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Abstract
Due to the increasing population growth and the impacts of climate change, many of the world’s largest
cities are now facing great challenges regarding land scarcity and flood risk, as they are built close to
water and coastal regions. To cope with these global problems, floating urbanization may provide a
viable solution and the attention to this concept has therefore grown considerably in the last decades.
Previous (experimental) studies on preliminary designs of multi-module Very Large Floating Structures
(VLFSs) demonstrated that these systems contain strong hydrodynamic and mechanical coupling. This
implies that there is a significant relation between the response of the system, the stiffness of themodules
and connections, and the incident wave lengths, indicating that the VLFS response can be altered by
adjusting the material properties and its dimensions.

When looking at the Fluid-Structure Interaction (FSI) of these systems, considerations regarding hy-
droelasticity play an important role. This is due to the coupled effects of the wave dynamics and the
structural deformations, in combination with the potentially large horizontal dimensions. To improve
the design of a VLFS, the motion response and the structural performance has to be analysed, where
minimal vertical displacements are desired, while the maximum occurring bending moments are lim-
ited. Therefore, the aim of the study is to investigate the influence of various module and connection
stiffness on the behaviour of the system, with the view to obtain more insight in the complex relation
between the hydroelastic response and internal loads, when the system is subject to regular waves.

To this end, a hydroelastic analysis of a multi-module VLFS is performed, where the problem is anal-
ysed in the frequency domain. Accordingly, the fluid-structure interaction is described by a 2D model,
where the VLFS is represented by four floating beams interconnected with rotational springs. The
fluid is modelled as an ideal fluid, for which the linear wave theory is applied. The floating beams are
modelled by the Euler-Bernoulli beam theory. The finite element method is used to solve the governing
equations of the fluid motion and the motion of the beams, where the model is built using the FE
library Gridap, written in the Julia programming language. Ultimately, results are obtained regarding
the vertical displacements and moment distributions along the structure, for different combinations of
the beam/connection stiffness (i.e. flexible, semi-rigid and rigid), and different wavelengths. Moreover,
the maximum vertical displacement and maximum bending moment are computed for the varying
combinations of the two stiffness quantities, visualized by means of contour plots.

The numerical results show that for increasing rotational connection stiffness, the VLFS approaches
the response of a continuous system. The maximum displacement is reduced by increasing the bending
stiffness of the modules, but this will increase the bending moments simultaneously. Depending on the
material properties and the incident wave length, the structural behaviour shifts from rigid modules
to a more continuous system. Since some cases even result in a combination of both rigid and flexible
behaviour in the structure, excluding elasticity from the analysis may lead to inaccurate results.
Because the influence of different combinations of the two stiffness quantities on the hydroelastic re-
sponse is non-linear, obtaining information by means of the contour plots will give valuable insight in
themost optimal combinationswith regard to the stiffness quantities, and the trade-off betweenminimal
displacements and maximum bending moments that occur.

As the numerical model is highly adaptable and copes well for different input parameters, the re-
sults can also be obtained for more complex (wave) conditions, such as irregular waves, or including
seabed topography. The model creates therefore an opportunity to easily analyse a large variety of
model setups, in a relatively short amount of time.
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1
Introduction to Floating Cities & Very

Large Floating Structures
As most of the world’s largest urban areas are built close to water and coastal regions, many of these
cities are facing great challenges regarding flood risk, together with increasing land scarcity due to fast
growing populations and urbanisation. Due to the effects of global warming, themean sea level is rising
and - even when taking immediate action - it is evident that for many cities, islands, and coastal areas
around the world this will have severe consequences. In order to cope with these global problems, new
technologies have therefore been introduced in recent decades to provide solutions to land scarcity and
flood risks.

Land reclamation techniques are currently the most widely used application to artificially create new
land. However, these techniques can have large negative impacts on the (local) environment and bio-
diversity [1]. Furthermore, its construction is limited to only shallow water depths and requires huge
amounts of sand and other building materials. When using mainly land reclamation to deal with these
global issues, ultimately, solving one scarcity problem by creating another does not seem to provide a
sustainable solution for the future [2]. That is why attention to the concept of floating cities has grown
enormously, where it recently has been adopted by the United Nations as a viable alternative to land
reclamation during the 2019 Climate Change Roundtable [3].

1.1 Realisation of Floating Cities
Parties involved in the research and development of floating cities strongly advocate the important
opportunities that floating urbanization can offer in the future. When current cities are expanded even
further on land, this in turn comes at the expense of land that is also needed for other activities such as
agriculture. On the contrary, with floating urbanization, the availability of land will actually increase
and can therefore really offer a solution to the problem of land scarcity, instead of just relocating it [2].

Another big advantage of floating cities is related to its floating behaviour and modular characteris-
tics. Consequently, this new form of urban areas is highly adaptable which will reduce the probability
of flood risk and therefore will serve as a great solution with respect to problems related to climate
change and sea-level rise.

In addition to providing new living space and offering a solution against flood risk, the develop-
ment of floating cities also allows to completely rethink the way cities are built. Considering these
cities as blank pages, it will offer the opportunity to revise all urban activities and processes like means
of transportation, waste water treatment, energy generation, and food production. Through designs
based on cyclic resource flows and implementing nature-based solutions, these new infrastructures can
contribute in the transition towards more circular and sustainable economies. Examples of these appli-
cations are synergistic systems, such as aquaponics, that are carried out in recent proposals for floating
city designs; to breed fish or produce biofuels, algae and seaweed farms are used, which adsorb CO2
and other nutrients from waste water flows, while simultaneously reduce wave energy in their function
as breakwaters [2].

1
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Figure 1.1: Impression floating city by Oceanix [4]

Obviously, the realization of floating cities involves a wide variety of complex issues. In addition to
aspects such as environmental effects and socio-economic issues, it also requires more insight into
new technologies. Yet, from a historic point of view, the concept of living on water is not new and
floating structures have been used in the field of offshore engineering for quite some time. Several
studies have therefore looked at the feasibility of floating cities as a possible application of Very Large
Floating Structures (VLFSs), in which they refer to realized projects such as the ’Mega-Float’ float-
ing runway in Tokyo Bay, Japan [5][6][7]. Hence, the established knowledge and research regarding
these existing offshore structures provide a good starting point for the structural design of floating cities.

While the specific design of a VLFS highly depends on its operational function and location, it can
generally be divided into a ’dry’ component (e.g. buildings) and a ’floating’ component (e.g. platforms).
These are referred to as the superstructure and the substructure, respectively. For the substructure,
there are two different applications that are commonly used; semi-submersible structures are floating
structures that for a large part also protrude above the water, while pontoon-like structures consist of
large flat platforms that float directly on the water surface. These pontoon-like structures are charac-
terized by large horizontal dimensions compared to their relatively small drafts. Often in literature,
pontoon-like floating structures (PFSs) or modular floating structures (MFSs) are mainly considered for
the construction of floating cities.

As floating cities appear to be a viable solution to land scarcity and flood risk, experimental studies have
been conducted on conceptual designs regarding the modular floating substructure. Accordingly, vari-
ous possible shapes and configurations of the platforms were examined, together with their behaviour
under certain wave conditions. One of these studies were conducted at the Maritime Research Institute
Netherlands, also known as MARIN, where they analysed the motion behaviour of a floating island,
using the configuration as shown in figure 1.2a.

In 2017, another research project called SPACE@SEA was set up to look into the design for floating
cities. The project consisted of 17 European partners (including the Dutch company Blue21 andMARIN)
and was funded by the EU Horizon 2020 research and innovation program. To develop ”a standardised
and cost efficient modular island with low ecological impact”, they focused on the research and design
of a multi-functional, generic floater, consisting of similarly shaped, floating pontoons [8]. After three
years, the configuration for a multi-functional floating island was demonstrated, as shown in figure
1.2b. During the project, studies were conducted regarding a variety of subjects such as the functional
and technical requirements, regulations, and installation. The SPACE@SEA project focused on four
specific applications of the island, namely: aquaculture, transport and logistics, energy production and
maintenance, and living [8].
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(a) Configuration by MARIN [9] (b) Configuration by SPACE@SEA project [10]

Figure 1.2: Test model configurations used by MARIN and SPACE@SEA project

While the aforementioned advantages show great potential and the development of floating urban-
ization is making strides forward, many challenges still need to be solved. Considering first design
configurations for the substructure of a multi-module floating island, studies demonstrated that these
systems contain strong hydrodynamic andmechanical coupling [9][11]. These are valuable observations
as it implies that the VLFS response can be significantly influenced by optimizing the structure design.
One of the problems that arise regarding the design are unfeasible high forces in the connections. It is
possible to reduce forces through design optimization using the coupling phenomenon just described;
because the stress results are related to the design configuration and the motion response.

Therefore, better understanding in the underlining relation between structural aspects of a VLFS -
such as the stiffness of the different components - and the hydrodynamics is desired to obtain optimal
designs for floating cities. Consequently, the importance of accurate methods to analyse the hydroe-
lastic behaviour of these structures plays a significant role; resulting in an increasing demand for the
development of numerical models and tools regarding this research area.

1.2 Problem Statement: Hydroelastic Behaviour of VLFSs
With the growing interest in floating structures over the past decades, several theories and numerical
models have been developed to describe the response of VLFSs to waves, and to investigate which
aspects are decisive in this analysis. When looking at the so-called Fluid-Structure Interaction (FSI) of
these systems, considerations regarding hydroelasticity play an important role. This is due to the cou-
pled effects of the wave dynamics and the structural deformations, in combination with the potentially
large horizontal dimensions of a VLFS.
According to different theories regarding the hydroelastic response analysis, a VLFS model can be ap-
proached as a continuous or discrete system. Both approaches were studied by Ertekin et al. [12], who
looked at efficient methods for the hydroelastic analysis of VLFS, referring to them as ”Rigid module,
flexible connector (RMFC)method”, and ”Elasticmodule, flexible connector (EMFC)method”. Recently,
this was also done by Sun et al. [13], who developed a numerical method to study the hydroelastic
behaviour of a hinged structure with two modules, taking into account both rigid and flexible modules.

To improve the design of a VLFS, themotion response and the structural performance has to be analysed.
However, to perform a response analysis, the selected model is depended on the decision whether the
structure is defined as a continuous or discrete system, which in turn depends on the design. For a VLFS
with dimensions up to several kilometers, it is more obvious to model the structure as a continuous
system, since large deformations may occur. Yet, for VLFSs consisting of multiple smaller platforms, it
is questionable how relevant it is to account for deflections of each module, with respect to the global
displacements of the system. Ding et al. [14] determined in their analysis that the RMFC model is
appropriate regarding preliminary designs of a smaller multi-module VLFS. On the other hand, Kim
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et al. [15] showed the opposite and emphasized that, depending on the arrangement of the modules,
assumptions regarding infinite module stiffness can have a significant effect on the response of the
structure, even in the case of smaller modules.

As the experimental studies at MARIN showed, the connections also have an effect on the response
of a floating island with multiple modules [11] [9]. Therefore, the discussion on appropriate assump-
tions for the material properties involves not only the stiffness of the platforms, but the stiffness of the
connections too. Comparing their results to a study obtained by Fu et al. [16], Gao et al. [17] conducted
a study in which they looked at a VLFS model consisting of two flexible platforms, with different types
of connections. In their research they considered hinge connected modules, semi-rigid connected mod-
ules, and a continuous system. For wave conditions with small wavelengths and a not too large angle
of incidence, they illustrated that the hinge connector resulted in the greatest reduction of hydroelastic
response for the two platforms, while for larger wavelengths this is more the case for a rigid connection.
In an effort tominimize the hydroelastic response of a floating structure consisting of two flexible beams,
Riyansyah et al. [18] looked at an optimization of the connection design. They considered the relation
between the effect of varying rotational stiffness and the location of a connection on the response of
the system. For a given wavelength, they stated that indeed minimal compliance occurs when the
location and rotational stiffness are optimized. However, several combinations between these variables
are possible to obtain minimal hydroelastic response.

Finally, the results of all the aforementioned studies clearly show that the response of a VLFS is also
highly dependent on the characteristics of the incident waves. The influence of the wavelength on the
response of the structure is mainly reflected in the ratio between the wavelength and the length of the
VLFS. This wavelength-to-structure ratio is therefore an important factor in the degree of influence that
varying material properties will have on the hydroelastic response of the system.

1.3 Research Approach & Thesis Outline
The problem statement as described above shows that there is a strong relation between the response
of the system, the stiffness of the modules and connections, and the incident wave length. In general,
by increasing the overall stiffness of a structure, the system can deflect less easy. However, this will
significantly increase the resulting stresses in the structure, which in turn can have a negative impact on
its structural performance. Moreover, increasing the bending stiffness changes the characteristics of the
system (e.g. its mass and its natural frequency), which can result in a larger hydroelastic response of a
floating structure [18]. Clearly, there is a fine balance between the permissible displacements of a VLFS
and the resulting stresses, in which the stiffness of the structure and the wave length play an important
role.

Although there are several studies (such as those discussed previously) that already have looked into
these aspects, to the author’s best knowledge, the hydroelastic response has not been studied where
the stiffness of the modules is plotted against the stiffness of connections for a wider range of values.
Previous studies have only looked at the effect on the response of the VLFS by varying the stiffness of
one of the structural components individually. However, as discussed earlier, experimental observations
show strong coupling effects within the system. This means that the response can be very different for
specific combinations of the material properties of the separated structural elements. It is therefore a
valuable objective to also analyse the effects for a range of different module/connection stiffness com-
binations. This provides more insight on how these stiffness variables relate to each other in terms of
their influence on the response of the system, i.e. the maximum displacements and bending moments.
In addition, by analysing the response of the VLFSmodel for varying stiffness it is also possible to obtain
insight into the combination of thesematerial properties for which the system ismore likely to behave as
a continuous system or as rigid modules. Ultimately, understanding this relation can provide profitable
information in the optimization of a VLFS design.
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1.3.1 Research question & scope
To obtain better understanding in the underlining relation between the hydrodynamic and structural
aspects with regard to the hydroelastic behaviour of a VLFS, the following research question will be
investigated:

How does the bending stiffness of the modules and the rotational stiffness of the connections
relate to each other in terms of their influence on the response of a multi-module VLFS, and
what is their effect on the vertical displacement and the bending moment of the system,
considering different wave lengths?

Accordingly, the following sub-topics will be part of the research scope:
(how these sub-topics are presented in this thesis is explained in more detail in the next subsection)

� mathematical formulation of a (multi-module) VLFS model

� numerical methods for solving the analytical problem and the introduction to FEM

� developing a FEM model using Gridap

� model validation and selecting model input parameters

� post-processing and analysing results

1.3.2 Research approach & methodology
The approach to this research question includes a hydroelastic response analysis of a multi-module
VLFS, while looking at the effect of varying stiffness of the modules and the connections. Therefore,
a two dimensional FSI model is set up to analyse the behaviour of the considered structure. First, the
physical problem is described analytically, for which credible assumptions are considered regarding the
problem definition. As a result, the fluid-structure interaction is mathematically described by a coupled
system of partial differential equations (PDEs). To solve this system of equations, the finite element
method (FEM) is applied, where the FE-package Gridap [19] is used to set up and solve the numerical
model, written in Julia programming language [20]. The model will be validated by comparing the
obtained results to previous studies which used a similar problem definition.

Ultimately, results can be obtained regarding the vertical displacements and moment distributions
along the structure. Moreover, the maximum vertical displacement and maximum bending moment
related to varying combinations of the stiffness are calculated and visualized by means of contour
plots. It is discussed that the wavelength-to-structure ratio also has a strong influence on the response.
The (maximum) vertical displacement and the bending moment are therefore analysed for different
wavelengths.

Figure 1.3: Visual overview of research approach
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Based on these results, conclusions can be drawn regarding the effect of different combinations of the
material properties on the vertical displacement and bending moment, for different wavelength-to-
structure ratios. In addition, this also provides insight into the conditions for which a VLFS is more
likely to behave as a continuous or a discrete system, according to the aspects considered in this thesis.

1.3.3 General outline of the thesis

Chapter 1: Introduction & research objective

Chapter 2: Mathematical formulation multi-module VLFS
Appendix A:

Mathematical formu-
lation single VLFS

Chapter 3: Numerical model Appendix B:
Introduction to FEM

Appendix D:
Gridap tutorial to
build FEM modelChapter 4: Results of hydroelastic analysis

Numerical results for varying �1, �, :
Part I: plots of displacements and moment distri-

bution along the structure
Part II: contour plots of max. displacement and

max. bending moment

Appendix C:
Results of part I

Chapter 5: Discussion

Chapter 6: Conclusion

Chapter 7: Recommendations





2
Analytical Formulation of

Multi-Module VLFS Model
The aim of this research is to obtain more insight in the relation between the stiffness of the modules
and the connections, and how this relation affects the vertical displacement and bending moments of a
multi-module VLFS. To this end, a hydroelastic response analysis is performed. The physical problem
is represented by a schematized model that considers the coupling between the fluid and the structure;
also known as Fluid-Structure Interaction (FSI).

As discussed in subsection 1.2, the VLFS can be modeled as a discrete or continuous system. Con-
sidering the research objective, it is important to include possible variations in flexibility into the model,
such that the stiffness of the different components can vary between lower and higher values (i.e flexible
and rigid). As a starting point, the elasticity of the system is therefore determined to be continuously dis-
tributed along the structure and so the coupled system is represented analytically by a continuousmodel.

The multi-module VLFS discussed in this thesis consists of four floating platforms, interconnected
through rotational springs. The floating platforms are schematized by four one-dimensional beams, for
which the Euler-Bernoulli beam theory is applied. The water is represented by a two-dimensional fluid
domain. Themathematical formulations and underlying assumptions related to a single Euler-Bernoulli
floating beam model are discussed in detail in appendix A. The governing equations and assumptions
for this single beam model form the basis for the model of the multi-module VLFS. Therefore, the ana-
lytical formulation is described in a similar way as discussed in appendix A. First, the problem definition
is drawn up and defined by several assumptions, which will determine the frame of reference for which
the system is solved. Subsequently, the mathematical formulation of the system is derived, including
the governing equations, with the related boundary and interface conditions. As a result, the complete
statement of the problem is described by a system of partial differential equations (PDEs), expressed
in the frequency domain. In the last section, two different methods are briefly discussed to solve the
defined problem.

2.1 Problem Definition: Multi-Module VLFS
As shown in figure 2.1, the multi-module VLFS is represented by four floating one-dimensional beams,
based on the Euler-Bernoulli theory, interconnected by rotational springs. The structure is located on
a two-dimensional fluid domain, where the whole system is defined in a Cartesian (G,I-)coordinate
system. The beams will only perform small displacements in vertical direction and it is assumed that
the system is linear.

The structural elements are considered to be homogeneous, where the bending stiffness, the mass
density, the height, and the length of each beam are denoted as ��, �1 , ℎ1 , and �!, respectively. The
mass of the structure and the bending stiffness are related to each other; when considering the second
moment of inertia for a rectangular cross-section, � = 1

121ℎ
3, the mass is proportional to the beam height

to the power of one, and the bending stiffness to the power of three. As shown in figure 2.1, the pa-

7
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rameter �1 is therefore introduced, to account for this dependence when varying the bending stiffness.
Furthermore, the beams are connected to each other by means of rotational springs. For each spring,
the rotational stiffness is indicated as :A , where :A is generally defined as the bending stiffness over the
length, multiplied by the rotational stiffness parameter �.

Regarding the fluid domain, it is assumed that the water is inviscid, incompressible, and has irro-
tational flow. Similar to the single-beam model (see section A.1), the same arguments apply with
respect to these assumptions. The fluid domain has a constant depth, 3, and a constant density, �F . The
domain is defined by vertical boundaries, Γ±∞, the bottom surface, Γ1 , the free water surface, Γ 5 B , and
the interface between the beams and the fluid, ΓBCA .

Looking at the wave excitation for this model, the structure is subject to small, single frequency, head
waves with a wavelength �, where the incident wavelength is related to the total length of the structure,
by means of the parameter . Consequently, the linear (Airy) wave theory is assumed to be valid,
provided that the beams are always in contact with the fluid [18]. Based on the linear wave theory, the
wave frequency $ and the incident wave length � are related through the dispersion relation as defined
in section A.1.

Figure 2.1: 2D multi-module VLFS model

2.2 Mathematical Formulation in the Frequency Domain
The excitation of the waves changes the water pressure and the elevation at the water surface, causing
vertical displacements of the floating beams. This interaction between the motion of the water and the
displacement of the structure is mathematically described by equations that depend on space and time.
To solve these partial differential equations, boundary and interface conditions are required. Therefore,
the resulting system of PDEs includes the following components:

- equation of motion (EoM) of the fluid

- equation of motion (EoM) of the VLFS

- boundary conditions (BCs) for the fluid domain

- interface conditions (ICs) for fluid-structure interface

- boundary conditions (BCs) for the structural domain
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2.2.1 Governing equations and conditions
As mentioned, this model is subject to the same assumptions and wave conditions as the single beam
model described in appendix A.2. This allows the EoM and BCs to be derived in a similar manner.
The applied equations are therefore only briefly explained in this chapter, where the derivations are
explained in more detail in the appendix A.2.

Based on the assumptions, it is more convenient to solve the system of PDEs in the frequency do-
main. In section A.3 the transformation from the time domain to the frequency domain is discussed, by
using the Fourier transform pair:

�̃($) =
∫ ∞

−∞
6(C) 4−8$C 3C and 6(C) = 1

2�

∫ ∞

−∞
�̃($) 4 8$C 3$ (2.1)

Due to the linearity of the system, this approach may be applied and each quantity in the time do-
main is rewritten in its respective term in the frequency domain. Hence, all equations for this model
are expressed in terms of their space dependence in the frequency domain, where all quantities are
complex-valued and are frequency dependent [21]. Consequently, the solution to the problem will be
solved considering the steady-state solution.

For convenience, the space and frequency dependence has been omitted from the arguments below

Equation of motion of the fluid

Based on the aforementioned assumptions with respect to the fluid characteristics, the motion of the
fluid can be described in terms of the velocity potential ), which satisfies the Laplace equation in the
fluid domain. Hence, both the Laplace equation and the expression for the water pressure are defined
as follows:

∇2) = 0 in Ω (2.2)

− 8$) +
?

�F
+ 6I = 0 in Ω (2.3)

→ ? = −�F 6I + 8$�F)

With water density �F , gravitational constant 6, vertical coordinate I, imaginary number 8, and the
frequency $.

Equation of motion of the VLFS

According to the Euler-Bernoulli beam theory, the equation of motion for floating structure is described
as follows:

− $2�1ℎ1F + ��
%4F

%G4 = ?
��
ΓBCA

on ΓBCA (2.4)

Where F is the displacement of the structure in z-direction and ? is the pressure at the water surface
acting on the bottom of the VLFS, i.e. the interface of the structure and the fluid. Similar to the single
beam model, for the flexible floating beam system as presented here, the effects of structural damping
in the system can be neglected [18].
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Boundary conditions fluid domain

As shown in figure 2.1, the fluid domain is bounded by the seabed, Γ1 , the water surface, which is
divided into Γ 5 B and ΓBCA , and the vertical boundaries, described as Γ−∞ and Γ+∞. For each boundary,
the following conditions are defined:

Seabed
At the seabed no water is allowed to flow through the bottom. Therefore, the spatial derivative of the
potential ), normal to the seabed is equal to zero:

®= · ∇) = 0 on Γ1 (2.5)

Vertical boundaries
Thewaves propagate fromx= -∞ to x=+∞, requiring no reflections at the vertical boundaries. Therefore,
the Sommerfeld radiation conditions should be satisfied at Γ−∞ and Γ+∞ [17]:

®= · ∇) = 8:) on Γ+∞ (2.6)
®= · ∇) = −8:) on Γ−∞ (2.7)

Free surface
At the surface, the water should satisfy both a kinematic and a dynamic boundary condition, where the
function � is introduced to describe the surface elevation of the water1. With regard to the kinematic
boundary condition at the free surface, Γ 5 B , the water particle velocity in normal direction to the surface
should be equal to the velocity of the surface elevation [22]. Regarding the dynamic condition, the water
pressure at the surface (see eq 2.3) should be equal to the atmospheric pressure, i.e. equal to zero:

kinematic: ®= · ∇) = −8$� on Γ 5 B (2.8)
dynamic: − 8$) + 6� = 0 on Γ 5 B (2.9)

Fluid-structure interface
Also at the fluid-structure interface both a kinematic and a dynamic condition is defined, based on
the assumption that the structure is always in contact with the water surface. Accordingly, for the
kinematic condition, the elevation of the water surface is equal to the displacement of the floating
beams. Considering the dynamic boundary condition, the water pressure at the surface acts as a
distributed load at the bottom of the structure. Hence, the expression for the water pressure (see eq.
2.3) is substituted in the EoM of the VLFS (see eq. 2.2):

kinematic: − 8$F = −8$� → −8$F = ®= · ∇) on ΓBCA (2.10)

dynamic: − $2�1ℎ1F + ��
%4F

%G4 = �F 8$) − �F 6� on ΓBCA (2.11)

Boundary conditions structural domain

With regard to the boundary conditions of the structure, the moments and shear forces at its free ends
should be equal to zero. Consequently, at G = 0 and G = !, the following four dynamic BCs must be
satisfied:

%2F

%G2

���
G=0

=
%3F

%G3

���
G=0

= 0 on ΓBCA (2.12)

%2F

%G2

���
G=!

=
%3F

%G3

���
G=!

= 0 on ΓBCA (2.13)

1i.e. the elevation in water surface, measured relative to the mean water level, caused by waves that are only subject to gravity
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Thebeamsare interconnected through rotational springs, hence, someadditional interface conditions are
defined at the connections. At each connection point, G = G 9 on ΓBCA , both the kinematic conditions (i.e.
continuity in displacement and rotation) and the dynamic boundary conditions (i.e. force equilibrium)
are determined accordingly:

F
��
G−
9

= F
��
G+
9

(2.14)

%F

%G

���
G−
9

=
%F

%G

���
G+
9

(2.15)

��
%2F

%G2

���
G−
9

= ��
%2F

%G2

���
G+
9

= :A

(
%F

%G

���
G−
9

− %F

%G

���
G+
9

)
(2.16)

��
%3F

%G3

���
G−
9

= ��
%3F

%G3

���
G+
9

(2.17)

To conclude, the motion of the fluid is described by the Laplace equation within the fluid domain,
where the equation of motion for the structure is substituted as a complex boundary condition for the
fluid-structure interface. Together with the other boundary conditions as defined above, this results in
a well-posed problem, which can now be solved.

2.3 Solution Methods for Solving FSI Problems
In general, the stated problem can be solved using two different methods:

1. Numerical methods

2. Semi-analytical methods

The numerical methods (i.e. Finite Element Models (FEM) or Finite Differences (FD)) involve compu-
tational models which discretize the domain (FE) or substitute the differentials with finite differences
[21]. The semi-analytical methods are based on the responses of the system which are expressed in
terms of a summation of fluid and structural modes. A commonly used semi-analytical approach is the
so-called modal decomposition method, where the motions of the structure and the fluid are described
by a summation of functions.

The system of PDEs is dependent on several variables, making it complex to solve such a model
analytically. In addition, the velocity potential at the surface, and vertical boundaries of the fluid must
satisfy a condition that includes the argument of the unknown parameter itself, which requires iterative
calculations to describe the behaviour of the water. The formulated problem is therefore considered
to be too complex to solve (semi-)analytically. Hence, the FSI problem will be analysed by means of a
numerical model, using the Finite Element Method.





3
Numerical Model of Multi-Module

VLFS
In the previous chapter, the physical problem of a multi-module VLFS was schematized, where the
mathematical formulation resulted in a coupled system of PDEs. To solve PDEs, the Finite Element
Method (FEM) is often used because it provides efficient computational implementation. Develop-
ing a generic numerical model also serves further design purposes as it offers the possibility to easily
simulate the response of the system for different inputs parameters with respect to e.g. material prop-
erties, shapes, and configurations. Therefore a 2D FEM model is built, where the model is written
in the Julia programming language, using the FE-library Gridap. The computational implementation
of Gridap and the problemdescriptionwith respect to the numerical domain are discussed in section 3.1.

An introduction to FEM is discussed in appendix B, where the general steps for the implementation of
the method are explained in more detail. An important part in the FEM approach is the derivation of
the ’weak form’ of the PDEs and the spatial discretization. Hence, these aspects are discussed in section
3.2. A tutorial is included in appendix D, which contains complete instructions to set up the FEMmodel
and to solve the FSI problem with Gridap.
Finally, the model is validated using results from a study by Riyansyah et al. [18], who looked at the
hydroelastic behaviour of a VLFSmodel consisting of two floating beams, interconnected by a rotational
spring.

3.1 FEMModel Set-up using Gridap
The FEM model is developed using the library Gridap; which is a ”new Finite Element (FE) frame-
work, exclusively written in the Julia programming language, for the numerical simulation of a wide
range of mathematical models governed by partial differential equations” [19]. Julia is an open source
programming language which combines the performance of compiled languages like C/C++, with the
productivity of scripting languages such as Python and it is therefore one of the fastest languages at the
moment, while providing a high-level user front-end [20].
Accordingly, Gridap has been implemented in Julia to provide a high-performing, accessible framework
for working with FE libraries in order to solve complex PDE systems, both linear and non-linear. Due
to its indicative application programming interface, models in Gridap can be coded in a very compact
way, where the equations can be written with a syntax very close to the mathematical formulation.

Therefore, the FE package Gridap is used to develop the 2D numerical model, based on the gen-
eral application of FEM as discussed in appendix B. Founded on the analytical formulation from the
previous chapter, the numerical model is set up, for which the numerical domain and the associated
boundary conditions are specified in the subsection below.

12
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3.1.1 2D FSI model
The domain as implemented in the FEM model is illustrated in figure 3.1. Based on the analytical
problem definition depicted in figure 2.1, the numerical model is defined by the 2D fluid domain, Ω,
which is bounded by the bottom, Γ1 , the free water surface, Γ 5 B , the vertical boundaries, Γ!,', and
the fluid-structure interface, ΓBCA . In the model, the incident waves propagate from left to right. In
addition to the analytical formulation, the numerical model has additional ’sub-domains’ that act as
damping zones to satisfy the radiation conditions at the vertical boundaries. The implementation of
these damping zones is explained in more depth in subsection 3.1.2.

Figure 3.1: 2D numerical FSI model

According to the mathematical formulation discussed in section 2.2, the problem is defined by the
Laplace equation within the domain:

∇2) = 0 in Ω (3.1)
with the conditions at the bottom and the vertical boundaries,

®= · ∇) = 0 on Γ1 (3.2)
®= · ∇) = 0 on Γ' (3.3)
®= · ∇) = ®= · ∇)inc on Γ! (3.4)

and the conditions at the free surface and the fluid-structure interface,

−8$� −
%)

%I
+ �1(� − �inc) +

�2

6
() − )inc) = 0 on Γ 5 B (3.5)

−8$) + 6� = 0 on Γ 5 B (3.6)

−8$� −
%)

%I
= 0 on ΓBCA (3.7)

−$211� + 12
%4�

%G4 − 8$) + 6� = 0 on ΓBCA (3.8)

where 11 =
�1 ℎ1
�F

, and 12 =
��
�F

Looking at equations 2.12 to 2.17, additional conditions have also been defined at the free ends of
the structure and at the connections. How these conditions are implemented in the numerical model is
explained in section 3.2.

Remark. The equation of motion for the structure is substituted as a complex boundary condition of the fluid
domain, at the interface between fluid and structure. For computational convenience, the vertical displacement of
the structure - previously indicated with F - is therefore rewritten in terms of the surface elevation �. Moreover,
due to the damping zones, the kinematic BC for the free surface contains some additional terms, while the BCs for
the vertical boundaries are adjusted (see subsection 3.1.2).
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According to the linear wave theory, the potential of the incident wave )inc for perpendicular waves and
considering water of finite depth, is written in the following form [23]

)inc =
6�F

8$

cosh :(I + 3)
cosh :3 e8:G (3.9)

Where �F is the wave amplitude of the incident wave. As mentioned earlier, the incident wave number
:, the wave frequency $, and the incident wavelength �, are related through the dispersion relation as
defined in section A.1.

Consequently, the expressions for the surface elevation of the incident wave �inc and the velocity of
the fluid in x-direction over the boundary Γ! are formulated as follows:

%)inc

%I
= −8$�inc → �inc =

6�F :

$2
sinh :(I + 3)

cosh :3 e8:G (3.10)

®= · ∇)inc
��
Γ!

→
%)inc

%G
=
6�F :

$

cosh :(I + 3)
cosh :3 e8:G (3.11)

3.1.2 Damping zone
As defined by equation 2.6, the radiation conditions should hold for G → ±∞. This condition requires
for the waves to fully propagate away from the system and should not reflect at the vertical bound-
aries. In other words, towards the vertical boundaries, the wave energy dissipates from the system.
Therefore two damping zones, at both the inlet and the outlet, are constructed in the model; to as-
sure energy dissipation at Γ!,' such that the BCs for G → ±∞ are satisfied. As a result, the BC at Γ! is
nowdetermined by the predefined expression for the incidentwave, )inc, while the BC at Γ' is set to zero.

The implementation of these damping zones is based on the results of experimental studies conducted
by Kim et al. [24], who performed a numerical analysis of various artificial damping schemes for a
three-dimensional numerical wave tank. In their paper, Kim et al. compared five different damping
methods at the end of the computational domain by introducing a variety of additional terms for the
free surface boundary conditions in the damping zone. They applied two damping coefficients, �1 and
�2, to either the kinematic BC, the dynamic BC or combinations of both. Moreover, four different ramp
functions were investigated to induce a gradual change of the damping magnitude in order to avoid
abrupt changes of free-surface conditions near the entrance of the damping zone [24].

Based on their findings, method 4 is used for the numerical model; where the damping coefficients
�1 and �2 are solely applied to the kinematic boundary condition of the free surface. This results in the
following adjustments for the kinematic BC at Γ 5 B :

damping zone at outlet: − 8$� −
%)

%I
+ �1� +

�2

6
) = 0 (3.12)

damping zone at inlet: − 8$� −
%)

%I
+ �1(� − �∗) +

�2

6
() − )∗) = 0 (3.13)

Where �∗ and )∗ (defined by the incident wave expression) are the reference values when the computa-
tional domain is not disturbed by any structure during the wave propagation [24]. Ultimately, equation
3.13 is used to provide the full expression for the free surface BC including the additional terms for the
damping zones at both sides, where the ramp functions for the coefficients are defined such that they
return the correct value for �1,2 for each of the associated damping zones.

Considering method 4, Kim et al. derived the following relation between the damping coefficients:

�2(G) = −
�1(G)2

4 (3.14)
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Subsequently, a gradual change of the damping magnitude along the damping zone is obtained using
’ramp shape 1’ (see figure 3.2), for which Kim et al. proposed the following ramp function:

�1(G) = �0

[
1 − cos

{
�
2

(
G − G3
!3

)}]
(3.15)

Where !3 and G − G3 are the total length and the local length of the respective damping zone. The input
value, �0, is selected on a trial and error basis, depending on the wave characteristics [24].

Figure 3.2: Ramp shape - damping zone [24]

3.2 Weak Form & Spatial Discretization
In a FEM model, the continuous domain is divided into smaller finite elements, where it is assumed
that the unknown displacements for the entire domain are determined by calculating the displacements
in the nodes of these predefined elements. Subsequently, the interpolation between these nodal points
is described by so-called shape functions, which are associated to the predefined elements. A general
introduction to FEM is discussed in more detail in appendix B. It is pointed out here that in order to
apply the method, the governing equations must be cast in the weak form, where an example the weak
form has been derived for the Laplace equation. Once the weak formulation for the system is derived,
the approximated solution to the system is formulated by means of the spatial discretization, using a
Continuous Galerkin / Discontinuous Galerkin (CG/DG) approach.

3.2.1 Derivation of the weak form
Elaborating on the example as discussed in subsection B.2, here, the Laplace equation is multiplied with
weight function F and integrated over the domain Ω. The equation is then integrated by parts, where
the kinematic conditions are substituted in the expression. Similarly, the equation for the dynamic
boundary conditions is multiplied with weight function E and integrated over the boundary.

As a result, V and VΓ are defined as the functional spaces for the domain Ω, and boundary Γ, in
order to find the solution for [), �] ∈ V × VΓ such that

�([), �], [F, E]) = ;([F, E]) ∀ [F, E] ∈ V × VΓ (3.16)

Where the bilinear form is given by

�([), �], [F, E]) =
∫
Ω

(
∇F · ∇)

)
3Ω + (3.17)∫

Γ

(
6 E � − 8$ E ) + 8$F � − �1 F � −

�2

6
F )

)
3Γ 5 B +∫

Γ

(
(−$211 + 6) E � + 12 ΔE · Δ� − 8$ E ) + 8$F �

)
3ΓBCA
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and the linear form is given by

;([F, E]) =
∫
Γ

(
F ∇)8=

)
3Γ! −

∫
Γ

(
�1 F �8= +

�2

6
F )8=

)
3Γ 5 B (3.18)

Alternatively, the bilinear and linear form can be rewritten in a more concise way:

�([), �], [F, E]) =
(
∇),∇F

)
Ω
+ (3.19)(

6� − 8$), E
)
Γ 5 B
+

(
8$� − �1� −

�2

6
), F

)
Γ 5 B
+(

(−$211 + 6)� − 8$), E
)
ΓBCA
+

(
12Δ�,ΔE

)
ΓBCA
+

(
8$�, F

)
ΓBCA

;([F, E]) =
(
∇)8= , F

)
Γ!
−

(
�1�8= +

�2

6
)8= , F

)
Γ 5 B

Boundary conditions at the free ends of the structure

The boundary conditions at the free ends of the structure (see eq 2.12 and 2.13) are indirectly substituted
in the bilinear form. In deriving the weak formulation, equation 3.8 is multiplied by the weight function
E and integrated over its associated boundary, i.e. the boundary ΓBCA . Subsequently, the second term of
equation 3.8 is then integrated by parts twice, which results in:∫

Γ

(
12 E · Δ2�

)
3ΓBCA =

∫
Γ

(
12 ΔE · Δ�

)
3ΓBCA + 12 ∇E · Δ�︸       ︷︷       ︸

≡"

���!
0
+ 12 E∇(Δ�)︸       ︷︷       ︸

≡+

���!
0

(3.20)

Considering the BCs, the moments and shear forces are equal zero at the free ends (G = 0 and G = !).
Therefore, the last two terms will disappear from the expression, leaving only the first term in the
bilinear form.

3.2.2 Spatial discretization - CG/DG approach
According to the Galerkin method, as discussed in appendix B.3, an approximation to the exact solution
can be described by the sum of known shape functions and the displacements at the nodes of the
respective elements. Hence, for the potential flow this would result in:

)ℎ =
=∑
8=1

#8 )̂8 (3.21)

Therefore, the continuous domain is discretized by means of a FE mesh. The discretized domain is
defined byΩℎ and the discrete boundary facets associated with the FE mesh are described by Γ1,ℎ , Γ!,ℎ ,
Γ',ℎ , Γ 5 B ,ℎ , and ΓBCA,ℎ . In addition, a set of interior facets of the elements is defined, where the interior
between the facets of ΓBCA,ℎ are defined by ΛBCA,ℎ .

There are two important considerations regarding the bilinear form to ensure that the problem can
be solved and that the solution is unique. The first one is continuity. The bilinear form in equation 3.17
contains both first, and second order derivatives. The finite element spaces therefore require continuous
gradients between elements, i.e. C1 continuity across elements. This can be achieved by selecting types
of finite elements, e.g. Hermite elements, which ensure this continuity condition.
However, Colomés et al. [25] proposed an alternative formulation based on a Continuous Galerkin /
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Discontinuous Galerkin (CG/DG) approach for fourth order operators, where the discrete functions
are continuous at the element nodes, but the gradient is discontinuous. Therefore, linear Lagrangian
elements can be applied, while continuity of the gradient over adjacent elements is weakly enforced by
means of an interior penalty approach.

Regarding this interior penalty approach, the jump, and mean value operators are introduced. The
general formulation of these operators suggests that for a given function E ∈ V (restricted to the interior
facets)

[E =] � E+ =+ + E− =− , (3.22)

{∇E} � ∇E
+ + ∇E−

2 , (3.23)

with E+, and E− being restrictions to the cells that share a generic interior facet, and =+, and =− are the
facet outward unit normals from either of the respective element [26].

Secondly, coercivity should be guaranteed in order for the numerical system to be stable. To this end,
Akkerman et al. [27] proposed a monolithic weak formulation, that includes additional terms to the
weight function E, regarding the conditions at the free surface. This results in a bilinear form where
the free surface condition contains an extra term  5F added to the weight function E, multiplied by a
constant �ℎ . The approach to ensure coercivity by applying these additional terms is further explained
in subsection 3.2.3.

Hence, the stabilization terms are included in the bilinear formulation according to theCG/DGapproach
proposed by Colomés et al. [25]; in order to find the approximated solution for [)ℎ , �ℎ] ∈ V̂ℎ × V̂Γ,ℎ such
that

�̂ℎ([)ℎ , �ℎ], [Fℎ , Eℎ]) = ;ℎ([Fℎ , Eℎ]) ∀ [Fℎ , Eℎ] ∈ V̂ℎ × V̂Γ,ℎ (3.24)

Where the bilinear form is given by

�̂ℎ([),�ℎ], [Fℎ , Eℎ]) =
(
∇)ℎ ,∇Fℎ

)
Ω,ℎ

+ (3.25)

�ℎ
(
(6�ℎ − 8$)ℎ), (Eℎ +  5Fℎ)

)
Γ 5 B ,ℎ
+

(
8$�ℎ − �1�ℎ −

�2

6
)ℎ , Fℎ

)
Γ 5 B ,ℎ

+( (
(−$211 + 6)�ℎ − 8$)ℎ

)
, Eℎ

)
ΓBCA,ℎ +

(
8$�ℎ , Fℎ

)
ΓBCA,ℎ

+(
12Δ�ℎ ,ΔEℎ

)
ΓBCA,ℎ

−

12
( (
{Δ�ℎ}, [∇Eℎ · ®=Λ]

)
+

(
[∇�ℎ · ®=Λ], {ΔEℎ}

) )
ΛBCA,ℎ

+
�<
ℎ

( (
[∇�ℎ · ®=Λ], [∇Eℎ · ®=Λ]

) )
ΛBCA,ℎ

and the linear form is given by

;ℎ([Fℎ , Eℎ]) =
(
∇)8=,ℎ , Fℎ

)
Γ!,ℎ
−

( (
�1�8=,ℎ +

�2

6
)8=,ℎ

)
, Fℎ

)
Γ 5 B ,ℎ

Interface conditions at the connections

The interface conditions at the connections are defined in equations 2.14 to 2.17. Between adjacent beams
continuity must be satisfied regarding the displacement, rotation, shear force, and bending moment,
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where the latter is determined by the difference in gradient of the displacements over the connection,
multiplied by the rotational stiffness of the spring. The approach to weakly force conditions between
adjacent elements bymeans of an extra term in the bilinear form is also used to impose the interface con-
dition regarding the bending moment at the connections. To this end, an additional set of interior facets
is introduced, which represent the interior facets of adjacent elements at the locations of the connections,
denoted by Λ9 . Subsequently, the interface condition regarding the moments at the connections, are
weakly forced through an additional term in the bilinear form.

Including the interface conditions at the connections, the complete bilinear form is given by

�̂ℎ([),�ℎ], [Fℎ , Eℎ]) =
(
∇)ℎ ,∇Fℎ

)
Ω,ℎ

+ (3.26)

�ℎ
(
(6�ℎ − 8$)ℎ), (Eℎ +  5Fℎ)

)
Γ 5 B ,ℎ
+

(
8$�ℎ − �1�ℎ −

�2

6
)ℎ , Fℎ

)
Γ 5 B ,ℎ

+( (
(−$211 + 6)�ℎ − 8$)ℎ

)
, Eℎ

)
ΓBCA,ℎ +

(
8$�ℎ , Fℎ

)
ΓBCA,ℎ

+(
12Δ�ℎ ,ΔEℎ

)
ΓBCA,ℎ

−

12
( (
{Δ�ℎ}, [∇Eℎ · ®=Λ]

)
+

(
[∇�ℎ · ®=Λ], {ΔEℎ}

) )
ΛBCA,ℎ

+
�<
ℎ

( (
[∇�ℎ · ®=Λ], [∇Eℎ · ®=Λ]

) )
ΛBCA,ℎ

+

:A

�F

( (
[∇�ℎ · ®=Λ9 ], [∇Eℎ · ®=Λ9 ]

) )
Λ9 ,ℎ

Ultimately, the full numerical domain and FE spaces are constructed with Gridap; where linear La-
grangian FEs are used as reference elements (see section B.3 and B.4). To find a solution for the 2D
model, the bilinear form as stated above is then solved, where the last row of equation 3.26 weakly
forces the conditions at the connections and the third, and second last row weakly forces continuity of
the surface elevation gradients between structural elements. The tutorial in appendix D provides the
complete instructions to set up the FEM model and to solve the FSI problem with Gridap.

3.2.3 Coercivity
As mentioned earlier, to obtain a solvable problem, the bilinear form should be coercive to avoid
numerical instabilities. The formal definition states that a bilinear form is coercive (on a Hilbert space
V) if there exists a constant 0 < � < ∞ such that

� | |D | |V | |D | |V ≤ |1([D, D])| (3.27)

For the full domain to be coercive, coercivity at the free surface should to be guaranteed. Accordingly,
Akkerman et al. [27] introduced the monolithic weak formulation regarding a 2D fluid domain, which
contains additional terms to the weight function E for the free surface condition such that:

�([), �][F, E]) =
(
∇),∇F

)
Ω
+ �ℎ

(
(6� − 8$)), (E +  5F)

)
Γ 5 B
+

(
8$�, F

)
Γ 5 B

(3.28)

Remark. In the bilinear form as described above, the terms for the conditions at the fluid-structure interface (ΓBCA ,
ΛBCA and Λ9) and the damping zones are left out for convenience.
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Considering the formal definition of a coercive system, next, theweight functionsF and E are substituted
in the altered bilinear form to replace the expressions for ) and � such that:

�([F, E][F, E]) =
(
∇F,∇F

)
Ω
+ �ℎ

(
(6E − 8$F), (E +  5F)

)
Γ 5 B
+

(
8$E, F

)
Γ 5 B

(3.29)

= | |∇F | |2
Ω︸  ︷︷  ︸

≥0

+ 6�ℎ | |E | |2Γ 5 B︸      ︷︷      ︸
≥0

+ �ℎ 6 5 (E, F)Γ 5 B − �ℎ 8$(E, F)Γ 5 B −

�ℎ 8$ 5 | |∇F | |2Γ 5 B︸              ︷︷              ︸
≥0

+ 8$(E, F)Γ 5 B

This results in a bilinear form which contains expressions of the weight functions in terms of the
corresponding norms and the innerproducts over the domain and the free surface. Regarding the
innerproducts, the following should apply to obtain the expression for  5 for which the system is
coercive:

(E, F)Γ 5 B
[
�ℎ 6 5 − �ℎ 8$ + 8$

]
= 0 →  5 =

−8$
�ℎ 6

[
1 − �ℎ

]
Using this expression for  5 , the value for �ℎ can be obtained, such that the statement of equation 3.27
is satisfied and coercivity on the free surface has been proven. Accordingly, the model is determined to
be stable for �ℎ = 0.5 [27].

3.3 Model Validation
The validation of the model is assessed by reproducing results obtained by Riyansyah et al. [18], who
in turn compared the outcome of their computations with the results obtained by Khabakhpasheva and
Korobkin [28]. The set up of the model introduced by Riyansyah et al. [18] is illustrated in figure 3.3,
where the input conditions of the numerical models used by both of the aforementioned researchers are
presented in Table 3.1.

Figure 3.3: Numerical model of Riyansyah et al. [18]

Looking at the numerical simulations performed in both studies, the normalized deflectionwas obtained
over the length of a system consisting of two floating beams, with the front beam having greater bending
stiffness than the rear beam. Subsequently, the results were computed for two types of connections,
namely a simple hinge and a rigid connection.



3.3. Model Validation 20

Table 3.1: Input numerical model of Khabakhpasheva and Korobkin [28], used by Riyansyah et al. [18]

Parameter Symbol Magnitude
Total length of the beam ! 12.5 m
Mass density of beam system <1 8.36 kg/m
Flexural rigidity ��1, ��2 47 100 Nm, 471 Nm
Beam 1 flexural rigidity parameter �1 1
Beam 2 flexural rigidity parameter �2 1
Connection location parameter � 0.20
Connection rotational stiffness parameter � 0 and 625
Fluid domain length ; 25 m
Water depth 3 1.1 m
Wavelength-to-beam length ratio  0.249

As shown in figures 3.4a and 3.4b, the results obtained by the model built using Gridap (see lower
figures), seem to agree well with the results produced by Riyansyah et al.[18], and Khabakhpasheva and
Korobkin [28] (see upper figures).

(a) hinge, � = 0 (b) semi rigid, � = 625

Figure 3.4: Test runs - replication of results by Riyansyah et al. [18]





4
Results of Hydroelastic Analysis

In this chapter, the results of the hydroelastic analysis are discussed. First, to get a global overview
of the effects of varying the bending stiffness of the beams and the rotational stiffness in the connec-
tions, the vertical displacements and bending moments are computed over the total length of the VLFS.
The variations in the bending stiffness and the rotational stiffness are defined by different values of
the parameters �1 and �, respectively. Accordingly, the normalized vertical displacement amplitude
and the bending moment distribution are obtained for nine different combinations of the two stiffness
quantities. These effects are discussed in section 4.2, based on the results shown in appendix C. In this
part of the analysis, three different type of modules (i.e. flexible, semi-rigid, and rigid) and three types
of rotational springs (i.e hinge, semi-rigid, and rigid) are considered, where the results are obtained for
four different wavelength-to-beam length ratios.

The first part of the analysis shows that by altering the bending stiffness and rotational stiffness, the
vertical displacement can be reduced. However, this may have a negative effect on the maximum bend-
ing moment. To gain more insight into this trade-off between minimizing the displacement and the
bending moments, contour plots have therefore been plotted in section 4.3; this visualizes the maxi-
mum displacement and the maximummoments, taking into account a range of values for both stiffness
quantities.

4.1 Input Parameters
To perform the hydroelastic analysis, the incident wave conditions need to be determined, together
with some initial values for the material properties of the structure. For the analysis considering the
normalized displacement andmoments distributions along the structure, the input parameters are sum-
marized in table 4.1. The input parameters used in the analysis regarding the maximum displacements
and maximum moments are summarized in table 4.2.

With respect to the input parameters of the structure, the beams are considered to have a height of
2m. The initial value of the Young’s modulus is set to 12 GN/m2, with a corresponding density of
250 kg/m2 unit per width. As mentioned in section 2.1, the proportionally between the mass and the
bending stiffness is included through the bending stiffness parameter �1, where the mass is defined by
�1�1ℎ1 and the bending stiffness by �3

1��. Moreover, the rotational stiffness of the springs is defined by
���/!. Accordingly, to analyse the effects of varying the bending stiffness, different values of bending
stiffness parameter �1 are considered; Similarly, the analyses are performed for different values for the
rotational stiffness parameter �.

4.1.1 Incident wave conditions
As discussed in chapter 2, the model is based on the linear wave theory. Therefore, relatively mild
wave conditions will be considered for the incident wave. Moreover, it is assumed that VLFS is subject
to monochromatic waves. These conditions correspond to swell waves, which typically have a wave
period around 10 seconds [22]. Figure 4.1 shows a graph which indicates the regions of validity for

21
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different wave theories. Hence, the hydroelastic analysis is performed using the following wave condi-
tions, while assuming awave period T = 10 seconds and considering the relations as defined in figure 4.1:

wave height: H = 1.25 m wave period: T = 10 s water depth: d = 30 m

With these values for the incident wave period and the water depth, the incident wave length is
calculated, using the wave dispersion relation:

$ =
2�
)

→ � =
6)2

2� tanh 2�3
�

=
9.81 · 102

2� tanh 2� · 30
�

≈ 140m

It was alreadymentioned in section 1.2 that the response of the system is influenced by the ratio between
incident wave length and the length of the structure, which is defined by the parameter . Hence, the
analysis will be performed for different values of , by varying the length of the structure.

Figure 4.1: Indication for the validity of wave theories [29]

4.2 Numerical Results: Displacements & Moments along Structure
To get a global overview of the hydroelastic response to different values of the stiffness parameters
and wavelength-to-beam-length ratios, first, the normalized vertical displacement and moment distri-
bution are plotted over the length of the structure; using the input parameters as summarized in table 4.1.

In appendix C, figures C.1, C.3, C.5, and C.7 show the numerical results of the normalized vertical
displacement amplitude along the structure, for four different values of the wavelength-to-beam-length
ratio . For each value of , the figure contains nine sub-figures, showing the results for nine different
combinations of �1, i.e. the bending stiffness of the beam elements, and �, i.e. the rotational stiffness of
the connections. In each row the three different values of �1 increase from the right sub-figure to the
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left one, while for each column the three different values of � increase from the top sub-figure to the
bottom one. The moment distributions along the structure are presented in a similar way in figures C.2,
C.4, C.6, and C.8, for the same combinations of values for �1, and �.

Table 4.1: Input parameters model - numerical results along the structure

Parameter Symbol Magnitude
Total length of the structure ! 300 m, 500 m, 1000 m, 2000 m
Height of the structure ℎ1 2 m
Density of beam system �1 250 kg/m3

Young’s modulus � 12 GN/m2

Bending stiffness parameter �1 0.2, 1.0, 2.0
Connection location parameter � 0.25
Connection rotational stiffness parameter � 0, 6, 650
Fluid domain length (ext. damping zones) ; 2 x L
Water depth 3 30 m
Wave amplitude �F 0.75 m
Wavelength-to-beam length ratio  0.47, 0.28, 0.14, 0.07

4.2.1 Effects on normalized vertical displacement
The effects on the normalized vertical displacement amplitude are discussed here for each variable.
Overall, the maximum displacements are located at the free ends for the majority of the structures,
where the results show that the relation between the system’s response and the varying material prop-
erties is non-linear.

Effects of varying rotational stiffness
The hydroelastic response of the interconnected structure approaches the response of a continuous
structure when the rotational stiffness of the connections increases. This effect is clearly visible in all
figures C.1, C.3, C.5, and C.7, when the top row of sub-figures is compared with the bottom row; in the
sub-figures for � = 650, the locations of the connections are difficult to trace.

In general, when the rotational stiffness decreases, the normalized vertical displacement around the
connections increases. This can be seen in the sub-figures for � = 6 and � = 0, showing clear spikes
at the connection points. For any value of , it appears that there is no significant difference in the
normalized displacement for flexible modules (�1 = 0.2), when combined with hinges or semi-rigid
connections. However, figures C.3g, C.5g, and C.7g show that the use of rigid connections does affect
the response of flexible modules for the three smallest values of ; although the average value of the
normalized displacement remains the same, the rigid connections (in addition to a decrease in the verti-
cal response at the connection points) also cause a decrease in the fluctuations of the normalized vertical
displacement over the entire structure. This effect is strongest for the structure with  = 0.28 (see figure
4.2), where the rigid connections result in an almost constant value for the normalized displacement
amplitude over the entire length.
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(a) �1 = 0.2, � = 0 (b) �1 = 0.2, � = 6 (c) �1 = 0.2, � = 650

Figure 4.2: Effect of different type of connections on flexible structures ( = 0.28)

Effects of varying bending stiffness
Regarding the stiffness of the modules, it can be seen that increasing the bending stiffness reduces the
normalized vertical displacement along the structure. Moreover, for the stiffestmodules, combinedwith
hinges or semi-rigid connections, the response tends to gradually decrease towards the downstream
side. Yet, themaximumnormalized displacements at upstream free ends are often larger for (semi-)rigid
modules with hinged connections, compared to flexible ones. The structures with flexible modules tend
to follow the natural harmonic shape of the incoming wave and clearly show the response associated
with a continuous structure.

Although the maximum vertical response along the structure is generally reduced by increasing the
stiffness, the gradient of the vertical displacement becomes larger, where this effect is strongest for stiffer
modules with hinged connections. An example of this effect caused by increasing the bending stiffness
is given in figure 4.3, for a structure with hinged connections and a wavelength-to-beam-length ratio of
 = 0.14.

(a) �1 = 0.2, � = 0 (b) �1 = 1.0, � = 0 (c) �1 = 2.0, � = 0

Figure 4.3: Effect of increasing beam stiffness for structure with hinge connections ( = 0.14)
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Effects of varying wavelength-to-beam-length ratio
As the length of the modules increases, the value for  becomes smaller, resulting in a more oscillating
response along the structure. It can be seen that the local deflections along the structure therefore
become more significant.

Whether the (semi-)rigid structures react more as rigid modules or as a continuous system is - in
addition to the type of connections - also influenced by the ratio between the wavelength and the length
of the structure. Looking at the largest value for , the wave length is approximately 2 times larger
than the length of an individual beam element. The results regarding this ratio show that the beams
behave more as rigid modules, especially for the stiffer structures with a lower rotational stiffness. The
same holds for  = 0.28, where the incoming wave is approximately the length of an individual beam.
However, when the wave length becomes smaller than the length of an individual beam (i.e. lower two
values of ), the response shows more oscillating behaviour along the structure, also for structures with
a high bending stiffness. An example of this change in the type of response is illustrated in figure 4.4,
for a structure with high bending stiffness and semi-rigid connections.

(a)  = 0.47 (b)  = 0.28 (c)  = 0.14

Figure 4.4: Effect of wavelength-to-beam-length ratio (�1 = 2.0, � = 6)

4.2.2 Effects on bending moment
The moment distributions along the structure are presented in figures C.2, C.4, C.6, and C.8. For the
design of VLFSs, it is important to consider the maximum bending moment. As mentioned in section
1.3, there is a trade-off between the minimum vertical displacement and the maximum moments that
occur. Equation 2.16 shows that the moment is defined as the second derivative of the displacement
multiplied by the bending stiffness. Therefore, increasing the bending stiffness evidently increases the
moments in the structure, which is visible in all the results shown in appendix C. Yet, it appears that
for larger values of , the increase in bending moment between semi-flexible and rigid modules with
hinged connections is minimal.

Regardless of the wavelength-to-beam-length ratio or the rotational stiffness of the connections, it can
be seen that there is no difference in the maximum moments for the flexible modules. The only effect
that the rotational stiffness has on the moment distribution is that for the structures with hinges, the
moments at the connections converge to zero.

For both the semi-flexible and rigid modules, it appears that increasing rotational stiffness of the
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connections reduces the maximum bending moment, when looking at the results for  = 0.14 and
 = 0.07. This effect is larger for higher bending stiffness. On the contrary, increasing the rotational
stiffness leads to an increase in the maximum bending moment, for the structures subject to the larger
wavelength-to-beam length ratios.

4.3 Numerical Results: Maximum Displacements & Moments
The results presented in appendix C give a good impression of the behaviour of the VLFS for the dif-
ferent combinations of stiffness and wavelength ratios and they show the strong coupling between the
different variables and the response of the structure. However, an unambiguous distinction is difficult
to make regarding the most effective contribution of each individual variable.
Therefore, the maximum normalized vertical displacement and maximum moment are represented by
contour plots, plotting the bending stiffness against the rotational stiffness. To visualize how the bending
stiffness of the structure and the rotational stiffness of the connections relate to each other in terms of
their influence on the response of a multi-module VLFS.

The input parameters used for this part of the analysis are summarized in table 4.2. The results
are obtained for values in which the two stiffness variables range from flexible to rigid. Accordingly,
values for the bending stiffness parameter vary from �1 ∈ [0.1, 3.0], while for the rotational stiffness
parameter values are considered for � ∈ [0.001, 650].

The results from the previous section showed that the largest shift in structure behaviour occurred
at the transition from wavelengths longer than the length of an individual beam to wavelengths shorter
than a single beam. Therefore, the results are obtained with respect to  = 0.28 and  = 0.14 in this part
of the analysis, when considering the effects of varying wavelength-to-beam length ratios.

Table 4.2: Input parameters model - numerical results contour plots

Parameter Symbol Magnitude
Total length of the structure ! 500 m, 1000 m
Height of the structure ℎ1 2 m
Density of beam system �1 250 kg/m3

Young’s modulus � 12 GN/m2

Bending stiffness parameter range �1 0.1 - 3.0
Connection location parameter � 0.25
Connection rotational stiffness parameter range � 0.001 - 650
Fluid domain length (ext. damping zones) ; 2 x L
Water depth 3 30 m
Wave amplitude �F 0.75 m
Wavelength-to-beam length ratio  0.28, 0.14

4.3.1 Contour plots - maximum normalized vertical displacement
For both values of , the results in figures 4.5 and 4.6 show that when � is greater than 130, applying a
higher rotational stiffness has no further effect on the maximum vertical displacement.
For structureswith rigid connections it is clear that the largest displacements are found for (semi-)flexible
modules where the largest displacements appear for �1 ≈ 0.65. Although the results for � > 130 show
that increasing the beam stiffness generally reduces the maximum displacement, this trend is not con-
sistent. For � > 130, the minimum normalized displacement is found at �1 ≈ 2.5 for  = 0.28, and
�1 ≈ 2.8 for  = 0.14. However, in both cases, a higher value for the bending stiffness does not further
lead to a reduction of the maximum displacement.
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The non-linear relation between the response of the system and the different stiffness quantities be-
comes very clear when zooming in on the results for � < 15. Looking at the left contour plot of figure
4.5, for a value of � ≈ 1.5 the minimum displacement is found in combination with a bending stiffness
of �1 ≈ 1.5, while for the same value of � the largest displacement occurs when the bending stiffness is
increased to �1 ≈ 2.8.
The same effect occurs when analysing the relation from the other axis. Now looking from left to right,
the plot shows that for the value of �1 ≈ 2.8, combined with � ≈ 1.5 would result in the maximum
normalized displacements, while for the same �1, increasing � leads to a minimum value of normalized
displacement.

Also, the difference in the results for the two wavelength-to-structure ratios is greater for � < 15.
For  = 0.28, the combination of � ≈ 1.5 with very high values of �1 result in maximum displacements,
while this is the opposite for  = 0.14, where a structure with flexible modules (i.e. �1 ≈ 0.7) will cause
the largest maximum displacements.

Figure 4.5: Contour plot - maximum normalized displacement ( = 0.28)

Figure 4.6: Contour plot - maximum normalized displacement ( = 0.14)

4.3.2 Contour plots - maximum bending moment
Regarding the maximum bending moments, the contour plots in the figures 4.8 and 4.7 show a more
steady increasing trend. Similar to the results discussed in the previous section, it can be seen that for
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higher values of the bending stiffness the maximum displacement will be reduced, but at the expense
of the maximum bending moment.

Overall, the impact of increasing the rotational stiffness seems already negligible values of � > 65.
However, for  = 0.14, increasing the stiffness of the connections, may have some reducing effects on
the maximum bending moments for stiff(er) modules. Furthermore, there are some interesting obser-
vations to point out when comparing the maximum bending moments for � < 15, with those results
of the vertical displacements. For  = 0.28 the smallest maximum displacements appear to be in the
range of �1 ∈ [2.5, 3.0] with � ∈ [6, 15], or in the range of �1 ∈ [1.3, 1.6] with � ∈ [0.001, 3.0]. However,
where the first range of variables is indeed associated with the highest values for the maximum bending
moment in the contour plot, the maximum bending moment is relatively low for the range of semi-rigid
modules with flexible connections.
A similar observation applies to  = 0.14, where it is interesting to see that both �1 ≈ 1.6 and �1 > 2.5,
combined with low values of �, results in minimum normalized displacements. Yet, increasing �1 to
approximately 2.8 leads to a significant increase in the maximum bending moment, while for �1 ≈ 1.6
the maximum bending moment stays relatively low.

Figure 4.7: Contour plot - maximum bending moment ( = 0.28)

Figure 4.8: Contour plot - maximum bending moment ( = 0.14)
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4.4 Optimal Combinations of the Stiffness Parameters
Based on the contour plots as shown in figure 4.9, a bending stiffness parameter of �1 ∈ [1.3, 1.7],
combined with a value for the rotational stiffness parameter of � ∈ [0.001, 5.0], results in the most
optimal combinations of the stiffness quantities for both wavelength-to-structure ratios. Considering
the input parameters, this is corresponds with a bending stiffness of 17.5e9 - 39.5e9 Nm, together with a
rotational stiffness of 17500 - 23.7e7 Nm, depending on the structure length. Accordingly, these values
would result in a maximum normalized vertical displacement amplitude of approximately 0.6, and a
maximum bending moment around 7500 kNm, while the system is subject to mild wave conditions,
with a corresponding wavelength of 140m.

Figure 4.9: Optimal range for �1 and �

4.5 Summary of Results
The structure approaches the response of a continuous system, when the rotational stiffness increases.
Increasing the beam stiffness has a (gradual) reducing effect on the maximum normalized vertical
displacement amplitude, but at the same time causes an increase in the maximum bending moment.
Moreover, as the wavelength becomes larger than an individual beam, the structure is more likely to
behave as rigid modules, while the oscillating response becomes more significant when the wavelength
is shorter than the length of a single beam.
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For flexible modules, the results show that applying hinged or semi-rigid connections does not have a
significant effect on minimizing the normalized vertical displacement amplitude of the structure. The
maximum bendingmoment also stays constant when increasing the rotational stiffness. Structures with
a moderate to high bending stiffness - for which the wavelength is shorter that an individual beam - the
maximum bending moment is reduced when the rotational stiffness becomes larger. On the contrary,
increasing the rotational stiffness leads to an increase in the maximum bending moment, for  = 0.28,
when �1 > 1.8.

The contour plots in figures 4.5 to 4.8 show that for � > 130, increasing the rotational stiffness has
no further effect on the response of the system. However, for � < 15, the effect on the system’s response
for different combinations of the quantities varies widely. Based on the aspects considered in this anal-
ysis, an optimal combination was found with respect to a bending stiffness parameter of �1 ∈ [1.3, 1.7],
combined with a value for the rotational stiffness parameter of � ∈ [0.001, 3.0].





5
Discussion

In this chapter, an attempt is made to explain some of the occurring phenomena and to further elaborate
on the presented effects, which includes the transition between rigid-module and continuous behaviour
of the structure, and the effect of applying certain type of connections. Moreover, the results show a
peak in the maximum displacement for specific combinations of the material properties. The natural
frequency of the system is therefore discussed, as this plays an important role in the occurrence of
resonance. In addition, the applied mathematical formulation of the problem statement and the imple-
mentation of the FEM model are evaluated, where the impact of the assumptions made is discussed.

5.1 Interpretation of Numerical Results
The overall behaviour of the VLFS seems in linewith initial expectations. When increasing the rotational
stiffness, the structure approaches the response of a continuous system. The maximum normalized dis-
placement is reduced when increasing the bending stiffness, but this simultaneously cause an increase
in the bending moment. Moreover, as the wavelength becomes larger than an individual beam, the
system is more likely to behave as rigidmodules, while the local displacement becomesmore significant
when the wavelength is shorter than the length of a single beam.

Non-linear relation to varying material properties
Although the system is assumed to be linear, the results show that the relation between the response of
the system and the varying material properties is non-linear. This can be explained by the fact that the
total general solution of the dynamic response of (slender) structures consists of two parts; the particular
solution and the homogeneous solution. The particular solution ensures that the response of the struc-
ture corresponds with the excitation of the external force in the steady-state. The homogeneous part of
the solution determines the natural response of the system, while it satisfies the boundary conditions
of the structure. The natural response and the amount of influence that the boundary conditions will
have on the behaviour of the structure are determined by the material properties. For example, the
results clearly show that the influence of the connections on the response is much more local for certain
structures. As this dependence is non-linear, it can therefore differ greatly for specific combinations of
the stiffness quantities.

Transition between rigid modules and continuous system
Figures C.3b and C.3e show some interesting results when looking at the normalized displacements
along the structure. For this combination of variables, the outer beams seem to behave more like rigid
modules, whereas the two beams in the center show more continuous behaviour. This ’hybrid’ be-
haviour in one structure may be explained by the presence of the connections in combination with its
semi-flexible character. It clearly demonstrates the sensitivity of the system and the fact that excluding
the elasticity in the analysis can lead to inaccurate results.
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Decrease in normalized vertical displacement amplitude
The phenomenon that for stiffer modules with hinged or semi-rigid connections, the normalized dis-
placements tend to decrease towards the leeward side can be explained by the fact that it is more difficult
to deform a structurewith a higher bending stiffness. This causes an attenuation effect, which influences
the transmitted wave as it travels along the structure. Interesting is to see that this attenuation effect also
occurs for the largest flexible structures. Although this behaviour is less expected for flexible structures,
similar behaviourwas recently detected during another theMSc project regardingVery Flexible Floating
Structures [30].

Effects of rotational stiffness on reducing bending moment
It was concluded that for (semi-)rigidmodules, where thewavelength is shorter that an individual beam,
the maximum bending moment is reduced when the rotational stiffness becomes larger. In general, the
maximum ”field” bending moment along a continuous beam is smaller when the structure is clamped
on both sides, compared to a simply supported beam. Increasing � (i.e. shifting from a simply supported
beam to a clamped-clamped beam) will therefore cause a reduction of the bending moment, when the
structure mainly behaves continuously.
However, this response differs for structures which behave more as rigid modules. Hence, when  is
large, combined with a larger the bending stiffness, increasing the rotational stiffness causes an increase
in the moments at the connections. Accordingly, in figures C.2, C.4f and C.4i, it can be seen that the
peak of the occurring moment shifts towards the connection.

The natural frequency of the system and the occurrence of resonance
Looking at the results in the left contour plot of figure 4.6, it can be seen that the maximum normalized
displacement for  = 0.14 occurs at �1 ≈ 0.68. As this maximum appears for a quite specific range
of �1, it may be caused by (local) resonance. Resonance occurs when the frequency of the incident
wave is equal or close to a natural frequency of the VLFS, where the natural frequency of the system is
determined by its mass, bending stiffness, and length. For an unsupported beam with free ends, the
first natural frequency is defined by $0 =

22.37
!2

√
��
�1�

. Considering the results of  = 0.14, for �1 = 0.68,
the natural frequency for a single beam (with L=250) is $0 ≈ 0.9. Since the frequency of the incident
wave is equal to $ = 0.62, this extreme value for the maximum normalized displacement could be a
result of resonance. In addition, an attempt was made to find a more accurate approximation of the
system’s natural frequency, using the FEM model. Unfortunately, due to limited computer power (and
time), this has not led to more valuable insights.

Future implementation of results
The visualization by means of contour plots seems to be a valuable method to obtain information for
optimizing the design. However, it must be taken into account that in the contour plots information
about the location of the occurring values is lost. For the maximum bending moments, this is not much
of a problem; as the beams are uniform and are therefore designed to the maximum required capacity,
regardless of the occurring location along the structure. For the vertical displacement, however, this
information is important for the design. Yet, in combination with graphs visualizing the response along
the structure, these contour plots allow to obtain good interpretations regarding the most effective com-
binations of the stiffness for the different components.

As the results for the normalized vertical displacements are dimensionless, these results can there-
fore be considered in relation to different wave amplitudes, provided that the wave characteristics are
still considered linear. The results for the maximum bending moment are not dimensionless and it
should therefore be taken into account that these results may differ when changing the incident wave
conditions.
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5.2 Assumptions Mathematical Formulation
To reduce the complexity of the analysed system, it can be very useful to make certain assumptions. Yet,
it is important to realize that both these simplifications and the decisions regarding the implementation
of numerical methods will have an influence on the accuracy of the physical problem.

Linear wave theory
The model is based on the linear wave theory. Therefore, the quadratic, non-linear terms in the equa-
tions of motion of the fluid, the kinematic, and dynamic boundary conditions are neglected. Non-linear
aspects are for instance the large-scale effects of bottom friction, very steep/breakingwaves or the effects
when the structurewill not always be in contact with thewater. Moreover, it is important that a structure
is designed with extreme conditions in mind, where their probability of occurrence corresponds to a
design return period. Increasing the amplitude to these extreme cases causes the input conditions for
the incident wave to fall outside the validity range of the linear wave theory.

Although taking into account these non-linear effects would indeed increase the accuracy of the so-
lution, the mathematical analysis of non-linear wave equations is far more complex and no general
analytical method exists for their solution. Since the largest contribution to the complete solution is
given by the first-order components of the equations and including non-linear terms is computationally
costly, developing a model based on the linear wave theory seems plausible to obtain valid approxima-
tions of the hydroelastic response for preliminary designs. Also, in practice, models based on linear
wave theory are frequently applied and still appear to provide a good approximation even for input
values that fall outside this range.

Constant water depth
The water depth in the model is assumed to be constant. Although the magnitude of the effect also
depends on the water depth considered, there are studies showing that neglecting seabed topography
may have some influence on the hydroelastic response, as theremay be a slight increase in plate bending
due to the presence of a variable depth profile [31]. Since the numerical model developed for this thesis
makes it possible to implement different water depth profiles in the analysis, it would be interesting to
take this into account in future research.

2D model
Looking at the structural characteristics, the multi-module VLFS is schematized as floating beams,
based on the Euler-Bernoulli beam theory. This simplification allowed the development of the numer-
ical model in 2D. Besides the advantage of reducing the computation time, the selection of 2D made
it easier to represent the results, i.e. the dependence on 3 variables, through the use of contour plots.
The use of a 2D model therefore served the necessary purpose with regard to the considered research
objective, where it has given better insight into the relation between the two stiffness quantities and the
wavelength-to-structure ratio. However, when designing a floating structure to create artificial land,
it is evident that a 3D model is required. This would also allow to analyse the response for different
incident wave angles. Extending the analysis from a 2D to 3D coordinate system can be done with the
developed numerical model.

Structural properties VLFS
The cross-section of the beams is assumed to have a solid rectangular shape. In practice, the platforms
are more likely to be constructed by two larger load-bearing plates connected by a stabilizing web. This
shape is more beneficial, as the change in the second moment of inertia allows to increase the bending
stiffness of the platform, without further increasing its mass. However, the proportionally between
the mass and the bending stiffness is included in the bending stiffness parameter �1, which is derived
from the second moment of inertia for a solid rectangular shape. When considering an alternative
cross-section, this proportionally should be reconsidered and appropriately adjusted with respect to �1.
Moreover, it should be taken into account that these changes also has an effect on the natural frequency.
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In addition, the structure is assumed to have a uniform cross-sectional area and homogeneous ma-
terial properties. From a constructional point of view, it is more convenient to keep the dimensions
and properties (with respect to the cross-sectional area) the same along the platforms, therefore these
assumptions are considered plausible. Although very small variations in the material properties of a
structure can never be ruled out, these effects are negligible.

Solution in the frequency domain
Due to the linearity (regarding both the fluid and the structure) the solution is solved in the frequency
domain. The advantage of this approach is that by rewriting the problem in frequency dependent
functions, the formulation of the EoMs and BCs/ICs ultimately results in an algebraic system of equa-
tions, which can then be solved much faster. As a consequence, the solution is only obtained for the
steady-state. Hence, when the transient solution of the problem is desired or non-linear effects should
be considered in the analysis, the problem needs to be solved in the time domain, at the expense of the
faster computational time.

5.3 Assumptions FEMModel
The assumptions made regarding the analytical formulation will form the basis for the FEMmodel and
thus influence the numerical approach. The selection for the Euler-Bernoulli theory results in a weak
form containing second-order derivatives with respect to the displacement of the beam. Therefore, ad-
ditional requirements for the shape functions are required, ensuring C1-continuity across the elements.
On other option would have been to describe the behaviour of the beams by the Timoshenko the-
ory. Unlike the Euler-Bernoulli theory, in this theory the deformation of the beam is described by the
translational displacement F(G, C), and the angular displacement !(G, C), where these two variables
are independent and only mechanically coupled. Regarding its numerical implementation, the weak
form based on this theory would only include first-order derivatives, hence, C0-continuity between
the elements will hold. While the Timoshenko theory is more generally applicable, the formulation of
this theory is also more extensive because the deformation of the beam is defined by two independent
variables instead of just one, namely F. In addition, when developing a model based on Timoshenko
theory, one has to take into account the occurrence of a numerical instability called shear locking, which
compromises the accuracy of the results in the case of pure bending.

To account for the second-order derivatives in the weak form, the combined CG/DC approach is ap-
plied, where the C1-continuity is weakly forced between adjacent elements. To guarantee C1-continuity,
also the CG approach in combination with elements, such as Hermite polynomials, could have been
used. The decision to adopt the CG/DG approach is merely based on the fact that the FE packages of
Gridap not yet provided these type of elements at the time.





6
Conclusion

According to the research objective, a 2D FEMmodel is developed to analyse the hydroelastic response
of a multi-module VLFS; in order to investigate how the bending stiffness of the modules and the rota-
tional stiffness of the connections relate to each other in terms of their influence on the response, and
what their effect is on the vertical displacement and the bending moment of the system, considering
different wave lengths.

The numerical results give a good approximation to the analytical formulation. When increasing
the rotational stiffness, the VLFS approaches the response of a continuous system. The maximum nor-
malized displacement is reduced by increasing the bending stiffness, but this will increase the bending
moments simultaneously. Moreover, as the wavelength becomes larger than a single beam, the structure
tends to behavemore like rigidmodules. This response shifts towardsmore continuous behaviourwhen
the wavelength becomes shorter. As some results show both rigid and flexible behaviour within one
structure, the assumption to exclude elasticity from the analysis may lead to inaccurate results.

The aim is to design the VLFS such that minimal vertical displacements are obtained, while the max-
imum bending moment does not exceed the structural capacity. In addition, it is most beneficial to
design for a combination of thematerial properties that favors the widest range of incident wavelengths.
In this regard, the most optimal combination appears to be a VLFS consisting of four semi-flexible to
semi-rigid modules, combined with hinges or connections with moderate rotational stiffness, according
to the aspects considered in this hydroelastic analysis.

However, the results show that the influence of different combinations of the two stiffness quanti-
ties on the hydroelastic response is highly nonlinear, where it also deviates for different wavelengths.
For example, there is a significant distinction in the response when connections with low rotational
stiffness are combined with semi-flexible or rigid modules, as these different combinations result in
both the lowest and highest maximum displacements. A similar phenomenon appears for single values
of the bending stiffness, while changing the rotational stiffness. Because the response can vary greatly
due to the strong dependence on the material properties and wave conditions, it can be difficult to make
accurate predictions. It can therefore be concluded that obtaining information bymeans of these contour
plots will give valuable insight in the most optimal combinations with regard to these quantities and
the trade-off between minimal displacements and maximum bending moments that occur. This also
strengthen the suggestion of previous studies that optimisation of the dimensions and material proper-
ties may have great beneficial impact on the hydroelastic reponse, for which this analysis approach can
be used in future designs of floating island configurations.

The numerical model copes well for different input parameters, which can be easily adjust. More-
over, the incident waves and water depth can be altered without any difficulty by changing the initial
conditions for the velocity potential at the inlet of the domain, or by applying a various depth profile.
Accordingly, results can be obtained for more complex (wave) conditions, such as irregular waves, or
including seabed topography. The model therefore creates an opportunity to easily analyse a large
variety of model setups, in a relatively short amount of time.

35





7
Recommendations

Based on the results and the discussion, there are aspects that would be valuable to explore more
thoroughly in future research. Because the model is highly adaptable, the hydroelastic analysis can be
performed for different model setups. First of all, for the design of VLFSs, it is recommended to also
obtain the results from a 3D model, where a multi-platform arrangement can be implemented in both
horizontal directions. Moreover, including a variable depth profile and implementing irregular wave
conditions into the model could provide a more realistic representation of offshore environments.
Furthermore, the analysis is performed taking into account mild wave conditions. However, offshore
structures are often designed to survive more extreme conditions, which are beyond the scope of the
linear wave theory. In practice, typical non-linear wave conditions (e.g. very steep waves) are still anal-
ysed regularly withmodels based on the linear wave theory. Therefore, the analysis can be performed to
investigate the hydroelastic behaviour under more extreme wave conditions. Comparing those results
with results obtained by amodel that also includes nonlinear effects, could provide valuable insight into
the accuracy and scope of the linear model with respect to different (non-linear) input wave conditions.

In the analysis, the bending stiffness is considered to be equal for each individual module. Consid-
ering the application of VLFSs in the context of floating urbanisation, it may be allowed for certain
areas of the structure to deflect more than others. For example, minimal displacements are desired in
densely populated areas with many buildings, while in areas used for e.g. agriculture or solar panels,
this requirement may be less strict. It is therefore recommended to also perform the analysis while
applying different bending stiffness to the individual modules, based on the specific design criteria of
structure. Moreover, for the connection only the rotational stiffness was considered. Yet, including
a viscous damper in the connections may have a positive effect on the hydroelastic response and can
therefore be considered in future analyses.

To identify optimum design configurations, algorithm operations can be performed to which the re-
sults and the developed model can be used. The aim of such optimization processes is to obtain the
configuration that operates at a desired response level while preventing structural failure. The design
variables considered for the optimal configuration can be constituted into a vector, which is defined for
an admissible design space. This design space is bounded by predetermined performance criteria. Con-
sequently, a constrained single objective optimization can be performed for specific wave characteristics;
in which e.g. the vertical displacement is the objective that has to be optimized, while the constrain
results from the structural capacity, determined by the maximum acceptable bending moments. To this
end, genetic algorithmsmay be applied, which present a stochastic global searchmethod thatmimics the
metaphor of natural biological evolution as it operates on a population of potential solutions applying
the principle of survival of the fittest to produce better and better approximations to a solution [32]. The
optimization can be performed with regard to various design variables, such as the material properties,
the dimensions of the system or the number of connections.

Finally, further research can be done regarding the numerical application of the FEM model. A future
FEM model may be developed using elements that ensure C1-continuity between adjacent elements, to
see if this has a positive effect on numerical accuracy or the computation time.
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A
Mathematical Formulation of a Single

Beam FSI Model
A simple way to represent a continuous floating structure includes an one-dimensional beam model,
based on the Euler-Bernoulli theory, floating in a two-dimensional fluid domain. The mathematical
theory that corresponds to this single floating beam will form the basis of the continuous model that
represent the multi-module VLFS considered in this thesis.
First, the problem is defined based on several assumptions, related to both the structural and fluid
domain. These considerations form the frame of reference for which the system is solved. Subsequently,
themathematical formulation of the Euler-Bernoulli beam-fluidmodel is elaborated. This results in a set
of partial differential equations (PDEs), which involves the governing equations of the system including
the related boundary, and interface conditions. Finally, the Fourier transform pair is introduced to
provide a solution regarding the time dependency of the stated problem.

A.1 Problem Definition
As shown in figure A.1, the continuous FSI model for a single floating structure is represented by the
Euler-Bernoulli beam model, floating in the fluid domain, Ω. The structure is modelled in a Cartesian
coordinate system. To define the problem based on the Euler-Bernoulli beam theory, the properties of
the system and the applied assumptions must first be determined.
Regarding the structural element of the system, the Euler-Bernoulli beam is schematically shown as
a 1D member, with only small displacements/deflections performed in the vertical direction. Hence,
the system is supposed to behave linearly [21]. Since large displacements are generally not desirable in
the design of floating cities, the initial assumption that only small displacements may occur is therefore
considered plausible. Furthermore, the beam is assumed to be uniform and homogeneous, whichmeans
that the dimensions and material properties are considered to be constant over the cross-section and
along the length of the structure. Accordingly, �� represents the bending stiffness of the beam, �1 , the
mass density, ℎ1 the height, and ! the total length of the beam.

The fluid is defined as an ideal fluid and is therefore assumed to be incompressible, with a constant
density, �F , and to have no viscosity. Since the forces involved are too small to compress the water
and the distances over which variations in density and viscosity are considered, are of a much larger
scale, these assumptions seem reasonable [22]. Moreover, the fluid is assumed to have irrotational flow.
Because vorticity of the fluid in this case is generated by turbulence at bottom, this local effect will not
disturb the main water body significantly [22].
As shown in figure A.1, the fluid domain is 2D, with a constant depth, 3. The vertical boundaries of the
fluid domain are defined as Γ+/−∞, where the other boundaries are described by the free water surface,
Γ 5 B , the bottom surface, Γ1 and the interface between the bottom of the beam and the fluid, ΓBCA .
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Figure A.1: FSI model - Euler-Bernoulli beam

In this model, the beam is considered to be subject to small, single frequency, head waves, with wave
length �. Because only small wave amplitudes (i.e small compared to the water depth and the wave
length) are taken into account in this model, application of the Airy wave theory (also known as the
linear wave theory) is valid, provided that the beam is always in contact with the fluid [18]. According
to the linear wave theory, the wave frequency $ and the incident wave length � are related through the
following dispersion relation [22]:

6: tanh(:3) = $2 (A.1)

Where, : = 2�/� is defined as the wave number

A.2 Governing Equations and Conditions
Due to the incomingwaves, changes occur regarding the pressure and the elevation at the water surface,
which causes vertical displacements of the floating structure. The motion of the water as well as the
displacement of the structure are dependent on space and time where the respective behaviour is
described by the so-called equation of motion. To solve these equations of motion, boundary conditions
are set-upwith respect to each domain. Hence, tomathematically describe the interaction of the coupled
system, a system of partial differential equations (PDEs) is derived, where this set of equations includes
the following components:

- equation of motion (EoM) of the fluid

- equation of motion (EoM) of the beam

- boundary conditions (BCs) for the fluid domain

- interface condition (IC) for fluid-structure interface

- boundary conditions (BCs) for the structural domain

Equation of motion of the fluid

Based on the aforementioned assumptions with respect to the fluid characteristics, the fluid can be
described by the continuity equation, known as the Laplace equation. The behaviour of the fluid is
expressed in terms of the complex velocity potential )(G, I, C), which is a scalar function that represents
the particle velocities in the water [22]:

%2)(G, I, C)
%G2 +

%2)(G, I, C)
%I2 = 0 → ∇2) = 0 in Ω (A.2)
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Similarly, the equation ofmotion can be expressed in terms of the velocity potential, where the expression
for the fluid pressure is derived from the momentum balance (based on the linear wave theory) and the
linearized Bernoulli equation [22]:

%)(G, I, C)
%C

+
?(G, I, C)

�F
+ 6I = 0 → ?(G, I, C) = −�F

%)(G, I, C)
%C

− �F 6I (A.3)

Equation of motion of the beam

According to the Euler-Bernoulli beam theory, the equation of motion for the beam is described as
follows [21]:

�1ℎ1
%2F(G, C)

%C2
+ �� %

4F(G, C)
%G4 = ?(G, I, C)

��
ΓBCA

on ΓBCA (A.4)

Where F(G, C) is the motion/deflection of the beam in vertical direction and ?(G, I, C) is the pressure of
the water at the surface, which acts on the bottom of the beam (i.e. the interface of the structure and the
fluid). For the floating beam system as presented here, the effects of structural damping in the system
can be neglected [18].

To solve PDEs, conditions have to be determined, where the initial conditions relate to the time de-
pendence and the boundary, and interface conditions to the spatial dependence of the problem. The
required number of BCs/ICs is depending to the order of the differential equation. Here, the order
of the EoM equals four, for both the beam and the fluid. So the coupled system needs two times four
conditions with respect to the spatial variables. Regarding the time dependency, the system can be
solved in the frequency domain due to its linear behaviour. This is further explained in section A.3.

For convenience, the space and time dependence has been omitted from the arguments below

Boundary conditions fluid domain

As shown in figure A.1, the fluid domain is bounded by the seabed, Γ1 , the water surface, which is
divided into Γ 5 B and ΓBCA , and the vertical boundaries, described as Γ−∞ and Γ+∞. For each boundary,
conditions regarding the fluid motion and/or the pressure are defined:

Seabed
At the seabed no water is allowed to flow through the bottom, hence, the vertical velocity of the water at
I = 3 should be equal to zero. Therefore, the spatial derivative of the potential ), normal to the seabed
is equal to zero:

%)

%I
= 0 on Γ1 (A.5)

Vertical boundaries
In the model, the waves are determined to propagate from x = -∞ to x= +∞. When an incident wave
interacts with the floating structure, it will partially reflect at the structure boundary and be partially
transmitted. With regard to these reflected and transmitted waves, it is assumed that they will not
further interfere with the structure. They must therefore fully propagate away from the system and it is
not allowed for these waves to reflect at the vertical boundaries of the fluid domain. This is satisfied by
applying the Sommerfeld radiation conditions for a 2D fluid domain at Γ−∞ and Γ+∞ [17]:

%)

%G
= 8:) on Γ+∞ (A.6)

%)

%G
= −8:) on Γ−∞ (A.7)
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Free surface
At the surface, the water should satisfy both a kinematic and a dynamic boundary condition. To this
end, a function for the surface elevation of the water is introduced, where � is the elevation in water
surface measured relative to the mean water level caused by free waves1 [22].
With regard to the kinematic boundary condition at the free surface, Γ 5 B , it should hold that water par-
ticles can not ”leave” the surface. Hence, the water particle velocity in normal direction to the surface
should be equal to the velocity of the surface in the same direction, DI = %�/%C [22]. Regarding the
dynamic condition, the water pressure at the surface (see eq. A.3) should be equal to the atmospheric
pressure, i.e. equal to zero.

These two aspects are combined to obtain the linearized surface condition, where the water particle
velocity, DI , can be expressed as the spatial derivative of the potential ):

kinematic:
%)

%I
=
%�

%C
on Γ 5 B (A.8)

dynamic:
%)

%C
+ 6� = 0 on Γ 5 B (A.9)

Taking the derivative with respect to time for eq. A.9 and substituting eq. A.8 into eq. A.9 will give:

%2)

%C2
+ 6

%)

%I
= 0 on Γ 5 B

Fluid-structure interface
As stated in the problem definition, the structure is always in contact with the water surface. Therefore,
the kinematic condition at the interface requires that the elevation of the water surface is equal to
the displacement of the beam. Furthermore, the dynamic boundary condition implies that the water
pressure at the interface acts as an external distributed load on the bottom of the structure. Hence, the
water pressure at the fluid-structure interface is equal to the EoM of the beam:

kinematic: %F

%C
=
%�

%C
→ %F

%C
= ®= · ∇) on ΓBCA (A.10)

dynamic: �1ℎ1
%2F

%C2
+ �� %

4F

%G4 = −�F
%)

%C
− �F 6� on ΓBCA (A.11)

Boundary conditions structural domain

Finally, it is assumed that the VLFS is not connected to any mooring system. Therefore, no transfer
of forces is possible at the outer boundaries of the structure, hence, the moments and shear forces at
these locations should be equal to zero. Since the bending moment of the structure is determined by
the second derivative with respect to G and the shear force by the third derivative with respect to G, the
following four BCs must be satisfied:

%2F

%G2 =
%3F

%G3 = 0 at G = 0 (A.12)

%2F

%G2 =
%3F

%G3 = 0 at G = ! (A.13)

A.3 Transformation into the Frequency Domain
The dynamic response and excitation of the system is determined by variables related to space (G, I)
and time (C). In the solution, the dependence related to space is defined by the boundary and interface

1waves that are only subject to gravity
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conditions. As mentioned earlier, initial conditions are required to solve the derivatives with respect
to their time dependence. Since the system is linear, the governing equations can be transformed from
the time domain to the frequency domain, in which all quantities can be written as a complex quantity
whose time dependence is 4−8$C . The complete system can be transformed to the frequency domain,
using the following Fourier transform pair [21]:

�̃($) =
∫ ∞

−∞
6(C) 4−8$C 3C and 6(C) = 1

2�

∫ ∞

−∞
�̃($) 4 8$C 3$ (A.14)

By applying the Fourier transform integration, the complete problem as stated above can be expressed
in terms of their space dependence in the frequency domain, where all quantities are complex-valued
and are frequency dependent [21].



B
Application of the Finite Element

Method
The Finite Element Method (FEM) is applied to solve the system of equations representing the VLFS
model. In this appendix the general steps for the FEM approach are explained, where a schematized
overview of the whole process is illustrated in figure B.1.

B.1 Introduction to Finite Element Methods
The Finite ElementMethod is a numerical method used for solving partial differential equations (PDEs),
where the application of this method ultimately leads to (often very large) systems of linear equations
(matrices) which can be solved with a computer [33].

PDEs are continuous functions, which means that they have an infinite number of degrees of free-
dom (DoFs) or ’unknowns’. However, to solve the problem numerically the model must have finite
quantities. In FEM models the domain of the continuous problem is therefore divided into a mesh
of small finite elements, reducing the number of DoFs from infinite to finite; where the (for example)
unknown displacements of the whole system are described by the displacements of these finite ele-
ments. As shown in figure B.1, the elements are arranged by means of boundaries/facets and a discrete
number of nodal points. According to FEM, it is assumed that the state of displacement within each
finite element and on its boundaries can be defined in terms of so-called shape functions, and the nodal
displacements [34] (see section B.3). Because the shape functions are predetermined polynomials, the
nodal displacements will be the basic unknown parameters of the problem. The expression obtained for
the unknown parameters is then substituted into the governing equations of the considered problem,
which are formulated in their weak form (see section B.2). Ultimately, the continuous problem can
be approached by a discrete analysis; where the unknown displacements are solved by means of the
resulting system of linear equations.
Due to the discretization, the solution can only be found approximately. In FEM, the sum of the element
contributions is assumed to be equal to the whole system. Therefore, the calculations are performed
’elementwise’. First, the set of shape functions is determined for a single FE, after which the functions
for the individual elements are assembled and the total set of equations solved as a whole to find the
displacements at the nodes of the separated elements.

B.2 Weak Form
Prior to performing the spatial discretization as described above, the equations formulating the physical
problem must be defined in the so-called ’variational’ or ’weak’ form. In contrast, the analytical formu-
lations derived in chapter 2 are described in their ’strong form’. This means that the equations must be
satisfied for any point (i.e. x,z coordinate) in the continuous domain. Yet, this requirement is incon-
venient regarding the discrete analysis of the finite elements. An essential step in the FEM process is
therefore casting the considered equations in their ’weak form’. Accordingly, an equation is ’weakened’
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by allowing the equation in its weak form not to satisfy in every point, but only in a global, average
sense (through integration). To do this, the strong form is multiplied by a weight function (also referred
as test function) and integrated over the domain. Subsequently, integration by parts is performed to the
resulting expression, which reduces the order of the derivatives appearing in the equation and leads to
a form which is convenient for later numerical solution [33]. To show the required steps to obtain the
weak form, the derivation for the Laplace equation is elaborated here below.

B.2.1 Deriving the weak form for the Laplace equation
Using the same notation as introduced in chapter 2 and Appendix A, the Laplace equation for a 2D fluid
domain is given by:

∇2) = 0 in Ω (B.1)

Where a general expression for the associated boundary condition(s) is given by:

®= · ∇) = 5 on Γ (B.2)

To derive the weak form, the equation is multiplied by a weight function E ∈ V, where E ∈ Vmeans that
E comes from the appropriately defined solution space V [33]. Subsequently integrating the expression
over the domain will give: ∫

Ω

E · ∇2) 3Ω = 0 ∀ E ∈ V (B.3)

Next, the equation is integrated by parts. This is a method to find the integral of products, where
one function is considered as the derivative of the other which subsequently reduces the order of the
derivative. As a result, the integral can be rewritten into two separate terms; including an integral over
the domain and one over the boundary, in which the derivative of ) is an order lower:∫

Ω

E · ∇2) 3Ω = −
∫
Ω

∇E · ∇) 3Ω +
∫
Γ

E · (®= · ∇)) 3Γ = 0 (B.4)

This shows that integrating by parts leads to a form which is convenient, as it results in an expression
which includes a formulation for the boundary condition. Hence, substituting the expression B.2 into
equation B.4 will give:

−
∫
Ω

∇E · ∇) 3Ω +
∫
Γ

E · 5 3Γ = 0 (B.5)

Ultimately, the weak form is derived to find the solution for ) ∈ V such that �(), E) = ;(E) ∀ E ∈ V.
The formulations can therefore be expressed in the bilinear function �(), E) and the linear function ;(E),
where:

�(), E) =
∫
Ω

∇E · ∇) 3Ω (B.6)

and

;(E) =
∫
Γ

E · 5 3Γ (B.7)
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B.3 Spatial Discretization & Shape Functions
Once the governing equations are defined in their weak form and a mesh is generated to divide the
domain into finite elements, an approximated solution for the displacements within each element and
on its boundaries is formulated. To this end, the Galerkin Method is applied. As shown in figure B.1,
this method assumes that the approximated solution D̂8(G, H) can be described in terms of the sum of
predefined shape functions, #8 , and the displacements at the nodal points, D̂8 , of the respective element:

D̂(G, H) =
=∑
8=1

#8 D̂8

Subsequently, this assumed expression for the displacement is substituted into the weak form, which
ultimately results in a linear system of equations that can be solved.

Important here is that the shape functions are known. This allows to define an aprior interpolation
of the solution between the nodal points, where the shape functions are then used to define the influ-
ence of point 8 over the element domain. There are many different shapes functions that can be applied
in defining the finite elements. The simplest shape functions of an element involve linear interpolation
between two nodes. Higher-order polynomial interpolation can be achieved by using elements that
havemore nodes. Also the shape of each element can differ from triangular or quadrilateral considering
2D-problems, to tetrahedral and brick shapes elements when looking at 3Dmeshes. Selecting the appro-
priate elements is therefore of paramount importance and the degree of accuracy for the approximate
solution is highly dependent on these choices [34].

Figure B.1: FEM process

B.4 Isoparametric Elements
According to the Galerkin Method, the approximated solution can be described by the sum of assumed
known shape functions and the displacements at the nodal points. Hence, in theory, the respective shape
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functions for each individual element needs to be determined. Nevertheless, a FEMmodel usually con-
sists of a large number of elements for which different shapes and shape functions may be applied;
making it rather time consuming to derive the different shape functions for each individual element.

In practice, isoparametric elements are therefore used in finite element software. Detailed derivations
to show the implementation of isoparametric elements are not discussed here, but essentially the shape
functions are derived for a simple element configuration (usually elements with a unit length side and
with sides aligned with the coordinate system and with a convenient origin) [33]. Using isoparametric
mapping as shown in figure B.2, this element operates as a ’reference element’ and it therefore requires
programming only one function to evaluate the shape functions of all the elements within the domain,
regardless of the element’s exact shape.

Figure B.2: Isoparametric mapping [33]



C
Numerical Results of Hydroelastic

Analysis
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(a) �1 = 0.2, � = 0 (b) �1 = 1.0, � = 0 (c) �1 = 2.0, � = 0

(d) �1 = 0.2, � = 6 (e) �1 = 1.0, � = 6 (f) �1 = 2.0, � = 6

(g) �1 = 0.2, � = 650 (h) �1 = 1.0, � = 650 (i) �1 = 2.0, � = 650

Figure C.1: Normalized displacements for  = 0.47
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(a) �1 = 0.2, � = 0 (b) �1 = 1.0, � = 0 (c) �1 = 2.0, � = 0

(d) �1 = 0.2, � = 6 (e) �1 = 1.0, � = 6 (f) �1 = 2.0, � = 6

(g) �1 = 0.2, � = 650 (h) �1 = 1.0, � = 650 (i) �1 = 2.0, � = 650

Figure C.2: Moment distribution for  = 0.47
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(a) �1 = 0.2, � = 0 (b) �1 = 1.0, � = 0 (c) �1 = 2.0, � = 0

(d) �1 = 0.2, � = 6 (e) �1 = 1.0, � = 6 (f) �1 = 2.0, � = 6

(g) �1 = 0.2, � = 650 (h) �1 = 1.0, � = 650 (i) �1 = 2.0, � = 650

Figure C.3: Normalized displacements for  = 0.28
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(a) �1 = 0.2, � = 0 (b) �1 = 1.0, � = 0 (c) �1 = 2.0, � = 0

(d) �1 = 0.2, � = 6 (e) �1 = 1.0, � = 6 (f) �1 = 2.0, � = 6

(g) �1 = 0.2, � = 650 (h) �1 = 1.0, � = 650 (i) �1 = 2.0, � = 650

Figure C.4: Moment distribution for  = 0.28
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(a) �1 = 0.2, � = 0 (b) �1 = 1.0, � = 0 (c) �1 = 2.0, � = 0

(d) �1 = 0.2, � = 6 (e) �1 = 1.0, � = 6 (f) �1 = 2.0, � = 6

(g) �1 = 0.2, � = 650 (h) �1 = 1.0, � = 650 (i) �1 = 2.0, � = 650

Figure C.5: Normalized displacements for  = 0.14
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(a) �1 = 0.2, � = 0 (b) �1 = 1.0, � = 0 (c) �1 = 2.0, � = 0

(d) �1 = 0.2, � = 6 (e) �1 = 1.0, � = 6 (f) �1 = 2.0, � = 6

(g) �1 = 0.2, � = 650 (h) �1 = 1.0, � = 650 (i) �1 = 2.0, � = 650

Figure C.6: Moment distribution for  = 0.14
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(a) �1 = 0.2, � = 0 (b) �1 = 1.0, � = 0 (c) �1 = 2.0, � = 0

(d) �1 = 0.2, � = 6 (e) �1 = 1.0, � = 6 (f) �1 = 2.0, � = 6

(g) �1 = 0.2, � = 650 (h) �1 = 1.0, � = 650 (i) �1 = 2.0, � = 650

Figure C.7: Normalized displacements for  = 0.07



C. Numerical Results of Hydroelastic Analysis 56

(a) �1 = 0.2, � = 0 (b) �1 = 1.0, � = 0 (c) �1 = 2.0, � = 0

(d) �1 = 0.2, � = 6 (e) �1 = 1.0, � = 6 (f) �1 = 2.0, � = 6

(g) �1 = 0.2, � = 650 (h) �1 = 1.0, � = 650 (i) �1 = 2.0, � = 650

Figure C.8: Moment distribution for  = 0.07
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This tutorial shows how to solve a Fluid Structure Interaction (FSI) problem using Gridap and
provides the instructions to build a 2D model considering a multi-module VLFS, solved in the
frequency domain.

1. Problem statement

2. Transformation to the frequency domain

3. Mathematical formulation

a. EoM fluid

b. EoM VLFS

c. Sea bed boundary

d. Free surface

e. Vertical boundaries - damping zone

f. Fluid-structure interface

g. Structural domain

h. Expressions of the incident wave

4. Numerical model

a. Input parameters

b. Domain

c. Boundaries

d. Triangulations

e. Quadratures

f. FE spaces

5. Weak form & CG/DG approach

a. weak form

6. Solver

7. Visualisation

Problem statement

As shown in the figure below, the multi-module VLFS is represented by four floating one-
dimensional beams, interconnected by rotational springs, where the structure is located on top of a
two-dimensional fluid domain. The dynamic response of the structure is described by the Euler-
Bernoulli beam theory and it is assumed that the beams will only perform small displacements in
vertical direction. As the structure is subject to small, single frequency, incident head waves (with a
wavelength ), the linear (Airy) wave theory is therefore assumed to be valid, provided that the
beams are always in contact with the fluid.

The total length of the VLFS is denoted by , where the beams have a uniform and homogeneous
cross-section along the structure. The bending stiffness, the mass density, the height, and the
length of each beam element are denoted by , , , and , respectively. The rotational
stiffness for each connection is defined by , where  is the rotational stiffness
parameter. The 2D fluid domain, denoted as , has a constant depth, , with a constant density, 

. The boundaries of the domain are defined by the seabed, , the free water surface, , the

λ

L

EI ρ  b h  b βL

k  =r ξEI/L ξ

Ω d

ρ  w Γ  b Γfs



fluid-structure interface, , and two vertical boundaries,  and , on the left and right side of
the domain. The fluid is considered to be inviscid, incompressible, and has irrotational flow. As a
result, the fluid is expressed by the velocity potential, which is a scalar function that represents the
velocity field of the water in terms of spatial derivatives of the scalar function .

VLFS model

Transformation to the frequency domain

Due to the excitation of the waves, the water pressure and the elevation at the water surface will
change, causing vertical displacements of the floating beams. This interaction between the motion
of the water and the displacement of the structure is mathematically described by partial
differential equations (PDEs) that initially depend on space and time. Accordingly, initial conditions
(with respect to time) and boundary/interface conditions (with respect to space) have to be
determined to solve the problem. In another tutorial called ''Very Flexible Floating Structure'', it is
demonstrated how to solve the FSI problem for a single floating 1D beam in the time-domain.

However, solving these type of FSI problems in the time domain may be computationally intensive
and it is therefore more convenient to solve the problem in the frequency domain. In general, time
dependent PDEs can be transformed to the corresponding frequency domain by applying the
following Fourier transform pair:

Due to the linearity of the system, this approach may be applied and each quantity in the time
domain is rewritten in its respective term in the frequency domain. Hence, all equations for this
model are expressed in terms of their space dependence in the frequency domain, where all
quantities are complex-valued and are frequency dependent. Consequently, the solution to the
problem will be solved regarding the steady-state solution.

Mathematical formulation

To build the FSI model, first, the mathematical formulation to describe the interaction of the
coupled system is discussed. This results a system of PDEs, where this set of equations will
include the following components:

equation of motion (EoM) of the fluid

equation of motion (EoM) of the structure

boundary/interface conditions (BCs/ICs) for the fluid domain

boundary/interface conditions (BCs/ICs) for the structural domain

EoM fluid

Based on the aforementioned fluid characteristics, the divergence of the fluid velocity is
considered to be zero. This results in the velocity potential  to satisfy the Laplace equation.
Similarly, the fluid pressure can be expressed in terms of the velocity potential, where the equation
for the pressure is derived from the momentum balance and the linearized Bernoulli equation
(based on the linear wave theory):
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EoM VLFS

According to the Euler-Bernoulli beam theory, the equation of motion of the VLFS is described as
follows:

Where  is the vertical displacement of the VLFS in z-direction and  is the pressure at the water
surface, acting as a distributed load on the bottom of the VLFS, i.e. the interface of the structure
and the fluid.

To solve the problem, the following boundary conditions for both the fluid and the VLFS structure
are determined:

Sea bed boundary

The impermeability condition holds at the seabed, which means that no water is allowed to flow
through the bottom. Therefore, the flow velocity normal to the seabed is equal to zero. As the
velocity field of the water can be expressed in terms of spatial derivatives of the scalar function ,
this results in:

Free surface

At the free surface, the water should satisfy both a kinematic and a dynamic boundary condition.
To this end, a function for the surface elevation of the water is introduced; where  is the elevation
in water surface, measured relative to the mean water level.

For the kinematic boundary condition holds that the water particles cannot 'leave' the water
surface. Therefore, the flow velocity in normal direction to the surface should be equal to the
velocity of the surface elevation. Regarding the dynamic condition, the water pressure at the
surface should be equal to the atmospheric pressure, i.e. equal to zero:

Vertical boundaries - damping zone

In the model, the waves propagate from left to right. When an incident wave interacts with the
floating structure, it will partially reflect at the structure boundary and be partially transmitted. It is
assumed that these reflected, and transmitted waves will not further interfere with the structure.
They must therefore fully propagate away from the system and it is not allowed for these waves to
reflect at the vertical boundaries of the fluid domain.

Hence, the boundary condition at the inlet of the domain is determined by the predefined
expression for the incident wave, , where the BC at the outlet is set to zero:

To assure energy dissipation such that these conditions at the vertical boundaries are satisfied,
two damping zones (at both the inlet and the outlet) are constructed in the model. To this end, a
method by Kim Woo Min is used, who introduced two additional terms for the kinematic boundary
condition which dissipate the wave energy. This results in the following alteration for the kinematic
condition at the free surface:
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Where  and  (defined by the incident wave expression) are the reference values when the
computational domain is not disturbed by any structure during the wave propagation.  and 
are the damping coefficients, which are dependent on each other to ensure that no dispersion
occurs:

Where  and  are the total lengths of the respective damping zone.  is starting point of
the damping zone at the oulet. The input value, , is selected on a trial and error basis,
depending on the wave characteristics.

Fluid-structure interface

Also at the fluid-structure interface both a kinematic and a dynamic condition is defined. For the
kinematic condition, the elevation of the water surface is equal to the displacement of VLFS. For
the dynamic boundary condition, the water pressure at the surface acts as a distributed load at the
bottom of the structure. Hence, the expression for the water pressure is substituted in the EoM of
the VLFS.

Since the equation of motion for the structure is substituted as a complex boundary condition of
the fluid domain, it is more convenience to rewrite the vertical displacement of the structure -
previously indicated with  - in terms of the surface elevation . Therefore, the boundary
conditions at the fluid-structure interface yield:

Where  , and .

Structural domain

The moments and shear forces at the free ends of the VLFS should be equal to zero.
Consequently, for the first and the last beam element, the following four dynamic BCs must be
satisfied:

Finally, some conditions at the connection points of the VLFS are determined. At each connection,
the kinematic conditions (i.e. continuity in displacement and rotation), and the dynamic boundary
conditions (i.e. force equilibrium) are satisfied. At each connection location  the following 4 ICs
should hold:

To conclude, the motion of the fluid is described by the Laplace equation within the fluid domain,
where the equation of motion for the structure is substituted as a complex boundary condition for
the fluid-structure interface. Together with the other boundary conditions as defined above, this
results in a well-posed problem, which can now be solved.
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Expressions of the incident wave

According to the linear wave theory, the potential of the incident wave  for perpendicular waves
and considering water of finite depth, is written in the following form:

Where  is the wave amplitude of the incident wave. The incident wave number , the wave
frequency , and the incident wavelength , are related through the dispersion relation:

Where,  is defined as the wave number

Consequently, the expressions for the surface elevation of the incident wave  and the velocity
of the fluid in x-direction over the boundary  are formulated as follows:

Numerical model

Now that the mathematical formulation behind the model has been described, the system of
equations can be rewritten into the weak formulation and inserted into the numerical model.
However, in order to do so, the input parameters regarding the incident wave and material
properties are defined first, afterwhich the numerical model is set up.

Input parameters

Material Properties

For this tutorial it is assumed that the VLFS has a solid rectangular cross-section with a height of
2m. The type of connection can be determined by varying the rotational stiffness parameter, where

 corresponds to a hinged connection, and  to a rigid connection. In this tutorial a value
of  is applied.

Finally, the length of the separated modules can be altered by changing the locations of the
connections with the connection location parameter . Here, it is assumed that the four modules
all have the same length, i.e. .

ρ_b = 250               # mass density VLFS [kg m^-3] 
h_b = 2                 # height VLFS [m]  
L = 1000                # total length VLFS [m] 
I = 1/12*h_b^3          # second moment of inertia per unit meter width (I/b)  
E = 12e9                # Youngs modulus [N/m^2] 
EI_b = E*I              # bending stiffness VLFS per unit meter width [Nm/m]   
ξ = 0                   # rotational stiffness parameter 
k_r = ξ*EI_b/L          # rotational stiffness connection [Nm] 
β = 0.25                # connection location parameter  

α1_b = ρ_b*h_b/ρ_w         
α2_b = EI_b/ρ_w

Fluid domain and incident wave

The fluid characteristics, the dimensions of the fluid domain, and the conditions for the incident
wave are described here below; where the input parameters correspond to mild wave conditions.

g = 9.81                    # gravitational constant 
ρ_w = 1025                  # water density [kg m^-3] 
d = 30                      # water depth [m] 
L_fd = 2*L                  # total length fluid domain [m] 

λ = 140                     # incident wave length [m] 
k = 2*π / λ                 # wave number  
ω = sqrt(g*k*tanh(k*d))     # dispersion relation                          
A_w = 0.75                  # amplitude of incident wave 
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Domain

Next, the numerical domain is defined using the Gridap  library, for which the different zones are
specified. This includes the inlet damping zone, the free surface zone in front of the VLFS, the
VLFS, the free surface zone behind the structure, and the outlet damping zone. For this tutorial,
both damping zones, and the VLFS are set equal to L, while the free surface zones are equal to
1/2 L.

Damping zone

The functions regarding the damping coefficients are defined with the expressions below, where
the initial damping is set to .

Construct the discrete model of the full domain

To construct the discrete model of the full domain, a partition is defined. The resolution of the
horizontal axis should be high enough to obtain an accurate approximation of the propagating
wave in x-direction. With respect to the vertical axis, the main interest is focused on the top layer
of the fluid domain, near the surface; as the vertical velocity profile converts to zero at the bottom
boundary. Therefore, a function is written to force an uneven distribution of the cell spaces in z-
direction, such that the resolution is fine at the free surface and becomes coarser towards the
bottom of the domain. For this tutorial,  and  are used regarding the partition in x-
direction and z-direction, respectively.

Furthermore, to impose the conditions defined at the connections, it is important that the locations
of the respective connections, , coincides with one the nodes of the finite elements. Hence, this
is obtained by defining the distribution of the cells as a multiplication of connection location
parameter .

Accordingly, the discrete model of the fluid domain  is constructed using the function
CartesianDiscreteModel . The function simplexify  is used to change the mesh to an affine
reference map, which is necessary to have the mapping work.

nx = 80                                
nz = 20                                
partition = (Int(4/β)*nx,nz) 

function f_z(x)                 # function to redistribute refinement of elements in z-direction 

ϕ_in(x) = (g*A_w/(1im*ω))*(cosh(k*x[2]) / cosh(k*d))*exp(1im*k*x[1])            # expression flow potential
u_in(x) = (g*A_w*k/ω)*(cosh(k*x[2]) / cosh(k*d))*exp(1im*k*x[1])                # expression flow velocity 
η_in(x) = (g*A_w*k/ω^2)*(sinh(k*x[2]) / cosh(k*d))*exp(1im*k*x[1])              # expression of the surface

using Gridap 
using Gridap.Geometry 
using Gridap.CellData 
using Gridap.FESpaces 

Ld_in  = 1L                                                 # Inlet damping zone length 
Lb     = L                                                  # VLFS length 
Ld_out = 1L                                                 # Outlet damping zone length 
LΓ = Ld_in+L_fd+Ld_out                                      # length fluid domain inc. damping zones 
domain = (0,LΓ,0,d)                                         # fluid domain   

xᵢₙ = Ld_in                                                  # x-coordinate end frontal damping zone 
xb₀ = Ld_in + 0.5(L_fd-L)                                    # x-coordinate start of VLFS  
xb₁ = xb₀ + Lb                                               # x-coordinate end of VLFS 
xd = xb₁ + 0.5(L_fd-L)                                       # x-coordinate initial outlet damping zone poi
xj = [(xb₀ + β*Lb), (xb₀ + 2*β*Lb), (xb₀ + 3*β*Lb)]          # x-coordinates that correspond with locations

μ₀ = 10 

μ₁(x::VectorValue) = μ₀* (1.0 - cos(π/2*(x[1]-xd)/Ld_out)) * (x[1] > xd) + μ₀*(1.0 - sin(π/2*x[1]/Ld_in)) *
μ₂(x::VectorValue) = -(μ₁(x)^2)/4 

ηd = x -> μ₁(x)*η_in(x)*(x[1]<xᵢₙ) 
ϕd = x -> μ₂(x)*ϕ_in(x)*(x[1]<xᵢₙ)

μ₀ = 10

nx = 80 nz = 20

xj

β

Ω



  if x == d 
      return d 
  end 
  i = x / (d/nz) 
  return d-d/(2^i) 
end 

map(x) = VectorValue(x[1], f_z(x[2])) 
model_Ω=simplexify(CartesianDiscreteModel(domain,partition,map=map))

Boundaries

Now that the discrete fluid domain model_Ω  has been constructed, the corresponding boundaries
of the discrete domain are obtained. First, the initial boundaries of the fluid domain are mapped to
their corresponding entity of the fluid domain and labeled using the function
add_tag_from_tags! .

The different zones of the surface boundary are then defined using a mask . First, a mask is
created for the complete surface boundary of the fluid domain, afterwhich a separated discrete
model is created, i.e. model_Γ .

# Masks in Ω 
# ========== 
# From all the entities of dimension 1 in Ω (edges in the full domain),  
# set to True all the edges that are in Γ and False otherwise. 
Γ_mask_in_Ω = get_face_mask(labels_Ω,"surface",1) 
# Create a list of indices that have value=True in the mask of active edges in Omega. 
Γ_to_Ω_dim1 = findall(Γ_mask_in_Ω) 

# Discrete model on the boundary (to construct a FE space only on the boundary Γ) 
model_Γ = BoundaryDiscreteModel(Polytope{1},model_Ω,Γ_to_Ω_dim1)

Next, auxiliar functions are defined; to check if the elements are either located in one of the
damping zones, at the free surface, within the structure, at the boundary of the structure, or at a
connection.

# Define surfaces that can be created without masks (only valid when using rectangular shape and a Cartesia
labels_Ω = get_face_labeling(model_Ω)  
add_tag_from_tags!(labels_Ω,"surface",[3,4,6])   # assign the label "surface" to the entity 3,4 and 6 (top 
add_tag_from_tags!(labels_Ω,"bottom",[1,2,5])    # assign the label "bottom" to the entity 1,2 and 5 (botto
add_tag_from_tags!(labels_Ω,"inlet",[7])         # assign the label "inlet" to the entity 7 (left side) 
add_tag_from_tags!(labels_Ω,"outlet",[8])        # assign the label "outlet" to the entity 8 (right side) 
add_tag_from_tags!(labels_Ω, "water", [9])       # assign the label "water" to the entity 9 (interior)

# Auxiliar functions 
# ================== 
# Check if an element is inside the beam 
function is_beam(coords) 
    n = length(coords) 
    x = (1/n)*sum(coords) 
    (xb₀ <= x[1] <= xb₁ ) * ( x[2] ≈ d ) 
end 

# Check if an element is inside the inlet damping zone 
function is_inlet_damping(xs) 
  # xs is a vector of points with the coordinates of a given element of dimension "d" 
  n = length(xs) # number of points in each element (in an edge there will be two points) 
  x = (1/n)*sum(xs) # take the average (centre of the element) 
  (x[1] <= Ld_in ) * ( x[2] ≈ d ) # check if the centre is in the inlet damping zone and on the surface 
end 

# Check if an element is inside the outlet damping zone 
function is_outlet_damping(xs) 
  # xs is a vector of points with the coordinates of a given element of dimension "d" 
  n = length(xs) # number of points in each element (in an edge there will be two points) 
  x = (1/n)*sum(xs) # take the average (centre of the element) 
  ( (LΓ - Ld_out) <= x[1] ) * ( x[2] ≈ d ) # check if the centre is in the inlet damping zone and on the su
end 

# Check if an element is on the beam boundary 
function is_beam_boundary(xs) 
  is_on_xb₀ = [x[1]≈xb₀ for x in xs] # array of booleans of size the number of points in an element (for po
  is_on_xb₁ = [x[1]≈xb₁ for x in xs] 
  element_on_xb₀ = minimum(is_on_xb₀) # Boolean with "true" if at least one entry is true, "false" otherwis
  element_on_xb₁ = minimum(is_on_xb₁) 
  element_on_xb₀ | element_on_xb₁ # Return "true" if any of the two cases is true 
end 



The separated zones of the surface boundary are constructed, for which different masks are
created with regard to the structure, the connection points, and the free surface. Accordingly, the
entities that belong to the respective part of the surface boundary are identified and assigned to a
new label.

Next, the masks of edges in Ω , and the masks of points in Γ  are obtained, which will be used to
construct the triangulations for the floating structure, the free surface, and the set of internal points
of the structure (skeleton).

Triangulations

# Check if an element is a joint 
function is_a_joint(xs) 
  is_on_xj = Array{Bool,1}(UndefInitializer(),length(xs)) 
  is_on_xj .= false 
  for xi in xj 
    is_on_xj = is_on_xj .| [x[1]≈xi for x in xs] # array of booleans of size the number of points in an ele
  end 
  element_on_xj = minimum(is_on_xj) # Boolean with "true" if at least one entry is true, "false" otherwise.
  element_on_xj  
end

# Masks in Γ 
# ========== 
labels_Γ = get_face_labeling(model_Γ) # get the face labeling of model_Γ 
topo = get_grid_topology(model_Γ) # get the topology of model_Γ (the information about how the model is def
D = num_cell_dims(model_Γ) # spatial dimension of the model_Γ 

# Construct the mask for the beam
entity_tag_beam = num_entities(labels_Γ) + 1 # create a new tag for the beam 
for d in 0:D # loop over dimensions 
  grid_Γ_dim_d = Grid(ReferenceFE{d},model_Γ) # construct a grid from the entities of dimension "d" in Γ 
  coords_grid_Γ_dim_d = get_cell_coordinates(grid_Γ_dim_d) # get the coordinates of entities of dimension "
  beam_mask_in_grid_Γ_dim_d = lazy_map(is_beam,coords_grid_Γ_dim_d) # beam mask with the entities of dimens
  beam_boundary_mask_in_grid_Γ_dim_d = lazy_map(is_beam_boundary,coords_grid_Γ_dim_d) # beam boundary mask 
  joint_mask_in_grid_Γ_dim_d = lazy_map(is_a_joint,coords_grid_Γ_dim_d) # joint mask with the entities of d
  # Create a list of indices that have value=True in the mask of active entities of dimension "d" in Gamma.
  beam_to_Γ_dim_d = findall( beam_mask_in_grid_Γ_dim_d .& 
                             .!beam_boundary_mask_in_grid_Γ_dim_d .& 
                             .!joint_mask_in_grid_Γ_dim_d) 
  # Tag the faces of dimension "d" (all the faces indexed in beam_to_Γ_dim_d) 
  for face in beam_to_Γ_dim_d 
    labels_Γ.d_to_dface_to_entity[d+1][face] = entity_tag_beam 
  end 
end 

# Add a name to the tag in labels_Γ 
add_tag!(labels_Γ,"beam",[entity_tag_beam]) 

# Construct the mask for the joint 
entity_tag_joint = entity_tag_beam + 1 
# Here we don't loop because we'll only have entities of dimension 0 (points) 
grid_Γ_dim_0 = Grid(ReferenceFE{0},model_Γ) 
coords_grid_Γ_dim_0 = get_cell_coordinates(grid_Γ_dim_0) 
joint_mask_in_grid_Γ_dim_0 = lazy_map(is_a_joint,coords_grid_Γ_dim_0) 
# Create a list of indices of points in Γ that are joint 
joint_to_Γ_dim_0 = findall( joint_mask_in_grid_Γ_dim_0) 
# Tag the points (all the points indexed in joint_to_Γ_dim_0) 
for point in joint_to_Γ_dim_0 
  labels_Γ.d_to_dface_to_entity[1][point] = entity_tag_joint 
end 
# Add a name to the tag in labels_Γ 
add_tag!(labels_Γ,"joint",[entity_tag_joint])

# Mask of edges only in Ω 
Γ_mask_in_Ω_dim_1 = get_face_mask(labels_Ω,"surface",1)         # get the mask of edges in Ω that are on Γ 
Γ_to_Ω_dim_1 = findall(Γ_mask_in_Ω_dim_1)                       # Get indices of edges of Ω that are on Γ 
Γstr_mask_in_Γ_dim_1 = get_face_mask(labels_Γ,"beam",1)         # get the mask of edges in Γ that are on th
Γstr_to_Γ_dim_1 = findall(Γstr_mask_in_Γ_dim_1)                 # get indices of edges of Γ that are in the
Γfs_to_Γ_dim_1 = findall(!,Γstr_mask_in_Γ_dim_1)                # get indices of edges of Γ that are in the
Γstr_to_Ω_dim_1 = view(Γ_to_Ω_dim_1,Γstr_to_Γ_dim_1)            # get indices of edges of Ω that are in the
Γfs_to_Ω_dim_1 = view(Γ_to_Ω_dim_1,Γfs_to_Γ_dim_1)              # Idem for the free surface 

# Mask of points only in Γ 
Λb_mask_in_Γ_dim_0 = get_face_mask(labels_Γ,"beam",0) 
Λj_mask_in_Γ_dim_0 = get_face_mask(labels_Γ,"joint",0)



Accordingly, the triangulations for the domain, the boundaries, and the interior points of the
structure can be easily obtained

Ω = Triangulation(model_Ω) # triangulation of the full domain 
Γ = Triangulation(model_Γ) # triangulation of the boundary (free_surface + beam) 

# Now we can construct sub-triangulations 
Γstr = BoundaryTriangulation(model_Ω,Γstr_to_Ω_dim_1) 
Γfs = BoundaryTriangulation(model_Ω,Γfs_to_Ω_dim_1) 
Γin = BoundaryTriangulation(model_Ω, tags = ["inlet"]) 

# Now construct a skeleton triangulation for the beam and joint 
Λb = SkeletonTriangulation(model_Γ,Λb_mask_in_Γ_dim_0) 
Λj = SkeletonTriangulation(model_Γ,Λj_mask_in_Γ_dim_0)

Quadratures

Finally, the quadratures are specified for the domain, the boundaries, and interior points of the
structure

order = 2 
dΩ = Measure(Ω,2*order) 
dΓ_str = Measure(Γstr,2*order) 
dΓ_fs = Measure(Γfs,2*order) 
dΓ_in = Measure(Γin,2*order) 
nΛb = get_normal_vector(Λb) 
dΛb = Measure(Λb,2*order) 
nΛj = get_normal_vector(Λj) 
dΛj = Measure(Λj,2*order)

FE spaces

As the numerical domain, and the specific boundaries have been defined, the test spaces can be
constructed. To this end, two spaces are built with regard to the internal domain model_Ω  and the
surface model_Γ , for which linear lagrangian shape functions are used as reference element.
Subsequently, the trial spaces are obtained from the test spaces. The separated spaces are then
combined for the full numerical domain using the function MultiFieldFESpace .

reffe = ReferenceFE(lagrangian,Float64,order) 
  V_Ω = TestFESpace(model_Ω,reffe, vector_type=Vector{ComplexF64}  ) 
  V_Γ = TestFESpace(model_Γ,reffe, vector_type=Vector{ComplexF64}  ) 
  U_Ω = TrialFESpace(V_Ω) 
  U_Γ = TrialFESpace(V_Γ) 
  Y = MultiFieldFESpace([V_Ω,V_Γ]) 
  X = MultiFieldFESpace([U_Ω,U_Γ])

Weak form & CG/DG approach

The final step to solve the FSI problem with Gridap is to obtain the bilinear form of the
mathematical formulation,  (see below). The bilinear form contains both first, and
second order derivatives. The finite element spaces therefore require continuous gradients
between elements, i.e. C1 continuity across elements. As proposed by Colomés et al., this can be
achieved by applying the Continuous Galerkin / Discontinuous Galerkin (CG/DG) approach for
fourth order operators, where the discrete functions are continuous at the element nodes, but the
gradient is discontinuous. Therefore, linear Lagrangian elements can be applied, while continuity
of the gradient over adjacent elements is weakly enforced by means of an interior penalty
approach.

To obtain the bilinear form, the following steps are applied:

The first row is obtained by multiplying the Laplace equation by the test function, , after
which it is integrated over the domain  and then integrated by parts.

The normal velocity at the boundaries is replaced by the respective kinematic boundary
condition of the free surface , see second row, where the conditions at the seabed , and
the vertical boundary  are canceled out as they go to zero.

The third row includes the dynamic boundary condition on the free surface. According to the
monolithic approach described by Akkerman et al., here the dynamic condition is multiplied by

a((ϕ, η), (w, v))

w

Ω

Γ  fs Γ  b

Γ  R



a modified test function, , and integrating over the free surface boundary , where
the term  is added to the test function  to guarantee coercivity of the system.

The fourth row includes the dynamic boundary condition on the beam surface, multiplied by
test function , integrated over the fluid-structure interface . In this case, however, the
fourth order term is integrated by parts twice, where the resulting integrals over the structure
boundaries are canceled out again, as it was assumed that the conditions at the free ends of
the VLFS are equal to zero.

Implementing the interior penalty approach in a similar way as discussed in the Gridap tutorial
Poisson equation (with DG), the third, and second last row weakly forces continuity of the
surface elevation gradients between structural elements.

Ultimately, the approach to weakly force conditions between adjacent elements is also used
to impose the interface condition regarding the bending moment at the connections, as can
be seen in the final row.

weak form

Hence, the complete bilinear form is described below, where the linear form involves the boundary
conditions which are defined by the known expressions for , and .

Solver

Ultimately, with the function AffineFEOperator , the equations are assembled into a matrix,
where the numerical solver Gridap.solve  is used to find the approximated solution for ϕh , and
ηh .

The bending moment of the VLFS is defined by the second derivative of the displacement with
respect to x, multiplied by the bending stiffness EI. Accordingly, the moment distribution along the
structure can be obtained from the solution for ηh ; using interpolate_everywhere  over the
surface boundary, V_Γ .

op = AffineFEOperator(a, l, X, Y)

ϕh , ηh = Gridap.solve(op) 
Moment = interpolate_everywhere(EI_b*Δ(ηh),V_Γ)

Visualisation

The results can be inspected by writing it into a vtk file , which will generate a file that contains
the real and imaginay part of the problem solutions.

writevtk(Ω, "FSI_multiVLFS_phi", cellfields=["phi_re"=>real(ϕh), "phi_im"=>imag(ϕh)]) 
writevtk(Γ, "FSI_multiVLFS_eta", cellfields=["eta_re"=>real(ηh), "eta_im"=>imag(ηh)]) 
writevtk(Γ, "FSI_multiVLFS_moment_distribution", cellfields=["M_re"=>real(Moment), "M_im"=>imag(Moment)])

const h = β*Lb/nx 
const γ_m = 1.0e2*order*(order+1) 
const αh = -1im 
const βh_fs = 0.5 
αh_fs = αh*ω/g*(1-βh_fs)/βh_fs 

a((ϕ,η),(w,v)) =      ∫(  ∇(w)⋅∇(ϕ) )dΩ   +    
                      ∫(  (1im*ω*w*η)  - μ₁*η*w - μ₂*ϕ*w/g )dΓ_fs   + 
                      ∫(  βh_fs*(v + αh_fs*w)*g*η  +   βh_fs*(-1im*ω)*(v + αh_fs*w)*ϕ )dΓ_fs   + 
                      ∫(  (-ω^2*α1_b + g)*v*η +  Δ(v)*(α2_b*Δ(η)) +  (-1im*ω*v*ϕ)   +   (1im*ω*w*η)  )dΓ_st
                      ∫(   - (jump(∇(v)⋅nΛb) * mean(α2_b*Δ(η))) - (mean(Δ(v)) * jump(α2_b*∇(η)⋅nΛb))  +  
                          γ_m/h*( jump(∇(v)⋅nΛb) * jump(α2_b*∇(η)⋅nΛb))  )dΛb + 
                      ∫(  (1/ρ_w)*(jump(∇(v)⋅nΛj) * k_r * jump(∇(η)⋅nΛj)) )dΛj 
                       

l((w,v)) =            ∫( w*u_in )dΓ_in - ∫( w*ηd + w*ϕd/g )dΓ_fs

v + α  wfs Γ  fs

α  wfs v

v Γ  str

ϕ  inc η  inc
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