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ABSTRACT: Numerical modelling in Geo-Engineering is used to solve complex problems by simulating, analysing, or 

predicting soil behaviour under certain loading and boundary conditions. The soil behaviour is simulated by constitutive 

models that describe the relationship between stresses and strains through a mathematical formulation. Model parameters 

are used to calibrate model behaviour to physical soil behaviour measured during in-situ testing (e.g. CPT) or laboratory 

testing (e.g. triaxial testing). The selection of model parameters is challenging as it needs to cope with aspects as, constitutive 

model limitations, laboratory test limitations, sample disturbance, soil heterogeneity and many other. In this paper a database 

with over 3000 stress-strain paths measured during triaxial tests is used to derive model parameters for the Hardening Soil 

Small Strain Stiffness model (HS small). A procedure/algorithm has been developed to calibrate model parameters by 

comparing measured stress-strain paths to a simulated response from a single stress point constitutive driver. Several data 

analysis techniques, including machine learning tools, have been used to investigate the relationship between soil properties, 

soil parameters and HS small model parameters. In this paper the developed methodology and the results of the data analysis 

are presented. 

 
RÉSUMÉ: La modélisation numérique en géo-ingénierie est utilisée pour résoudre des problèmes complexes en simulant, 

analysant ou prédisant le comportement du sol sous certaines charges et conditions limites. Le comportement du sol est 

simulé par des modèles constitutifs qui décrivent la relation entre les contraintes et les déformations par le biais d'une 

formulation mathématique. Les paramètres du modèle sont utilisés pour calibrer le comportement du modèle par rapport au 

comportement physique du sol mesuré lors d'essais in situ (par exemple CPT) ou d'essais en laboratoire (par exemple essais 

triaxiaux). La sélection des paramètres du modèle est un défi car elle doit prendre en compte des aspects tels que les limites 

du modèle constitutif, les limites des essais en laboratoire, la perturbation de l'échantillon, l'hétérogénéité du sol et bien 

d'autres. Dans cet article, une base de données contenant plus de 3000 trajectoires de contrainte-déformation mesurées lors 

d'essais triaxiaux est utilisée pour dériver les paramètres du modèle de rigidité des sols durcissants à faible déformation (HS 

small). Une procédure/algorithme a été développée pour calibrer les paramètres du modèle en comparant les trajectoires de 

contrainte-déformation mesurées à une réponse simulée à partir d'un pilote constitutif à point de contrainte unique. Plusieurs 

techniques d'analyse de données, y compris des outils d'apprentissage automatique, ont été utilisées pour étudier la relation 

entre les propriétés du sol, les paramètres du sol et les paramètres du modèle HS small. Cet article présente la méthodologie 

développée et les résultats de l'analyse des données. 
 

Keywords: Triaxial test; parameter determination; constitutive models; machine learning. 

 

 

1 INTRODUCTION  

Numerical methods, like the finite element method 

(FEM), have gained popularity and an increasing 

importance in Geo-engineering. They are widely 

accepted and are now considered a standard design 

tool. This is firstly because the (commercial) software 

 

Proceedings of the XVIII ECSMGE 2024  
GEOTECHNICAL ENGINEERING CHALLENGES 
TO MEET CURRENT AND EMERGING NEEDS OF SOCIETY
© 2024 the Authors  
ISBN 978-1-032-54816-6 
DOI 10.1201/9781003431749-145
Open Access: www.taylorfrancis.com, CC BY-NC-ND 4.0 license 

 

861 Proceedings of the XVIII ECSMGE 2024



A – New developments on structural design 

has been developed to the point where it is easy to 

operate and secondly because of the availability of 

appropriate constitutive models that describe the 

mechanical behaviour of soils in a continuum 

framework (Schweiger et al. 2019). Model parameters 

are required to quantify certain features of the soil 

behaviour. In general, simple constitutive models 

require less input parameters than more advanced 

models, but they may therefore lack some essential 

features of soil behaviour (Brinkgreve et al. 2010). 

Parameter determination is a heavily debated and 

researched topic in the field of Geo-Engineering, due 

to the complexity of these heterogeneous, natural 

building materials and the amount of engineering 

judgement required. This paper aims to elaborate on 

the methodology (Chapter 2), results and discussion 

(Chapter 3), and conclusion (Chapter 4) of the 

parameter determination, optimisation and selection 

for the HS small model parameters.  

2 METHODOLOGY 

Over the past decades a large number of triaxial tests 

on soil samples from across the Netherlands have been 

conducted by Fugro Netherlands according to the 

NEN-EN-ISO 2018 standard, or one of its 

predecessors. This data offers the opportunity to 

perform an analysis on, and research (new) statistics 

and correlations based on the full measured stress 

paths. This paper focuses on the Consolidated 

Isotropic Drained and Undrained Multi Stage triaxial 

tests.  

2.1 Soil properties 

Each text file, in which the triaxial test measurements 

are stored contains information regarding the soil 

sample like the initial weight, dry weight, volumes etc. 

With this information soil properties can be 

determined (𝛾, 𝑤, 𝛾𝑑 , 𝑒0 𝑎𝑛𝑑 𝑛), which provide 

information about the soil sample. These results can be 

used to formulate correlations with other parameters. 

2.2 Soil parameters  

The triaxial measurements were used to derive the 

classic soil parameters, the internal friction angle (𝜑’) 

and the cohesion (c’) were determined at 2% strain 

using the p-q stress space, also known as the 

Cambridge stress space (Roscoe et al. 1958). The 

stress-strain path was used to determine the secant 

stiffness (E50) at 50% peak deviatoric stress. 

Determining the stiffness as such for different 

confining stress levels also enables determining the 

power of stress level dependency of stiffness (𝑚). 

2.3 Model parameters 

The Hardening Soil with small-strain stiffness (HS 

small) was selected as constitutive model to describe 

the stress-strain relationship of all tested soils, since it 

is an advanced model for soil in general (Brinkgreve 

2005). It requires 13 model parameters. An initial 

parameter set was derived by expanding upon the soil 

parameters, using common correlations and default 

values from the literature (the traditional method). A 

simulation of the triaxial test is performed using the 

SoilTest facility in the PLAXIS software package 

using this initial parameter set and the stress-strain 

path is compared to the laboratory measurement 

(Figure 1). It can be seen that the simulation with the 

initial parameter set is not optimal in approximating 

the measurement, since this is only the starting point 

of the optimisation algorithm. 

 

 

 

The procedure is to fit the stress-strain path of the 

simulation to the measured stress-strain path in the 

laboratory by calibrating the HS small parameters. The 

goodness of the fit will be quantified using the 

coefficient of determination (r2) and the aim is to reach 

a value close to 1, where 𝑟2 = 1 is a perfect fit. The 

schematic overview of the algorithm is presented in 

Figure 2. The sequence in which the parameters were 

optimised was based on the sensitivity of the 

individual parameter with regard to the test results. 

 

Figure 1. Example of comparison of triaxial test 

simulation with the initial parameter set (HS small with 

measurement (Laboratory)). 
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Figure 2. Schematic overview of the algorithm. 

 

Individually matching the stress-strain curve 

resulted in a singularity, meaning that the parameter 

set after optimisation could be very different 

depending on the initial parameter set or optimisation 

order, which is why an additional feature needed to be 

fitted simultaneously. The selected additional feature 

was the εvol-εax for the drained tests and the uexcess-εax 

for the undrained tests. After the optimisation the 

stress-strain curves matched significantly better, an 

example of an optimised curve is shown in Figure 3.  

 

 
Figure 3. Example of comparison of triaxial test simulation 

with the optimised parameter set (HS small with 

measurement (Laboratory)). 

3 RESULTS AND DISCUSSION 

The optimisation algorithm has been deployed for 

3073 tests in total. The tests are subdivided in 

categories based on the main soil type classification 

available in the text file. It is important to note that the 

soil type given does not mean that it only consists of 

this specific soil. Descriptions in the text file are often 

quite long (and subjective), E.g. ”CLAY= slightly silty 

= slightly organic grey”. In this example, the sample is 

labelled as clay since this is the main component. The 

optimisation results for all 3073 tests are presented in 

Table 1 and Figure 4, the left graph shows the r2 of the 

initial parameter set an the right graph shows the r2 of 

the optimised parameter set. The median r2 of the 

comparison between the simulated triaxial test and the 

measurement improved significantly when the 

optimised parameter set was used. Softer soils like clay 

and peat showed a better performance in terms of r2 

than sand and silt. The poorer performance for sand 

and silt can be explained due to limitations of the HS 

small model. Sand and silt sometimes show a high 

peak strength and low residual strength, this softening 

behaviour cannot be captured by the HS small model.  

 
Table 1. Optimisation results (median r2). 

Soil 

[-] 

Quantity  

[-] 

Initial r2  

[-] 

Optimised r2 

[-] 

Clay 1707 -0.51 0.92 

Sand 718 0.36 0.71 

Peat 374 0.55 0.99 

Silt 274 -5.39 0.09 

 

 
Figure 4. Results in terms of r2 of comparison between 

simulated and measured stress-strain path for initial 

parameters set (left) and optimised parameter set (right). 

 

The results of the optimisation are stored in a 

database which consist of soil properties, soil 

parameters and optimised model parameters. The soil 

properties are relatively easy to obtain. For this reason 

data analysis techniques have been used to predict soil 

parameters and optimised model parameters based on 

soil properties. 

The soil properties (𝛾, 𝑤, 𝛾𝑑 , 𝑒0 𝑎𝑛𝑑 𝑛) showed a 

strong correlation with 5 parameters, the soil 

parameter 𝜑’ and the optimised model parameters 
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𝐸50
𝑟𝑒𝑓

, 𝐸𝑜𝑒𝑑
𝑟𝑒𝑓

, 𝐸𝑢𝑟
𝑟𝑒𝑓

 and 𝐺0
𝑟𝑒𝑓

. The single linear/-

exponential regression managed to find a fit with an r2 

> 0.4 for these parameters. Still, a lot of scatter in the 

graphs was noticed which is why more advanced 

machine learning methods were explored. The 

machine learning models: Multiple Linear Regression 

(MLR) Artificial Neural Network (ANN), Gradient 

Boosting (GBR) and Kernel Ridge Regression (KRR) 

were selected based on an initial analysis on the data 

set, and a literature study in which similar models were 

used. Different input sets were presented to the 

machine learning model, input set 1 only consisted of 

the soil type (s) as classified in the laboratory, every 

successive input set added a soil property in the same 

order as mentioned above. The soil parameters and 

optimised model parameters are the output. After 

training, the machine learning models were able to 

make significant better predictions for the same 5 

parameters, with an increase of r2 in the range of 0.05-

0.27 (average of 0.2), compared to the single 

linear/exponential regression methods. Providing the 

machine learning models with more soil properties 

generally resulted in an increase in performance. An 

example for the prediction of the  𝐸𝑢𝑟
𝑟𝑒𝑓

 is presented in 

Figure 5, where the x-axis shows the different Machine 

learning models, the y-axis the input sets and the z-axis 

the r2 score. All the results were evaluated using 

(group)k-fold. 

 

 
Figure 5. Machine learning prediction result. 

4 CONCLUSIONS 

This paper presents methods to provide guidance in the 

parameter determination, optimisation and selection 

for the HS small model parameters.  

An initial parameter set was derived by expanding 

upon the soil parameters (traditional method). This 

resulted in relatively poor results when comparing the 

stress-strain curve of the simulation to that of the 

measured one in the laboratory. It is therefore 

concluded that the traditional method could only be 

used as a first estimate to determine the model 

parameters. 

The developed optimisation algorithm was 

deployed for all triaxial tests and a significant 

improvement in r2 was observed, the median r2 

increased from -0.61 to 0.81. The developed algorithm 

can optimise the initial HS small parameter sets, by 

matching the simulated/calculated stress-strain curve.  

The trained machine learning models, could be 

used to select the soil parameter 𝜑’ and the optimised 

HS small model parameters 𝐸50
𝑟𝑒𝑓

 , 𝐸𝑜𝑒𝑑
𝑟𝑒𝑓

, 𝐸𝑢𝑟
𝑟𝑒𝑓

 and 

𝐺0
𝑟𝑒𝑓

 with an r2 in the range of 0.6-0.74 by using 1 to 

5 soil properties as input parameters in the ML 

algorithm. The linear/exponential regression results 

come in the form of equations that can also be used, 

and they may even be easier to apply, but these have a 

significantly lower r2 score in the range of 0.41-0.56. 

It is important to note that these methods, results 

and conclusions are based on triaxial test and have not 

been validated for other tests and engineering 

practices. 
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