
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Learning Task Parameterised
Dynamical Systems with
Gaussian Process Regression
and Classification
Mariano Ramírez Montero



Learning Task
Parameterised

Dynamical Systems
with Gaussian

Process Regression
and Classification

by

Mariano Ramírez Montero
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Thursday, December 14, 2023 at 3:00 PM.

Student number: 4682254
Thesis committee: Dr. Ir. J. Kober

G. Franzese
Dr. Ir. L. Peternel

An electronic version of this thesis is available at http://repository.tudelft.nl/.





Acknowledgments
The first people I want to thank are my parents, Mariano (the original Mariano) and Jeannette, and
my sister Irene. They have supported me since I was a child interested in science, when I was eager
to leave to far away places, and when it was taking me a bit longer than usual to figure things out. I
would also like to thank my extended family: aunts, uncles, and cousins, for their unconditional love
and support.

Getting here would not have been possible without great mentorship. My daily supervisor, Giovanni,
provided great feedback and advice, and rekindledmy enthusiasm for robotics. I would also like to thank
my primary supervisor, Jens, for his feedback and attention, as well as Leandro for his help earlier in
the process. Thanks also to all my past, supportive teachers, who are too many to mention.

The many days in the library would not have been tolerable without one of my best friends: Sara.
Thank you for the many laughs, coffees, and vents. Thanks also to the many other friends who sup-
portedme: my best now-outside-the-TU-friends, Matthew (and Bebsi) and Serafeim, thanks for keeping
me sane and grounded, and for all the night trains. To Joseph, thanks for all the talks, support, and
memes. To Melissa for all the warmth and fun macumbas. To my fellow WAVEr’s, Dorian, Eliana,
Wiebke, Max, Khalid, and Maaike, and to WAVE in general for the community and all the training. To
my robotics classmates and friends, Jeroen, Stan, and Cilia, for showing me that graduating is possible.
To my far away UWC friends, Farah, Aunonna, and Anusha, and to the other UWCer’s who I don’t see
often but remind me of great times, and to Omari and Jule for living close by, even if I never see you.

Finally, to all the random people and faces I became familiar with in that library but never met: good
luck with your studies. I promise to make the very long journey from 3mE to visit sometimes.

Mariano Ramírez Montero
Delft, December 2023

iii



Learning Task Parameterised Dynamical Systems
with Gaussian Process Regression and Classification

Mariano Ramı́rez Montero

Abstract—Recent research has shown that a Learning from
Demonstration (LfD) approach is useful for teaching robots
flexible skills efficiently, and it opens the possibility for non-expert
users to program these skills. When learning from demonstration
data, learning frameworks should learn representations that are
flexible and can generalize to unseen situations. Within the con-
text of multi-reference frame skill learning, this work proposes a
framework to learn such a representation without using task-
specific heuristics or pre-segmentation of the demonstrations.
Local policies are first learned by fitting the local dynamics with
respect to each frame using Gaussian Processes (GP). A classifier
that determines the relevance of each frame for every time step
is then trained in a self-supervised manner. The uncertainty
quantification capability of Gaussian Processes is exploited to
improve the performance of the local policies and the self-
supervised learning process of the classifier. The framework is
validated through multi-frame tasks in simulation as well as on
a robotic manipulator with a pick-and-place re-shelving task. Its
performance is also compared to that of the Task-Parameterised
Gaussian Mixture Model (TPGMM) with simulated and robotic
data. In this comparison, the proposed model performs better
according to metrics that quantify deviation from the goal at each
reference frame and according to similarity measures between
demonstrations and their corresponding reproductions.

I. INTRODUCTION

As robots are becoming more ubiquitous in our society, it
is necessary to easily provide flexible skills to them on the fly.
A promising possibility is to use learning from demonstration
to transfer knowledge and skills to the robot since this can
allow easy programming of robots, even for non-roboticists.
Additionally, to maximize the flexibility of the robot, their
learned skills should generalize to new, unseen situations.

This work thus proposes a framework, Task Parameterised
Gaussian Processes (TPGP), that can learn flexible skills that
are parameterised by given coordinate reference frames. For
example, the reference frame of an object that must be picked
and the reference frame of a goal where it must be placed. If
a human provides several continuous demonstrations of such
a task, the framework is then able to learn a skill that achieves
this pick-and-place task even when the object and goal are in
new, unseen positions.

Apart from the given demonstrations and the respective
coordinate frame positions for each of these demonstrations,
the framework requires no other additional information as
input. The framework learns to parameterise the skill in a
self-supervised way, without using labels or manual segmenta-
tions of the provided demonstrations related to the coordinate
frames. This makes the proposed framework more flexible and
general than approaches that use task-specific heuristics to pre-
segment or parameterise their method.

Fig. 1: Example task where first frame 1 (in blue) is ap-
proached, and then frame 2 (in red) is approached.

The structure of this report is as follows: Section II intro-
duces the problem to be addressed. Section III summarizes
the current related work, and Section IV explains the method-
ology of the proposed framework. Results in simulation are
presented in Section V, while Section VI presents experiments
performed on a robotic platform. Finally Section VII closes
with conclusions and suggestions for future work.

II. PROBLEM FORMULATION

We want to teach a robot how to perform tasks such as pick-
and-place from human demonstration. To successfully perform
the task the robot has to first follow the dynamics learned
with respect to the object frame and then switch to the goal
frame. A diagram of the task is depicted in Figure 1. In the
most general case, we consider a task that involves m different
reference frames defined with respect to a fixed frame, and
we assume the location of these is observable. Then, given N
demonstrations that include the position data of our agent (e.g.
the end-effector Cartesian position of a robotic manipulator)
and the positions of the potentially relevant reference frames
as input, the goal is to design a framework that can generalize
the task shown in these demonstrations when the m frames
are in a new, unseen configuration.

This paper contributes to the topic of teaching multi-
reference frame skills to perform pick-and-place tasks without
using any explicit segmentation algorithm or heuristics for the
reference frame selection. At every time step, “local” policies
output dynamics relative to each frame while a classifier
weighs the relevance of each of these. The proposed frame-
work, based on Gaussian Process regression and classification,
captures and rejects uncertainties in the learned local dynamics
and ambiguities in the weighing of the frames’ relevance.



III. RELATED WORK

When learning a multi-reference frame policy, there are
usually two approaches. The first is to segment the trajectory
into many sub-motions and then find the most relevant frame
for each of them. Alternatively, rather than relying on a
segmentation algorithm, other algorithms solve the allocation
problem for each timestep in a continuous way.

A. Segmentation-based Generalization

In the context of object manipulation tasks, a common
heuristic to segment demonstrations using changes in “con-
tact relations.” In practice, this usually means observing the
distance between the end-effector and any relevant objects
or the haptic sensory signals, and segmenting when these
cross certain thresholds. This object-centered segmentation
is exploited by these methods to make their methods more
general. Since each segment is related to a given object, the
learned skills can also be learned with respect to that object’s
position, so that the learned skill will generalize to unseen
positions of the object.

For example, Wächter and Asfour [1] propose a two-layered
segmentation where they first segment based on any changing
contact relations, measuring these changes by thresholding the
distance between the end-effector and other objects. These
segments are further segmented using a custom criterion based
on the acceleration profile.

Mühlig, Gienger, and Steil [2] also explore the idea of
using contact relations to segment. Their demonstrations are
provided directly by humans, instead of kinesthetically on the
robot. They thus look at the relations between the demon-
strator’s hand and the manipulated objects. Different to the
other methods that also use contact relations as a segmentation
heuristic, they also consider the correlation between the object
and the hand’s velocity, which helps to avoid false positives
when the hand passes close to an object but does not manip-
ulate it.

Li, Li, Lu, et al. [3] also segment by thresholding the
distance between the end-effector and objects in the scene.
They use these segments to learn a two-level policy using
hierarchical reinforcement learning. The low-level policies
learn how to reach sub-goals while the high-level policy
chooses which low-level policy to use given the current state,
and both of these are trained in parallel.

Kober, Gienger, and Steil [4] similarly use contact relations
changes to segment, but since their focus is force interaction
tasks, they detect these changes by thresholding the measured
force norm. Moreover, they also segment based on zero-
velocity crossing (ZVC) events, i.e. when the magnitude of the
velocity goes below a certain threshold, noting that they merge
segmentation points that are very close to each other. They also
note that using contact relations and ZVC has some biological
basis, since these factors are also important for dexterous
manipulation in humans [5]. Then, to assign reference frames
to each segment, they use the idea of “convergence,” where
they assume that corresponding segments between different
demonstrations should converge to the same goal. To measure

this convergence, they look at the inter-trial variance of a
segment in each candidate frame, where a decreasing variance
as well as a low final variance indicates convergence and thus
leads to a higher score for that frame.

Manschitz, Gienger, Kober, et al. [6] use a very similar
approach, first segmenting based on ZVC, and also applying
the concept of convergence. However, they formalize this
concept further, proposing a novel Directional Normal Dis-
tribution (DND) which serves to quantify the similarity of
segments using convergence. They thus assume that the ZVC
heuristic will over-segment, and use DNDs to merge segments.
In this merging process, the segments are also compared in all
potential candidate frames, and thus the DND also provides
a way to assign a goal and a reference frame to a group of
segments, from which a motion primitive can then be learned.

One of the main disadvantages of using contact relations
heuristics is that the segmentation method becomes specific to
manipulation tasks. Moreover, most of these methods [1]–[4]
involve empirically tuned thresholds, which also makes them
less flexible, even for other tasks which are still manipulation-
focused.

Other works like those of Pais, Umezawa, Nakamura, et al.
[7] and Ureche, Umezawa, Nakamura, et al. [8] also exploit
the variance in the data as a segmentation heuristic. They
specify a criterion that looks at the difference between the
intra-trial variance (variance in a given time window) and
inter-trial variance (variance across demonstrations). The idea
is that changes in a variable that occur systematically across
demonstrations mark important constraints of the task. They
thus consider the variables with the highest criterion as the
most important and constraining variables. Additionally, by
checking which candidate reference frame leads to the highest
criterion, that frame can be assigned to a given time instance.

The methods mentioned previously result in skills that
generalize well due to their segmentation approach. However,
most of these methods make use of heuristics in their seg-
mentation, which as mentioned before are task-specific. More-
over, these heuristics frequently require setting a segmentation
threshold, which also hinders the flexibility of the method. The
approach proposed in this work avoids the use of heuristics,
instead training a classifier in a self-supervised manner that
learns to combine learned local dynamical systems to imitate
the demonstrated task.

B. Segmentation-free Generalization

The approach of Calinon, Alizadeh, and Caldwell [9] and
Calinon [10], Task-parametrised Gaussian Mixture Models
(TPGMM), does not explicitly segment demonstrations, but it
can also learn skills from demonstration data that generalize to
changing task parameters such as the reference frames of rel-
evant objects. The approach first transforms the demonstrated
trajectories to all potentially relevant frames and then encodes
each of these using Gaussian Mixture Models (GMMs). Then,
in a new configuration, each of these Gaussians can be
linearly transformed according to the new position of their
corresponding frame. The resulting GMM for this situation can
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then be computed as the product of the transformed models,
exploiting the fact that the product of two Gaussians is still
a Gaussian. This framework is also interesting since it is
not limited to the task parameters being coordinate frames,
instead, these could be other locally linear transformations or
projections.

TPGMM is currently one of the state-of-the-art methods
to address task parametrization in problems such as the one
described in Section II. The proposed TPGP is thus compared
with TPGMM in a two frame and a three frame task in
simulation and using robotic data from a re-shelving task, and
in both cases, the proposed method shows better performance
in the majority of the proposed metrics.

IV. METHODOLOGY

To more easily explain the methodology, a specific scenario
will be used as a running example throughout the rest of this
work. We consider a task in 2D Cartesian space where the
agent starts at (0,0) of the fixed frame. Two frames are defined
relative to the origin of this fixed frame, and the task is to first
go to the origin of frame 1, and then go to the origin of frame
2, as shown in Figure 1.

The main idea of the proposed approach is to transform the
demonstration data to the local reference frames to encode the
relative dynamics, and then use a self-supervised approach to
train a classifier that selects the most relevant frame during
execution. A diagram showing the main steps of the proposed
framework is shown in Figure 2. As the diagram shows, the
main steps are:

1) Alignment of the demonstrations using the longest
common subsequence (LCSS) algorithm [11] to find
alignment key points.

2) Training of local policies using Gaussian Processes
(GPs).

3) Self-supervised training of a Gaussian Process classifier
which learns the relevance of each frame.

Each of these steps is explained in detail in Section IV-B,
Section IV-C, and Section IV-D, respectively.

A. Demonstration Recording

Before explaining the main steps of the proposed method,
the input data that is recorded will be explained in this section.
The notation used throughout this work is also introduced.

During the recording of a demonstration, the 2D/3D position
of the agent, e.g. the robot, is recorded at a given frequency.
As IV-C will show, time information is also required for this
task. Each recorded position is thus augmented with a progress
value φ between 0 and 1, which is set during the alignment
step, after resampling, see Subsection IV-B.

The state x of the system is thus composed of the Cartesian
position (2D or 3D) plus the progress value φ. A set of
sequential states x with final time index tf thus defines a
demonstration dn = {x0, . . . ,xtf }, where the subscript n
denotes the n-th demonstration. The set of all given training
demonstrations is then D(0) = {d(0)0 , . . . , d

(0)
N }, where we add

the superscript to indicate this is in the fixed, global (0th)
frame, and N is the total number of demonstrations.

Moreover, before each demonstration, the positions of any
relevant frames (relative to the fixed frame) are also recorded.
A homogeneous transformation matrix Tm can then be defined
for the m-th frame. This results in another m transformed
demonstration sets D(1), . . . ,D(m), as also shown in Figure 2,
where again the (m) superscript is used to indicate the
associated frame; this notation is used throughout the text for
other variables. These sets, plus the original set in the fixed
frame, are then the input to the proposed framework. The final
output is then a policy that takes as input the current positions
relative to each relevant frame, plus the current progress value
φ, and outputs a displacement in space.

B. Alignment of demonstrations

As IV-C will discuss in more detail, the time information
in the demonstrations is necessary to train the local policies.
This is why the first step is aligning the demonstrations, since
imperfect (human) demonstrations and the changing frame
configurations will cause the demonstrations to be misaligned.
The most common method to perform alignment, both in
learning from demonstration as well as in the broader time
series literature [12], is dynamic time warping (DTW) [13],
used in [4], [14] in a robotics context, for example. Dynamic
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time warping finds an optimal alignment path between two
time series using the pairwise distance between each of their
points.

However, in this case, it is not straightforward to apply
DTW to find a global alignment between all the demonstra-
tions, and/or in all the different frames of reference. The reader
is referred to Appendix A for a more detailed explanation
which shows why DTW fails in this case, even if different
pairwise alignments could be combined to find a global
alignment. Thus instead of DTW, this work proposes to use the
longest common subsequence algorithm (LCSS) [11] to find
key points that should be aligned among all the time series.

The LCSS algorithm finds the longest subsequence between
two time series that meets a certain similarity threshold and
appears in the same order, but does not require the elements
of the subsequence to be contiguous. The detailed algorithm
is included in Appendix A. For example, if the algorithm
was applied to the sequence “ABHDE” and “ZBCADE”, the
algorithm would return the longest common subsequence as
“BDE” with length 3, and the path of matched indices (1,1),
(3,4), (4,5). Points in each sequence are matched if their
similarity meets a threshold. In the case of the demonstrations,
for example, Euclidean distance is used as a distance measure
(or an inverse similarity measure), and a maximum threshold
for points to be matched is set.

Figure 3 shows examples of matches found between two
demonstrations (transformed to frame 1) for the two frame
tasks using the LCSS algorithm, where the “goals” in each
of the demonstrations have been manually annotated as the
points closest to the origins of the relevant frame.

The LCSS algorithm is used to find the matches for each
demonstration in a given transformed dataset Dm with every
other demonstration in that dataset. The index that appears
the maximum amount of times in the LCSS paths is then kept
as an alignment point for that demonstration and frame m,
and if there are ties the last index is kept. After applying this

process to all transformed demonstrations, the demonstrations
in the global fixed frame can be aligned using these points by
resampling.

C. Training the local policies

The first step in training the local policies is deciding
what the training inputs and outputs should be. Regarding
the output, the local policies are encoded with a Gaussian
Process (GP) [15] as a dynamical system, thus outputting a
displacement ∆s given the state input x.

∆s = f(x) (1)

As will be shown in this section, the state is encoded with
position plus a progress state similar to time, whereas the
output from the GP is a displacement in space. This is why the
output here is denoted with a different variable, s. The choice
of state and how the progress variable increment is computed
(see (11)) are explained below.

One could choose to encode the input state x using position,
time, a progress scalar, or a combination of them. Using
only position could be advantageous since it means time mis-
alignment of the demonstrations is not a problem. However,
this introduces the limitation that the demonstrated trajectories
should not overlap in space, as this will introduce ambiguity
in the training labels. To solve the example problem described
at the beginning of this section or any similar problems, it is
impossible for the given demonstrations to not overlap, thus
this limitation is not acceptable. Figure 4a shows how a policy
encoded with only space information can result in trajectories
that miss the goal.

Similarly, encoding the behavior based only on a time
or progress variable does not work in the context of this
task. A specific, constant displacement will always be output
for a given time regardless of the current position, which
means that again the goal will be missed depending on the
initial position. This behavior can also be observed in Figure
4b. However, if both position and time are included in the
state x, we finally obtain a dynamical system that results in
trajectories consistently going towards the goal, as can be seen
in the stream plot in 4c. Finally, note that instead of a time
value, a progress variable φ is used which is simply the time
normalized by the total time length of each demonstration,
meaning 0 ≤ φ ≤ 1, and note that this is computed after
alignment.

As mentioned before, the local policies are encoded using
Gaussian Processes (GPs). A GP is a non-parametric regres-
sion method where prior mean and kernel functions are first
specified. Then, given some observed data, Bayes’s theorem is
applied to compute a posterior distribution after updating the
prior distribution given the likelihood of the recorded data. At
execution time, the posterior distribution is used to infer new
outputs by conditioning it on new test points [15], obtaining
a mean µ and a variance Σ,

µ(x) = k∗(X,x)⊤(K(X,X + σ2
nI))

−1y (2)

Σ(x) = k(x,x)− k∗(X,x)⊤(K(X,X + σ2
nI))

−1k∗(X,x), (3)



(a) Stream plot with position-only encoded state.

(b) Stream plot with time-only encoded state.

(c) Stream plot with position and time encoded state.

Fig. 4: Stream plots of resulting dynamical systems for dif-
ferent state encodings. Different training demonstrations are
shown in different colors.

where k∗ is the covariance between the training inputs X and
test point x, K the covariance matrix of the training inputs
X , k is the variance of the test point x, and σ2

n is the noise
variance; X and y are the set of observed training inputs and
training outputs. The terms k∗, K, and k are all functions
of the chosen prior kernel function and its hyperparameters,
which can also be learned instead of chosen with the prior.

Equations (2) and (3), however, apply to an exact GP.
One disadvantage of these is that due to the inversion of
the covariance matrix K, training becomes computationally
expensive as the training dataset grows. Thus, as an alter-
native, a variational approximation of the posterior is used
for this framework instead. A Stochastic Variational Gaussian
Process (SVGP) approximates the posterior distribution using
a variational distribution [16] parameterised by inducing points
Z (smaller in number than the full training dataset) and

inducing values u, both of which are learned from the data.
The predictive mean and variance then become, respectively,

µ(x) = k∗(Z,x)⊤(K(Z,Z +σ2
nI))

−1u (4)

Σ(x) = k(x,x)−k∗(Z,x)⊤(K(Z,Z +σ2
nI))

−1k∗(Z,x). (5)

The variational parameters are obtained by maximising the
Expected Lower Bound (ELBO) of the likelihood of the
observed labels given the approximated posterior.

One of the main advantages of using GPs is their epistemic
uncertainty quantification through the predictive variance. As
will be shown later in this subsection, within the context of
learning a dynamical system, this uncertainty can be used to
guide the system away from uncertain regions of the input
space, making it more likely that the goals will be reached.
Moreover, as will be shown in Section IV-D, the uncertainty of
each of the local GPs can also help the classifier disambiguate
between frames by choosing the local GP that will lead to
lower uncertainty.

One local policy can then be trained for each frame using
the transformed demonstration sets. The position in Cartesian
space plus the progress variable φ of each demonstration
becomes the training input X , and the displacements at each
step of each demonstration become the training labels y. For
our running example in 2D Cartesian space, we would then
have a dynamical system of the following form for each frame:

[
∆x

(m)
i

∆y
(m)
i

]
= ∆s

(m)
i = µm(x

(m)
i ) (6)

x
(m)
i+1 = x

(m)
i +



∆x

(m)
i

∆y
(m)
i

∆φi


 (7)

Additionally, as mentioned earlier, the uncertainty of the
GPs can be used to pull the system towards regions of higher
certainty. Specifically, we can take the derivative of (3) with
respect to the inputs,

∇Σ =




∂Σ

∂x
∂Σ

∂y
∂Σ

∂φ



= 2k⊤

∗ (K + σ2
nI)

−1 ∂k∗
∂x

(8)

and use the direction of this gradient to pull the system
towards regions of higher certainty, minimizing the variance.
The resulting vector is then scaled by the standard deviation so
that the correcting effect is stronger the higher the uncertainty.
Accordingly,

∇Σ(m)
x,y =




∂Σ

∂x
∂Σ

∂y


 (9)

v
(m)
i (x

(m)
i ) = pvΣ

1/2(x
(m)
i )

∇Σ(m)
x,y

∥∇Σ(m)
x,y ∥

(10)



where the constant scalar pv is added as a gain for the variance
minimization term. This variance minimization term can then
be expressed for each dynamical system as shown in (10),
denoted as vmi for a frame m and a given step i.

The authors of [17] and [18] showed how the variance
minimization term is beneficial, since it helps the robotic
manipulator reject disturbances that might otherwise lead the
robot to areas of high uncertainty, ultimately causing the robot
to fail in performing reaching task due out-of-distribution
compounding errors.

Finally, it is still necessary to determine ∆φ, the incre-
ment for the progress variable. In situations similar to those
in the training demonstrations, a constant increment might
work as long as it is close to the average increment in
the demonstrations, but this will not always generalize well.
Instead, the covariance function of the Gaussian process can
be exploited to dynamically adjust the phase increment. First,
the correlations of the current state xi with all the training
points X are calculated. Then, we can look at the progress
values φ for the points with the highest correlation (e.g. top
10), and calculate an average, denoted as φcorr. The difference
between this average φcorr and the current φi can be used to
increase or decrease the rate of the progress variable φ.

Thus, the progress increment ∆φ at each time step becomes

∆φi(xi) = cφ + pφcφ(φcorr(xi)− φi) (11)

with cφ being a constant increment, and pφ working as a
proportional “gain” for this additional term. Intuitively, in our
running example, this would mean that the progress φ would
increase faster if the initial goal is close to the starting position,
and vice-versa, since the average progress value at which the
goal is reached is likely close to 0.5. Note that this strategy
would not work as well if the demonstrations were not aligned,
since φ would be less consistent for a given set of highly
correlated points. The authors of the ‘SIMPLe’ framework [19]
show how such a strategy results in safer policies for bimanual
robotic tasks. Moreover, they also show how considering the
time or progress along with the position is especially important
to avoid ambiguities in overlapping demonstrations.

D. Self-Supervised Training of the Classifier GP

The final component of this framework is the classifier,
which determines the relevance of each frame at every
timestep. Another Stochastic Variational Gaussian Process
(SVGP) with a softmax likelihood is used as the classifier.

Similarly to the local GPs, the input of the classifier must
first be chosen. Using the running example of the two frame
task (see Figure 1), it is possible to show that the relative
positions to each of the frames are not always informative
regarding frame relevance, so using these as the input could
produce ambiguities. The easiest way to visualize this issue
is to consider the case where the starting point and the two
frames are co-linear, but the first frame is further than the
second. On the line between the two frames the demonstration
would overlap, and these positions would be associated with
frame 1 (when going towards frame 1) and at the same time

to frame 2 (when coming back to frame 2). On the other hand,
if we use the progress variable φ as input to the classifier, this
ambiguity does not occur, since no overlap is possible due to
the uniqueness (within a given demonstration) of this value
for each datapoint. Moreover, the initial alignment step which
helped to mitigate ambiguities during the training of the local
GPs will do the same in the classifier training.

As explained in the introduction, one of the goals of
this framework is to learn such a task without having to
generate labels for the frame relevance. First, the local policies
are trained as described in IV-C with a subset of the total
demonstrations. Then, a different, non-overlapping subset is
used as input to get predictions from all the trained local GPs.
A loss can then be designed which enables the self-supervised
training of this classifier.

The predictions from the trained local GP policies are
transformed to the global fixed frame using the inverse trans-
form T−1

m for a frame m, and compared to the displacement
labels of the input demonstrations that were used to produce
predictions in the first place. The classifier’s loss function can
then be based on picking the local policy whose predictions
are most similar to the labels. To quantify similarity, the cosine
similarity is used, which is defined according to (12) for
two vectors a1 and a2. It is the dot product of two vectors
normalized by their magnitude, which means it will range
between 1 for perfectly aligned vectors to −1 for vectors of
opposite directions,

Cs(a1,a2) =
a1 · a2

∥a1∥ · ∥a2∥
. (12)

Now if we consider a classifier that outputs a vector α of
probabilities or weights (one per frame), which is softmaxed
so that these add up to 1, a loss function for a total of mt

frames that uses this similarity function would be:

Js =

mt∑

m=1

−Cs(T
−1
m ∆s(m),y(0))α(m). (13)

Note that the superscript (m) here indicates the associated
frame, and is not an exponent. The negative signs are needed
for the minimization since the cosine similarity outputs +1 for
maximum similarity. Minimizing this cost function would then
encourage high relevance weights α for the local GP policy
that produces the most similar predictions to the global labels.

Using only the similarity in the loss, however, leads to
ambiguities for the classifier. Approximately during the second
half of the progress values (0.5 to 1.0), the first local GP
has learned a “divergent” behavior while the second local GP
has learned an “attractive” behavior. After reaching the first
goal (the origin of frame 1), when going between frames 1
and 2, we are evaluating the predictions of the local GPs
along a line between the two frames, since this is what was
demonstrated. Thus, both local GPs, with their divergent and
convergent behaviors, will predict a displacement that has a
similar direction to the label when they are evaluated along
this line, resulting in ambiguity.
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Fig. 5: Learned dynamics of local GPs for running example at
a progress value of 0.75, shown in blue and red streamlines for
frames 1 and 2, respectively. An example configuration of the
frames is shown with the stars, and the provided demonstration
is shown as a dotted line. Note how along the highlighted area
of the line, the streamlines from both local GPs strongly align.

This ambiguity issue is depicted in Figure 5, where an
example configuration of frames 1 and 2 is shown with the
blue and red stars, respectively, and the demonstration given
for this configuration is shown as the black dashed line.
Both learned dynamical systems are shown as blue and red
streamlines, for frames 1 and 2 respectively, at a progress value
φ = 0.75. The section of the demonstration also corresponding
to this progress value is highlighted with darker black. Along
the highlighted area of the line, it is possible to see how the
blue and red streamlines strongly align, which leads to the
mentioned ambiguity.

To attempt to resolve this ambiguity, an additional term that
takes advantage of the predictive uncertainty of the local GPs
is used. This additional term is called gm, and to quantify it
first the variances for the training inputs corresponding to each
of the demonstrations are calculated using each of the trained
local GPs. Then, the local change in the variance at each
timestep for every training demonstration can be computed
by taking the difference between the variance at step i + 1
and the variance at step i. This is calculated for every local
GP belonging to a given frame m. In this case, we will look
only at the direction, i.e. whether the resulting difference is
negative or positive.

If it is negative, the local GP’s own variance is decreasing
by following its prediction, otherwise, it is increasing. Thus
by looking at the sign of this change, we can check whether
the direction of the prediction of each local GP aligns with
the direction that will decrease its variance. This gm term can
then be used in the loss to encourage the classifier to learn to
choose the local GP whose output will be most aligned with
the direction that will minimize its variance.

For a total amount mt of frames, this additional loss term

can be computed as:

Jg =





mt∑
m=1

α(m)g(m), if Cs(T
−1
m ∆s(m),y(0)) > 0

0, otherwise
.

(14)

Additionally, note the conditional nature of this term: it
is only considered for a given frame m if the similarity of
the respective local policy prediction is similar to the label
y(0) (measured by the cosine similarity being greater than
0), otherwise it is 0. This ensures that this additional term
is only considered when the prediction of the m-th frame is
similar to the labels, since the goal of this additional term is to
disambiguate in cases where more than one frame is similar to
the labels. An ablation experiment in Section V-B shows how
this term improves the output of the classifier, see Figures 10a
and 10b.

The final loss J to be minimized is then simply the sum of
Js and Jg ,

J = Js + λgJg, (15)

with an added weighing term λg for the additional variance
term Jg .

E. Executing learned tasks

With a trained classifier and the trained local policies,
the whole framework can now be put together. For a given
timestep i, a prediction for the weights α is made by the
classifier:



α(1)

...
α(m)


 = µclass(φi). (16)

Each of the predictions from each of the m local GPs,
plus their variance minimization term, are multiplied by their
respective weight αm to get the global displacements:

[
∆xi

∆yi

]
=

mt∑

m=1

α
(m)
i

[
∆x

(m)
i

∆y
(m)
i

]
+ α

(m)
i v

(m)
i . (17)

The progress increment is then calculated,

∆φi = cφ +

mt∑

m=1

α(m)pφcφ(φ
(m)
corr − φi) (18)

where the difference between the current progress value φi and
the term φm

corr is also multiplied by the respective weight αm.
Finally, the next state xi+1 is calculated using the previous
results:

xi+1 = xi +



∆xi

∆yi
∆φi


 . (19)



V. EXPERIMENTAL SIMULATION RESULTS

As explained in Section IV-A, during each demonstration
the agent’s position is recorded at a regular interval, along with
the initial position of any relevant coordinate frames. For the
simulation experiments, this is done through a (2D) “drawing”
interface where the demonstrations are given using a mouse.
Throughout this section, the average of the minimum distances
to each of the goals (e.g. the origins of each frame for the two
frame task) in the generated reproductions is used as a per-
formance metric. The average Fréchet distance [20] between
the generated trajectories and the given demonstrations is also
used as a performance metric.

The results are shown for the training configurations as well
as for held-out test configurations. For all of these metrics,
lower values indicate better performance. When comparing
the proposed model to other models, the Mann-Whitney U
test [21] is used to check whether the results from which
the average metrics are calculated differ significantly. This
helps to ensure that a lower calculated average (thus better
performance) is highly unlikely to be the result of randomness.
A threshold p-value of 0.05 is used, and metrics where the U
test succeeded are highlighted in bold in the tables.

Results on the two frame problem described at the beginning
of Section IV and shown in Figure 1 are given in Section V-A.
Results on an additional writing task are also provided to show
the flexibility of the framework. Section V-B shows ablations
of the framework to highlight the use of variance minimization
in the local policies and the additional variance gradient
term in the loss of the classifier. Finally V-C compares the
performance of the proposed framework, TPGP, with TPGMM
on the two frame problem, and an extension with three frames.

A. Two frame task experiments

The proposed TPGP is trained on 10 demonstrations for
the two frame task described at the beginning of Section IV
and shown in Figure 1, where the origin of frame 1 is first
approached and then the origin of frame 2 is approached.
Generated trajectories for a training configuration, as well as
for the held-out test configuration of the reference frames, are
shown in Figure 6. In both cases the generated trajectories
qualitatively show the desired behavior, going towards frame
1 and then towards frame 2. (More detailed numerical perfor-
mance metrics for this task are provided in Section V-C when
comparing to TPGMM.)

It is also desirable to test whether the model can ignore
frames that are irrelevant to the task. A TPGP model is thus
retrained on this same task, but a third frame (which is not
approached or used in any of the demonstrations) is added,
i.e. a third local policy is also trained with the data relative to
this frame. Ideally, the classifier would then output a relevance
weight of 0 for this third frame. Figure 7 shows the classifier
output for an example training configuration of the frames,
where we indeed see that this third frame is ignored.

Finally, the proposed model is also tested on a writing task
that involves two frames to highlight its flexibility. In this task,
the agent has to approach the first frame in the same way but

20 10 0 10 20 30 40
x [-]

0

10

20

30

40

y 
[-]

TPGP (Ours)
Demo
Start
Frame 1
Frame 2

(a) Generated trajectory for a training configuration. The
demonstration is shown as the black dashed line.
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(b) Generated trajectory for a randomly generated test configu-
ration.

Fig. 6: Generated trajectories for the two frame task. The color
of the trajectories visualizes the relevance weight output by
the classifier, with blue corresponding to frame 1 and pink to
frame 2.

0 10 20 30 40
Time index [-]

0.0

0.2

0.4

0.6

0.8

1.0

Fr
am

e 
we

ig
ht

s [
-]

Frame 1
Frame 2
Frame 3

Fig. 7: Relevance weights learned by the classifier for the
running example task after a third, irrelevant frame is added.
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(a) Generated trajectory for a training configuration. The
demonstration is shown as the black dashed line.
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(b) Generated trajectory for a randomly generated test configu-
ration.

Fig. 8: Generated trajectories the writing task. The color of
the trajectories visualizes the relevance weight output by the
classifier, with blue corresponding to frame 1 and pink to
frame 2.

then has to draw the uppercase letter ‘G’ centered on the origin
of the second frame. Figure 8 shows generated trajectories
for a training and test configuration. Qualitatively, the model
again shows the expected performance, reaching the origin of
frame 1 and then tracing the letter, even though it does deviate
from the demonstration when approaching these goals.

B. Ablation experiments

Ablation experiments are also performed to highlight the
importance of certain elements. Specifically, the model is
tested without using any minimization of variance for the
local policies, and the classifier is tested without the additional
variance term in its loss.

The full model is tested on the 10 training configurations
and 5 test configurations for the two frame task, where
everything is identical to the earlier experiments except the
variance minimization gain, i.e. pv in (10), is set to 0. Table I
summarizes the results and highlights how the model with
variance minimization performs better in almost every metric.
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Fig. 9: Generated trajectories by models with and without
variance minimization for a test configuration of the two frame
task.

TABLE I: Performance metrics for TPGP with and without
variance minimization. For all metrics, lower values indicate
better performance. Bold values indicate that the values used
to calculate the average were significantly lower according to
the Mann-Whitney U test.

Average
distance
to goal 1

[-]

Average
distance
to goal 2

[-]

Average
Fréchet
distance

[-]
train test train test train test

TPGP w/o
var. min. 0.64 0.68 3.03 7.36 5.93 10.08

TPGP with
var. min. 0.18 0.25 0.59 0.58 4.76 14.12

Note also how in the case where the model with variance
minimization performed worse (average Fréchet distance for
the test case), the difference in the results was not significant
according to the Mann-Whitney U test.

A trajectory plot of one of the test configurations is shown
in Figure 9. The trajectory generated by the original model
is shown with a solid line while the model without variance
minimization uses a dotted line. This also visualizes how the
variance minimization helps the model achieve the demon-
strated task, especially when the system is in regions of the
input space that are far from the training data.

Similarly, the classifier loss (see (15)) is tested without the
additional variance term Jg (see (14)) by setting its weight
λg to 0. The full model is trained on 10 demonstrations for
the three frame task, where first frame 1 is approached, then
frame 2, and finally frame 3. The output from the classifier
should show a sequence where it is initially high for frame 1,
then for frame 2, and finally for frame 3.

Figure 10a shows the classifier output when this Jg term
is removed from the loss. While the classifier can correctly
classify the first and last sections of the demonstration to frame
1 and frame 3, it fails to classify the middle section to frame
2. Using this classifier would lead to the trajectory missing
the second goal, and potentially diverging to unknown regions
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(a) Output weights for a model trained without the additional
variance term Jg .
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(b) Output weights for a model trained with the additional
variance term Jg .

Fig. 10: Classifier weights for the three frame task with and
without the additional variance term Jg in the loss. Note how
the expected relevance weights are output by the model when
this term is added, while the model without this term fails
to output a high relevance for frame 2 in the middle of the
trajectory.

of the state space. This misclassification is likely due to the
ambiguity explained in Section IV-D and visualized in Figure
5. Once the additional penalty term is added, the classification
shows the expected behavior, as shown in Figure 10b.

C. Comparison with TPGMM

To evaluate the proposed method, its performance is com-
pared to that of the state-of-the-art TPGMM algorithm [10],
[22]. As mentioned in Section III, TPGMM fits GMMs on
the data transformed to each of the relevant frames. Then at
execution time, these can be transformed to the new configu-
ration of the frames, and multiplied together to find the new
GMM for this configuration. Specifically, an implementation
of TPGMM is used where the resulting GMM is considered as
an approximation of a Hidden Markov Model (HMM). At exe-
cution time, the Viterbi algorithm is used to determine the most
likely sequence of hidden states from a training demonstration,

TABLE II: Performance metrics for TPGP and TPGMM-LQR
for the two frame task. For all metrics, lower values indicate
better performance. Bold values indicate that the values used
to calculate the average were significantly lower according to
the Mann-Whitney U test.

Average
distance
to goal 1

[-]

Average
distance
to goal 2

[-]

Average
Fréchet
distance

[-]
train test train test train test

TPGMM-
LQR 1.96 0.85 0.48 0.66 9.95 9.44

TPGP
(Ours) 0.18 0.49 0.25 0.25 4.26 13.64

where each of these states corresponds to one of the Gaussian
components of the GMM, and a linear-quadratic regulator
(LQR) is employed to track the generated trajectories. This
specific version of TPGMM is called TPGMM-LQR1 in the
following experiments.

The performance of TPGP and TPGMM-LQR is compared
for two cases: the example problem from the beginning
of Section IV, and an extension of that problem where a
third frame has to be reached after the second frame. Their
performance is tested on the 10 training demonstrations and 5
new, held-out test frame configurations.

For the two frame task, Table II shows the results. In
both the training and test frame configurations, the proposed
model performs better than TPGMM-LQR in more metrics.
Specifically, note that for the distance to goal metrics, the
TPGP results are about half those of TPGMM-LQR.

Examples of generated trajectories by the proposed TPGP
model and TPGMM-LQR for the two frame task are shown
in Figures 11a and 11b for a training and test configuration,
respectively. Qualitatively, both models seem to perform simi-
larly in terms of reaching the goals, though note that as shown
in Table II, TPGP does deviate less from the goals. Figure
11a is also an example where TPGMM-LQR deviates from
the straight-line path to the first goal more than TPGP.

For the three frame task, the results are shown in Table III.
Again, TPGP shows better performance according to almost
all metrics. In the goal distance metrics, TPGP values are again
less than half those of TPGMM-LQR in most cases.

Example trajectories generated by both models are shown
in Figures 12a and 12b for a training and test configuration,
respectively. Both of these figures qualitatively show how the
trajectories generated by the proposed model are more efficient
and close to straight-line routes.

VI. VALIDATION ON A ROBOTIC MANIPULATOR

The experimental setup is first explained in Section VI-A.
Section VI-B shows the results of TPGP on a re-shelving task,
and Section VI-C compares the performance of TPGP and
TPGMM-LQR using the demonstration data from this task.

1An implementation can be found at https://gitlab.idiap.ch/rli/
pbdlib-python/-/blob/master/notebooks/pbdlib%20-%20Multiple%
20coordinate%20systems.ipynb?ref type=heads
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(a) Generated trajectories for a training configuration.
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(b) Generated trajectories for a held-out test configuration.

Fig. 11: Generated trajectories by TPGP (in blue and pink)
and TPGMM-LQR (in orange) for the two frame task. The
color of the TPGP trajectory visualizes the relevance weight
output by the classifier, with blue corresponding to frame 1
and pink to frame 2. The demonstrations are shown as black
dashed lines. Note the deviation of TPGMM-LQR from the
demonstration for the training case.

TABLE III: Performance metrics for TPGP and TPGMM for
the three frame task. For all metrics, lower values indicate
better performance. Bold values indicate that the values used
to calculate the average were significantly lower according to
the Mann-Whitney U test.

Average
distance
to goal 1

[-]

Average
distance
to goal 2

[-]

Average
distance
to goal 3

[-]

Average
Fréchet
distance

[-]
train test train test train test train test

TPGMM-
LQR 2.69 4.32 1.07 1.45 2.83 2.52 12.6 13.9

TPGP
(Ours) 0.71 0.93 0.84 0.66 0.35 0.35 5.2 14.43
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(a) Generated trajectories for a training configuration.
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(b) Generated trajectories for a held-out test configuration.

Fig. 12: Generated trajectories by TPGP (in blue, pink, and
green) and TPGMM-LQR (in orange) for the three frame task.
The color of the TPGP trajectory visualizes the relevance
weight output by the classifier, with blue corresponding to
frame 1, pink to frame 2, and green to frame 3. The demon-
strations are shown as black dashed lines. Note how TPGMM-
LQR deviates from the demonstration path for the test case.

A. Experimental Setup
TPGP is also tested and validated using a 7-degree-of-

freedom robotic manipulator. Cartesian impedance control is
used [23] to control the robot, where the end-effector is
modeled as a spring-damper system. Thus to provide kines-
thetic demonstrations the stiffness can be set to zero and the
demonstrator is free to move the robot.

At execution time, TPGP is used in an offline fashion: a
trajectory is first generated and then executed by the controller
as a sequence of attractors. For the re-shelving task, it is also
necessary to generate values for the orientation and gripper
commands of the end-effector. A similar strategy to that of
the progress variable increment ∆φ is used: at each timestep
i, the most correlated point from the training data X to the
current state xi (thus including both position and progress
value) is found. The recorded gripper value and orientation at
that most correlated training data point are then used for that
timestep.
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Fig. 13: The robotic setup with the relevant base, milk, and
shelf frames indicated as frames 0, 1, and 2, in black, blue,
and pink, respectively. The positions of the milk and shelf goal
are perceived through the camera attached to the end-effector
using the AprilTags visible in the image.

B. Pick and place task experiments

Using a robotic manipulator, the TPGP framework is now
tested on a pick-and-place re-shelving task. A carton of milk
must be picked up and then placed on a specific location on
a shelf. Fiducial markers (AprilTags [24]) are used to localize
the carton of milk and the placing goal during demonstrations
and at execution time. An image of the setup for this task is
shown in Figure 13, where the base frame as well as the milk
(frame 1) and placing goal (frame 2) are indicated on top of
the fiducial markers.

First, 10 demonstrations of this task are recorded while
varying the position of both the carton and the placing goal.
Another 5 demonstrations are recorded to be used as a test
set. Several TPGP models are then trained using four, six,
and eight randomly chosen demonstrations out of the training
demonstrations, and their performance is compared to a model
trained with the complete dataset.

The results are shown in Table IV, where the same perfor-
mance metrics explained in Section V are used. Additionally,
each of the models is used to try and complete the task for 10
configurations of both frames, and the success rate is reported
in the last column. Note how the metrics mostly improve as
the number of demonstrations increases, especially the success
rate, which could be considered the most important metric in
this case.

Similarly to the experiments in Section V-B, the perfor-
mance metrics are again reported for this task for a model with
no variance minimization in the local policies. The results are
shown in Table V for the model trained on 4 demonstrations
and for the model trained on all 10. These models without
variance minimization are also used to try and complete the
task for 10 new frame configurations, and the task success
rate is reported. Note how, again, the values for these models

TABLE IV: Performance metrics for TPGP trained with an
increasing number of demonstrations.

Average
distance
to goal 1

[cm]

Average
distance
to goal 2

[cm]

Average
Fréchet
distance

[cm]

Task
success

rate
[-]

train test train test train test
4 Demos 1.0 1.2 2.4 3.1 10.2 20.5 50%
6 Demos 0.9 3.7 1.3 1.2 5.6 17.3 70%
8 Demos 0.5 3.8 1.2 2.5 8.3 10.6 80%

10 Demos 1.0 3.5 1.2 2.5 7.0 10.0 100%

TABLE V: Performance metrics for TPGP without variance
minimization trained on 4 and 10 demonstrations. For all
metrics, lower values indicate better performance.

Average
distance
to goal 1

[cm]

Average
distance
to goal 2

[cm]

Average
Fréchet
distance

[cm]

Task
success

rate
[-]

train test train test train test
4 Demos w/o

var. min. 1.2 6.8 3.0 6.1 8.6 22.4 10%

10 Demos w/o
var. min. 1.0 4.0 1.3 1.3 11.0 20.0 80%

are worse compared to the models with variance minimization
(see Table IV). Moreover, these results also show that variance
minimization is especially helpful when fewer demonstrations
are available.

C. Comparison with TPGMM

A comparison with TPGMM-LQR is presented in this
subsection, but now using the demonstration data recorded
with the robotic manipulator for the re-shelving task. Note
that for the results of the previous subsection, it was possible
to fully perform the task using the TPGP model by using
the correlation functions from the learned local GPs plus the
classifier weights to generate orientation and gripper com-
mands. Since this is not possible for the TPGMM-LQR model,
the comparisons presented here do not include success rates.
Instead, the same performance metrics explained in Section V
are used to compare the models’ output trajectories for the
training configurations and the held-out test demonstrations.
Some qualitative comparisons of the trajectories are also
presented.

Examples of generated trajectories for training and test con-
figurations are shown in Figures 14a and 14b, respectively. The
comparison results are shown in Table VI. Note how no values
are bold for the goal distance metrics, which means there
was no statistically significant difference between the values
according to the U test, and thus both models could be said
to have similar performance for these metrics. Nonetheless,
TPGP does perform better in Fréchet distance for both the
training and test sets.

Despite both models having similar performance according
to these performance metrics, it is also interesting to evaluate
the generated trajectories qualitatively. For example, while the
TPGMM-LQR-generated trajectories meet the placing goal up
to an error similar to that of TPGP, some of these trajectories
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(a) Generated trajectories for a training configuration.
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(b) Generated trajectories for a held-out test configuration.

Fig. 14: Generated trajectories by TPGP (in blue and pink) and
TPGMM (in orange) for the re-shelving task with the robot.
The color of the TPGP trajectory visualizes the relevance
weight output by the classifier, with blue corresponding to
frame 1 and pink to frame 2. The demonstrations are shown
as black dashed lines. Note the deviation of TPGMM-LQR
from the demonstration in the test case when close frame 1.

TABLE VI: Performance metrics for TPGP and TPGMM for
pick and place task. For all metrics, lower values indicate
better performance. Bold values indicate that the values used
to calculate the average were significantly lower according to
the Mann-Whitney U test.

Average
distance
to goal 1

[cm]

Average
distance
to goal 2

[cm]

Average
Fréchet
distance

[cm]
train test train test train test

TPGMM-
LQR 0.6 4.4 0.6 1.0 13.2 12.4

TPGP
(Ours) 0.8 4.7 1.0 1.3 8.9 9.7
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Fig. 15: Side view of generated trajectories by TPGP and
TPGMM for re-shelving task on the robot. The color of the
TPGP trajectory visualizes the relevance weight output by
the classifier, with blue corresponding to frame 1 and pink
to frame 2, and the corresponding demonstrations are shown
as black dashed lines. Note how TPGMM-LQR deviates from
the demonstration in height (z-coordinate) close to the placing
goal above frame 2.

deviate considerably from the demonstrated trajectories at
other points. Viewing an example trajectory from the side,
shown in Figure 15, a deviation in height (z-coordinate) of
at least 5 cm can be observed right before the placing goal,
close to frame 2. In some cases, such a deviation could be
enough for the milk carton to collide with the upper shelves,
potentially causing a failure of the task.

Similarly, a deviation of more than 10 cm again occurs close
to frame 1 for the TPGMM-LQR trajectory shown in 14b,
close to the point in the trajectory where the carton would be
picked. In a more realistic scenario with other cartons next to
the target carton to be picked, this deviation could result in an
undesired collision.

VII. CONCLUSIONS AND FUTURE WORK

A framework is presented to learn multi-reference frame
skills directly from demonstration, without using task-specific
heuristics to pre-segment the demonstrations or to select
reference frames at execution time by using local policies and



a self-supervised approach to train a classifier that determines
frame relevance to select from these local policies. It is
shown that the framework can learn simple point-to-point
movements, as well as more complex skills. It is also able
to learn skills involving more than two frames and generalize
to unseen configurations. The framework is also validated on
a robotic manipulator for a re-shelving task, where the model
successfully performs the task for new, unseen configurations.

For both, simulation data and robot data, the framework
is compared with the performance of another segmentation-
and heuristic-free model, TPGMM-LQR. In both cases, the
TPGP model shows better performance in the majority of the
given metrics. Ablation experiments show the importance and
utility of variance minimization in the local policies, as well
as the additional variance term Jg when training the classifier.
Both of these features importantly make use of the uncertainty
quantification of Gaussian Processes (GPs).

To extend the generalization capabilities of the framework
for robotic manipulation tasks, it would also be interesting
to train local policies on the robot’s orientation data. In
some cases, including the orientation data could also improve
the classifier’s performance when the position information is
ambiguous.

Another interesting avenue for future work could be to
explore alternative inputs for both the local policies and the
classifier. As explained in Section IV-C, using only the current
position leads to ambiguities, which is why the progress value
is necessary. However, instead of adding an explicit progress
value, some form of memory could be added to the model,
for example by including previous states or a hidden state that
encodes this information. Similarly, it was shown in Section
IV-D that adding the current position relative to each of the
frames to the input of the classifier also leads to ambiguities.
Again, adding some form of memory could address these
ambiguities.

Making this modification to both the local policies and the
classifier would enable the model to learn a wider variety
of skills that are not necessarily dependent only on timing.
Moreover, it could address some limitations in performance
for the tasks shown in this work. For example, when the
distances between frames are too different compared to those
seen during the training, the model might switch too early or
too late. Making the model less dependent on timing could also
make it more resistant to disturbances. An alternative encoding
that is less time-dependent could also enable the re-sequencing
of learned local policies to perform new skills without having
to provide new demonstrations.

Finally, a limitation inherent to the proposed TPGP is the
need for diverse demonstrations. If several demonstrations are
given but the configurations of the frames are very similar
among these demonstrations, the model will likely fail to gen-
eralize to new configurations. A related issue is that a demon-
strator might not know how to ensure the demonstrations and
configurations are diverse. Thus a possible extension would
be to integrate TPGP in an incremental learning framework,
where additional training can easily be provided. An active

learning element could also be integrated where the algorithm
can request additional training data, potentially making use
again of the uncertainty quantification capability of Gaussian
Processes.
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[1] M. Wächter and T. Asfour, “Hierarchical segmentation
of manipulation actions based on object relations and
motion characteristics,” in 2015 International Confer-
ence on Advanced Robotics (ICAR), Jul. 2015, pp. 549–
556. DOI: 10.1109/ICAR.2015.7251510.

[2] M. Mühlig, M. Gienger, and J. J. Steil, “Human-robot
interaction for learning and adaptation of object move-
ments,” in 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2010, pp. 4901–4907.
DOI: 10.1109/IROS.2010.5649229.

[3] B. Li, J. Li, T. Lu, Y. Cai, and S. Wang, “Hierarchi-
cal Learning from Demonstrations for Long-Horizon
Tasks,” in 2021 IEEE International Conference on
Robotics and Automation (ICRA), 2021, pp. 4545–4551.
DOI: 10.1109/ICRA48506.2021.9561408.

[4] J. Kober, M. Gienger, and J. Steil, “Learning movement
primitives for force interaction tasks,” Proceedings -
IEEE International Conference on Robotics and Au-
tomation, vol. 2015, pp. 3192–3199, Jun. 2015. DOI:
10.1109/ICRA.2015.7139639.

[5] J. R. Flanagan, M. C. Bowman, and R. S. Johansson,
“Control strategies in object manipulation tasks,” Cur-
rent opinion in neurobiology, vol. 16, no. 6, pp. 650–
659, 2006.

[6] S. Manschitz, M. Gienger, J. Kober, and J. Peters,
“Learning sequential force interaction skills,” English,
Soft Robotics, vol. 9, no. 2, 2020, ISSN: 2169-5172.
DOI: 10.3390/ROBOTICS9020045.

[7] L. Pais, K. Umezawa, Y. Nakamura, and A. Billard,
“Learning robot skills through motion segmentation and
constraints extraction,” in HRI Workshop on Collabora-
tive Manipulation, Citeseer, 2013, p. 5.

[8] A. L. P. Ureche, K. Umezawa, Y. Nakamura, and A.
Billard, “Task Parameterization Using Continuous Con-
straints Extracted From Human Demonstrations,” IEEE
Transactions on Robotics, vol. 31, no. 6, pp. 1458–1471,
Dec. 2015, Conference Name: IEEE Transactions on
Robotics, ISSN: 1941-0468. DOI: 10.1109/TRO.2015.
2495003.

[9] S. Calinon, T. Alizadeh, and D. G. Caldwell,
“On improving the extrapolation capability of task-
parameterized movement models,” in Proc. IEEE/RSJ
Intl Conf. on Intelligent Robots and Systems (IROS),
Tokyo, Japan, Nov. 2013, pp. 610–616.

[10] S. Calinon, “A tutorial on task-parameterized move-
ment learning and retrieval,” Intelligent service robotics,
vol. 9, pp. 1–29, 2016.



[11] M. Vlachos, G. Kollios, and D. Gunopulos, “Discover-
ing similar multidimensional trajectories,” Feb. 2002,
pp. 673–684, ISBN: 0-7695-1531-2. DOI: 10 . 1109 /
ICDE.2002.994784.

[12] A. P. Ruiz, M. Flynn, J. Large, M. Middlehurst, and
A. Bagnall, “The great multivariate time series classifi-
cation bake off: a review and experimental evaluation of
recent algorithmic advances,” Data Mining and Knowl-
edge Discovery, vol. 35, no. 2, pp. 401–449, 2021.

[13] M. Müller, “Dynamic time warping,” Information re-
trieval for music and motion, pp. 69–84, 2007.

[14] M. Mühlig, M. Gienger, J. Steil, and C. Goerick, “Auto-
matic Selection of Task Spaces for Imitation Learning,”
Oct. 2009, pp. 4996–5002. DOI: 10.1109/IROS.2009.
5353894.

[15] C. Williams and C. Rasmussen, “Gaussian processes for
machine learning, vol 2 Cambridge,” MA: MIT Press.,
2006.

[16] J. Hensman, A. Matthews, and Z. Ghahramani, Scal-
able Variational Gaussian Process Classification, 2014.
arXiv: 1411.2005 [stat.ML].
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[18] A. Mészáros, G. Franzese, and J. Kober, “Learning to
Pick at Non-Zero-Velocity From Interactive Demonstra-
tions,” IEEE Robotics and Automation Letters, vol. 7,
no. 3, pp. 6052–6059, 2022. DOI: 10.1109/LRA.2022.
3165531.

[19] G. Franzese, L. d. S. Rosa, T. Verburg, L. Peternel, and
J. Kober, “Interactive Imitation Learning of Bimanual
Movement Primitives,” IEEE/ASME Transactions on
Mechatronics, pp. 1–13, 2023. DOI: 10.1109/TMECH.
2023.3295249.

[20] T. Eiter and H. Mannila, “Computing discrete Fréchet
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APPENDIX A
ALIGNMENT ALGORITHM

This appendix provides additional figures to show why
Dynamic Time Warping (DTW) does not work in this case,
and provides the LCSS algorithm as well as the alignment
algorithm that uses LCSS to produce alignment points.

A. Dynamic Time Warping alignment

Figure 16 shows the alignment produced by DTW for two
example demonstrations when they are in the base frame. Note
how the annotated goals in each demonstration are matched
with points very far from the goal in the other demonstration.
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Fig. 16: Matching from DTW on base, non-transformed trajec-
tories (only the x-coordinate is shown). Note how the marked
frame 1 goals of each demo are not matched.

If the demonstrations are transformed to frame 1, the match-
ing from DTW improves, as shown in Figure 17: note how the
annotated goals are now matched with points close to the goal
in the other demonstration. However, the rest of the matches
would not necessarily produce a good alignment: the resulting
alignment is shown in Figure 18, where demonstration 1 is
warped according to the found DTW path. Note how the shape
of the demonstration is now very different, even if the goals
are closely aligned.

While this could be partially solved by imposing additional
parameters on the DTW algorithm, for example, constraints on
the alignment path, or removing the constraints to match all the
initial and final points, this might not be very practical, since
different parameters would probably be needed for different
pairs of demonstrations. Moreover, the different alignments
between different pairs of demonstrations would still need to
be merged somehow, or one demonstration would have to be
picked as a template to match every other demonstration with.

B. Longest Common Subsequence (LCSS) and alignment al-
gorithms

The steps for the LCSS algorithm are shown in Algorithm 1.
The alignment algorithm, shown in Algorithm 2, uses the
LCSS algorithm as a function to find the LCSS path be-
tween pairs of demonstrations. Moreover, it uses a function
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Fig. 17: Matching from DTW on trajectories transformed to
frame 1 (only the x-coordinate is shown).
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Fig. 18: Trajectory from demo 1 warped using DTW path and
the unwarped demo 2 trajectory, both transformed to frame 1.
Note how the warped demo 1 has lost a lot of its shape.

MaxRepIdx that takes as input separate lists of 2-tuples
(essentially several LCSS paths) and returns the integer that
occurs the most times among the input lists in the first position
of the 2-tuples. The alignment algorithm iterates through each
transformed dataset of demonstrations D(m), and then also
through all pairs of demonstrations in each dataset to find
their LCSS paths, and ultimately returns the alignment points.



Algorithm 1 Longest Common Subsequence (LCSS)

1: Input: Sequences X,Y , similarity function Sim(·, ·), sim-
ilarity threshold k

2: function LCSS(X,Y )
3: m← length of X
4: n← length of Y
5: Initialize a 2D array L with dimensions (m + 1) ×

(n+ 1)
6: for i← 0 to m do
7: for j ← 0 to n do
8: if i = 0 or j = 0 then
9: L[i][j]← 0

10: else if Sim(X[i− 1], Y [j − 1]) > k then
11: L[i][j]← L[i− 1][j − 1] + 1
12: else
13: L[i][j]← max(L[i− 1][j], L[i][j − 1])
14: end if
15: end for
16: end for
17: lcssLength← L[m][n]
18: lcss← empty list
19: i← m, j ← n
20: while i > 0 and j > 0 do
21: if Sim(X[i− 1], Y [j − 1]) > k then
22: Add X[i− 1] to the beginning of lcss
23: i← i− 1
24: j ← j − 1
25: else if L[i− 1][j] > L[i][j − 1] then
26: i← i− 1
27: else
28: j ← j − 1
29: end if
30: end while
31: return lcss, lcssLength ▷ LCS and its length
32: end function

Algorithm 2 Alignment points extraction algorithm

1: Input: Number of frames nf , number of demonstra-
tions nd, and the sets of transformed demonstrations
D(1), ...,D(nf )

2: Let lcsspaths be an array with dimensions nf x nd x nd,
where each entry will store a list of integer 2-tuples

3: Let alignpts be an array with dimensions nd x nf , where
each entry stores an integer

4: for k ← 0, nf do
5: for i← 0, nd do
6: for j ← 0, nd do
7: lcsspaths[k, i, j]← LCSS(d

(k+1)
i , d

(k+1)
j )

8: end for
9: end for

10: for i← 0, nd do
11: alignpts[i, k]←MaxRepIdx(lcsspaths[k, i])
12: end for
13: end for
14: return alignpts


