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Abstract

Leprosy remains a significant health challenge in
developing countries, where early diagnosis is cru-
cial to prevent severe disabilities and social stigma.
Recent studies have shown that infrared imaging
can be used to detect abnormalities associated with
leprosy by analyzing hand temperature variations.
However, existing diagnostic methods relying on
manual annotation of thermal images are time-
consuming, lack standardization, and require tech-
nical expertise. This research investigates methods
for implementing real-time infrared video-based
temperature analysis on mobile devices by focus-
ing on hand landmark detection models, model op-
timization techniques, and evaluation metrics. A
comprehensive literature review identified promis-
ing models such as MediaPipe Hands, OpenPose,
and YOLO variants for hand landmark detec-
tion, along with optimization methods like prun-
ing, quantization, and Neural Architecture Search
(NAS) to adapt these models for mobile deploy-
ment. Furthermore, evaluation frameworks incor-
porating both performance and capability-oriented
metrics were examined to ensure efficient and re-
liable deployment on resource-constrained devices.
This study provides insights into developing a fully
automated, mobile-based diagnostic tool for early
leprosy detection, highlighting the challenges and
opportunities in adapting visual AI models for in-
frared analysis. Future research should focus on
empirical validation of optimized models on mo-
bile platforms.

1 Introduction
Leprosy is an infectious disease that, when not treated in an
early stage, can lead to serious disabilities [34]. The disease
is classified as an Neglected Tropical Disease by the World
Health Organization [52]. Although leprosy is not a major
health issue in the western world, it still inflicts harm on more
than one billion people, mainly in developing countries like
Nepal [34]. In addition to physical deformities of the hands
and feet and nerve impairments, patients with leprosy often
suffer from discrimination, social exclusion, and even denial
of human rights [52].

The treatment of leprosy consists of multi-drug therapy and
early diagnosis and treatment are essential to keep the symp-
toms of the disease to a minimum [52]. The traditional diag-
nosis of leprosy is based on a clinical examination or a patho-
logical examination [51]. Next to the clinical examination,
Cavalheiro [11] has proposed another method of diagnosing
leprosy. Cavalheiro [11] has shown that leprosy patients suf-
fer from vascular abnormalities which reduces the blood flow
in the limbs, leading to a lower temperature of the skin. In his
research, Cavalheiro [11] assessed 17 leprosy patients and 15
people without leprosy as a control group. The result showed
a significant interaction between the temperature of the hands
and a clinical form of leprosy [11].

To assess the potential of the diagnosis based on hand-
temperature, a research collaboration between the Leprosy
Research Initiative and Delft University has been founded:
Thermographic Assessment of Autonomic Impairment in
Leprosy, or TAIL [42]. The goal of the initiative is to de-
termine the value of infrared thermography (IRT) in the di-
agnosis of leprosy [42]. To this end, F. van den bogaert has
devised an application in which one can manually annotate
six fixed regions of interest and extract the temperature from
infrared video [42]. Bogaert’s solution uses manual anno-
tation, which leads to poor reproducibility, introducing non-
standardisation and high variability in thermographic analysis
[42]. To overcome these issues, Schemkes [42], an Industrial
Design student of the Technical University of Delft, has writ-
ten her master thesis on developing a method for automatic
temperature analysis.

In their research, Schemkes [42] adapts an existing ma-
chine learning algorithm for detecting hand landmarks. The
adapted model is then used to automatically detect the regions
of interest and extract the temperatures from the infrared im-
ages. While Schemkes’ research has shown that this is a fea-
sible solution to run a semi-automatic temperature analysis,
it still has a few limitations. The solution still requires sig-
nificant manual work, for instance by specifying what frames
are to be used in the hand detection model. This manual an-
notation of frames currently happens through a script, which
requires proficiency in running Python code on a computer.

Transforming the current solution to an application that
could be run on mobile devices would greatly increase the
useability of the diagnosing method. However, the implemen-
tation of such an application poses a few challenges. Mainly,
running visual ai models on real-time video requires hard-
ware with sufficient compute power. This compute power is
not always available on mobile devices [3], especially on the
ones used in developing countries.

Research Objective
This research paper focuses on the challenges of combining
the needed resources for real-time leprosy diagnosis on mo-
bile devices. Our research question is:

What methods are needed to enable real-time leprosy diag-
nosis on mobile devices through hand temperature analysis?

The goal of this research is to provide an overview of the
methods that can be used to enable live visual AI applications
on limited hardware. These methods could be applied to the
results of our fellow researchers to create a usable application.
To achieve this goal, the main research question is divided
into three sub-questions:

1. What hand landmark detection methods are currently
available for implementing real-time visual AI on in-
frared video?

2. What techniques can be used to optimize and downsize
visual AI models for mobile devices?

3. What metrics can evaluate the performance and effi-
ciency of optimized visual AI models for real-time in-
frared video analysis?



The first sub-question dives deeper into the current status
of visual AI applications and how they can be used on infrared
videos. In addition, an overview of techniques for downsiz-
ing the visual AI models will be given. Finally, various per-
formance evaluations will be discussed, which can be used to
analyze the different models.

2 Methodology
This research aims to investigate approaches and methods
for running temperature analysis based on real-time infrared
videos on mobile devices. The primary focus is on identifying
techniques for implementing real-time visual AI, optimizing
models for constrained hardware, and evaluating the perfor-
mance of these solutions. This will be achieved by conduct-
ing a comprehensive literature review, analyzing existing re-
search on real-time visual AI, model optimization techniques,
and evaluation frameworks for constrained environments.

Literature Search Strategy
The literature review was conducted using three primary re-
sources:

• TU Delft Library: A comprehensive resource searching
across over 30 academic databases, including the Direc-
tory of Open Access Journals and IEEE Xplore.

• IEEE Xplore Digital Library: A specialized database for
engineering, computer science, and technology research.

• ScienceDirect: A leading database for scientific and
technical research, providing access to a wide range of
high-quality journals and articles across multiple disci-
plines, particularly in engineering and applied sciences.

• Google scholar: Used as a supplementary tool to identify
additional relevant articles. Its broad coverage was espe-
cially useful for identifying papers from diverse journals
that may not be indexed in the other databases.

To ensure comprehensive coverage, the search keywords
have been grouped by topic. An overview of the used search
keywords can be found in Appendix B. Search filters were
applied to focus on peer-reviewed articles published in the
past ten years and to exclude irrelevant fields or applications.

Inclusion and Exclusion Criteria
In selecting papers for this study, we employed specific inclu-
sion and exclusion criteria to ensure the relevance and quality
of the literature reviewed. We focused on studies that delve
into real-time visual AI applications utilizing infrared video,
as these are central to our research objectives. Additionally,
we included papers that detail optimization techniques such
as quantization and pruning, given their significance in en-
hancing AI model performance. Research discussing the de-
ployment of AI on mobile devices or in similarly constrained
environments was also considered important, as it aligns with
our interest in practical applications of AI in resource-limited
settings. Furthermore, articles providing metrics for evaluat-
ing AI performance in mobile applications were included to
inform our assessment framework.

Conversely, we excluded articles that lacked experimental
results or practical applications, as they do not provide empir-
ical evidence necessary for our analysis. Non-peer-reviewed
publications were also omitted to maintain the credibility
and reliability of the information, ensuring that our study is
grounded in strong research. By adhering to these criteria,
we aimed to form a body of literature that is both relevant
and robust, providing a solid foundation for our investigation
into real-time visual AI applications in infrared video.

Categorization and Analysis
The collected papers were categorized into the following
clusters, following the sub-questions:

• Real-Time Visual AI Implementation: Exploring exist-
ing techniques for applying visual AI on infrared video.

• Optimization Techniques: Focused on downsizing meth-
ods such as quantization and pruning.

• Evaluation Metrics: Analyzing benchmarks and metrics
used for assessing AI performance on mobile devices.

This categorization allows for an organized synthesis of
methods, enabling a detailed comparison of approaches
across studies. Additionally, Zotero [48] was used to manage
references and organize findings. Zotero is a software pack-
age that allows you to collect all literature used and easily tag
and categorize them.

Justification of Methodology
A survey methodology was chosen to systematically identify,
analyze, and synthesize existing research. By leveraging the
TU Delft Library, IEEE Xplore, ScienceDirect and Google
Scholar, a broad and reliable set of academic resources was
accessed. The categorization ensures that the findings are
relevant to the research questions, facilitating a clear under-
standing of the field’s current state.

Limitations
The methodology employed in this study is subject to sev-
eral limitations that could influence the findings. One po-
tential source of bias arises from the selection of keywords,
which may have inadvertently excluded relevant studies, as
well as the decision to exclude non-English papers, poten-
tially narrowing the scope of the literature reviewed. Addi-
tionally, limited access to certain databases and proprietary
studies constrained the breadth of the research, leaving some
potentially valuable sources unexplored. Lastly, the empha-
sis on recent publications, while ensuring relevance to cur-
rent advancements, may have overlooked earlier foundational
work that could provide historical context or insights into the
evolution of the field. These limitations underscore the need
for further research to address these gaps and ensure a more
comprehensive understanding of the topic.



3 Findings
Hand landmark models
Hand landmark detection has seen significant advancements
over recent years, with several models emerging to ad-
dress challenges in accuracy, efficiency, and adaptability.
These models form the foundation for applications ranging
from augmented reality to gesture recognition. Below is an
overview of the key models and techniques.

One widely adopted framework for hand landmark detec-
tion is the MediaPipe Hand Landmarker [41], an optimized
neural network capable of identifying 21 key points on the
hand in real time. Designed with efficiency in mind, Me-
diaPipe excels at delivering accurate results on mobile and
embedded devices [30]. Its lightweight architecture enables
high performance without the need for intensive hardware,
making it particularly attractive for applications run on de-
vices with limited compute power. The Media Pipe hand
landmarker model is used in many real-time applications, like
robotics [44], recognizing sign-language [2], hand digit de-
tection [12] and medical diagnosis of nerve injury [19]. De-
spite its strengths, MediaPipe’s reliance on RGB training data
limits its direct applicability to infrared imaging.

Another prominent model is OpenPose [9], which extends
beyond single-hand detection to handle multi-person pose es-
timation. OpenPose employs a bottom-up approach using
Part Affinity Fields to detect body parts and associate them
with individual subjects in an image [9]. This capability al-
lows for robust performance in complex scenarios, such as
overlapping hands or occlusions [9]. However, its computa-
tional intensity can be a barrier to deployment on mobile de-
vices or systems with limited resources, necessitating further
optimization for real-time applications. Examples of where
OpenPose is used are cattle recognition [50], athletics com-
petitions [13] and the study of lower-limb movement [22].

In addition to these frameworks, object detection models
such as those in the YOLO family [38] have been adapted
for hand detection tasks. YOLO’s architecture, known for its
speed and simplicity, involves a single network that predicts
an entire image in a single pass to identify objects and their
bounding boxes [1]. Variants such as YOLOv4 and YOLOv5
offer a balance between accuracy and efficiency, making them
suitable for real-time applications on constrained hardware
[20]. While originally developed for general object detection,
these models have been adapted to hand landmark detection
as well [47]. Kristo [25] compared the thermal object detec-
tion capabilities of YOLO with other models. While the mod-
els scored comparable in detection results, YOLO achieved
significantly faster inference time [25]. However, YOLO’s
reliance on RGB training data limits its direct applicability to
infrared imaging

Advanced techniques such as multiview bootstrapping
have also emerged as effective tools for enhancing hand land-
mark detection [14, 43]. This method leverages multiple cam-
era views to generate robust annotations for training datasets,
using triangulation to overcome challenges such as occlu-
sions and complex hand poses [43]. By iteratively improving
the accuracy of a keypoint detector through gradient descent,
multiview bootstrapping has demonstrated strong potential

for high-precision applications [43]. However, its reliance on
multi-camera setups limits its practicality for single-camera
or mobile systems, which is the current scope of this project.

While out of scope for this research, it is critical to ac-
knowledge the RGB-infrared domain gap as a significant
challenge for implementing AI-driven hand landmark detec-
tion in infrared imaging. All models discussed in this study,
including MediaPipe, OpenPose and YOLO variants, are ini-
tially designed and trained in the RGB domain, where rich
datasets are widely available. When applied to infrared im-
agery, these models face a substantial decline in performance
due to the differences in image properties, texture, and light-
ing conditions between the two domains [6]. This domain gap
limits their effectiveness without further adaptation. Bridging
the RGB-infrared domain gap is essential for ensuring accu-
rate landmark detection in infrared images. Approaches such
as domain adaptation [6, 16] and style transfer [17, 24] pro-
vide promising solutions. Addressing this gap would signif-
icantly enhance the utility and reliability of AI systems for
infrared-based diagnostics.

Overall, the development of hand landmark detection mod-
els reflects a dynamic field balancing accuracy, efficiency, and
adaptability to diverse contexts. While frameworks like Me-
diaPipe, OpenPose and OpenPose excel in general-purpose
tasks, their adaptation to specific domains such as infrared
imaging remains underexposed.

Optimization of AI handlandmark models
Optimization methods for visual AI models play a crucial
role in adapting deep learning frameworks for resource-
constrained environments like mobile devices. The following
section explores a range of techniques, focusing on pruning,
quantization, and other tailored approaches for real-time AI
applications on edge devices.

Pruning Techniques
Pruning aims to reduce the complexity of neural networks
by eliminating redundant parameters or neurons, thereby im-
proving efficiency without significantly compromising per-
formance. Traditional approaches like weight pruning [26,
28, 54] remove individual parameters with low importance,
which can lead to sparsity in the network but may require
specialized hardware or libraries to exploit the sparsity.

Recent advances have introduced structured pruning meth-
ods, such as filter pruning, which removes entire filters in
convolutional layers [28, 55]. This approach simplifies im-
plementation and maintains compatibility with standard hard-
ware acceleration libraries, achieving substantial reductions
in inference costs. Building on this, cluster pruning offers a
hardware-aware strategy that removes groups of filters based
on their collective impact, resulting in better alignment with
AI hardware constraints and improved overall efficiency [15].

Another similar, less commonly explored approach is acti-
vation pruning, which directly reduces the number of active
neurons in convolutional layers [4]. By focusing on pruning
neurons that contribute minimally to the output, this method
decreases both latency and power consumption, making it
particularly suitable for real-time systems. Activation prun-
ing has demonstrated improvements in efficiency while main-



taining or even enhancing classification accuracy in certain
resource-constrained scenarios [4].

Quantization
Quantization reduces the precision of weights and activations
in neural networks, typically converting 32-bit floating-point
values to lower-precision formats like 8-bit integers [28].
This technique significantly reduces model size and speeds
up inference by enabling faster arithmetic operations for low-
precision computation [33, 45].

Hardware considerations also influence the impact of quan-
tization. Quantized models often perform fixed-point arith-
metic operations instead of floating-point ones, significantly
reducing energy consumption and computational complex-
ity [33]. Techniques like error correction during quantiza-
tion have further improved performance by minimizing er-
rors across layers, ensuring accurate inference even in highly
quantized networks [53].

Neural Architecture Search (NAS)
NAS automates the design of efficient neural network archi-
tectures optimized for specific hardware constraints and tasks
[32]. By exploring a predefined search space of architec-
tures, NAS identifies configurations that balance accuracy,
speed, and resource usage [32]. While computationally in-
tensive, NAS-generated architectures often outperform man-
ually designed networks, making it a promising direction for
resource-constrained applications.

Recent advancements have made NAS more practical.
Modular search spaces, for instance, simplify the process
by constructing architectures from smaller, repeatable units,
such as cells [39]. These units are stacked to form the fi-
nal model, reducing search complexity while maintaining
flexibility for various applications [39]. Gradient-based ap-
proaches like Differentiable Architecture Search (DARTS)
have further improved efficiency by enabling continuous
optimization instead of relying solely on discrete searches
[29].The obvious downside of Neural Architecture Search is
that it would require a newly trained neural network and can-
not be applied to existing models.

Frame Sampling
Currently, the data collection protocol involves recording in-
frared videos at a rate of one frame per second over a 15-
minute recovery period following a Cold Pressure Test, a one-
minute immersion in cold water (A. Knulst, personal com-
munication, January 12, 2025). This dense sampling was ini-
tially adopted to capture any rapid thermal changes and mit-
igate the impact of motion artifacts. However, analysis of
temperature recovery data (Appendix A) suggests that signif-
icant thermal responses occur over periods of 30–40 seconds,
indicating that high-frequency sampling may be unnecessary.

Applying the Nyquist-Shannon Sampling Theorem, which
states that a signal must be sampled at least twice the rate of
its highest frequency to be accurately reconstructed [27], sug-
gests that a sampling interval of 10–15 seconds would suffi-
ciently capture meaningful temperature changes. The frame
sampling could vary over time and could capture more frames
in the start, obtaining more informative frames. Implement-
ing an adaptive frame sampling strategy can reduce compu-

tational overhead. This method allows the system to skip
non-informative frames and focus computational resources
on critical moments, thereby improving processing efficiency
without sacrificing diagnostic accuracy.

Simplifying ROI Analysis
Currently, the diagnostic protocol involves analyzing four re-
gions of interest (ROIs) on the fingertips (A. Knulst, personal
communication, January 12, 2025), with the potential to ex-
pand this number in future studies. Each ROI’s mean temper-
ature and standard deviation are calculated for every frame,
though the standard deviation is not presently used in diag-
nosis. Eliminating the calculation of standard deviation or
making it optional could reduce processing demands. On the
other hand, allowing the selection of more than four ROI’s
would enable future research on which ROI’s are the most
relevant in leprosy diagnosis.

Real-time or post-hoc
When developing computer vision applications for leprosy
diagnosis, two primary approaches can be considered for
processing infrared (IR) video data: real-time inference and
post-processing. Each method has its own set of advantages
and challenges, as demonstrated by various applications in
the field.

1. Real-Time Inference:
In real-time inference, the application processes each frame
of the IR video as it is captured, immediately passing the data
through the hand landmark detection model and calculating
temperatures. This approach enables instant feedback, which
is beneficial in scenarios requiring immediate analysis.
Examples of applications where real-time inference is used
are in manufacturing [23], self-driving cars [21], surveillance
[49] and augmented reality [18]. Models like YOLO (You
Only Look Once) are designed for such real-time object
detection tasks, processing images in a single pass to achieve
high inference speeds [49].
The advantage of real-time inference is that it provides
instant analysis, allowing for prompt decision-making.
The challenge of such inference is that it places a high
computational load on the device running the inference.
Processing high-resolution IR video frames in real-time
requires significant computational resources, which can be
challenging on mobile devices with limited processing power.

2. Post-Processing:
Alternatively, the application can record the IR video and
perform all necessary calculations after the recording session.
This method allows for more complex analyses in cases
where compute power is limited. Examples of applications
where post-processing is used can be found in the medical
sector. In healthcare, imaging data from for instance a CT or
MRI scan, is often collected and then analyzed post hoc to
identify patterns or anomalies [35].
The advantage of using post-processing techniques is that it
permits the use of more sophisticated algorithms that may
be too computationally intensive for real-time application
but provide higher accuracy in diagnostics. A disadvantage
of post-processing is that results need to be computed



after recording, meaning that they will not be available
immediately. Moreover, post-processing requires sufficient
storage capacity to save raw video data for later processing,
which can be a constraint on devices with limited memory.
Saving this sensitive patient data for post-processing also
poses significant privacy concerns.

Evaluation of AI handlandmark models
Evaluation methods are integral to the development and de-
ployment of AI systems, especially in resource-constrained
applications such as mobile-based infrared temperature anal-
ysis. Different AI models often require tailored evaluation
methods suited to their specific applications. For instance,
generative AI models benefit from qualitative evaluation tech-
niques, such as human assessments of output quality and cre-
ativity [5], whereas medical AI systems often prioritize met-
rics like interpretability and transparency to ensure that clin-
icians can trust and understand the model’s predictions [46].
This section explores existing evaluation frameworks, high-
lighting their strengths and limitations in assessing the per-
formance, reliability, and scalability.

Performance-Oriented Evaluation
Traditional AI evaluation methods predominantly focus on
performance-oriented metrics, which measure the system’s
ability to achieve specific outcomes on predefined bench-
marks [7]. These include accuracy and precision, which are
commonly used to assess classification and detection tasks
[7]. For example, in their paper on clinical decision support,
Magrabi [31] uses accuracy scores to balance precision and
recall, ensuring robust performance across diverse datasets.

Capability-Oriented Evaluation
In contrast to performance-oriented approaches, capability-
oriented evaluation focuses on the underlying capabilities that
enable AI systems to generalize across diverse tasks and envi-
ronments [7, 40]. This paradigm assesses the system’s adapt-
ability, robustness, and potential for safe deployment. How-
ever, capability-oriented evaluation remains underutilized in
practical AI development due to its complexity and reliance
on comprehensive testing environments [7].

This paradigm is particularly relevant in our research,
where generalizing hand landmark detection models from the
RGB to the infrared domain is crucial. Traditional bench-
marks often fail to capture this capability because they rely on
narrow, domain-specific datasets. For example, RGB-trained
models, such as MediaPipe and YOLO, excel in environments
closely aligned with their training data but struggle when ap-
plied to thermal imaging due to the differences between RGB
and infrared data. Capability-oriented evaluation addresses
this gap by emphasizing robust generalization, even when
there is a domain shift [8].

The TEHAI framework
Another framework that focuses on the underlying capabili-
ties of AI models is the TEHAI framework [37]. The TEHAI
framework emphasizes evaluating capability alongside utility
and adoption to ensure AI systems are effective in real-world
applications. This framework highlights the importance of
dataset integrity, ensuring training and validation data align

with the system’s intended use, and internal and external va-
lidity, ensuring the model’s generalizability to diverse condi-
tions. Such evaluation frameworks provide the structure nec-
essary to assess how AI systems perform in dynamic health-
care environments. Examples of where TEHAI is used are
in COVID-19 studies [10] and in evaluating large language
models for use in healthcare [36].

4 Responsible Research
Ethical Considerations
The development and deployment of AI-driven applications
for medical diagnostics raises critical ethical concerns.
Addressing these issues is essential to ensure that research
is conducted responsibly and contributes positively to
healthcare outcomes. This section discusses key ethical
considerations, including data privacy, fairness, and the
impact of AI-driven decision-making.

Data Privacy and Security
The application involves processing and potentially storing
sensitive patient data, such as infrared (IR) thermographic
videos, which may be traceable to individual patients. Ensur-
ing compliance with data protection regulations, such as the
General Data Protection Regulation (GDPR), is important.
Specific measures include anonymization. Where possible,
patient-related data should be de-identified to prevent linking
the data to individual identities. Secure Storage should
be used to encrypt and store the data safely, with access
restricted to authorized personnel. Finally, patients should
provide explicit consent for the collection and use of their
data in the research and diagnostic processes.

Bias and Fairness
AI models trained on biased datasets may produce inadequate
outcomes, potentially leading to misdiagnosis or exclusion
of certain populations. For instance, if the training data
primarily includes images from one demographic group, the
model may underperform on others. Addressing this concern
requires diversifying training datasets to include a range of
skin tones, hand shapes, and thermal imaging patterns. The
models should be regularly audited to detect biases.

Impact of AI on medical decision making
Automating the diagnostic process carries the risk of
over-reliance on AI models, which could lead to reduced
clinical oversight. To mitigate this, the application should
be designed to assist, not replace, healthcare professionals.
Providing clear outputs ensures that clinicians understand the
model’s decisions and can intervene when necessary.

Reproducibility of Method
The following measures have been taken to increase repro-
ducibility in this study:

Transparent Methodology
The literature review process, including database selection
(TU Delft Library, IEEE Xplore, and Google Scholar), search



keywords, and inclusion/exclusion criteria, has been clearly
documented. This enables other researchers to replicate the
review process and verify the findings.

Non-proprietary literature and open-source tools
This research does not include proprietary literature and
exclusively uses open-source tools, such as MediaPipe,
OpenPose and YOLO, to ensure accessibility and facilitate
further development.

5 Discussion
The objective of this research was to explore methods for im-
plementing real-time infrared video-based temperature anal-
ysis on mobile devices to support leprosy diagnosis. This dis-
cussion analyzes the findings related to hand landmark detec-
tion models, optimization techniques, and evaluation meth-
ods, contextualizing them within existing research and iden-
tifying their practical implications for mobile deployment.

Interpretation of Findings
The review of existing hand landmark detection models, in-
cluding MediaPipe Hands, OpenPose, and adaptations of
YOLO, highlighted the diversity of approaches in balancing
accuracy, computational efficiency, and adaptability. Medi-
aPipe demonstrated strong potential for mobile deployment
due to its lightweight design and real-time performance ca-
pabilities. However, its reliance on RGB data limits its di-
rect use for infrared imaging, necessitating domain adapta-
tion techniques. OpenPose, while highly accurate in com-
plex scenarios, is computationally intensive and thus less suit-
able for resource-constrained devices without significant op-
timization. YOLO models, known for their high inference
speed, present a viable option for real-time applications, but
adapting them to detect hand landmarks in infrared images
poses the same challenges as for MediaPipe and OpenPose.

Optimization techniques such as pruning, quantization, and
Neural Architecture Search (NAS) were found to be essen-
tial for adapting complex models to mobile platforms. Prun-
ing methods effectively reduce computational load while pre-
serving model performance. Quantization further enhances
efficiency by lowering model precision, leading to reduced
memory and faster inference times, though it can compromise
accuracy if not carefully implemented. NAS offers promis-
ing results in discovering architectures optimized for specific
hardware constraints but introduces significant computational
overhead during the search process, making it less practical
for existing models Just as important, adaptive frame sam-
pling and posthoc processing were discussed as strategies for
efficiency. By reducing the frequency of frame analysis and
delegating intensive computations to post-processing, these
methods address the practical limitations of mobile hardware
without sacrificing diagnostic accuracy. Together, these find-
ings suggest that combining traditional optimization tech-
niques with adaptive sampling and posthoc processing can
enable scalable and resource-efficient solutions for mobile in-
frared temperature analysis.

Evaluation of these models revealed that traditional
performance-oriented metrics such as accuracy, precision,

and latency are insufficient when assessing models for mobile
deployment. Capability-oriented evaluations, which assess
adaptability and robustness across tasks and environments,
provide a more comprehensive understanding of model per-
formance. This is particularly relevant for adapting RGB-
trained models to infrared imaging, where generalization
across domains is critical. Furthermore, context-specific eval-
uations that account for mobile constraints, such as energy
efficiency, are essential for ensuring practical utility.

Comparison with Previous Work
Compared to existing solutions in temperature-based lep-
rosy diagnosis, this research advances the field by systemat-
ically reviewing methods for automating the process through
hand landmark detection in infrared imagery. Previous work,
such as Schemkes’ semi-automatic annotation tool, addressed
some of the reproducibility and standardization issues in tem-
perature analysis but still required manual frame selection and
Python scripting expertise. By exploring fully automated de-
tection methods and mobile deployment strategies, this re-
search bridges the gap between proof-of-concept models and
scalable, user-friendly diagnostic tools.

In contrast to existing studies focused on performance im-
provements for AI models in general object detection tasks,
this research contextualizes optimization techniques specifi-
cally for mobile infrared applications.

Limitations
Despite providing a comprehensive overview of existing
models and optimization techniques, this study faces certain
limitations. The literature review was constrained by access
to certain proprietary resources and primarily focused on re-
cent publications, possibly excluding foundational research in
AI optimization. Additionally, the practical evaluation of the
discussed models and optimization techniques was not con-
ducted, limiting the findings to theoretical analysis. Real-
world testing of these models on infrared data and mobile
devices is necessary to validate the conclusions drawn from
the literature.

6 Conclusions and Future Work
This research investigated methods to enable real-time in-
frared video-based temperature analysis for mobile devices,
focusing on hand landmark detection models, optimization
techniques, and evaluation frameworks. The findings high-
light opportunities to optimize AI systems for constrained en-
vironments, such as those used for leprosy diagnosis.

Conclusions
The study demonstrates that the performance demands of the
landmark detection model can be significantly reduced by
leveraging a combination of traditional and context-specific
optimization techniques. Traditional techniques such as prun-
ing and quantization enable downsizing of AI models for
mobile deployment. These methods allow for reductions



in model size and computational demands while preserv-
ing accuracy, making them vital for resource-constrained de-
vices. Context-specific techniques like adaptive frame sam-
pling and post-processing strategies can further reduce the re-
quired compute power. Specifically, analyzing the infrared
video at 15-second intervals instead of 1-second intervals al-
lows for substantial reductions in computational load with-
out compromising diagnostic accuracy. Combining adaptive
frame sampling with making the calculations after record-
ing ensures that even devices with limited processing power,
such as commonly available smartphones, can feasibly run
the temperature analysis.

Given this reduction in performance requirements, the
choice of the specific hand landmark detection model should
prioritize Capability-Oriented Evaluation metrics rather than
traditional Performance-Oriented metrics like speed or la-
tency. The key Capability-Oriented mertics are:

• Generalization across domains: The ability of the model
to adapt from its RGB-trained domain to the infrared do-
main is critical. Models must effectively identify rele-
vant hand landmarks in infrared images despite domain-
specific challenges.

• Robustness: Ensuring consistent performance in vary-
ing conditions, such as different lighting environments
or temperature ranges, is key for real-world deployment.

• Practical adaptability: Lightweight models that are com-
patible with mobile hardware and require minimal cus-
tomization will be preferred.

Future Work
Future research should focus on addressing several key areas
to build upon the findings of this study. One important
direction is the adaptation of hand landmark detection
models, such as MediaPipe and YOLO, from RGB-trained
domains to infrared imagery. Additionally, the theoretical
advantages of adaptive frame sampling and post-processing
need to be validated through real-world testing to ensure
their impact on computational efficiency and diagnostic
accuracy under practical conditions. Furthermore, additional
region-of-interest selection should be explored as a means to
investigate the diagnostic relevance of specific ROI’s. These
future efforts will contribute to the development of scalable,
efficient, and reliable tools for infrared-based healthcare
diagnostics in resource-constrained settings.

.
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Appendix A

Recovery temperatures of healthy and affected patients. t = -1 is the baseline temperature, t = 0 is the
temperature right after cooling. Significant thermal responses occur over periods of 30–40 seconds

(A. Knulst, personal communication, January 12, 2025)



Appendix B

The following search keywords, grouped by topic, have been used in the literature study:

Topic Search keywords

Real-time visual AI on infrared video hand landmark detection, visual AI, infrared video analysis,
real-time AI applications, MedidaPipe, OpenPose, YOLO
multiview bootstrapping

Optimizing AI models for mobile devices AI model downsizing techniques, quantization, pruning,
AI optimization for constrained hardware. visual AI on mobiel devices
weight pruning, activation pruning, filter pruning, neural architecture search
Nyquist-Shannon sampling theorem, real-time visual AI, post-hoc processing

Performance metrics and evaluation AI performance evaluation, metrics for real-time AI, mobile AI benchmarks
Performance-Oriented Evaluation, Capability-Oriented Evaluation,
medical AI evaluation, TEHAI framework
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