
Master Thesis in
Computer Science

Artificial Intelligence Technologies

The Influence of Out-Of-Frame Moving
Objects on Optical Flow Accuracy

Thomas Sebastiaan Streefkerk

October 2024

To obtain the degree of Master of Science at the Delft University of Technology

Thomas Sebastiaan Streefkerk:
The Influence of Out-Of-Frame Moving Objects on Optical Flow Accuracy

Supervisors: Dr. J.C. van Gemert
M.Sc. A.S. Gielisse

Graduation Committee: Dr. J.C. van Gemert
Dr. P. Kellnhofer

Acknowledgements

I would like to express my sincere gratitude to my supervisors, Dr. J.C. van Gemert and M.Sc.
A.S. Gielisse, for their invaluable support, guidance, and expertise throughout this project. Their
advice and knowledge have been instrumental in shaping my research and helping me overcome
numerous challenges. I would also like to thank Dr. P. Kellnhofer, for agreeing to be my third
committee member, and for his valuable feedback, which has further strengthened this work.

Finally, I am deeply grateful to my parents for their unwavering support and encouragement,
which has been essential to me throughout my studies.

Thomas Streefkerk,
October 2024, Delft.

1

Contents

1 Introduction 4

2 Scientific Article 5

3 Supplementary Material 14
3.1 Deep Learning . 14

3.1.1 What is deep learning? . 14
3.1.2 Non-linearity . 14
3.1.3 Training networks . 14
3.1.4 Masking . 14
3.1.5 Vanishing gradient . 15
3.1.6 Architectures . 15

3.2 Optical Flow . 16
3.2.1 Traditional Optical Flow Methods . 17
3.2.2 Deep Learning Optical Flow . 17
3.2.3 Datasets . 18

A Appendix 21
A.1 High Resolution Diffusion Optical Flow . 21
A.2 Optical Flow As A Class Imbalance Problem . 22

A.2.1 Introduction . 22
A.2.2 Method . 22
A.2.3 Experiments . 24
A.2.4 Discussion . 24

3

1 Introduction

Optical flow is the process of estimating the motion of objects in a visual scene between consec-
utive frames. It has been a fundamental problem in computer vision since it was first introduced
by Horn and Schunck in the early 1980s. Initially, optical flow was calculated through classi-
cal methods, focusing on energy-based approaches and variational frameworks to estimate pixel
movements. However, as computational power and data availability increased, deep learning tech-
niques revolutionized optical flow estimation, enabling more accurate and efficient predictions by
leveraging neural networks to model complex motion patterns.

Despite its progress, optical flow estimation remains challenging, especially in scenarios in-
volving ambiguous data. Ambiguities can arise from various factors, such as occlusions, lighting
changes, or out-of-frame movements—where objects move out of the visible scene between frames.
Out-of-frame movements are particularly problematic because, in many cases, the model simply
cannot predict these motions accurately, as it lacks any visual information about the object once
it leaves the frame. This lack of information leads to spikes in the loss function during training,
as these out-of-frame regions are handled the same way as regions that remain in-frame. These
spikes introduce instability, often making the training process less stable and leading to overall
reduced model accuracy.

While most optical flow models overlook these challenges, some recent approaches have started
to acknowledge the impact of ambiguous data and introduce new architectures and loss functions
aimed at addressing these issues. However, many of these methods stop short of directly verifying
the influence of ambiguous cases, such as out-of-frame movements, leaving open questions about
how these ambiguities affect overall model accuracy.

In the scientific article, we empirically verify the impact of out-of-frame movements on optical
flow estimation using a custom toy dataset, specifically designed to distinguish between in-frame
and out-of-frame object movements. Through this controlled setting, we develop a method to mit-
igate the influence of out-of-frame movement on optical flow estimation, demonstrating improved
accuracy over existing methods on our custom dataset. Furthermore, we extend this method to
existing synthetic datasets, where it continues to yield promising results, highlighting its potential
for enhancing robustness in optical flow models.

Section 2 presents the scientific article, aimed at an audience of experts in computer vision and
related theories. For the more general reader, supplementary material is included in Section 3 to
provide additional context on the underlying theories. Finally, Appendix A provides additional
insights into topics we initially explored but ultimately set aside, either due to reaching a dead-end
or determining that the challenges involved were not feasible to address within the limited time
available. Specifically, Appendix A.1 discusses optical flow with diffusion models, while Appendix
A.2 examines optical flow as a class imbalance problem, a topic to which we dedicated considerable
time and effort.

4

2 Scientific Article

The scientific article starts on the next page.

5

The Influence of Out-of-Frame Moving Objects on
Optical Flow Accuracy

T.S. Streefkerk
Computer Vision Lab, Delft University of Technology, The Netherlands

Abstract

Training data ambiguity, such as the presence of
out-of-frame moving objects, introduces signifi-
cant challenges in deep learning-based optical flow
models by causing large loss spikes and training
instability. Most models overlook this ambiguity,
treating it as a limitation of existing datasets. SEA-
RAFT [1] attempts to address these ambiguous ar-
eas with an additional network and a modified loss
function, yet does so without explicitly verifying
the specific drawbacks. In this paper, we investigate
the influence of out-of-frame movements on model
accuracy by generating the FlyingIcons dataset,
which includes in-frame and out-of-frame masks
for precise analysis. Using the latter masks, we
introduce a weighted masked training scheme that
selectively penalizes errors in out-of-frame areas,
significantly increasing model accuracy over both
standard GMA training and SEA-RAFT. Building
on this concept, we propose a weighted partially
masked training method, which uses partial out-of-
frame masks generated through a simple process
that adds the ground truth flow to pixel locations
and checks if they fall outside the frame. While this
method only yields improvements in error reduc-
tion on FlyingThings3D, our findings suggest that
incorporating similar masks into other synthetic
datasets could improve model stability and accu-
racy with minimal additional overhead. This high-
lights a promising direction for further research,
particularly in developing more complex mask gen-
eration strategies and creating synthetic datasets
with out-of-frame masks to enhance generalizabil-
ity across datasets.

1 Introduction
Optical flow is the task of predicting a per-pixel vector rep-
resenting the apparent motion between two frames. It is a
fundamental problem in computer vision that suffers from nu-
merous challenges, including occlusion, out-of-frame move-
ments, many-to-one motions, one-to-many motions, large
motions and (motion) blur [2].

In this paper, we investigate the influence of out-of-frame
moving objects on the overall accuracy of deep learning opti-
cal flow models, and we bring to light a downside of existing
synthetic datasets which are commonly used to pretrain such
models. We perform this investigation by training GMA [3],
a deep learning optical flow model designed to track complex
movements across frames, on a custom generated synthetic
dataset we call FlyingIcons. Besides the typical first frame,
second frame and ground truth flow, we generate two addi-
tional mask matrices. The first mask, called the out-of-frame
mask, identifies objects that move out of the frame, while the
second mask, called the in-frame mask, identifies objects that
stay within the frame. These masks are used as a tool to anal-
yse the accuracy of the model on different areas of the data.

Additionally, the out-of-frame mask is used in experiments
during training to down-weight the relative contribution to the
loss of out-of-frame moving objects, as these areas carry high
uncertainty that disrupts the stability of training. By reduc-
ing their influence, we achieve better accuracy on FlyingIcons
than standard training allows. This demonstrates that the ab-
sence of out-of-frame masks in current synthetic datasets re-
sults in reduced accuracy. Weighted masked training was se-
lected over other methods for its simplicity and efficiency, as
it directly adjusts the loss contributions without modifying the
model architecture or requiring additional parameters [4]. We
also compare this method with SEA-RAFT [1], which tack-
les the challenge of ambiguous cases (such as out-of-frame
movements) reducing model accuracy by introducing an ex-
tra network and a new loss function designed to model uncer-
tainty and down-weigh these areas dynamically. Our results
show that weighted masked training achieves better accuracy
than SEA-RAFT on FlyingIcons, highlighting its effective-
ness as a lightweight, adaptable approach to improving model
robustness.

Finally, we extend our findings to the widely-used Fly-
ingThings3D dataset. In our custom FlyingIcons dataset, we
had precise knowledge of out-of-frame masks since they were
generated alongside the data. However, for existing datasets
such as FlyingThings3D, obtaining these masks is challeng-
ing, especially when aiming to capture all types of ambiguity,
including occlusions and complex motions such as many-to-
one and one-to-many object movements. Ideally, these com-
plete ambiguity masks would be created during the genera-
tion of synthetic datasets, as this is when object-level infor-

mation is readily available. This approach allows for accu-
rate identification of ambiguous cases, such as distinguishing
between partial and fully out-of-frame objects. In an ideal
scenario, only fully out-of-frame objects would be masked
out. However, generating these complete ambiguity masks
accurately for existing datasets is difficult and would essen-
tially require optical flow predictions themselves. Instead,
we create partial out-of-frame masks by assigning pixels to
the mask when the sum of their position and flow falls out-
side the frame. This simpler approach, which adjusts the loss
function based on partial masks, yields modest accuracy im-
provements on FlyingThings3D. While the improvements are
dataset-specific, this method highlights a promising direction
for future research into enhancing model accuracy through
targeted weighting.

Based on these findings, we highlight the following key
contributions of our work:

• We quantitatively demonstrate the impact of out-of-
frame objects on optical flow model accuracy, revealing
a trade-off between in-frame and out-of-frame accuracy
that depends on their relative masking weights.

• By reweighing loss contributions with out-of-frame
masks, we enhance GMA’s accuracy on FlyingIcons,
surpassing standard training and SEA-RAFT [1].

• We propose a weighted partially masked training
method using naively generated partial out-of-frame
masks, achieving accuracy improvements specifically on
FlyingThings3D, with potential for refinement on more
complex datasets.

2 Related Work
Traditionally, optical flow is framed as an optimization prob-
lem with a trade-off between a data term, which encour-
ages alignment of visually similar areas, and a regularization
term encouraging smoothness in the predicted flow. This ap-
proach has provided a foundation for early optical flow meth-
ods [5–7], but these classical techniques often struggled in
complex real-world scenarios.

2.1 Training Data Ambiguity
Recently, with the rapid advancements in deep learning and
the availability of synthetic datasets, optical flow models have
achieved substantial improvements. Many state-of-the-art
models [3,8–18] rely on pretraining on FlyingChairs [9], fol-
lowed by FlyingThings3D [19], to mitigate the scarcity of
real-world optical flow data. However, these models are af-
fected by ambiguities present in synthetic datasets, such as
out-of-frame movements and occlusions. These ambiguities
contribute to spikes in the training loss and increase instabil-
ity, as they represent some of the most challenging conditions
for models [5]. In certain cases, these situations even make it
impossible for the model to predict the correct flow. Our find-
ings demonstrate the impact of these effects, and we propose
a preliminary solution to address this instability.

2.2 Key Optical Flow Models
RAFT [8] steps away from the traditional coarse-to-fine ap-
proach by computing and refining a single flow field itera-

tively at full resolution from the beginning. It starts with a
zero-initialized flow field and refines it through multiple it-
erations using a recurrent gated update operator. A key in-
novation is its dense all-pairs correlation volume, which cap-
tures pixel-wise similarities across frames. This volume en-
ables RAFT to efficiently model fine details and large dis-
placements by pooling information from multiple correlation
resolutions. As a result, RAFT avoids the limitations of the
coarse-to-fine approach, which can struggle with recovering
from errors in early, low-resolution stages, handling small
fast-moving objects, and requires extensive iterative training

GMA [3] builds on RAFT by introducing a global mo-
tion aggregation (GMA) module. This attention-based mod-
ule, inspired by the success of transformers [20], aggregates
global motion information, improving the model’s accuracy
on occluded regions and capturing long-range dependencies.
By enhancing RAFT’s ability to model global interactions,
GMA addresses some of the challenges posed by occlusions
and long-range motion. We adopt GMA as a baseline in most
of our experiments due to its widely recognized success and
its strong reputation in the field.

SEA-RAFT [1] builds on the RAFT framework by address-
ing key challenges in optical flow estimation, particularly
in handling ambiguous areas such as occlusions and regions
with unpredictable motion. These ambiguous areas often lead
to greater uncertainty or errors in the flow predictions, as
the correct motion cannot be easily inferred. SEA-RAFT as-
sumes, though never empirically verifies, that these ambigu-
ous areas negatively affect accuracy. To address this, SEA-
RAFT introduces an additional network to predict which pix-
els should be estimated by the model with high confidence.
This pixel-wise uncertainty estimation allows the model to
focus its predictions on regions where it can be more accu-
rate and reliable. To complement this, SEA-RAFT utilizes a
Mixture of Laplace loss, which is designed to handle the un-
certainty in regions where the flow is difficult to predict. We
investigate the assumption that ambiguous areas negatively
impact accuracy, and we compare GMA’s accuracy when
trained with our weighted training method with SEA-RAFT’s
accuracy to evaluate the efficacy of their added network and
adapted loss.

2.3 Synthetic Datasets
Synthetic datasets play a crucial role in optical flow research,
as obtaining large-scale annotated data in real-world set-
tings is challenging. Some datasets, such as FlyingChairs
[9] and FlyingThings3D [19], are generated through simu-
lations, while others, such as Sintel [21], Middlebury [22]
and Spring [23], utilize rendered animations or stereo camera
setups, both of which allow for precise ground truth calcu-
lation. This is essential for training deep learning models,
as synthetic data can cover a wide range of challenging sce-
narios such as occlusions and large displacements. However,
despite their advantages, synthetic datasets face a domain gap
problem, where the textures, lighting, and object appearances
differ from real-world conditions [24]. As a result, mod-
els pre-trained on synthetic data often require fine-tuning on
real-world datasets to improve their generalization and accu-
racy in practical applications. We use FlyingThings3D, Sin-

Frame 1 Frame 2 Ground truth Out-of-frame mask In-frame mask

Figure 1: Two samples from the FlyingIcons dataset are shown. From left to right, the columns represent the first
frame, the second frame, the ground truth flow, the out-of-frame mask, and the in-frame mask. The green box highlights
the specific area the model trains on, while the remaining area provides a visualization of out-of-frame movements.
These examples provide a visual overview of the dataset and demonstrate the tools available for both model analysis and
weighted training on out-of-frame regions.

tel, and KITTI-15 [25], a real-world dataset captured with
stereo cameras and 3D laser scanners in driving scenes, for
evaluation. Additionally, we draw inspiration from existing
simulated synthetic datasets to generate our own, incorporat-
ing out-of-frame and in-frame mask matrices for use in model
training and accuracy analysis. Ideally, such masks would
have been included in synthetic datasets to further enhance
their utility.

3 Method
To investigate the influence of out-of-frame moving icons in
the training data on model accuracy, we generated our own
synthetic dataset called FlyingIcons and used it to train using
weighted masked training. The following sections describe
the dataset generation and the method of weighted (partially)
masked training.

3.1 FlyingIcons dataset generation
Figure 1 shows three samples from the FlyingIcons dataset.
The green box indicates the region on which the model
is trained, while the remaining area visualizes out-of-frame
movements.

Frame 1 contains eleven in-frame icons [26] that are po-
sitioned and rotated randomly. In Frame 2, these icons are
again randomly rotated and then translated according to a
Normal distribution with a standard deviation σ. This trans-
lation approach is similar to the Normal distribution used in
synthetic datasets such as FlyingChairs [9] and FlyingTh-
ings3D [19], and allows the model to learn meaningful pat-
terns from out-of-frame movements. For example, an icon
starting near the middle-right edge of the frame that moves
out-of-frame will likely have moved beyond the right frame

border, allowing the model’s prediction to capture this be-
haviour. In contrast, using purely random translations in
Frame 2 would not enable the model to learn these out-of-
frame patterns effectively.

The ground truth flow is generated using affine transforma-
tions [27], and the two mask matrices are created by check-
ing whether each icon stays in-frame or moves out-of-frame.
These masks are relative to Frame 1, as we only consider
forward-looking cases, with Frame 1 always preceding Frame
2 during training and testing. Additionally, we ensure that
icons do not overlap with each other or the frame’s border,
as such overlaps would introduce further ambiguities that
could affect the accuracy of our experiments. Finally, the
icons were selected to provide a diverse range of shapes and
colours, while still sharing some overlapping features to en-
sure varied yet comparable data points.

3.2 Weighted masked training
Training the model using weighted masked training consists
of applying a custom L1 loss. This loss is described by equa-
tion 1:

Lmasked
L1 =

1
∑N

i=1 M
w
i

N∑

i=1

Mw
i ◦

∣∣∣Fi − F̂i

∣∣∣ . (1)

Here, Mw represents the out-of-frame object mask matrix
with w indicating the mask weight for out-of-frame moving
pixels. F is the ground truth flow, F̂ is the predicted flow and
N is the amount of pixels in the sample.

The mask values Mw control pixel-wise contributions to
the loss, where a value of zero ignores the pixel, and one
counts it fully. In-frame pixels are assigned a value of one,

Ground truth flow Partial mask

Flow visualisation

Figure 2: Two partial masks for the FlyingThings3D
dataset are shown. On the left, we have the ground truth
flows, and on the right, the corresponding partial masks.
Red indicates out-of-frame movement, while black indi-
cates in-frame movement. Additionally, in the bottom
middle, a flow visualization is provided, where each colour
corresponds to a specific direction of motion relative to
the centre pixel, with higher colour intensity representing
larger motion magnitudes. This figure illustrates both the
ground truth flow and the partial masks, with the flow vi-
sualization included to help clarify how the partial masks
are constructed. The partial masks highlight the in-frame
and out-of-frame regions used in analysis and training.

while out-of-frame pixels are weighted by w ∈ [0, 1], allow-
ing control over their relative loss contribution. The division
by

∑N
i=1 M

w
i normalizes by the total active weight, ensuring

proper scaling even when parts of the image are excluded or
weighted less in the mask.

3.3 Weighted partially masked training
To extend the weighted masked training method from Sec-
tion 3.2 beyond our custom FlyingIcons dataset to widely
used synthetic datasets, such as FlyingThings3D, we intro-
duce a method called weighted partially masked training. In
this approach, we first generate partial masks by adding the
ground truth flow to pixel locations and determining whether
they move out-of-frame. Pixels that move out-of-frame are
included in the partial mask. Figure 2 shows two examples of
these partial masks, where red represents out-of-frame pix-
els and black represents in-frame pixels. It also includes the
ground truth flow and a flow visualization to help illustrate
how the partial masks were created.

Although this method is computationally simple, it lacks
object-level knowledge. As a result, it often includes only

part of an object in the mask, leaving the rest in-frame. Given
that it’s not intended to fully represent entire objects moving
out-of-frame, this approach provides an efficient approxima-
tion.

With the partial masks generated, we can then apply the
weighted masked training strategy outlined in Section 3.2.
Here, the mask matrix Mw in Equation 1 is replaced by the
partial mask with some value for w depending on the exper-
iment, allowing the training process to adjust the penalty for
errors in out-of-frame regions according to the partial mask
weight.

4 Experiments
4.1 Experimental setup
For each experiment, we adhere to the training setup outlined
in the GMA paper [3]. Specifically, when training GMA on
FlyingIcons, we replicate the training configuration used for
FlyingChairs as described in the paper. To ensure a fair com-
parison, we also follow the same training procedure for Fly-
ingChairs when training SEA-RAFT on FlyingIcons.

Similarly, for experiments on FlyingThings3D, we initial-
ize GMA with the FlyingChairs checkpoint, as both described
and provided by the authors [3].

During the generation of the FlyingIcons dataset, we use
a standard deviation (σ) of 92, equivalent to a quarter of the
frame height. This value was chosen after experimentation,
as it resulted in an approximate average of four out-of-frame
moving icons per sample, which seemed to be a reasonable
quantity based on preliminary observations.

4.2 Mask weight variation
In this experiment, we aim to determine how different
weights on out-of-frame masks influence the average end-
point error (AEPE) on both in-frame and out-of-frame re-
gions. We do this by applying the weighted masked training
method described in Section 3.2, varying the mask weight w
from Equation 1 when training GMA on FlyingIcons. We
chose mask weights w ∈ [0, 1] to capture a wide range of
data points while avoiding instability from overemphasizing
out-of-frame regions. The results are presented in Table 1.

As expected, the lowest AEPE for GMA on in-frame icons
occurs at a mask weight of 0.00. This is because, during
training, GMA only focused on in-frame icons and the back-
ground, with no out-of-frame icons present to introduce insta-
bility or degrade accuracy on in-frame regions. Conversely,
the highest AEPE is observed on out-of-frame icons, which is
also anticipated since GMA did not train on these regions and
thus has not learned how to handle them effectively. Training
on them could have been beneficial, as the positions of the
icons are determined according to a Normal distribution (see
Section 3.1).

Interestingly, we might have expected the lowest AEPE
for out-of-frame icons at a mask weight of 1.00, as this case
places the greatest emphasis on out-of-frame regions during
training. However, large standard deviations at mask weights
of 0.60, 0.80, and 1.00 suggest that training was unstable in
these cases, negatively affecting accuracy. As a result, the
lowest AEPE for out-of-frame icons is achieved at a mask

Model Mask weight Overall In-frame icons Out-of-frame icons

0.00 8.00 (0.00) 1.88 (0.02) 213.06 (0.07)

0.01 6.19 (0.00) 1.91 (0.02) 163.23 (0.23)

0.02 6.07 (0.02) 1.95 (0.01) 159.50 (0.56)

0.05 5.93 (0.01) 1.97 (0.04) 154.34 (0.21)

0.10 5.87 (0.01) 2.00 (0.02) 152.56 (0.17)

GMA 0.15 5.83 (0.01) 2.05 (0.01) 151.32 (0.24)

0.20 5.84 (0.00) 2.19 (0.02) 151.08 (0.21)

0.40 5.84 (0.02) 2.42 (0.07) 150.15 (0.17)

0.60 6.89 (0.60) 12.39 (6.35) 155.88 (3.46)

0.80 7.43 (0.99) 17.75 (9.54) 158.48 (5.37)

1.00 6.85 (1.02) 12.02 (9.88) 155.13 (5.72)

SEA-RAFT 1.00 6.71 (0.51) 12.12 (4.91) 153.51 (2.15)

Table 1: Validation average end-point error (AEPE) values with standard deviations (in brackets) on different image
regions for GMA and SEA-RAFT trained on FlyingIcons with the weighted masked training scheme (Section 3.2) and
various mask weights. The mask weight represents the training weight on out-of-frame moving pixels, while in-frame
pixels are consistently weighted at 1.0. Statistics are averaged over three runs, except for GMA with mask weights of
0.80 and 1.00, which are based on four runs. Bold values highlight the lowest AEPEs per column. The table illustrates a
trade-off between accuracy on in-frame and out-of-frame icons, with an optimal mask weight at 0.15, yielding the lowest
AEPE of 5.83, outperforming both standard GMA training and SEA-RAFT. Additionally, large standard deviations at
mask weights 0.60, 0.80, and 1.00 suggest that training was unstable at these values, negatively impacting accuracy.

weight of 0.40, which is the largest stable mask weight. Simi-
larly, for the runs considered stable (those with a mask weight
of 0.40 and lower), the highest AEPE on in-frame icons also
occurs at a mask weight of 0.40, which is expected because
in-frame icons receive a lower relative weight when the mask
weight increases. Additionally, training on out-of-frame re-
gions introduces larger errors, potentially contributing to in-
stability and the higher AEPE on in-frame icons at higher
mask weights.

Overall, between the stable mask weight endpoints of 0.00
and 0.40, we observe a trade-off between in-frame and out-
of-frame accuracy as the mask weight varies. This trade-off
yields a sweet spot for GMA’s overall accuracy at a mask
weight of 0.15.

When comparing GMA and SEA-RAFT, we observe that
SEA-RAFT performs marginally better than GMA under nor-
mal training conditions, with an overall AEPE of 6.71 com-
pared to GMA’s AEPE of 6.85 when trained with a mask
weight of 1.00. This mask weight represents GMA’s stan-
dard training setup, making SEA-RAFT the better model in
this case. However, when we optimize GMA’s training with a
mask weight of 0.15, it achieves a significantly lower overall
AEPE of 5.83, outperforming SEA-RAFT by a notable mar-
gin. Furthermore, while SEA-RAFT also exhibits relatively
large standard deviations, they are still lower than those of
GMA when trained with a mask weight of 1.00, indicating
that SEA-RAFT’s training is more stable in that scenario.

Lastly, the mask weights presented in Table 1 do not fully
span the possible range from 0 to 1. As a result, it is possible
that more optimal weight values exist which could achieve
lower AEPEs.

4.3 Partial mask weight variation

In this experiment, we aim to evaluate how different partial
mask weights impact GMA’s accuracy on different datasets,
specifically FlyingThings3D (test) [19], Sintel (train) [21]
and KITTI-15 (train) [25]. We do this by applying the
weighted partially masked training scheme described in Sec-
tion 3.3.

We begin by generating partial masks, which are then used
to train GMA on FlyingThings3D with varying partial mask
weights w as defined in Equation 1. We use mask weights
w ∈ [0, 1] allowing us to explore diverse data points without
risking instability by over-weighting out-of-frame regions.

Results are presented in Table 2, showing average end-
point errors (AEPE) and standard deviations (in brackets) for
different image regions, with the model initialized using the
FlyingChairs checkpoint from GMA [3]. The final row (par-
tial mask weight “1.00*”) shows statistics for the FlyingTh-
ings3D checkpoint from [3] and is used as the baseline.

The table presents a pattern similar to what we observed
in our previous experiment (Section 4.2), revealing a trade-
off between accuracy on in-frame (IF) and out-of-frame (OF)
regions, with KITTI-15 being the exception.

For FlyingThings3D (clean), we observe the lowest overall
(All) AEPE of 2.95 at a partial mask weight of 0.15, out-
performing the FlyingThings3D checkpoint from [3] with an
AEPE of 3.14. Notably, this weight is consistent with the
optimal value identified in our previous experiment (Section
4.2). We also observe a slight exception to the usual trade-off
between IF and OF accuracy, as the lowest IF AEPE occurs
at a mask weight of 0.10 with a value of 2.26. However, this
difference is minor, as it is only 0.01 lower than the AEPE of
2.27 at mask weights of 0.00 and 0.05, likely due to standard
deviations.

Partial
mask
weight

FlyingThings3D (test) Sintel (train)
KITTI-15 (train)

Clean Final Clean Final

All IF OF All IF OF All IF OF All IF OF All IF OF F1 (%)

0.00 4.62
(0.02)

2.27
(0.02)

21.65
(0.03)

4.46
(0.02)

2.12
(0.01)

21.32
(0.12)

1.99
(0.00)

0.95
(0.00)

13.41
(0.04)

3.38
(0.02)

2.30
(0.02)

15.34
(0.04)

11.82
(0.14)

2.41
(0.02)

56.25
(0.77)

20.7
(0.06)

0.05 3.10
(0.03)

2.27
(0.04)

9.95
(0.04)

2.86
(0.04)

2.14
(0.03)

8.83
(0.09)

1.38
(0.00)

0.97
(0.00)

6.50
(0.00)

2.77
(0.01)

2.35
(0.02)

8.11
(0.02)

5.86
(0.00)

2.39
(0.00)

21.26
(0.02)

18.4
(0.09)

0.10 2.99
(0.01)

2.26
(0.01)

9.11
(0.00)

2.81
(0.01)

2.15
(0.01)

8.25
(0.02)

1.34
(0.01)

0.96
(0.00)

6.10
(0.06)

2.72
(0.02)

2.34
(0.03)

7.58
(0.03)

5.44
(0.03)

2.40
(0.00)

18.98
(0.19)

18.1
(0.14)

0.15 2.95
(0.01)

2.27
(0.01)

8.65
(0.04)

2.77
(0.00)

2.16
(0.01)

7.80
(0.06)

1.33
(0.01)

0.97
(0.00)

5.91
(0.02)

2.73
(0.02)

2.38
(0.02)

7.34
(0.05)

5.20
(0.08)

2.38
(0.02)

17.78
(0.31)

18.0
(0.07)

0.20 2.98
(0.02)

2.31
(0.02)

8.51
(0.01)

2.75
(0.02)

2.16
(0.02)

7.57
(0.01)

1.33
(0.00)

0.97
(0.00)

5.76
(0.06)

2.75
(0.02)

2.40
(0.02)

7.24
(0.06)

5.08
(0.03)

2.37
(0.00)

17.05
(0.18)

17.7
(0.13)

0.40 2.99
(0.02)

2.37
(0.01)

8.12
(0.01)

2.76
(0.02)

2.20
(0.02)

7.40
(0.03)

1.33
(0.00)

0.99
(0.01)

5.38
(0.05)

2.73
(0.00)

2.40
(0.01)

6.93
(0.04)

4.97
(0.00)

2.38
(0.01)

16.34
(0.04)

17.6
(0.00)

0.60 3.02
(0.02)

2.44
(0.02)

7.73
(0.00)

2.75
(0.00)

2.24
(0.00)

7.00
(0.00)

1.32
(0.00)

0.99
(0.00)

5.31
(0.02)

2.75
(0.01)

2.43
(0.01)

6.77
(0.08)

4.80
(0.01)

2.34
(0.01)

15.60
(0.01)

17.3
(0.04)

0.80 3.09
(0.02)

2.52
(0.01)

7.71
(0.08)

2.79
(0.00)

2.27
(0.01)

6.99
(0.08)

1.35
(0.03)

1.03
(0.02)

5.18
(0.19)

2.75
(0.00)

2.43
(0.00)

6.69
(0.09)

4.79
(0.05)

2.36
(0.03)

15.50
(0.11)

17.3
(0.17)

1.00 3.08
(0.03)

2.52
(0.03)

7.58
(0.01)

2.80
(0.01)

2.29
(0.01)

7.00
(0.01)

1.34
(0.01)

1.02
(0.01)

5.07
(0.01)

2.74
(0.02)

2.43
(0.02)

6.57
(0.03)

4.78
(0.04)

2.35
(0.01)

15.39
(0.16)

17.4
(0.09)

1.00* 3.14 2.60 7.65 2.80 2.32 6.91 1.30 1.02 4.89 2.74 2.44 6.55 4.69 2.36 15.02 17.1

Table 2: Average end-point error (AEPE) values and standard deviation (in brackets) for different image regions and
datasets, obtained using GMA trained with the weighted partial mask scheme (Section 3.3) on FlyingThings3D. Models
were initialized with the FlyingChairs checkpoint from GMA [3]. “All” indicates the overall AEPE, “IF” indicates AEPE
on in-frame regions, and “OF” on out-of-frame regions. Additionally, we report the F1-all score on KITTI-15, which
measures the percentage of pixels with an endpoint error greater than 3 pixels or 5% of the magnitude of the ground
truth flow. Partial mask weight refers to the training weight for out-of-frame pixels, with in-frame pixels weighted at 1.0.
Results are averaged over two runs per weight and rounded. Bold values indicate the lowest AEPEs in each column; in
the case of ties, the value with the lowest standard deviation is bolded. The final row (partial mask weight “1.00*”) shows
statistics for the FlyingThings3D checkpoint from [3] and is used as the baseline. The table shows a trade-off between
IF and OF accuracy for all datasets except KITTI-15, who’s IF accuracy remains relatively constant. Notably, the All
AEPE on FlyingThings3D (clean) improves from 3.14 to 2.95 at a partial mask weight of 0.15, and from 2.80 to 2.75
on FlyingThings3D (final) at a partial mask weight of 0.60, while Sintel and KITTI-15 show no significant All AEPE
improvements.

On FlyingThings3D (final), we also observe a reduction in
overall AEPE compared to our baseline model from [3]. At
a partial mask weight of 0.60, the AEPE decreases from 2.80
to 2.75. Notably, a similar reduction occurs at a partial mask
weight of 0.20, though with a higher standard deviation.

In contrast, on Sintel (clean), no partial mask weight sur-
passes the baseline All accuracy achieved by the FlyingTh-
ings3D checkpoint from [3]. This outcome appears to be
driven by the superior OF accuracy on the Sintel dataset, indi-
cating that its focus on out-of-frame regions contributed pos-
itively to the overall AEPE.

On Sintel (final), we observe slight improvements in over-
all AEPE compared to the baseline, with the largest reduction
occurring at a partial mask weight of 0.10, where the AEPE
decreases from 2.74 to 2.72. However, this difference is min-
imal, with a standard deviation of 0.02, suggesting that the
variation may be attributed to standard deviation rather than
indicating a significant accuracy improvement.

KITTI-15 does not exhibit the same trade-off pattern ob-
served in other datasets. Here, IF accuracy remains rela-
tively stable across different partial mask weights, ranging

from 2.34 to 2.41, with the lowest value of 2.34 at a weight
of 0.60. Additionally, the FlyingChairs3D GMA checkpoint
consistently outperforms all other configurations quite signif-
icantly, including the one with a partial mask weight of 1.00,
which would be expected to perform similarly. This suggests
that standard deviation may have a greater impact on the re-
sults for KITTI-15, as larger standard deviations are observed
across its runs.

Lastly, the partial mask weights used in Table 2 represent
only a subset of possible values between 0 and 1. As a result,
there may be more optimal weights that could further reduce
AEPEs on specific datasets.

5 Discussion
Our findings reveal a trade-off in GMA’s accuracy between
in-frame and out-of-frame icons on the FlyingIcons dataset,
dependent on the relative weights assigned to these icons. We
identified an optimal overall average end-point error (AEPE)
at an out-of-frame mask weight of 0.15, achieving a value of
5.83, which is significantly lower than standard GMA train-

ing at 6.85 and SEA-RAFT at 6.71. This outcome highlights a
limitation of existing synthetic datasets, which lack not only
the out-of-frame masks we used in the experiment but also
complete ambiguity masks. Arguably, either could have been
incorporated during dataset generation with minimal addi-
tional effort.

Rather than attempting to generate complete ambiguity
masks after the dataset had already been created, we opted to
produce partial out-of-frame masks for the FlyingThings3D
dataset and applied the same weighted training method. This
approach revealed a similar trade-off between in-frame and
out-of-frame accuracy, consistent with our findings on the
FlyingIcons dataset, with KITTI-15 standing as an exception.
In particular, the weighted partially masked training method
improved the accuracy on FlyingThings3D compared to the
baseline GMA checkpoint. At a partial mask weight of 0.15
for the clean version, the AEPE decreased from 3.14 to 2.95.
Similarly, at a partial mask weight of 0.60 for the final ver-
sion, the AEPE decreased from 2.80 to 2.75. However, when
we tested this method on Sintel and KITTI-15, we observed
no significant overall accuracy improvements, which suggests
either that the partial masks are too simplistic for these com-
plex datasets or that even complete ambiguity masks would
not suffice to improve accuracy.

These results demonstrate that this trade-off is present
across multiple datasets, including FlyingIcons, FlyingTh-
ings3D, and Sintel, with the optimal out-of-frame mask
weight for overall accuracy varying for each. This finding
suggests an opportunity for models to focus on in-frame re-
gions when needed, allowing them to specialize in scenarios
where accurate in-frame predictions are more critical.

Although FlyingIcons is useful for exploring out-of-frame
movement, it lacks some of the complexities present in
real-world scenarios, such as scaling effects and three-
dimensional motion, found in more realistic datasets such as
FlyingThings3D. Additionally, FlyingIcons is limited to out-
of-frame movements and does not address other types of am-
biguities often encountered in optical flow, such as occlusions
and complex motions.

Despite these limitations, the out-of-frame masks enabled
effective weighted masked training on FlyingIcons, suggest-
ing that integrating similar masks into existing datasets could
be beneficial. However, as these findings are specific to the
FlyingIcons dataset, future work could investigate the gener-
alizability of this approach across more complex and realistic
datasets to validate its effectiveness under a broader range of
conditions.

Furthermore, while the weighted partially masked train-
ing approach only resulted in immediate overall accuracy
improvements on FlyingThings3D, we believe that the con-
cept of weighted masked training holds considerable poten-
tial. This initial test used relatively naive partial masks by
design, as we aimed to determine whether even a straight-
forward approach could yield accuracy improvements. Fu-
ture work could enhance this method by developing advanced
mask generation strategies that capture additional ambigui-
ties beyond out-of-frame movements. Additionally, creating
synthetic datasets specifically designed with out-of-frame or
complete ambiguity masks could further support research on

improving model accuracy in these areas.
Lastly, since we tested the effects of weighted (partially)

masked training exclusively on GMA, it remains unclear
whether these findings generalize to other optical flow mod-
els. Future work could explore whether similar accuracy pat-
terns emerge in different models.

References
[1] Y. Wang, L. Lipson, and J. Deng, “SEA-RAFT: Sim-

ple, Efficient, Accurate RAFT for Optical Flow,” in
Computer Vision – ECCV 2024 (A. Leonardis, E. Ricci,
S. Roth, O. Russakovsky, T. Sattler, and G. Varol,
eds.), vol. 15065, (Cham), pp. 36–54, Springer Nature
Switzerland, 2025. Series Title: Lecture Notes in Com-
puter Science.

[2] S. T. H. Shah and X. Xuezhi, “Traditional and modern
strategies for optical flow: an investigation,” SN Applied
Sciences, vol. 3, p. 289, Feb. 2021.

[3] S. Jiang, D. Campbell, Y. Lu, H. Li, and R. Hart-
ley, “Learning to estimate hidden motions with global
motion aggregation,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV),
pp. 9772–9781, October 2021.

[4] D. Rengasamy, M. Jafari, B. Rothwell, X. Chen, and
G. P. Figueredo, “Deep Learning with Dynamically
Weighted Loss Function for Sensor-Based Prognostics
and Health Management,” Sensors, vol. 20, p. 723, Jan.
2020. Number: 3 Publisher: Multidisciplinary Digital
Publishing Institute.

[5] B. K. P. Horn and B. G. Schunck, “Determining optical
flow,” Artificial Intelligence, vol. 17, pp. 185–203, Aug.
1981.

[6] Q. Chen and V. Koltun, “Full Flow: Optical Flow Esti-
mation By Global Optimization over Regular Grids,” in
2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), (Las Vegas, NV, USA), pp. 4706–
4714, IEEE, June 2016.

[7] C. Zach, T. Pock, and H. Bischof, “A duality based
approach for realtime tv-l1 optical flow,” vol. 4713,
pp. 214–223, 09 2007.

[8] Z. Teed and J. Deng, “RAFT: Recurrent All-Pairs Field
Transforms for Optical Flow,” in Computer Vision –
ECCV 2020 (A. Vedaldi, H. Bischof, T. Brox, and J.-M.
Frahm, eds.), vol. 12347, pp. 402–419, Cham: Springer
International Publishing, 2020. Series Title: Lecture
Notes in Computer Science.

[9] A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser, C. Hazir-
bas, V. Golkov, P. v. d. Smagt, D. Cremers, and T. Brox,
“Flownet: Learning optical flow with convolutional
networks,” in 2015 IEEE International Conference on
Computer Vision (ICCV), pp. 2758–2766, 2015.

[10] A. Jahedi, L. Mehl, M. Rivinius, and A. Bruhn,
“Multi-scale RAFT: Combining hierarchical concepts
for learning-based optical FLow estimation.” Issue:
arXiv:2207.12163.

[11] A. Jahedi, M. Luz, L. Mehl, M. Rivinius, and A. Bruhn,
“High resolution multi-scale RAFT (robust vision chal-
lenge 2022).”

[12] S. Saxena, C. Herrmann, J. Hur, A. Kar, M. Norouzi,
D. Sun, and D. J. Fleet, “The surprising effective-
ness of diffusion models for optical flow and monoc-
ular depth estimation.” Issue: arXiv:2306.01923 Issue:
arXiv:2306.01923.

[13] Z. Huang, X. Shi, C. Zhang, Q. Wang, K. C. Cheung,
H. Qin, J. Dai, and H. Li, “FlowFormer: A transformer
architecture for optical flow.”

[14] X. Shi, Z. Huang, D. Li, M. Zhang, K. C. Cheung,
S. See, H. Qin, J. Dai, and H. Li, “Flowformer++:
Masked cost volume autoencoding for pretraining op-
tical flow estimation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pp. 1599–1610, 2023.

[15] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz, “PWC-Net:
CNNs for Optical Flow Using Pyramid, Warping, and
Cost Volume,” June 2018. arXiv:1709.02371 [cs].

[16] H. Xu, J. Zhang, J. Cai, H. Rezatofighi, and D. Tao,
“Gmflow: Learning optical flow via global match-
ing,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
pp. 8121–8130, June 2022.

[17] X. Sui, S. Li, X. Geng, Y. Wu, X. Xu, Y. Liu, R. Goh,
and H. Zhu, “Craft: Cross-attentional flow transformer
for robust optical flow,” 2022.

[18] F. Zhang, O. J. Woodford, V. A. Prisacariu, and P. H.
Torr, “Separable flow: Learning motion cost volumes
for optical flow estimation,” in Proceedings of the
IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pp. 10807–10817, October 2021.

[19] N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers,
A. Dosovitskiy, and T. Brox, “A Large Dataset to Train
Convolutional Networks for Disparity, Optical Flow,
and Scene Flow Estimation,” in 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pp. 4040–4048, June 2016. arXiv:1512.02134 [cs, stat].

[20] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polosukhin,
“Attention is all you need,” in Advances in Neural Infor-
mation Processing Systems (I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, eds.), vol. 30, Curran Associates, Inc., 2017.

[21] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black,
“A naturalistic open source movie for optical flow eval-
uation,” in European Conference on Computer Vision
(ECCV), pp. 611–625, 2012.

[22] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. J. Black,
and R. Szeliski, “A database and evaluation methodol-
ogy for optical flow,” International Journal of Computer
Vision, vol. 92, no. 1, pp. 1–31, 2011.

[23] L. Mehl, A. Jahedi, J. Schmalfuss, and A. Bruhn,
“Spring: A high-resolution high-detail dataset and

benchmark for scene flow, optical flow and stereo,” in
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2023.

[24] Y. Han, K. Luo, A. Luo, J. Liu, H. Fan, G. Luo,
and S. Liu, “Realflow: Em-based realistic optical flow
dataset generation from videos,” in Computer Vision –
ECCV 2022 (S. Avidan, G. Brostow, M. Cissé, G. M.
Farinella, and T. Hassner, eds.), (Cham), pp. 288–305,
Springer Nature Switzerland, 2022.

[25] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for
autonomous driving? the kitti vision benchmark suite,”
in Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2012.

[26] Flaticon, “Free vector icons.” https://www.flaticon.com,
2024. Accessed: 2024-10-08.

[27] E. W. Weisstein, “Affine transformation.” https:
//mathworld.wolfram.com/AffineTransformation.html,
2024. Accessed: 2024-10-22.

3 Supplementary Material

3.1 Deep Learning

3.1.1 What is deep learning?

Deep learning is a subset of machine learning and artificial intelligence that mimics the function-
ing of the human brain in processing data and creating patterns for use in decision-making. It
uses multi-layered artificial neural networks to identify patterns and make predictions. It has
significantly enhanced our ability to process large amounts of structured and unstructured data,
enabling breakthroughs across various domains. For instance, in image recognition, deep learning
models excel in tasks such as object detection, facial recognition, and medical image analysis.
This has made them invaluable in fields ranging from healthcare—where they assist in diagnosing
diseases and personalizing treatment plans—to autonomous vehicles, where deep learning aids in
real-time decision-making, navigation, and object recognition in complex environments. Moreover,
in natural language processing, deep learning models power applications such as language trans-
lation, sentiment analysis, and text summarization, improving communication across languages
and enhancing customer experience in industries such as finance and customer service.

3.1.2 Non-linearity

At the heart of deep learning lie artificial neural networks, which are inspired by the structure
and functioning of the human brain. These networks are composed of layers of interconnected
nodes, or neurons, that process and transform inputs to produce meaningful outputs. While a
single perceptron, the basic unit of these networks, performs linear classification, stacking multiple
layers of perceptrons enables the network to tackle more complex problems.

The key to handling non-linear relationships lies in the activation functions within each layer.
Activation functions, such as sigmoid, tanh, and ReLU, introduce the necessary non-linearity
by transforming the output of each neuron in a way that allows the network to model intricate
patterns in data. ReLU, often favoured for its computational efficiency and simplicity, helps
mitigate issues such as vanishing gradients in deeper networks, allowing them to perform well on
large-scale tasks.

3.1.3 Training networks

Training a deep learning model involves iteratively optimizing its parameters to minimize the
error between predicted and actual outputs. This process begins with forward propagation, where
inputs are passed through the network to generate predictions. The predictions are then compared
to the true values using a loss function, such as Mean Squared Error (MSE) for regression tasks
or Cross-Entropy for classification tasks. Optimization algorithms, such as Stochastic Gradient
Descent (SGD) and Adam, guide the backward propagation phase, where the model’s parameters
are adjusted in a direction that reduces the error.

Evaluating a model’s performance relies on metrics such as accuracy, precision, and recall,
which provide insights into how well the model performs on the data. Training often includes
hyperparameter tuning, where parameters such as learning rate, batch size, and network depth
are adjusted to optimize performance. To prevent overfitting, regularization techniques such as
dropout and weight decay are commonly applied. Dropout, for instance, reduces the likelihood of
overfitting by randomly “dropping” neurons during training, thereby promoting a more generalized
model. Other techniques such as batch normalization help stabilize training by normalizing the
input data within mini-batches. Additionally, in scenarios with class imbalance, approaches such
as class weighting or data augmentation can be employed to ensure balanced learning.

3.1.4 Masking

In deep learning, masking is a technique used to selectively emphasize certain parts of the input
data or ignore irrelevant information during training and inference. A mask acts as a filter on
the input, output, or intermediate layers of a neural network, specifying which elements should
be processed and which should be disregarded. Typically, masks are binary or weighted matrices

14

that align with the data dimensions, where values of 1 include elements, and values of 0 exclude
them. Masking can also be applied in loss calculations, allowing models to prioritize specific data
points, such as emphasizing certain regions in images or focusing on particular time frames in
video data.

3.1.5 Vanishing gradient

The vanishing gradient problem occurs in deep neural networks, particularly those with many
layers, where gradients used to update model weights during backpropagation become extremely
small as they propagate backward through the network. This issue is most common in networks
with sigmoid or tanh activation functions, which can squash input values into a narrow range,
causing gradients to shrink as they pass through each layer. As a result, the weights in earlier layers
receive minimal updates, hindering the network’s ability to learn and capture complex patterns.
This makes training deep networks challenging, as they become slow to converge or may even
stop learning entirely. Solutions such as the ReLU activation function, which avoids squashing by
passing through values above zero unchanged, and techniques such as batch normalization, help
alleviate the vanishing gradient problem by maintaining larger gradient values across layers.

3.1.6 Architectures

Fully Connected Neural Networks Fully Connected Neural Networks, often referred to as
feedforward networks, consist of an input layer, multiple hidden layers, and an output layer, where
each neuron in one layer is fully connected to every neuron in the next. While these networks are
foundational, they struggle with high-dimensional structured data, making them less suited for
tasks like image and sequence analysis.

Convolutional Neural Networks Convolutional Neural Networks (CNNs), in contrast, are
explicitly designed for handling structured grid-like data, such as images. By using shared-weight
filters that capture local patterns, CNNs achieve parameter efficiency and exhibit translation
equivariance, allowing them to detect patterns regardless of their location in the input. Pooling
layers further refine the model by downsampling feature maps, reducing sensitivity to spatial
variations. Despite their effectiveness, training deep CNNs can be challenging due to issues such
as vanishing gradients.

Recurrent Neural Networks Recurrent Neural Networks (RNNs) specialize in sequence mod-
elling, making them well-suited for tasks that involve time series or sequential data, such as speech
recognition and language translation. The structure of an RNN allows it to remember previous
inputs, though basic RNNs suffer from the vanishing gradient problem, which limits their ability to
capture long-term dependencies. Advanced variants, such as Long Short-Term Memory (LSTM)
and Gated Recurrent Unit (GRU) networks, address these limitations by incorporating memory
cells, enabling them to handle longer sequences effectively.

(Variational) Autoencoders (Variational) Autoencoders (VAEs) represent another class of
networks, primarily used for representation learning and generative tasks. Autoencoders learn
to encode input data into a lower-dimensional representation before reconstructing it, capturing
key features of the data. VAEs extend this by introducing a probabilistic approach, learning a
distribution over the latent space, which makes them suitable for generative tasks where producing
new, realistic samples is desired. They find applications in areas such as image synthesis, anomaly
detection, and data denoising.

Generative Adversarial Networks Generative Adversarial Networks (GANs) consist of two
networks: a generator that produces synthetic data and a discriminator that differentiates between
real and generated data. The generator learns to create increasingly realistic samples by trying
to “fool” the discriminator, which, in turn, becomes better at identifying fake samples. This
dynamic has made GANs highly effective in fields such as image generation, style transfer, and

15

Image 1 Image 2 Ground truth flow

Figure 1: Example of optical flow between two consecutive frames. From left to right: the
first frame (Image 1), the second frame (Image 2), and the ground truth optical flow. The
optical flow (right) represents the pixel-wise displacement between Image 1 and Image 2, with
colours indicating the direction and magnitude of movement according to the colour wheel.
This ground truth flow is used to evaluate the accuracy of optical flow algorithms on this
image sequence.

Figure 2: Optical flow colour wheel visualization. This colour wheel represents the direction
and magnitude of optical flow vectors relative to the centre pixel, with each colour corre-
sponding to a specific direction of motion. The hue indicates the flow direction, while the
brightness represents the magnitude of movement, where brighter colours indicate faster mo-
tion. For example, rightward motion is shown in red, upward in purple, leftward in cyan, and
downward in yellow. The centre of the wheel corresponds to zero motion. This visualization
is used to interpret the direction and intensity of motion in optical flow fields across the
image.

domain adaptation. However, GANs are notoriously difficult to train due to their sensitivity to
training dynamics and convergence issues.

Attention Mechanisms and Transformers Attention Mechanisms and Transformers have
revolutionized sequence modelling by enabling parallel processing of sequential data. Attention
mechanisms allow the network to focus on the most relevant parts of the input sequence, making
it especially effective for tasks involving language and context. Transformers, such as BERT [1]
and GPT [2], leverage self-attention to learn complex relationships between sequence elements,
leading to significant advances in NLP. These models have also been adapted for computer vision
tasks, as seen with Vision Transformers (ViTs) [3], and for multi-modal applications that span
text, image, and other data types.

3.2 Optical Flow

Optical flow is the task of predicting per-pixel vectors corresponding to the apparent motion
between two frames of, for example, a video. See Figure 1 for an example of an optical flow
sample and Figure 2 for a visualization of what the ground truth flow colours mean. Optical
flow is used in combination with a number of other computer vision tasks such as: video coding,
segmentation, tracking and multi view-reconstruction. Optical flow has also been proven useful

16

in other fields, such as: fluid mechanics, solar physics, autonomous driving, biomedical images,
breast tumours, bladder cancer surveillance, traffic monitoring, virtual reality, face recognition
and tracking, and action recognition videos. [4]

3.2.1 Traditional Optical Flow Methods

Traditionally, optical flow has been tackled using handcrafted feature-based approaches designed
to estimate the apparent motion between consecutive frames in a video. Among these, variational
methods have been particularly successful, as they minimize an energy cost function derived from
two main assumptions: brightness constancy and spatial smoothness. The brightness constancy
assumption posits that the intensity of a pixel remains constant across frames, while the smooth-
ness assumption enforces a certain level of coherence in the flow field, promoting similar motion
vectors in neighbouring regions. Based on how they approach this optimization, these methods
can be categorized into global and local methods.

Global methods Global methods aim to optimize the flow field across the entire image by
minimizing the energy cost function holistically. A classical example of a global method is the
Horn-Schunck method [5], which formulates optical flow as a global optimization problem. This
approach utilizes both brightness and smoothness constraints to iteratively estimate the optical
flow for each pixel. While effective in providing a dense, smooth flow field, global methods can
struggle under conditions of varying illumination. Furthermore, global methods are computation-
ally intensive due to the iterative nature of solving for the entire image at once, and they often
produce overly smooth results that may blur motion boundaries in complex scenes.

Local methods Local methods, on the other hand, focus on estimating optical flow within small
neighbourhoods or individual pixels. These methods operate on the local consistency assumption,
which holds that neighbouring pixels exhibit similar motion patterns. This local focus enables
the estimation of optical flow without relying on information from the entire image, thus reducing
computational complexity. Local methods typically use techniques such as block matching, which
involves comparing pixel blocks between consecutive frames, or gradient-based approaches, such as
the Lucas-Kanade method [6], which assumes a locally constant flow within each neighbourhood.
While these methods are efficient and effective for small, subtle motions, they typically struggle
with larger displacements.

3.2.2 Deep Learning Optical Flow

The emergence of deep learning has brought significant advancements to optical flow estimation
by replacing traditional, rule-based techniques with data-driven models that learn complex motion
patterns directly from large datasets. Classical methods rely on assumptions such as brightness
constancy and spatial smoothness and often struggle with diverse motion types, such as large
displacements and non-rigid movement. In contrast, deep learning-based approaches bypass these
handcrafted features, allowing neural networks to learn representations that generalize better to
complex scenes.

The use of deep learning also allows for end-to-end training, where the model learns an entire
pipeline of feature extraction, motion estimation, and refinement from pairs of images. This
holistic approach contrasts with traditional methods, which often treat these steps as separate,
handcrafted components. By training the network to optimize for accurate flow estimation directly,
deep learning models can learn a broader range of motion patterns, which may include large
displacements, occlusions, and changes in viewpoint.

Training deep learning models for optical flow typically requires large datasets with ground
truth flow fields, which are often generated synthetically due to the difficulty of obtaining accu-
rate motion data in real-world scenes. By training on synthetic datasets, such as FlyingChairs
[7] or FlyingThings3D [8], models can learn the basic structures of motion patterns. For real-
world applications, fine-tuning on datasets such as MPI Sintel [9] and KITTI [10] helps improve
generalization to more diverse environments. More about datasets in Section 3.2.3.

17

In terms of supervision, deep learning models for optical flow typically use loss functions that
measure the difference between predicted and ground truth flow fields. A primary loss function
is the L1 loss, which calculates the absolute difference between each predicted flow vector and
the corresponding ground truth vector. This loss is widely used in optical flow because it is less
sensitive to outliers than Euclidean (or L2) loss, providing more balanced learning. However,
model accuracy is generally evaluated using the L2 loss, commonly referred to as the Average
End-Point Error (AEPE).

While deep learning-based optical flow has significantly advanced the field, it still faces chal-
lenges, particularly in handling occlusions and non-visible regions between frames. When parts of
the scene are hidden or missing from view, models struggle to estimate motion accurately due to
the lack of consistent information. Although occlusion-aware architectures are being developed to
address this, achieving reliable predictions in these areas remains an active area of research.

3.2.3 Datasets

Optical flow research has been supported by several key datasets, each offering unique features
and challenges to help evaluate and benchmark models. While some datasets are synthetic and
intended primarily for pretraining, others provide real-world data for testing and validating model
accuracy.

FlyingChairs FlyingChairs, introduced by [7], contains 22,872 synthetic image pairs, each with
ground truth optical flow. The images depict chairs moving across varied background scenes,
typically skylines or cityscapes, under various translations, rotations, and scales. Due to its
synthetic nature, FlyingChairs has precisely labelled ground truth, making it ideal for pretraining
optical flow models before fine-tuning on more complex datasets. However, it is not meant for
final testing, as its primary purpose is to provide a foundational training set that helps models
learn basic motion patterns.

FlyingThings3D Following the concept of FlyingChairs, the FlyingThings3D dataset, proposed
by [8], expands on this idea with a richer set of 3D synthetic data. It consists of 25,000 stereo frames
of objects flying across diverse backgrounds, incorporating depth and realistic object interactions.
The dataset includes additional modalities such as disparity and segmentation masks, making it
useful for multitask training. Although it is another synthetic dataset, FlyingThings3D presents
a more complex pretraining environment than FlyingChairs due to its 3D nature and variety of
objects. Like FlyingChairs, it is intended for pretraining, not for final evaluation.

FlyingThings3D has two versions:

• Clean: Contains simplified scenes with fewer artefacts and clearer object boundaries, ideal
for training on basic 3D motion.

• Final: Includes added noise, motion blur, and other realistic effects, simulating more complex
real-world conditions.

These versions offer flexibility in training, from controlled conditions to scenarios that closely
mimic real-world challenges.

MPI Sintel The MPI Sintel dataset, developed by [9] and derived from the open-source ani-
mated film “Sintel” by the Blender Foundation, is a well-established benchmark for evaluating
optical flow models. It provides high-resolution images with ground truth optical flow, depth, and
motion segmentation, offering a realistic yet challenging environment for model testing. Sintel
also has two main versions:

• Clean: This version provides sharp, detailed frames without additional effects, focusing on
high-quality imagery for motion analysis.

• Final: The Final version adds complex rendering effects such as motion blur, atmospheric
effects, and lighting changes, creating a more challenging environment for models.

18

Testing on Sintel’s test data requires researchers to submit results to an online evaluation
server, ensuring a fair and consistent benchmarking process by restricting access to the ground
truth for test sequences. This constraint helps avoid overfitting and allows the research community
to compare results reliably.

KITTI The KITTI dataset, developed by [10], is a cornerstone for evaluating computer vision
models in autonomous driving. It contains real-world data collected from a vehicle equipped with
cameras and LIDAR sensors and provides high-resolution images across various tasks, including
optical flow, visual odometry, object detection, and 3D scene reconstruction. KITTI’s optical flow
data includes ground truth for some but not all pixels, due to the inherent challenges of obtaining
precise flow measurements in real-world driving scenarios. As with Sintel, KITTI uses an online
submission system for test set evaluations to promote fair comparison and prevent overfitting. The
dataset’s diversity, covering different lighting conditions, road types, and dynamic scenes, makes
it a valuable benchmark for evaluating the robustness of optical flow models.

Middlebury The Middlebury dataset, introduced by [11], is one of the earliest optical flow
benchmarks and remains a widely used resource for evaluating flow algorithms. It includes a
range of synthetic and real-world scenes, covering both indoor and outdoor environments with a
variety of motions, textures, and lighting conditions. Middlebury provides high-quality ground
truth obtained through stereo camera setups and manual alignment, which ensures a precise
benchmark for fine-tuning and testing. Despite its limited size compared to more recent datasets,
Middlebury’s diverse content and accuracy continue to make it relevant in assessing the precision
of optical flow algorithms.

Spring The Spring dataset, introduced by [12], represents a recent addition to optical flow and
scene flow benchmarking. While it is a synthetic dataset, Spring is notable for its high-resolution,
realistic scenes, which feature complex and dynamic motions, including non-rigid deformations
and occlusions. The dataset includes a wide range of motion types, from small details such as
grass and hair movements to larger dynamic actions such as flight and chasing sequences. This
makes it particularly valuable for testing models on challenging, highly detailed scenarios that
reflect realistic visual effects

References

[1] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional
transformers for language understanding,” 2019.

[2] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,
M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learners,” 2020.

[3] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-
hghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An image is worth
16x16 words: Transformers for image recognition at scale,” 2021.

[4] S. T. H. Shah and X. Xuezhi, “Traditional and modern strategies for optical flow: an inves-
tigation,” vol. 3, no. 3, p. 289, 2021.

[5] B. K. P. Horn and B. G. Schunck, “Determining optical flow,” Artificial Intelligence, vol. 17,
pp. 185–203, Aug. 1981.

[6] D. Patel and S. Upadhyay, “Optical Flow Measurement using Lucas Kanade Method,” In-
ternational Journal of Computer Applications, vol. 61, pp. 6–10, Jan. 2013.

19

[7] A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser, C. Hazirbas, V. Golkov, P. v. d. Smagt, D. Cre-
mers, and T. Brox, “Flownet: Learning optical flow with convolutional networks,” in 2015
IEEE International Conference on Computer Vision (ICCV), pp. 2758–2766, 2015.

[8] N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy, and T. Brox, “A Large
Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Esti-
mation,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 4040–4048, June 2016. arXiv:1512.02134 [cs, stat].

[9] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, “A naturalistic open source movie for
optical flow evaluation,” in European Conference on Computer Vision (ECCV), pp. 611–625,
2012.

[10] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the kitti vision
benchmark suite,” in Conference on Computer Vision and Pattern Recognition (CVPR),
2012.

[11] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. J. Black, and R. Szeliski, “A database and
evaluation methodology for optical flow,” International Journal of Computer Vision, vol. 92,
no. 1, pp. 1–31, 2011.

[12] L. Mehl, A. Jahedi, J. Schmalfuss, and A. Bruhn, “Spring: A high-resolution high-detail
dataset and benchmark for scene flow, optical flow and stereo,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2023.

[13] S. Saxena, C. Herrmann, J. Hur, A. Kar, M. Norouzi, D. Sun, and D. J. Fleet, “The surprising
effectiveness of diffusion models for optical flow and monocular depth estimation.” Issue:
arXiv:2306.01923 Issue: arXiv:2306.01923.

[14] Q. Dong, B. Zhao, and Y. Fu, “Open-DDVM: A reproduction and extension of diffusion
model for optical flow estimation.” Issue: arXiv:2312.01746 Issue: arXiv:2312.01746.

[15] Z. Teed and J. Deng, “RAFT: Recurrent All-Pairs Field Transforms for Optical Flow,” in
Computer Vision – ECCV 2020 (A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, eds.),
vol. 12347, pp. 402–419, Cham: Springer International Publishing, 2020. Series Title: Lecture
Notes in Computer Science.

[16] S. Jiang, D. Campbell, Y. Lu, H. Li, and R. Hartley, “Learning to estimate hidden motions
with global motion aggregation,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pp. 9772–9781, October 2021.

20

A Appendix

A.1 High Resolution Diffusion Optical Flow

In this first topic, we explored optical flow estimation using diffusion models. Google introduced
the DDVM model [13], which applies a general-purpose denoising diffusion model to optical flow
without using any specific architectural adjustments or optimization techniques traditionally found
in optical flow models. However, training DDVM requires a significant amount of computational
resources, making it impractical for us to reproduce the results on a large scale due to resource
constraints.

To address these challenges, Open-DDVM [14] was developed as an adaptation of DDVM with
reduced computational demands. This version incorporates a correlation volume, similar to that
used in RAFT [15], which significantly decreases the resources needed, albeit with a slight accuracy
reduction. However, the correlation volume only samples every eighth pixel, both horizontally and
vertically, leading to potential gaps in information. This design choice suggested that Open-DDVM
might miss important details between sampled pixels, which could impact accuracy by effectively
reducing the resolution.

Figure 3: Samples from different versions of the MovingGrass dataset, where “grass” blades of
different colours move vertically. Each column represents a sample, with the top row showing
the first frame, the middle row showing the second frame, and the bottom row showing the
ground truth flow. The dataset includes various configurations: two versions with a single row
of moving blades, one where every column has a moving blade and one where every eighth
column does; two versions with two rows of moving blades, again one with every column
moving and another with every eighth column; and finally, a version where only every eighth
row and column contains a moving blade of grass.

The plan was to verify this hypothesis and, once confirmed, develop a solution to recapture
the lost information and improve the resolution. We tested this hypothesis by creating a synthetic
dataset called MovingGrass which we used to train Open-DDVM. The samples contain coloured
blades of “grass” moving vertically, with variations in spacing—either every column or every eighth
column. Figure 3 displays some samples from different dataset variations.

Given the setup of the correlation volume, we anticipated that the model would perform better
on the dataset where only every eighth column had a moving blade of grass, as this configuration
would allow the model to “see” a larger percentage of the moving blades compared to when every
column had a blade. We initially tested with single rows of blades, but after observing no accuracy
difference, we increased the complexity by adding multiple rows and by significantly increasing
the width of the samples. However, these changes did not yield the expected gap in accuracy.

21

We hypothesized that the simplicity of the dataset might be limiting the utility of the correla-
tion volume. To test this, we conducted a second experiment by training a standard DDVM model
without the correlation volume. Although DDVM typically has large computational requirements,
the small 64 by 64 pixel sample size made this doable. The results revealed no accuracy improve-
ment, suggesting that the correlation volume had minimal impact on these toy datasets.

After additional attempts to increase dataset difficulty and observing no significant differences
in accuracy or training stability, we concluded that further progress would either require a more
complex dataset, which would most likely mean larger computational requirements, or a shift to
a different research topic. Ultimately, we chose the latter path.

A.2 Optical Flow As A Class Imbalance Problem

The second topic we explored consisted of framing optical flow as a class imbalance problem.

A.2.1 Introduction

We identified two key issues affecting optical flow. The first issue relates to the evaluation metric,
specifically the average end-point error (AEPE) or L2 loss. This metric calculates the average
per-pixel difference between the predicted flow and the ground truth flow. However, when this
error is divided by the product of the image’s width and height, the overall value can become
quite small, especially at high resolutions. As a result, errors in small, detailed regions tend to be
lost in the average and are largely ignored during evaluation, reducing the model’s sensitivity to
these areas.

The second issue involves an imbalance in the dataset itself. Optical flow datasets typically
contain large regions with minimal or uniform movement between frames, while regions with
detailed, complex motion in various directions are far less common. Consequently, models trained
on such data tend to perform poorly on areas with underrepresented movement details, as shown
in Figure 4. This imbalance suggests that optical flow models are impacted by a class imbalance
problem, where the “classes” correspond to the detail levels of movement across different regions
of the flow.

Our objective was to make three key contributions:

• An optical flow evaluation metric that accurately reflects model accuracy on high-detail
areas.

• A demonstration that current optical flow methods are affected by a class imbalance problem.

• An improved training method that mitigates the effects of class imbalance in optical flow
models.

While we partially succeeded with the first objective, we effectively demonstrated the second,
and achieved the third on the FlyingChairs dataset, though it did not generalize to other datasets.

A.2.2 Method

Labelling the data To view optical flow as a class imbalance problem, we first need to assign
labels. These labels are generated by dividing the ground truth flow into patches of n× n pixels
and calculating a detail score for each patch, which serves as its label.

The detail score for a single flow direction is calculated using the following formula:

D(f) = ∇(f) ∗ kµ. (1)

In this equation, ∇ denotes a binary Canny edge detector, f is the ground truth flow matrix,
and kµ represents a mean kernel of size n × n. The edge detector output is convolved with this
kernel to produce a detail score, indicating the percentage of edge pixels within each patch. This
results in a score matrix with dimensions of W/n×H/n, which we then linearly interpolate back
to the original W ×H dimensions for easier usage. To ensure each patch receives a single detail
score, we apply the convolution with a stride of n.

22

To combine the detail scores from both flow directions, we calculate the per-pixel average of
the detail scores for each direction:

Dµ =
D(f1)+D(f2)

2
. (2)

In this equation, f1 represents the ground truth flows in the horizontal direction, while f2

represents the ground truth flows in the vertical direction. The resulting matrix, Dµ, provides a
single detail score for each pixel.

Scaling the loss With the per-pixel detail scores calculated, we can assign weights to each
pixel based on its corresponding detail score. These weights are determined by first calculating
the detail score distribution for the training dataset, which is then used to create scaling strategies.
Each scaling strategy consists of a list of values, where each index corresponds to a detail score bin.
These strategies are denoted as DSx, where x indicates the strategy number. In these strategies,
δ represents the dataset distribution, and we construct the arrays as we would in Python. Below,
we present two of the more successful scaling strategies, DS9 and DS10, starting with DS9:

DS6 = [1, 2 + δ[1 :]normalized], (3)

DS7 = DS62, (4)

DS9 = 1 +DS7−
∑

(δ ◦DS7)∑
δ

. (5)

In this equation, DS9 is constructed from two intermediate scaling strategies that proved
ineffective by themselves, DS6 and DS7. For DS6, the scaling value for the first bin is set to 1.
From the second bin onward, we calculate each value by adding 2 to the normalized distribution
values starting from the second element. DS7 is then obtained by squaring DS6. Finally, to
create DS9, we subtract the weighted average of DS7 (normalized by the distribution) and add 1,
ensuring that the learning rate is not implicitly lowered or raised.

Next, we define DS10:

α =
1√
δ
, (6)

β =

∑
(δ ◦ α)∑

δ
, (7)

DS10 =
α

β
, (8)

which takes a more conventional approach to addressing class imbalances by dividing by the square
root of the distribution, δ. We then further normalize by dividing by the weighted average, again
ensuring that the learning rate is not implicitly lowered or raised.

Evaluation metric Typical optical flow evaluation metrics fail to properly reflect accuracy on
high-detail areas. Specifically, the average end-point error (AEPE) has the drawback of averaging
out errors in small, high-detail regions.

To address this, we propose a novel evaluation metric called the Bin Weighted-Average Error
Ratio (BWAER). As the name suggests, this metric is calculated by taking a weighted average
of the bin AEPEs, where each bin is weighted by its index. First, we calculate the Bin-Weighted
Average Error (BWAE) as follows:

BWAE =

∑
i AEPEi · i∑

i i
. (9)

In this formula, i represents the bin index, starting at 1. Bins with zero occupancy are ignored
in the calculation. We then obtain the BWAER by normalizing with the overall AEPE:

23

BWAER =
BWAE

AEPE
. (10)

By assigning higher weights to bins with higher detail levels, this metric emphasizes high-detail
areas. The BWAER approaches 1.0 when the model performs uniformly across all detail levels,
and it increases when accuracy varies significantly across detail levels. However, because BWAER
is normalized by AEPE, it is essential to consider both metrics together to avoid misinterpreting
the results.

A.2.3 Experiments

Class imbalance Figure 4 demonstrates the class imbalance in current optical flow models.
For the first thirty bins, we plotted the AEPE per bin for various models, along with each bin’s
contribution to the overall AEPE. As shown, there is a negative correlation between the average
occupancy of a bin in the training data and its AEPE during evaluation. In other words, bins with
higher average occupancy tend to have lower AEPE, while bins with lower occupancy generally
exhibit higher AEPE.

Furthermore, we see each bin’s contribution to the overall AEPE as a percentage. Across all
dataset/model combinations, the bins with the highest AEPE contributions typically fall between
bins 8 and 14, which account for only a small percentage of the data.

Detail scaling Figure 5 presents the results of applying the detail scaling strategies DS9 from
Equation 3 and DS10 from Equation 6. On the FlyingChairs dataset, both scaling strategies
improve the AEPE, reducing the error to 0.767 for DS9 and 0.791 for DS10, compared to the
baseline of 0.823.

Figure 6 further illustrates individual cases where the DS10 scaling strategy (referred to as
“Ours”) enhanced the final flow predictions. The green-boxed areas highlight improved detail
levels relative to the GMA checkpoint from [16] (referred to as “Theirs”).

However, these improvements did not generalize to other datasets, such as FlyingThings3D,
indicating a limited transferability of the scaling strategies.

Additionally, we present the BWAER values for these configurations, where higher BWAER
values indicate a greater imbalance in accuracy across different bin detail levels. Both scaling
strategies show improvement, with DS10 achieving the most significant reduction, decreasing
from 10.415 to 9.484.

A.2.4 Discussion

We demonstrated that optical flow models face a class imbalance issue based on the detail levels
in the flow fields of training data, where high-detail regions with complex motion are underrepre-
sented in standard datasets. This imbalance affects model accuracy, as these regions contribute
disproportionately to the AEPE relative to their frequency in the data.

To address this, we applied detail scaling strategies (DS9 and DS10) based on training data
distributions, achieving improved accuracy on the FlyingChairs dataset. By weighting higher-
detail patches more heavily, these strategies reduced AEPE values, indicating that the approach
can improve model accuracy on simpler datasets. However, this improvement did not generalize to
more complex datasets such as FlyingThings3D and Sintel, where additional motion complexities
likely diminish the effectiveness of detail scaling alone.

We also introduced a custom metric, the Bin Weighted-Average Error Ratio (BWAER), to as-
sess accuracy on high-detail areas. Although BWAER provided a more nuanced view by weighting
errors according to detail, it proved challenging to interpret and remained dependent on AEPE,
limiting its practical utility.

In conclusion, while detail scaling shows promise on simpler datasets, it requires further re-
finement to be effective on more complex data. BWAER offers some insight into accuracy across
detail levels, but highlights the need for more intuitive, robust evaluation metrics in optical flow.
As a result, we decided to pursue a different topic within the field of optical flow that showed
more promise, which can be found in Section 2.

24

(a) The bin AEPE and bin contribution to the AEPE as a percentage for several
models on the FlyingChairs dataset.

(b) The bin AEPE and bin contribution to the AEPE as a percentage for several
models on the FlyingThings3D dataset.

(c) The bin AEPE and bin contribution to the AEPE as a percentage for several
models on the Sintel dataset.

Figure 4: The bin AEPE and bin contribution to the AEPE as a percentage for several models
on the several datasets. Additionally, the average bin occupancy is shown for each dataset.

25

Figure 5: The bin AEPE and bin contribution to the AEPE as a percentage for several scaling
strategies on the FlyingChairs dataset. Additionally, the average bin occupancy is shown for each
dataset. We see improvements compared to the baseline for both DS9 and DS10 in terms of both
overall AEPE and BWAER.

26

Ground truth flow Theirs Ours

Figure 6: Two samples illustrating the effect of detail scaling on high-detail flow areas.
From left to right: the ground truth flow, the flow predicted by the FlyingChairs checkpoint
from GMA [16] (“Theirs”), and the flow predicted by our checkpoint using the DS10 detail
scaling strategy (“Ours”) from Equation 6. While DS10 demonstrates enhanced accuracy
on these high-detail areas, these improvements did not generalize to other datasets, such as
FlyingThings3D.

27

