applied load of 80 kN.
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Furthermore, Figure 5.10 demonstrates the comparison between the results of the TO with the Neo-

Hookean material model and the Wang method where 𝛾𝑒 is set to 1 for all elements in the domain. This

figure demonstrates the equivalence of the two subfigures. Moreover, the objective functions obtained

for each TO iteration are identical for both models.

(a) TO with the Neo-Hookean material model (b) TO with the Wang method with 𝛾𝑒 = 1

Figure 5.10: The comparison between the results of a TO of a cantilever beam with a Neo-Hookean material model (a) and the

Wang method where the interpolation factor 𝛾𝑒 is equal to 1 (b) of a cantilever beam under an applied load of 80 kN

It should be noted that 𝛾𝑒 has returned to its original definition, as given in Equation 5.2, enabling

interpolation between linear and nonlinear theories. The parameters 𝛽1, 𝜂1, and 𝑝 for 𝛾𝑒 are set to 100,

0.001, and 3, respectively. The TO results with the Wang method for the cantilever beam under various

applied loads are depicted in Figure 5.11, with additional results provided in section D.6. This figure

illustrates that the little beam dangling from the truss structure elongates under increasing applied

loads. The maximum applied load is 250 kN, which represents an increase of 100 kN compared to the

results obtained with the Neo-Hookean material model in Figure 5.7. In Figure 5.12, the deformed

shape resulting from the TO with the Wang method under an applied load of 250 kN is illustrated.

The comparison between the results presented in Figure 5.11a and Figure 5.11b and those in Figure 5.7b

and Figure 5.7d, similarities in shape are evident. This underscores the capability of the Wang method

to generate designs that resemble those obtained from the TO with a Neo-Hookean material model.

(a) 𝑓 = 80 kN (b) 𝑓 = 150 kN

(c) 𝑓 = 180 kN (d) 𝑓 = 250 kN

Figure 5.11: The material distribution obtained from the TO with the Wang method of a cantilever beam under various values of

the applied load.

Moreover, the material distributions show more intermediate values than those obtained from the TO

with the Neo-Hookean material model. However, this has only a 4% impact on the objective function

under a 150 kN load, whereas the TO with the Wang method has the better objective function. Hence, it

can be asserted that these intermediate values do not significantly affect the achieved objective function.
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The reason for these intermediate values remains uncertain and warrants further investigation. While

adjusting the model settings may reduce the intermediate value, it is beyond the thesis scope. However,

it is crucial to emphasise that the purpose of this study was to investigate whether the Wang method

effectively enhances the maximum applied load.

Figure 5.12: The deformed shape of the filtered design obtained from the TO with the Wang method of a cantilever beam under

an applied load of 250 kN. The displacement is not scaled

5.2.3. Topology optimisation of an inverter
The results of the TO with the incorporation of the Wang method in the solid mechanics of an inverter are

discussed in this subsection. The schematic visualisation and the corresponding boundary conditions

are provided in Figure 5.13. The notation and values for various parameters used in COMSOL are

detailed in Table 5.4. Furthermore, each result is based on one hundred iterations using the GCMMA

algorithm, indicating that the TO has likely reached convergence. Additionally, the TO formulation for

the inverter aligns with the formulation stated in Subsection 2.4.2, where the objective function aims to

maximise the displacement Δ in the horizontal direction.

Parameter Notation Value

Maximum element size - 3 𝜇m

Volume fraction volfrac 0.2

Young’s modulus solid region 𝐸1 3 × 10
9

N m
−2

Young’s modulus void region 𝐸0 3 × 10
3

N m
−2

Out-of-plane thickness 𝑡 7 𝜇m

Poisson ratio 𝜈 0.3

Stiffness left spring 𝑘𝑖𝑛 4000 Nm
−1

Stiffness right spring 𝑘𝑜𝑢𝑡 40 Nm
−1

Table 5.4: The notation and value for various parameters used to design the inverter in COMSOL.

Figure 5.13: The schematic visualisation and the corresponding boundary conditions of the inverter.
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Similar to the TO of a cantilever beam discussed in subsection 5.2.2, this chapter initially presents the

results obtained from the linear TO and the TO with a Neo-Hookean material model of an inverter. The

aim is to establish a reference for validating the implementation of the Wang method. Subsequently, the

Wang method is incorporated into the solid mechanics of the TO process of the inverter.

Topology optimisation with a linear elastic material model
As mentioned earlier, the results of the linear TO serve to validate the correct implementation of the

model in COMSOL and act as a reference for the results obtained from the TO with the Wang method of

the inverter. Figure 5.14 represents the material distribution obtained from the TO of the inverter under

an applied load of 0.02 N. The obtained shape is similar to those reported in the literature, particularly

in the work by Wang, Lazarov, Sigmund, and Jensen (2014). Additionally, Figure 5.15 illustrates the

filtered design of the results obtained from the linear TO, where the design variables are thresholded at

0.5. This figure validates the working principle of an inverter.

Figure 5.14: The material distribution obtained from the

linear TO of an inverter under an applied load of 0.02 N.

Figure 5.15: The displacement is illustrated, which validates

the working principle of an inverter.

Topology optimisation including a Neo-Hookean material model
The results obtained from the TO with a Neo-Hookean material model for an inverter are shown

in Figure 5.16. This figure illustrates the material distribution under various applied loads, with a

maximum of 0.4 N. It can be observed that the obtained designs for the input load of 0.02N contain

one distinction rotation point in the upper-right corner, while for input loads of 0.1N and 0.2 N, there

exist two. These distinct rotation points function similarly to a revolute joint and these three cases show

similarities with the linear case. However, for an input load of 0.4 N, it can be observed that these

distinction joints changed in a somewhat more distributed deformation pattern.

It is expected that these differences can be explained by an underlying concept. Various formulations of

TO exist for designing CMs. In cases where linear TO is employed with the objective of maximising

energy transfer, the designs become sensitive to achieving specific rotation points (Wang and Chen

2009; Yin et al. 2003). However, challenges arise when geometric nonlinearities manifest due to large

deformations. The distinct rotation points in these lumped designs tend to drift in such scenarios,

attributed to the stiffness becoming deformation-dependent through geometric nonlinearities (Trease

et al. 2004; Clark et al. 2016; Xu 2014). These studies offer solutions to counteract this drift. Notably, the

drifting behaviour of the rotation point is not inherently problematic; nevertheless, it is prone to occur

when left unmitigated.

Moreover, it is conjectured that introducing nonlinearities into the TO process results in a shift towards

a distributed deformation pattern rather than a lumped design, which is attributed to the drifting of the

rotation points [S. Koppen, personal communication, January 13, 2024].

This concept can potentially contribute to the distinctions observed in Figure 5.16. Especilly, since

the expected deformation obtained from the TO are large. The deformed shape of the 0.4 N design

is depicted in Figure 5.17, offering valuable insight into displacement magnitude and illustrating the

response of the cantilever beam to the applied load.
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(a) 𝑓 = 0.02 N (b) 𝑓 = 0.1 N

(c) 𝑓 = 0.2 N (d) 𝑓 = 0.4 N

Figure 5.16: The material distribution obtained from the TO with a Neo-Hookean material model of an inverter under various

values of the applied load

Figure 5.17: The deformed shape of the obtained design from the TO with the Wang method of a cantilever beam under an

applied load of 0.4 N. The displacement is not scaled.

Topology optimisation including the Wang method
The correct implementation of the Wang method in this model is confirmed through the examination of

the results obtained from the TO with the Wang method, where 𝛾𝑒 is set to 0 and 1. Although detailed

results are not provided here, it is noteworthy that when 𝛾𝑒 is set to 0 and 1, the design and objective

function align with the linear TO and TO with the Neo-Hookean material model, respectively.

It should be noted that 𝛾𝑒 has returned to its original definition, as given in Equation 5.2, enabling

interpolation between linear and nonlinear theories. The parameters 𝛽1, 𝜂1, and 𝑝 for 𝛾𝑒 are set to 100,

0.001, and 3, respectively.

In contrast to the findings in the cantilever beam case discussed in Subsection 5.2.2, the study concludes

that there is no increase in the maximum applied load for the TO of an inverter when employing the

Wang method. The results presented in Figure 5.18 illustrate the results obtained from the TO with

the Wang method for applied loads of 0.02 N and 0.4 N. Notably, the maximum applied load achieved

with the Wang method is 0.4 N, equivalent to the TO results obtained by solely incorporating the

Neo-Hookean material model.
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A parameter study explored the influence of modifying 𝛽1, 𝜂1, and 𝑝 on the maximum applied load.

Unfortunately, these modifications did not yield a higher maximum applied load. Notably, the Wang

method was implemented across various types of compliant mechanisms, including PACM; however, it

consistently failed to extend the range of maximum allowable applied load in COMSOL.

Additionally, shapes obtained from the TO using the Wang method exhibit similarities to those achieved

with the Neo-Hookean material model. However, distinct differences between the two obtained designs

exist. Nevertheless, the two designs show an insignificant difference in the objective function, with the

Wang method outperforming and yielding only a 4% improvement. The most significant conclusion of

this study is that the Wang method is ineffective in extending the range of the maximum allowable load.

(a) 𝑓 = 0.02 N (b) 𝑓 = 0.4 N

Figure 5.18: The material distribution obtained from the TO with the Wang method of a cantilever beam under an applied load of

0.02 N (a) and 0.4 N (b).
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This section presents the design and analysis of several PACMs, illustrating the impact of incorporating

geometric nonlinearities and a Neo-Hookean material model in conjunction with the Darcy method.

The goal is to observe how nonlinearities can be incorporated into PA soft robots using the Darcy

method for pressure boundary identification in COMSOL. In the COMSOL models, the plane strain

assumption is used, meaning all the z-components are zero. Note that PA soft robots and PACMs are

considered equivalent in this thesis. Table 6.1 provides values and notation for various parameters used

in the COMSOL models, which remain consistent across all examples unless otherwise stated. The TO

formulation used for the PACMs in this chapter is similar to the formulation stated in section 3.2.

Parameter Notation Value

Poisson ratio 𝜈 0.4

Out-of-plane thickness 𝑡 0.001 m

Penalisation factor 𝑝 3

External move limit Δ𝝆 0.1 per iteration

𝐾(𝜌𝑒) step location 𝜂𝑘 0.3

𝐾(𝜌𝑒) slope of the step 𝛽𝑘 10

𝐷(𝜌𝑒) step location 𝜂ℎ 0.2

𝐷(𝜌𝑒) slope of the step 𝛽ℎ 10

Flow coefficient of the void element 𝑘𝑣 1 m
4
N

−1

s
−1

Flow coefficient of the solid element 𝑘𝑠 𝑘𝑣 × 10
−7

m
4
N

−1

s
−1

Ratio input pressure to the pressure at Δ𝑠 𝑟 0.1

The penetration depth Δ𝑠 0.002 m

Volume fraction volfrac 0.2

Stiffness of the output spring 𝑘𝑠𝑠 1 × 10
4
Nm

−1

Output pressure 𝒑𝑜𝑢𝑡 0 Pa

Table 6.1: The notation and value for various parameters used in the COMSOL models.

The mesh employed in the models is the ’extra-fine-sized physics-controlled’ mesh generated by

COMSOL. Depending on the physics involved, COMSOL determines how to mesh the domain,

employing triangular elements with a maximum element size. For the PA inverter, compliant gripper,

and multi-material compliant gripper, the maximum element size is set to 0.004m. In contrast, for the

member of a pneumatic network, it is set to 0.003m. It is an option in COMSOL to determine the mesh

manually; however, a user-defined mesh tends to be more sensitive to numerical instabilities.

35
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In this chapter, the ’linear model’ refers to the model with the TO with a linear elastic material model

integrated into the solid mechanics. The ’nonlinear model’ refers to the model with the TO with

geometric nonlinearities and a linear elastic material model integrated into the solid mechanics. The

’Neo-Hookean model’ refers to the model with the TO with geometric nonlinearities and a Neo-Hookean

material model integrated into the solid mechanics.

For all cases, this chapter presents the results of the TO with different material models. Subsequent to the

TO, the obtained material distribution undergoes thresholding of design variables at 0.5, as illustrated

in Figure 6.1. This thresholding involves the removal of design variable values below 0.5. These designs

are referred to as ’the filtered designs’ 1. The analysis will then concentrate on the resulting designs

after remeshing.

(a) The material distribution obtained from the TO of a PA inverter (b) The filtered design with the design variables thresholded at 0.5

Figure 6.1: An example of the filtering design obtained from the TO, where the design variables are thresholded at 0.5. (a)

illustrates the material distribution obtained from the TO of a PA inverter. (b) shows the filtered design used in the analyses.

In this study, two analyses are conducted subsequent to the TO. The first analysis utilises the Darcy

method to determine the pressure field, following a similar approach to the TO. The second analysis

applies a direct pressure load to the relevant boundary. In COMSOL, an applied pressure load is

converted into a follower force when integrating a Neo-Hookean material model in the solid mechanics.

It is crucial to note that the pressure is independent of the deformation in the first analysis, while

in the second analysis, the pressure is deformation-dependent. The Neo-Hookean material model is

integrated into the solid mechanics of both analyses. For clarity in this thesis, the first analysis is referred

to as the deformation-independent load analysis, and the second analysis is denoted as the follower

force analysis. The deformation-independent load analysis is conducted to compare the linear model

with the Neo-Hookean model to observe the influence of a Neo-Hookean material model. A follower

force analysis is conducted for comparison with the deformation-independent load analysis, aiming to

observe the effect of a deformation-dependent pressure load on the model.

This chapter is structured as follows: Section 6.1 discusses the PA inverter results. Section 6.2 discusses

the results of the PA compliant gripper. Section 6.3 illustrates the results of a member of a Pneumatic

network (Pneunets). Section 6.4 presents the results of a multi-material PA compliant gripper.

6.1. Pressure-actuated inverter
This section presents the results obtained from the TO of a PA inverter. The schematic visualisation is

shown in Figure 6.2, representing the symmetric half of the design domain and its boundary conditions.

The Young’s modulus 𝐸1 for the solid material is 3 × 10
9
N/m

2

, while the Young’s modulus for the

void regions 𝐸0 = 𝐸1 × 10
−6

N/m
2

. Furthermore, each result is derived from fifty iterations using the

GCMMA, indicating that the TO has likely reached convergence. The objective function focused on

minimising Δ divided by the total strain energy. Here, Δ represents the displacement in the x-direction

in the bottom-right corner.

1It is crucial for the reader to distinguish between the filtered design obtained after the TO and the filtering process in the TO

process. When referred to as ’the filtered design,’ the term signifies the extracted design from the material distribution obtained

from the TO.
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Figure 6.3 illustrates the designs obtained from the linear model for input pressure loads of 1 × 10
6

Pa

and 1 × 10
7

Pa. Similarly, Figure 6.4 presents the designs obtained from the Neo-Hookean model for the

same input pressure loads. These figures depict the values of the design variable for each element in the

obtained results of the TO of a PA inverter under different values for the input pressure load. In other

words, they represent the material distribution for different pressure load values.

Figure 6.2: The schematic visualisation and the corresponding boundary conditions of PA inverter.

(a) p = 1 × 10
6

Pa

(b) p = 1 × 10
7

Pa

Figure 6.3: The material distribution obtained from the linear

model of a PA inverter under two different input pressure

load values.

(a) p = 1 × 10
6

Pa

(b) p = 1 × 10
7

Pa

Figure 6.4: The material distribution obtained from the

Neo-Hookean model for a PA inverter under two different

input pressure load values.

The results of the nonlinear models are omitted in this thesis since they show no significant difference

compared to the linear and Neo-Hookean models. The nonlinear model produces results only up to an

input pressure load of 5 × 10
5

Pa, which is very low compared to the maximum input pressure load of

the Neo-Hookean model. Remarkably, the differences between the design obtained from the nonlinear

and linear models are negligible.

In contrast, incorporating the Neo-Hookean material model allows for a maximum input pressure load

of 1 × 10
7
Pa during the TO. Exceeding this pressure load is impossible since the simulation will result

in a not-converge error, shown in Figure 6.5. The error occurs because of the excessive displacement

obtained in the analysis of the first TO iteration, shown in Figure 6.6. These excessive displacements are

causing numerical issues and making the model unsolvable. In Figure 6.6, it should be noted that the

square in the top-left corner represents the undeformed design domain, while the blue area corresponds

to a part of the deformed design domain.
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Figure 6.5: The error obtained when exceeding the maximum

pressure load of 1 × 10
7
Pa for the Neo-Hookean model

Figure 6.6: The displacement in the analysis of the first TO

iteration of the Neo-Hookean model for an input pressure

load of 5 × 10
7

Pa

For the Neo-Hookean model, deformations remain small for input pressure loads up to 1 × 10
6

Pa,

yielding outcomes similar to the linear model. However, large displacements occur when the input

pressure load exceeds this input pressure load. The design output from the Neo-Hookean model

under an input pressure load of 1 × 10
7

Pa is visualised in Figure 6.4b. High input pressure loads large

displacements, challenging the accuracy of the linear model in describing the behaviour of the system.

Consequently, differences emerge between the designs obtained from the linear and Neo-Hookean

models.

To accentuate the distinctions under high pressure load, a visual comparison between the linear and

Neo-Hookean models is presented in Figure 6.7. In this figure, the red design signifies the filtered

design of the linear model, while the grey design represents the filtered design of the Neo-Hookean

model. Furthermore, Figure 6.8 illustrates the working principle of the design obtained from the linear

model under an applied load of 1 × 10
6

Pa of a PA inverter.

The concept introduced in Subsection 5.2.3, specifically addressing TO with the Neo-Hookean material

model, potentially accounts for the observed differences in the two designs in this case. However, the

distinct rotation point is not visible in the designs obtained from the linear TO; hence, this remains a

matter of speculation.

Figure 6.7: The difference between the obtained designs of the

linear (red) and Neo-Hookean (grey) model of the PA inverter

under an input pressure load of 1 × 10
7

Pa.

Figure 6.8: The deformed design obtained from the linear

model under an applied pressure load of 1 × 10
6

Pa serves to

validate the working principle of a PA inverter. The

displacement is scaled by a factor of 8.

In Figure 6.9, the correct implementation of the Darcy method is demonstrated, and pressure leakages

are absent. The figure illustrates the pressure field for the results obtained from both the linear model,

as shown in Figure 6.9a, and a Neo-Hookean material model, as demonstrated in Figure 6.9b. The

black line within the subfigures corresponds to the contour line of the filtered design presented in

Figure 6.7, offering insights into how pressure load varies within the designs depicted in Figure 6.3 and

Figure 6.4. It can be observed from Figure 6.9, Figure 6.3, and Figure 6.4 that the pressure load drops at

the boundary where the design variables are approximately 0.6 or higher. This observation aligns with

the findings presented in Subsection B.5.
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(a) The linear model (b) The Neo-Hookean model

Figure 6.9: The pressure field of the obtained result of the linear (a) and Neo-Hookean (b) model of an PA inverter under an input

pressure load of 1 × 10
7

Pa

6.1.1. The deformation-independent load analysis
In this case, the displacements obtained from the deformation-independent load analysis are larger for

the design obtained from the analysis of the Neo-Hookean model, especially under input pressure loads

higher than 1 × 10
6

Pa, compared to the linear model. Moreover, the difference between the expected

displacements obtained from the Neo-Hookean model and the displacements from the analysis is

smaller than the linear material model. This suggests that the Neo-Hookean model offers a more reliable

prediction of displacements, particularly under high input pressure loads.

To visually illustrate these findings, Figure 6.10 presents the displacements obtained from the

deformation-independent load analysis and the expected displacements obtained from both the

linear and Neo-Hookean model under various values of the applied load. It is evident from this figure

that up to an input pressure load of 1 × 10
6
Pa, the displacements obtained from the deformation-

independent load analysis for the linear and Neo-Hookean models are similar. However, at higher

pressure loads, the Neo-Hookean model exhibits larger displacements. Specifically, for an input pressure

load of 5 × 10
6

Pa, the displacement obtained from the Neo-Hookean model analysis is 20% larger than

that of the linear model and for an input pressure load of 1 × 10
7

Pa, this difference increases to 30%.

Figure 6.10: The displacements obtained from the

deformation-independent load analysis and the expected

displacements from the linear and Neo-Hookean model

under different input pressure loads values for a PA inverter.

Figure 6.11: The difference between the displacements

obtained from the deformation-independent load analysis of

the linear (red) and a Neo-Hookean (grey) model under an

input pressure load is 1 × 10
7
Pa.

In Figure 6.11, the deformed designs resulting from an input pressure load of 1 × 10
7

Pa are depicted

for both the linear (red) and Neo-Hookean (grey) models. It becomes clear that the deformation for

the analysis of the Neo-Hookean model is larger than the linear model for this specific input pressure

load. This figure aims to provide an intuition of the displacement expected in the mechanism under

this pressure load and the magnitude of the obtained displacements.
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Surprisingly, the displacements obtained from the deformation-independent load analysis of the linear

model exhibit a better alignment than expected with those derived from the Neo-Hookean model.

However, a substantial difference emerges between the expected displacement from the linear model

and the actual displacement obtained in the deformation-independent load analysis. This difference

is illustrated in Figure 6.10, where the red circle represents the expected displacement of the linear

model, and the red square represents the displacement obtained from the deformation-independent

load analysis under a specific input pressure load. As the input pressure load increases, the gap widens

between the red square and circle, indicating that the predictive accuracy of the linear model decreases

with a higher input pressure load.

In contrast, the difference between the expected displacement of the Neo-Hookean model (depicted

by the blue circle) and the displacement observed in the deformation-independent load analysis

(represented by the blue square) shows better behaviour. While the gap between the blue circle and

square does increase with higher loads, it is noteworthy that the Neo-Hookean model demonstrates a

more gradual change. In contrast to the linear model, the Neo-Hookean model exhibits a significantly

smaller change in the gap, suggesting that it maintains its predictive accuracy better as the input pressure

load increases. This highlights its enhanced performance in predicting displacements compared to the

linear model.

6.1.2. The follower force analysis
In the follower force analysis, the pressure load is directly applied to the relevant boundary of the

filtered design obtained from the TO. Within COMSOL, an applied pressure load becomes deformation-

dependent when integrating a Neo-Hookean material model in solid mechanics. This is in contrast to the

deformation-independent load analysis, where applied pressure loads are considered independent of

the deformation. The findings indicate that adding such a pressure load does not significantly influence

the obtained displacements. Moreover, incorporating the Neo-Hookean model has a considerably more

significant impact than the follower pressure load. These conclusions hold for the specific case with the

chosen parameters.

To illustrate, Figure 6.12 presents a comparison between the displacements obtained from the follower

force analysis and the deformation-independent load analysis of both the linear and Neo-Hookean

models. It can be observed from this figure that the displacements obtained from the deformation-

independent load analysis are slightly larger compared to the displacements obtained from the follower

force analysis for both the linear and Neo-Hookean models.

Figure 6.12: The displacements obtained from the follower force analysis and the deformation-independent load analysis of the

linear and Neo-Hookean model under different input pressure load values for a PA inverter.
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6.2. Pressure-actuated compliant gripper
The results of the TO of a PA compliant gripper are presented in this section, and the schematic

visualisation is illustrated in Figure 6.13. This figure shows the symmetric half of the design domain

and its boundary conditions. The Young’s modulus for the solid and void regions are similar to Section

6.1. Notably, each set of results is derived from one hundred iterations using GCMMA, indicating that

the TO has likely reached convergence. The objective function is the minimisation of the ratio of Δ to

total strain energy. Here, Δ represents the displacement in the y-direction, as shown in Figure 6.13.

The results of a PA compliant gripper under input pressure loads of 1×10
6

Pa and 1×10
7

Pa are depicted

in two figures. Figure 6.3 illustrates the outcomes based on the linear model, while Figure 6.4 presents

the results from the Neo-Hookean model. These figures visually represent the material distribution in

the gripper obtained through the TO.

Figure 6.13: The schematic visualisation and the corresponding boundary condition of a PA compliant gripper.

(a) Input pressure load of 1 × 10
6

Pa

(b) Input pressure load of 1 × 10
7

Pa

Figure 6.14: The material distribution obtained from the

linear model of a PA compliant gripper under two different

input pressure load values.

(a) Input pressure load of 1 × 10
6

Pa

(b) Input pressure load of 1 × 10
7

Pa

Figure 6.15: The material distribution obtained from the

Neo-Hookean model of a PA compliant gripper under two

different input pressure load values.
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For the Neo-Hookean model of a PA compliant gripper, the allowable input pressure load is 1 × 10
7

Pa; convergence cannot be achieved beyond this threshold. As illustrated in Figure 6.5, a similar error

occurs, and its cause is explained in Section 6.1.

A comparable behaviour is observed in comparison to the PA inverter. Input pressure loads equal to or

below 1 × 10
6

Pa induce small deformations, leading to outcomes similar to those of the linear model,

as depicted in Figure 6.14a and Figure 6.15a. However, for input pressure loads higher than 1 × 10
6

Pa, the design changes due to the occurrence of large displacements, as shown in Figure 6.15b. The

comparison between the linear and Neo-Hookean models is highlighted in Figure 6.16 at a maximum

input pressure load of 1 × 10
7

Pa. Figure 6.17 illustrates the working principle of the design obtained

from the Neo-Hookean model under an applied pressure load of 1 × 10
6

Pa of PA compliant gripper.

Figure 6.16: The difference between the obtained designs of

the linear (red) and Neo-Hookean (grey) models of a PA

compliant gripper under an input pressure load of 1 × 10
7

Pa.

Figure 6.17: The deformed design obtained from the linear

model under an applied pressure load of 1× 10
6

Pa to validate

the working principle of a PA compliant gripper. The

displacement is scaled by a factor of 5.

In Figure 6.18, the correct implementation of the Darcy method is demonstrated; however, pressure

leakage occurs in the bottom-right corner (the light red area) of the subfigures. The figure illustrates

the pressure field for results obtained from both the linear model, as shown in Figure 6.18a, and a

Neo-Hookean material model, as demonstrated in Figure 6.18b.

The black line within Figure 6.9 corresponds to the contour line of the filtered design presented in

Figure 6.16, offering insights into how pressure load varies within the designs depicted in Figure 6.14

and Figure 6.15. Observations from Figure 6.18, Figure 6.14, and Figure 6.15 reveal that the pressure

load drops at the boundary where the design variables are around 0.6 and higher, consistent with the

findings of Subsection B.5.

However, a pressure leakage is observed at the bottom where the design variables have a value of 0.5.

The slow pressure drop, associated with the design variable at 0.5, eventually leads to leakage. An

interesting observation is made in Figure 6.19, where two spots circled in black have similar values for

the design variables. Surprisingly, pressure leakage occurs only at the lower circle and not at the top

circle, deviating from the expected behaviour.

The drainage term, expressed in Equation 3.3, regulates the prevention of pressure penetration into

the material. A parameter study was conducted to explore the impact of 𝜂ℎ and 𝛽ℎ , the parameters

of the drainage equation. Unfortunately, altering these values did not resolve the leakage problem.

Additionally, the number of iterations was increased from 100 to 400, resulting in similar results as

observed in Figure 6.18.

Furthermore, the mesh was refined into smaller elements, as illustrated in Figure 6.20. This figure shows

a slight improvement in pressure leakage with the decreasing mesh size but does not completely resolve

the issue. However, the computational time increased from around 15 to approximately 70 minutes.

The investigation to find a solution for the pressure leakage is left to the recommendations.
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(a) The the linear model (b) The Neo-Hookean model

Figure 6.18: The pressure field of the result of the linear (a) and a Neo-Hookean (b) model of a PA compliant gripper under an

applied force of 1 × 10
7

Pa

Figure 6.19: The material distribution obtained from a Neo-Hookean model of a PA compliant gripper under an input pressure

load of 1 × 10
7
Pa with two areas circled. These circled areas illustrate areas with similar values for the design variables.

(a) The material distribution (b) The pressure field

Figure 6.20: (a) The material distribution of the linear model of PA compliant gripper under an input pressure load of 1 × 10
7

Pa

with a mesh containing a maximum element size of 0.002 m. (b) The corresponding pressure field.

6.2.1. The deformation-independent load analysis
Incorporating the Neo-Hookean material model in the solid mechanics of the TO results in larger

displacements in the deformation-independent load analysis for the given parameters. Despite pressure

leakage, this leads to a more optimised objective function. This behaviour implies that the influence

of pressure leakage is negligible in this case. Additionally, the Neo-Hookean model provides reliable

predictions of displacements, particularly under high input pressure loads, compared to the linear

model.

These findings are visualised in Figure 6.21, illustrating displacements obtained from the deformation-

independent load analysis and the expected displacements from both the linear and Neo-Hookean

models under various values of the applied load. Similar to Figure 6.10, the displacements obtained from

the deformation-independent load analysis of the linear and Neo-Hookean model are comparable for

input pressure loads equal to or lower than 1 × 10
6

Pa. However, the Neo-Hookean model outperforms

the linear model for higher input pressure loads. Specifically, for an input pressure load of 4 × 10
6

Pa,

the displacement obtained from the Neo-Hookean model analysis is 17% larger than the linear model.

In contrast, for an input pressure load of 1 × 10
7

Pa, this difference increases to 30%.
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In Figure 6.22, the results of the deformation-independent load analysis of the linear (red) and Neo-

Hookean (grey) models of the PA compliant gripper under an input pressure load of 1 × 10
7

Pa are

shown. This visual representation aims to give the reader an intuition of the displacement magnitudes

and highlight the differences between the linear and Neo-Hookean models.

Furthermore, the displacements obtained from the deformation-independent load analysis of the linear

model align better than expected with those from the analysis of the Neo-Hookean model. Nevertheless,

the difference between the displacement obtained from the deformation-independent load analysis of

the linear model (the red square) and the expected displacement of the linear model (the red circle)

increases with the increasing pressure load. This behaviour indicates that, in this case, the linear model

cannot accurately predict displacements for high loads.

What is remarkable is the almost perfect alignment between the displacements obtained from the

deformation-independent load analysis and the expected displacements from the results of the Neo-

Hookean model. Note that there is still a marginal difference between the two displacements. These

findings highlight that, despite the pressure leakage in the design, the Neo-Hookean model accurately

predicts displacements, suggesting the influence of pressure leakage is minimal.

Figure 6.21: The displacements obtained from the

deformation-independent load analysis and the expected

displacements from the linear and Neo-Hookean model of a

PA compliant gripper under different input pressure load

values.

Figure 6.22: The difference between the displacements

obtained from the deformation-independent load analysis of

the linear (red) and a Neo-Hookean (grey) model under an

input pressure load is 1 × 10
7
Pa.

6.2.2. The follower force analysis
In this scenario, applying a pressure load which is dependent on the deformation does not significantly

alter the obtained displacements with the specified parameters. In contrast, integrating the Neo-

Hookean material model has a more significantly effect on the objective function. This conclusion

aligns with the findings presented in Subsection 6.1.2 and is evident from Figure 6.23. The figure

illustrates that the displacements from the follower force analysis show slight differences compared to

the deformation-independent load analysis of the linear and Neo-Hookean models.

6.3. A member of the pneumatic networks
This section presents the design of a member of the PneuNets, which is an extension of the work of

Kumar (2023). A PneuNets is a soft actuator consisting of a series of chambers that achieve motion

through pressurised fluid flows (Liu et al. 2020). An illustrative example of a PneuNets member is

shown in Figure 1.1 of the introduction, where pressurised fluid flows through the chambers, enabling

tasks such as picking up an egg.

The investigation into PneuNets is motivated by the pressure load they exhibit, differing from traditional

PA inverters and compliant grippers. Unlike the latter, where pressure load is typically applied from

the outside, a member of the PneuNets experiences an internal pressure load. This section aims to

understand how PACMs respond to internal pressure loads in conjunction with geometric nonlinearities

and a Neo-Hookean material model, providing deeper insights into the design of PA soft robots.
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Figure 6.23: The displacements obtained from the follower force analysis and the deformation-independent load analysis of the

linear and Neo-Hookean model under different input pressure load values for a PA compliant gripper.

The schematic visualisation of a PneuNets member is provided in Figure 6.24. The Young’s modulus for

solid regions 𝐸1 equals 100 × 10
6
N/m

2

, while the Young’s modulus for void regions 𝐸0 equals 𝐸1 × 10
−6

.

In this model, parameters 𝜂𝑘 and 𝜂ℎ are set to 0.2 and 0.3, respectively. The optimisation process involves

fifty iterations using GCMMA, suggesting that the TO has likely reached convergence. The objective

function aims to minimise the ratio of Δ to the total strain energy, where Δ represents the displacement

in the y-direction, as illustrated in Figure 6.24.

Figure 6.24: The schematic visualisation of a member of a PneuNets

From this study, it can be concluded that modelling a PneuNets member with the Neo-Hookean model

in COMSOL is feasible. However, limitations restricting the maximum input pressure load have resulted

in small deformations, preventing conclusions regarding the influence of the Neo-Hookean model.

Figure 6.25a and Figure 6.25b illustrate the material distribution and pressure field obtained from

the Neo-Hookean model under an input pressure load of 1 × 10
5

Pa. The latter figure validates the

correct implementation of the Darcy method and confirms the absence of pressure leakage. An input

pressure load of 1 × 10
5

Pa is the maximum input pressure load achievable for this case. The black line

in Figure 6.25b corresponds to the contour line of the filtered design shown in Figure 6.26a. This line

serves the same purpose and draws the same conclusion as discussed in Section 6.1 and Section 6.2.



6.3. A member of the pneumatic networks 46

The difference between the designs obtained from the linear and Neo-Hookean models is subtle and

insignificant; therefore, the results obtained from the linear model are omitted. The marginal difference

can be attributed to the low input pressure load, resulting in small displacements. As discussed in

Section 6.1, the linear model is accurate enough to design and describe the behaviour of the PneuNets

member for this specific input pressure load.

The limitation of the low maximum input pressure load arises from the excessive deformation observed

in the analysis of the initial iterations of the TO, leading to the error depicted in Figure 6.5. A detailed

explanation of this behaviour is provided in the discussion (Chapter 7).

Lastly, Figure 6.26a illustrates the working principle of a component obtained from the Neo-Hookean

model under an input pressure load of 1 × 10
5

Pa of a member of the Pneunets system. The figure

reveals that the system undergoes relatively large deformation to achieve minimal displacement in the

y-direction at the bottom-right corner, contrary to expectations. This unexpected behaviour prompted

an investigation to identify its cause. The investigation revealed that the stiffness of the output spring

𝑘𝑠𝑠 was a limiting factor, hindering the desired deformation in that specific direction. In Figure 6.26b,

the displacement of the modified design with 𝑘𝑠𝑠 set to 1 × 10
3

N/m is presented, resulting in the

desired displacement in the y-direction. However, determining the correct value for 𝑘𝑠𝑠 depends on the

application. Such a study is beyond the scope of this thesis, and further investigation is required to

identify the stiffness necessary for the application.

(a) The material distribution (b) The pressure field

Figure 6.25: The material distribution (a) and pressure field (b) obtained from the Neo-Hookean model of a member of the

PneuNets under an input pressure load of 1 × 10
5

Pa

(a) 𝑘𝑠𝑠 = 1 × 10
4

N/m. The displacement is scaled by a factor of 3. (b) 𝑘𝑠𝑠 = 1 × 10
3

N/m. The displacement is scaled by a factor of 3

Figure 6.26: The deformed design obtained from the Neo-Hookean model under an input pressure load of 1 × 10
5

Pa with

different values for 𝑘𝑠𝑠
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6.4. Multi-material pressure-actuated compliant gripper
This section demonstrates the results of the multi-material PA compliant gripper. The schematic

visualisation and its boundary condition are identical to Figure 6.13. However, the modified SIMP

formulation for the two-material case is used in this model and can be expressed as shown in Equation 6.1,

which is obtained from Sigmund and Torquato (1997).

𝐸 = (1 − 𝜌̄
𝑝

𝑖1
) ∗ 𝐸0 + 𝜌̄

𝑝

𝑖1
[(1 − 𝜌̄

𝑝

𝑖2
)𝐸1 + 𝜌̄

𝑝

𝑖2
𝐸2] (6.1)

In this equation, the variable 𝜌̄𝑖1 represents the local density determining whether an element becomes

void (𝜌̄𝑖1 = 0) or solid (𝜌̄𝑖1 = 1). The variable 𝜌̄𝑖2 is the ’mixture coefficient,’ where 𝜌̄𝑖2 = 0 indicates pure

material 1, and 𝜌̄𝑖2 = 1 indicates pure material 2.

Material properties include a Young’s modulus 𝐸1 of 3 × 10
8

N/m
2

for the first material, 𝐸2 of 3 × 10
9

N/m
2

for the second material, and 𝐸0 of 𝐸1×10
−6

N/m
2

for void regions. The TO involved four hundred

iterations using GCMMA, suggesting that the TO has likely reached convergence. The objective function

aims to minimise the ratio of Δ to the total strain energy.

This section excludes the nonlinear model results due to poor performance, discussed in Section 6.1.

Figure 6.27 shows the results obtained from the linear model of a multi-material PA compliant gripper.

Figure 6.27a and Figure 6.27b illustrate the material distribution represented by 𝜌̄𝑖1 and 𝜌̄𝑖2, respectively.

Similarly, Figure 6.28 depicts Neo-Hookean model results, with Figure 6.28a and Figure 6.28b showing

𝜌̄𝑖1 and 𝜌̄𝑖2 values, respectively.

(a) The values for 𝜌̄𝑖1

(b) The values for 𝜌̄𝑖2

Figure 6.27: The obtained values for the design variables 𝜌̄𝑖1
i.e. the material distribution (a) and 𝜌̄𝑖2 (b) for the linear

model of a multi-material PA compliant gripper under an

applied pressure load of 5 × 10
5

Pa.

(a) The values for 𝜌̄𝑖1

(b) The values for 𝜌̄𝑖2

Figure 6.28: The obtained values for the design variables 𝜌̄𝑖1
i.e. the material distribution (a) and 𝜌̄𝑖2 (b) for the

Neo-Hookean model of a multi-material PA compliant

gripper under an applied pressure load of 5 × 10
5

Pa.

The conclusion regarding the multi-material PA compliant gripper aligns with that drawn for the

PneuNets member. Incorporating the Neo-Hookean material model in the solid mechanics of the

TO process in COMSOL is feasible. However, the allowable input pressure load is small, resulting in

relatively moderate deformations. Moreover, the designs obtained between the linear and Neo-Hookean

models exhibit significant differences. The correlation between the expected displacements obtained

from the models and the significant distinctions between the obtained designs is expected to stem from

the low stiffness of the materials with a Young’s modulus 𝐸1.



6.4. Multi-material pressure-actuated compliant gripper 48

The results indicate that the Neo-Hookean model for a multi-material PA compliant gripper reaches its

maximum load at 5 × 10
5

Pa. However, exceeding this limit results in a non-converge error, as depicted

in Figure 6.5. The expected displacements for the linear and Neo-Hookean models are 0.002 m and

0.0023 m, respectively. This 16% difference is noteworthy, particularly when compared to the marginal

difference observed in the (single-material) PA compliant gripper under the same input pressure.

This discrepancy is attributed to the lower stiffness in the solid regions compared to the single-material

PA compliant gripper. In this scenario, the Neo-Hookean material model plays a more crucial role in

accurately describing the behaviour of these softer materials, emphasising its substantial influence on

the results obtained from the topology optimisation.

Figure 6.29: The difference between the obtained designs of

the linear (green) and the hyperelastic (grey) model of a

multi-material PA compliant gripper under an input pressure

load of 5 × 10
5

Pa.

Figure 6.30: The deformed design obtained from the linear

model under an applied pressure load of 5× 10
5

Pa to validate

the working principle of a multi-material PA compliant

gripper. The displacement is not scaled

Pressure fields for the linear and Neo-Hookean models are presented in Figure 6.31a and Figure 6.31b,

respectively. The black lines in Figure 6.31 correspond to contour lines of the filtered designs from

Figure 6.29, serving the same purpose and drawing the same conclusion as discussed in Section 6.1 and

Section 6.2. Similar to the PA compliant gripper, pressure leakages occur; however, for the linear model,

the leakage is significantly larger than for the Neo-Hookean model. This difference can be attributed to

differences in the designs. Additionally, the same investigation on pressure leakage has been conducted

similarly to section 6.2, without success. The investigation to find a solution for the pressure leakage is

left to the recommendations.

(a) The linear model (b) The Neo-Hookean material

Figure 6.31: The pressure field obtained from the linear (a) and Neo-Hookean (b) model of multi-material PA compliant gripper

under an input pressure of 5 × 10
5

Pa
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Discussion

In Chapter 5, the Wang method is extensively discussed, which is tested in various cases by incorporating

this interpolation method. The results presented in Chapter 6 extend and build upon the research

conducted by Kumar, Frouws, et al. (2020), Kumar and Langelaar (2022), Pinskier, Kumar, et al. (2023),

and Kumar (2023). Kumar, Frouws, et al. (2020) focused on the TO of PA structures and PACMs using

the Darcy method. Similarly, Kumar and Langelaar (2022) developed a robust method for the TO of a

PA inverter and PA gripper. Pinskier, Kumar, et al. (2023) investigated the TO of a multi-material PA

compliant gripper, while Kumar (2023) designed a member of the PneuNets using TO. However, these

papers do not account for nonlinearities. In contrast, our thesis extends these works by incorporating

geometric nonlinearities and the Neo-Hookean material model in the solid mechanics of the TO process.

In this chapter, the results and behaviour of both methods are discussed and put in perspective.

The Wang method
In our numerical experiments with our chosen parameters, we found that the Wang method effectively

broadens the range of the maximum allowable applied load during the TO of a cantilever beam in

COMSOL. However, this outcome is not replicated in the TO of CMs. These findings align with the

conclusions drawn by Wang, Lazarov, Sigmund, and Jensen (2014), which primarily focused on the TO

of solid structures. Unfortunately, their study does not provide any conclusive insights into the impact

of the Wang method on the TO of CMs. Consequently, direct comparisons between our observations

and their findings regarding the TO of CMs are limited.

Nevertheless, despite this alignment, differences exist between the results obtained from the TO of a

cantilever beam in our study and those reported in the referenced paper. Specifically, incorporating

a Neo-Hookean material model in our experiments limits the maximum applied load to 150 kN,

whereas the Wang method permits a higher load of 250 kN. In contrast, the cited paper indicates that

incorporating a Neo-Hookean material model limits the maximum applied load to 240 kN, while the

Wang method allows for a higher load of 500 kN. We further investigated the root of these differences.

The difference between the results obtained in this thesis and the referenced paper can be partly

explained by the absence of a density filter and projection on the design variables, along with a constant

𝛽1 and penalisation factor 𝑝. Note that 𝛽1 represents the steepness of the Heaviside function in the

interpolation factor, signifying the transition between linear and nonlinear theory.

A problem occurs when incorporating the Helmholtz density filter with the Wang method in COMSOL.

Attempts to combine this filter with the Wang method caused the optimiser to stall and subsequently

stop. However, the model produced feasible results without the Helmholtz density filter. Furthermore,

implementing a projection on the design variables led to a significant increase in computational time

than the absence of the projection. As a result, the decision was made not to incorporate the projection

on the design variables. The absence of the density filter and projection on the design variables contrasts

with the model in the reference paper, where a linear density filter and projection were incorporated.

49
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Moreover, in contrast to the model in the referenced paper, where 𝛽1 and the penalisation factor 𝑝
change throughout the iterations, in COMSOL, this is infeasible since implementing it is impossible.

Consequently, 𝛽1 and 𝑝 remain constant throughout our model. While there are differences between

our model and the referenced paper, these variations are not expected to solely account for the lower

maximum applied loads observed in our results. The source of the remaining difference is still uncertain.

Additionally, the Wang method did not increase the maximum allowable applied load during the TO of

an inverter. To investigate whether the Wang method was case-dependent, it was applied to various

scenarios, including the TO of a compliant gripper, PA inverter, PA-compliant gripper, and PA member

of the PneuNets. This examination aimed to observe its influence in different scenarios. Surprisingly, no

improvement in the maximum applied load was observed with the Wang method in any of these cases,

and the exact reason for this observation remains unknown.

It is peculiar that the Wang method effectively increased the maximum allowable input load for a

structure while it showed ineffectiveness for CMs. The distinction between structures and CMs lies in the

objective function. However, it is expected that this difference is not the cause for the ineffectiveness of

the Wang method in our numerical experiments with CMs. This behaviour requires further investigation

to identify the source. Future investigations may delve into integrating the Wang method with CMs,

potentially expanding the range of applied loads. An effective Wang method could allow for the TO of

CMs and PACMs under high-pressure loads.

The nonlinear topology optimisation of pressure-actuated compliant mechanisms
The findings of Chapter 6 show that implementing a Neo-Hookean material model in the solid mechanics

of the TO process resulted in better values for the objective function compared to the linear elastic

material model. These findings align with the expectations and confirm the findings of the paper of

Kumar and Langelaar (2022). They performed an analysis incorporating geometric nonlinearities, a

Neo-Hookean material model and follower force on the obtained design from the linear TO. They stated

that it is crucial to incorporate the full nonlinear solid mechanics.

To explore the impact of applied pressure loads on the designs of the PA inverter and the PA compliant

gripper, we examined the results obtained from the linear and Neo-Hookean models1. As expected,

the displacements obtained from the deformation-independent load analyses exhibit similarities at

low-pressure loads and start diverging as a higher-pressure load is applied. This deviation in results

arises from the superior accuracy of the Neo-Hookean model when dealing with large deformations,

especially under high loads.

It is noteworthy that in this study, the degree of deviation between both models remains relatively

moderate. The application of higher pressure loads would have induced more large displacements,

thereby providing a more pronounced illustration of the significant advantages associated with

integrating the Neo-Hookean model as opposed to the linear model.

Another compelling contrast between the models emerges when comparing their expected and actual

displacements obtained via the design-independent load analysis. Significantly smaller differences are

observed in the Neo-Hookean model, underscoring again its enhanced predictive accuracy.

Furthermore, the similarities in displacements observed during both follower load and deformation-

independent analyses across both models underscore the distinctive influence of incorporating the

Neo-Hookean material model in the TO process. This observation implies that incorporating the follower

force does not exert the anticipated substantial influence. Readers may contend that the observed

displacements are not large enough to yield a significant difference. Therefore, as discussed earlier,

higher pressure loads would have induced more large displacements, offering a clearer illustration of

the advantages of integrating a deformation-dependent pressure load.

1The reader should note that referring to the Neo-Hookean model signifies the model with the Neo-Hookean material model

and geometric nonlinearities incorporated into the solid mechanics of the TO process. This also holds for the linear model, where

a linear elastic material model is incorporated into the solid mechanics of the TO process.
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The Neo-Hookean model in COMSOL presents notable challenges, particularly when subjected to

high-pressure loads during the TO process. Difficulties arise beyond a specific pressure load threshold,

leading to excessive displacements and, consequently, a failed analysis. This limitation on input pressure

loads is attributed to the inherently low Young’s modulus resulting from the initial values of the design

variables during the initial TO iterations. The consequence of this low Young’s modulus is the excessive

deformation of the mechanism under high-pressure loads, introducing complexities that, at this point,

remain unspecified.

Figure 7.1 illustrates an example of excessive displacements during the TO of a member of the PneuNets

under an input pressure load of 5 × 10
5

Pa. Normally, displacements are large in the first iterations

and gradually reduce as more material is added, as illustrated in Figure 7.2. However, when the

displacements become excessive, their reduction becomes challenging, leading to the failure of the

analysis.

Figure 7.1: The displacement of the

analysis before the first TO iteration of the

Neo-Hookean model for a member of the

Pneunets under a pressure load of 5 × 10
5

Pa

(a) The displacement of the first TO iteration (b) The displacement of the seventh TO iteration

Figure 7.2: The displacement of the analysis for the first (a) and seventh (b) TO

iteration of the Neo-Hookean model for a member of the PneuNets under a pressure

load equal to 1 × 10
5

Pa.

Changing the initial values assigned to the design variables does not resolve the issue. The values of the

design variable in the first TO iterations converge to a value close to the volume fraction for all elements.

Upon reaching this value, the design process of the CM is initiated. However, extensive displacements

are already obtained before this design process can start, and the analysis will fail.

Constraints within COMSOL impose several limitations on the results, particularly in applying high-

pressure loads to the designs. One notable constraint is the absence of force continuation throughout

all TO iterations. Force continuation should be distinguished from load ramping, where the load is

incrementally increased, to find a solution for the nonlinear solver.

Excessive deformation can be prevented by implementing force continuation over the entire TO iteration,

which can potentially extend the range of maximum applied pressure loads. In the initial TO iterations,

structures experience relatively low-pressure loads. This phase allows the optimiser to establish a

material distribution with 0/1 values for the design variables. Subsequently, when the complete load is

applied, the design showcases improved resistance to high loads due to the already evolved material

distribution. Additionally, these continuations have been employed in existing literature, as seen in

Wang, Lazarov, Sigmund, and Jensen (2014) and Kumar, Frouws, et al. (2020). Therefore, implementing

them addresses the limitations and makes it easier to compare with existing research.



8
Conclusions and recommendations

Thesis aim and research questions
This thesis aims to resolve the discrepancy observed when employing a linear model for designing PA

soft robots by introducing methods to account for nonlinearities. The linear models lack accuracy in

representing the behaviour of PA soft robots due to large deformations, low-stiffness materials, and

deformation-dependent pressure loads. When describing the behaviour of PA soft robots using a linear

model, the results may differ from the actual behaviour. Minimising this difference effectively reduces

the identified gap between model results and empirical behaviour.

Geometric nonlinearities and a Neo-Hookean material model are incorporated to reduce this gap. In

this thesis, three research questions are formulated: 1) To what extent can geometric nonlinearities and

a hyperelastic material model be incorporated into the solid mechanics of the topology optimisation

process for design-dependent pressure-actuated soft robots in COMSOL? 2) How does integrating

geometric nonlinearities and a hyperelastic material model influence the design and behaviour of

design-dependent pressure-actuated soft robots in COMSOL? 3) What techniques can be employed

to improve the range of maximum applied pressure load for the topology optimisation for design-

dependent pressure-actuated soft robots, incorporating geometric nonlinearities and a hyperelastic

material model in the solid mechanics?

Conclusions
1) This study concludes that the combination of the Darcy method with geometric nonlinearities and

the Neo-Hookean material model has been successfully implemented, as demonstrated with the PA

inverter and PA compliant gripper. The PA PneuNets member and multi-material PA compliant gripper

also successfully implemented geometric nonlinearities and a Neo-Hookean material model; however,

these cases are limited to low-input pressure loads. Nevertheless, there are limitations on the range of

the maximum allowable pressure load that can be applied. These limitations arise from the excessive

displacements obtained in the initial TO iterations, leading to a failed analysis. The maximum applied

pressure load for the PA inverter is 1 × 10
7

Pa, similar to the PA compliant gripper. For the PA Member

of the PneuNets, this pressure load is 1 × 10
5

Pa, while for the multi-material PA compliant gripper, it is

5 × 10
5

Pa.

2) The designs obtained from the Neo-Hookean model of the PA inverter and the PA compliant gripper

exhibit significant differences under high-pressure loads. Under low-pressure loads, the designs are

similar to those from the linear model. Due to pressure load limitations for the PneuNets member, the

design obtained from the Neo-Hookean model shows insignificant differences compared to the design

obtained from the linear model. In contrast, the multi-material PA compliant gripper, subjected to

low-pressure loads, exhibits a significant difference between the designs obtained from the Neo-Hookean

and linear models.

Additionally, the Neo-Hookean model yields a better objective function than the linear model, especially

under high-pressure loads for the PA inverter and PA compliant gripper. Due to the significant pressure

load limitations for the PA member of the PneuNets and the multi-material PA compliant gripper, no

definitive conclusions can be drawn for these two cases.
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3) The Wang method, introduced in the paper of Wang, Lazarov, Sigmund, and Jensen (2014), proves

ineffective in increasing the maximum allowable pressure load when combined with the TO of a CM for

the specific case with the chosen parameters in COMSOL. The initial aim of implementing the Wang

method was to extend the maximum applied load, allowing for larger displacements, as the Wang

method addresses the distortion of the void elements. Combining the Wang method with the TO of

structures results in a higher maximum applied load. However, this increased load is not observed

when implementing the Wang method with the TO of a CM.

Recommendations
Building upon the advancements in this study, several possibilities present themselves for future work

for further optimisation of PA soft robots. These recommendations are discussed here.

The first recommendation involves introducing a Helmholtz filter and a projection on the design

variables. In the considered COMSOL environment, the Wang method is found effective for increasing

the maximum allowable load exclusively for the TO of structures without a Helmholtz density filter

and a projection. However, their implementation poses significant challenges, resulting in warnings

that cause the analysis to stall and eventually stop. The challenges encountered during implementation

suggest a potential connection to the diverging behaviour of the Newton-Raphson method, indicated by

warnings urging a reduction in the step size. While the cause of these problems remains unknown, a

thorough investigation is recommended to identify a solution.

As a solution, a segregated approach was employed instead of a fully coupled approach to investigate

the impact, but no improvements were observed. Additionally, different nonlinear solvers, specifically

the Quasi-Newton Raphson and Double Dogleg methods, were employed, yet this also did not lead to

improvements. Although fine-tuning the Double-Dogleg solver holds the potential for better results, this

remains a recommendation for future exploration. In parallel, as an alternative solution, the potential

utilisation of a Helmholtz filter as a PDE in COMSOL was considered. However, this approach proved

infeasible due to required changes in the interface of the TO module. Consequently, further investigation

is crucial for addressing the challenges that result in a stalling analysis and for enabling the integration

of a Helmholtz filter and a projection into the method, thereby enhancing the efficacy of the Wang

method.

Despite the absence of the Helmholtz filter and the projection on the design variables, implementing

the Wang method is still recommended for designing structures under high applied loads using TO. It

significantly increases the range of applied pressure loads for structures. While its effectiveness for CMs

is currently limited, the anticipated enhancement in the applied pressure load range is hindered by the

diverging behaviour of the Newton-Raphson method. Further research is recommended to address this

limitation and enable the compatibility of the Wang method with the TO of CMs, potentially unlocking

a broader range of applied pressure loads.

The second recommendation involves the implementation of the deformation-dependent pressure loads

(follower forces) and boundary nonlinearities in the solid mechanics of the TO process for PACMs.

While minor differences exist between the displacements obtained in the deformation-independent

load and follower force analyses, the incorporation of a deformation-dependent pressure load in the

solid mechanics of the TO process is anticipated to yield significant differences, particularly under

high-pressure loads. Therefore, accounting for these nonlinearities in the TO formulation is essential, as

emphasised by Kumar and Langelaar (2022). It is recommended to start incorporating the follower force,

given its universal importance, while boundary nonlinearities play a crucial role in specific cases. It is

noteworthy that in COMSOL, the pressure loads that arise with nonlinearities are treated as follower

forces; however, these pressure loads are not design-dependent during the TO. Therefore, it is imperative

to investigate and find a solution to incorporate design-dependent deformation-dependent pressure

loads during the TO.



54

The third recommendation involves addressing the challenge of excessive displacements during the

initial TO iterations under high-pressure loads. Two approaches could be considered to tackle this issue.

The first approach involves the implementation of continuation. Currently, COMSOL does not support

the implementation of continuation over the iterations, imposing limitations on numerical experiments.

As an alternative, the COMSOL-MATLAB LiveLink offers a solution where continuation is feasible.

Within this LiveLink, the TO is executed in MATLAB, while solid mechanics and sensitivities are

computed in COMSOL. Additionally, this LiveLink allows the combination of the Wang method with

a linear density filter. It is important to note that users need a solid understanding of the MMA

solver in MATLAB and the link between COMSOL and MATLAB. Despite the drawback of increased

computational time for obtaining results, this approach is an alternative.

For future research, exploring this possibility could potentially resolve the excessive displacement

observed in the initial TO iterations, allowing for larger input pressure loads. If successful, users are

encouraged to use the COMSOL-MATLAB LiveLink.

The second approach involves assigning initial values to the design variables with an increased

prevalence of 0/1 values. The application of this approach is visualised in Figure 8.1, where Figure 8.1a

displays the original initial values for the design variables used in the TO of a PA compliant gripper, and

Figure 8.1b presents the alternative initial values. Although this method was tested in COMSOL, the

optimiser encountered stalling issues, resulting in a diverging error. Further research on this approach

is necessary to resolve these problems and investigate whether it can effectively prevent excessive

deformation in the initial TO iterations.

(a) The original initial values (b) The alternative initial values

Figure 8.1: (a) the original initial values and (b) the alternative initial values for the design variables of the TO of a PA compliant

gripper.

The fourth recommendation involves the exploration of alternative solid mechanics formulations in

COMSOL. While the default method is the total Lagrangian formulation, the literature suggests that

Eulerian and ALE formulations are more suitable when dealing with large displacements, as they

exhibit better capabilities in handling mesh distortions. This can potentially lead to an increase in the

maximum allowable pressure load during the TO of PACMs. Hence, it is advisable to delve into the

implementation of both Eulerian and ALE formulations to assess their effectiveness and impact on the

TO of PACMs.

The recommendation is to begin by investigating the Eulerian formulation, which is anticipated to be

less complex than ALE formulations. This stepwise approach allows for a systematic evaluation of the

benefits and complexities of each formulation, aiding in selecting the most appropriate method for

addressing large deformation in the TO of PACMs.

The fifth recommendation involves considering COMSOL. It is especially recommended for readers

unfamiliar with the topic due to its user-friendly interface, requiring only basic knowledge. COMSOL

makes it easy to incorporate complex solid mechanics and physics, allowing for the straightforward

implementation of geometric nonlinearities and a Neo-Hookean material model in all cases. Despite the

potential limitation of a low maximum applied pressure load in certain scenarios, readers can still easily

gain an intuition about the obtained designs.
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An alternative program is suggested for more advanced readers familiar with the topic, given that

COMSOL has limitations not present in programs like MATLAB. However, the drawback of using

programs like MATLAB is their reliance on the skills and knowledge of the user.

Lastly, the sixth recommendation involves validating and extending this research. The results obtained

in this thesis are numerically generated with computational models; therefore, it is essential to validate

these results experimentally. By comparing the numerical experiments with experimental data, we can

assess their accuracy. Furthermore, the models in this thesis are expected to be easily extended to three

dimensions, opening opportunities for broader applications and insights.

In conclusion, this thesis successfully achieved the goals of incorporating geometric nonlinearities and a

Neo-Hookean material model in the solid mechanics of the TO process for the design of PACMS. This

was done in conjunction with the Darcy method for both single- and multi-material problems, paving

the way for the future research discussed in this section.
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A
Topology optimisation process

The TO of mechanisms occurs in predefined steps. These process steps are shown in Figure A.1. First,

the design problem is determined using the FEM, which includes creating the mesh, defining material

properties, and specifying boundary conditions, all under the assumption of homogeneous material

distribution. Then, the iterative part of the process begins with the design parameterisation, where the

design variables are chosen and specified. Then, the Finite Element Analysis (FEA) is conducted, which

computes the resulting displacements, strains, and other parameters. After the FEA, the sensitivity

analysis is performed. Finally, the objective function and constraints are calculated. If the difference is

marginal compared to the last iteration, the mechanism is considered converged, and the iteration stops,

and the TO process is completed (Bendøe et al. 2003). The specific steps of the TO process are explained

in detail in Appendix A.

Initial FEM

Design parameterisation

FEA

Sensitivity analysis

Optimisation

convergence?

Post

processing

STOP

no

Yes

Figure A.1: The topology optimisation process
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These steps are explained in detail in this appendix. The design parameterisation is discussed in Section

A.1. Section A.2 presents the FEA, while Section A.3 explains the sensitivity analysis. Finally, the

optimisation is detailed in Section A.4.

A.1. Design parameterisation
The initial step of the iterative part of the TO process, known as design parameterisation, involves

selecting and representing design variables that control the material distribution within the domain.

Techniques such as filtering and projection are employed to enhance the TO process. Details on filtering

and its advantages are explained in subsection A.1.1, while subsection A.1.2 discusses the projection

method and its benefits.

A.1.1. Filtering
As described in section A.2, TO involves discretising the domain into smaller finite elements. Each

element is assigned a design variable, ranging from 0 (void) to 1 (solid). However, optimising without

filtering can lead to checkerboard patterns in the final design, as illustrated in Figure A.2a (Bourdin

2001).

Filtering is an important step in the TO process to address the checkerboard patterns. Filtering methods

aim to smooth and regularise the material distribution within the mesh, as shown in Figure A.2b

(Bourdin 2001). Various filters exist; however, this subsection focuses on the density and Helmholtz

density filters.

(a) TO of a cantilever beam without filtering. (b) TO of a cantilever beam with (density) filtering.

Figure A.2: Comparison of the designs obtained from the TO of a cantilever beam without (a) and with (b) filtering. These figures

were generated using the 88-line code provided in the paper by Andreassen et al. (2011).

Density filtering
Bourdin (2001) proved the existence of solutions for the density filter method for TO, introduced by

Bruns et al. (2001). This approach creates a smooth transition between different material densities to

avoid sudden changes in material properties. The filter helps to stabilise the optimisation process and

ensures meaningful solutions for the topology design problem can be found. A convolution of the

design densities and a filter function are used to filter, which can be expressed as Equation A.1 (Bourdin

2001).

𝜌̃(x) = (𝐹 ∗ 𝜌)(x) =
∫
B𝑅

𝐹(x − y)𝜌(y)𝑑y (A.1)

𝜌̃ is the filtered density variable, which is the weighted average of the density of each point in the

neighbourhood, where the influence of each point is defined by the filter function 𝐹. 𝐹 determines how

much influence each point in the neighbourhood has on 𝜌̃ at a given position. The convolution ∗ is used

to update the densities of each element based on the influence of neighbouring elements (Bourdin 2001).

B𝑅 is a 2D circle or a 3D sphere around x. It is a requirement that Equation A.2 holds, which ensures

that the filter function does not introduce or remove material during the convolution process (Lazarov

et al. 2010). ∫
B𝑅

𝐹𝑑𝑥 = 1 (A.2)

Equation A.1 can be discretised for the FEA into Equation A.3.

𝜌 𝑗 =

∑
𝑖∈N𝑒 , 𝑗 𝑤(x𝑖)𝑣𝑖𝜌𝑖∑
𝑖∈N𝑒 , 𝑗 𝑤(x𝑖)𝑣𝑖

(A.3)
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This method enforces a high-density value at the edge of the domain, which is desired (Bourdin 2001).

An example of 𝑤(x𝑖) is shown in Equation A.4. Here, (𝑥, 𝑦) represents the coordinates of the fixed

element, while (𝑥𝑖 , 𝑦𝑖) denotes the coordinates of neighbouring elements. The fixed filter radius is

denoted as ’r’ (Bruns et al. 2001).

𝑤(x𝑖) = 𝑚𝑎𝑥(1 − (𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2
𝑟

, 0) (A.4)

Helmholtz density filtering
The filter expressed in Equation A.1 can be reformulated as a Helmholtz PDE, as demonstrated by

Equation A.5. The associated homogeneous Neumann boundary condition is presented in Equation A.6.

This boundary condition is equivalent to Equation A.2 and ensures that the filter function does not

introduce or remove material during the filtering process (Lazarov et al. 2010).

−𝑟2∇2𝜌̃ + 𝜌̃ = 𝜌 (A.5)

𝜕𝜌̃

𝜕n
= 0 (A.6)

When the length scale is poorly defined, especially in complex structures, traditional discretisation

filtering methods can encounter challenges, such as mesh-dependent results. The Helmholtz PDE can

be applied as a density filter, which can handle problems without a precise length scale (Lazarov et al.

2010). It is worth noting that Equation A.1 can be written into Equation A.5, where the density function

is Green’s function. Furthermore, COMSOL uses the Helmholtz filter by default.

A.1.2. Non-linear Projection techniques
A drawback of the filtering approach is the fading effect at the boundaries of the models. This effect

causes a gradual transition from solid to void, resulting in unwanted intermediate values that can lead

to instabilities (Guest et al. 2004). Furthermore, the filtered solutions may be meaningless, especially for

complex objective functions such as CMs. Non-linear projection methods are introduced to transform

the filtered design variables into distinct void/solid regions (Wang, Lazarov, and Sigmund 2011).

The threshold projection, given by Equation A.7, is a combination of the projection methods introduced

by Guest et al. (2004) and Sigmund (2007). In this equation, 𝜂 represents the threshold determining

the location of the transition between density values, and 𝛽 determines the steepness of the transition

between solid and void. Furthermore, a 𝜂 value close to 0.5 shows smooth convergence (Wang, Lazarov,

and Sigmund 2011). It should be noted that 𝜌̄𝑖 ≈ 0, when 𝜌̃ is smaller than 𝜂 and 𝛽 is large enough and

𝜌̄𝑖 ≈ 1, when 𝜌̃ is larger than 𝜂 and 𝛽 is large enough.

𝜌̄𝑖 =
𝑡𝑎𝑛ℎ(𝛽𝜂) + 𝑡𝑎𝑛ℎ(𝛽(𝜌̃ − 𝜂))
𝑡𝑎𝑛ℎ(𝛽𝜂) + 𝑡𝑎𝑛ℎ(𝛽(1 − 𝜂)) (A.7)

A.2. Finite element analysis
Finding the analytical solution of a model can be extremely challenging when the model becomes very

complex. Model complexity often arises when it includes complex geometries, nonlinear behaviour,

or highly coupled equations. The FEM is a numerical technique used to approximate field variables

in partial differential equations (PDEs) and integrals in a wide range of engineering applications. An

example of a field variable is the displacement field in solid mechanics. In the FEM, the fundamental

concept entails subdividing the model into discrete finite elements characterised by simple geometries,

as shown in Figure A.3. It is important to note that these elements are non-overlapping and connected

by nodes, represented as yellow dots in Figure A.3. In FEM, the field variables of the elements can be

calculated using the nodal field variables, which are the DOFs of the element. The overall solution

for the field variables of the model can be calculated by interpolating the nodal field variable of each

element. The arrangement of all the elements in the body is called the mesh (Cook et al. 2002).
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Figure A.3: The main concept of FEM

The FEA consists of several steps, partly visualised in Figure A.6.

1. Step 1: Discretising the model

The first step is to discretise the model, subdividing it into elements, as shown in Figure A.3 and

Figure A.6a.

2. Step 2: Selecting the shape functions

The second step involves the selection of an appropriate shape function, denoted as N, which

determines the field variable within the element as a function of the field variables at each

node within that element. N maps the deformation of the real domain (𝑥, 𝑦) into a standard

element (𝜉, 𝜂), as visualised in Figure A.4. The matrix representation of the mapping is provided

in Equation A.8, where x𝑒𝑛 are the nodal coordinates of the physical elements, and x𝑒 is the

coordinates of the standard element. Note that −1 ≤ 𝜉 ≤ 1 and −1 ≤ 𝜂 ≤ 1.

Figure A.4: The mapping from the physical domain (x,y) into the standard element (𝜉, 𝜂)

N(𝜉, 𝜂)x𝑒𝑛(𝑥, 𝑦) =
[
𝑁1 0 𝑁2 0 𝑁3 0 𝑁4 0

0 𝑁1 0 𝑁2 0 𝑁3 0 𝑁4

]


𝑥1

𝑦1

𝑥2

𝑦2

𝑥3

𝑦3

𝑥4

𝑦4


→ x𝑒(𝜉, 𝜂) (A.8)

3. Step 3: Defining the element properties

The third step is to find the element properties. For the typical element shown in Figure A.5,

the displacements 𝑢 and 𝑣 at any point in the element can be calculated using Equation A.9 and

Equation A.10, respectively. Other element properties can be determined similarly.

𝑢 = Σ𝑁𝑖𝑢𝑖 = 𝑁1𝑢1 + 𝑁2𝑢2 + 𝑁3𝑢3 + 𝑁4𝑢4 (A.9)

𝑣 = Σ𝑁𝑖𝑣𝑖 = 𝑁1𝑣1 + 𝑁2𝑣2 + 𝑁3𝑣3 + 𝑁4𝑣4 (A.10)



A.3. Sensitivity analysis 62

Figure A.5: a typical element

4. Step 4: Assembly

In the fourth step, element properties are assembled to determine the global properties of the

model, as depicted in Figure A.6b.

5. Step 5: Solving the system of equations

The fifth step includes applying boundary conditions and solving the system of equations within

the model, as shown in Figure A.6c (Bhavikatti 2004). For details on deriving the interpolation

function and a better understanding of FEA, refer to Cook et al. (2002) and Bhavikatti (2004).

(a) Discretise the model (b) Assembly of the elements (c) Solving the system of equation

Figure A.6: Part of the FEM process is presented: (a) discretisation of the model, (b) Assembly of the elements after calculating

the field variables of each element, (c) Boundary conditions are applied, and the system of equation is solved.

A.3. Sensitivity analysis
It is essential for the Moving Methods of Asymptotes (discussed in section A.4) to determine the

gradients of the objective function and the constraint with respect to the design variables, also called

sensitivities, (Svanberg 1987).

The adjoint method is the most common and efficient technique for calculating the sensitivities in

the context of TO. An augmented function, structured like the Lagrangian ℒ, must be determined to

compute sensitivities. This augmented function depends on the objective function and the constraints.

Calculating the sensitivities for compliance optimisation problem is demonstrated in subsection A.3.1.

Additionally, sensitivity analyses for a CM is presented in subsection A.3.2.

A.3.1. Sensitivity analysis of structures
It demonstrates how the sensitivities are calculated using an example. In Equation A.11 presents a

general formulation for a compliance problem. The meaning, notation and the units for the parameter

used in Equation A.11 are presented in Table A.1. The augmented function (ℒ ) is presented in

Equation A.12, where 𝜆𝑇
1

is the Lagrange multiplier. Subsequently, the sensitivities can be obtained by

taking the derivative of ℒ with respect to 𝝆, as shown in Equation A.13. The choice of 𝜆𝑇
1

is made to

ensure that the ’MultiplierTerm’ vanishes. When ’MultiplierTerm’ equals zero, it results in the vanishing

of
𝜕𝑢
𝜕𝝆 as well.
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Parameter Notation unit

The objective function 𝑓0 -

Design variables vector 𝝆 -

Load vector f N

Material volume 𝑉 m
3

Maximum material volume 𝑉∗ m
3

Table A.1: The meaning, notation and the units for the parameters used in Equation A.11.

The calculation of
𝜕𝑢
𝜕𝝆 is performed through a back substitution process, presented as Ku = f, and this

calculation needs to be carried out for each design variable. The advantage of the adjoint method

is that the back substitutions used in the obtained sensitivities are not dependent on the design

variables, simplifying the sensitivity analysis. The equation for 𝜆𝑇
1

is obtained in Equation A.14, and as

a consequence, the sensitivity is obtained in Equation A.15.

min

𝜌
𝑓0(u, 𝝆) = 𝑢(𝝆)𝑇𝐾(𝝆)𝑢(𝝆)

such that K(𝝆)u(𝝆) = F
𝑉(𝝆)
𝑉∗ − 1 ≤ 0

0 ≤ 𝝆 ≤ 1


(A.11)

ℒ = 𝑓0(𝝆) + 𝜆𝑇
1
(Ku − F) (A.12)

𝑑ℒ
𝑑𝝆

=
𝜕 𝑓0
𝜕𝝆

+ (𝜕 𝑓0
𝜕u

+ 𝜆𝑇
1
𝐾)︸         ︷︷         ︸

MultiplierTerm

𝜕u
𝜕𝝆

+ 𝜆𝑇
1

𝜕K
𝜕𝝆

u (A.13)

𝜆𝑇
1
= −𝜕 𝑓0

𝜕𝑢
𝐾−1

(A.14)

𝑑ℒ
𝑑𝝆

=
𝑑𝑓0

𝑑𝝆
=

𝜕 𝑓0
𝜕𝝆

+ 𝜆𝑇
1

𝜕K
𝜕𝝆

u (A.15)

A.3.2. Sensitivity analysis of compliant mechanism
The multi-criteria formulation for a CM is provided in Equation A.16, while the corresponding sensitivity

analysis is detailed from Equation A.17 to Equation A.21. The augmented function (ℒ) and the derivative

with respect to 𝝆 are given in Equation A.17 and Equation A.18. Where 𝜆𝑇
1

and 𝜆𝑇
2

are the Lagrange

multipliers, which are chosen such that the terms
𝜕u
𝜕𝝆 and

𝜕v
𝜕𝝆 vanishes. They can be expressed as

Equation A.19 and Equation A.20.

min

𝜌
𝑓0(u, 𝝆) = −𝑀𝑆𝐸(u, v, 𝝆)

2𝑆𝐸(u, 𝝆) = −v𝑇Ku
u𝑇Ku

such that K(𝝆)u(𝝆) = F
K(𝝆)v(𝝆) = F𝑑
𝑉(𝝆)
𝑉∗ − 1 ≤ 0

0 ≤ 𝝆 ≤ 1


(A.16)

ℒ = 𝑓0(𝝆) + 𝜆𝑇
1
(Ku − F) + 𝜆𝑇

2
(Kv − F𝑑) (A.17)
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𝑑ℒ
𝑑𝝆

=
𝜕 𝑓0
𝜕𝝆

+ (𝜕 𝑓0
𝜕𝑢

+ 𝜆𝑇
1
K)𝜕𝑢

𝜕𝝆
+ (𝜕 𝑓0

𝜕𝑣
+ 𝜆𝑇

2
K)𝜕𝑣

𝜕𝝆
+ 𝜆𝑇

1

𝜕K
𝜕𝝆

u + 𝜆𝑇
2

𝜕K
𝜕𝝆

v (A.18)

𝜆𝑇
1
= −𝜕 𝑓0

𝜕𝑢
K−1

(A.19)

𝜆𝑇
2
= −𝜕 𝑓0

𝜕𝑣
K−1

(A.20)

Equation A.19 and Equation A.20 can be used to determine the sensitivities as expressed in Equation A.21.

𝑑ℒ
𝑑𝝆

=
𝜕 𝑓0
𝜕𝝆

+ 𝜆𝑇
1

𝜕K
𝜕𝝆

u + 𝜆𝑇
2

𝜕K
𝜕𝝆

v (A.21)

A.4. Optimisation
In the TO, the SIMP and the level set-based methods are the most common approaches to optimise

the material distribution within a design domain to achieve specific performance objectives while

simultaneously considering constraints. This thesis considers the SIMP approach, which initially seems

counterintuitive compared to the level-set method, where boundaries are explicitly defined. Explicit

boundaries can be an advantage, especially in scenarios involving pressure loads. However, the decision

to consider SIMP over the level-set method, even though the latter may seem the more obvious choice,

is based on the practicality of SIMP. SIMP is widely implemented in commercial software such as

COMSOL, whereas the level-set method is not.

In the SIMP method, each element is assigned a specific density 𝜌𝑒 , satisfying the condition 0 ≤ 𝜌𝑒 ≤ 1.

Subsequently, the Young’s modulus for individual element 𝑒 can be computed. Two variants of the

SIMP approach exist: the original SIMP and the modified SIMP. The original SIMP method was initially

introduced by Bendsøe and Sigmund (1999), as demonstrated in Equation A.22. 𝑝 represents the

penalisation parameter, and 𝐸0 represents the Young’s modulus of the solid material. However, this

approach can lead to a singular stiffness matrix (Sigmund and Clausen 2007). Consequently, Sigmund

and Clausen (2007) developed the modified SIMP, as shown in Equation A.23. Here, 𝐸𝑣𝑜𝑖𝑑 represents the

Young’s modulus of the void and serves as the lower bound for the Young’s modulus (0 < 𝐸𝑣𝑜𝑖𝑑 << 𝐸0).

𝐸(𝜌𝑒) = 𝜌
𝑝
𝑒𝐸0 (A.22)

𝐸(𝜌𝑒) = 𝐸𝑣𝑜𝑖𝑑 + 𝜌
𝑝
𝑒 (𝐸0 − 𝐸𝑣𝑜𝑖𝑑) (A.23)

Effective convergence is achieved by setting the penalisation parameter 𝑝 to 3. When 𝑝 is too small, it

generates a large grey scale. Conversely, when 𝑝 is set to a high value, it results in fast convergence to a

potential local minimum, as discussed in more detail by Sigmund and Maute (2013).

As mentioned earlier, the SIMP approach involves assigning specific densities to each element within the

design domain, and these densities are iterative optimised to achieve the optimal material distribution.

Several TO algorithms exist to solve the optimising problem. The MMA is the most common algorithm, a

gradient-based optimisation technique for solving complex engineering and mathematical optimisation

problems. Due to the gradient-based optimisation, it is crucial to determine the sensitivities. It

was developed by Svanberg (1987) and has since gained popularity for its effectiveness. Due to the

effectiveness of the MMA, it will be used in this thesis.

The disadvantage of the normal MMA is that the algorithm does not guarantee convergence, leading

to unwanted results (Zillober 1993). Zillober (1993) develop the so-called global convergent MMA

(GCMMA), which guarantees global convergence. Global convergence refers to the property of an

algorithm to converge to the global minimum of the objective function, regardless of the initial guess or

starting point. GCMMA makes use of a line search, which improves the behaviour of the optimisation.

This method is used by default in COMSOL.



B
The validation of the Darcy method

A case study is conducted to validate the correct implementation of the Darcy method in COMSOL,

involving the analysis of five different scenarios. In COMSOL, various options are available for modelling

the Darcy method. This thesis explores two options: the heat flow module, as demonstrated in the

paper by Pinskier, Kumar, et al. (2023), and a PDE. While the heat flow module is similar to the Darcy

method, it uses temperature instead of pressure. Despite this difference, the underlying mathematical

frameworks are equivalent. It should be noted that when referring to pressure in the context of the Heat

Flow Module, it is, in fact, temperature. In contrast, the PDE straightforwardly implements the Darcy

method.

The description, notation, and values for various parameters utilised in the COMSOL models in this

section are listed in Table B.1. The plane strain assumption is applied, signifying that all z-components

are zero. Furthermore, the model employing the Heat Flow Module is referred to as the HFM model,

while the model utilising the PDE is referred to as the PDE model.

Parameter Notation Value

Width 𝑊 0.2m

Height 𝐻 0.1m

Young’s modulus solid regions 𝐸1 1 × 10
6
N/m

2

Young’s modulus void regions 𝐸0 𝐸1 × 1 × 10
6
N/m

2

Out-of-plane thickness 𝑡 0.002 𝑚
𝐾(𝜌𝑒) step location 𝜂𝑘 0.3

𝐾(𝜌𝑒) slope of the step 𝛽𝑘 10

𝐷(𝜌𝑒) step location 𝜂ℎ 0.2

𝐷(𝜌𝑒) slope of the step 𝛽ℎ 10

Flow coefficient of the void element 𝑘𝑣 1 𝑚4/(𝑁𝑠)
Flow coefficient of the solid element 𝑘𝑠 𝑘𝑣 × 10

−7𝑚4𝑁−1𝑠−1

Ratio input pressure to the pressure at Δ𝑠 𝑟 0.1

The penetration depth Δ𝑠 0.002 𝑚

Table B.1: The description, notation, and value for various parameters used in the models in this section

B.1. Completely solid Beam
The schematic visualisation of the first scenario is presented in Figure B.1. In the HFM model, the

temperature on the ’pressure’ boundary is set at 293.15 K, whereas in the PDE model, a pressure

load of 1 × 10
4

Pa is applied. The beam is completely solid, and the pressure load is applied on the

right side. The remaining edges have a pressure of 0 Pa or a temperature of 0 K. It can be observed

from Figure B.2a and Figure B.3a that an immediate pressure drop on the pressure boundary occurs.

Figure B.12 illustrates the results of the HFM model and Figure B.13 presents the results of the PDE

model. Moreover, Figure B.2b and Figure B.3b result in the body loads as expected.
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However, unlike the PDE model, a notable difference arises in the HFM model, where the body loads

on the bottom and upper edge are not horizontal. The sensitivity of the HFM model to sharp edges, a

limitation not present in the PDE model, can explain the observed difference in body load orientations

on the bottom and upper edges. Nevertheless, the obtained results in Figure B.2 and Figure B.3 validate

that the Darcy method correctly functions for this specific scenario.

Additionally, an investigation is conducted to observe the impact of integrating the Neo-Hookean

material model in the solid mechanics. Incorporating the Neo-Hookean material model exhibits no

influence on the results. This observation aligns with the expectations, as determining the pressure

field and the corresponding body loads are independent of the Neo-Hookean material model.

Figure B.1: The schematic visualisation of the first scenario and its boundary conditions.

(a) The temperature field

(b) The body load with a scaling factor of 2 × 10
−10

Figure B.2: The obtained temperature field (a) and body load

(a) from the analysis of the first scenario of the HFM model.

(a) The pressure field

(b) The body load for 𝛾 = 1.0 with a scaling factor of 9.6 × 10
−11

Figure B.3: The obtained pressure field (a) and body load (b)

from the analysis of the first scenario of the PDE model.

B.2. Beam with solid and void halves
The schematic visualisation of the second scenario is presented in Figure B.4, depicting a beam divided

into solid (dark grey) and void (light grey) halves. Figure B.12 illustrates the results of the HFM model

and Figure B.13 presents the results of the PDE model. The pressure or temperature drop occurs

precisely at the solid-void boundary for both models, aligning with the expectations. Additionally, in

this scenario, the body loads along the bottom and upper edges in the HFM model are non-horizontal,

which is again a consequence of the sharp edges.
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Figure B.4: The schematic visualisation of the second scenario and its boundary conditions.

(a) The temperature field

(b) The body load with a scaling factor of 8 × 10
−10

Figure B.5: The obtained temperature field (a) and body loads

(b) from the analysis of the second scenario of the HFM model.

(a) The pressure field

(b) The body load with a scaling factor of 1.2 × 10
−10

Figure B.6: The obtained pressure field (a) and body loads (a)

from the analysis of the second scenario of the PDE model

B.3. Beam with solid semicircle
The schematic visualisation of the third scenario is presented in Figure B.4, illustrating a solid (dark

grey) semicircle with the remaining part of the beam as void (light grey). The results of the analyses are

depicted in Figure B.8 and Figure B.9. Once again, the pressure drop is immediate at the solid-void

interfaces. However, the HFM model shows a significant increase in body load in the upper- and

bottom-left corners compared to the PDE model.

This behaviour is associated with the presence of a sharp edge. The diameter of the semicircle is reduced

to investigate the influence of this sharp edge on the left corners. Figure B.10 presents the resulting

body load for the smaller semicircle, showing the absence of large body loads in this scenario. This

observation confirms that the significant loads obtained on the left corners in Figure B.8b are attributed

to the presence of sharp edges. Although the large body load is eliminated, the resulting body load

distribution remains non-uniform, a consequence of the non-uniform temperature within the semicircle.

This phenomenon deviates from the anticipated uniformity expected over the pressure boundary and

requires further investigation to elucidate the underlying causes.
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Figure B.7: The schematic visualisation of the third scenario and its boundary conditions.

(a) The temperature field.

(b) The body load with a scaling factor of 3 × 10
−10

Figure B.8: The obtained temperature field (a) and body load

(b) from the analysis of the third scenario of the HFM model.

(a) The pressure field.

(b) The body load with a scaling factor of 1.2 × 10
−10

Figure B.9: The obtained pressure field (a) and body load (b)

from the analysis of the third scenario of the PDE model

Figure B.10: The obtained body load from the analysis of the third scenario with a smaller circle of the HFM model. The scaling

factor is 3 × 10
−10
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B.4. Beam with gradual transition from solid to void
The schematic visualisation of the fourth scenario is presented in Figure B.11, illustrating a gradual

transition from solid on the left edge to void on the right edge. Figure B.12 illustrates the results of the

HFM model and Figure B.13 presents the results of the PDE model. The additional black lines in the

figures serve to illustrate body loads. As depicted in Figure B.13, the pressure gradually decreases with

increased solidity of the beam, consistent with the obtained body loads illustrated in Figure B.13b. The

body loads are located on the right side of the beam, where the pressure is the highest, as expected.

In contrast, within the HFM model, the temperature undergoes a marginal decrease as the material

becomes more solid, resulting in correspondingly insignificant body loads. These body loads are present

on the left side, which is peculiar since they are expected on the right side. The observed small body

loads on the left side can be attributed to their insignificance; given their small values, numerical errors

may contribute to their presence on the left side.

Figure B.11: The schematic visualisation of the fourth scenario and its boundary conditions.

(a) The temperature field.

(b) The body load with a scaling factor of 0.01

Figure B.12: The obtained temperature field (a) and body load

(b) from the analysis of the fourth scenario of the HFM model.

(a) The pressure field.

(b) The body load with a scaling factor of 7.1 × 10
−10

Figure B.13: The obtained pressure field (a) and body load (b)

from the analysis of the fourth scenario of the PDE model
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B.5. Solid beam with intermediate values
The schematic visualisation in the fifth scenario is identical to that of the first case, as shown in Figure B.1.

However, intermediate values are explored by introducing the parameter 𝛾. A solid region corresponds

to 𝛾 = 1, while 𝛾 = 0 corresponds to a void region. The examination involves values for 𝛾 between 0

and 1.

The HFM proves to be sensitive to sharp edges, a limitation not shared by the PDE model. Moreover,

the HFM model yields peculiar results, and its behaviour needs to be better understood. Consequently,

this scenario will exclusively concentrate on the more reliable and robust PDE model.

From Figure B.14, it is evident that the desired results are achieved for 𝛾 > 0.6 for this problem with the

specific parameters, illustrated in Figure B.14d to Figure B.14h. The pressure does not drop as required

for 𝛾 ≤ 0.6, leading to smaller body loads. The slow drop prevents the pressure from reaching the

desired level within the specific constraints of this problem.

The obtained pressure field and body loads aim to provide insight and intuition into the behaviour of

the Darcy method for various intermediate values.
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(a) The pressure field for 𝛾 = 0.4 (b) The body load for 𝛾 = 0.4 with a scaling factor of 5.1 × 10
−6

(c) The pressure field for 𝛾 = 0.6 (d) The body load for 𝛾 = 0.6 with a scaling factor of 1.0 × 10
−7

(e) The pressure field for 𝛾 = 0.8 (f) The body load for 𝛾 = 0.8 with a scaling factor of 2.5 × 10
−9

(g) The pressure field for 𝛾 = 1.0 (h) The body load for 𝛾 = 1.0 with a scaling factor of 9.6 × 10
−11

Figure B.14: The pressure field (left column) and body loads (right columns) from the analysis of the fifth scenario for different

values of 𝛾 of the PDE model under an applied pressure of 1 × 10
4

Pa



C
Intermediate values interpolation

factor for C-beam with Wang method

Intermediate values for the density variables during the TO are inevitable, falling within the range of 0

to 1. Consequently, this results in intermediate values for 𝛾𝑒 . Therefore, examining the impact of these

intermediate values on the C-beam model is crucial. This investigation aims to identify whether any

intermediate value poses challenges, as such challenges could subsequently affect the TO. A parametric

sweep on 𝛾𝑒 is conducted to observe potential numerical instabilities, where 𝛾𝑒 has values from 0 to 1

with increments of 0.01. In this section, the first strain method E𝑊,1

In Figure C.1, the analysis results of the C-beam, incorporating the Wang method with varying values

for 𝛾𝑒 in the void region, are illustrated. In this representation, the solid region maintains 𝛾𝑒 = 1. It is

evident that when 𝛾𝑒 = 1 for the void region, the result is equivalent to a Neo-Hookean model.

In Table C.1, the maximum applied load for each analysis is presented for different values of 𝛾𝑒 . As

𝛾𝑒 increases from 0 to 0.6, forces 𝑓1 and 𝑓2 remain relatively stable. However, a noticeable shift occurs

at 𝛾𝑒 values of 0.8 and 0.9, leading to a significant decrease in 𝑓1 and 𝑓2. This behaviour change can

be attributed to the implementation of the Wang method, specifically designed to address numerical

instabilities arising from void regions in nonlinear theory applications. As 𝛾𝑒 rises, the influence of

the void areas becomes more pronounced, underscoring the significance of these nonlinear effects.

Consequently, this amplified influence increases numerical instabilities, leading to a decrease in the

values of the forces.

In conclusion, the results indicate that intermediate values do not induce numerical instabilities.

Consequently, it is anticipated that the intermediate values of 𝛾𝑒 obtained from the design variables

during the TO process will not give rise to any issues.

𝛾𝑒 𝑓1 (N) 𝑓2 (N)

0 0.0055 0.0145

0.1 0.0054 0.0144

0.2 0.0055 0.0145

0.4 0.0056 0.0146

0.6 0.0056 0.0146

0.8 0.0024 0.0114

1.0 0.0009 0.0099

Table C.1: The maximum applied load subjected to the C-beam incorporating the Wang method for various values of 𝛾𝑒
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(a) 𝛾𝑒 = 0 (b) 𝛾𝑒 = 0.2

(c) 𝛾𝑒 = 0.4 (d) 𝛾𝑒 = 0.6

(e) 𝛾𝑒 = 0.8 (f) 𝛾𝑒 = 1.0

Figure C.1: The analysis results of a C-beam, incorporating the Wang method with varying values of 𝛾𝑒 for the void region within

the C-beam.



D
Parameter study of the Wang method

A parameter study has been conducted to examine the influence of the parameters of 𝛾𝑒 on the TO

results. The formula for the interpolation factor 𝛾𝑒 involves three parameters: 𝛽1, 𝜂1, and 𝑝. For clarity,

the formula for 𝛾𝑒 is restated in Equation D.1.

𝛾𝑒 =
𝑡𝑎𝑛ℎ(𝛽1𝜂1) + 𝑡𝑎𝑛ℎ(𝛽1(𝜌̄𝑝𝑒 − 𝜂1))
𝑡𝑎𝑛ℎ(𝛽1𝜂1) + 𝑡𝑎𝑛ℎ(𝛽1(1 − 𝜂1))

(D.1)

In this section, the TO problem consistently incorporates the Wang method. The schematic visualisation

of the TO problem is represented in Figure D.1, illustrating the cantilever beam design and its associated

boundary conditions. The Young’s modulus of a solid element is 𝐸1 = 3 × 10
9

N/m
2
, while the Young’s

modulus of a void element is 𝐸0 = 𝐸1 × 10
−6

N/m
2
. The out-of-plane thickness is 0.1m, and the poison

ratio 𝜈 is set to 0.4. In the COMSOL models, the plane strain assumption is used, meaning all the

z-components are zero. The applied force is equal to 150 kN unless stated otherwise. In addition, fifty

iterations have been performed for each result using the GCMMA, as convergence has been reached

after fifty iterations. The objective function is focused on minimising the total elastic strain energy.

Figure D.1: The schematic visualisation of the cantilever beam and the associated boundary conditions

As part of the parameter study, the first investigation involves analysing the impact of altering 𝛽1 in

section D.2. The influence of changing 𝜂1 on the results is explored in section D.3. Subsequently, the

effect of varying parameter 𝑝 is studied in section D.4. Finally, the consequences of adding projection

are demonstrated in section D.5. It is important to note that the results in this section are obtained

without using a filter or a projection.

Additionally, the simulations were conducted on an HP ZBook equipped with an Intel Core i7 processor

(7th generation).

74
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D.1. Implementation of a Helmholtz filter
Integrating a Helmholtz filter with the Wang method introduces challenges, resulting in unsolvable

problems. While functional for small applied forces (around 1 𝑁), the method encounters difficulties

for higher applied forces. Specifically, a warning, "Forward solution failed, requesting reduced step",

arises, leading to a stalled optimiser. Notably, for forces of the order of 10 kN, this warning arises after

the first TO iteration. When the force exceeds 100 kN, COMSOL fails to complete the analysis before the

first TO iteration.

Various aspects have been examined to address the challenges of implementing the Helmholtz filter.

Initially, a segregated approach is used instead of the fully coupled approach. While the fully coupled

method solves a single system of equations, the segregated approach subdivides the problem into

distinct steps. In this model, the steps are the TO and the solid mechanics. Surprisingly, no differences

are observed between the two models, concluding that the fully coupled and segregated approaches are

equivalent in this context.

Furthermore, various solvers have been tested to analyse their impact on the results; however, these

solvers yield identical outcomes. In a third investigation, diverse values for 𝛾𝑒 are applied and inspected

for their effects, which are listed below. Here, 𝑋 and 𝑌 are the horizontal and vertical coordinates

of the design domain, respectively. Notably, the first four equations result in solutions, while the

fifth introduces problems. The main difference is that in the first four equations, 𝛾𝑒 remains constant

throughout each iteration. However, in the fifth equation, 𝛾𝑒 is a function of the variables associated with

the TO and changes every iteration. This observation suggests that an 𝛾𝑒 dependent on TO variables

leads to an unsolvable COMSOL model.

1. 𝛾𝑒 = 4𝑌
2. 𝛾𝑒 = 𝑋9

3. 𝛾𝑒 = sin(1.5𝑋)
4 𝛾𝑒 =

tanh(𝛽1𝜂1)+tanh(𝛽1(𝑋𝑝−𝜂1))
tanh(𝛽1𝜂1)+tanh(𝛽1(1−𝜂1))

5 𝛾𝑒 = 𝜌̄𝑒

Various aspects have been examined in an attempt to implement a filter, but none have shown to have

an impact. Consequently, further research must be conducted to understand the relationship between

the Helmholtz filter and the Wang method.

D.2. Changing the steepness of the Heaviside function
Initially, the variable 𝛽1 is varied to explore its impact, with the corresponding results presented in

Figure D.2. Here, 𝜂1 is set to 0.01. Additionally, Table D.1 gives the objective functions and computational

times associated with the problems. It is important to note that during the optimisation process, the

obtained objective function values in the table are scaled based on the initial solution.

Examining the results in Table D.1, it is apparent that setting 𝛽1 to 50 yields the lowest objective function,

signifying the optimal outcome. However, the observed shape deviates from the configuration shown

in Figure 5.7d. In contrast, both Figure D.2b and Figure D.2c exhibit designs similar to Figure 5.7d.

Despite the similar objective functions for these designs, a notable difference in computational time

exists. Consequently, it can be concluded that setting 𝛽1 to 100 provides the optimal balance between

objective function and computational efficiency. Additionally, setting 𝛽1 to a value lower than 50 leads

to divergence.

Parameter Values

𝛽1 50 100 150 200 300 500

Objective function 45700 48000 47600 47910 51700 53200

Computation time (min) 5 14 19 21 26 26

Table D.1: The objective function values for various values of 𝛽1 for the TO of a cantilever beam incorporating the Wang method.
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(a) 𝛽1 = 50 (b) 𝛽1 = 100

(c) 𝛽1 = 150 (d) 𝛽1 = 200

(e) 𝛽1 = 300 (f) 𝛽1 = 500

Figure D.2: The results obtained from the TO of a cantilever beam incorporating the Wang method, subjected to an applied force

of 150 kN for varying values for 𝛽1.

D.3. Changing the threshold of the Heaviside function
The second parameter to be adjusted is 𝜂1 while keeping 𝛽1 fixed at 100. In Figure D.3, the results for

the TO of the cantilever beam, incorporating the Wang method, are illustrated for various values of 𝜂1.

The corresponding objective function values are detailed in Table D.2.

Results obtained for 𝜂1 < 0.0001 are unfeasible, as the beam created on the right side separates from the

structure. The most optimal objective function is achieved with a 𝜂1 = 0.001; the computational time is

also the lowest for this value. Therefore, the optimal solution is attained when 𝜂1 is set to 0.001.

𝜂1 serves as the threshold determining the location of the transition between linear and nonlinear

designs. Consequently, higher values for 𝜂1 were anticipated to result in more linear designs. However,

the obtained results contradict expectations, as increasing the value of 𝜂1 leads to infeasible outcomes.

Parameter Values

𝜂1 0.00001 0.00005 0.0001 0.0005 0.001 0.005 0.01 0.05

Objective function 44500 44400 44600 44600 44500 46300 47800 52800

Computation time (min) 7 10 11 8 7 14 14 23

Table D.2: The objective function values for various values of 𝜂1 for the TO of a cantilever beam incorporating the Wang method.

The applied load is equal to 150 kN.
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(a) 𝜂1 = 0.00001 (b) 𝜂1 = 0.00005

(c) 𝜂1 = 0.0001 (d) 𝜂1 = 0.0005

(e) 𝜂1 = 0.001 (f) 𝜂1 = 0.005

(g) 𝜂1 = 0.01 (h) 𝜂1 = 0.05

Figure D.3: The results of the TO of a cantilever beam incorporating the Wang method and is subjected to an applied force of 150

kN, for varying values for 𝜂1, with 𝛽1 held constant at 100.

To validate if (𝛽1 , 𝜂1) = (100, 0.0005) remains optimal under higher loads, a similar investigation is

conducted with a load of 250 kN, as illustrated in Figure D.4. The corresponding objective functions

and computation times are presented in Table D.3.

From Table D.2 and Figure D.4, it is evident that a value of 0.01 for 𝜂1 yields the most optimal solution,

with the lowest objective function and computation time. Consequently, it can be concluded that

(𝛽1 , 𝜂1) = (100, 0.0005) remains the optimal solution under higher loads.

Parameter Values

𝜂1 0.0001 0.0005 0.001 0.005

Objective function 91700 92700 91400 98000

Computation time (min) 27 34 25 31

Table D.3: The objective function values and computational times for various values of 𝜂1 for the TO of a cantilever beam

incorporating the Wang method and the corresponding computation times. The applied load is equal to 250 kN.
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(a) 𝜂0 = 0.0001 (b) 𝜂0 = 0.0005

(c) 𝜂0 = 0.001 (d) 𝜂0 = 0.005

Figure D.4: The results obtained from the TO of a cantilever beam, which incorporates the Wang method and is subjected to an

applied force of 250 kN for varying values of 𝜂1, with 𝛽1 held constant at 100.

D.4. Changing the penalisation factor
The last parameter that can be adjusted for 𝛾𝑒 is the penalisation factor 𝑝. By default, this is set to 3,

which is considered the standard value in TO. However, observing the effects of changing this value can

be interesting.

The results in Figure D.5 and Table D.4 demonstrate that higher values for 𝑝 lead to worse outcomes

compared to when 𝑝 is set to 3 (Figure D.5b). Additionally, 𝑝 equal to 2 yields a similar objective function

to 𝑝 equal to 3. However, there is also a notable difference in computational time.

Moreover, the shape of the resulting design for 𝑝 = 2 produces results more closely aligned with those

obtained from the TO employing a Neo-Hookean model for this specific load. Consequently, it can

be asserted that 𝑝 = 2 is the appropriate value. However, it is crucial to note that the obtained results

are contingent on the simulation. The objective function varies with each computation, specifically

oscillating between two values. This behaviour is notably peculiar and is not observed for 𝑝 = 3. Hence,

it can be inferred that a penalisation factor 𝑝 = 3 provides the most optimal value for this parameter, as

it introduces greater confidence in results and reduces computational time.

Parameter Values

Penalisation p 2 3 4 5

Objective function 44600 44500 47400 57300

Computation time (min) 12 7 7 9

Table D.4: The objective function values for various values of 𝑝 for the TO of a cantilever beam incorporating the Wang method.
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(a) 𝑝 = 2 (b) 𝑝 = 3

(c) 𝑝 = 4 (d) 𝑝 = 5

Figure D.5: The results obtained from the TO of a cantilever beam incorporating the Wang method and subjected to an applied

force of 150 kN, for varying values for 𝑝, with 𝛽1 and 𝜂1 held constant at 100 and 0.001, respectively.

D.5. Adding Projection
The results presented in this section were obtained without a projection on the design variables. A

test was conducted to observe the impact of introducing a projection on the design variables, and the

results are illustrated in Figure D.6. It can be observed from Table D.5 that the objective function for the

model with a projection has a notably lower value, indicating a more optimal solution. Despite the

improvement in the objective function, the computational time is significantly higher compared to the

model without the projection on the design variables. Therefore, the projection on the design variables

will not be implemented in the models used in this thesis.

Parameter Values

Projection No Yes

Objective function 44500 41100

Computation time (min) 7 43

Table D.5: The objective function values obtained from the TO of a cantilever beam incorporating the Wang method, comparing

implementations without and with projection.

(a) Without projection (b) With projection

Figure D.6: The TO results of a cantilever beam using the Wang method under a 150 kN applied force, comparing

implementations without (a) and with (b) projection. 𝛽1, 𝜂1, and 𝑝 are held constant at 100, 0.001, and 3, respectively.
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D.6. Topology optimisation of cantilever beam including the Wang
method

This section presents the results obtained from the TO of a cantilever beam, incorporating the Wang

method. The study explores various values of the applied force, as illustrated in Figure D.7. The

parameters 𝛽1, 𝜂1, and 𝑝 are set to 100, 0.001, and 3, respectively. The results show unexpected behaviour

within the range of applied forces between 210 kN and 230 kN. During this interval, the structure

undergoes a transition from a shape resembling Figure D.7e to one akin to Figure D.7g. COMSOL seems

to encounter difficulties in achieving a smooth transition between these two shapes, and the cause of

this phenomenon remains uncertain. Further investigation is needed to understand the underlying

reasons for this behaviour.

(a) 𝑓 = 80kN (b) 𝑓 = 120kN

(c) 𝑓 = 150kN (d) 𝑓 = 180kN

(e) 𝑓 = 200kN (f) 𝑓 = 220kN

(g) 𝑓 = 240kN (h) 𝑓 = 250kN

Figure D.7: The results of the TO of a cantilever beam incorporating the Wang method and subjected to various applied forces.

𝛽1, 𝜂1, and 𝑝 held constant at 100, 0.001, and 3, respectively.



E
The codes of MATLAB

E.1. Code for the linear material model
This is a code that proves that the two linear strain energy density function are identical.

1

2 %constant
3 syms nu E u_X u_Y v_X v_Y
4

5 %The parameters to calculate the value for the strain energy density
functions

6 % nu = 0.4
7 % E = 180*10^6
8 % u_X = 0.03
9 % u_Y = 0.5

10 % v_X = 0.001
11 % v_Y = 0.9
12

13 %The Elastic moduli
14 D11 = E*(1-nu)/((1+nu)*(1-2*nu));
15 D12 = E*nu/((1+nu)*(1-2*nu));
16 D13 = E*nu/((1+nu)*(1-2*nu));
17 D14 = 0;
18 D15 = D14;
19 D16 = D14;
20 D22 = E*(1-nu)/((1+nu)*(1-2*nu));
21 D23 = E*nu/((1+nu)*(1-2*nu));
22 D24 = 0;
23 D25 = D24;
24 D26 = D24;
25 D33 = E*(1-nu)/((1+nu)*(1-2*nu));
26 D34 = 0;
27 D35 = D34;
28 D36 = D34;
29 D44 = 0.5*E/(1+nu);
30 D45 = 0;
31 D46 = D45;
32 D55 = 0.5*E/(1+nu);
33 D56 = D45;
34 D66 = 0.5*E/(1+nu);
35

81
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36 D = [D11 D12 D13 D14 D15 D16; D12 D22 D23 D24 D25 D26;
37 D13 D23 D33 D34 D35 D36; D14 D24 D34 D44 D45 D46;
38 D15 D25 D35 D45 D55 D56; D16 D26 D36 D46 D56 D66]
39

40 % Calculating the strain matrix
41 e11 = u_X
42 e12 = 0.5*(u_Y+v_X)
43 e13 = 0;
44 e22 = v_Y
45 e23 = 0;
46 e33 = 0;
47

48 e = [e11 e12 e13; e12 e22 e23; e13 e23 e33];
49

50 % Calculating the Second Piola-Kirch stress tensor
51 S11 = D11*e11+D12*e22+D13*e33+2*D14*e12+2*D15*e23+2*D16*e13;
52 S12 = D14*e11+D24*e22+D34*e33+2*D44*e12+2*D45*e23+2*D46*e13;
53 S13 = D16*e11+D26*e22+D36*e33+2*D46*e12+2*D56*e23+2*D66*e13;
54 S22 = D12*e11+D22*e22+D24*e33+2*D24*e12+2*D25*e23+2*D26*e13;
55 S33 = D13*e11+D23*e22+D33*e33+2*D34*e12+2*D35*e23+2*D36*e13;
56 S23 = D15*e11+D25*e22+D35*e33+2*D45*e12+2*D55*e23+2*D56*e13;
57

58 S = [S11 S12 S13; S12 S22 S23; S13 S23 S33];
59

60 % Calculating the Lame parameters
61 mu_he= 0.5*E/(1+nu);
62 lambda = E*nu/((1+nu)*(1-2*nu));
63

64 % All the values for the parameters will be real
65 assume(S, 'real');
66 assume(e, 'real');
67 assume(E,'real');
68 assume(nu, 'real');
69 assume([v_X, u_X, v_Y, u_Y, gamma_e], ['real'])
70

71 % Calculating the strain energy density functions
72 W = mu_he*dot(e(:),e(:))+ 0.5*lambda*trace(e)^2
73 Ws = 0.5*(dot(S(:),e(:)))

E.2. The code for the element material model interpolation method
1 %InterpolationStrainSEStress.mlx
2 %constant
3 clear all
4 close all
5 syms solidnu solidE uX uY vX vY gamma_e solidmuLame solidlambLame C11 C12

C13 C23 C22 C33
6

7

8 format long
9 % Given values to the parameter , to calculate the values

10 solidnu = 0.4
11 solidE = 180*10^6
12 uX = 0.000192837
13 uY = 0.0000456456
14 vX = -0.000001
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15 vY = -0.00000000000000777777777
16 gamma_e =0.7
17

18 solidmuLame= 0.5*solidE/(1+solidnu);
19 solidlambLame = solidE*solidnu/((1+solidnu)*(1-2*solidnu));
20

21

22 Calculating the strain energy density function for the nonlinear analysis
23

24 F11 = 1+uX*gamma_e ;
25 F12 = uY*gamma_e;
26 F13 = 0;
27 F21 = vX*gamma_e;
28 F22 = 1+vY*gamma_e;
29 F23 = 0;
30 F31 = 0;
31 F32 = 0;
32 F33 = 1;
33

34 C11 = F11^2+F21^2+F31^2;
35 C12 = F11*F12+F21*F22+F31*F32;
36 C13 = 0;
37 C22 = F12^2+F22^2+F32^2;
38 C23 = 0;
39 C33 = F13.^2+F23.^2+F33.^2;
40 C = [C11 C12 C13; C12 C22 C23; C13 C23 C33];
41

42 eXX = 0.5*(-1+C11);
43 eXY = 0.5*C12;
44 eXZ = 0.5*C13;
45 eYY = 0.5*(-1+C22)
46 eYZ = 0.5*C23;
47 eZZ = 0.5*(-1+C33);
48

49 I1_C = trace(C);
50

51 J_el = sqrt(det(C));
52

53 %hyperelastic
54 %phi_HE= 0.5*solidmuLame*(-3+I1_C)-solidmuLame*log(J_el)+0.5*solidlambLame

*log(J_el)^2;
55 phi_HE_C = (solidlambLame*log(sqrt(- C33*C12^2 + 2*C12*C13*C23 - C22*C13^2

- C11*C23^2 + C11*C22*C33))^2)/2 - solidmuLame*log(sqrt(- C33*C12^2 +
2*C12*C13*C23 - C22*C13^2 - C11*C23^2 + C11*C22*C33)) + (solidmuLame*(
C11 + C22 + C33 - 3))/2;

56 phi_HE_inter = (solidE*((gamma_e*uX + 1)^2 + gamma_e^2*uY^2 + gamma_e^2*vX
^2 + (gamma_e*vY + 1)^2 - 2))/(4*(solidnu + 1)) - (solidE*log(sqrt(((
gamma_e*uX + 1)^2 + gamma_e^2*vX^2)*(gamma_e^2*uY^2 + (gamma_e*vY + 1)
^2) - (gamma_e*uY*(gamma_e*uX + 1) + gamma_e*vX*(gamma_e*vY + 1))^2)))
/(2*(solidnu + 1)) - (solidE*solidnu*log(sqrt(((gamma_e*uX + 1)^2 +
gamma_e^2*vX^2)*(gamma_e^2*uY^2 + (gamma_e*vY + 1)^2) - (gamma_e*uY*(
gamma_e*uX + 1) + gamma_e*vX*(gamma_e*vY + 1))^2))^2)/(2*(2*solidnu -
1)*(solidnu + 1));

57

58 Calculating the interpolated strain energy
59 %Linear St. Venant-Kirchhoff
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60 phi_L = (solidlambLame*(uX + vY)^2)/2 + solidmuLame*(2*(uY/2 + vX/2)^2 + (
uX)^2 + (vY)^2);

61

62 phi_L_inter = (solidlambLame*(uX*gamma_e + vY*gamma_e).^2)/2 + solidmuLame
*(2*(uY*gamma_e/2 + vX*gamma_e/2).^2 + (uX*gamma_e).^2 + (vY*gamma_e)
.^2);

63

64

65 %Wang's method
66 %phi = phi_HE_inter -phi_L_inter+phi_L1;
67 phi = (solidE*((gamma_e*uX + 1)^2 + gamma_e^2*uY^2 + gamma_e^2*vX^2 + (

gamma_e*vY + 1)^2 - 2))/(4*(solidnu + 1)) - (solidE*log(sqrt(gamma_e^4*
uX^2*vY^2 - 2*gamma_e^4*uX*uY*vX*vY + gamma_e^4*uY^2*vX^2 + 2*gamma_e
^3*uX^2*vY - 2*gamma_e^3*uX*uY*vX + 2*gamma_e^3*uX*vY^2 - 2*gamma_e^3*
uY*vX*vY + gamma_e^2*uX^2 + 4*gamma_e^2*uX*vY - 2*gamma_e^2*uY*vX +
gamma_e^2*vY^2 + 2*gamma_e*uX + 2*gamma_e*vY + 1)))/(2*(solidnu + 1)) +
(solidE*(2*(uY/2 + vX/2)^2 + uX^2 + vY^2))/(2*(solidnu + 1)) - (solidE
*(2*((gamma_e*uY)/2 + (gamma_e*vX)/2)^2 + gamma_e^2*uX^2 + gamma_e^2*vY
^2))/(2*(solidnu + 1)) + (solidE*solidnu*(gamma_e*uX + gamma_e*vY)^2)
/(2*(2*solidnu - 1)*(solidnu + 1)) - (solidE*solidnu*(uX + vY)^2)
/(2*(2*solidnu - 1)*(solidnu + 1)) - (solidE*solidnu*log(sqrt(gamma_e
^4*uX^2*vY^2 - 2*gamma_e^4*uX*uY*vX*vY + gamma_e^4*uY^2*vX^2 + 2*
gamma_e^3*uX^2*vY - 2*gamma_e^3*uX*uY*vX + 2*gamma_e^3*uX*vY^2 - 2*
gamma_e^3*uY*vX*vY + gamma_e^2*uX^2 + 4*gamma_e^2*uX*vY - 2*gamma_e^2*
uY*vX + gamma_e^2*vY^2 + 2*gamma_e*uX + 2*gamma_e*vY + 1))^2)/(2*(2*
solidnu - 1)*(solidnu + 1));

68

69 Calculating the stress for the linear part
70 S11_L = 2*((solidlambLame*(uX + vY))/2 + solidmuLame*uX);
71 S12_L = (solidmuLame*(uY + vX));
72 S13_L = 0;
73 S22_L = 2*((solidlambLame*(uX + vY))/2 + solidmuLame*vY);
74 S23_L = 0;
75 S33_L = 2*((solidlambLame*(uX + vY))/2);
76

77 S11_L_inter = 2*((solidlambLame*(uX*gamma_e + vY*gamma_e))/2 + solidmuLame
*uX*gamma_e);

78 S12_L_inter = solidmuLame*(uY*gamma_e + vX*gamma_e);
79 S13_L_inter = 0;
80 S22_L_inter = 2*((solidlambLame*(uX*gamma_e + vY*gamma_e))/2 + solidmuLame

*vY*gamma_e);
81 S23_L_inter = 0;
82 S33_L_inter = 2*((solidlambLame*(uX*gamma_e + vY*gamma_e))/2);
83

84

85

86 Calculating the stress for the nonlinear part
87 %S11 = diff(phi_HE_C,C11)
88 %S11 = solidmuLame/2 - (solidmuLame*(C23^2 - C22*C33))/(2*(C33*C12^2 - 2*

C12*C13*C23 + C22*C13^2 + C11*C23^2 - C11*C22*C33)) + (solidlambLame*
log(sqrt(- C33*C12^2 + 2*C12*C13*C23 - C22*C13^2 - C11*C23^2 + C11*C22*
C33))*(C23^2 - C22*C33))/(2*(C33*C12^2 - 2*C12*C13*C23 + C22*C13^2 +
C11*C23^2 - C11*C22*C33))

89 S11_NL = 2*(solidmuLame/2 - (solidmuLame*(gamma_e^2*uY^2 + (gamma_e*vY +
1)^2))/(2*((gamma_e*uX + 1)^2 + gamma_e^2*vX^2)*(gamma_e^2*uY^2 + (
gamma_e*vY + 1)^2) - 2*(gamma_e*uY*(gamma_e*uX + 1) + gamma_e*vX*(
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gamma_e*vY + 1))^2) + (solidlambLame*log(sqrt(((gamma_e*uX + 1)^2 +
gamma_e^2*vX^2)*(gamma_e^2*uY^2 + (gamma_e*vY + 1)^2) - (gamma_e*uY*(
gamma_e*uX + 1) + gamma_e*vX*(gamma_e*vY + 1))^2))*(gamma_e^2*uY^2 + (
gamma_e*vY + 1)^2))/(2*((gamma_e*uX + 1)^2 + gamma_e^2*vX^2)*(gamma_e
^2*uY^2 + (gamma_e*vY + 1)^2) - 2*(gamma_e*uY*(gamma_e*uX + 1) +
gamma_e*vX*(gamma_e*vY + 1))^2));

90

91 %S12 = diff(phi_HE_C,C12)
92 S12_d = (solidmuLame*(2*C13*C23 - 2*C12*C33))/(2*(C33*C12^2 - 2*C12*C13*

C23 + C22*C13^2 + C11*C23^2 - C11*C22*C33)) - (solidlambLame*log(sqrt(-
C33*C12^2 + 2*C12*C13*C23 - C22*C13^2 - C11*C23^2 + C11*C22*C33))*(2*
C13*C23 - 2*C12*C33))/(2*(C33*C12^2 - 2*C12*C13*C23 + C22*C13^2 + C11*
C23^2 - C11*C22*C33));

93 %S12_NL = (solidmuLame*(2*gamma_e*uY*(gamma_e*uX + 1) + 2*gamma_e*vX*(
gamma_e*vY + 1)))/(2*((gamma_e*uX + 1)^2 + gamma_e^2*vX^2)*(gamma_e^2*
uY^2 + (gamma_e*vY + 1)^2) - 2*(gamma_e*uY*(gamma_e*uX + 1) + gamma_e*
vX*(gamma_e*vY + 1))^2) - (solidlambLame*log(sqrt(((gamma_e*uX + 1)^2 +
gamma_e^2*vX^2)*(gamma_e^2*uY^2 + (gamma_e*vY + 1)^2) - (gamma_e*uY*(
gamma_e*uX + 1) + gamma_e*vX*(gamma_e*vY + 1))^2))*(2*gamma_e*uY*(
gamma_e*uX + 1) + 2*gamma_e*vX*(gamma_e*vY + 1)))/(2*((gamma_e*uX + 1)
^2 + gamma_e^2*vX^2)*(gamma_e^2*uY^2 + (gamma_e*vY + 1)^2) - 2*(gamma_e
*uY*(gamma_e*uX + 1) + gamma_e*vX*(gamma_e*vY + 1))^2);

94 S12_NL = (solidmuLame*(2*gamma_e*uY*(gamma_e*uX + 1) + 2*gamma_e*vX*(
gamma_e*vY + 1)))/(2*((gamma_e*uX + 1)^2 + gamma_e^2*vX^2)*(gamma_e^2*
uY^2 + (gamma_e*vY + 1)^2) - 2*(gamma_e*uY*(gamma_e*uX + 1) + gamma_e*
vX*(gamma_e*vY + 1))^2) - (solidlambLame*log(sqrt(sqrt((((gamma_e*uX +
1)^2 + gamma_e^2*vX^2)*(gamma_e^2*uY^2 + (gamma_e*vY + 1)^2) - (gamma_e
*uY*(gamma_e*uX + 1) + gamma_e*vX*(gamma_e*vY + 1))^2)^2)))*(2*gamma_e*
uY*(gamma_e*uX + 1) + 2*gamma_e*vX*(gamma_e*vY + 1)))/(2*((gamma_e*uX +
1)^2 + gamma_e^2*vX^2)*(gamma_e^2*uY^2 + (gamma_e*vY + 1)^2) - 2*(
gamma_e*uY*(gamma_e*uX + 1) + gamma_e*vX*(gamma_e*vY + 1))^2);

95

96 %S13 = diff(phi_g1,C13)
97 %S13 = (solidmuLame*(2*C12*C23 - 2*C13*C22))/(2*(C33*C12^2 - 2*C12*C13*C23

+ C22*C13^2 + C11*C23^2 - C11*C22*C33)) - (solidlambLame*log(sqrt(-
C33*C12^2 + 2*C12*C13*C23 - C22*C13^2 - C11*C23^2 + C11*C22*C33))*(2*
C12*C23 - 2*C13*C22))/(2*(C33*C12^2 - 2*C12*C13*C23 + C22*C13^2 + C11*
C23^2 - C11*C22*C33))

98 S13_NL = 0;
99

100 %S22 = diff(phi_HE_C,C22)
101 %S22 = solidmuLame/2 - (solidmuLame*(C13^2 - C11*C33))/(2*(C33*C12^2 - 2*

C12*C13*C23 + C22*C13^2 + C11*C23^2 - C11*C22*C33)) + (solidlambLame*
log(sqrt(- C33*C12^2 + 2*C12*C13*C23 - C22*C13^2 - C11*C23^2 + C11*C22*
C33))*(C13^2 - C11*C33))/(2*(C33*C12^2 - 2*C12*C13*C23 + C22*C13^2 +
C11*C23^2 - C11*C22*C33))

102 S22_NL = 2*(solidmuLame/2 - (solidmuLame*((gamma_e*uX + 1)^2 + gamma_e^2*
vX^2))/(2*((gamma_e*uX + 1)^2 + gamma_e^2*vX^2)*(gamma_e^2*uY^2 + (
gamma_e*vY + 1)^2) - 2*(gamma_e*uY*(gamma_e*uX + 1) + gamma_e*vX*(
gamma_e*vY + 1))^2) + (solidlambLame*log(sqrt(((gamma_e*uX + 1)^2 +
gamma_e^2*vX^2)*(gamma_e^2*uY^2 + (gamma_e*vY + 1)^2) - (gamma_e*uY*(
gamma_e*uX + 1) + gamma_e*vX*(gamma_e*vY + 1))^2))*((gamma_e*uX + 1)^2
+ gamma_e^2*vX^2))/(2*((gamma_e*uX + 1)^2 + gamma_e^2*vX^2)*(gamma_e^2*
uY^2 + (gamma_e*vY + 1)^2) - 2*(gamma_e*uY*(gamma_e*uX + 1) + gamma_e*
vX*(gamma_e*vY + 1))^2));

103
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104

105 %S23 = diff(phi_HE_C,C23)
106 %S23 = (solidmuLame*(2*C12*C13 - 2*C11*C23))/(2*(C33*C12^2 - 2*C12*C13*C23

+ C22*C13^2 + C11*C23^2 - C11*C22*C33)) - (solidlambLame*log(sqrt(-
C33*C12^2 + 2*C12*C13*C23 - C22*C13^2 - C11*C23^2 + C11*C22*C33))*(2*
C12*C13 - 2*C11*C23))/(2*(C33*C12^2 - 2*C12*C13*C23 + C22*C13^2 + C11*
C23^2 - C11*C22*C33))

107 S23_NL = 0;
108

109 %S33 = diff(phi_HE_C,C33)
110 %S33 = solidmuLame/2 - (solidmuLame*(C12^2 - C11*C22))/(2*(C33*C12^2 - 2*

C12*C13*C23 + C22*C13^2 + C11*C23^2 - C11*C22*C33)) + (solidlambLame*
log(sqrt(- C33*C12^2 + 2*C12*C13*C23 - C22*C13^2 - C11*C23^2 + C11*C22*
C33))*(C12^2 - C11*C22))/(2*(C33*C12^2 - 2*C12*C13*C23 + C22*C13^2 +
C11*C23^2 - C11*C22*C33))

111 S33_NL = 2*(solidmuLame/2 - (solidmuLame*(((gamma_e*uX + 1)^2 + gamma_e^2*
vX^2)*(gamma_e^2*uY^2 + (gamma_e*vY + 1)^2) - (gamma_e*uY*(gamma_e*uX +
1) + gamma_e*vX*(gamma_e*vY + 1))^2))/(2*((gamma_e*uX + 1)^2 + gamma_e
^2*vX^2)*(gamma_e^2*uY^2 + (gamma_e*vY + 1)^2) - 2*(gamma_e*uY*(gamma_e
*uX + 1) + gamma_e*vX*(gamma_e*vY + 1))^2) + (solidlambLame*log(sqrt
((((gamma_e*uX + 1)^2 + gamma_e^2*vX^2)*(gamma_e^2*uY^2 + (gamma_e*vY +
1)^2) - (gamma_e*uY*(gamma_e*uX + 1) + gamma_e*vX*(gamma_e*vY + 1))^2)
))*(((gamma_e*uX + 1)^2 + gamma_e^2*vX^2)*(gamma_e^2*uY^2 + (gamma_e*vY
+ 1)^2) - (gamma_e*uY*(gamma_e*uX + 1) + gamma_e*vX*(gamma_e*vY + 1))
^2))/(2*((gamma_e*uX + 1)^2 + gamma_e^2*vX^2)*(gamma_e^2*uY^2 + (
gamma_e*vY + 1)^2) - 2*(gamma_e*uY*(gamma_e*uX + 1) + gamma_e*vX*(
gamma_e*vY + 1))^2));

112

113

114 Calculating Interpolating the stress
115 %S11 = S11_NL-S11_L_inter + S11_L
116 S11 = 2*(solidmuLame/2 + (solidlambLame*(uX + vY))/2 + solidmuLame*uX - (

solidlambLame*(gamma_e*uX + gamma_e*vY))/2 - (solidmuLame*(gamma_e^2*uY
^2 + (gamma_e*vY + 1)^2))/((gamma_e^2*uY^2 + (gamma_e*vY + 1)^2)*(2*(
gamma_e*uX + 1)^2 + 2*gamma_e^2*vX^2) - 2*(gamma_e*uY*(gamma_e*uX + 1)
+ gamma_e*vX*(gamma_e*vY + 1))^2) - gamma_e*solidmuLame*uX + (
solidlambLame*log(sqrt(((gamma_e*uX + 1)^2 + gamma_e^2*vX^2)*(gamma_e
^2*uY^2 + (gamma_e*vY + 1)^2) - (gamma_e*uY*(gamma_e*uX + 1) + gamma_e*
vX*(gamma_e*vY + 1))^2))*(gamma_e^2*uY^2 + (gamma_e*vY + 1)^2))/((
gamma_e^2*uY^2 + (gamma_e*vY + 1)^2)*(2*(gamma_e*uX + 1)^2 + 2*gamma_e
^2*vX^2) - 2*(gamma_e*uY*(gamma_e*uX + 1) + gamma_e*vX*(gamma_e*vY + 1)
)^2))

117

118 %S12 = S12_NL-S12_L_inter + S12_L
119 S12 = solidmuLame*(uY + vX) - solidmuLame*(gamma_e*uY + gamma_e*vX) + (

solidmuLame*(2*gamma_e*uY*(gamma_e*uX + 1) + 2*gamma_e*vX*(gamma_e*vY +
1)))/((gamma_e^2*uY^2 + (gamma_e*vY + 1)^2)*(2*(gamma_e*uX + 1)^2 + 2*
gamma_e^2*vX^2) - 2*(gamma_e*uY*(gamma_e*uX + 1) + gamma_e*vX*(gamma_e*
vY + 1))^2) - (solidlambLame*log(sqrt(((gamma_e*uX + 1)^2 + gamma_e^2*
vX^2)*(gamma_e^2*uY^2 + (gamma_e*vY + 1)^2) - (gamma_e*uY*(gamma_e*uX +
1) + gamma_e*vX*(gamma_e*vY + 1))^2))*(2*gamma_e*uY*(gamma_e*uX + 1) +
2*gamma_e*vX*(gamma_e*vY + 1)))/((gamma_e^2*uY^2 + (gamma_e*vY + 1)^2)
*(2*(gamma_e*uX + 1)^2 + 2*gamma_e^2*vX^2) - 2*(gamma_e*uY*(gamma_e*uX
+ 1) + gamma_e*vX*(gamma_e*vY + 1))^2)

120

121 %S13 = S13_NL-S13_L_inter + S13_L
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122 S13 =0;
123

124 %S22 = S22_NL-S22_L_inter + S22_L
125 S22 = 2*(solidmuLame/2 + (solidlambLame*(uX + vY))/2 + solidmuLame*vY - (

solidlambLame*(gamma_e*uX + gamma_e*vY))/2 - (solidmuLame*((gamma_e*uX
+ 1)^2 + gamma_e^2*vX^2))/((gamma_e^2*uY^2 + (gamma_e*vY + 1)^2)*(2*(
gamma_e*uX + 1)^2 + 2*gamma_e^2*vX^2) - 2*(gamma_e*uY*(gamma_e*uX + 1)
+ gamma_e*vX*(gamma_e*vY + 1))^2) - gamma_e*solidmuLame*vY + (
solidlambLame*log(sqrt(((gamma_e*uX + 1)^2 + gamma_e^2*vX^2)*(gamma_e
^2*uY^2 + (gamma_e*vY + 1)^2) - (gamma_e*uY*(gamma_e*uX + 1) + gamma_e*
vX*(gamma_e*vY + 1))^2))*((gamma_e*uX + 1)^2 + gamma_e^2*vX^2))/((
gamma_e^2*uY^2 + (gamma_e*vY + 1)^2)*(2*(gamma_e*uX + 1)^2 + 2*gamma_e
^2*vX^2) - 2*(gamma_e*uY*(gamma_e*uX + 1) + gamma_e*vX*(gamma_e*vY + 1)
)^2))

126

127 %S23 = S23_NL-S23_L_inter + S23_L
128 S23 = 0;
129

130 %S33 = S33_NL-S33_L_inter + S33_L
131 S33 = 2*(solidmuLame/2 + (solidlambLame*(uX + vY))/2 - (solidlambLame*(

gamma_e*uX + gamma_e*vY))/2 - (solidmuLame*(((gamma_e*uX + 1)^2 +
gamma_e^2*vX^2)*(gamma_e^2*uY^2 + (gamma_e*vY + 1)^2) - (gamma_e*uY*(
gamma_e*uX + 1) + gamma_e*vX*(gamma_e*vY + 1))^2))/((gamma_e^2*uY^2 + (
gamma_e*vY + 1)^2)*(2*(gamma_e*uX + 1)^2 + 2*gamma_e^2*vX^2) - 2*(
gamma_e*uY*(gamma_e*uX + 1) + gamma_e*vX*(gamma_e*vY + 1))^2) + (
solidlambLame*log(sqrt((((gamma_e*uX + 1)^2 + gamma_e^2*vX^2)*(gamma_e
^2*uY^2 + (gamma_e*vY + 1)^2) - (gamma_e*uY*(gamma_e*uX + 1) + gamma_e*
vX*(gamma_e*vY + 1))^2)))*(((gamma_e*uX + 1)^2 + gamma_e^2*vX^2)*(
gamma_e^2*uY^2 + (gamma_e*vY + 1)^2) - (gamma_e*uY*(gamma_e*uX + 1) +
gamma_e*vX*(gamma_e*vY + 1))^2))/((gamma_e^2*uY^2 + (gamma_e*vY + 1)^2)
*(2*(gamma_e*uX + 1)^2 + 2*gamma_e^2*vX^2) - 2*(gamma_e*uY*(gamma_e*uX
+ 1) + gamma_e*vX*(gamma_e*vY + 1))^2))

132

133

134

135 Calculating interpolating the Strain
136

137

138 eXX_NL = (gamma_e*uX + 1)^2/2 + (gamma_e^2*vX^2)/2 - 1/2;
139 eXY_NL = (gamma_e*uY*(gamma_e*uX + 1))/2 + (gamma_e*vX*(gamma_e*vY + 1))

/2;
140 eXZ_NL = 0;
141 eYY_NL = (gamma_e^2*uY^2)/2 + (gamma_e*vY + 1)^2/2 - 1/2;
142 eYZ_NL = 0;
143 eZZ_NL = 0;
144

145

146 e11_L = uX;
147 e12_L = 0.5*(uY+vX);
148 e13_L = 0;
149 e22_L = vY
150 e23_L = 0;
151 e33_L = 0;
152

153

154 e11_L_inter = uX*gamma_e;
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155 e12_L_inter = 0.5*(uY*gamma_e+vX*gamma_e);
156 e13_L_inter = 0;
157 e22_L_inter = vY*gamma_e
158 e23_L_inter = 0;
159 e33_L_inter = 0;
160

161

162 %eXX_inter = eXX_NL - e11_L_inter + e11_L
163 eXX_inter = uX - gamma_e*uX + (gamma_e*uX + 1)^2/2 + (gamma_e^2*vX^2)/2 -

(1/2);
164

165 %eXY_inter = eXY_NL - e12_L_inter + e12_L
166 eXY_inter = uY/2 + vX/2 - (gamma_e*uY)/2 - (gamma_e*vX)/2 + (gamma_e*uY*(

gamma_e*uX + 1))/2 + (gamma_e*vX*(gamma_e*vY + 1))/2;
167

168 eXZ_inter = 0;
169

170 %eYY_inter = eYY_NL - e22_L_inter + e22_L
171 eYY_inter = vY - gamma_e*vY + (gamma_e^2*uY^2)/2 + (gamma_e*vY + 1)^2/2

-0.5;
172

173 eYZ_inter = 0;
174 eZZ_inter = 0;
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