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Abstract

A multiscale framework for the analysis of fracture is deyad in order to determine the
effective (homogenized) strength and fracture energy of a ogsitgomaterial based on the con-
stituent’'s material properties and microstructural ageanent. The method is able to deal with
general (mixed-mode) applied strains without a priori kiemlge of the orientation of the cracks.
Cracks occurring in a microscopic volume element are maldatesharp interfaces governed by
microscale traction-separation relations, includingifsices between material phases to account
for possible microscale debonding. Periodic boundary ttimms are used in the microscopic vol-
ume element, including periodicity that allows cracks smsverse the boundaries of the volume
element at arbitrary orientations. A kinematical analysigresented for the proper interpretation
of a periodic microscopic crack as an equivalent macroscogiiodic crack in a singlefiactive
orientation. It is shown that the equivalent crack is fieeted by the presence of parallel peri-
odic replicas, hence providing the required informatioraaingle localized macroscopic crack.
A strain decomposition in the microscopic volume elementsed to separate the contributions
from the crack and the surrounding bulk material. Similatthe (global) Hill-Mandel condition
for the volume element is separated into a bulk-averagediton and a crack-averaged condi-
tion. Further, it is shown that, though the global Hill-Mahdondition can be satisfied a priori
using periodic boundary conditions, the crack-based ¢mmdcan be used to actually determine
the dfective traction of an equivalent macroscopic crack.

Keywords:
multiscale fracture, cohesive elements, representatikene element, Hill-Mandel relation

1. Introduction

Prediction of the onset and evolution of failure in compasitaterials such as fiber-reinforced
composites is an essential factor in the design and deveopof load-bearing components used
in lightweight structures. While significant progress hasiibachieved in this area since the trans-
portation industry embraced the use of composites, theraéed to further refine the predictabil-
ity and robustness of models used to analyze failure. Cusaiety factors used in design of
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structures made of composite materials significantly limgir eficiency due to large uncertain-
ties. Multiscale methodsfter the possibility of incorporating detailed informatioreocomposite,
which should lead to an improvement in accuracy of failureleis. Equally important is the need
to develop models that predict the evolution of failure imgmsites, which is relevant in order to
determine the residual structural strength after (partsalure or to design a structure against a
catastrophic event (e.g., impact).

In recent years, the use of cohesive laws, in conjunctioh wither cohesive elements or
with the extended finite element method (XFEM) has gainedifaojty as a tool to simulate the
onset and propagation of cracks in composite materials.eilesless, establishing reliable co-
hesive laws for composite materials remains challengiagjqularly regarding the incorporation
of lower length scale information at a higher length scalbe @etermination of a macroscopic
cohesive relation, which accounts for microscale featanesfracture mechanisms, relies on a ho-
mogenization approach that translates the detailed bahiava microstructural volume element
into an dfective (macroscale) response. For multiscale formulatiovolving fracture, the clas-
sical notion of a representative volume element (RVE) thatised on a continuous displacement
requires a modification (see, e.g., Gitman etlal. (2007)). akernative averaging formulation
based on a damaged zone within the volume element was poppdéguyen et all (2010) where
it was concluded that with a proper identification an RVE carestablished.

Multiscale formulations have been applied to the so-cadlédesive cracks, in which it is a
priori known in what region and, more importantly, in whatemtation a macroscopic crack is
expected to nucleate and grow (Verhoosel et al., 2010; Matbal., 2008; Kulkarni et al., 2010).
Micromechanical formulations have been used to studyraiin polymer composites using pe-
riodic boundary conditions in_ Melro et al. (2013) where thiiience of the distinct material and
interface properties were analyzed. Similarly, the infeeeaf defects on the strength and fracture
energy of a fiber-reinforced unidirectional composite uredension was analyzedlin Alfaro et al.
(2010a) where it was observed that imperfections may iserdee ective crack length compared
to the crack length in a sample without imperfections, thetsally increasing the macroscopic
fracture energy. In-plane periodic conditions where usednalyze the response of one ply in
Arteiro et al. (2014), with elastic adjacent plies prevegtbut-of-plane crack propagation beyond
the ply analyzed (i.e., a so-called “walfect” as described in Gitman et/al. (2007)). Their simu-
lations provide insight on the interplay between ply geagnahd properties, constrainingfects
of adjacent plies and the resulting crack patterns.

One issue that has been identified as a potential problentaigdeto the strong (i.e., point-
wise) periodic boundary conditions and et on the results. To overcome the limitation of
having to prescribe a priori the orientation of a crack (ianalysis limited to adhesive cracks)
and simultaneously to address some doubts that have beenl @bout the suitability of strong
periodic boundary conditions to analyze fracture, a mediis transition scheme was proposed
in which the representative volume element is, upon thetasfseracking (localization of dam-
age), replaced by a microstructural volume element (MVEe(fi&n et all, 2012a,b; Bosco et al.,
2015). Through a continuous adaptation of the loading atticeoscale level, using the so-called
percolation-path-aligned boundary conditions, the MV&vmtes a macroscopic response aligned
with the average orientation of the crack as it developsutpnout the loading process. Their
scheme was implemented in a so-called FEmework, where numerical simulations are simul-
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taneously conducted at the micro and macroscales. Alsessidg the issue of strong periodic
boundary conditions, an alternative approach pertairongdakly periodic boundary conditions
has been recently developed (Svenning et al., 2016a,bseldmnditions lead to a mixed traction-
displacement formulation as unknowns in the boundary.

The FE approach requires continuous bi-directional exchangenfoirination between the
macroscale and the microscale domains throughout a siomlsiosby and Matous (2016). In a
displacement-driven multiscale formulation, a macrass#iain increment is given as input to an
RVE (in undamaged zones) or to an MVE (in damaged areas) ancbtihesponding microscale
boundary value problem is solved, which explicitly acc@ifot microstructural phenomena. Sub-
sequently, the averaged microscale response is providegatdo the macroscale boundary value
problem, typically in the form of an average (macroscopimss increment, a tangent (value of
derivative of stress with respect to a strain measure) asdilply some variables that are treated
as internal parameters at the macroscale. In this approaehgonstitutive information at the
macroscale is not specified in closed-form (or with a systéeqgoations) but rather in implicit
form through the (incremental) solution of microscale baany value problems, one for each
macroscale integration point in a finite element formulatio

An alternative approach, which is attractive from the pointiew of computational&iciency,
is to propose a macroscopic model in closed-form and use MYEssentially calibrate the con-
stitutive information a priori (i.e., the parameters in thacroscopic model are chosen to approxi-
mate the explicit MVE results). The clear advantage is thatpossible to carry out a single-scale
computation while retaining relevant information abow thicroscale phenomena. One limitation
of this approach is that the macroscopic model may not betaloéproduce all possible responses
from the MVE calculation, particularly for complex loadimgstories. Nonetheless, accurate re-
sults may be expected for simpler loading cases (e.g. lyomadportional loading), which can still
reproduce a relatively complex macroscopic loading case.

Within the context of computationatteciency, the present work addresses two issues in a hi-
erarchical multiscale framework for fracture: (i) the aiitity of strong periodic boundary condi-
tions under relatively general loading conditions andg(iethodology to establish a macroscopic
cohesive law that implicitly incorporates microscopicarrhation. For the first issue, an analy-
sis is carried out to introduce the notion of an “equivalelack domain”, where it is shown that
the response after localization due to fracture under gtpmriodic boundary conditions can be
described by a single equivalent crack and is independeguair@iilel crack replicas. The method
relies on a description of fracture at the microscale leasda on crack surfaces (as opposed
to distributed damage theories that simulate cracking iegéon). In practice this simplifies the
numerical implementation since only one type of fracturedetias required. Furthermore, the
crack surface approach can still be used in conjunction avidlistributed model for, e.g., plastic-
ity. Through representative simulations it is verified tthegt periodic boundary conditions provide
suficient freedom to allow cracks to nucleate in arbitrary daéons. Hence, one criticism of
periodic boundary conditions is addressed and the theatdtamework provides a simple and
computationally-fficient method to impose boundary conditions for fracturebfgms. For the
second issue mentioned above, the present work indicatestdps required to derive a macro-
scopic cohesive relation that, through interpolation dhdgenerated parametrically from repre-
sentative loading cases, can be used for a wider range ahtpadnditions (i.e., arbitrary mixed-
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Figure 1. Microstructural volume element representing @sstsection perpendicular to the fiber direction of an
unidirectional fiber-reinforced composite.

mode loading conditions). An analysis of the Hill-Mandehddions in the context of periodic

boundary conditions is carried out. The expressions of ffextve quantities that describe a
macrocrack are derived from this analysis, which can be urs#te description of the kinematic

and kinetic aspects of a macroscopic cohesive relation fongposite material.

The paper is organized as follows: In Séc. 2 the microscalblem with periodic boundary
conditions is formulated. The scale transition relatioresdiscussed in Sdd. 3. Quantities associ-
ated with an equivalent macroscopic crack are defined irdS@tis section includes an interpre-
tation of the Hill-Mandel conditions for an equivalent dkaand the general form of a macroscopic
traction-separation (cohesive) relation for a composigemal. An analysis to (numerically) ver-
ify the scale transition requirements in terms of a crackeldaHill-Mandel condition is presented
in Sec[b. The existence of a representative volume eleroeritadcture is studied in Sdd. 6 for
various loading cases. Based on the representative elepneatroscopic fracture data is summa-
rized in Sed.J to illustrate the general procedure to craateterial database from simulations.
Concluding remarks are given in Sec. 8.

2. Microscale formulation

In a hierarchical multiscale formulation, a material poma macroscopic domain represents
the collective (or &ective) behavior of a microstructural volume element. Fmpdicity, attention
is limited here to a two-dimensional volume element thatesents a cross-section of a compos-
ite as illustrated in Fid.J1 (for example, a cross-sectiorpeerdicular to the fiber direction of
an unidirectional fiber-reinforced composite). Extensitmthe three-dimensional case are also
indicated whenever appropriate. The approach adoptedadi@ss: a nominal (macroscopic) de-
formation is applied to a volume element containing micabsanformation. Lower length scale
information is given through phase-specific cohesiveiaiat(e.g., separate cohesive relations for
fibers, matrix and also for fiber-matrix interfaces in a fibginforced composite). Subsequently,
the fracture process inside the volume element is modelgikiva specimen fails (i,e., it can no
longer transmit a load). The microscale information is thest-processed to extract affiextive
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macroscopic traction-separation relation applicabletiergiven nominal deformation. The “cal-
ibrated” traction-separation relation can be subsequesitd to model a fracture process at the
macroscopic scale without the need to explicitly model theroscale phenomena. The method is
intended for a sfiiciently thick specimen in the cross-sectional plane algfiraican be adapted to
account for so-called “wallféects”. This extension, however, is beyond the scope of tesegmit
work.

The procedure to calibrate a macroscopic traction-sapareglation requires solving a series
of boundary value problem on microstructural volume eletsielm order to relate the microscale
information to the macroscale behavior, a scale transrgtation is required. The guiding princi-
ple is that the total energy dissipated due to the microdcatture process should coincide with
the macroscopic dissipation of an equivalent tractiorasspon relation, in line with the Hill-
Mandel condition|(Verhoosel etial., 2010; Hill, 1972, 198%) a multiscale formulation where
the displacement field remains continuous , the macrosatygss and strain tensors are viewed
as (weighted) averages of their microscopic counterpaith,an average performed in a repre-
sentative volume element (RVE). If fracture occurs, howete volume average cannot be used
in its traditional form due to the displacement discontipaissociated to cracks. Instead, one has
to consider a version of the divergence theorem that insljudaps along surfaces of discontinuity
within the volume element (see, e.qg., (Unger, 2013)).

In the present work, strong periodic boundary conditiomsaguplied to a microstructural vol-
ume element in all space directions. There have been issigsirin the literature about the
suitability of pointwise periodic boundary conditions imetcontext of fracture, hence a discus-
sion on the Hill-Mandel requirement for the micro- to masiale transition in the context of
periodicity as well as the geometrical interpretation aigaic cracks is pertinent.

As shown in Fid.Il, denote &the microstructural volume eleme#t as the external bound-
ary of the microstructural volume element aids the line (in two-dimensions) or surface (in
three-dimensions) where a crack appears in the microatalatolume element. For simplicity, in
the two-dimensional case, the domain is taken hs<a, rectangular domain with corner nodes
denoted ax®, i = 1,2,3,4, and the boundaryQ is divided into four sides denoted &s);,

i =1,2,3,4as shown in Figl2. The outward unit vectovt@ is denoted as in general, while the
specific outward unit vector to a sid€; is denoted asg;, withi = 1, 2, 3, 4. The normal vector to
the crack surfackE is denoted am, with the convention thaih = m™ is the vector pointing towards
theI'* side whilem* = —nm is the vector pointing towards tHe side (see inset in Figl 2). The
choice of the+ and - sides fof" is in principle arbitrary (similar to a sign convention) liuheeds
to be consistently interpreted, particularly when compgitntegrals along the crack surface. For
convenience, a global Cartesian basiss, is chosen such tha = n, ande, = n,. The crack
I may represent a collection of disconnected crack segmwittspossible bifurcations. Due to
periodicity, some seemingly disconnected segments rept&s fact a continuous crack (i.e., the
crack leaves and re-enters periodically the volume eleraeperiodically-connected points on
0Q). A discussion on the geometrical interpretation of padadacks is given i Appendix]A.

The crack surfac€ is in general not known a priori but, rather, it is obtainedresoutcome
of a simulation. Unless otherwise indicatétrefers to the cracked state ofudly-failed volume
element, although some isolated and partially-failed sagmofl” may still be able to transmit
loads at the end of the simulation. Central to the presemdtation is that cracks are allowed
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Microstructural volume element

Figure 2: Nomenclature used in the two-dimensional reatiEmg/olume element and decomposition of the micro-
scopic domain into subdomains with boundaries (dashed lines) that conltes external boundagQ, the crack
surfacel’ and possibly uncracked parts of the material where thealigphent is continuous. Line integrals in the
subdomains are by convention performed in an anti-cloakféshion.

to cross the external boundaries at arbitrary locatiorisiaperiodically. To this end, periodic
boundary conditions are applied separately to both sidgminits where a crack may cross the
external boundary of the domain.

The microscale boundary-value problem for a quasi-staticgss with a crack’ and with
periodic boundary conditions is, in the absence of bodyefeyras follows:

divo(x,t) =0 XinQ\T

tT(x*,t) = -t~ (x,1) xonT

u(x + lier, t) —u(x, t) = l1e(t)e; t(X + l1ep, 1) = —t(X, 1) XonogQz \ T )
u(x + 1,e, t) — u(x, t) = lre(t)e t(X + 1,6, 1) = —t(X, 1) xonoQ,\T

U (x* + lyer, t) — u*(x*, t) = l1e(t)er t=(X* + l1e, 1) = —t5(x%,t) xondQz NI

U (X* + 1,6, 1) — U (X*, 1) = lre(t)e t=(X* + 1,65, 1) = —t=(Xx*,1) xondQu NI

whereo is the stress tensor, div is the divergence operatarthe traction vector acting on the
corresponding surfacd’ (or 9Q2), u is the displacement vector ard="€(t) corresponds to a
prescribed macroscopic strain tensor applied on the vokleraent that drives the deformation
process at dierent timed. The setQ \ I" refers to points in the bulk, uncracked material while
0Q N T refers to the points where the crack crosses the externaldaoy of the domain. The
superscripts- and - refer to values on opposites sides of the suifadéhe tractiong® for points
on the intersection betwedhanddQ are computed with respect to the correspondingvard
normal vector ofoQ. It is noted that the points where a crack crosses the boyrdtanain
are not known a priori but, rather, they are identified as thpyear during the loading. For
implementation purposes in a displacement-driven nuralkesalution, the displacement of the
corner nodes in the rectangular domain can be specifiedxds t) = €(t)x?, with i = 1,2, 3,4,
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while the displacements of all the other boundary pointsabgected to the periodicity conditions.
In view of this, care must be exercised interpreting theltesince the domaif may contain
multipleparallel cracks andr (finite) crack branches afat isolated crack segments. A procedure
to extract the information for a periodic crack is developethe sequel.

At regular pointsx that are not on the crack surface, the displacement anch steddls are
related as

e:%(Vu+VuT) XeQ\T, (2)

where the superscript T refers to the transpose. For a catapoade out of linearly elastic and
brittle solid phases, the constitutive relation at regylaints is given byo = Ce xin Q\T
whereC = C(x) represents the $fhess tensor at point(e.g., either matrix or fiber). The present
formulation is not restricted to brittle elastic materiblst for simplicity this constitutive model
will be used in the simulations. At points on the crack suefacthe constitutive response is taken
as

t=feon(Jul.x,m XinT

where fo, represents a microscale cohesive relation (tractionraépa relation) that describes
the microscale fracture at a poit Distinct microscale cohesive relations are used to chenae
the fracture process inside the dom&iifeither matrix, fiber or matrix-fiber interface). In general
the cohesive relation depends on the local crack openij@ifid possibly on internal variables
and the orientation of the crack (for anisotropic cohesalations), as given by the crack normal
m. The crack opening is given by

[ul =u" —u” xonT (3)

with the superscripts and - referring to the displacements on opposites sid€s Gbserve that
the periodic boundary conditions at points where the cratdrsects the external boundary do
not specify a crack opening as they relate displacementssenéally the same side of the crack
surface. Indeed, subtracting the boundary conditionsigesvthe following relation:

[u(x, )] = [u(x + e, 1] XxonoQsNT 4
[u(x,0)] = [u(x + l,e, 1] xonoQuNT 4)

hence the boundary conditions only indicate that the junglisplacements repeats itself period-
ically but otherwise do not specify the actual value of thagu In the present formulation, the
intention is to use classical cohesive elements at the state for which a separate nucleation
criterion is not specified separately since it is implicglyen in the cohesive relation and depends
only on the stress vector acting on the plane of the cohesdveent. However, it is noted that
an implementation based on XFEM would require a separatieati@n criterion that predicts the
orientation of the microcrack typically based on the steesgor the strain tensor.

3. Scale transition relations

3.1. Preliminaries

The Hill-Mandel condition, also known as the macrohomoggremndition, refers to a scale
transition requirement aimed at consistently preservieghmanical quantities appearing in the bal-
ance principles and constitutive relations at distinctescaAs indicated in [Hill, 1972], a natural
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definition of a macrostress™ and a macrostraie™ is based on volume averages of their mi-
croscale counterparts, i.e., averages @nde. If the scale transition is based on an (unweighted)
volume average, it was observed that, in general, the ptadaverages is dierent than the av-
erage of products, hence one has to guarantee consistencyialp particular, the Hill-Mandel
condition most commonly used refers to the stress power a@oscopic point, where it is re-
quired thaio™ - €M = (o - €),,, WhereeV is the time rate of change of the macrostraiis the time
rate of change of the microstrain and the notation := (1/|Q|) fQ(-)dv refers to an average over
an area per unit depth (for plane problems) or a volume (ieetliimensions). The Hill-Mandel
condition for the stress power needs to be extended in treeptreontext to account for the rate
of work associated to fracture.

The microscale information in a volume eleméhtan be used to extract the macroscale be-
havior in the neighborhood of a point nominally located at @aroscopic crack. The volume
element contains information pertaining to both the mawp& cohesive traction-separation re-
lation as well as a contribution from the surrounding bulkenial. In order to extract thefiective
traction-separation relation, it is necessary to sepdhateesponse of the actual crack from the
response of the surrounding bulk material. This is achidsedecomposing the kinematic and
kinetic contributions associated to the bulk (i@.\ I') and the crack (i.el;) as indicated below.

3.2. Average bulk and fracture strains

Divide the domairf2 into complementary subdomains whose boundaries cohtanuoQ, as
shown schematically with dashed lines in Eig. 2. Insideatmshdomains the displacement field
is differentiable, hence the strain field is well-defined. Applyiing divergence theorem in each
subdomain and in view of{2), it follows that the volume ag@af the microscale strain tensor
is

1 1 1 1
(€)g = @Ledv: @fQ[Vu]symdv: @LQ [U® N]gymds— @fr[[u] ® Mlgymds  (5)

where® is the tensor product Al sym := % (A + AT) refers to the symmetric part of a tensru]

is the crack opening as defined i (By,epresents the outward normal unit vectofdandmthe
normal unit vector pointing towards theside ofl" (i.e., m= m~ = —m*, as indicated in Fifl2).
Line integrals in the subdomains are by convention perfdrimen anti-clockwise fashion, hence
the+ side needs to be interpreted according to the (local) paramaton of (segments) df.

In the sequel, the periodic boundary conditions are usetktatify a relation between fierent
strain measures. The outward normal vectors on the sideandoQ, are, respectively, equal to
the negative outward normal vectors on the sigfes andoQ, (see Fid.R). Consequently, in view
of (1), suppressing the time variable for simplicity, obdeg thatn = n3 = —e; for pointsx on
0Q3 and using the fact tha®@| = |11,, it follows that

[u(x) ® Nlgymds [(u(x + |1€1) — l1€€1) ® N3]gymds

12 Joos 1Ql Jao,

1 —
= —@ » [ux+ 1681 ® el]symds+ [ee1 ® e1]sym . (6)
3
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For pointsx on 9Q3, the position vectok + |1e; indicates a point on the opposite side, i#;
(see Fid.R). Further, the outward normal unit veatdor points ondQ; is n = e; . Consequently,
the first integral on the right hand side of (6) can be altévebt expressed as an integral over
(9Q1, i.e.,

1
A [U(X+ |1e1)®e1]symdsz Al [U(X)® r]]symds
1€ Jaq, 1€ Jaa,

where x and n in the integral on the right hand side refer to, respectjvpbints onoQ; and
the corresponding outward normal vector. Using the previelation in[(6) and suppressing the
arguments gives

[u® n]sym ds [u® r]]symds = [Eel ® e1]sym . (7)

J— + —
|Q| Q1 |Q| 0Q3

Using the same procedure in teedirection, it follows that

[u® Nnls,mds [U® Ngymds = [€& ® &]sym »

[ +_
19 Jao, 1Qf Jaq,

which, in combination with[(7), yields

l P - —

where the last identity follows from the (two-dimensiond@ntity tensol = e; ® e; + e, ® &, and
the symmetry ok. A similar formula can be established for the three-dimemai case.

Using (8) in [5) provides a relation between the appliedsitathe average straife), in the
bulk material and the average of the normal vector and theka@pening, namely

€= (€)g+€, 9)

where 1
€ = ] fr[[ u] ® mlgymds. (10)

Observe that, in contrast to the continuous case withoaksraheree and{e), coincide, these
two quantities are dlierent in the presence of a crack. In the context of a mulesaaalysis, it is
useful to interpret the result shown above as a kinematiordeosition of the “total” strair into a
“pbulk” strain (€)q, (Strain in the uncracked material) plus an equivalent tireestrain’e’, which is
defined in[(ID). As shown in the sequel, the straing and(e),, will also represent, respectively,
the applied strain, the fracture strain and the strain instimeounding uncracked material of a
periodic crack. However, depending on the method used tosenthe applied strain, care needs
to be exercised to properly interpret this quantity in ortteprevent an artificial analysis with

multiple parallel crack analysis as indicated in Appendix A



3.3. Volume-averaged stress

Regarding the volume-averaged stress, making sequestabiuthe identity di o ® x) =
divo ® x + o, the equation of equilibrium, the divergence theorem, dreddontinuity of the
traction acting orf', it follows that

1 1
g = odv=— t ® xds, 11
(o |Q|f 1Q Joq 1D

wheret = onis the traction vector on the boundaif2.
The expression.(11) can be further specialized for anipgertraction boundary condition as

2
_ _ 1
= i®g, i = — tds 12
(@a= e, ti=ge | (12)
wheret;,i = 1,2 are the surface-averaged tractions on sif@swith [0Q,| = |, and|0Q,| = I,

An equivalent formula applies for the three-dimensionakca

3.4. Rate of work relation and Hill-Mandel condition for vohe element

The specific rate of external wolR®** done on the boundary of the volume element and the
specific stress powd? in the bulk material, both measured per unit area and perdepith (in
two dimensions) or per unit volume (in three dimensions)dmfined, respectively, as

1 ) 1 .
pext . — @ t-uds, and P°:= @ fo--edv.
oQ Q

The next step in the foregoing analysis is to relate thesetdies to the rate of work of frac-
ture (rate of work done by the traction on the crack surfidceTo this end, consider again the
subdomains indicated in Fig.2. Recalling the identity

div(o-TU) =divo-U+0-V0,

which is applicable for pointg € Q \ I" and further making use of the equilibrium equatibh (1),
the strain-displacement relatidnd (2) wRts = (d/dt)Vu and the symmetry af, it follows that the
stress power can be expressed as

fdlv o' u f t- uds—— t~|[U]|ds,
1l T Ql 12|

where the last expression is obtained from the divergerneeréim and Cauchy’s theorem (i.e.,
t = onondQ andt = omonT). In the relation above, the traction dhrefers to the traction
acting on thd™~ side, i.e..t = t~ = o~ mwith o~ referring to the stress tensor on ffieside.
Combining the expressions for the external rate of work doméhe volume element and the
stress power it follows that
P =P+ P, (13)
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where
P = 0 ft- ujds 14

which indicates that the specific external power done onthawe element is equal to the specific
stress power (on the bulk, uncracked material) plus theofaterk of fracture, which is defined in
(I4). Observe that, in accordance with the notational catiwe indicated abovd, corresponds
to the crack at a fully-failed state and hence it is not intetgd as a function of time. During
the overall cracking process, at a given timeome segments inmay be fully-separated, some
may be partially cracked and others may be still uncrackadr 8 cracking, uncracked segments
do not contribute to the integral in_(l14) since the displagenis continuous in an undamaged
segment.

In accordance with a classical multiscale approach, theasaopic bulk stress and bulk strain
are taken as the volume average of their microscopic couentist In view of the kinematical
decomposition(9) and in line with the approach indicateovalfor the &ective bulk stress and
strain, the &ective equivalent strain associated with a macroscopiesioé surface is identified
ase' as defined in((10).

The version of Hill-Mandel’s requirement for the whole vizla element (i.e., bulk and cracked
parts), can be expressed in terms of surface data, i.e.,

(0)g - € = P = if t-uds. (15)
19l Jaa

For periodic boundary conditions, using an approach simagathe one used in the previous sub-
sections, it can be shown that the specific external powee d@onthe volume element is such
that

1 . — . — O —
—ft-udS:t1~ee1+t2~eezz<0'>g~e,
1Qf Jaa

where the surface-averaged tractidnsind t, and the last relation follows froni (12). The pre-
vious analysis confirms that periodic boundary conditiores safficient to satisfy the “global”
Hill-Mandel condition (i.e., bulk and crack combined). Hewer, for the purpose of the present
analysis, a more relevant statement is a separate scad@itvamelation for the crack. This analy-
sisis presented in Séc.#4.1. To this end, some details orotianrof a periodic crack are provided

H \

4. Equivalent macroscopic crack

4.1. Equivalent macroscopic crack length

The microscopic crack (or, the equivalent crack surfat€ seg Appendix A), can be repre-
sented at the macroscopic level by an equivalent macrosstpight (diferential) crack segment
denoted ag" and characterized geometrically by its orientation givgrabunit normal vector
m' and a nominal Iengt||'l“f| (per unit depth for plane problems) or a nominal area (foeehr
dimensional problems), as illustrated in [ig. 3. The path ofack at the microscale is typically
affected by the microstructure of the composite material botarims of geometrical features (e.qg.,
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distribution of fibers, fiber diameters, volume fractions)veell as the fracture properties of the
constituents, interfaces and the presence of flaws (Pommesal., 2015). The microscale vol-
ume element should reproduce these features to assurergenge in a multiscale sense. More
generally, geometrical features at each length scale amdvexl with a characteristic accuracy,
i.e., what appears as a complex crack pattern at the lowgthetale within a volume element
is typically resolved “locally” as a straight crack fidirential) segment at the larger scale. The
orientation of a nominally straight macroscopic crack seghis given by a unit normal vecton
that can be defined based on the fully-failed state as

m = (mp , (16)

where the notatiok) := (1/]T7) fr(-)ds, representing crack-averaged quantities, is introduced f
convenience. This average contains contributions froraraltk segments df, including bifurca-
tions and disconnected parts. In principle the veatbcould evolve during the loading process
but, to simplify the procedure, it is assumed to be indepenhdé time and obtained through
post-processing of the fully-failed state. Care must benato compute separate contributions
independently of the choice of the positive and negativesaf segments ii (Westbroek, 2017).

On the other hand, a straight macroscopic crack segmentmfnatblength|rf| should rep-
resent the accumulatedfect of microcracks. As opposed to quantities defined peruahiime,

a definition of the equivalent (orfective) unit macroscopic crack length per unit depth (or per
unit area in a fully three-dimensional framework) and itatien with the microscale crack length
(or area) is relevant since the macroscopic work of fraghereunit macroscopic length (or area)
should coincide with the overall work of fracture in a miaropic volume element.

Several options are available for the purpose of idenl{iﬂl?ﬂ, which should relate the mi-
croscale crack lengtfi’| to a macroscopic tierential element. One option is to determine the
shifting mapping given inC(Al1), construct the equivalerdak domainQ® and project it onto a
line perpendicular to a given nominal crack normal veetbto compute a characteristic length
|Ff| (seeillustration in Fig]3). A second option, which is admphere for simplicity since it avoids
determining the shifting mapping, is to propose a nhominagile (or area in three dimensions)
computed as follows: Let

e | | | ITf oo
= ! 2 rt = ! 2 == a7
il mm(|n2.mf|’|n1-mf|J Tha max(|n2.mf, nl-mf|J o 17)

and define the macroscopic crack length as
. | R Y S
Il := (18)
Mol 01 < Tmax.

In the definition given above, the length of the equivalemickd™ is estimated based on the
orientation of the macroscopic crack (given o), the approximate number of crossings through
the volume elemen® (given byr) and the dimensionk andl, of Q (as indicated in Fid.]2).
Due to periodicity, ifm' is neither vertical nor horizontal, an equivalent crack bamominally
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Microscale description of cracks Equivalent macroscale crack

Figure 3: lllustration of the Hill-Mandel requirement fon &quivalent macrocrack’: the average of the rate of
work done by the local traction on the local crack opening fets to match the rate of work done by the equivalent
traction on the equivalent crack opening rate. Observealigatquivalent macroscopic traction acts on a macroscopic
differential & representing length per unit depth (for plane problemsyea &or three-dimensional problems).

interpreted as a collection of inclined straight segmehtergth |1“Imn| (top/bottom or leftright)

in Q plus a partial segment from a horizontal to a vertical sidleejaat a diterent angle than the
other inclined segments, but with approximately the samgtl®. In that case, the total length is
expressed as[IT . | = [IT,.]. A horizontal (or near-horizontal) crack with’ ~ n, corresponds
to an infinite (or very large) number of crossings for whidls greater than the cutfovaluer
and therefore has a nominal lendth Similarly, a vertical (or near-vertical) crack’ ~ n, has a

nominal lengtH,.

4.2. Crack-based Hill-Mandel condition

In Sec[ 3.4 it was indicated that in order to study the maaiedoehavior of a crack, a version
of the Hill-Mandel condition is required for the crack itcés opposed to the volume element
surrounding the crack). To this end, it is observed thatnffd@3), (1%) and[(9), the specific
external power done on the volume element can alternatbeelyritten as

<a>g-é_:<a>9-<e>9+<o>g-a:l—élfga-edwl—él rt-|[U]|ds.

Consequently, the Hill-Mandel condition for the crack ikda as

. 1 .
<0')Q-ef:Pf:@frt-[u]ds, (19)

which, if satisfied, would immediately imply from the “glabadill-Mandel condition that the
Hill-Mandel condition for the bulk, uncracked materiak(i.(o), - (€)q = PP) is also satisfied. In
view of (10), relation[(IP) can be further expressed as

1

: 1 .
|_1—~|ﬁ<0'>9[[ul ®m]symdS: ﬁfl:o-[[u] ®m]symd5, (20)
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where it is noted that for convenience, but without loss afegelity, both sides of (19) have been
multiplied by a constant terf®|/|T'"|. This scaling is useful since it eliminates the length-tduwme
ratio that otherwise may obscure the existence of a repia@servolume element when comparing
volume elements of dlierent sizes.

From [20) the macrohomogeneity condition for the crack aaeipressed as

((rygm—1)-[ul). = 0. (1)

Relation [21) indicates that the volume-averaged st(ess, acting on the local crack normal
m and working on the crack opening rata][ has to represent on average the working of the
local crack surface traction = om on the crack opening rate. In contrast with the global Hill-
Mandel conditions, the crack-based Hill-Mandel condit@annot be satisfied a priori through
the boundary conditions. Instead, the approach adoptexisego (approximately) enforce the
macro-homogeneity conditioa posterioriin terms of the &ective fields. Up to this point the
macroscopic fields associated with the fracture process hatvbeen defined, except for the frac-
ture strain given in(10), the crack orientation given(in)(46d the nominal crack length given in
(18). An fective macroscopic crack opening rate, denotecid§ Fan be defined as

U]’ = = () - (22)
T
The dfective crack opening ratei] ' can be computed incrementally and in general varies through
out the loading process even if the externally applied ¢aseconstant.
In terms of kinetics, denote by an as yet to be definedfective macroscopic traction acting

on the macrocrack surface. Usinfjextive quantities, the Hill-Mandel condition (20) (br{219r
the crack can be divided into two separate requirements;hwdrie assumed to be approximately
satisfied, namely

el ¢ il ~ 0t [ul). and

Mt [ul’ ~ 11 (o) m- [U]),. -

The first expression ir_(23) refers to a scale transition dbgeerely on quantities on the crack
surface while the second condition consistently couplesdbantity with relevant information
associated to the surrounding volume element through tlenesaveraged stress tengom,,. In
general, these two requirements may not be satisfied sinedtesly as the crack-averaged trac-
tion may dtter from the volume-averaged stress acting on the local araokal, although these
two quantities would coincide through a limit process if tt@mputational domaif becomes
essentially the crack surfatatself.

One approach to satisfy the requirements indicated_ ih @38) definethe dfective traction
t" directly from the crack-based Hill-Mandel condition, whiautomatically guarantees that the
macrohomogenity condition is satisfied. An alternativerapph, as adopted in the present work,
is to propose an expression for théeetive traction that contains one (or more) model parameeter
used to enforce the scale transition conditions. The reqents indicated i (23) motivate the
following definition for the &ective traction on the equivalent macroscopic crack:

(23)

t" = ath + (1-a)tl,, (24)
14



wherea is a weighting factor and
th = (t)r th = (o). (25)

The weighting factor is introduced as a model parameter to enforce scale transitindi-
tions, as explained in the sequel, with the case 1 corresponding to anffective traction based
only on a crack-averaged tracti¢h and the case = 0 representing anfkective traction based
only on a tractiort’,, which is a volume-averaged stress tensor acting on thenabmnit normal
vector.

From a diferent perspective, the proposed form for tieaive traction given ir (24) implies
that at a larger length scale, thi€eztive cohesive relation may be coupled to elasti¢ardelastic
phenomena occurring in the vicinity of the crack and may mofutly uncoupled (e.g., plastic de-
formations in the material surrounding the crack are actslfor in the cohesive relation through
the stress averaged in the vicinity of a crack).

In order to monitor during a simulation the enforcement ef thack-based Hill-Mandel con-
dition and in view of [[2B) and_(22), it is convenient to defimotresiduals as follows:

R = “I“f|tf-|[U]|f—|F|<t-|[U]|>F‘ and Ry := '|Ff|tf-|[U]|f—|F| <(0'>Q m-|[U]|>r' . (26)

The residualfkr andR,, which generally depend on time, can be used to monitor thiatien
between the computed rate of work on the crack itself and dinedgenized rate of work both in
terms of local homogeneity on the crack surface (throRghas well as in terms of consistent
coupling with the surrounding bulk material (through). Ideally bothRr and R, should be
suficiently small for a converged solution.

The definition of the macroscopic quantities adopted heseé&n as a computationally con-
venient one, but other options may also be possible. How#werelevant issues are that (i) the
balance of energy needs to be preserved quantitativelgsesoales and (ii) the macroscopic quan-
tities should conform to a continuum formulation that does(explicitly) take the microstructure
into account.

4.3. Macrocrack nucleation criterion angfective traction-separation relation for a composite

An effective constitutive model that can be used at the macrosaujpie to describe the on-
set and evolution of a macrocrack consists of an initiatimrc(eation) criterion and a traction-
separation relation. This type of model is intended for nacaésimulations of fracture using, for
example, the XFEM framework. In this context, the initi@tioriterion requires a critical value
of a stress arndr strain-based measure to detect the onset of failureltegetith an orientation
of the crack. After identification of the orientation of theanocrack, the crack propagation can
be determined based on a (rate-independdferve traction-separation can be obtained for an
equivalent crack in the general form

t' = £l ([u]", &', m) (27)
where the vector-valued functiofj , represents the (macroscale) cohesive relation that descri
the net éect of fracture in the neighborhood of a macroscopic pointhe Traction-separation
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relation can be obtained as a function of the macroscopak@pening through time-integration of
the macroscopic crack opening rate. In addition, a (pogaitikotropic) mixed-mode behavior can
be indicated as a function of th&ective crack normai’ (generally with respect to configuration-
dependent axes that describe the anisotropy). For theminesgoses, a (transversely) isotropic
configuration is assumed, hence only an explicit dependendde crack normal is indicated.
Effective loading and unloading conditions can be captureti wiset of internal variableg.

In general one may choose a convenient phenomenologictibimeseparation relation based on
considerations of fciency and accuracy, i.e., a simple relation, preferably that is readily
available in existing implementations, which can nevded® accurately condense the results of
the multiscale simulations. Moreover, thiéeetive (macroscopic) traction-separation relation may
be, in general, dierent than the relations used at the microscopic level, feagture mechanisms
and material symmetries are expected to kedint at distinct length scales).

In a classical formulation of a traction-separation relatithe orientation of the crack is as-
sumed to be known a-priori (e.g., a “weak” interface betwiem materials), and the initiation
criterion is taken care of by the value of the fracture sttengdowever, in the general case, the
crack orientation is not known a-priori hence the tracts@paration relation needs to be com-
plemented with anféective nucleation criterion that predicts the orientatdnhe crack surface
based on the applied strain d@odthe corresponding applied stress prior to fracture. fdiation,
which forms part of the constitutive model, can be formallytien as

M = Meon((0)q , €) (28)

wheremgy, is a function that depends on the state of stress prior tkicrg@s measured by the
volume-averaged stress tensgow, andor the applied straie. In this formulation the nucleation
criterion is partly given by the fracture strength [nl(27)lgrartly given by a relation of the type
shown in [(28) (see, e.g!., (Hille etlal., 2009)).

The proposed methodology is to calibrate #ie&ive traction-separation relation by conduct-
ing a parametric study with representative macroscoptifgaconditions, typically under propor-
tional loading that represents a given mixed-mode ratithisifashion, the so-called FBEpproach
is replaced by a set of pre-determingteetive responses. Théfective traction-separation rela-
tion can be used in a macroscale simulation if the macrosdopiding matches the calibrated
mixed-mode loading state. Proportional unloading andaghihg can be accounted for bffex-
tive history variables of the model. For non-proportiomading conditions, this approach may not
provide the proper path-dependent response, but in maeg cdpractical interest it can provide
a reasonable approximation as long as the deviation fropgptional loading remains small. The
next section deal with the numerical implementation angsthation of the general methodology.

4.4. Numerical implementation

The method chosen to numerically solve the microscale prolfll) is to embed cohesive ele-
ments along the edges all bulk elements used to discretize the composite materiabtwipies
the regionQ). An alternative approach is to use the extended finite elemethod, however the
cohesive element route provides a simple and robust methodder to impose the periodicity
conditions at crossing points. Furthermore, an embeddeelstee element approach typically can
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account for crack bifurcations in a relatively straightfard fashion, whereas this is somewhat
more dificult using (current) versions of the XFEM framework. The rosgcale problem was
solved numerically with the finite element package Abaqusguan implicit scheme. For sim-
plicity, mode-independent, bilinear traction-sepamatielations are used to describe the fracture
process in the cohesive elements at the microscale. Thebiérmear in this context refers to a
linear “elastic” loading part followed by a linear softegiregime.

Material periodicity is assumed at the microstructuraklem the computational domaif,
although the secondary phase (i.e., fibers) is randomlyildis¢éd. An unstructured mesh with
triangular elements is used.

In a typical simulation, the elastic properties of the plsaae given as well as the fracture
properties of the phases and the interface between thernhe lkcasse of a cross-section perpendic-
ular to the fiber direction in an unidirectional fiber-reirded composite, the fiber volume fraction
and the fiber diameter is given and a random distribution ef$ilis assumed. Details of represen-
tative simulations for the microscale problem (1) are givesubsequent sections. An important
step once a problem has been solved for a given strain (upmplete failure), is to extract the
average response of the volume element (post-processing).

For post-processing purposes, it is assumed that a typicabscopic volume element is sub-
jected to a proportional loading of the tyaé) = c(t)e; fromt = 0 to a final timet = tg, at
which point the volume element is considered to have faiied, {he €ective traction is zero).
The scalar-valued functio(t) scales the (constant) strain tenggand may be taken as a linear
function for a nominally constant strain rate, i&t) = t/tg.

After the geometrical characteristics of the macroscopiclkchave been established, the time
history of the crack nucleation and growth can be postpgaEmfromt = 0 tot = tr to determine
the dfective traction-separation relation.

A mesh refinement analysis indicates that tiiective fracture response converges (details can
be found in_Westbroék (2017)). The generation Héetive traction-separation relations can be
carried out for a large number of combinations of model armhggdrical parameters. The result
of this process is a material database that can be used te eemrrelation between material
properties, configurations and load cases. This may beathibrough a systematic algorithm
but lies outside of the scope of the present work. An appicadf this procedure for fiber-
reinforced composites can be foundlin (van Hoorn, 2016gitllsing a diferent post-processing
procedure. In the present work, a selected number of exangste shown in the subsequent
sections to illustrate the process of generating the data.

5. Verification of scale transition relations.

The first step to verify the computational framework is todstuwvhether the scale transition
approach yields the anticipated results in terms of thekesaeraged Hill-Mandel condition. It
is noted that this section pertains to scale transitiorticela, while the issue of establishing a
representativerolume element is dealt with in the Sec. 6.

5.1. Simulation setup and material parameters
The scale transition relation is analyzed in this sectiongia typical microscopic volume
element consisting of a 7B x 75um cross-section perpendicular to the fiber direction. Theréib
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Table 1: Mechanical properties of the reference material.

Phase Parameter Symbol Value Units
Matrix Young’s modulus| EM 35 GPa

Poisson’s ratio ym 0.35 []

Fracture strength o™ 50 MPa

Fracture energy | G™ 0.05 N/mm (= kJm?)
Fiber Young's modulus| E(M [ 19 (transverse] GPa

Poisson’s ratio wh 0.23 []

Fracture strength (rg) 100 MPa

Fracture energy Gg) 0.1 N/mm (= kJm?)
Fiber-matrix interface| Fracture strength o0’ 25 MPa

Fracture energy | GU 0.025 N/mm (= kJm?)

have a diameter of 0n and the volume element has a fiber volume fraction close 6. 5the
volume element is subjected to a laterally-constrainedxial extension with periodic boundary
conditions. The applied strain is proportionakto= e, ® ; and is henceforth referred to as load
case 1.

Bilinear, mode-independent traction-separation retegti@s described in Sec.4.4, are used for
the matrix and the fibers as well as the interfaces between.thke material properties used in the
simulations are given in Tablg 1, namely the elastic prage(tyoung’s modulug and Poisson’s
ratio v), the equivalent fracture strength and the equivalent fracture ener@¢. The elastic
properties correspond to a representative fdprxy combination, namely IM7 fibers and 5230-1
epoxy, with the relevant elastic fitiess of the fibers being the transverse modulus (note tlsat thi
value is typically significantly lower than the Stiess in the fiber direction). Fracture properties
were not readily available for these specific materials bptesentative values for filjaratrix
composites were taken from (Alfaro et al., 2010b). The treeeproperties for the interface (sizing)
are chosen to represent a relatively weak interface. TheealIthe fracture strength of the fibers
loaded in the transverse direction isfaiult to obtain, but, as shown below, no fiber cracking was
observed in the simulations in accordance with experinheesalts for laterally loaded, single-ply
unidirectional composites (Hobbiebrunken €tlal., 2006).

The cohesive dtiness chosen for all cohesive relation&is= 108 N/mm?®. For some simula-
tions, a viscous regularization (as implemented in Abagas)used to achieve a convergent result
(in terms of equilibrium in a quasi-static loading) with aeus parameter of 1fMPa- s™.

5.2. Verification of crack-based Hill-Mandel condition

The fully-failed state of the microscopic volume elemendemnlaterally-constrained axial ex-
tension (load case 1) is shown in Fig.4, where a mostly \@ntieriodic crack appears. Due to the
relatively weak interface between the fibers and the masee (Tabld 1), it can be observed that
the crack preferentially propagates along the fiber-mattierfaces, bridging through the matrix
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Figure 4: Fully-failed volume element under periodic boamydconditions representing a laterally-constrainedrexte
sion.

between adjacent interfaces. This crack pattern is tylpioaiserved in laterally-loaded unidirec-
tional composites (Hobbiebrunken et al., 2006).

The time-history of various power measures are shown ingas functions of a time-like
process parameter (normalized by the final time of the sitimmzr). The solid lines in the figure
represent averages of products (either traction timeskaspening rates or stress times strain
rates), averaged either in the bulk, crack or external bandnd expressed per unit volume (in
this case per unit area and per unit depth for plane strainlations). The dashed lines represent
products of &ective or averaged quantities as indicated in the legeed @ither &ective or
averaged tractions timedfective crack opening rates or averaged stress times avksgen
rates). The figure also includes a so-called cohesive “bptkiver, denoted aB* in the figure,
associated to cohesive elements that do not contributestortitk but nevertheless experience a
non-zero opening. This term does not appear in the theorgloleed in Sec.]3 and Sé&¢. 4 since
it is a characteristic of the numerical method used and nth@icontinuum theory. As may be
observed in the figure, a portion of the elastic strain enesggored due to an “elastic” opening
of the cohesive elements. The stored (elastic) energy setbehesive elements is not dissipated
and, in the context of balance of power, it may be combinet thi¢ strain energy measured in the
bulk elements. It is noted that these cohesive eleméfdstahe elastic response, hence the MVE
response should not directly be used to predict the elastiggpties of the composite. However,
their dfect on the fracture properties is negligible.

As may be inferred from Fig]5, the externally-applied powerthe microscopic volume el-
ement is initially stored as elastic strain energy in theklard in the “elastic” response of the
cohesive elements. As the applied deformation increasespenacks initiate at various locations
in the MVE, propagate and coalesce, forming a periodic (nsx@pic) crack. The load-bearing
capacity of the MVE decreases as the externally-applieplaement increases until it can no
longer transmit forces and it is fully-failed. As shown irgi8, the “global” Hill-Mandel condi-
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Externally-applied L=75pm
Pet=cteinr,, | V,=50%
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Figure 5: Crack and volume-averaged measures of the apptieer P the power in the bulkP® and various
measures of the power in the craekas a function of a time-like process parameter for @i 75um microscopic
volume element under laterally-constrained axial extam@ibad case 1). The solid lines are averages of products and
the dashed lines are products of averagegarfective quantities.

tion given in [15) is satisfied, to within numerical accurasince periodic boundary conditions
have been enforced. More relevant for the present disausstbe crack-based Hill-Mandel con-
dition that requires special attention. As shown in the #guwrsing the crack-averaged traction
th and the volume-averaged tractid@ from (28) together with thefiective crack opening rate
[u]’ and the nominal (macroscopic) crack Ienbﬂhfrom (I7)-(18) (see Sdc.4.4) provide, respec-

tively, upper and lower approximations to the actual enéliggipation ratd| (t [yl >r due to the
cracking process. With the choice of the vadue 0.4 in this example, thefective traction on the
equivalent macroscopic cratkas given in[(24) and acting on the equivalent macroscopitkcra
provides an improved matching for the crack-based Hill-M&rcondition (see Figl5). In terms
of a traction-separation relation, Fig. 6 shows tffeaive response of the microscopic volume
element based on three values of the parameteamelya = 0,0.4, 1. The results are reported
in terms of the normal components of the traction and thekappening displacement, which are
computed as

the=t.m  [u]f :=[u]"-m.

n

The tangential component was found to be negligible for livésling case. The optimal value
of the weighting factor in this example, = 0.4, was found based on a direct parametric search
(best approximation). In principle the procedure to find tptimal value can be carried out
automatically, but a direct approach was deemeficsent for the present purposes.

Further testing for other loading cases and MVESs, not shasva for reasons of conciseness,
indicates that the optimal values@fcan vary between 0 and 1 depending on the size of the MVE
and its loading. In some cases, distinct optimal values egeired for distinct realizations of
nominally the same microstructure under the same loadingreélevant to indicate that, based on
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Figure 6: Hfective normal traction component as a function of tifeative normal crack opening displacement for
three values of the weighting parameaiewith « = 0.4 being the optimal value in terms of satisfying the Hill-Mksh
condition. The curves correspond to auiibx 75um microscopic volume element under laterally-constraismedl
extension.

numerical experimentation, values close to 0 often prozigsasonable match, which suggests that
the volume-averaged tractiagj may be used as a first option to approximate tfiective traction

t in the absence of a detailed analysis as the one presentdHiewever, optimal values aof
close to 1 were not uncommon, which justifies in general aothgin post-processing protocol to
verify a posteriori the multiscale approach and estabhsiptroper values for thetective traction.

6. Representative volume elements for various loading case

6.1. Procedure to establish an RVE

Once it has been verified that the crack-based Hill-Mandetitmn can be approximately
satisfied with the choice of a weighting facter the next step is to verify the existence of a
representative volume element (RVE) for fracture in theseesf a (converged)fkective traction-
separation relation. To this end, a sequencé ef L microscopic volume elements (MVE) of
increasing size are used, namely: 12,5 (unit cell), 37.5,50,62.5, 75um as shown in Fi¢]7. Each
MVE represents a cross-section perpendicular to the fibbection of an uni-directional fiber-
reinforced composite with randomly-distributed fibers.eTo-called unit cell volume element,
consisting of a single fiber centered in the computationatalo, is a special case since, due to
periodicity, it corresponds to a non-random, orthotropraagement whereas the other MVEs are
meant to represent a transversely isotropic material. AIBd have nominally the same average
composition, which in this case is measured by a fiber voluawibn of 50%. Due to the discrete
nature of the volume elements, the actual volume fracti@wsate from the nominal value (see
Table[2).
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)37.5x37.5 um? (b) 50 x 50 pm?

@l.

(c) 62.5 x 62.5 um? (d) 75 x 75 um?

Figure 7: Microscopic volume elements tested in the corameg study to establish a representative volume element,
together with a so-called unit cell, not shown here, coimgjsif a single fiber centered in a Bazmx 12.5um domain.

Table 2: Geometrical characteristics of microscopic vaetements (MVES). The fiber diameter is 4.

Actual fiber volume fraction [%]

MVE size [um?] Number of fibers
125 x 125 (unit cell) 1
375%x 375 8
50x 50 15
625x%x 625 24
75% 75 35

50.3
44.7
47.1
48.3
48.9

The basic load cases used to test the procedure are giverbli@[Ba The cases consist of
a nominally mode | deformation (load case 1: laterally-¢@ised axial extension), a nominally
mode Il deformation (load case 2: equal biaxial extensiomt@ction corresponding to pure shear)
and a mixed-mode deformation (load case 3: mixed extersiapte shear). The displacement
gradient of each deformation is indicated in Table 3. Fodloases 1 and 2 the displacement
gradient is symmetric hence it coincides with the appliedisttensor. For load case 3 the dis-
placement gradient is not symmetric hence the deformatioludes a rigid body rotation that
can be approximated for infinitesimally small deformatiassig the skew-symmetric part of the
displacement gradient. Simulations for a similar loadiagdition, namely mixed extension-pure
shear without rigid body rotation, provided similar reswds load case 3.

For each load case, a convergence analysis regarding thefsthe representative volume
element was carried out with the volume elements indicabeve in Table[ 2. For each size
(except for the unit cell), five realizations with randonalistributed fibers were generated and the

Table 3: Basic load cases defined in terms of the applieddisae also Fig]2 for nomenclature)

Load case Description Applied displacement gradie®iu
1 Laterally-constrained axial extension €eL e

2 Pure shear (equal biaxial extension-contraction) vo(er®e —eQe)

3 Mixed extension-simple shear €e1 Q€ + vl ® &
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Figure 8: (a) Hective normal traction component as a function of tifeaive normal crack opening displacement
and (b) crack phase partition between matrix and interfacevdrious microscopic volume elements tested under
load case 1 (laterally-constrained axial extension). Tfectve tangential traction component (not shown here) was
negligible. No fiber cracking was observed in these simoneti

(discrete) standard deviations and mean values of themespavere computed. In addition, it was
verified that for each simulation the appropriate mesh dgm&s used by performing individual
mesh convergence analyses (not reported here for consieresh convergence was achieved
with characteristic element lengths ranging fror@3xm to 2um for increasing volume element
sizes. In the following sections, the (numerical) exiseenta representative volume element is
shown for the three loading cases considered.

6.2. RVE for load case 1: laterally-constrained axial exdiem

A typical volume element loaded under laterally-consediraxial tension (load case 1) is
shown in Fig. 4. After postprocessing, the orientation efeélquivalent macroscopic crack normal
m is found to be close to the vectey (see Fid.R for nomenclature). Thiective normal traction
t' as a function of theféective normal crack opening displacemeu}is shown in Fig.Ba for the
distinct MVESs. The #ective tractions were determined using the optimal valudefveighting
parameter for each simulation as described in $eéc.5. The shaded gressents the standard
deviation of five realizations (for clarity shown only foreatMVE corresponding t& = 75um).
The crack length partitiofi’,nasé/ [T between matrix cracking and fiber-matrix interface sepamat
is shown in Fid.8b.

As can be observed in Fig. 8a, thffegtive traction-separation relation for loading case 1
converges relatively fast as a function of MVE size to withimacceptable tolerance. Even the
unit cell simulation, which does not represent a transweiisetropic material, already provides
reasonable results in terms of the fracture energy althdauwyerestimates the fracture strength by
about 15%. Using a distinct measure of convergence, narnelgrack length partition as shown
in Fig.[8b, the unit cell predicts that about 60% of the craaksrthrough fiber-matrix interfaces
while 40% runs through the matrix. For the larger MVEs anatljzhe average prediction (based
on five realizations per MVE size) is about 70% fiber-matriterface cracking and about 30%
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Figure 9: Example of a fully-failed MVE under load case 2 (@lgoiaxial extension-contraction, corresponding to
pure shear)

matrix cracking. From the information shown in Fig. 8 it camdoncluded that a reasonable RVE
size for load case 1 is = 50um.

6.3. RVE for load case 2: pure shear (equal biaxial extensiomtraction)

At a fully-failed state, a typical volume element loaded engure shear is shown in Fig. 9
(applied as equal biaxial extension-contraction, seeithgachse 2 in Tablé]3). For about half of
the samples, the orientation of the equivalent macrosampick normalm’ is found to be close
to the vector (1v2)(e;: + &) while for the other half of the samples the orientation wasntl
to be close to (1V2)(-e; + &), as in the example shown in Fig.9. The crack pattern in this
case difers from that of load case 1 in the sense that the normal opésisimall compared to
the tangential opening. Thefective tangential tractiot} as a function of theféective tangential
crack opening displacement][ is shown in Fig. I0a for the distinct MVEs. As before, the sithd
area represents the standard deviation of five realizatwamsh, for clarity, is shown only for the
MVE corresponding td. = 75um. The dfective normal traction component in this loading case
was negligible in comparison to the tangential one. Thekclagth partitionphasd/ | between
matrix cracking and fiber-matrix interface separation isvamin Fig[T0b.

From Figl10a, it can be observed that the unit cell undenesgés the ective fracture strength
and fracture energy. Larger MVEs are required to captufiéceent details and interactions in the
cracking process to obtain a converged response. In thés aaeasonable convergence is reached
with the largest MVE analyzed, namely= 75um. It is interesting to observe that, in terms of
the crack partition, all MVEs predict approximately the sawalues, namely about 50% fiber-
matrix interface cracking and 50% matrix cracking. Henoedntrast to load case 1, the measure
of convergence for load case 2 based on morphology (cradkipay is less stringent than the
measure of convergence based fie@ive traction-separation response. Based on the datasho
in Fig[10 it can be concluded that a reasonable RVE size &af éase 2 is = 75um.
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Figure 10: (a) Hective tangential traction component as a function of tieciive tangential crack opening dis-
placement and (b) crack phase partition between matrixraedace for various microscopic volume elements tested
under load case 2 (equal biaxial extension-contractiomgsponding to pure shear). Thffextive normal traction
component (not shown here) was negligible. No fiber crackiag observed in these simulations.

6.4. RVE for Mixed extension-simple shear

For the mixed mode case (load case 3, composed of extensimiraple shear witlay = yo =
v), a typical crack pattern in the volume element is shown m[El. The main periodic crack
is somewhat similar to that of load case 1 except that a brérelck bifurcation) appears at an
inclined angle with respect to the main crack, see[Fig. 1 8vextheless, the contribution of the
branch is relatively small and the orientation of the egeinamacroscopic crack normal is
found to be close to the vectey.

Although cases 1 and 3 have a similar crack morphology, thgetatial component of the
equivalent traction in case 3 is not negligible as shown @2 which includes the normal and
tangential components of thefective traction as a function of the corresponding norma an
tangential components of th&ective crack opening for various MVEs (see Eig.12a and Pig, 1
respectively). The norm of theffective traction as a function of the norm of the crack opening
displacement is given in Fig.ll2c and the crack length pamti[ p.sd/ [T between matrix cracking
and interface separation is shown in Eig.12d.

In this mixed mode loading case, convergence towards an BgBwer than in the previous
loading cases. Although the normal component of the tractftows a reasonable convergence,
particularly at the early stages of degradation, the tatgetomponent tends to fluctuate more
significantly, only showing a partial convergence. Both poments have a relatively wide stan-
dard deviation region, particularly at the later stages egrddation for the normal component
(see shaded area in figure). In terms of the combined resmomge shown in Fig. 12, conver-
gence is only visible until anfiective crack opening of aboutidm, while the last stage shows a
greater level of uncertainty. On the other hand, as can bretsesed in Fif.12d, the crack partition
predicted by all MVEs is somewhat similar, correspondingout 70% fiber-matrix interface
cracking and 30% matrix cracking. Based on the data showigidFit can be concluded that for
load case 3, the largest MVE with= 75um provides a reasonable approximation to an RVE but
using a relatively large tolerance.
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Figure 12: (a) Eective normal traction component as a function of tiieaive normal crack opening displacement,
(b) Effective tangential traction component as a function of tfiecéve tangential crack opening displacement, (c)
equivalent traction as a function of the equivalent crackrapg displacement and (d) crack phase partition between
matrix and interface for various microscopic volume eletaéested under load case 3 (mixed extension-simple shear).
No fiber cracking was observed in these simulations.
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Table 4: Applied strain and corresponding orientation ofronacopic crack (crack normal) and mode mixity at failure
based on simulations. Vector components are referred tgldiml basis as indicated in Fig. 2 aagd= yo = v in
Table[3

Load case Description | Principal strains| Principal strain| Crack normal(s) mode mixity
directions at failure
(angles w.r.t1) | (angles w.r.e;) (in rad)
1 Axial extension v; 0 0°; 9¢r 0° 0.01
2 Pure shear +y 0°; 90r +45° 144
Mixed loading | (1+ V2)y/2 225°:1125° 0° 0.69

7. Effective nucleation criterion and traction-separation reldgion

The methodology developed in the present work may be applistematically in order to
generate microscale-based information to propos¢oamdlibrate an #ective (macroscale) nu-
cleation criterion and anfkective traction separation relation that capture, on @esréhe micro-
scopic behavior as described in $ecl 4.3. For the type of MAfiayzed in the present work, the
macroscopic scale refers to a ply in a laminate where theacatiens between fiber, matrix and
interfaces have been homogenized into a single model. ticpkar, an éective nucleation crite-
rion may be proposed and calibrated for each loading caseler to predict the orientation of a
macroscopic crack (see_(28)) and the corresponding trasgparation relation may be obtained
from postprocessing. Subsequently, the calibrated resgsofor the loading cases may be com-
bined into a single model. The calibration step is outsid#hefscope of the present work, but it
is worth summarizing the results of the three load cases 8ei6. To this end, the mode-mixity
parametep is defined as follows:

[ul§
Bi= arctanw
n
where the subscripts n and s refer to the normal and tangjeatigponents of thefective crack
opening. Typically, the mode mixity varies throughout timadation. To simplify the calibration
process, it is convenient to define a nominal mode mixity patarsg, which may be also termed
the mode mixity at final failure, as
f
BF = arctan[u]—fs"F

|[U n,F

where the additional subscriptindicates the state at final failure, i.e., the vecto}] represents

the dfective crack opening at time= tg. The results of the three loading cases analyzed are
reported in Tabld 14, which indicates the principal straing grincipal directions of the applied
strain (eigenvectors associated to the applied strainrymrd@ortional loading), the macroscopic
crack normal vectom’ and the mode mixity at failure as obtained from the post-@ssing of the
simulation data. As may be observed from the table, the biesdihg case is close to a nominal
mode | loading 8= ~ 0) while the second loading case is close to a nominal modeadihg

(Br ~ n/2). Observe that in terms of the orientation of the crack redmm, case 1 follows a
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Figure 13: (a) Hective equivalent fracture strength and (ifjeetive equivalent fracture energy as a function of a
mode-mixity parameter.

classical maximum principal strain failure criterion, e&sfollows a maximum shear strain failure
criterion and the mixed mode case 3 contains ingredient®if tases. In terms of arffective
traction-separation relation, th@ective equivalent fracture strengtth and the &ective equiva-
lent fracture energ(. are given, respectively, in Fig.113a and Fig. 13b as a funatfithe mode
mixity at failure. The lines connecting the three load camesonly provided for visual reference
and should not be directly used for interpolation, whichuiegs a more extensive analysis with
suficient loading cases. Nevertheless, it may be observedhbairedicted fracture strength is
approximately constant for all three loading cases. Thetdra energy for mode Il and the mixed
mode case are similar and about 17% higher than the frachweyye for mode 1, albeit with a
relatively large uncertainty for the mixed mode.

In principle one may use a simple bilinear traction-sepanaklation at the macroscopic level
for which the above-mentioned values ardfisient in terms of calibration, in conjunction with
a curve fitting using the paramet@¢ as a variable. If it is required to carry over more details
from the microscale to theffeective traction-separation relation at the macroscaleratelations
such as trilinear or exponential functions may be used aswithl the corresponding curve fitting
procedure.

8. Concluding remarks

The present work summarizes a multiscale procedure toedanwfective nucleation criterion
and an €fective traction-separation relation at the macroscaledas microscale simulations of
representative volume elements. It is shown that the simascan be performed using periodic
boundary conditions that allow cracks to propagate acressvolume boundaries in arbitrary
directions. A relevant finding in the analysis of the sca@sition requirements is that, in addition
to the classical “global” Hill-Mandel condition that apgdi to the whole computational domain, a
separate crack-based Hill-Mandel condition needs to hifigat The methodology proposed here
is to satisfy a priori the global condition using periodiaindary conditions while the crack-based
condition is satisfied a posteriori using a weighting par@me identify the éective traction
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acting on the macroscopic crack. In this fashion, paramsimulations with distinct loading
cases may be used to generatéfisient data to calibrate arffective (macroscale) constitutive
model for fracture. In turn, thefiective model may be used in a classical (single-scale) sithoul
while implicitly incorporating the microscale behavioratomposite material.

Examples shown in the present work pertain to microscale-gby) simulations of an unidi-
rectional reinforced composite. For simplicity the sintidas are limited to cross-sections perpen-
dicular to the fiber direction. Simulations with cross-s&ts$ along the fiber directions, not shown
here, indicate that the theory developed in the present weekls to be extended to account for
anisotropic &ects. Moreover, simulations of purely-compressive loa&ksaequire an extension
of the cohesive zone method to account for contact in crgstones, which is however outside of
the present scope. Finally, it is worth pointing out thatimethod pertains to a hierarchical mul-
tiscale analysis in all space directions; in situationsnetiee RVE exceeds the thickness of a ply,
a straightforward modification can be applied to modify theck& propagation behavior at the ply
interface while retaining the rest of the implementatiorespite the aforementioned limitations
and challenges, the current framework is a step in the dwreof a multiscale analysis of fracture
that accounts for dissipation in a consistent way througlcthck-based Hill-Mandel condition.

Appendix A. Periodic Crack

The domain2 can be deformed until complete failure (i.e., zero loadebasn the imposed
strain historye = €(t). At complete failure there may be several crack segmeantsrépresent
periodic cracks, crack branches, or isolated segments.opeprinterpretation of the microscale
crack (i.e.,I') in terms of these segments is important. This appendixagasia procedure to
identify a periodic crack and a region that completely sumnds it based solely on information
from the original domai.

(a) Path from A to end points B (b) Path from A’ to end point B’

Branch BB’: no periodic crack formed: partially-failed volume element

Figure A.14: Identification of periodic cracks, crack braes, or isolated segments: (a) Inward path frarto end
pointsB, (b) Inward path fromA’ to end pointsB’. The crack in the domain corresponds to an isolated cBigk
hence there is no periodic crack formed yet in which case dhewe element has not fully-failed and may still carry
loads.

A crack segment may leave and re-enter the domain multiplegi(see Fig.A.14). These
crossings of the external boundary always occur in peraigiequivalent entrjexit points (e.g.,
points A andA’) due to the Periodic Boundary Conditions (PBCs). At eachhesé points it is
possible to follow the crack path in two directions (i.e.thz@AB and A’'B’). While doing this
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three crack types can be identified, which is illustrated tpatially-failed domain (Fig.A.14)
and a domain containing a periodic crack (Eig.A.15y&iodic macrocracks formed if the end
point of a path coincides with the periodically-equivalamtial point, see patiA in Fig[A.15a.
A crack branchis defined as a separate path from a bifurcation point.isétated crackis not
connected to either the periodic crack or crack branches;-ggA. 15b.

_ Periodic T
y= y(x) crack branch g

/’_\ 7777777777

Periodic crack AA’ formed Periodic crack '

A : ,,,,,,,,,,,, '\ |

Isolated crack

O

Direct path from Ato A

(a) Periodic crack in original domain (b) Equivalent crack domain

Figure A.15: Identification of the periodic cracks, brangher isolated segments: (a) Formation of a periodic crack
AA, (b) Visualization of periodic crack and surrounding metetermed the equivalent crack doma, which can
be reconstructed from the original domain with the shiftingppingy = y(x).

For visualization purposes it is useful to construct a nemala that fully encompasses these
three crack types. The original doma&dcan be divided into subdomain@4, witha=1,...,N),
as shown in Fig.A.15. A newquivalent crack domaif® is constructed by "shifting” the sub-
domains such that their boundari#Q® do not contain finite segments bf The main objective
is to assure that the macrocrack is fully-contained indnike iew domain. Fif.A.15b illustrates
the result of this operation. The corresponding trangfadidhe original crack surfadeis termed
the equivalent crack surfacE®. A generic pointy in Q3 is obtained through adding a translation
vectorc, to the original pointx in Q,,

y=Y(X) =X+ Cy Ca:=Niling + N3lon, xeQ, a=1,...,N (A1)

whereN$ andNg are integer numbers associated to the number of unit tteorsdaequired to map
the original subdomaig, into Q in either thexn; andor +n;, directions.

The next step is to establish a relation between integrabs,iaiQ®, andl™ in terms of integrals
in Q, 9Q andr'. All Jacobians in the integrals are equal to 1 since a rigai/kicanslation does not
affect lengths or orientations. As a result, integrals in th&vedent crack domain, of quantities
that are insensitive to piecewise constant rigid body tedizms, are essentially the same as in the
original domain. Since the strain and stress tensors aensits/e to rigid body translations, it
follows that

(O)gs =(0)q (€)as = (€)q,
Further, the displacement jump and the crack normal veceuadtfected by a rigid body trans-
lation, since the subdomains fully contain individual &raegments. Consequently,
€ns = €
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with € being the fracture strain computeddn

The previous relations can simply be established by ingpectHowever, this may not be
obvious for the surface integral of the field ¢ n]s,, on 9Q, which may be dierent than the
surface integral of the equivalent field 60° since the displacement field is sensitive to piecewise
constant translations. Below it is shown that these two tii@sare equal. To prove this, consider
the previously-derived expression for the applied maapicstrain inQ2, which can be written as

_ 1 1 v
€=— u(x) ® n(x ds= — f u(x) ® n(x ds
o . U9 ®n00leymds = o Z 0@ N0l
where the vector fielth has been extended to include the normal vectors of the aitbaundaries
of the subdomaing,. The net contributions of the integrals along the boundarfesubdomains
Q, is zero due to the continuity of the displacement acrossetihosindaries. The actual macro-
scopic straire® applied inQ® after shifting is

N
-2 [ ) e nlymds (A2)

whereu(y) refers to the actual displacement at paintvhich is continuous across the boundaries
0Q; that lie in the interior of23. Since the normal vectaris insensitive to the shifting operation it
can be concluded tha(y) = n(x). The relation between the displacementg ahdx is expressed
in terms of the applied macroscopic strain and the corredipgrtranslation vector given in Eq.
A,

u(y) = u(x) + €c, yeQ, xeQ, a=1,...,N.

Substituting this relation in EQ._A.2 and changing varialdéintegration (i.e.|Q% = |Q|) gives

|QS| Z f : U(y) ® n(y) sym |.Q.| Z [(U(X) + Eca) ® n(X)]symdS

0Qa

which, from the properties of the symmetric tengpcan be further expressed as

N

_ 1 _
S=ec+ (IQIZ aQa[c‘.i(@n]syr,]ds)e_e+(|Q|Z:[caéafmands]sym)e.

The term in parentheses is zero since every integral is zerth® (closed) boundary of each
subdomain2,. Hence, the externally applied macrostraion Q, coincides with the macrostrain
e applied inQs,
e€=¢€. (A.3)

The above shows that the PBCs apply to the same periodic (wabipossibly several branches
andor isolated segments) and that the response ifectad by adjacent (parallel) periodic cracks.
Hence, a multiscale analysis for fracture may be carriedvitit PBCs. The PBCs and the orien-
tation (or shape) of the computational domain do not comsthee nucleation and orientations of
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cracks, which are allowed to appear at arbitrary locatiowsia arbitrary directions. The advan-
tage of PBCs is that they are relatively simple to implememerically.

However, care must be exercised interpreting the resulis iA commonly-used method to
impose the macroscopic strain is to specify the displacéwiemaster nodes (i.e., corner nodes
x0) or fictitious nodes). The corner nodes may be separated by than one parallel macrocrack,
in which case the straia acts onmultiple (but otherwisadentical) parallel cracks. In addition,
a situation can arise where two (or more) distinct periodacks coalesce in the domain in the
case the applied strain can still be (partially) carriedaitdr the formation of one periodic crack.
An equivalent crack domain in this case, which would inclote crossing point between two
periodic cracks, is still applicable since the shifting miag given in EqLA.LL does not distinguish
between one or multiple periodic cracks. However, the notagy developed in the Ség. 4 is
intended for a single equivalent macrocrack. It can be eddrio treat the case of bifurcations
but that analysis is beyond the scope of the present work.
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