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Summary

During the last decades, time-series interferometric synthetic aperture radar (InSAR) has
emerged as a powerful technique to measure various surface deformation phenomena of
the earth. Early generations of time-series InSAR methodologies, i.e. Persistent Scatterer
Interferometry (PSI), focused on point targets, which are mainly man-made features
with a high density in urban areas and associated infrastructure. Later, methodologies
were introduced aiming to extract information from other targets known as distributed
scatterers (DS), which are associated with ground resolution cells occurring mainly in
rural areas. Unfortunately, the underlying properties and assumptions behind various
DS-phase estimation methodologies are sometimes subjective and incomparable, which
hampers the objective application of the different methods. Moreover, for some terrain
types, such as agricultural terrain or pastures, the feasibility of DS-methodologies is not
straightforward.

In view of these challenges, the two main objectives of this study are (i) to formulate and
implement the estimation methodology of DS-pixels in a standard geodetic framework
and to compare it with other existing methods, and (ii) to assess the feasibility of
exploiting distributed scatterers for deformation monitoring over agricultural and pasture
areas.

We review state-of-the-art time-series InSAR methodologies with special attention to
processing aspects related to distributed scatterers. From an estimation theory perspec-
tive, the key processing step to extract information from DS-pixels is the equivalent
single-master (ESM) phase estimation. To situate this estimation in a geodetic frame-
work, a mathematical model is proposed in the form of a Gauss-Markov model. To
evaluate the stochastic part of the model, a numerical Monte-Carlo methodology as well
as an analytical approach are introduced. Regarding the functional part, the ESM-phase
estimation is formulated in the form of a hybrid linear system of observation-equations
with both real-value and integer unknowns. The solution of the proposed model is
given by the integer least-squares (ILS) estimator. The properties of such an estima-
tor for ESM-phase estimation are described and demonstrated using synthetic and real
datasets. Furthermore, to provide a theoretical comparison between the proposed ILS
estimator and other existing ESM-phase estimators, a unified mathematical model in
the form of a system of observation equations is proposed. Evaluating all the existing
DS-methods shows that, although they all provide specific solutions, their fundamental
difference is in how they assign weights to the interferometric observations.



viii Summary

The feasibility of exploiting PS, DS, and their combination over agricultural and rural
landscapes is assessed via a case study on a subsidence area near city of Veendam,
the Netherlands, based on the coherence behavior of different types of land use. It is
shown that, under the condition of using the entire time-series, agricultural and pasture
areas show only limited improvement in point density compared to the results of PS-
only processing. This is due to the seasonal behavior of the temporal coherence, which
causes an almost complete drop in coherence during summer periods, mainly as a result
of tillage, crop growth and harvesting.

To model this periodicity, a new analytical model is introduced. In this model, the hypo-
thetical movements of elementary scatterers within DS resolution cells are modeled as a
stochastic process with non-stationary but periodic increments. The parameters of this
model are estimated for pasture areas, and are subsequently used to assess the feasibility
of exploiting DS-pixels in agricultural areas by different satellite missions. The results
confirm that, assuming a three-year stack of data, the information content in DS-pixels
from current C-band and X-band missions is not enough for the successful utilization of
their entire time-series. However by using intermittent series, e.g., by processing individ-
ual coherent periods, the results indicate that DS-pixels can be exploited: based on the
proposed decorrelation model, the short repeat times of Sentinel-1 (6 or 12 days) results
in a sufficient number of coherent interferograms over each winter period, enabling DS
exploitation even over agricultural and pasture areas.



Samenvatting (Summary in Dutch)

SAR interferometrie, in het bijzonder toegepast op reeksen van satellietbeelden, is
gedurende de laatste decennia opgekomen als krachtige techniek om beweging van (ob-
jecten op) het aardoppervlak in kaart te brengen. De eerste methoden, zoals persistent
scatterer interferometrie (PSI) gebruiken daarbij voornamelijk reflectoren die als punt-
bron kunnen worden beschouwd. Deze zijn vaak afkomstig van door de mens gemaakte
objecten, en komen derhalve vaak voor in stedelijk gebied of op infrastructuur. In een
later stadium werden methoden ontwikkeld die gebruik maken van gedistribueerde re-
flecties (distributed scatterers, of DS). Deze komen vooral voor in natuurlijke gebieden,
waarbij binnen een resolutie-element een veelheid van reflecties voorkomt.

Er zijn verschillende verwerkingswijzen voor het verkrijgen van informatie uit distributed
scatterers. De onderliggende aannames en eigenschappen van deze verwerkingswijzen
zijn vaak subjectief, en moeilijk met elkaar te vergelijken. Hierdoor wordt een objectieve
en herhaalbare toepassing van de methoden bemoeilijkt. Tevens is voor specifieke types
landgebruik, zoals weilanden of akkers, de toepasbaarheid van de DS-methodes niet
vanzelfsprekend.

Deze uitdagingen leiden tot de twee hoofddoelstellingen van dit onderzoek. De eerste
doelstelling is om een uniforme geodetische schattingsmethodiek voor distributed scat-
terers te formuleren en te implementeren, en deze te vergelijken met de bestaande metho-
den. De tweede doelstelling is de haalbaarheid te bepalen van het gebruik van distributed
scatterers voor deformatiemonitoring over weilanden en akkers.

In dit onderzoek worden de huidige InSAR-tijdreeks methodes nader onderzocht, in het
bijzonder de dataverwerkingsaspecten voor distributed scatterers. In de context van
schattingstheorie is de belangrijkste verwerkingsstap de zogenaamde equivalent single-
master (ESM) schatting en de daaruitvolgende schatting van de interferometrische fase.
Hiervoor wordt een Gauss-Markov wiskundig model geïntroduceerd. Voor het stochastis-
che deel van dit model kan zowel een numerieke Monte Carlo methode als ook een an-
alytische methode worden gebruikt. Voor het functionele deel van het model wordt de
ESM-faseschatting geformuleerd in de vorm van een gemengd lineair systeem van waarne-
mingsvergelijkingen met zowel geheeltallige als reële onbekenden. De oplossing voor dit
model wordt gegeven door een geheeltallige kleinste-kwadratenschatter. Een beschrijv-
ing wordt gegeven van de eigenschappen van dit type schatter voor ESM faseschatting,
middels kunstmatige en werkelijke metingen. Tevens wordt een uniform wiskundig model
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gepresenteerd, in de vorm van een stelsel van waarnemingsvergelijkingen, om een the-
oretische vergelijking tussen de voorgestelde geheeltallige kleinste-kwadratenschatter en
conventionele ESM faseschatters mogelijk te maken. Geconcludeerd wordt dat het fun-
damentele verschil tussen alle DS-methoden ligt in de wijze waarop de interferometrische
waarnemingen worden gewogen.

De tweede doelstelling—de bepaling van de haalbaarheid van het gebruik van PS, DS
en hun combinatie over weilanden en akkers—wordt onderzocht via een case study op
gegevens van een bodemdalingsgebied bij Veendam. Dit is gebaseerd op het coheren-
tiegedrag van verschillende types landgebruik. Onder de beperking dat de volledige reeks
satellietbeelden moet worden gebruikt blijkt dat er bij weilanden en akkers slechts een
beperkte toename in puntdichtheid kan worden bereikt, in vergelijking met de standaard
PS dataverwerking. Dit wordt veroorzaakt door het nagenoeg complete verlies van cohe-
rentie als gevolg van seizoensvariatie, in het bijzonder als gevolg van landbouwactiviteiten
zoals ploegen, oogsten en gewasgroei.

Om deze seizoensperiodiciteit te kunnen ondervangen wordt een nieuw analytisch model
geïntroduceerd. Hierin worden de (hypothetische) bewegingen van elementaire reflec-
toren binnen een DS resolutie-element gemodelleerd als een stochastisch proces met
niet-stationaire, periodieke incrementen. De parameters van dit model worden geschat
voor weilanden, en worden vervolgens gebruikt om de haalbaarheid van het gebruik
van distributed scatterers over landbouwgebieden te bepalen voor verschillende satelli-
etmissies. Onder de aanname van een volledige reeks van drie jaar aan data tonen de
resultaten aan dat dit bij de huidige C- en X-band missies niet haalbaar is. Echter, door
gebruik te maken van onderbroken deelreeksen, bijvoorbeeld van beperkte coherente pe-
riodes in landgebruik, tonen de resultaten aan dat distributed scatterers kunnen worden
gebruikt in de analyse. Gebaseerd op het geïntroduceerde decorrelatiemodel resulteert
de korte (6-daagse) herhalingsperiode van Sentinel-1 in een voldoende aantal coherente
interferogrammen gedurende de winterperiodes, waardoor distributed scatterers mogelijk
ook kunnen worden gebruikt om deformaties te schatten over weilanden en akkers.
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Introduction 1
1.1 Motivation

Persistent Scatterer Interferometry (PSI) is a useful technique for measuring deformation
of the earth’s surface, but it does not extract the full potential of information from a
given set of data. In this study, information extraction is improved by adding distributed
scatterers (DS) in the estimation process in a more complete geodetic framework.

1.2 Background

Geodesy and surface deformation

Geodesy is defined classically as the science of measuring and mapping the earth’s surface
(Helmert, 1980). The objective of geodesy is described more precisely by Torge and
Müller (2012):

"... to determine the figure of the earth and its external gravity field, as well as its
orientation in space, as a function of time, from measurements on, and exterior to, the

earth’s surface."

The term "the figure of the earth" here means the physical surface of the solid earth
(i.e., continental and ocean floor topography), and the border between fluid masses and
the atmosphere (i.e. water surfaces and sea level). One of the main aspects of geodesy,
mainly focused upon during the last couple of decades, is studying the temporal variations
of the solid part of this physical surface.

The availability of modern, and mainly space-based, geodetic measurements was a stim-
ulating factor in studying where, when, how much, and why the earth’s surface deforms.
By providing continuous, fine resolution, and precise measurements of surface deforma-
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tion, from global via continental to regional and local scales, geodesy contributes to
different disciplines such as geophysics, geodynamics, glaciology, volcanology, tectonics,
environmental studies, hydrology, and civil engineering1.

At a global scale, continuous monitoring of the relative motion of tectonic plates has im-
proved our understanding of the earth’s dynamics and the evolution of earthquakes and
other tectonic phenomena (e.g., Kreemer et al., 2003; Wright et al., 2012; Calais et al.,
2008). At a continental scale, it became possible to study and monitor crustal defor-
mation induced by volcanoes and earthquakes (e.g., Rogers and Dragert, 2003; Poland
et al., 2006; Sigmundsson et al., 2015; Elliott et al., 2016). Monitoring changes in ice
cap elevation and movements of ice bodies has increased our knowledge about glacier
flow dynamics, post-glacial rebound, global mass transport processes, and the rate of
sea level rise (e.g. Goldstein et al., 1993; Velicogna and Wahr, 2006; Nerem et al., 2006;
Sella et al., 2007; Lidberg et al., 2010; Khan et al., 2010). At more local scales, there
has been considerable progress in the geodetic monitoring of anthropogenic deformation
induced by water and mineral extraction/injection, in studying surface deformation pro-
cesses such as landslides, and even in detecting very localized deformation on buildings
and infrastructure such as dikes and bridges (e.g. Dixon et al., 2006; Amelung et al.,
1999; Roering et al., 2009; Famiglietti et al., 2011). Furthermore, new challenges and
concerns about public safety, natural hazards, global warming, environmental issues, and
optimal use of energy and water resources have created a more application-driven de-
mand for geodetic observations as an essential source of information to support policy-
and decision-making (e.g. Dixon and Dokka, 2008; England and Jackson, 2011).

In all the aforementioned developments, there is a significant, and often a leading, con-
tribution from space-based geodetic techniques such as very long baseline interferometry
(VLBI), global navigation satellite systems (GNSS), satellite radar and laser altimetry,
and interferometric synthetic aperture radar (InSAR). Along with the opportunities and
benefits, these new technologies also bring new methodological challenges. Correct
mathematical treatment of—and optimal information extraction from—these new types
of geodetic observations is not always straightforward and sometimes it is much more
complicated than classical geodetic routines. Geometrically and physically sophisticated
measurement techniques can create a complicated relationship between raw observations
and the parameters of interest, and consequently result in complex and highly nonlinear
functional models. The remoteness of space-based observations introduces interaction of
electromagnetic waves with different media and generates observations that sometimes
have multivariate, non-Gaussian, non-stationary, and spatio-temporally correlated statis-
tics which require special care in the stochastic modeling and the uncertainty description
of the observations. Numerical and algorithmic problems related to the very large data
volumes is another challenging aspect.

This study is an attempt to address some of these challenges with respect to one of the
most novel geodetic techniques: InSAR.

1As a review of new developments and advances in geodesy and geodetic deformation monitoring,
see e.g. Wdowinski and Eriksson (2009); Plag and Pearlman (2009).
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InSAR: a geodetic tool for deformation monitoring

Since the late 1980’s (Gabriel et al., 1989), InSAR has been gradually identified as a
promising and effective technique to measure the earth’s surface deformation due to dif-
ferent phenomena such as earthquakes, volcanism, fluid-extraction-induced subsidence,
ice and glacier motion, and landslides (see e.g. Massonnet et al., 1993; Zebker et al.,
1994a; Massonnet et al., 1995; Rosen et al., 1996; Sigmundsson et al., 1997; Massonnet
et al., 1997; Amelung et al., 1999; Goldstein et al., 1993; Hartl et al., 1994; Rott et al.,
1998; Fruneau et al., 1996). The beneficial properties such as high spatial resolution,
relatively high temporal sampling, wide scale coverage, availability of archived data, and
relatively low cost have stimulated the use of InSAR as a geodetic tool for deformation
monitoring in various applications.

The concept of InSAR is based on the principle of distance estimation using the phase
of electromagnetic waves. In a SAR image, the observed phase at every pixel is sensitive
to the distance of the terrain to the radar sensor. Consequently, the phase difference
between two images (i.e. the interferometric phase) is related to the geometrical and
physical changes in this terrain-sensor distance. The interferometric phase then has
different contributions related to topography, atmospheric delay, and deformation in the
direction of the satellite line of sight (LOS). Under the condition that the deformation
component is dominant or other contributions can be estimated independently, it is
feasible to estimate the relative LOS deformation for each pixel. However, if the aforesaid
conditions do not hold, the limitations of the technique are revealed. Under unfavorable
conditions, i.e. small displacements under strong atmospheric conditions or over a long
time period, the deformation signal is obscured by atmospheric interference, temporal
decorrelation (i.e. a decrease of the signal-to-noise ratio due to changes in the scattering
characteristics of the earth’s surface and incoherent movement of individual scattering
elements) and geometrical decorrelation (i.e. a decrease of the signal-to-noise ratio due
to different viewing angles). In order to overcome these limiting factors and to improve
the capability in extracting a useful deformation signal from noisy InSAR data, different
kinds of time-series InSAR approaches have been developed.

Time-series InSAR data processing: history and recent advances

Some initial efforts to overcome the limitations of InSAR were targeted towards atmo-
spheric disturbances. Based on the fact that atmospheric effects are mostly uncorrelated
temporally, these methods filter out the atmospheric effects by temporal averaging over
a stack of interferograms. The family of these methods is called stacking methods, and
examples can be found in Sandwell and Price (1998); Wright et al. (2001); Lyons and
Sandwell (2002).

Some other developments focused on target decorrelation. In the 1990s, it was rec-
ognized that some targets, especially man-made structures, have stable backscattering
characteristics over long time intervals (van der Kooij et al., 1995; Usai, 1997; Usai
and Hanssen, 1997; Usai and Klees, 1999). This led to the development of an innova-
tive methodology called Permanent Scatterer InSAR, or PSInSAR (Ferretti et al., 2000,
2001) which uses these targets to estimate the deformation over long time periods and
overcome the main limitations of conventional InSAR. The principle of PSInSAR can
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be described as follows. In SAR images, the phase measurement of each pixel is the
sum of contributions from all scatterer elements within the associated resolution cell.
"PS-pixels" are those ground resolution cells which contain a persistently dominant scat-
terer, effectively referred to as the PS2, so their decorrelation phase variation is small.
Consequently, most of the PS are man-made features, which have a high density in
urban areas, and on infrastructure such as bridges, buildings, dams and dikes. The
main characteristics of the PSInSAR processing method are that only "PS-pixels" are
considered, and that it utilizes a single-master (SM) stack of differential interferograms.
The latter means that given an N number of radar images, it uses N−1 interferograms
(phase differences) with respect to one acquisition called the master image. Since the
development of the first PS technique by Ferretti et al. (2000), other methods have
been introduced using comparable concepts (Van der Kooij, 2003; Adam et al., 2003;
Werner et al., 2003; Hooper et al., 2004; Kampes, 2005; Costantini et al., 2009; van
Leijen, 2014). Nowadays, the term Persistent Scatterer Interferometry (PSI) is used
to address all these methodologies which use a single-master time-series of differential
interferograms and only consider the PS-pixels for measuring deformation of the earth’s
surface.

Parallel to the developments in PSI methodologies, some other techniques emerged with
the objective of extracting information also from pixels that are affected by decorrelation
phenomena, but which may still contain some coherent information. These pixels are
called distributed scatterers (DS) and they are associated with ground resolution cells
containing no dominant scatterer, occurring mainly in rural areas. As DS pixels are
affected by temporal and geometrical deccorelation, they may contain coherent infor-
mation only in specific interferometric pairs, mainly separated by a short time interval
and having a very similar viewing geometry. Therefore, unlike for PS, the information
content in a single-master interferogram stack is neither optimal nor complete for DS.
A leading approach to extract information also from DS was developed using the con-
cept of small baseline subsets (SBAS) (Berardino et al., 2002; Schmidt and Bürgmann,
2003). Baseline here means either the spatial distance between satellite positions, or the
temporal separation between acquisition times. In SBAS algorithms, only small-baseline
interferograms are exploited with extra spectral or spatial filtering in order to further
reduce the decorrelation noise.

As these two different groups of methodologies, i.e. PSI and SBAS, have been developed
for two different types of targets, they are complementary to each other. This is the
idea behind the third group of methodologies, called hybrid methods, which intends to
extract information from both PS and DS targets. Two examples of these methods are
the extended SBAS method that integrates multilooked and single-look interferograms
(Lanari et al., 2004), and the multi-temporal InSAR method incorporating both persistent
scatterers and the small baseline approach (Hooper, 2008). The latest development in
time-series InSAR methodologies is the advent of more advanced hybrid approaches that
have been designed to extract all the information in SAR stacks by exploiting not only
SBAS interferograms, but all the possible interferograms (Monti-Guarnieri and Tebaldini,

2Note that the concept of a persistent scatterer allows us to leave the common perception of an
image with pixels, as the observation space is now filled with randomly dispersed persistent scatterers,
irrespective of the sampling via resolution cells or on image. In this study, the term "PS" is associated
with persistent scatterers, and the term "PS-pixel" addresses a resolution cell containing a PS.
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2008; Ferretti et al., 2011b).

InSAR data processing: a geodetic perspective

Alongside InSAR methodological advances—which have a multi-disciplinary nature but
have been predominantly developed in the signal processing domain—there is a persis-
tent attempt by Delft University of Technology (TUDelft) to formulate all these develop-
ments into a standard geodetic framework3. A key property of the geodetic framework
is the clear formulation of a twofold mathematical model composed of a functional and
a stochastic model, with a strong consideration of quality aspects such as full error
propagation, and the precision and reliability of the estimated parameters (Rummel and
Teunissen, 1988; Rummel, 2014). In the last 15 years, this geodetic methodology has
been applied to various aspects of radar interferometry. The functional and stochas-
tic model for conventional InSAR and stacking methods together with error description
and interpretation was given by Hanssen (2001). With respect to time-series InSAR,
the geodetic methodology has been proposed for a stacking approach by Usai (2003),
and later for persistent scatterer interferometry (Kampes, 2005; van Leijen, 2014). Re-
garding InSAR error sources, detailed geodetic analysis and estimation methodology of
atmospheric and orbital errors was given by Liu (2012) and Bähr (2013) respectively.
Some other important InSAR aspects have also been investigated from this geodetic per-
spective: including temporal phase unwrapping (Kampes and Hanssen, 2004; Teunissen,
2006), precision estimation of PS phase measurements (Marinkovic et al., 2008; Maha-
patra et al., 2014), recursive PSI processing (Marinkovic and Hanssen, 2007), geodetic
network design for artificial PS (Mahapatra et al., 2015; Mahapatra, 2015), PS targets
classification using geodetic testing theory (Chang and Hanssen, 2016; Chang, 2015),
and precise positioning of radar scatterers (Dheenathayalan et al., 2016). Last but not
least, applications of InSAR for subsidence monitoring have also been considered through
this geodetic framework by Ketelaar (2008), Caro-Cuenca (2012), and Fuhrmann et al.
(2015).

InSAR for subsidence monitoring in the Netherlands

Land subsidence is a deformation mechanism which can sometimes cause serious socio-
economic problems. Damage to infrastructure and buildings can be mentioned as ex-
amples. In coastal and low-lying areas such as the Netherlands, land subsidence is a
highly challenging phenomenon due to its impact on water management and ecological
systems, and most importantly on flood risk (Dixon and Dokka, 2008; Tosi et al., 2013;
Erkens et al., 2016). During the last decade, InSAR, particularly PSI, has been applied to
study different subsiding areas in the Netherlands, e.g., the subsidence induced by hydro-
carbon production in Groningen (Ketelaar, 2008), and fault-related surface deformation
in the Roer Valley Graben (Caro-Cuenca, 2012). Despite the challenging factors such
as slow deformation rates (smaller than 1 cm/year) and rural/agricultural landscapes,
the results of these studies have proven the feasibility of the technique for subsidence
monitoring in the Netherlands. The majority of buildings and structures appears to serve

3Special attention has been given to the so-called Delft school framework comprising geodetic es-
timation theory (Tienstra, 1956), testing theory (Baarda, 1968), quality control (Teunissen, 1990),
variance component estimation (Teunissen and Amiri-Simkooei, 2008; Amiri-Simkooei, 2010), geodetic
integer inference (Teunissen, 1995, 1999), and best prediction (Teunissen, 2008, 2007).
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as reliable measurement points (i.e. PS), and the accuracy of PSI has been quantified
by combining multiple satellite tracks. A correlation of 94% with ground optical leveling
measurements was achieved for the Groningen subsidence area (1993-2003). Nowadays
InSAR is operationally used for various subsidence monitoring projects in the Nether-
lands.

1.3 Problem formulation and research objectives

The main motivation to initiate this study arose from the following problems.

The first problem regards the phase retrieval from distributed scatterers. Unlike PS-
pixels, the information content in a single-master (SM) interferogram stack is neither
optimal nor complete for DS-pixels, as these may contain coherent information only in
specific interferometric pairs. Therefore, in all the methodologies that exploit DS-pixels,
the key question is how to optimally combine a multitude of interferometric combina-
tions to estimate the parameters of interest. Also, from the perspective of estimation
theory, the main difference between the PSI methods and DS-methods is the applica-
tion of an extra processing step of equivalent single-master (ESM) phase estimation
(which is called in other literature phase linking (Monti-Guarnieri and Tebaldini, 2008),
phase triangulation (Ferretti et al., 2011b), or phase inversion (Berardino et al., 2002)).
At the beginning of this study, there had been relatively few investigations on the de-
tailed mathematical aspects of this estimation problem. This includes challenges for
clear algorithm implementation, applicability requirement specification, and comparative
performance-assessment of different existing methods. Therefore, there is a need for
a unified formulation of this particular estimation problem. Besides, it is benefi-
cial to formulate this problem in a standard geodetic framework, allowing one to
directly apply the existing body of knowledge of geodetic theory, e.g. quality description
and testing theory, on the ESM-phase estimation.

The second problem is related to the application of PSI for subsidence monitoring over
rural areas. Although PSI has been successfully applied for subsidence monitoring in
the Netherlands, there are still areas, mainly in rural regions, with a limited number of
PS targets. Especially smaller subsidence fields in rural areas may be sparsely covered
with PS measurements compared to the extent of the subsiding area. Moreover, the
subsidence observed via non-PS targets is often related to also other driving mecha-
nisms, such as shallow soil compaction. Therefore there is a potential value in methods
exploiting DS. However the feasibility of DS methods for subsidence monitoring
over rural areas in the Netherlands with a pasture or agricultural landscape is
still a pending question.

In view of the problems above, two main objectives of this study are (i) to formulate and
implement the equivalent SM-phase estimation methodology for DS-pixels in a standard
geodetic framework, and (ii) to assess the feasibility of exploiting distributed scatterers
for deformation monitoring over a typical rural landscape in the Netherlands.

Regarding these objectives, four specific research questions are addressed in this study.
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1. How to formulate the functional and the stochastic part of the mathematical model
for ESM-phase estimation in the form of a Gauss-Markov model of observation-
equations?

2. How to estimate ESM-phases using the weighted least squares estimator and how
does it compare to other existing methods?

3. How much can the DS-exploitation methods improve the spatial density of time-
series InSAR measurements over a typical rural landscape in the Netherlands?

4. How to model the coherence behavior and its temporal variations over agricul-
tural and pasture areas in the Netherlands? With such a model, what is the
performance of different existing satellite missions regarding the exploitation of
distributed scatterers?

1.3.1 Methodology

The first two questions address how to situate the ESM-phase estimation in a standard
geodetic framework. To do so, a mathematical model will be designed in the form of
a Gauss-Markov model (Gauss, 1809; Markoff, 1912), as commonly used in geodesy.
This model comprises the functional and the stochastic model. The functional model
is formulated in a linear (or linearized) system of observation-equations. For ESM-
phase estimation, the main challenge is how to deal with the non-linearity induced
by the wrapping operator in the InSAR phase observations. The stochastic model is
characterized by the second statistical moment of observations which, in the case of
ESM-phase estimation, will be described by the full covariance matrix of multi-looked
interferometric phases associated with a DS-pixel. Methodology will be developed to
evaluate the full covariance matrix of observations. The solution of the proposed Gauss-
Markov model will be given by the least-squares (LS) estimator. The properties of such
an estimator for ESM-phase estimation will be described, and a comparison with other
existing methodologies will be given.

The third and the forth research question regard the application of exploiting DS-pixels in
typical rural landscapes in the Netherlands. The main complication is how to parametrize
the coherence behavior and its temporal variation over rural landscapes. Using this
parametrization, it will be assessed whether the DS exploitation method is capable to
extract the desired information in these areas. Both real-case experiments and theoretical
feasibility studies will be considered.

Research limitations
The estimation of phase timeseries from DS-pixels comprises two main steps: (i) adaptive
multilooking and coherence estimation, (ii) ESM-phase estimation. The latter is the
main focus of this study. We assume that the phase inconsistencies in interferogram
stacks are purely induced by random noise. So the situations where systematic phase
inconsistencies may occur (e.g., due to soil moisture variation or volume scattering, see
De Zan et al., 2015) are not investigated. Moreover, in the feasibility study over rural
areas in the Netherlands, we will only study the DS exploitation in the entire timeseries,
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and therefore, the option of using subset of interferograms to exploit temporally coherent
targets is not considered.

1.4 Outline

We first give a review of the state-of-the-art of time-series InSAR methodologies in
chapter 2. Special attention is given to processing aspects related to DS targets. Then
in chapter 3, we describe a stochastic model for ESM-phase estimation. Multivariate
statistics of both complex SAR and InSAR phase observations are discussed in detail.
Different issues regarding the estimation of these statistics from real data are also dis-
cussed. Both a numerical Monte-Carlo methodology and an analytical approach are
presented to evaluate the full covariance matrix for InSAR phase stacks.

In chapter 4, we present a generic functional model for ESM-phase estimation. A
theoretical comparison of different existing methods, which are all formulated as an
optimization in the complex domain, is given. In order to formulate the ESM-phase
estimation in a standard geodetic framework, in chapter 5, we propose a new method
for this estimation based on the integer least squares (ILS) principle. We model the
ESM-phase estimation problem in the form of a linear system of observation-equations
by introducing additional integer ambiguities, and use a bootstrap estimator for the joint
estimation of ESM-phases and the integer unknowns. In addition, a full error propagation
scheme is introduced in order to evaluate the precision of final ESM-phase estimates.
Results from both synthetic experiments and a case study over the Torfajökull volcano
in Iceland demonstrate the properties of the proposed method (this chapter has been
published by Samiei-Esfahany et al., 2016).

To assess the feasibility of exploitation of DS-pixels over typical landscapes in the Nether-
lands, in chapter 6, we present the results obtained by a case study on a subsidence
area near Veendam, the Netherlands. A feasibility analysis of exploiting DS in this area
is given based on the coherence behavior of different kinds of landscape. The results
of applying combined PS and DS processing are given, including the comparison with
PS-only processing. A new model is introduced for temporal decorrelation of agricultural
and pasture areas. Using the estimated decorrelation model parameters, the feasibility
of the exploitation of DS-pixels is assessed for different satellite missions.

Conclusions, contributions of this study, and the recommendations for further research
are reported in chapter 7.

A schematic outline of this study is depicted in fig. 1.1.
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Time-series InSAR and
Distributed Scatterers: A Review 2
This chapter reviews the basic concepts of interferometric synthetic aperture radar
or InSAR (sec. 2.1), followed by a review of different time-series InSAR method-
ologies (sec. 2.2). Detailed explanation of the main processing blocks of differ-
ent time-series InSAR algorithms is given in sec. 2.3. Specific aspects related to
distributed scatterers (DS), i.e. adaptive multilooking (sec. 2.4) and equivalent
single-master phase estimation (sec. 2.5) are emphasized and described in detail.

2.1 InSAR principle

The principle of InSAR is based on the interference of two synthetic aperture radar (SAR)
images. First we briefly review the concept of SAR, followed by the InSAR measurement
principle and processing steps.

2.1.1 SAR measurements

To acquire a radar image, a side-looking moving radar sensor (mounted on a ground-
based, airborne, or spaceborne platform) transmits a radar signal/pulse to the earth
and measures the complex return of the back-scattered pulses. The received signals are
digitized and stored together with annotated transmission/reception times, and create
raw data or a real aperture radar (RAR) image, with a very coarse resolution in the flight
direction due to physical length restrictions of the radar antenna. Exploiting the fact
that every target on earth is illuminated by many pulses during the sensor trajectory,
the raw data are subsequently combined (or focused) by signal processing techniques
in order to artificially build a long antenna and create a SAR image with much higher
resolution. For details on SAR and focusing principles, see Bamler and Schättler, 1993;
Cumming and Wong, 2005; Massonnet and Souyris, 2008

In a SAR image, every pixel is associated with a rectangular resolution cell on the ground.
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The data are sampled in an azimuth (i.e. flight direction) and slant-range coordinate
system, so every pixel has a unique range and azimuth coordinate. Focused SAR images
are stored in a standard format known as single-look complex (SLC) data. In this format,
every pixel has a complex phasor P as

P = Re(P ) + j Im(P ) = A exp(jψ), (2.1)

where j is the imaginary unit, A represents the pixel amplitude which is the square root
of the intensity of the radar reflection from the ground resolution cell associated with
the pixel, and ψ is the fractional phase of the received radar signal. Re(P ) and Im(P )
are the real and imaginary parts of the complex value P , and they are related to A and
ψ as

Re(P ) = A cos(ψ), Im(P ) = A sin(ψ), (2.2)

with
A =

√
Re(P )2 + Im(P )2. (2.3)

The SLC phase ψ can be written as a summation of four components as

ψ = W
{
ψrange + ψatmo + ψscat + ψnoise}, (2.4)

where W{.} is the modulo-2π wrapping operator, ψrange the range-dependent phase
related to the distance between the radar sensor and the effective phase center of the
resolution cell on the ground, ψatmo the phase delay induced by the atmosphere, ψscat the
scattering phase that is related to the distribution of all scatterers within a resolution
cell, and ψnoise the additional system or thermal noise which is dependent on sensor
specifications.

2.1.2 Interferometric SAR (InSAR)

The idea of InSAR is based on interference of two SAR images, acquired from different
positions or at different times, exploiting mainly the phase difference between the two
acquisitions. As the phase information of SLC images is proportional to the sensor-target
distance (via ψrange), the phase difference between two images can be exploited to get
information about the position of the target, or about the displacement during the time
between two acquisitions.

The result of interfering two SAR images is another complex image called an interferogram.
As SAR images are acquired from slightly different positions, and therefore the sampling
grid of the two images is generally not identical, it is required, preceding interferogram
formation, to align or coregister one image to the geometry of the other. Then an inter-
ferogram is produced by complex conjugate multiplication of the two aligned SLC images.
If PM and PS are two coregistered SLC images, the interferogram IMS constructed from
these images can be written for every pixel as

IMS = PMP
∗
S = AMASexp

(
j
(
W{ψM − ψS}

))
, (2.5)
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θinc
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Figure 2.1: InSAR acquisition ge-
ometry for point PH at height H
viewed in the plane perpendicular to
the flight direction (i.e. the orbit tra-
jectories are into the paper) . Master
and slave antenna positions are de-
noted by ~M and ~S, respectively. The
difference in positions of the mas-
ter and slave antennas is denoted
by baseline B which is decomposed
into the two orthogonal components
B‖ in range direction and B⊥ in di-
rection normal to the line of sight
(LOS). Point ~P0 is the counterpart
of ~PH on the reference surface (at
height H0) with the same distance
as ~PH to the master antenna ~M .
After van Leijen (2014) and Hanssen
(2001).

where .∗ denotes the complex conjugate, and the M and S indices stand for master and
slave image, respectively. In relation to eq. (2.4), the interferometric phase φMS for a
single pixel can be written as the summation of four components:

φMS = W{ψM − ψS} = W
{
φrange + φatmo + φscat + φnoise

}
. (2.6)

In the following, these four interferometric phase components and their further decom-
position are discussed. The diagram in fig. 2.2 shows the detailed decomposition of
interferometric phase.

2.1.2.1 Range-dependent interferometric phase (φrange)

The range-dependent interferometric phase is related to the difference between the range
phases in the two SLC images. The range component of the master and slave SLC
phases, acquired by the radar antenna at position ~M and ~S from a resolution cell with
phase-center ~PH , can be written as (see fig. 2.1) (Hanssen, 2001)

ψrange
M = −4π

λ
d( ~M, ~PH) and ψrange

S = −4π
λ

d(~S, ~PH), (2.7)

where d(., .) is the Euclidean distance operator, and λ the radar wavelength. The range-
dependent interferometric phase is then the subtraction of the two SLC range phases,
i.e.

φrange = ψrange
M − ψrange

S = −4π
λ

(
d( ~M, ~PH)− d(~S, ~PH)

)
. (2.8)

The phase component φrange can be further decomposed into three contributions as
follows.
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1. Flat earth phase: This phase component is the effect of a (curved) reference
surface (e.g., an earth ellipsoid) on the interferometric phase, and exclusively de-
pends on the viewing geometry. Based on fig. 2.1, for point ~PH , the flat earth
phase is computed at the counterpart of ~PH on the reference surface, i.e. ~P0, as

φflat = −4π
λ

(
d( ~M, ~P0)− d(~S, ~P0)

)
. (2.9)

The viewing geometry can be characterized by the interferometric baseline (B)
which is decomposed into two orthogonal components which are the parallel base-
line (B‖) in range direction and the perpendicular baseline (B⊥) in the direction
normal to the line of sight (LOS). The phase component φflat can be approx-
imated, based on the so-called far-field approximation (Zebker and Goldstein,
1986; Hanssen, 2001), by

φflat = 4π
λ
B sin(θ − α)︸ ︷︷ ︸

B‖

, (2.10)

where α and θinc are the baseline orientation angle and look angle, respectively.

2. Topographic phase: This component is the effect of the surface height above the
reference surface. Similar to the flat earth component, it solely depends on the
viewing geometry. Based on the configuration of fig. 2.1, for point ~PH at height
H, the topographic phase φtopo is defined as

φtopo = −4π
λ

((
d( ~M, ~PH)− d(~S, ~PH)

)
−
(
d( ~M, ~P0)− d(~S, ~P0)

))
. (2.11)

Note that the point ~P0 is the counterpart of ~PH on the reference surface with the
same distance as ~PH to the master antenna ~M . So in eq. (2.11) the distances to
the master antenna cancel each other, and hence

φtopo = −4π
λ

(
d(~S, ~P0)− d(~S, ~PH)

)
. (2.12)

Using the far-field approximation, the topographic phase can be written as a func-
tion of height H, perpendicular baseline B⊥, and the range to the master antenna
R as (Zebker and Goldstein, 1986; Hanssen, 2001)

φtopo = −4π
λ

B⊥
R sin(θinc)

H. (2.13)

3. Deformation phase: This component is induced by surface deformation during
the time between the master and slave acquisitions. Note that in fig. 2.1, to avoid
complexity, it is assumed that point ~PH has zero displacement and it represents the
very same physical point in both acquisitions. However, in practice, a displacement
of point ~PH changes the target-sensor distance and results in deformation phase
φdefo as

φdefo = −4π
λ

DLOS, (2.14)
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where DLOS is the projection of the 3D displacement of ~PH onto the radar LOS
as1 (Hanssen, 2001)

DLOS = Du cos(θinc)+Dn

(
sin(θinc) sin(αh)

)
+De

(
−sin(θinc) cos(αh)

)
, (2.15)

where αh is the satellite heading angle, and De, Dn, and Du are the real defor-
mation components in East, North, and Up directions, respectively.

From the above components of φrange, the first two terms (i.e. φflat and φtopo) are purely
dependent on sensor-target geometry at the time of master and slave acquisitions, and
so they are together sometimes called geometric phase (φgeom). In summary, the range-
dependent interferometric phase can be written as combination of the two geometric
phase components (φflat and φtopo), and the deformation phase as

φrange = φflat + φtopo︸ ︷︷ ︸
φgeom

+φdefo. (2.16)

For deformation studies, it is a common practice to calculate (using eqs. 2.10 and 2.13)
and remove the φgeom contribution from interferograms using precise orbit information,
parameters of the reference surface, and an auxiliary digital elevation model (DEM).
When removing the geometric phase, two kinds of residual errors may remain in the
range-dependent phase, as follows.

• Errors and uncertainties in the precise orbit information induce errors in the com-
putation of baseline parameters. These errors are propagated to the estimated
flat-earth phase (and the estimated topographic phase) via eq. (2.10). These
residual phase components induced by orbital errors are called orbital phase, de-
noted by φorb. A detailed expression and explanation of the orbital phase can be
found in Bähr (2013).

• Imperfections in the external DEM used to calculate topographic phase via eq. (2.13)
cause part of the topographic signal to remain in the interferogram. This remain-
ing phase component is called residual topographic phase and is expressed as
φdtopo = 4π

λ
B⊥

R sin(θinc)∆H, where ∆H is the residual height, or DEM error.

If the geometric phase is removed from the interferogram, eq. (2.16) can be rewritten
as

φrange = φorb + φdtopo︸ ︷︷ ︸
φgeom

+φdefo. (2.17)

The decomposition of the range phase and its components are visualized in the first
column of the diagram of fig. 2.2.

1This equation is only valid for SAR sensors in the right-looking mode, which is the most common
mode in current space platforms.
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Figure 2.2: Decomposition of interferometric phase.

2.1.2.2 Interferometric atmospheric phase (φatmo)

The interferometric atmospheric phase is the result of the difference between the atmo-
spheric phase components in master and slave acquisitions. Based on eq. (2.4), φatmo

can be written as
φatmo = ψatmo

M − ψatmo
S . (2.18)

This differential phase delay can be due to contributions from different layers of the
atmosphere. The most significant contributions are induced by the troposphere (i.e.
lower atmospheric layers from sea level to ∼12 km altitude). Hanssen (2001) subdivided
the tropospheric effect into two contributions as follows.

1. Turbulent mixing (φturb): This signal is caused by different turbulent processes
in the troposphere such as solar heating of the earth’s surface, or difference in wind
direction/velocity. These processes are strongly nonlinear and behave on a wide
range of scales. Based on Kolmogorov turbulence theory, Hanssen (2001) describes
the behavior of interferometric turbulence signal as a spatially correlated stochastic
process with a power-law behavior in space. This means that for pixels with a short
distance between them, the interferometric phases induced by turbulent mixing
are more similar. Regarding the temporal behavior, the turbulent mixing effect is
generally only correlated in time on the scale of hours. As the time between two
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Figure 2.3: Superposition/summation of elementary scatterers within a resolution cell (gray box).
(A) An arbitrary distribution of elementary scatterers’ phasors within the resolution cell. (B) The
summation of all the phasors (scaled) in complex domain. The bigger arrow indicates the sum. After
Hanssen (2001).

acquisitions in common SAR acquisitions is of the order of a couple of days to
a month or more, the turbulent atmospheric signal can be considered effectively
uncorrelated in time.

2. Vertical stratification (φstrat): This signal is the result of different vertical re-
fractivity profiles during the two SAR acquisitions and is only relevant if there
are elevation differences in the image. For two different resolution cells with a
different elevation, the difference in the vertical refractivity profiles between the
two acquisitions introduces a new phase component in the interferometric phase.
This effect will only affect pixels which have different topographic height, and it
is highly correlated with topography. Over flat terrain, the effect is insignificant.

In addition to tropospheric signals, the interferometric phase is also affected by differ-
ential delay in the ionosphere (i.e. upper atmospheric layers from ∼80 km to ∼600 km
altitude). This phase delay is induced by variations in the free electron density in the
ionosphere, and is quantified by the Total Electron Content (TEC). According to Meyer
et al. (2006), TEC variation shows significant spatial correlation. Consequently, its ef-
fect on interferometric phases (usually over spatial distances less than a few hundreds
of kilometers) is far less significant than tropospheric effects. A detailed and in-depth
explanation of different atmospheric effects in InSAR can be found in Goldstein (1995);
Zebker et al. (1997); Massonnet and Feigl (1998); Hanssen (2001); Meyer et al. (2006);
Ding et al. (2008); and Liu (2012).

2.1.2.3 Interferometric scattering phase (φscat)

This phase component is induced by the difference in scattering phase between the
master and slave acquisitions:

φscat = ψscat
M − ψscat

S . (2.19)
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Figure 2.4: InSAR acquisition geometry: demonstration of variation in incidence and squint angles.
(A) 3D viewing geometry for point P on the reference surface observed by radar antennas at point
M on the master orbit and point S on the slave orbit, where θminc and θsinc are the incidence angles,
and ϑm and ϑs are the squint angles for the master and slave acquisition respectively. (B) 2D top
view of the configuration, showing the zero-Doppler directions and variation in squint angles. (C) 2D
perspective viewed in the plane perpendicular to the flight direction (i.e. the orbit trajectories are into the
paper), showing the variation in incidence angles. Note that in these visualizations, we have assumed an
idealized/simplified geometry with exactly parallel orbits. In practice, we can have convergent/divergent
orbits, which is another cause for different squint angles between master and slave acquisitions.
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Note that the reflected signal received from a resolution cell on the ground is the super-
position of the reflection from a multitude of elementary scatterers within the cell, see
fig. 2.3. The scattering phase (ψscat) in each SLC image is a function of the relative po-
sitions of all the elementary scatterers within a cell with respect to the radar sensor, and
the electrical characteristics of the scatterers. Although the scattering phase is intrinsi-
cally a deterministic quantity, i.e. it is invariant if the measurements are repeated under
the same conditions, it is unpredictable and hence cannot be described mathematically
in a deterministic manner. Therefore in radar interferometry, it is standard practice to
explain this phase component stochastically by the degree of correlation between mas-
ter and slave scattering phases. A common measure of correlation between two phase
values is the magnitude (or absolute value) of the complex correlation coefficient, called
coherence2 and denoted by |γ|∈[0, 1]. In the extreme scenario of |γ|=1, the master and
slave scattering phases have exactly the same values (i.e. ψscat

M =ψscat
S ) and cancel each

other in the interferogram, resulting in φscat = 0. For other coherence values between
zero and one, the difference in SLC scattering phases results in loss of interferometric
coherence, known as decorrelation.

The total decorrelation induced by the scattering phase variation can be subdivided into
different effects based on the exact source of the decorrelation. In general, four main
decorrelation mechanisms can be distinguished (Zebker and Villasenor, 1992; Hanssen,
2001):

1. Baseline decorrelation: This effect is the result of different incidence angles be-
tween master and slave acquisitions. When a resolution cell on the ground is seen
by two radar antennas from different positions and therefore different incidence
angles, the range distances of individual elementary scatterers within the cell to
the two antennas will be different, and hence their phase contribution will change,
resulting in a different scattering phase between master and slave acquisitions. We
call this phase difference baseline decorrelation phase and denote it by φB-dec. The
degree of baseline decorrelation is expressed by the baseline coherence (γB). This
coherence decreases linearly with increasing perpendicular baseline (B⊥). Assum-
ing surface (2D) scattering, where all the elementary scatters are distributed over a
2D plane spanned by azimuth and range directions, the baseline decorrelation can
be explained and predicted by a frequency shift in the ground reflectivity spectrum
(Gatelli et al., 1994). This frequency shift can be effectively compensated for in
radar interferometry by different kinds of spectral filtering methods at the expense
of reduced resolution, see sec. 2.1.3.

2. Doppler centroid (azimuthal) decorrelation: Similar to baseline decorrelation
which is caused by the difference in incidence angles, the Doppler centroid decor-
relation is caused by a change in acquisition squint angle, which is defined as the
angle between the pointing direction of the antenna and the perpendicular line to
the flight direction. The latter is called zero Doppler direction, see fig. 2.4. In
other words, baseline decorrelation is caused by varying the viewing direction in
range, whereas the Doppler centroid decorrelation is the result of varying the view-
ing direction in azimuth. Again, the phase contribution of elementary scatterers

2A detailed mathematical description of coherence γ is given in chapter 3
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within a resolution cell will be different between master and slave acquisitions due
to different squint angles, resulting in a scattering phase difference called Doppler
centroid decorrelation phase and denoted by φD-dec. The degree of Doppler cen-
troid decorrelation is expressed by the Doppler centroid coherence (γdc). This
coherence decreases linearly with increasing Doppler baseline Bdop (i.e. the differ-
ence in Doppler centroid frequencies between master and slave images). Similar
to baseline decorrelation, the Doppler centroid decorrelation can be compensated
for by spectral filtering in azimuth direction at the expense of reduced resolution.

3. Volume decorrelation: Although, assuming surface (2D) scattering, both base-
line decorrelation and Doppler centroid decorrelation can be compensated for by
spectral filtering in range and azimuth direction, respectively, the scattering mech-
anism can be more complex than just 2D scattering in practice. If the elementary
scatterers are distributed in a 3D volume (e.g., branches of canopies or trees in
forest areas), the decorrelation mechanism induced by different imaging geometries
is more complicated. This decorrelation is often called volume decorrelation (de-
noted by γvol) and is in principle unpredictable. The volume decorrelation effect is
stronger in vegetated areas where radar waves can penetrate into a volume of scat-
terers. Consequently, for larger radar wavelengths (e.g. P-/L-bands) which have
a stronger penetration capability, volume decorrelation is relatively larger than for
shorter wavelengths such as C-/X-bands.

4. Temporal decorrelation: This decorrelation is the result of variation in scattering
phases between the two acquisitions, due to the actual changes in the scattering
characteristics of the elementary scatterers within a resolution cell. This could be
either due to a change in the physical distribution of elementary scatterers (e.g.
caused by soil weathering, anthropogenic activities, vegetation growth, and plant
movements in the wind), or due to the variation in electrical properties of the scat-
terers (e.g. change in the dielectric constant of targets influenced by a variation
in moisture content). The phase variation due to temporal decorrelation (φT-dec)
results in loss of coherence which is expressed by the temporal decorrelation factor
γT. High temporal coherence is common on surfaces without vegetation (e.g.,
arid areas, deserts, road and building surfaces). The lower extreme of temporal
decorrelation is associated with water bodies where the scattering characteristics
are changing rapidly within seconds. Due to the wide range of mechanisms induc-
ing temporal decorrelation, it is very difficult to model the coherence behavior as
a function of time (or as a function of the temporal difference between two acqui-
sitions, called temporal baseline BT). For some simplified situations and natural
processes, models have been introduced in literature, for example in Zebker and
Villasenor (1992); Hoen and Zebker (2000); Rocca (2007); Morishita and Hanssen
(2015b). A brief review of some of these models is given in chapter 3.

Note that the interferometric scattering phase φscat is mainly induced by a change in
superposition of all scatterers’ contributions in a resolution cell. So if the resolution cell
contains only one dominant scatterer, the scattering phase will be zero or practically
very small. This is an important characteristic which is exploited in time-series InSAR
methodologies, which detect and extract information from scatterers that are minimally
affected by scattering-induced decorrelation, see sec. 2.2.
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2.1.2.4 Interferometric Noise phase (φnoise)

The other interferometric phase term in eq. (2.6), is φnoise, see also fig. 2.2. This
component is related to different noise contributions which are neither related to the
imaging geometry nor to the scattering mechanisms. This term can be subdivided into
two components based on the source of the noise: system related noise, and processing
noise.

1. System noise: This noise component mainly includes the system thermal noise,
which depends on the system bandwidth and receiver temperature. Similar to
decorrelation phase, the phase introduced by thermal noise (φthermal) results in
loss of coherence, which is described by thermal coherence γthermal. It has been
shown that the thermal coherence is theoretically dependent on the signal-to-noise
(SNR) ratio of a particular radar system (Zebker and Villasenor, 1992; Zebker
et al., 1994b). Note that the SNR not only depends on system characteristics
but also on the power of the reflected signal from the surface, the radar cross
section, which is determined by surface characteristics such as roughness, slope,
and moisture content. In this sense the name system/thermal coherence may be
slightly misleading as it is not purely a function of system parameters.

2. Processing-induced noise: This noise term is the result of a chosen algorithm
used for interferogram formation, mainly the procedure of aligning the master and
slave images (i.e. coregistration and interpolation of the slave image on the master
grid). The processing noise also causes a decorrelation effect which can be denoted
as γproc. The processing phase noise component introduced in interferogram can
be expressed as φproc.

To summarize, from the four main components of the interferometric phase (i.e. φrange,
φatmo, φscat, and φnoise, see eq. (2.6) and fig. 2.2), the scattering phase and noise phase,
which are modeled stochastically by coherence factors, cause a decorrelation effect in
the interferometric phase. The different coherence terms are multiplicative (Zebker and
Villasenor, 1992), and the total coherence can be expressed by γtotal as

γtotal = γB .γdc.γvol.γT.γthermal.γprocc. (2.20)

Under the condition that the scattering and noise terms are zero, or in other words
γtotal=1, we say that the image is coherent, and the interferometric phase of a pixel
solely depends on the two-way physical travel time of the radar signal between the
sensor and the pixel phase center. This is the ideal situation for using InSAR to observe
deformation, topographic, or atmospheric signals. However this situation never happens
in reality, and there are always some noise terms. In fact, the main challenge in InSAR
analysis is to extract coherent information from noisy interferometric phases with variable
coherence values. The coherence factor is a key parameter for stochastic modeling of
InSAR observations and can be directly related to interferometric phase statistics such as
probability density functions and phase variance. This is discussed in depth in chapter 3.
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2.1.3 InSAR processing: overview

In order to produce an interferogram from two SLC images, different processing steps are
applied. A detailed explanation and mathematical presentation of these steps are beyond
the scope of this study. Although there are various algorithms and processors available
for interferometric processing and they differ in some details and implementations, all
InSAR processors include some key steps which are reviewed briefly in this section.

Coregistration and resampling
In order to make an interferogram by complex conjugate multiplication of master and
slave SLC images (see eq. (2.5)), identical scatterers need to be combined. Often this
means that the sampling grid of the two images should be aligned to each other, making
it possible to associate the pixels in the both images to the same area on the ground.
This procedure can be applied in two main steps: first, for each pixel the amount of shift
between the two images is computed (called the coregistration step), and then one of
the images is interpolated/resampled onto the grid of the other (called the resampling
step). The common convention is to resample the slave image onto the master image
grid. In principle, the coregistration step should account for geometrical misalignment
and distortions induced by differing incidence angles, orbit crossings, varying sensor
attitudes, different sampling rates due to different sensor velocities, and along-track and
across-track shifts due to the start/stop times of the SAR sensor.

Coregistration itself is usually applied in two steps. First, orbit/coarse coregistration
can be applied to compute/approximate a single offset between two images based on
satellite precise orbits (i.e. the precise positions of the satellites during the acquisitions)
and timing information. In the second step, fine (or sub-pixel) coregistration is performed
by direct cross-correlation techniques to define the two offsets per pixel in azimuth and
range direction. Cross-correlation is usually applied over the amplitudes or squared
amplitudes (power) of SLC images. By cross-correlating a pair of patches/windows
from two amplitude (or power) images, the correlation peak is associated to the offset
vector in azimuth and range directions. Ideally the cross-correlation is applied over all
pixels, making it a very slow process. Therefore, in practice, it is performed over a
large number of windows (e.g 3000+) distributed over the scene. Then the offsets for
other pixels can be computed by fitting an analytic function to the estimated offsets.
Assuming all targets lying on an Earth ellipsoid, a 2D polynomial of a certain degree
(e.g, between degree 2 and 5) is usually used as the analytical function to efficiently
approximate the offsets. For a detailed overview of InSAR coregistration methods based
on cross-correlation offset estimation, see Brown (1992); Samson (1996); Michel et al.
(1999), and Strozzi et al. (2002).

As offsets are theoretically dependent on target elevation on the ground, for areas with
high topographic variations, polynomial functions cannot describe the offset variations
within a scene with high accuracy. For these areas the topography should also be ac-
counted for in the coregistration. This is done by Digital Elevation Model (DEM)-based
coregistration. In this approach, the coregistration offsets are computed for each pixel
based on orbit information and an existing DEM of the area. Details of DEM-based
coregistration can be found in Adam et al. (2003); Sansosti et al. (2006); Arikan et al.



2.1 InSAR principle 23

(2008), and Nitti et al. (2008, 2011). For InSAR applications, a high accuracy of coreg-
istration is generally required. Just and Bamler (1994) and Hanssen (2001) have shown
that the accuracy of around 0.1 pixels in both azimuth and range directions is adequate
for negligible loss of coherence. This accuracy is achievable by the coregistration pro-
cedure described above. Note that the accuracy requirement of 0.1 pixels is based on
the assumption of relatively small squint angles, which is the case for strip-map radar
modes and most of the common medium-resolution SLC products. However, for imaging
modes in which the small squint angle assumption is not valid (e.g. ScanSAR, or the
recently developed terrain observation with progressive scan (TOPS) mode applied on
Sentinel-1 satellite), a much higher coregistration accuracy (in the order of 0.001 pix-
els) is needed (Monti-Guarnieri and Prati, 1996; Bara et al., 2000; Holzner and Bamler,
2002; Prats-Iraola et al., 2012). Achieving such a high accuracy requires more advanced
coregistration algorithms. A detailed overview of such methods can be found in Scheiber
and Moreira (2000); Prats-Iraola et al. (2012), and Scheiber et al. (2015).

After the coregistration, the resampling step is performed. In this step, the complex
values of slave image are evaluated at the pixel positions of the master image based on
the offsets computed in the coregistration step. In a generic sense, resampling is done
in two steps. First, a continuous signal is constructed from discrete/sampled values in
the slave image by convolution with a small resampling kernel. The design of an optimal
kernel was discussed in Laakso et al. (1996) and Hanssen and Bamler (1999). In the
second step, the reconstructed continuous signal is sampled at the new locations using
the offsets computed in the coregistration step.

Oversampling
From a signal processing point of view, the complex conjugate multiplication of two SLC
images to form an interferogram is equivalent to the convolution of the images in the
frequency domain. As a consequence of convolution, the frequency range or spectrum of
the interferogram is the cross-correlation of the master and slave spectra, and hence it
is twice as wide as the individual spectra of the two images. As the sampling frequency
of the interferogram is the same for the two images, the spectrum widening results in
an aliasing effect which appears as phase noise in the interferogram (Hanssen, 2001).
In order to prevent this aliasing effect, it is required to oversample both master and
slave images by a factor of two before interferogram formation. This is done by first
computing the frequency spectrum of every image via Fourier transformation, and then
zero-padding of the two spectra with the same number of original samples in the images.
After zero-padding, the inverse Fourier transformation is applied to obtain a copy of the
master and slave images with twice the number of samples. Note that the pixel area of
the oversampled images — and thus of the obtained interferogram — is a quarter of the
original pixel area.

Flat earth and topographic phase subtraction
After the formation of an interferogram, it is a common practice to subtract and com-
pensate for phase contributions that can be predicted, the so-called phase reduction.
This is a deterministic approach, which reduces the phase variability in the interfer-
ogram, and it can encompass both range phase and atmospheric phase components.
Most well-known is the phase contribution of the ellipsoidal shape of the earth (i.e. flat
earth phase, see sec. 2.8). This phase contribution is computed for every pixel using
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Figure 2.5: Demonstration of range frequency/wavenumber shift induced by different incidence angles:
(A) a particular spatial wavelength (i.e. the sinusoidal structure) is mapped differently to the lines of
sight of master (M) and slave (S), resulting in different wavelengths associated with different spatial
frequencies (or wavenumber). The amount of shift is not only related to the incidence angles but to
the terrain slope ζ. (B) Extending the concept of frequency shift to other frequencies will result in a
wavenumber/frequency shift in the whole data spectrum of the two images. The object spectrum is
mapped to a different portion of the data spectrum, with a frequency shift of fφ. The overlapping part
of master and slave spectra (i.e the gray area) is defined by the range bandwidth Brg and fφ. The
non-overlapping parts in each spectrum can be considered as noise which should be removed by range
spectral filtering. (Figures courtesy of Bähr (2013)).

eq. (2.9) or (2.10). In order to evaluate these equations, the reference location of each
pixel (i.e., the vector ~P0 in eq. (2.9)) is computed. This process is called geocoding.
The Doppler frequency used in SAR processing, range time information, and the defini-
tion of the reference surface body are used in order to define the pixel coordinates on
the ground. A detailed mathematical explanation of geocoding computation is given in
Schwäbisch (1995); Madsen et al. (1993), and DUT (1998). For deformation monitor-
ing applications, if topographic information or a DEM of the radar scene is available,
it is recommended to also subtract the interferometric contribution of topography. The
topographic phase is computed based on eq. (2.13) for every pixel, and it is subtracted
from the interferogram which has been already corrected for the flat earth phase. Phase
reduction can also include an a-priori deformation model or an atmospheric model.

Spectral filtering
The objective of this step is to reduce some phase noise contributions in an interferogram.
Reducing noise can facilitate the unwrapping step and the interpretation of interfero-
grams. Conceptually, the noise phase comprises all the phase contributions which cause
decorrelation in an interferogram. Although the physical mechanism behind different
kinds of decorrelation are different, some of them, such as baseline and Doppler-centroid
decorrelation, are strongly related to acquisition geometry and so can be predicted and
compensated for based on some information on the viewing geometry. As mentioned
before, baseline and Doppler-centroid decorrelation are the results of frequency shifts in
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the data spectrum of the master and slave images. The idea of spectral filtering is to
reduce these effects by filtering the azimuth and range spectra of the images before in-
terferogram generation, and in this way, to reduce decorrelation effects. In the following,
we briefly explain the filtering procedure in range and azimuth directions, respectively.

1. Spectral filtering in range: As discussed in sec. 2.1.2.3, baseline decorrelation is
the result of varying incidence angles between the two images. The induced fre-
quency shift by different incidence angles is demonstrated in fig. 2.5. In fig. 2.5A,
a particular spatial wavelength (i.e. the sinusoidal structure) is mapped differently
to the lines of sight of the master and the slave, resulting in different wavelengths
associated with different spatial frequencies (or wavenumbers). Note that the
amount of shift is not only related to the incidence angles but also to the terrain
slope ζ. Extending the same concept to all the frequencies results in a wavenum-
ber/frequency shift in the data spectra of the two images, see fig. 2.5B. As a result,
there will be non-overlapping parts in the master and slave data spectra. During
interferogram formation by complex multiplication of two images (or convolution
of image spectra in the frequency domain), the non-overlapping parts of the two
spectra will spread over all the frequencies of the resulting interferogram, introduc-
ing phase noise or decorrelation. The idea of range spectral filtering is to estimate
the amount of the frequency shift based on information about satellite orbits and
ground topography, and subsequently to remove the resulting non-overlapping part
of the master and slave spectra. Theoretically, the amount of the frequency shift
is computed as (Gatelli et al., 1994; Bamler and Hartl, 1998; Hanssen, 2001)

fφ = 2B⊥
λRm tan(θminc − ζ) , (2.21)

where B⊥ is the perpendicular baseline B⊥, λ the radar wavelength, Rm the slant-
range between the target and the master satellite, and θminc the master incidence
angle. After computation of fφ, the master and slave images are transformed to
frequency domain, and the non-overlapping parts of their spectra are removed,
followed by inverse Fourier transformation to spatial domain. Constructing inter-
ferograms with the filtered images results in reduced decorrelation. Note that due
to filtering, the range bandwidth of images reduces from Brg to Brg−fφ. Reduc-
tion in bandwidth in the frequency domain is equivalent to reduction in resolution
in the spatial domain. So the price to pay for filtering and reducing decorrelation is
losing spatial resolution. As we see in eq. (2.21), the phase shift is related strongly
to the terrain slope, whose computation for every pixel is not trivial. The com-
mon practice is to assume a flat surface (i.e. ζ=0) and compute one frequency
shift for the whole image. Although this works effectively for some areas with
low topographic variation, it may worsen the quality of the interferogram in other
areas (Rocca, 2000). For areas with high topographic variation, an alternative is
to estimate the frequency shift per line or patch from the data (Davidson and
Bamler, 1999; Rocca, 2000).

2. Spectral filtering in azimuth: This step is equivalent to range spectral filtering
but in the azimuth direction. The main objective is to reduce Doppler-centroid
decorrelation induced by a varying squint angle between master and slave. As
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discussed before, the angular variation in azimuth is directly related to the Doppler
baseline Bdop. Here again, the variation in squint angle causes a frequency shift
in the azimuth data spectra of the master and slave images. Similar to range
filtering, the idea of azimuth spectral filtering is to remove the non-overlapping
part of the azimuth data spectra of the master and slave. Contrary to spectral
shift in range direction, Monti-Guarnieri and Rocca (1999) have shown that the
effect of slope on frequency shift in azimuth direction is insignificant and can be
ignored. Hence the azimuth frequency shift is directly equivalent to the Doppler-
centroid change or the Doppler baseline Bdop. Furthermore, converging/diverging
orbits can induce additional frequency shift in azimuth data spectra. This shift
is mainly related to the convergence/divergence angle between master and slave
orbits (The full calculation of such a shift is given by Bähr (2013)), however its
effect is usually insignificant for common satellite sensors and standard acquisition
scenarios.

Note that both azimuth and range spectral filtering are effective only when resolution
cells are mainly affected by surface scattering. For resolution cells with dominant point
scatterers already minimally affected by baseline or Doppler-centroid decorrelation, spec-
tral filtering would result in worsening the coherence and introduction of additional noise.

Complex multilooking
This step is another optional step with the objective of reducing phase noise in interfer-
ograms. The main idea is that if adjacent pixels contain a constant signal component,
the spatial (complex) averaging of them will result in noise reduction. This process is
called complex multilooking (Goldstein et al., 1988; Rodriguez and Martin, 1992; Lee
et al., 1998). Assuming M and S are master and slave SLC image, the multilooked
interferogram for a pixel k is computed as

<Ik> = 1
L

L∑
i=1

MiS
∗
i (2.22)

where <.> denotes the spatial averaging or multilooking operation, L is the number of
looks or the multilooking factor, and i is the index of all the adjacent pixels used in the
averaging. The phase of the multilooked interferogram can also be written as

∠(<Ik>) = φ̂k = arctan
( L∑
i=1

Im(MiS
∗
i )

L∑
i=1

Re(MiS∗i )

)
. (2.23)

We will show in chapter 3 that the noise variance of the interferometric phase can be
significantly reduced by multilooking under the assumption of spatial (smoothness) of
the signal, and ergodicity (Lee et al., 1994; Hanssen, 2001). Assuming ergodicity, the
averaging area around each pixel can have any geometrical shape. The most convenient
approach is to use rectangular (boxcar) windows with size Laz and Lra in azimuth and
range directions, resulting in multilooking factor of L=LazLra. In this case, multilooking
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can be done by spatial 2D boxcar convolution, which is equivalent to 2D sinc multipli-
cation in the frequency domain. Note that the multilooking operation is based on the
two following implicit assumptions:

1. Signal consistency (stationarity): In multilooking, it is assumed that the signal of
interests is constant over the averaging area. This is why multilooking is usually
applied after the removal of flat-earth and topographic phase. If high spatial varia-
tion of signal components is expected, this phase variation should be compensated
for before multilooking. Examples of variable signals are high topography gradi-
ents or orbital errors. These kinds of spatially-variable signals can be removed by
different kind of phase flattening or low-pass filters such as the adaptive multi-
resolution defringe algorithm (Prati and Rocca, 1992; Davidson and Bamler, 1999;
Wang et al., 2012), patch detrending (Zebker and Chen, 2005; Bamler and Hartl,
1998), and the low-pass filtering method presented by Hooper et al. (2004).

2. Statistical homogeneity: The multilooked phases are computed by spatial averag-
ing over pixels that are assumed to be statistically homogeneous, or in other words
the scattering and noise phases of all the averaging pixels show statistically a sim-
ilar behavior. In order to satisfy the homogeneity condition, it is recommended to
use spatially adaptive windows for multilooking. An example is the spatial adap-
tive approach introduced by Ferretti (1997), which identify homogeneous pixels in
a single interferogram based on speckle-Lee filter methodology (Lee et al., 1998).
For a stack of SAR images, some space-adaptive methods have been introduced
by Ferretti et al. (2011b); Parizzi and Brcic (2011); Wang et al. (2012); Goel and
Adam (2014); Jiang et al. (2014b), and Jiang et al. (2014a). We review some of
these methods in sec. 2.4.

Phase unwrapping
One of the main (and also challenging) steps in InSAR processing is the phase un-
wrapping. InSAR observations are wrapped (modulo-2π), see eq. (2.6). For InSAR
applications, the estimation of the unknown absolute phase from the wrapped observa-
tions is required. From an estimation point of view, the unwrapping problem is inherently
undetermined, and hence non-unique. As a consequence, it is impossible to solve the
unwrapping problem without any a-priori knowledge or assumption about the signal of
interest. The most common assumption, traditionally used in InSAR, is that the differ-
ence between the phase of two adjacent pixels is not more than half a wave cycle. In
areas with a high spatial gradient of signal components (e.g high topographic variations
in mountainous areas or high gradient of deformation induce by an earthquake close to
a fault), this assumption may be violated and more information and assumptions are re-
quired for correct unwrapping. Resolving 2π cycle ambiguities in a single interferogram,
i.e. in two-dimensional space domain, is called 2D unwrapping. A detailed overview and
explanation about 2D unwrapping can found in Goldstein et al. (1988); Ghiglia and Pritt
(1998); Bamler and Hartl (1998); Bamler et al. (1998); Costantini (1998); Eineder and
Holzner (1999); Chen (2001), and Ferretti et al. (2007). In stack processing and time-
series InSAR methodologies, different approaches have been developed to also resolve
ambiguities based on models/assumptions in the time domain (i.e. 1D unwrapping),
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or in both spatial and temporal domains (i.e. 3D unwrapping). We will review these
methodologies in sec. 2.2.

2.1.4 Conventional InSAR: limitations

Using InSAR to study a certain phenomenon (e.g. deformation or topography) requires
to isolate the signal of interest from other components. Therefore, estimating the signal
of interest from a single interferogram is challenging when the other signal/noise com-
ponents significantly interfere with the signal of interest. In principle, the interference of
φscat and φatmo with the signal of interest forms the main shortcomings of conventional
InSAR, summarized as follows.

1. Temporal and baseline decorrelation: The change ψscat due to temporal and base-
line decorrelation results in large scattering noise components in interferograms.
Temporal decorrelation makes InSAR measurements useless in vegetated areas and
in other areas where the scattering characteristics or the positions of the scatterers
change rapidly compared to the SAR acquisition interval. Furthermore, baseline
decorrelation prevents information extraction from interferograms with large per-
pendicular baseline, more precisely with B⊥ larger than a critical baseline which is
defined as the minimum value of B⊥ for which the backscatter signal from pixels
with surface scattering mechanism is completely decorrelated (Hanssen, 2001).

2. Atmospheric heterogeneity: The spatially and temporally variable state of the at-
mosphere superimposes another signal (φatmo) that interferes with the signal of
interest especially in case of small signal magnitude (e.g., millimeter-level surface
deformation), making it impossible to distinguish deformation signal from atmo-
spheric effects.

Coping with these limitations is the main driving factor to develop time-series InSAR
methodologies and to systematically exploit multiple interferograms from the same area.

2.2 Time-series InSAR

The first efforts to overcome the above limitations of InSAR were mainly targeted to-
wards atmospheric disturbances. Based on the fact that atmospheric effects are mostly
uncorrelated temporally, these methods filter them out by temporal averaging over a
stack of interferograms. They are are called stacking methods, and examples can be
found in Sandwell and Price (1998); Wright et al. (2001); Lyons and Sandwell (2002).
In general, when a stack of interfergrams is available, atmospheric phase can be sepa-
rated from other signals based on its different spatio-temporal behavior than the signal
of interests. The atmospheric effect is generally only correlated in time on the scale of
hours to a day (Hanssen, 2001). As the time between two acquisitions is of the order
of a couple of days to a month or more, the turbulent part of atmospheric signal can
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be assumed uncorrelated in time. At the same time, atmospheric signal has a strong
correlation in space over length of a few kilometers. So based on these spatio-temporal
characteristics, atmospheric effects can be separated from other signals with different
behaviors, for example from deformation signals which are spatially and also tempo-
rally correlated. This is the main concept behind different atmospheric-signal mitigation
algorithms in time-series InSAR (TInSAR) methods.

The other developments in TInSAR focused on circumventing target decorrelation. In
general there are two ways of thinking for this: one is to discern and isolate pixels which
are not (or minimally) affected by decorrelation, and therefore have high SNR in all
interferograms, and then exclusively exploit these pixels to extract useful information,
and another way is to process pixels affected by decorrelation but reduce/filter the
decorrelation effect by a smart processing scheme.

These two lines of thought have lead to development of two different kinds of TIn-
SAR methodologies, optimized towards two categories of pixels with different models
of ground scattering: one is the so called persistent scatterers (PS) pixel, which is the
resolution cell with a dominant scatterer, minimally affected by decorrelation. The other
category is the distributed scatterers (DS) pixel associated with ground resolution cells
which contain no dominant scatterer and are affected by decorrelation. In the rest of
this section, we first give a more in-depth description of the characteristics of PS versus
DS pixels. Then we review the main TInSAR developments and methodologies, followed
by brief description of the key steps in TInSAR processing algorithms.

2.2.1 Persistent scatterers vs distributed scatterers

As discussed before, in SAR images, the phase measurement of each pixel follows from
the coherent sum of contributions from all scattering elements within the associated
resolution cell. The degree of decorrelation of radar signals depends on the distribution
of scattering centers within a resolution cell. If the phase of a pixel were determined
by just one stable point scatterer, the decorrelation would be zero. Although this is
never the case for real scatterers, there are pixels which behave somewhat like point
scatterers, and for which decorrelation is greatly reduced. In these pixels, a strong
reflecting object dominates the radar measurement, and other scatterers just introduce
additional noise, called clutter. Fig. 2.6 shows the difference between a distributed
scattering pixel and a pixel with a dominant scatterer, and shows the different phase
behavior for different resolution cells. "PS-pixels" are those ground resolution cells which
contain a persistently dominant scatterer, effectively referred to as the PS 3, so their
decorrelation phase variation is small. In other words, for PS-pixels, φscat is minimal
in all interferograms, even in those with very large temporal or perpendicular baselines.
Hence, information can be extracted from PS from a stack of interferometric pairs, all
referenced to the same master image. Such a configuration of interferograms is called
single master stack, see fig. 2.7A. Most PS are man-made features, and so there is a
high density of them in urban areas and on infrastructure such as bridges, roads, dams
and dikes. Also in mountainous areas, some rocks and boulders can be natural PS.

3see footnote 2, page 4
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Figure 2.6: Distributed vs point scattering - Top row: a distributed scatterer resolution cell, bottom row:
dominant point scatterer resolution cell. The plots on the left show stylized arrangements of elementary
scatterers within a resolution cell. The bigger object correspond to a dominant point scatterer. The plots
on the middle show the phasors corresponding to 150 simulations. In each simulation, the location of
the scatterers (except the dominant scatterer) changed randomly. The plots on the right show the phase
behavior of different scattering resolution cells for 150 simulations. It is clear how the large amplitude
of the dominant scatterer influences the phase dispersion. While for distributed scattering, phase values
are randomly distributed between −π and −π, for the point scattering case, they are distributed with
much smaller dispersion around the phase of the dominant scatterer (φps). After Hooper (2006).

Contrary to PS-pixels, resolution cells with no dominant scatterer may be affected
strongly by decorrelation, but they may still contain some coherent information in some
interferograms, mainly with small temporal and perpendicular baselines. Therefore, un-
like for PS, the information content in a single-master interferogram stack is neither
optimal nor complete for DS, and so multi-baseline configurations should be exploited.
Another difference compared to PS is that filtering steps such as complex multilooking
and spectral filtering are effective to reduce DS-pixel noise. However, for PS-pixels, as
discussed in sec. 2.1.3, spectral filtering deteriorates the phase quality or coherence. Also,
multilooking is not recommended for PS-pixels as they have usually different statistical
characteristics with respect to their surrounding pixels.

In addition to PS and DS, some other scattering models can also be recognized. For
example temporary-PS are associated with resolution cells which contain a dominant
scatterer only in a certain period of time, and so only on a subset of images. Basilico et al.
(2004) proposed a methodology to exploit temporary-PS. Another scattering model is
multiple-scattering due to the existence of multiple dominant scatterers in one resolution
cell. Detection and decomposition of multiple point scatterers within a single resolution
cell is the subject of tomographic SAR analysis (Reigber and Moreira, 2000; Lombardini,
2005; Fornaro et al., 2009; Zhu and Bamler, 2010), and is not discussed further in this
thesis.
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Figure 2.7: Example of baseline configurations for (A) a single-master stack, and (B) a small (per-
pendicular) baseline subset. The horizontal axis is the time of acquisitions, and vertical axis show the
relative spatial separation perpendicular to sensor look direction (i.e. perpendicular baseline B⊥). Arcs
correspond to interferograms, and nodes correspond to SLC images.

2.2.2 TInSAR methodologies

2.2.2.1 Persistent scatterer interferometry (PSI)

In the late 1990s, it was recognized that some features, especially man-made structures,
have stable backscattering characteristics over long time intervals (Usai, 1997; Usai and
Hanssen, 1997; Usai and Klees, 1999). This led to the development of an innovative
methodology called Permanent Scatterer InSAR, or PSInSAR (Ferretti et al., 2000,
2001) which exploits PS-pixels to obtain deformation time-series over long time periods
and overcome the main limitations of conventional InSAR. The main characteristics of
the PSInSAR processing method are that only PS-pixels are considered and it utilizes
a single-master stack of differential interferograms. Since the development of the first
PS technique by Ferretti et al. (2000), other algorithms have been introduced using
comparable concepts (Van der Kooij, 2003; Adam et al., 2003; Werner et al., 2003;
Hooper et al., 2004; Kampes, 2005; Costantini et al., 2009; van Leijen, 2014). The
term Persistent Scatterer Interferometry (PSI) is used to collectively address all these
algorithms.

Although the details of these algorithms vary depending on the implementation, all of
them contain three main processing blocks: coherent pixel selection, spatio-temporal
(3D) unwrapping, and atmospheric-signal mitigation. These steps may applied in com-
bination, independently, or iteratively in different PSI implementations. More details
about each block are given in sec. 2.3. Here, we review generic work-flows of two kinds
of PSI methods: those that identify PS-pixels based on the phase variation in time, and
those that use phase correlation in space as the selection criterion.
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Figure 2.8: Generic flowchart of (A) PSI processing (1st category) (B) PSI processing (2nd category),
and (C) SBAS method. The steps are classified into five basic TInSAR processing blocks (expressed in
the gray boxes) as S: pixel selection, U: unwrapping, A: atmospheric-signal mitigation, F: filtering, and
E: ESM-phase estimation from multi-master phases. Processing-blocks F and E is specific to distributed
scatterers and are hence applied only in SBAS processing. Note that the abbreviation uw. refers to
unwrapping.

The main idea of the first category (e.g. Ferretti et al. (2000), and Kampes (2005)) is to
detect highly coherent point-like PS by using amplitude stability in time as an indicator
for scattering phase variability. Pixels whose amplitudes variation is small in the stack
of SLC images are selected as candidates for coherent PS (PSc1). Then, for every
PSc1 candidate, the single-master wrapped phase time-series is exploited. They are first
unwrapped in the time domain, followed by integration/unwrapping in space per epoch.
In combination with this 3D unwrapping, different signal components, i.e. deformation,
topography, and atmospheric effects, are effectively estimated/separated. Although in
principle the 3D unwrapping and signal separation can be performed for all pixels in
one step, in order to reduce computational burden, this is usually done in an iterative
manner as follows. First a network/grid of higher coherence PS-candidates distributed
over the scene is selected. They are then unwrapped with respect to each other in time
and space. For these pixels, the atmosphere signal is estimated relative to the other
phase components based on spatial correlation and temporal decorrelation properties.
The estimated atmospheric signal is then spatially interpolated and subtracted from
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the wrapped phase time-series of the rest of the PS-candidates (PSc2). Finally, all
the PSc1 and PSc2 pixels are unwrapped in space and time. The final selection of
PS is performed based on the deviation of the unwrapped deformation time-series of
each pixel from a pre-defined/assumed deformation model. The final results of the
PSI technique for deformation monitoring, after removing the atmospheric effects, are
time-series of deformation, and the derived products such as deformation rate (velocity)
and height of each PS. Fig. 2.8A shows the generic flowchart of the explained category,
highlighting the three main basic PSI processing blocks. More details about this category
of algorithms can be found in Ferretti et al. (2000, 2001); Adam et al. (2003); Kampes
(2005); Costantini et al. (2009) and van Leijen (2014).

The second category of PSI methods (e.g. Hooper et al. (2004)) uses the phase stability
with respect to predefined model in space to select PS-pixels. Here, pixel candidates are
selected if their interferometric phases have a small deviation from their neighboring PS.
After selection of PS, 3D unwrapping is performed, followed by mitigation of atmospheric
signal using high-pass filtering in time and low-pass filtering in space. The generic
flowchart of this algorithm is sketched in fig. 2.8B. A comprehensive review of different
PSI methodologies has been given by Crosetto et al. (2016).

2.2.2.2 Small Baseline Subset (SBAS) Technique

Parallel to the developments in PSI methodologies, other techniques emerged with the
objective of extracting information from distributed scatterers. As DS-pixels are af-
fected by temporal and baseline decorrelation, they may contain coherent information
only in interferograms with small perpendicular and temporal baselines. Therefore, un-
like for PS, a single master stack cannot be utilized for DS. A leading approach to
extract information from DS was developed using the concept of small baseline subsets
(SBAS). The original SBAS approach (presented by Berardino et al. (2002)) mainly
accounted for minimizing the baseline decorrelation by disregarding interferograms with
large perpendicular baselines and using subsets of interferometric pairs with only small
baselines, see fig. 2.7B. However, in principle, other baseline configurations with small
temporal-/Doppler baselines can be also utilized, reducing the effect of temporal or
Doppler-centroid decorrelation. Note that the constraint on baseline length may yield a
clustered baseline configuration with disconnected interferogram subsets.

In this method, all selected interferograms are first filtered (spectral filtering or/and mul-
tilooking) in order to further reduce the decorrelation noise. Applying the filtering step
is one of the main differences of SBAS compared to PSI. As mentioned before, spectral
filtering or multilooking is not recommended over PS-pixels. After filtering, coherent
pixels are identified based on their average spatial coherence over the interferogram sub-
set. Then the phases of the selected pixels in all the small baseline (SB) interferograms
are unwrapped in spatial domain (using conventional 2D unwrapping methodologies, see
sec. 2.1.3). In order to estimate the final time-series for each pixel, the unwrapped inter-
ferograms are inverted to a single-master time-series. We call this step equivalent single
master or ESM-phase estimation. Different estimation strategies can be used here even
to account for disconnected baseline configurations, see sec. 2.5.1. After ESM-phase
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estimation, different signals can be separated and atmospheric effects are filtered out
similar to PSI methods. Fig. 2.8C shows the generic flowchart of the SBAS methodol-
ogy. Note that in addition to the three basic processing blocks of PSI, SBAS method
includes two additional blocks: phase filtering and ESM-phase estimation. More infor-
mation on the SBAS methodology and different SBAS implementations can be found in
Berardino et al. (2002); Mora et al. (2003); Schmidt and Bürgmann (2003); Berardino
et al. (2004); Pepe and Lanari (2006); Pepe et al. (2011), and Pepe et al. (2015).

It should be noted that although we have presented PS- and DS-pixels with two dis-
tinct definitions, in practice the scattering characteristics of real targets are somewhere
between them. As a consequence , the set of pixels detected by PSI may overlap with
the pixels detected by SBAS. For example, very bright and coherent PS-pixels which
show high spatial coherence may be detected by SBAS approach. Or, highly coherent
DS-pixels in rocky or desert areas may detected also by PSI methods, especially in SAR
stacks with relatively small perpendicular baselines. This is in fact the case for most of
the new satellite SAR missions, e.g. Sentinel-1 or TerraSAR-X, with narrower orbital
tubes compared to the earlier satellites. However, the final phase values of the common
pixels, extracted by SBAS and PSI methods, are different mainly because of the effect
of different kind of phase filtering applied by these methods.

In general, because the two different groups of methodologies, i.e. PSI and SBAS, have
been developed for two different types of targets, they are largely complementary to each
other. This is the idea behind the third group of methodologies, which we call hybrid
methods,

2.2.2.3 Hybrid methods

Hybrid methods intend to extract information by joint processing of both PS and DS
targets. The concept behind hybrid methods can be seen from two different perspec-
tives: either extending SBAS methodology by integrating phase information of single-
look (un-filtered) PS-pixels into multi-baseline filtered interferograms, or extending PSI
methodology by embedding filtered multi-baseline DS into single-master stacks. Here
we briefly discuss the generic concept of three examples of hybrid methodologies.

1.Extended SBAS method combining multilooked and single-look interferograms (Lanari
et al., 2004)
This algorithm extends the functionality of the conventional SBAS approach by stepwise
processing of two distinct SB subsets of interferograms: a filtered (multilooked) subset,
and a single-look full-resolution subset. First, the multilooked SB interferograms are
processed using the conventional SBAS method in order to estimate wide scale defor-
mation, topographic, and atmospheric signal. Then, in a second step, the phases of
multilooked interferograms are subtracted from single-look pixels, resulting in residual
phases for all pixels, see fig. 2.9. Highly coherent pixels are selected based on their
temporal residual-phase stability (similar to final detection in PSI processing), followed
by estimation of the temporal evolution of local deformation and topographic signals
for the selected full-resolution pixels. The overall algorithm of this method is shown in
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Figure 2.9: Example of
coupling multilooked and
single-look interferograms
by (modulo 2π) subtrac-
tion. This coupling is per-
formed in the extended
SBAS methodology pre-
sented by Lanari et al.
(2004). Figure adopted
from the same paper.

fig. 2.10. It should be noted that although in the explanation of this method, the term
"PS" is not explicitly mentioned, the detected full-resolution (single-look) pixels are im-
plicitly equivalent to PS-pixels (i.e pixels that preserve coherence in all interferograms
without filtering and multilooking), and are mainly associated with buildings, structures,
and rocks (Lanari et al., 2004).

2.Multi-temporal InSAR method incorporating both PSI and SBAS approach (Hooper, 2008)
Similar to the extended SBAS approach, this method also exploits two different sets
of interferograms. One is the set of single-master and single-look interferograms, and
the other the SB subset of spectral-filtered interferograms. At the first step, coherent
DS- and PS-pixels are selected using the phase stability criterion in space (similar to the
PSI method of Hooper et al. (2004)) over filtered SB and single-look interferograms,
respectively. Then for PS-pixels, the equivalent SB phases are computed from single-
master (un-filtered) interferogram phases. The SB phase of both PS and DS pixels are
then combined in the same (SB) dataset. In the final step, the reconstructed dataset
(including both PS and DS phases) is processed using a conventional SBAS algorithm.
The flowchart of this algorithm is depicted in fig. 2.11.

3.Two-step hybrid methodology (Monti-Guarnieri and Tebaldini (2008) and SqueeSAR (Fer-
retti et al., 2011b))
The other development in time-series InSAR methodologies is the advent of more ad-
vanced hybrid methods that have been designed to extract all the information in SAR
stacks by not only exploiting the limited set of SBAS interferograms, but processing all
the possible interferograms (Monti-Guarnieri and Tebaldini, 2008; Ferretti et al., 2011b).



36 Chapter 2: Time-series InSAR and Distributed Scatterers: A Review

SB multilooked stack

SB single-look stack

SB stack of
residual-phase
interferograms

+
-
2π

S
U

E

Conventional SBAS
(fig. 2.8C)

A E U S F

(fi
g.

2.
9)

selection and
unwrapping of
coherent pixels

Equivalent SM
phase estimation
from SB phases

+

Output
wide scale

deformation time-series
topographic heights
atmosphere time-series

Output

high resolution
deformation time-series
topographic heights

Output

deformation time-series
topographic heights
atmosphere time-series

Figure 2.10: Generic flowchart of the extended SBAS methodology combining multilooked and single-
look interferograms (Lanari et al., 2004). The processing steps are classified into the five basic TInSAR
processing blocks (expressed in the gray boxes) as S: pixel selection, U: unwrapping, A: atmospheric-
signal mitigation, F: filtering, and E: ESM-phase estimation.

In the first step, all possible combinations of interferograms (i.e., N(N−1)/2 interfero-
grams derived from N acquisitions) are multilooked in an adaptive manner in order not
to filter PS pixels (for more information on adaptive multilooking, see sec. 2.4). Then, all
the multilooked interferograms are used to estimate the ESM wrapped phase time-series
for each pixel. This step is similar ESM-phase estimation in SBAS methodology, however
it is applied now before phase unwrapping. This pre-unwrapping ESM-phase estimation
is called phase linking by Monti-Guarnieri and Tebaldini (2008) or phase triangulation
by Ferretti et al. (2011b). In the view of these methods, the entire information content
of a SAR stack is squeezed into a set of SM interferograms, hence the name SqueeSAR.
After ESM-phase estimation, all the estimated SM interferograms may be processed us-
ing other standard PSI methodologies for unwrapping and estimation of the parameters
of interest. The flowchart of this algorithm is depicted in fig. 2.12.

2.3 TInSAR processing steps

As discussed in the previous section, all TInSAR methodologies include steps which can
be broadly classified into five basic processing blocks: pixel selection, 2D/3D unwrap-
ping, atmospheric-signal mitigation, filtering, and ESM-phase estimation. From these
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Figure 2.11: Generic flowchart of multi-temporal InSAR method incorporating both persistent scatterers
and the small baseline approach (Hooper, 2008). The processing steps are classified into the five
basic TInSAR processing blocks (expressed in the gray boxes) as S: pixel selection, U: unwrapping, A:
atmospheric-signal mitigation, F: filtering, and I: ESM-phase estimation.

five processing blocks, ESM-phase estimation and filtering (or adaptive multilooking)
are applied only in multi-master methodologies and they are specific processing steps
for information extraction from DS-pixels. Therefore, they deserve special attention in
this study and will be discussed separately is sections 2.4 and 2.5. In this section, we
review the first three processing blocks, i.e. pixel selection, 2D/3D unwrapping, and
atmospheric-signal mitigation, in more details.

2.3.1 Pixel selection

PS-pixel selection
For PS-pixels, the common selection criterion is the degree of fit between the phase
variation of pixels in time and a pre-defined temporal model (Ferretti et al., 2001).
However, the observed wrapped interferometric phases cannot be used directly to identify
these stable points due to the juxtaposition of different phase contributions. As a
consequence most of the PSI methodologies detect the coherent pixels in two steps.
First the temporal amplitude stability is used as a proxy of phase stability. And then,
in the following steps, after phase-unwrapping and atmospheric mitigation, the final
selection is applied based on the phase stability criterion. In the initial selection, the
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Figure 2.12: Generic flowchart of the SqueeSAR hybrid methodology (Ferretti et al., 2011b). The
processing steps are classified into the five basic TInSAR processing blocks (expressed in the gray boxes)
as S: pixel selection, U: unwrapping, A: atmospheric-signal mitigation, F: filtering, and E: ESM-phase
estimation.

logic behind the approximation of phase stability by amplitude stability can be explained
by considering the phasor of PS-pixels (see fig. 2.13). Assume that the complex SAR
observation for PS-pixels can be decomposed into two components as

• s (signal): the constant (and hence deterministic) contribution of a point scatterer
within a resolution cell, and

• n (noise): the noise component which is the superposition of contributions from
all other elementary scatterers that influence that particular pixel.

Assuming n has circular complex Gaussian distribution4, Ferretti et al. (2001) introduced
the normalized amplitude dispersion index (DA) as an approximation of phase standard
deviation (σψ):

DA = σA
µA

= σn
µA

= tan(σψ) ≈ σψ, (2.24)

where µA is the mean amplitude for the considered pixel over time, and σA and σn the
standard deviations of amplitude and noise, respectively (σA=σn due to the assumption

4See sec. 3.2 for detailed explanation of circular complex Gaussian distribution, and its validity for
the clutter noise.



2.3 TInSAR processing steps 39

of circular Gaussian distribution). Note that the approximation tan(σψ) ≈ σψ is valid
only for pixels with high signal to noise ratio, i.e. the pixels either with high amplitude or
with very low noise. Fig. 2.14 shows the relation between σφ andDA based on simulation
of 3000 points in the stack of 50 SAR images. The signal was fixed to s=1, while the
noise component n was simulated 3000 times with standard deviation (of the real and
imaginary parts) randomly chosen between 0 and 0.8. We see that points with smaller
amplitude dispersion index have smaller phase standard deviation. Thus, a threshold on
DA can be used as a practical way to select PS with stable phase behavior.

Other amplitude-based approaches are also introduced in literature, for example thresh-
olding on amplitude directly (Kampes and Adam, 2004), or the signal-to-clutter ratio
(Adam et al., 2004). Note that, the normalized amplitude dispersion is, in principle,
equivalent to the signal-to-clutter ratio, but in the latter, the clutter is estimated else-
where in space instead of time. All these amplitude-based selection methods work prop-
erly for very bright pixels, and are therefore effective in urban areas with many bright
reflections from buildings and infrastructure. Furthermore, in order to use amplitude-
based methods, SAR amplitude calibration should be performed prior to PS selection, to
avoid amplitude variations due to sensor characteristics and viewing geometry. Different
calibration methods can be used as described in Laur et al. (2002), and Ketelaar et al.
(2005).

It should be noted that amplitude-based selection is applied usually for initial (a-priori)
selection of PS-pixels. In some PSI methodologies (i.e. in the first category of PSI
methodologies, see sec. 2.2.2.1 and fig. 2.8A), a-posteriori selection is also performed, to
detect reliable pixels among all initially selected PS-candidates. Various selection criteria
exist, some of which analyze the spatio-temporal consistency of the final unwrapped
time-series with respect to the surrounding PS (Hooper et al., 2004), while others use
the deviation of the time-series from a predefined deformation model as criterion for final
selection (Ferretti et al., 2001). The most common indicator is the ensemble coherence5

which is defined as:

γ̂ens = 1
N

∣∣∣ N∑
i=1

exp
(
j
(
φ̂i − φmodel

i

))∣∣∣ (2.25)

where N is the number of interferograms, φ̂i the unwrapped interferometric phase in the
ith interferogram after unwrapping and atmospheric-signal mitigation, and φmodel

i is the
estimated phase time-series based on a pre-assumed model. PS-pixels are identified by
thresholding on γens. There are other indicators also for final selection, such as spatio-
temporal consistency (Hanssen et al., 2008), and variance factor (Kampes and Hanssen,
2004; Kampes and Adam, 2006). A comprehensive review on a-posteriori PS selection
methods can be found in van Leijen (2014) and Crosetto et al. (2016).

An alternative approach for PS-selection is presented by Hooper et al. (2004, 2007) and
is used in the second category of PSI methodologies (see sec. 2.2.2.1 and fig. 2.8B). This
method directly analyses phase values. For each pixel, the phase contribution of spatially
correlated signals (i.e., atmosphere, deformation, and orbital errors) are estimated by
band-pass filtering the surrounding PS-pixel. The spatially uncorrelated signals, e.g

5For analytical definition of coherence parameter, see sec. 3.2.2
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Figure 2.13: Phasor for a PS-pixel
in an SLC image: s (signal) is the
deterministic contribution of a point
scatterer within a resolution cell, and
σn the standard deviation of the noise
component induced by the contri-
bution of all other elementary scat-
terers. Assuming noise with cir-
cular complex Gaussian distribution
(whose 1-3σ contours has been plot-
ted) and for small σψ , we have:
tan(σψ)=σn/µA=σA/µA. This ra-
tio is defined as amplitude disper-
sion. For large amplitudes (i.e. bright
point scatterers) or low noise, we have
tan(σψ)≈σψ , and so the normalized
amplitude dispersion can be used as an
indicator for the phase standard devi-
ation.

due to topographic variations, are estimated based the correlation with perpendicular
baselines. Subtraction of both the estimated spatially correlated and uncorrelated signals
yields a time-series of residuals for a pixel. These residuals can be interpreted as estimates
of decorrelation noise for a pixel in every interferogram. In order to combine the residuals
in one scalar measure, an equivalent spatio-temporal coherence (γst) is introduced as
(similar to ensemble coherence)

γ̂st = 1
N

∣∣∣ N∑
i=1

exp
(
j
(
φi − φ̂sci − φ̂

topo
i

))∣∣∣ (2.26)

where N is the number of interferograms, φi the interferometric phase in the ith in-
terferogram, and φ̂sci and φ̂topoi the estimates of spatially correlated and uncorrelated
(mainly topographic) phase, respectively. PS-pixels are identified by thresholding on γst.
Note that in order to estimate spatially correlated signal based on surrounding PS-pixels,
the location of adjacent PS-pixels should be known beforehand . To solve this problem,
Hooper et al. (2004) proposed an iterative algorithm initialized by selection of adjacent
PS-pixels based on amplitude dispersion index.

DS-pixel selection
For methodologies which focus on distributed scatterers, often the estimate of spatial
coherence is used to select coherent DS-pixels (Touzi et al., 1999). Assuming an inter-
ferogram constructed from master PM and slave images PS , the spatial coherence for a
pixel k is estimated as

γ̂k =

∑
i∈Ω

PM,iP
∗
S,i√( ∑

i∈Ω
|PM,i|2

)( ∑
i∈Ω
|PS,i|2

) , (2.27)

where Ω is the set of surrounding/adjacent pixels. Ω can be selected as a square window
around the pixel, or as adjacent pixels with similar scattering mechanism as pixel k (see
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Figure 2.14: Simulated scatter plot
of the relation between amplitude dis-
persion and phase standard deviation
(Ferretti et al., 2001). A complex vari-
able z = s + n is simulated for 3000
points in the stack of 50 SAR images.
The signal was fixed to s=1, while
the noise component n was simulated
3000 times with a standard deviation
of the real and imaginary parts ran-
domly chosen between 0 and 0.8. The
plot shows that small values of the nor-
malized amplitude dispersion are good
estimates of the phase standard devi-
ation.

sec. 2.4 for more information on selection of similar adjacent pixels). In a stack of
interferograms, the stability of spatial coherence in time (or in stack of interferograms)
is used for the selection of coherent DS-pixels.

An alternative approach has been proposed by Hooper (2008) to select DS pixels. This
approach is the same as the PS-selection method of Hooper et al. (2004) based on spatial
phase consistency, however it uses SB filtered interferograms instead of a single-master
and single-look stack. Furthermore, for the initial selection of DS-pixels (in order to
initiate the selection or to reduce computational burden), Hooper (2008) introduced a
new amplitude-based indicator, called amplitude difference dispersion which is defined
as

D∆A = σ∆A

µA
, (2.28)

where µA is the mean amplitude, and σ∆A the standard deviation of amplitude differ-
ences between master images and slave images. Compared to the normalized amplitude
dispersion (see eq. (2.24)), D∆A is better approximation of phase stability if spectral
filtering has been applied on interferograms (for more information see auxiliary materials
of Hooper (2008)).

In multi-baseline methodologies which include the ESM-phase estimation, a-posteriori
selection of DS-pixels is also performed based on the evaluation of residuals of the
estimation. For example, in the SqueeSAR (Ferretti et al., 2011b), the an ensemble
coherence estimator is introduced for assessing the quality of ESM-phase estimation and
selecting reliable DS-pixels. See sec. 2.5 for more information on ESM-phase estimation
methodologies.

2.3.2 Spatio-temporal unwrapping

One of the most crucial processing blocks in TInSAR methodologies is the phase un-
wrapping. It is crucial because the problem is inherently ill-posed and non-unique, see
sec. 2.1.3 . As a consequence, a-priori information or assumptions about the signals of
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interest should be introduced in order to solve the unwrapping problem. Some methods
assume a pre-defined kinematic behavior in time, and so they solve the problem primar-
ily in the time domain (i.e., 1D unwrapping), while other methods assume a predefined
spatial deformation behavior and solve the problem mainly in the spatial domain.6

The most common unwrapping approach in PSI methodologies (Ferretti et al., 2000,
2001; Adam et al., 2003; Kampes, 2005; van Leijen, 2014) uses assumptions on the
relative deformation behavior of nearby PS-pixels (or arcs) in time, and so defines the
problem mainly in time domain. The advantage of using relative phases between two
nearby pixels (i.e. arc phases) is that the contribution of atmospheric and orbital er-
rors will be then minimal due to their high spatial correlation. In this method, phase
time-series per arc are unwrapped relative to the assumed pre-defined temporal kine-
matic model (usually a constant velocity model is used, but in principle other models
such as periodic models or higher order polynomials can be also assumed) by simultane-
ously estimating model parameters and relative topographic phase. After the temporal
unwrapping of all the arcs, temporally unwrapped phases are integrated spatially per
interferogram in order to obtain final unwrapped time-series with respect to a common
reference point. Various algorithms exist for arc-based temporal unwrapping. A compre-
hensive overview is given by van Leijen (2014), and different approaches can be found in
Ferretti et al. (2001); Hooper et al. (2004); Kampes and Hanssen (2004), and Cuenca
et al. (2011).

Another unwrapping method, mainly used in the second category of PSI methodologies
(see sec. 2.2.2.1 and fig. 2.8B), applies unwrapping in both time and space. The main
strategy is to unwrap every interferogram spatially by the minimum cost flow (MCF)
approach (Chen, 2001). However, before spatial unwrapping by MCF, all the arc phases
are first unwrapped in time (assuming no phase jump larger than π between two adjacent
acquisitions), and then the unwrapped phases are used to assign, per arc, the parameters
of the cost function required by MCF method. In other words, the output of the 1D
temporal unwrapping is used to guide the 2D unwrapping in space, and so this method
sometimes is called 1D+2D unwrapping. More information can be found in Hooper
(2006), and Hooper (2010).

For SBAS methodologies, unwrapping is mainly applied in the spatial domain per SB in-
terferogram, followed by ESM-phase estimation from unwrapped interferometric phases
for each detected pixel. For an overall discussion on different 2D unwrapping meth-
ods, see sec. 2.1.3. In addition to all the aforementioned unwrapping methods, full
3D methodologies (Hooper and Zebker, 2007; Pepe and Lanari, 2006) have been also
introduced. More advanced formulations of phase unwrapping have been presented by
Shanker (2006); Shanker and Zebker (2010) and Costantini et al. (2012), providing a
possibility to easily insert a-priori knowledge (e.g., information about the locations of
phase discontinuities) into the unwrapping mathematical model in order to improve un-
wrapping over challenging data sets, for example in areas with a sparse grid of coherent

6It should be noted that whatever method is used (1D or 2D), the ambiguities (i.e. the unknown
integer number of phase cycles) always, and in all unwrapping methods, are estimated for phase differ-
ences in time and space or, in other words, double difference phases. Hence unwrapping is essentially
always performed in 3D, in both space and time. From this perspective the popular terminologies such
as "1D unwrapping" or "2D unwrapping" may be misleading.
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pixels and complicated deformation patterns.

It should be noted that the result of spatio-temporal unwrapping, is the unwrapped
time-series per selected pixel with respect to a reference point in space. The choice of
reference point is arbitrary, because the relative accuracy between points does not depend
on the reference choice. However, for interpretation, it is more convenient to choose
the reference point (or reference area) at stable locations that are assumed to be not
affected by any deformation. As a consequence, the final results of TInSAR are always
relative to the chosen reference. For absolute interpretation, the deformation time-series
have to be connected to an external datum, see, e.g., Mahapatra et al. (2015).

2.3.3 Atmospheric-signal mitigation

The atmospheric signal of one interferogram is usually called the atmospheric phase
screen (APS) in InSAR literature (Ferretti et al., 2001). The goal of atmospheric-signal
mitigation is to estimate and subsequently filter out the APS for all the interferograms
in an InSAR stack.

Generally speaking, atmospheric-signal mitigation is an optional step in TInSAR method-
ologies. While some methodologies (Kampes and Adam, 2006) maintain atmospheric
signal in the final time-series and do not remove it, other methods (Ferretti et al., 2000;
van Leijen, 2014) estimate and remove the APS from the final results and provide atmo-
spheric time-series as additional by-product of TInSAR. Some methodologies, cf. Hooper
et al. (2004) and Hooper (2008), filter out the atmospheric signal in the processing chain
just in order to facilitate the unwrapping step, but after unwrapping add it back to the
time-series and provide the final results containing atmospheric signal.

APS estimation is always done using a set of unwrapped data and some assumptions on
the spatio-temporal characteristics of different signal components, mainly deformation
and atmosphere. The most common approach is presented in Ferretti et al. (2000) and
later adopted by Berardino et al. (2002); Mora et al. (2003); van Leijen (2014). Once
the unwrapped phases are obtained for the set of coherent pixels (for example 1st order
PS candidates), atmospheric delay phases can be filtered out. Topographic phase and
modeled deformation (e.g., constant velocity) are estimated and subtracted from the
time-series, resulting in residual phases including atmospheric signal, unmodeled defor-
mation, orbit errors, and noise. In the filtering step, the contribution of atmosphere
(and orbits) is separated from the unmodeled deformation using a high-pass filter on the
residual phases per point time-series. This is based on the assumption that the atmo-
spheric signal is uncorrelated in time, whereas the unmodeled deformation is temporally
correlated. The result of the high-pass filter is a residual phase time-series containing
atmospheric and orbital errors plus noise. Then, the APS for the whole scene per in-
terferogram is estimated using an interpolation method such as Kriging, accounting for
spatial correlation of the atmospheric signal by modeling the spatial dependency via a
covariance function. This interpolation acts as a low pass filter in the spatial domain.
As atmospheric signal is spatially correlated (in contrast to noise which has no spatial
correlation), Kriging with nugget filtering is used to simultaneously interpolate and also
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exclude the noise effect. The accuracy of the obtained APS mainly depends on the
number of images and the density of the detected PS/DS-pixels (Liu, 2012).

Temporally uncorrelated atmosphere is the the key assumption in most atmospheric-
signal mitigation methodologies. However, this assumption only holds for the turbulent-
mixing component of the atmospheric signal, see sec. 2.1.2.2. In contrast, the ver-
tical stratification component may show some degree of seasonal correlation. Taking
advantage of strong correlation between vertical stratification and topography, some
methodologies (Ferretti et al., 2005; Samiei-Esfahany et al., 2008; Liu, 2012) have been
proposed to estimate vertical stratification as an additional parameter per interferogram
using a known topographic model (DEM).

Note that generally for atmospheric-signal mitigation, not only assumptions on the
spatio-temporal variability of APS are required, but also some a-priori information about
the deformation signal (which is sometimes not available a-priori). This is important,
because deformation is the main signal of interest in most of the TInSAR applications.
Therefore, the potential over/under-etimation or over/under-smoothing of deformation
time-series due to wrong assumptions on deformation signal in atmospheric-signal mit-
igation step is not desired. This is the main reason behind the idea of keeping (not
removing) the atmospheric-signal in the final time-series in some methodologies and in-
stead explaining the APS effect in a stochastic manner in the quality description of the
results. Liu (2012) introduced an iterative algorithm in order to jointly estimate different
signal components and also estimate the stochastic parameters of both deformation and
atmospheric signals using variance component estimation.

In addition to methodologies which are based on estimating and filtering the atmospheric-
signal, it is also possible to mitigate this signal using ancillary data. Examples of using
meteorological data, optical remote sensing, and GPS measurements to evaluate In-
SAR atmospheric-signal can be found in Delacourt et al. (1998); Hanssen et al. (1998);
Williams et al. (1998); Beauducel et al. (2000); van der Hoeven et al. (2002); Li et al.
(2004, 2005, 2006b,a); Onn and Zebker (2006). The limitations of most of these meth-
ods is their limited coverage due to, e.g, obstruction by clouds, or their lower resolution
compared to InSAR data. Recent developments in numerical weather modeling have
provided a new source of auxiliary information for InSAR atmospheric-signal mitiga-
tion (Wadge et al., 2002; Webley et al., 2002; Foster et al., 2006; Puysségur et al.,
2007; Rommen et al., 2009; Nico et al., 2011; Hobiger et al., 2010; Jolivet et al., 2011;
Liu et al., 2011; Cimini et al., 2012). Comprehensive validation of APS estimates pro-
vided by numerical weather models (NWMs) shows effective APS signal estimation in
mountainous regions, and hence good estimation of vertical stratification (Liu, 2012).
Regarding turbulent mixing, the validation study showed that NWMs constantly under-
estimate the atmospheric delay variations, and are therefore not capable of providing an
accurate and reliable APS prediction.
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Figure 2.15: Schematic representation of the brotherhood selection algorithm for an arbitrary pixel p.
A testing area is defined around p. Then all the pixels within the testing area are tested to see they
have the same statistics as p. The pixels which pass the test are accepted as brothers of p and shape
the averaging area used in multilooking.

2.4 Filtering: adaptive multilooking for distributed scatterers

The objective of filtering in TInSAR methodologies is to enhance the SNR of the obser-
vations by reducing decorrelation. As a consequence only TInSAR methodologies which
exploit DS (e.g. SBAS and hybrid methodologies) incorporate a filtering step. Filter-
ing approaches are either based on spectral filtering or spatial complex multilooking.
Overview and details of both spectral filtering and complex multilooking were discussed
in the sec. 2.1.3. Recent advances in multilooking are e.g. adaptive multilooking (Fer-
retti et al., 2011b). As discussed in sec. 2.1.3, complex multilooking is applied by spatial
averaging over pixels that are assumed to be statistically homogeneous. In adaptive mul-
tilooking, a homogeneous area around each pixel is identified using a testing strategy.
There are various testing strategies available for identification of statistically homoge-
neous pixels (SHP). Because adaptive multilooking is a crucial step for DS-pixels, we
review the concept of adaptive multilooking and the details of different testing strategies
in the following.

The idea of adaptive multilooking is to identify and use a representative and homoge-
neous estimation area (labeled brotherhood by Ferretti et al. (2011b)) around each pixel
in spatial averaging. Adaptive multilooking is a common practice in amplitude-based
SAR remote sensing and in polarimetric applications with the purpose of improving
image quality without losing spatial details. For example, for application to only one in-
terferogram, there are different space-adaptive filters introduced in literature (Lee et al.,
2003; Deledalle et al., 2011; Vasile et al., 2004, 2006). Applying these methods on a
stack of images may result in a different estimation window for each pixel in different
interferograms, and therefore inconsistent multilooking.

New methods have been introduced in order to select homogeneous brotherhood area in
a stack of images (Ferretti et al., 2011b; Parizzi and Brcic, 2011; Jiang et al., 2014b,a).
Fig. 2.15 shows a schematic representation of a brotherhood selection algorithm for an
arbitrary pixel p. First, a testing area is defined around p. All the pixels within the testing
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area are tested to see whether they have the same amplitude statistics as p. The pixels
which passed the test are accepted as brothers of p and collectively shape the averaging
area used in multilooking. A brother pixel is identified by statistical hypothesis testing of
the null hypothesis that the two pixels are a realization of the same stochastic process,
against the alternative hypothesis that the pixels have different statistics. Different kind
of parametric or non-parametric testing strategies exist for such a brotherhood selection.
In this section we review some of these strategies.

2.4.1 Non-parametric tests for brotherhood selection

Non-parametric approaches for brotherhood selection are based on testing two data
samples without any assumption on their probability distribution, such as the Kullback-
Leibler divergence test (Bishop, 2006), the two sample Kolmogorov-Smirnov (KS) test
(Stephens, 1970), and the Anderson-Darling (AD) test (Pettitt, 1976). Here, we discuss
the latter two of these tests (i.e. KS and AD) which are applied most commonly in
InSAR processing.

Two-sample Kolmogorov-Smirnov test
The Two-sample Kolmogorov-Smirnov (KS) test is a form of non-parametric test which
tests the equality of the probability distributions of two data samples (i.e., the null
hypothesis is that two samples have the same distribution) (Stephens, 1970; Press et al.,
1989; Papoulis, 1991; Kvam and Vidakovic, 2007). This test has been proposed for
InSAR adaptive multilooking by Ferretti et al. (2011b). If Ap and Aq are the amplitudes
of pixels p and q, respectively, the null and alternative hypotheses are defined as:

H0 : FAp(A) = FAq (A), Ha : FAp(A) 6= FAq (A), (2.29)

where F.(.) is the cumulative distribution function (CDF). Assuming strict stationarity,
in a stack of N images, the empirical CDF (ECDF) of the amplitude of pixel Ap can be
computed over the range of amplitudes A as

F̂A
p
(A) = 1

N

N∑
i=1

IAp,i≤A (2.30)

where IAp,i≤A is the indicator function, equal to 1 if IAp,i≤A and equal to 0 otherwise.
The KS test statistic is defined as the maximum distance between the empirical distri-
bution functions of the two samples. For two samples Ap and Aq with ECDF of F̂Ap(A)
and F̂A

q
(A), the KS test statistic is defined as:

Tks = sup
A
|F̂A

p
(A)− F̂A

q
(A)| (2.31)

where supA is the supremum of the set of distances, see fig. 2.16. The distribution of
test statistic Tks converges to Kolmogorov distribution for N > 8 (Stephens, 1970). By
setting a level of significance α, the null hypothesis is rejected if

Tks >

√
2
N
kα, (2.32)
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where kα is the α percentile of the Kolmogorov distribution (Stephens, 1970; Press et al.,
1989; Kvam and Vidakovic, 2007). The threshold kα is computed from the CDF of the
Kolmogorov distribution in order to satisfy

Pr(Tks ≤ kα) = 1− α. (2.33)

where the Kolmogorov CDF is given by (Stephens, 1970):

Pr(Tks ≤ kα) = 1− 2
∞∑
n=1

(−1)n−1 exp(−2n2k2
α). (2.34)

Fig. 2.17 shows the values of kα as a function of the level of significance α. In Ferretti
et al. (2011b), it has been noted that the KS test is invariant under reparameterization
of amplitudes, and so the same level of significance is obtained by using the KS test on
amplitude, intensity, or their logarithmic units (in dB).

Anderson-Darling test
The Anderson-Darling (AD) test is another non-parametric test which applied for InSAR
adaptive multilooking (Parizzi and Brcic, 2011; Wang et al., 2011; Goel and Adam,
2014). The AD test has the same null and alternative hypotheses as the KS test, see
eq. (2.29). Similar to the KS test, the AD test statistic is also based on the difference
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between the ECDF of two data samples (Pettitt, 1976):

TAD = N

2
∑
A

(
F̂A

p
(A)− F̂A

q
(A)
)2

F̂Ap,q (A)
(
1− F̂Ap,q (A)

) (2.35)

where F̂Ap,q (A) is the ECDF computed from combined dataset of two pixels p and q.
The distribution of TAD is more complicated than in the KS test, and there is no closed-
form and exact solution for it. Detailed explanation on the approximation of the AD test
statistics and how to choose a testing threshold based on level of significance can found
in Pettitt (1976) and Scholz and Stephens (1987). Compared to the KS approach, the
AD test gives more weight to the tails of distributions. It was demonstrated by Parizzi
and Brcic (2011) that AD test has a better performance than other non-parametric tests
for brotherhood selection in SAR stacks.

The main disadvantage of non-parametric tests like AD and KS is their high computa-
tional load due to computation of ECDF for each pixel. The ECDF computational load
is increased by the number of images, and so can be cumbersome in large data stacks
(e.g. N > 100). This is the main motivation to develop parametric tests with less
computational burden for brotherhood selection.

2.4.2 Parametric tests for brotherhood selection

Contrary to non-parametric tests, parametric tests are designed assuming a known prob-
ability distribution function of data samples. The most common distribution for InSAR
applications is the complex circular Gaussian distribution, assuming distributed scattering
mechanism (Madsen, 1986; Sarabandi, 1992). The amplitude of a variable with a com-
plex Gaussian distribution has Rayleigh distribution (Davenport and Root, 1987). Here
we discuss two amplitude-based testing strategies assuming the Rayleigh distribution:
testing the mean and testing the variance of amplitude.

Testing the amplitude mean
Assuming a distributed scattering mechanism with circular Gaussian distribution of vari-
ance σ2

n , the amplitude of SAR images has a Rayleigh distribution with probability
distribution function (Papoulis, 1968; Abramowitz and Stegun, 1970)

fA(A) = A

σ2
n

exp(− A2

2σ2
n

), (2.36)

having mean and variance

E{A} = µA =
√
π

2 σn, D{A} = σ2
A = 4− π

2 σ2
n, (2.37)

where E{.} and D{.} denote the expectation and dispersion operators, respectively.
Based on this definition, the ratio between standard deviation and mean amplitude,
called coefficient of variation (CV) (Jiang et al., 2014a), is constant:

CVA =
√
D{A}
E{A}

=
√

4− π
π
≈ 0.52. (2.38)
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If we have N SAR images, the mean amplitude Āp for a pixel p is computed as

Āp = 1
N

N∑
i=1

Ap,i. (2.39)

Assuming N to be a large number, according to the central limit theorem, the estimated
mean Āp has a Gaussian distribution with mean and variance

E{Āp} = µAp =
√
π

2 σn, D{Āp} =
σ2
Ap

N
= 4− π

2N σ2
n. (2.40)

In order to test whether a pixel q is a brother of pixel p, the null and alternative hypotheses
are defined as:

H0 : E{Āq} = µAp , Ha : E{Āq} 6= µAp . (2.41)

Under the null hypothesis, the distribution of Āq can be written as

Āq ∼ N(µAp ,
σ2
Ap

N
). (2.42)

By subtracting µAp from Āq and dividing by standard deviation
√

σ2
Ap

N , the test statistic
is defined as:

Tmean =
(Āq − µAp)

√
N

σAp
, (2.43)

where Tmean now has a standard normal distribution (i.e. Tmean∼N(0, 1)). Therefore
the null hypothesis is rejected if

|Tmean| > kα/2, (2.44)

where α is the level of significance and kα/2 the α/2 percentile of the standard normal
distribution. For the computation of Tmean, the values of µAp and σAp are required.
Jiang et al. (2014a) proposed the following iterative algorithm for defining these values
and selecting the brother pixels:

1. define a testing window around the pixel p,

2. estimate µAp as µ̂Ap=Āp (see eq. (2.39)),

3. approximate σAp as σ̂Ap ≈ 0.52µ̂Ap , (based on eq. (2.38))

4. evaluate the test statistics Tmean for all the pixels in the testing window (us-
ing eq. (2.43)), and select brother pixels by applying hypothesis testing (using
eq. (2.44)),

5. re-estimate µ̂Ap by averaging the mean amplitudes of all the selected brothers,
and

6. repeat steps 3 and 4 with the new estimate µ̂Ap .
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Table 2.1: Overview of testing methods for brotherhood selection in SAR stacks.

Null hypothesis (H0)
Method Alternative hypothesis (Ha) Properties

Test statistics (T )

Kolmogorov-Smirnov
(Ferretti et al., 2011b)

H0 : FAp (A)=FA
q
(A)

Ha : FA
p

(A) 6=FA
q
(A)

Tks: eq. (2.31)

- Non-parametric test
- Not powerful for small stacks (N<10)
- Computationally expensive for very large stacks

Anderson-Darling
(Parizzi and Brcic,
2011; Wang et al.,
2011; Goel and Adam,
2014)

H0 : FAp (A)=FAq (A)
Ha : FAp (A) 6=FAq (A)
TAD : eq. (2.35)

- Non-parametric test
- Not powerful for small stacks (N<10)
- Computationally expensive for very large stacks
- Better performance than KS test
- Recommended for stacks with medium size
(10<N<100)

Testing the mean
(Jiang et al., 2014a)

H0 : E{Ā
q
}=µAp

Ha : E{Āq}6=µAp
Tmean: eq. (2.43)

- Parametric test
- Assumes Rayleigh distribution
- Computationally efficient even for large stacks
- Valid only for large N
- Recommended for large stacks (N>100)

Testing the variance
(Parizzi and Brcic,
2011)

H0 : σ2
Ap

=σ2
Aq

Ha : σ2
Ap
6=σ2

Aq

Tvar: eq. (2.46)

- Parametric test
- Assumes Rayleigh distribution
- Computationally efficient even for large stacks
- good performance on small stacks
- Recommended for small stacks (N<10)

This testing approach has lower computational complexity than non-parametric tests
(e.g., KS and AD tests) because the test statistic (i.e. Tmean in eq. (2.43)) is only
dependent on the amplitude mean and variance which can be computed faster and
much more simply than the amplitude ECDF. The main assumption used in this testing
approach is the Gaussianity of the test statistics which is valid only for large number
of images (based on the central limit theorem). Therefore, this testing approach is
recommended for large SAR stacks in which the computation of non-parametric tests is
computationally expensive.

Testing the amplitude variance
Another parametric test is introduced for brotherhood selection in SAR stacks by Parizzi
and Brcic (2011). Like the testing-the-mean concept, here also the Rayleigh distribution
is assumed for SAR amplitudes. However, the null and alternative hypotheses are defined
here based on the amplitude variance of the two pixels p and q (instead of the mean
amplitude):

H0 : σ2
Ap = σ2

Aq , Ha : σ2
Ap 6= σ2

Aq . (2.45)

Based on this formulation of hypotheses and by applying the the concept of generalized
likelihood ratio test (GLRT) (Papoulis, 1991), the test statistic is introduced as (Parizzi
and Brcic, 2011)

Tvar = N
(

2 ln(σ̂2
Apq )− ln(σ̂2

Ap)− ln(σ̂2
Aq )
)
, (2.46)

where σ̂2
Ap

and σ̂2
Aq

are the estimated variances from the N amplitudes of pixels p and
q, respectively. The variance factor σ̂2

Apq
is the estimated variance from the pooled
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amplitude samples (i.e., combined set of samples) of the two pixels and can be written
as σ̂2

Apq
= (σ̂2

Ap
+ σ̂2

Aq
)/2.

Based on both simulations and real case studies, Parizzi and Brcic (2011) demonstrated
that for small SAR stacks (e.g. N=10), the testing-the-variance concept is more pow-
erful than non-parametric tests. Regrading computational complexity, this testing ap-
proach, and generally parametric tests are simpler than non-parametric tests as they do
not require the reconstruction of the amplitude ECDF for every pixel.

Table 2.1 summarizes all the parametric and non-parametric testing methods for broth-
erhood selection discussed here.

2.5 ESM-phase estimation for Distributed Scatterers

The equivalent single-master (ESM) phase estimation is another processing block per-
formed only in TInSAR methodologies exploiting multi-master interferogram stacks. The
objective is to estimate, for each detected DS-pixel, a phase time-series equivalent to
a single-master stack from phase differences in a multi-master stack of interferograms.
From a physical point of view, this phase estimation filters out the decorrelation noise
and retrieves the (wrapped or unwrapped) phase time-series corresponding to the phys-
ical path differences between the targets and the sensor (i.e. the phase contributions of
deformation, topography, atmosphere and orbital errors).

In principle this multi-master to single-master estimation can be done after unwrapping
(e.g., in the SBAS method), or before unwrapping (e.g., in the SqueeSAR method),
however with different estimation methodologies. This is because the functional rela-
tionship between the unknowns (i.e. SM phase time-series related to the physical path
difference) and the observations (i.e. multi-master interferometric phases) is different
for the unwrapped and wrapped cases. In the following the mathematical framework
of post-unwrapping ESM-phase estimation is described, followed by a short review of
pre-unwrapping ESM-phase estimation.

2.5.1 Post-unwrapping ESM-phase estimation

In TInSAR methodologies which apply ESM-phase estimation after unwrapping, e.g.
SBAS, the expected value of every unwrapped multilooked interferometric phase (φ̂

unw

nm
)

can be expressed as

E{φ̂
unw

nm
} = ϕunw

om − ϕunw
on . (2.47)

where ϕunw
om and ϕunw

on are the true values of the single-master unwrapped interferometric
phases corresponding to the physical path differences between the targets and the sensor.
In a stack ofN radar images, there are at mostN(N−1)/2 interferometric combinations.
For each pixel, writing eq. (2.47) for all the interferometric combinations defines a linear
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system of observation equations as

E{



φunw
o1
...

φunw
o(N−1)
...

φunw
nm
...


︸ ︷︷ ︸

y

} =



1
. . .

1
...

−1 . . . 1
...


︸ ︷︷ ︸

B

 ϕunw
o1
...

ϕunw
o(N−1)

 ,
︸ ︷︷ ︸

b

(2.48)

where n,m=1 . . . (N−1), y is the observation vector, b the vector of unknown parame-
ters, and B the design matrix depending on the set of multi-master interferograms. This
is the generic model for post-unwrapping ESM-phase estimation, originally introduced
for SBAS (Berardino et al., 2002). Although the most generic case is presented here,
in which all the interferometric combinations are used, the model can be written for
any subset of interferograms. If Mifg denotes the number used of interferograms in the
SB subset (e.g. Mifg=N(N − 1)/2 in the most generic case if using all the possible
interferograms), the matrix B will be an Mifg×(N −1) matrix. For the set of connected
interferograms, the matrix B is of full column rank and the solution of eq. (2.48) is
given by least squares estimation as

b̂ = (BTB)−1BT y. (2.49)

For the cases of a disconnected network of interferograms, the matrix B has a rank
deficiency and the least squares solution does not exist. In the original SBAS method
(Berardino et al., 2002), a minimum norm solution based on singular value decomposition
(SVD) has been proposed for ESM-phase estimation in the presence of a rank deficiency.
Furthermore, a weight matrix can be introduced in the least squares solution to assign
different weights to the multilooked observations, e.g. based on the coherence level of
different interferograms.

As this inversion is applied after unwrapping, unwrapping errors may severely affect
the solution. Hence the post-unwrapping ESM-phase estimation requires reliable phase
unwrapping of every single interferogram prior to the estimation. Unwrapping errors
can be seen as outliers in the estimation. In order to be less influenced by unwrapping
errors (or outliers), Lauknes et al. (2011) have introduced a robust algorithm based on
L1-norm minimization (instead of L2-norm least squares) for the model of eq. (2.48).

2.5.2 Pre-unwrapping ESM-phase estimation

Applying ESM-phase estimation before unwrapping has the advantage of improving the
SNR ratio of the DS-pixels and hence yielding improved unwrapping. From an imple-
mentation point of view, the advantage is that the ESM-phase estimation can be applied
independently of other processing steps such as unwrapping and atmosphere mitigation,
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and in this way it can be simply added as an extension to other SM processing al-
gorithms. For pre-unwrapping ESM-phase estimation, the functional relation between
the observations and the unknown parameters is highly nonlinear due to the wrapping
operation, and so a more advanced estimation methodology is required compared to
post-unwrapping ESM-phase estimation.

There are different estimation methods in InSAR literature for pre-unwrapping ESM-phase
estimation. Some solve the problem by maximum likelihood estimation based on a-
priori/assumed knowledge on the statistical characteristics of DS pixels, e.g. in Monti-
Guarnieri and Tebaldini (2008) and Ferretti et al. (2011b). Other methods describe the
problem as a nonlinear weighted optimization in order to minimize the residuals between
the observations (i.e. multilooked interferometric phase) and modeled observations (i.e.
multi-baseline interferometric phases reconstructed from estimated SM phases) (Ferretti
et al., 2011a; Pepe et al., 2015; Fornaro et al., 2015). In addition to these algorithms,
a heuristic yet effective approach called multi-link InSAR has been also introduced in
Pinel-Puyssegur et al. (2012). The pre-unwrapping ESM-phase estimation is called phase
linking by Monti-Guarnieri and Tebaldini (2008), as the estimated phases are results of
linking or joint processing of all available interferometric phases, and the same concept
is called phase triangulation in SqueeSAR (Ferretti et al., 2011b), as the estimation is
done based on phase consistency (as will be described in chapter. 4).

2.6 Summary

In this chapter, we reviewed the basic concepts of InSAR and different time-series InSAR
methodologies. We introduced a generic framework, consisting of five basic processing
blocks, to describe different time-series processing methodologies in a unified manner.
Detailed explanation of the main processing blocks was discussed. Specific process-
ing steps for utilizing of distributed scatterers (DS), i.e. adaptive multilooking and
ESM-phase estimation were emphasized and described in detail.

As the ESM-phase estimation is the key step for exploiting DS-pixels, a detailed math-
ematical explanation and comparison of different methods and a new proposal for pre-
unwrapping ESM-phase estimation based on geodetic methodology shape the main body
of this thesis (in chapters 4-6). Statistical properties of DS-pixels in SAR/InSAR stacks
play an important role in both ESM-phase estimation and its quality description. We
begin by reviewing the stochastic model for DS in the next chapter.





Stochastic model
for Distributed Scatterers 3
This chapter focuses on the statistical properties of DS-pixels in SAR and InSAR
stacks. We limit the scope of this chapter to single-point statistics (described in
sec. 3.1). We revisit the complex statistics in SAR stacks (sec. 3.2), with special
attention to the coherence matrix as a main metric in the stochastic model of SAR
stacks, and to the different error sources influencing coherence values. In addition,
the phase statistics in a single interferogram are reviewed (sec. 3.3), followed by the
phase statistics in InSAR stacks in terms of second statistical moments or in the
form of a covariance matrix (sec. 3.4). A Monte-Carlo methodology to compute
a full covariance matrix for interferometric phase stacks is introduced (sec. 3.4.4),
followed by the derivation of an analytical closed-form evaluation of InSAR second-
order phase statistics (sec. 3.4.5).

3.1 Noise components in SAR/InSAR stacks

In general, the stochastic model of observations describes the uncertainty in the mea-
surements by means of some statistical tools. Our main focus in this chapter is on
the stochastic aspects of noise/error components in SAR and InSAR stacks with special
attention to DS-pixels. The term "noise", however, may be interpreted loosely as its defi-
nition is application-dependent: one man’s signal is the other man’s noise. From the four
main components of SAR/InSAR phase observations (i.e. the range-dependent compo-
nent, atmospheric signal, the scattering effect, and noise, see Eqs. (2.4) and (2.6)), the
range dependent phase is defined as a signal that includes information about the defor-
mation and topography of the imaged area, and it is usually modeled functionally and is
considered deterministic (or sometimes it is modeled as the summation of a deterministic
model and stochastic deviations from the model), e.g., in Hanssen (2001), Ferretti et al.
(2001), and Kampes and Hanssen (2004). The other components are usually modeled
in a statistical sense by means of a probability distribution function (PDF) or its first
two statistical moments.
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Based on the different spatio-temporal behavior of SAR/InSAR stochastic components,
we analyze and model them independently. The scattering effect and the system noise
mainly affect every single resolution-cell independently, resulting in an insignificant spa-
tial correlation among nonadjacent pixels. Therefore, the stochastic model for these
components can be presented in the single-point level. In contrary, the atmospheric
components (and the unmodeled deformation) have strong spatial correlation (Hanssen,
2001), and therefore, their stochastic model can be defined for multiple-points. As
suggested by Hanssen (2001), focusing on 2nd statistical moments, the full covariance
matrix of SAR/InSAR measurements Q can be approximated as summation of a co-
variance matrix Qn influenced by single-point statistics and an atmospheric covariance
matrix Qatmo affected by multiple-point statistics as:

Q
.= Qn +Qatmo. (3.1)

Considering the exploitation of DS, the key focus in this chapter is on the evalua-
tion/description of single-point statistics. The reason is two-fold. First, the multiple-
point stochasticity mainly describes the variability in atmospheric effects and is the same
for both PS and DS. It is described comprehensively in literature, see section 2.1.2.2.
Second, the equivalent SM-phase estimation, which is the main TInSAR processing block
on DS-pixels, is applied on a pixel-by-pixel basis, where the atmospheric signal is a part
of the range-dependent components, shaping the set of unknown parameters of inter-
est. Therefore in the equivalent SM-phase estimation, multiple-point statistics and the
stochastic aspects of atmospheric signal are not relevant.

In the rest of this chapter, the analysis of single-point statistics, first for SAR (Sec. 3.2),
and then for InSAR stacks (Sec. 3.3 and 3.4) are elaborated.

3.2 Single-point complex statistics for DS in SAR stacks

3.2.1 Physical origin of noise

The reflected signal received from a DS resolution cell is equal to the coherent sum-
mation of the reflections from multitude of elementary scatterers within the cell (see
section 2.1.2.3 and fig. 2.3). In other words, the complex value (phasor) P of a pixel
(with amplitude A and phase ψ) can be written as the complex summation of the phasors
of all the elementary scatterers within the associated resolution cell:

P = A exp(jψ) =
∑
i

Si =
∑
i

ai exp(ςi) =
∑
i

Re(Si) + j
∑
i

Im(Si), (3.2)

where Si, ai, and ςi are the phasor, amplitude, and phase of the ith elementary scatterer
within the cell. The elementary scattering phase ςi is a function of the relative position
and dielectric characteristics of each elementary scatterer. Although the complex phasor
P and its phase and amplitude are intrinsically deterministic quantities, i.e. they are
invariant if the measurements are repeated under the same condition, they are unpre-
dictable and hence they cannot be described mathematically in a deterministic manner,
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and so they are modeled stochastically. Assuming the location and distribution of ele-
mentary scatterers within a resolution cell to be random, the summation of Si values
should result in a phasor P with a Wiener (or random walk) process (Davenport, 1970;
Sarabandi, 1992). For a large number of elementary scatterers, based on the central
limit theorem1, the phasor P is a complex random variable with a circular Gaussian
distribution (Madsen, 1986; Sarabandi, 1992).

3.2.2 Circular Gaussian distribution

Goodman (1976) showed that, under certain assumptions, the complex SLC phasor P
has a zero-mean2 circular Gaussian distribution. These assumptions are (Goodman,
1976; Madsen, 1986; Bamler and Hartl, 1998):

1. the responses of all the elementary scatterers within the resolution cell are inde-
pendent,

2. for each elementary scatterer, the amplitude Ai and phase ςi are independent,

3. the phases ςi are uniformly distributed between −π and π, and

4. all the elementary scatterers produce comparable amplitudes Ai — there is no
dominant scatterer within a resolution cell.

These assumptions generally hold for areas with a surface roughness comparable to
the radar wavelength, and for DS-pixels over homogeneous natural landscapes such as
agricultural fields, forests, and deserts.

Considering a single DS-pixel in a stack of N SAR images, the set of phasors in all the
images can be seen as a multivariate complex random variable y = [P 1 P 2 · · ·PN ]T .
The zero-mean circular complex Gaussian PDF of y is written as (Goodman, 1976;
Hannan and Thomson, 1971; Lee et al., 1994)

fy(y) = 1
πN |Qy|

exp
(
− y∗Q−1

y y
)
, (3.3)

where Qy=D{y}=E{y y∗} is an N×N complex covariance matrix defined by

Qy =


E{|P 1|

2} γ12
√

E{|P 1|2}E{|P 2|2} · · · γ1N
√

E{|P 1|2}E{|PN |2}

γ∗12

√
E{|P 1|2}E{|P 2|2} E{|P 2|

2} · · · γ2N
√

E{|P 2|2}E{|PN |2}
...

...
. . .

...
γ∗1N

√
E{|P 1|2}E{|PN |2} γ∗2N

√
E{|P 2|2}E{|PN |2} · · · E{|P

N
|2}

 .
(3.4)

1Central limit theorem: Let x1, · · · , xn be independent random variables/vectors and let z =∑n

i=1 xi. Then under general conditions, the distribution of z approaches the (multivariate) normal
distribution as n increases (n→∞).

2Here zero-mean refers to representation in real and imaginary components of the phasor.
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In this formulation, the γ values are the complex correlation coefficients (called coher-
ence values) between pair of images. The coherence value between Pi and Pj is defined
as (Born et al., 1959; Foster and Guinzy, 1967; Papoulis, 1991)

γij =
E{P iP

∗
j}√

E{|P i|2}E{|P j |2}
= |γij |exp(jφ0ij ), (3.5)

where the phase of the complex coherence, φ0ij∈[−π, π), is the phase of the expectation
of the complex interferometric product P iP

∗
j . The absolute coherence |γij |∈[0, 1] is a

measure of the correlation between the noise components of Pi and Pj . When the
coherence is high, the noise components in Pi and Pj have a higher similarity, and so a
large portion of the noise components will be canceled out in the interferometric phase.
Consequently, the absolute coherence is also a normalized measure of the dispersion of
the interferometric phase noise. The complex correlation matrix of the vector y is called
the coherence matrix and is defined as

Γy =


1 γ12 · · · γ1N
γ∗12 1 · · · γ2N
...

...
. . .

...
γ∗1N γ∗2N · · · 1

 . (3.6)

Note that the coherence matrix Γy is a Hermitian matrix3. Using the definition of
the coherence matrix (Eq. (3.6)), the covariance matrix Qy (see Eq. (3.4)) can be
reformulated as:

Qy = Γy ◦


E{|P 1|2}

√
E{|P 1|2}E{|P 2|2} · · ·

√
E{|P 1|2}E{|PN |2}√

E{|P 1|2}E{|P 2|2} E{|P 2|2} · · ·
√

E{|P 2|2}E{|PN |2}
...

...
. . .

...√
E{|P 1|2}E{|PN |2}

√
E{|P 2|2}E{|PN |2} · · · E{|PN |2}


︸ ︷︷ ︸

Ī

,

(3.7)
where ◦ represents the Hadamard (i.e., entry-wise) product, and the matrix Ī is the
expectation power matrix whose elements are defined by

Ī[i,j]=ζij =
√
ζiiζjj=

√
E{|P i|2}E{|P j |2}. (3.8)

In table 3.1, the complex PDF of y, its first two statistical moments, and its coherence
matrix are summarized.

In addition to the PDF formulation of eq. (3.3), some other alternative formulations can
be also found in SAR literature. In the following, we review two alternative formulations
which are used in the next chapters of this thesis.

3A Hermitian matrix is a complex square matrix that is equal to its own conjugate transpose.
Hermitian matrices are the complex counterparts of symmetric matrices for real numbers. Note that
the real part (and the absolute) of a Hermitian matrix is a symmetric matrix, but its imaginary part
(and its phase) is a skew-symmetric matrix: its transpose is equal to its negative.
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Table 3.1: Overview of the PDF, expectation, (co)variance, and coherence for single-pixel values in a
SLC stack of N images (i.e, for y = [P 1 P 2 · · ·PN ]T ). All attributes in this table are complex-valued.

First moment Second moment Coherence
PDF: fy(y) (Expectation) (Dispersion)

1
πN |Qy|

exp
(
−y∗Q−1

y y
)

E{y} = [0 0 · · · 0]T
where 0 = 0 + j0

D{y} = Qy
Qy[i,i] = E{|P i|

2}
Qy[i,j] = γij

√
E{|P i|2}E{|P j |2}

Corr{y}=Γy
Cy[i,i] = 1
Cy[i,j] = γij

First Alternative formulation of PDF of y:
The complex N×1 vector y = [P 1 P 2 · · ·PN ]T , can be viewed as a 2N×1 real valued
random vector z defined by:

z =
[

Re(P 1), Re(P 2), · · · , Re(PN )︸ ︷︷ ︸
Re(yT )

Im(P 1), Im(P 2), · · · , Im(PN )︸ ︷︷ ︸
Im(yT )

]T
. (3.9)

The complex circular Gaussian distribution satisfies the following conditions (Lee et al.,
1994):

E
{

Re(Pi)
}

= E
{

Im(Pi)
}

= 0

D
{

Re(Pi)
}

= D
{

Im(Pi)
}

Corr
{

Re(Pi), Im(Pi)
}

= 0 (3.10)

Corr
{

Re(Pi),Re(Pj)
}

= Corr
{

Im(Pi), Im(Pj)
}

= |γij |

Corr
{

Re(Pi), Im(Pj)
}

= −Corr
{

Re(Pj), Im(Pi)
}
.

As all the real and imaginary components are normally distributed, the vector z also
has a multivariate Gaussian distribution. The PDF of the complex circular Gaussian
distribution of vector y ∈ C can be written as the joint PDF of its real and imaginary
components, or, in other words, as the PDF of the random vector z, with z ∈ R (Dainty,
1975; Davenport and Root, 1987):

fy(y) = fz(z) = 1√
(2π)2N |Qz|

exp
{
− 1

2z
TQ−1

z z
}
, (3.11)

cf. eq. (3.3). The real-valued covariance matrix Qz is then related to the complex-valued
covariance matrix Qy as

D{z} = Qz = 1
2

[
Re(Qy) − Im(Qy)
Im(Qy) Re(Qy)

]
, (3.12)

where

Re(Qy) = Ī ◦


1 |γ12| cos(φ012) · · · |γ1N | cos(φ01N )

|γ12| cos(φ021) 1 · · · |γ2N | cos(φ02N )
...

...
. . .

...
|γ1N | cos(φ0N1) |γN2| cos(φ02N ) · · · 1

 , (3.13)
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and

Im(Qy) = Ī ◦


0 |γ12| sin(φ012) · · · |γ1N | sin(φ01N )

|γ12| sin(φ021) 0 · · · |γ2N | sin(φ02N )
...

...
. . .

...
|γ1N | sin(φ0N1) |γ2N | sin(φ0N2) · · · 0

 . (3.14)

Note that, if the phase is zero (i.e.,φ0ij=0), the covariance matrix Qz reduces to

Qz = 1
2

[
Ī 0
0 Ī

]
◦
[

Υ 0
0 Υ

]
, (3.15)

where Υ is an N×N absolute coherence matrix whose elements are given as Υ[i,j]=|γij |.
Equation 3.11 gives the first alternative formulation of the PDF of y, cf. eq. (3.3).

Second Alternative formulation of PDF of y:
By decomposing the phase of expectation of interferometric values (φ0ij ) into the sep-
arate contributions ϕi and ϕj from images i and j, the complex coherence values of
eq.(3.5) can be written as

γij = |γij |exp
(
j(ϕi − ϕj)

)
. (3.16)

Note that the phase values ϕi and ϕj should not be interpreted as the expectation value
of SLC phases. In fact, the SLC phases are uniformly distributed between −π and π and
so they have zero expectation. The phase values ϕi and ϕj can be interpreted as the
deterministic part of SLC phases (i.e., the summation of range dependent component and
atmospheric signal). Based on the formulation of eq. (3.16), the coherence matrix Γy
can be written in the following alternative form (Monti-Guarnieri and Tebaldini, 2007):

Γy = ΨΥΨ∗, (3.17)

where Υ is the N×N absolute coherence matrix, and Ψ is an N×N diagonal complex
matrix defined by

Ψ = diag
(

exp(jϕ1), exp(jϕ2), · · · , exp(jϕN )
)
. (3.18)

Now, the PDF of y (see eq. (3.3)) can be formulated as

fy(y) = 1
πN |ΨΥΨ∗ ◦ Ī|

exp
(
− y∗(ΨΥΨ∗ ◦ Ī)−1y

)
. (3.19)

It is known that the determinant of the coherence matrix (i.e., |Γy| or |ΨΥΨ∗|) is
invariant with respect to the phase values in Ψ (Monti-Guarnieri and Tebaldini, 2008).
Hence the conditional PDF of y, conditioned on the phase values in Ψ, can be generally
written as

fy(y|Ψ) = c · exp
(
− y∗(ΨΥΨ∗ ◦ Ī)−1y

)
, (3.20)

where c is a constant value. For an SLC stack with normalized amplitudes, the matrix
Ī is an all-ones matrix, and therefore:

fy(y|Ψ) = c · exp
(
− y∗ΨΥ−1Ψ∗y

)
. (3.21)



3.2 Single-point complex statistics for DS in SAR stacks 61

Equations (3.20), (3.11), and (3.3) are equivalent representations of the circular Gaussian
PDF for DS-pixels in SLC tacks. In a single SLC image, this PDF reduces to a more
simplified form and the marginal PDF of amplitude, intensity, and phase values can be
also derived, as will be discussed in the following section.

3.2.3 Single-point statistics for a single SLC image

Assuming only one SAR image (i.e., N=1), eq. (3.3) is simplified and the PDF of the
complex value y of a single DS-pixel can be written as (Dainty, 1975; Davenport and
Root, 1987)

fy(y) = 1
π2σ2 exp

(
− Re(y)2 + Im(y)2

2σ2

)
, (3.22)

where

σ2 = σ2
Re(y) = σ2

Im(y) =
E{|y|2}

2 . (3.23)

The variance factor σ2 is directly proportional to the expectation of intensity/power of
the DS resolution cell, and subsequently the expectation of intensity is generally related
to the radar cross section (i.e., σ0) of elementary scatterers within the cell (Madsen,
1986; Bamler and Just, 1993; Bamler and Hartl, 1998).

Assuming y = A exp(jψ), the joint PDF of amplitude A and phase ψ is:

fA,ψ(A,ψ) =
{

A
2πσ2 exp(− A2

2σ2 ) for A ≥ 0 and − π ≤ ψ < π
0 otherwise.

(3.24)

By integrating fA,ψ(A,ψ) over ψ and A, the marginal PDF of amplitude A and phase
ψ is obtained as

fA(A) =
{

A
σ2 exp(− A2

2σ2 ) forA ≥ 0
0 otherwise,

(3.25)

and

fψ(ψ) =
{ 1

2π for− π ≤ ψ < π
0 otherwise. (3.26)

The PDF of the amplitude A (i.e., eq. (3.25)) is the Rayleigh distribution and the PDF
of phase ψ (i.e., eq. (3.27)) is the uniform distribution between −π and π. In the same
way, the marginal PDF of intensity/power (p=A2) is the exponential distribution:

fp(p) =
{ 1

2σ2 exp(− p
2σ2 ) forA ≥ 0

0 otherwise. (3.27)

In table 3.2, these PDFs are visualized together with an overview of single-point statistics
for single SAR image.
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Table 3.2: Overview of statistics for a single DS resolution cell in a single SAR image: PDF, expectation,
and variance of different components of complex variable y = A exp(jψ) = Re(y) + j Im(y). The
variance σ2 is directly proportional to the averaged intensity/power of the DS resolution cell: σ2 =
E{A2}

2 .

Parameter PDF/Expectation/Variance PDF

r = Re(y) fr(r) = 1√
2πσ2

exp(− r2
2σ2 )

E{r} = 0
D{r} = σ2

r

f
r
(r

)

i = Im(y) fi(i) = 1√
2πσ2

exp(− i2
2σ2 )

E{i} = 0
D{i} = σ2

i

f
i
(i

)

A = |y| fA(A) = A
σ2 exp(− A2

2σ2 )
E{A} = 2σ2 1

4
√

2π
D{A} = 2σ2(1− π

4 )

A/σ

f
A

(A
)

p = |y|2 fp(p) = 1
2σ2 exp(− p

2σ2 )
E{p} = 2σ2

D{p} = (2σ2)2

p/2σ2

f
p
(p

)

ψ = ∠{y} fψ(ψ) = 1
2π (−π≤ψ<π)

E{ψ} = 0
D{ψ} = π2

3

t d
ψ

f
ψ

(ψ
)

−π π
0

1
2π

2
2π

3
2π
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3.2.4 Coherence matrix

As we can see from eq. (3.3), single-point statistics in SAR stacks can be described
by the covariance matrix Qy, which itself is described by a Hadamard multiplication
of the coherence matrix Γy with the intensity matrix Ī (see eq. (3.7)). Regarding
interferometric applications, the main focus is on phase measurements, and therefore,
the intensity matrix Ī is of less importance, as the intensities are invariant with respect
to the phase values, see eq. (3.8). In contrary, the elements of the coherence matrix
Γy are directly related to the expected interferometric phases (φ0), while the absolute
coherence values are a measure of decorrelation noise. Consequently, the computation
and evaluation of the coherence matrix and its elements are of great importance for
InSAR applications.

3.2.4.1 Estimation of coherence matrix from real data

For a single resolution cell P , observed by two or more SAR acquisitions, the elements of
its coherence matrix C are defined by the complex coherence values γij between circular
Gaussian variables Pi and Pj (i.e. the representative pixel values in the ith and the jth
image, respectively). The theoretical definition of γij is given by eq. (3.5). However, as
there is only one observation per image available for every resolution cell, the expectation
values in eq. (3.5) (i.e., E{P iP

∗
j}, E{|P i|2}, and E{|P j |2}) cannot be obtained from

the data by averaging over large samples of Pi and Pj . Therefore, the coherence values
are conventionally computed based on the assumption of ergodicity which considers that
the statistical properties of a uniform region (e.g., a set of neighboring pixels) to be
equal, and thus the statistical properties (e.g., the mean or expectation) of one single
pixel can be approximated from the set of neighboring pixels. Based on this assumption,
the coherence values are estimated by spatial ensemble averaging as

γ̂
ij

=

∑
n∈Ω

P inP
∗
jn√( ∑

n∈Ω
|P in |2

)( ∑
n∈Ω
|P jn |2

) , (3.28)

where Ω is the set of surrounding/adjacent pixels. The set Ω can be selected as a square
window around the pixel, or by adjacent pixels with a similar scattering mechanism (see
section 2.4). The coherence estimator γ̂

ij
is a complex value whose absolute value is

the measure of interferometric correlation and is computed as

|γ̂
ij
| =

|
∑
n∈Ω

P inP
∗
jn
|√( ∑

n∈Ω
|P in |2

)( ∑
n∈Ω
|P jn |2

) , (3.29)

The phase of the estimator γ̂
ij

is given by

∠(γ̂
ij

) = φ̂0ij
= arctan

( ∑
n∈Ω

Im(P in) Im(P ∗jn)∑
n∈Ω

Re(P in) Re(P ∗jn)

)
, (3.30)
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where φ̂0ij
is called the multilooked interferometric phase estimator. Rodriguez and

Martin (1992) showed that the phase φ̂0ij is the maximum likelihood estimator of the
interferometric phase. The interferometric phase estimator φ̂0ij

is unbiased provided
the validity of the ergodicity assumption over the averaging area Ω. The statistical
properties of the multilooked interferometric phases will be described in section 3.3. In
the following, we review the statistical properties of the absolute coherence estimator
|γ̂|.

Absolute coherence estimator |γ̂|
The absolute coherence is a metric for the interferometric noise (decorrelation) and is
used intensively in interferometric studies as a quality descriptor, or to properly weight
the interferometric observations. As |γ̂| is estimated from random variables, it itself
is a random variable and its statistics can be obtained by propagation of the circular
Gaussian statistics of the single-look SAR observations. Assuming the averaged samples
within Ω are independent, the PDF of the absolute coherence estimator is obtained as
a function of the true coherence |γ| and the number of independent samples L (Touzi
et al., 1996b)

f|γ̂|(|γ̂|) = 2(L− 1)(1− |γ|2)L|γ̂|(1− |γ̂|2)L−2
2F1(L,L; 1; |γ|2γ̂2) (3.31)

where 2F1(.) is the classical standard hypergeometric function (Oberhettinger, 1970;
Gradshteyn et al., 1994). An important property of the estimator |γ̂| is that it is biased
and so its expectation is not equal to the true coherence value (i.e., E{|γ̂|} 6= |γ|). Touzi
et al. (1999) have shown that the k-th statistical moment of the absolute coherence
estimator (i.e., Mk(|γ̂|)) can be computed as

Mk(|γ̂|) = Γ(L)Γ(1 + k/2)
Γ(L+ k/2) 3F2(1 + k/2, L, L;L+ k/2, 1; |γ|2)(1− |γ|2)L, (3.32)

where Γ(.) is the gamma function4, and 3F2(.) the generalized hypergeometric function.
Using k=1, the expectation E{|γ̂|} is computed as the first statistical moment of |γ̂|.
Fig. 3.1 shows the E{|γ̂|} as the function of the true coherence for the number of looks
L= 5, 10, 20, 50. We can see that the estimator |γ̂| is biased towards higher values for
a small number of looks (i.e., small averaging area) and for low coherence values (i.e.,
areas with a high degree of decorrelation). The bias in the coherence estimation is a
very well-known fact and has been addressed widely in InSAR literature (Joughin and
Winebrenner, 1994; Tough et al., 1995; Touzi et al., 1996b, 1999; Bamler and Hartl,
1998; Hanssen, 2001; Zebker and Chen, 2005). In order to reduce this bias in low
coherence areas, the number of looks should be large enough. There is also a possibility
to approximate and correct for the bias using some approaches presented in (Touzi et al.,
1996a; Zebker and Chen, 2005; Jiang et al., 2014b,a).

The influence of local signal-phase variation on absolute coherence estimation:
Absolute coherence values |γ̂| estimated by eq. (3.29) are affected by deterministic
interferometric phase variation in the estimation area Ω. As far as the interferometric

4The gamma function is defined as: Γ(x) =
∫∞

0 tx−1 exp(−t)dt, for x ∈ R. The Gamma function
can be simplified in the form of Γ(x) = (x− 1)!, for x−1 ∈ N (Abramowitz and Stegun, 1965).
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|γ|

E{
|γ̂
|}

L=5

L=10

L=20
L=50

Figure 3.1: The expectation value E{|γ̂|}
as a function of the true coherence value
|γ| for a number of looks L= 5, 10, 20, 50
(The expectation values are computed by
eq. (3.32) with k=1). The estimator |γ̂| is
biased for small number of looks and low
coherence values. After Touzi and Lopes
(1996)

signal phase within Ω is stationary—that is all the signal components (e.g., deformation,
topographic, and atmospheric phase) are constant in the estimation window and the
phase variation is only due to the noise—the absolute coherence |γ̂| is a measure of
phase (noise) statistics (although it is biased towards higher values for low coherence
and a low number of looks). Obviously, if there still is a systematic phase variation
in the estimation window due to deformation, topography, or atmosphere signals, the
absolute coherence |γ̂| is underestimated, i.e., biased towards lower values. So if the
phase within the estimation window still contains a systematic (signal) component, this
phase variation should be compensated for. Assuming φsn is the systematic phase
component for the pixel n, the phase corrected absolute coherence |γ̂PCij | is defined as
(Hagberg et al., 1995; Monti-Guarnieri and Prati, 1997; Dammert, 1997)

|γ̂PCij | =
|
∑
n∈Ω

PinP
∗
jn

exp(−jφsn)|√( ∑
n∈Ω
|Pin |2

)( ∑
n∈Ω
|Pjn |2

) . (3.33)

Instead of using eq. (3.33) for compensation of the systematic phase, an alternative
solution is to remove/filter-out the systematic signal prior to the coherence estimation.
The expected variation can be either, if available, computed based on external/a-priori
knowledge (e.g., flat-earth and topographic phase removal based on external DEM), or
can be estimated directly from data and excluded by different kind of phase flattening
or low-pass filters such as the adaptive multi-resolution defringe algorithm (Prati and
Rocca, 1992; Davidson and Bamler, 1999; Wang et al., 2012), patch detrending (Zebker
and Chen, 2005; Bamler and Hartl, 1998), and the low-pass filtering method presented
by Hooper et al. (2004).

In addition to the aforementioned methodologies to correct for the systematic phase vari-
ation in the averaging area, Monti-Guarnieri and Prati (1997) have proposed a "quick
and dirty" and amplitude-based coherence estimator which is independent of local sys-
tematic phase variations. The amplitude-based coherence estimate (denoted by |γ̂Mij |) is
defined as

|γ̂Mij | =
{ √

2ρ̂ij − 1 ρ̂ij > 1/2
0 ρ̂ij ≤ 1/2 , (3.34)
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where

ρ̂ij =

∑
n∈Ω
|Pin |2|Pjn |2√( ∑

n∈Ω
|Pin |4

)( ∑
n∈Ω
|Pjn |4

) . (3.35)

The main advantage of |γ̂M| estimation is that it does not require the stationarity of the
local interferometric phase, and so it is independent of any phase estimation/compensation
error. On the other hand, Monti-Guarnieri and Prati (1997) showed that the precision
(variance) of the |γ̂M| estimator is worse than the standard |γ̂| estimator if the same
number of looks is applied. Assume L1 and L2 are the number of independent samples
used to estimate |γ̂| and |γ̂M|, respectively, then in order to have the same precision for
both estimators the following ratio between L1 and L2 should be held (Monti-Guarnieri
and Prati, 1997):

L2

L1
= γ8 + 6γ6 − 12γ4 + 2γ2 + 3

4γ2(1− γ2)2 . (3.36)

In general, despite the lower precision, the |γ̂M| estimator is computationally more effi-
cient than the standard |γ̂| estimator, and it is more reliable in cases when there is still
a considerable amount of signal variation in the estimation window (e.g., due to high
topographic variations in interferograms with large baseline).

3.2.4.2 Model-based absolute coherence matrix

The elements of the absolute coherence matrix (i.e. Υ) can be either estimated directly
from data based on the ergodicity/stationary assumption via eqs. (3.29), (3.33), and
(3.34), or alternatively they can be evaluated theoretically based on models of coherence
loss. Here we briefly discuss some of the common theoretical models for evaluation of
absolute coherence values.

The five sources of coherence loss (see sections 2.1.2.3 and 2.1.2.4 for detailed explana-
tion of different sources of decorrelation) can be listed as:

1. System noise decorrelation: the influence of thermal noise on system coherence
depends on the signal-to-noise (SNR) ratio as (Zebker and Villasenor, 1992):

γthermal = 1
1 + SNR−1 . (3.37)

The value for SNR is dependent on system parameters and the radar scene’s radar
cross section (SCR), where the latter is varying subject to terrain characteristics.
For example for the system parameters of the ERS satellite (as reported in Zebker
et al. (1994a) and Hanssen (2001)) and a SCR of −14 dB, the SNR will be 12
dB, resulting in a γthermal of 0.92. The detailed computation of SNR based on
SAR system parameters is explained by Hanssen (2001) and Zebker and Villasenor
(1992).
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2. Processing noise decorrelation: this is mainly a function of the accuracy of image
coregistration and resampling/interpolation steps. For coregistration with subpixel
accuracy of σcoreg,a and σcoreg,r in azimuth and range directions, respectively, the
decorrelation induced by coregistration γcoreg is computed as (Just and Bamler,
1994; Hanssen, 2001):

γcoreg =
{

sinc(σcoreg,a) · sinc(σcoreg,r) σcoreg,r ≤ 1 and σcoreg,a ≤ 1
0 σcoreg,r > 1 or σcoreg,a > 1 (3.38)

It is obvious that a misregistration equal to a full resolution cell (or bigger) results
in complete decorrelation and therefore zero coherence. It has been demonstrated
by Hanssen (2001) that the coherence does not improve significantly for a misregis-
tration smaller than 0.1 resolution cell (or 1/8th of a pixel). For this coregistration
accuracy in both azimuth and range direction, the γcoreg will be equal to 0.96. In
addition to coregistration, the resampling step (i.e., the interpolation of slave im-
age on the master image grid) causes the loss of coherence as well, depending on
the kind of interpolation kernel used. The detailed overview of different interpo-
lation kernels and their influence on coherence loss is explained in Laakso et al.
(1996) and Hanssen and Bamler (1999). Assuming that γint describes the decor-
relation induced by resampling, the total processing coherence can be computed
as

γproc = γcoreg.γint. (3.39)

3. Baseline decorrelation: The baseline decorrelation is the result of different inci-
dence angles between the two radar paths at the earth’s surface. For an interfero-
metric pair of two radar images, baseline decorrelation is approximated as (Zebker
and Villasenor, 1992; Gatelli et al., 1994; Hanssen, 2001):

γgeom = max(1− |B⊥|
B⊥max

, 0). (3.40)

where B⊥ is the perpendicular baseline between two images, and B⊥max the critical
baseline at which the decorrelation is maximum and the coherence will be zero.
The critical baseline is a function of the radar wavelength λ, the incidence angle
θinc, and the topographic slope ζ as:

B⊥max = λBrgRM tan(θinc − ζ)
c

, (3.41)

where c is the speed of light, and Brg is the range bandwidth.

4. Doppler-centroid decorrelation: This decorrelation is a result of varying viewing ge-
ometry in azimuth direction, and its coherence factor can be modeled as (Hanssen,
2001):

γdc = max(1− ∆fDC
Baz

, 0), (3.42)

where ∆fDC is the difference in Doppler-centroid frequencies between master and
slave images, and Baz is the bandwidth in azimuth direction.
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5. Temporal decorrelation: Temporal decorrelation is the result of temporal changes
in position or scattering characteristics of all elementary scatterers within a reso-
lution cell. As the range of physical mechanisms causing temporal decorrelation is
too wide, there is no single analytical model to evaluate coherence loss induced by
this effect. Nevertheless there are some experimental models for processes which
induce natural and gradual changes within resolution cells. If all the elementary
scatterers within a cell move independently but in a homogeneous manner (i.e.,
their motions can be modeled statistically with the same distribution), temporal
coherence can be described by (Zebker and Villasenor, 1992; Rocca, 2007)

γT = exp
(
− 1

2
(4π
λ

)2
σ2
r

)
, (3.43)

where σ2
r is the variance of the motion of scatterers in the LOS direction. The

motion variance σ2
r can be modeled in different manners as a function of time,

depending on real physical characteristics of the scattering surface. For example,
Rocca (2007) modeled the motion of the elementary scatterers as Brownian motion
which causes a linear increase of σ2

r in time:

σ2
r = σ2

n∆t, (3.44)

where ∆t is the time difference between two acquisitions and σ2
n represents the

motion variance for the unit of time. Then the temporal coherence γT of eq. (3.43)
can be written as

γT = exp(−∆t
τ

), (3.45)

where

τ = 2
σ2
n

( λ
4π
)2
. (3.46)

The parameter τ can be considered as the temporal decorrelation range with
dimension time.

In principle, if the motion of scatterers for a homogeneous resolution cell is in-
duced by N different mechanisms with total variance σ2

r , using the fact that the
summation variances of different mechanisms is equal to σ2

r =
∑N

1 σ2
ri , eq. (3.43)

is written as

γT =
N∏
i=1

exp
(
− 1

2
(4π
λ

)2
σ2
ri

)
. (3.47)

An example of such a model with N = 2 is proposed by Morishita and Hanssen
(2015b) for pasture areas, where it is assumed that the motion of elementary
scatterers is due to short and long term mechanisms. The short term mechanism
explains sudden movements of scatterers due to for example wind (Lavalle et al.,
2012), while the long term process causes the increase in variance as a function
of time (similar to the Brownian motion model) due to for example vegetation
growth. Then the σ2

r can be expressed as

σ2
r = σ2

r,short + σ2
r,long∆t, (3.48)
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where σ2
r,short is the variance of sudden motions, and σ2

r,long is the variance of long
term motion for the unit of time. Assuming the model of eq. (3.48) and using
eq. (3.47) with N = 2, the total temporal coherence can be expressed as

γT = exp
(
− 1

2
(4π
λ

)2
σ2
r,short

)
︸ ︷︷ ︸

γt,short

exp(−∆t
τlong

) = γt,short exp(−∆t
τlong

), (3.49)

where τlong = 2
σ2
r,long

(
λ
4π
)2. Note that in all the aforementioned models for tempo-

ral coherence, the motion variances describe the variance of scatterers motion in
LOS direction. Assuming σ2

h and σ2
v are the variance of the motion in horizontal

and vertical directions, the σ2
r in the LOS direction can be computed as (Zebker

and Villasenor, 1992)

σ2
r = σ2

h sin2(θinc) + σ2
v cos2(θinc), (3.50)

where θinc is the incidence angle.

As the coherence terms are multiplicative (Zebker and Villasenor, 1992), the total co-
herence can be evaluated by the multiplication of all the coherence terms as

γtotal = γthermal · γprocc · γgeom · γdc · γT. (3.51)

By computing the γtotal for all the interferometric combinations, the full model-based
absolute coherence matrix (i.e., Υ = abs(Γy)) can be constructed.

3.3 Single-point phase statistics for single interferogram

In the previous section the single-point phase statistics of distributed scatterers in SAR
stacks were discussed. In order to evaluate the single-point interferometric phase statis-
tics, the SAR statistics should be propagated through the interferogram generation pro-
cess which includes complex conjugate multiplication of pairs of SAR images. Here, we
first look at the phase statistics for a single interferogram, followed in Sec. 3.4, by the
extension of the stochastic model to the multi-interferogram case, i.e., for a vector of
single-point interferometric phases in InSAR stacks.

Assuming two SLC pixels P1 and P2 with zero-mean complex circular Gaussian distri-
bution (see eqs. (3.3) and (3.4)), with complex coherence γ (see eq. (3.5)), the joint
PDF of the amplitude and the phase of the multilooked interferogram constructed from
the two SLC images is given by (Goodman, 1963; Barber, 1993; Lee et al., 1994; Tough
et al., 1995)

fA,φ(A, φ) = 2L(LA)L

πζL+1(1− |γ|2)Γ(L) exp
(2|γ|LA cos(φ− φ0)

ζ(1− |γ|2)

)
KL−1

( 2LA
ζ(1− |γ|2)

)
, (3.52)

where L is the number of looks, KL−1(.) the modified Bessel function of the third
kind (Gradshteyn et al., 1994), Γ(.) the Gamma function, and ζ =

√
E{|P1|2}E{|P2|2}.
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By integrating over amplitudes A, the marginal PDF of the interferometric phase φ is
computed as (Tough et al., 1995)

fφ(φ) =(1− |γ|2)L

2π

{
Γ(2L− 1)(

Γ(L)
)222(L−1)

×
( (2L− 1)β

(1− β2)L+0.5

(π
2 + arcsin(β)

)
+ 1

(1− β2)L
)

+ 1
2(L− 1)

L−2∑
r=0

Γ(L− 0.5)
Γ(L− 0.5− r)

Γ(L− 1− r)
Γ(L− 1)

1 + (2r + 1)β2

(1− β2)r+2

}
, (3.53)

with β = |γ| cos(φ−φ0), where φ0 is the expected interferometric phase. An equivalent
formulation of fφ(φ) has been presented in different publications (Barber, 1993; Lee
et al., 1994; Joughin and Winebrenner, 1994)

fφ(φ) = Γ(L+ 0.5)(1− |γ|2)Lβ
2
√
πΓ(L)(1− β2)L+0.5 + (1− |γ|2)L

2π 2F1(L, 1; 0.5; |γ|2β2) − π ≤ φ < π, (3.54)

where 2F1(.) is the classical standard hypergeometric function (Oberhettinger, 1970;
Gradshteyn et al., 1994). For single-look pixels (i.e., L=1), the interferometric phase
PDF reduces to (Just and Bamler, 1994; Lee et al., 1994; Tough et al., 1995)

fφ(φ|L = 1) =
(1− |γ|2)

(
(1− β2)0.5 + β

(
π − cos−1(β)

))
2π(1− β2)1.5 − π ≤ φ < π, (3.55)

Figs. 3.2A, B, and C show examples of fφ(φ) for coherence values 0.2, 0.5, and 0.8,
evaluated for different number of looks L=1, 5, 10, 20, and 50. We can see that the
higher L is, the more peaked the PDF is. For the extreme case of |γ|=0, fφ(φ) reduces
to

fφ(φ
∣∣|γ|=0) = 1

2π for − π ≤ φ < π, (3.56)

which is equivalent to the PDF of uniformly distributed phases between −π and π. For
another extreme scenario of |γ|=1 (i.e., zero decorrelation or zero noise), the interfero-
metric phase PDF reduces to the Dirac delta function:

fφ(φ
∣∣|γ|=1) =

{
∞ φ = φ0
0 φ 6= φ0.

(3.57)

First and second statistical moments of interferometric phase
With the PDFs of eqs. (3.53) or (3.54), the mean and the variance of the interferometric
phases can be computed by evaluationg the first two statistical moments of fφ(φ) as

E{φ} = µφ =
∫ π

−π
φfφ(φ)dφ, (3.58)

D{φ} = σ2
φ =

∫ π

−π
(φ− E{φ})2fφ(φ)dφ. (3.59)
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Figure 3.2: Probability density function of interferometric phase for coherence levels (A) |γ|=0.2, (B)
|γ|=0.5, and (C) |γ|=0.8 evaluated for different number of looks L=1, 5, 10, 20, and 50 (the higher the
L, the more peaked PDF). It is evident that multilooking improves the precision of the interferometric
phase. All the PDFs were computed based on eq. (3.54) assuming φ0 = 0. After Hanssen (2001)

For the single-look case (i.e., L=1), Tough et al. (1995) evaluate the integrals of
eqs. (3.58) and (3.59) in a closed from as

µφ,L=1 = |γ| sin(φ0)√
1− |γ|2 cos2(φ0)

arcsin
(
|γ| cos(φ0)

)
(3.60)

σ2
φ,L=1 = π2

3 − πarcsin
(
|γ| cos(φ0)

)
+
(
arcsin

(
|γ| cos(φ0)

))2
− Li2(|γ|2) (3.61)

where Li2(.) is Euler’s dilogarithm5. Note that both aforementioned evaluations of
the mean and variance are not only related to |γ|, but they are also a function of
φ0. This fact challenges the interpretation of mean and variance as a metric for the
central tendency and spread of the interferometric phase. Ideally we are interested in
a measure of central tendency which can characterize φ0, and a measure of dispersion
which characterizes the spread of the phase around φ0. However in above equations, for
example if φ0 (and consequently the mode of the PDF) deviates from zero, the bounded
PDF between −π and π becomes non-symmetric around the mode, and consequently
the mean of eq. (3.59) is not representative of the central tendency, while the mode
is a better measure. In the same manner, the variance is not representative of phase
dispersion around φ0, but it is a measure of non-symmetric dispersion around the mean
(See Quegan et al. (1994) for more discussion). In fact we are interested in a measure of
dispersion which is invariant with respect to φ0 and which depends only on the coherence
as a measure of noise. So the central tendency and the measure of phase dispersion
ideally should be defined relative to the mode and account for the 2π symmetry of the
PDF (Tough et al., 1995). In order to solve this problem, considering the fact that the
phase PDF is periodic with a 2π cycle, it is suggested to evaluate the integration of
eqs. (3.58) and (3.59) in the interval (φ0−π, φ0+π) instead of (−π, π), resulting in the
following definition of phase mean and variance (Just and Bamler, 1994):

E{φ} = µφ =
∫ φ0+π

φ0−π
φfφ(φ)dφ = φ0, (3.62)

D{φ} = σ2
φ =

∫ φ0+π

φ0−π
(φ− φ0)2fφ(φ)dφ =

∫ π

−π
(φ)2fφ(φ+ φ0)dφ. (3.63)

5Euler’s dilogarithm is defined as: Li2(x) =
∑∞

i=1
xk

k2 (Abramowitz and Stegun, 1970).
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Figure 3.3: Evaluation of stan-
dard deviation of the interferometric
phase (σφ) as a function of coher-
ence |γ|, for four different number
of looks L=1, 10, 20, and 50. The
standard deviations are computed by
numerical evaluation of eq. (3.63).
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•) is equivalent to 2π√

12
(or ≈104◦),

which is the standard deviation of
uniformly distributed phase between
−π and π. After Just and Bamler
(1994)

It should be pointed out that changing the integration interval to (φ0−π, φ0+π), is
equivalent to evaluating the integral in the interval (−π, π) under the assumption of
φ0 = 0. With this new definition of the mean (i.e. eq. (3.62)), µφ directly characterizes
φ0 and it is independent of the coherence values. Equivalently, the variance of eq. (3.63)
is now dependent on fφ(φ + φ0) which is invariant with respect to φ0, and so the
evaluated variance is exclusively a function of coherence. In general there is no closed-
form evaluation of eq. (3.63) (except for single-look cases), and therefore the integral
should be evaluated numerically. For single-look cases, the closed-form evaluation of
eq. (3.63) results in (Bamler and Hartl, 1998):

σ2
φ,L=1 = π2

3 − πarcsin
(
|γ|
)

+
(
arcsin

(
|γ|
))2
− Li2(|γ|2), (3.64)

which is equivalent to eq. (3.61) if φ0=0. In fig. 3.3, the standard deviation of the
interferometric phase (i.e.,

√
σ2
φ) is evaluated as a function of coherence |γ| and for

different number of looks L=1, 10, 20, and 50. It is evident that a higher multilooking
factor reduces the phase standard deviation, assuming ergodicity. Note that in the
highest dispersion case (i.e., |γ|=0), the standard deviation reaches an upper bound
which which is the standard deviation of uniformly distributed phase between −π and π.

Note on information content of multilooked interferometric phase
A common measure of the information content that a random variable carries about an
unknown parameter is the Fisher information (Rice, 2001). If we consider φ0 to be the
primary unknown parameter of interest in interferometric applications (as φ0 contains
all the geometric information about deformation, topography, and atmosphere), the
amount of information included in the multilooked interferometric phase φ (or in the
two SLC windows constructing φ) about φ0 can be quantified by the Fisher information
of interferometric phase as (Seymour and Cumming, 1994)

Iφ(φ0) = 2L|γ|2

1− |γ|2 , (3.65)

which results in zero information for |γ|=0 and maximum information of infinity when
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|γ|=1. In other words, the Fisher information Iφ(φ0) accounts for the loss of information
about φ0 due to decorrelation. The lower bound, or Cramèr-Rao bound (CRB), of the
interferometric phase variance is given by the inverse of the Fisher information (Rodriguez
and Martin, 1992; Seymour and Cumming, 1994):

σ2
φ

CRB
=
(
Iφ(φ0)

)−1
= 1− |γ|2

2L|γ|2 . (3.66)

We should note the fundamental difference between non-Gaussian random variables
(such as interferometric phase) and Gaussian variables. While for the latter, vari-
ance/dispersion is truly the measure of information loss (as the PDF of normally dis-
tributed variables can be completely characterized by its dispersion), for interferometric
phases, the variance is always bounded (see the upper bound in fig. 3.3) and it is not
completely representative for loss of information. In fact a zero coherence interferomet-
ric phase conveys no information (corresponding to infinite information loss), while its
variance is at most equal to (2π)2

12 , which is the variance of uniformly distributed phase
between −π and π.

Note on interferometric phase dispersion of point scatterers
The dispersion/variance of eqs. (3.63) and (3.64) was derived based on the assumption
of a distributed scattering mechanism with complex circular Gaussian distribution (see
section 3.2.2). For resolution cells with a dominant point scatterer, the true variance is
smaller than the one given by eq. (3.64) (Bendat and Piersol, 1986). For point scatterers
which can be assumed to be a superposition of distributed scattering and a deterministic
signal (reflected from the dominant scatterer within a resolution cell), the variance of
the interferometric phase is given by (Just and Bamler, 1994)

σ2
φ
PS

= 1− |γ|2

2|γ|2 , (3.67)

which is equivalent to the CRB lower bound (σ2
φ

CRB
in eq. (3.66)) for L=1. Note that

eq. (3.67) only holds for |γ| close to 1.

3.4 Single-point phase statistics for interferogram stack

In the previous section, we discussed the statistical properties of interferometric phases
for single pixels in single interferograms. Thus, the interferometric phase is a univariate
random variable, with a one-dimensional PDF whose dispersion is given by the phase
variance. However, in order to evaluate phase statistics for one pixel in a stack of
interferograms, we are dealing with a multivariate vector of interferometric phases, with
a multi-dimensional PDF (or a joint PDF of all the interferometric phases for one pixel)
and the dispersion in the form of a full covariance matrix. If the decorrelation noise
components in different interferograms are assumed independent, the joint PDF can be
evaluated simply by multiplication of the univariate phase PDFs given by eqs. (3.53)
or (3.54), and the phase dispersion can be described by a diagonal covariance matrix
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whose diagonal elements are equal to univariate variance factors evaluated by eq. (3.61).
However the assumption of independency may not hold due to different reasons. In
this section, we first discuss the reasons of dependency/correlation between the noise
components, followed by reviewing different concepts for the analytical and numerical
evaluation of multivariate interferometric phase PDFs and their dispersion.

3.4.1 Causes of correlation between interferograms

Assume two interferograms I12 and I34 constructed from a set of four SLC images P1, P2,
P3, and P4. In order to evaluate the correlation between the phases of the two interfer-
ograms, the noise statistics of the complex multivariate vector y = [P1, P2, P3, P4]T ,
which can be described by a circular complex Gaussian distribution (see eqs. (3.3)
and (3.5)), should be propagated to the 2×2 covariance matrix of the vector [φ12, φ34]T .
As the SLC values in the vector y are likely to be correlated (as described by coherence
values in the 4×4 coherence matrix Γy), there is no reason in principle to assume that
the two interferometric phases are independent. In fact, the interferometric phases can
be correlated or uncorrelated as expressed by different sets of coherence values in Γy.
In order to get more insight on the physical origin of the correlation between noise
components, we discuss three main sources of this dependency in the following6.

1. Common master/slave image: If two interferograms share a common master/slave
image, the decorrelation noise terms in the common image (e.g. the thermal and
system noise terms in the shared image) appear in the interferometric phases of
both interferograms, introducing correlation between them.

2. Common geometrical or Doppler-centroid decorrelation component: Even if there
is no shared image between interferograms, the imaging geometry of the four acqui-
sitions which produce the two interferograms, can cause correlation in the phase
components of geometrical decorrelation, see e.g. Agram and Simons (2015).
Assume the four SLC images P1, P2, P3, and P4 with the viewing geometry
demonstrated in fig. 3.4. Then the total geometrical decorrelation noise affecting
the interferometric phase φ34 also affects φ12 because of the overlap in the object
spectrum, introducing correlation between the two interferometric phases. The
same rationale can be also used for Doppler-centroid decorrelation, where an over-
lap in Doppler-baseline space can result in correlation between Doppler-centroid
decorrelation phases in two interferograms.

3. Common temporal decorrelation component: An overlap between the time-period
covered by two interferograms can cause correlation between components of tem-
poral decorrelation. In other words, the changes in scattering characteristics of the
surface during the common period of time affect the both interferograms in the

6Note that in this chapter, we are discussing the statistics of noise terms due to different decorrelation
mechanisms (i.e., single-point statistics, see section 3.1 for more information on discrimination between
different noise components). Therefore, when we talk about correlation or dependency, we mean corre-
lation or statistical dependency between different noise terms for one pixel in two interferograms. This
should not be mistakenly interpret as the correlation between other signal/noise components such as
atmospheric or deformation phase.
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Figure 3.4: Example of InSAR ac-
quisition geometry for four acquisi-
tions P1, P2, P3, and P4: demon-
stration of the cause of correla-
tion between geometrical decorrela-
tion phases in two interferograms.
The total geometrical decorrelation
noise affecting the interferometric
phase φ34 also affects φ12 because
of the overlap in the baseline space,
introducing correlation between the
two interferometric phases. Figure
adapted from Agram and Simons
(2015).

same manner and may introduce a correlation between the temporal decorrelation
phases.

3.4.2 Phase statistics for interferograms with a common image

In the case of only two interferometric phases constructed from three SLCs (i.e. φ12 and
φ13 constructed from three SLCs in y = [P1, P2, P3]T with absolute coherence matrix
Υ), Lucido et al. (2010) evaluated a closed form expression for the joint PDF of the two
interferometric phases as

fφ
12
,φ

13
(φ12, φ13) = q

(2π)2|Υ|1/2
∏3
i=1 λii

(
1 + q(I1,2,3 + I2,3,1 + I3,1,2)

)
(3.68)

with the following variables:

• elements of the inverse of the absolute coherence matrix λij defined as

Υ−1 =

 1 |γ12| |γ13|
|γ12| 1 |γ23|
|γ13| |γ23| 1

−1

=

 λ11 λ12 λ13
λ12 λ22 λ23
λ13 λ23 λ33

 , (3.69)

• parameter q defined as

q = 1
1− r2

12 − r2
13 − r2

23 + 2r12r13r23
(3.70)

where
rik = rki = λik cos(φik − φ0ik)√

λiiλkk
, (3.71)
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Figure 3.5: Examples of joint probability distribution function of two (single-look) interferometric phases
φ12 and φ13 generated from three SLCs P1, P2, and P3 with mutual coherence between all pairs of
SLCs equal to (A) 0.2, (B) 0.4, (C) 0.6, and (D) 0.8, assuming φ012=0 and φ013=0. The PDFs are
evaluated based on the closed form expression of eq. (3.68). Colors denote the probability density. Note
the difference in color scales.

• and Ii,k,l given by

Ii,k,l = r3
ik + 2rilrkl − rik(1 + r2

il) + r2
kl√

(1− r2
ik)

(π
2 − arctan( rik√

(1− r2
ik)

)
)

(3.72)

Note that the PDF of eq. (3.68) is periodic with 2π cycles in two dimensions. Consid-
ering wrapped phases in the interval [−π, π), the peak/mode of the PDF is located at
[φ012 , φ013 ]T .

Fig. 3.5 shows examples of 2D representation of the joint PDF given by eq. (3.68) for
cases where the coherence between all SLC pairs assumed to be equal (i.e., |γ12|=|γ13|=|γ23|),
and for four different coherence values. Based on eq. (3.68), the joint PDF of two in-
terferometric phases sharing the same master image depends not only on the coherence
values of the two interferograms, but also depends on the coherence of the third inter-
ferogram constructed by the two slave images. Fig. 3.6 demonstrates this fact. In the
plot, the coherence of two interferometric phases φ12 and φ13 is assumed to be constant
and equal to |γ12|=|γ13|=0.6, but the coherence of the third interferogram (i.e. |γ23|)
is gradually increasing from 0.1 to 0.9. We can clearly see that the joint PDF of (and so
the correlation between) the two interferometric phases varies depending on the value
of the |γ23|. Summarizing, in order to evaluate phase statistics of two interferometric
phases constructed from three SLC values, the full 3×3 absolute coherence matrix Υ is
required.
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Figure 3.6: Examples of
joint probability distribution
function of two (single-look)
interferometric phases φ12
and φ13 generated from
three SLCs P1, P2, and P3.
In all the plots, the coherence
of φ12 and φ13 is assumed
to be constant and equal
to |γ12|=|γ13|=0.6, but the
coherence of the connect-
ing interferogram is gradu-
ally increasing from 0.1 to
0.9. This is the demonstra-
tion of the fact that the joint
PDF of and the correlation
between two interferometric
phases (sharing a common
master image) not only de-
pends on the coherence of
two interferograms but also
depends on the coherence of
the interferometric phase be-
tween the two slave images.
(Colors denote the probabil-
ity density).

Note that eq. (3.68) evaluates the joint PDF for two connected interferograms — sharing
a common master/slave image — and only for single-look pixels. For more general cases,
i.e., for two interferograms without a common image and for different multilooking
factors, there is no closed-form expression available. For these cases, we will discuss the
first two statistical moments of the joint-PDF in the next section.

3.4.3 First and second statistical moments

The expected value of the random vector of two interferometric phases (i.e., y =
[φ12, φ34]T ) is defined as a vector whose elements are the expected values of each
interferometric phase, and so (see eq. (3.62))

E{y} = E{
[
φ12
φ34

]
} =

[
E{φ12}
E{φ34}

]
=
[
φ012
φ034

]
. (3.73)

The second statistical moment or dispersion of the vector y = [φ12, φ34]T is defined as
a 2× 2 covariance matrix Qy:

D{y} = D{
[
φ12
φ34

]
} = Qy =

[
σ2
φ

12
σφ

12
,φ

34

σφ
12
,φ

34
σ2
φ

34

]

=
∫
y

(
y − E{y}

)(
y − E{y}

)T
fy(y)dy, (3.74)
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where fy(y) represents the multivariate PDF of y, i.e. fy(y)=fφ
12
,φ

34
(φ12, φ34). The

diagonal elements of this covariance matrix or the variance of the interferometric phases
can be computed by numerical evaluation of eq. (3.63) for multilooked pixels, or by
evaluation of eq. (3.64) for single-look cases. However, evaluation of the off-diagonal
element or the covariance between interferometric phases requires numerical integration
over the joint PDF :

Cov{φ
12
, φ

34
} = σφ

12
,φ

34
=
∫ π

−π

∫ π

−π
φ12φ34fφ

12
,φ

34
(φ12, φ34)dφ12dφ34. (3.75)

Because the generic closed-form expression of the joint PDF is not available, eqs. (3.75)
or (3.74) cannot be evaluated. Therefore, the evaluation of the full phase covariance
matrix requires an alternative approach. In the following, we present two approaches for
this purpose: one based on the numerical Monte-Carlo integration and the other based
on an analytical approximation using nonlinear error propagation.

3.4.4 Evaluation of phase covariance matrix: Monte-Carlo method

Monte-Carlo methods were originally developed for numerical evaluation of integrals by
generating random numbers (Ripley, 1987; Kalos and Whitlock, 2008; Liu, 2001). More
specifically for the computation of second statistical moment of interferometric phases,
the integral of eq. (3.74) can be numerically estimated by the Monte-Carlo integration
as (Gundlich et al., 2003; Alkhatib, 2007)

D{y} = Qy = 1
M

M∑
i=1

(y(i) − E{y})(y(i) − E{y})T , (3.76)

where y(i), i = 1 . . .M are the M random realizations of vector y generated from
multivariate PDF fy(y). In order to generate random realizations of the vector of
interferometric phases y(i), in the first step, random realizations of vector of SLC values
(i.e., y

slc
) are simulated from the multivariate circular Gaussian distribution specified

by a coherence matrix. Subsequently, the sample vectors of interferometric phases are
computed from the simulated SLC realizations. Finally the empirical covariance matrix is
computed by eq. (3.76) based on the simulated realizations. The algorithm to compute
the covariance matrix Qy can be summarized as:

• Inputs: the N×N absolute coherence matrix Υ (assuming a stack of N SLC
images), the multilooking factor L, and the number of realizations M , which
should be chosen as a large number.

• Step 1: generate M×L vectors of samples y(j)
slc , j = 1 . . .M×L of the form of

y
(j)
slc = [Rej1 · · ·Re(j)

N Imj
1 · · · Im

(j)
N ]T from a zero-mean multivariate normal distri-

bution7 with absolute coherence matrix Qy
slc

= 1
2

[
Υ 0
0 Υ

]
(see eq. (3.15)),

7Generating random samples from a multivariate normal distribution is a standard practice in numer-
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(A) (B)
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Figure 3.7: Demonstration of the Monte-Carlo method to propagate an absolute coherence matrix
to interferometric phase covariance matrix: (A) An arbitrary 10×10 absolute coherence matrix Υ,
(B) corresponding 45×45 covariance matrix Qy computed by the Monte-Carlo method for the vec-
tor of all the 45 interferometric combinations constructed from the 10 SLC images, for multilooking
factor L = 25. The 45 interferometric combinations in the vector y are assumed to be ordered as
[φ12 . . . φ1N φ23 . . . φ2N . . . φ(N−1)N ], where N=10.

• Step 2: compute M realizations of multilooked interferometric phase vectors
y(i), i = 1 . . .M from M×L generated samples of SLC vectors y(j)

slc ,

• Step 3: compute the empirical covariance matrix by evaluation of eq. (3.76),
where the expectation E{y} can be estimated as the average of the simulated
samples as Ê{y} = 1/M

∑M

i=1 y
(i).

Note that, although the integral of eq. (3.74) was written for the vector of only two
interferometric phases (i.e., y = [φ12, φ34]T ), the Monte-Carlo algorithm is generic and
can be applied, in principle, to any stack of interferometric phases provided that anN×N
absolute coherence matrix Υ is available. As a demonstration, for a stack of 10 SLC
images, fig. 3.7 shows an arbitrary 10×10 coherence matrix Υ and its corresponding
45×45 covariance matrix Qy computed by the Monte-Carlo method for the vector y
which includes all the 45 interferometric combinations constructed from the 10 SLC
images (assuming multilooking factor L = 25). Note that the unit of interferometric
phases is radian, so the unit of the elements of the covariance matrix is squared radians
([rad2]).

3.4.5 Evaluation of phase covariance matrix: Analytical approximation

The closed-form evaluation of the second statistical moment of the vector of interfero-
metric phases is challenging to derive due to the highly nonlinear relation between SLC
values and multilooked interferometric phases (see eq. (2.23)), and hence such a closed-
form expression has not been derived so far. In this section, we derive such an expression

ical simulations, and there are various libraries and packages for it in different programming/statistical
environments. An example is the function mvnrnd.m in the MATLAB statistical toolbox (MATLAB,
2014). For more information concerning methods and algorithms of generating random vectors from
multivariate normal distribution, see, for example, the textbooks by Gentle (2003) and Fishman (2003).
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using the concept of nonlinear error propagation in order to propagate the dispersion of
SLC values described by coherence matrix to the dispersion of interferometric phases.

Assume two complex interferograms I12 and I34 constructed from the set of four SLC
values (i.e., y

slc
= [P 1, P 2, P 3, P4]T ) with a circular complex Gaussian distribution

described by a 4×4 absolute coherence matrix Υ

Υ =


1 |γ12| |γ13| |γ14|
|γ12| 1 |γ23| |γ24|
|γ13| |γ23| 1 |γ34|
|γ14| |γ24| |γ34| 1

 . (3.77)

We are interested in the dispersion or covariance matrix of the vector of interferometric
phases y = [φ12, φ34]T . We assume, without loss of generality, that the amplitude of
SLC images are normalized in the way that E{A2

i } = 1 (Note that the final goal is the
computation of the phase dispersion, which is invariant with respect to normalization of
amplitudes).

In the complex plain, every multilooked interferometric phase can be computed as the
ratio between the multilooked interferometric imaginary component over the real com-
ponent, and so:

φi,j = arctan( Im(< Ii,j >)
Re(< Ii,j >) ), (3.78)

where <.> denotes spatial complex averaging or complex multilooking. So the rela-
tionship between the vector of two interferometric phases (i.e., y = [φ12, φ34]T ) and
interferometric real/imaginary components can be written as

y =
[
φ12
φ34

]
=


arctan( Im(<I1,2>)

Re(<I1,2>) )

arctan( Im(<I3,4>)
Re(<I3,4>) )

 . (3.79)

For simplicity, we express the vector of interferometric real and imaginary components
as

x =


x1
x2
x3
x4

 =


Re(< I1,2 >)
Re(< I3,4 >)
Im(< I1,2 >)
Im(< I3,4 >)

 . (3.80)

the functional relationship between the the vector of two interferometric phases (i.e.,
y = [φ12, φ34]T ) and the vector x can be described as a multivariate function F (x):

y =
[
φ12
φ34

]
= F (x) =

[
F1(x)
F2(x)

]
=
[

arctan(x3
x1

)
arctan(x4

x2
)

]
. (3.81)

Based on the nonlinear error propagation law, the dispersion of vector y = [φ12, φ34]T
can be approximated as:

Qy = D{
[
φ12
φ34

]
} ≈ JF (x|x0) Qx JF (x|x0)T , (3.82)
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where JF (x|x0) is the Jacobian of the multivariate function F (x) with respect to the vec-
tor x evaluated at an expected value x0. For zero-mean8 phases (i.e.,E{φ1,2}=E{φ3,4}=0),
and assuming x0 equal to the expected values of the interferometric real and imaginary
components, eq. (3.82) is evaluated and the dispersion or covariance matrix of the
interferometric phase vector is approximated as (the explicit derivation is provided in
Appendix A.1.1)

D{
[
φ12
φ34

]
} ≈

[ 1−|γ12|2
2L|γ12|2

|γ13||γ24|−|γ14||γ23|
2L|γ12||γ34|

|γ13||γ24|−|γ14||γ23|
2L|γ12||γ34|

1−|γ34|2
2L|γ34|2

]
. (3.83)

From eq. (3.83), the general equation for the interferometric phase variance and the
covariance between interferometric phases are expressed as

D{φ
ij
} = σ2

φ
ij

≈ 1− |γij |2

2L|γij |2
, (3.84)

and
Cov{φ

ij
, φ
kl
} = σφ

ij
,φ
kl
≈ |γik||γjl| − |γil||γjk|2L|γij ||γkl|

. (3.85)

Note that eq. (3.84) is in agreement with the CRB lower bound of eq. (3.66). Also for
two interferometric phases with the same master image, equation (3.85) is reduced to

Cov{φ
ij
, φ
ik
} = σφ

ij
,φ
ik
≈ |γjk| − |γij ||γik|2L|γij ||γik|

. (3.86)

In a stack of N SLC images, for the vector of any subset of interferometric phases, all
the elements of the full covariance matrix of interferometric phases can be approximated
by eqs. (3.84), (3.85), and (3.86) provided that the N×N absolute coherence matrix is
available. In summary, with these two equations, the absolute coherence matrix Υ can be
approximately propagated to the full covariance matrix of the multilooked interferometric
phases. It should be pointed out that the approximation via nonlinear error propagation
is valid when the dispersion of interferometric real/imaginary components is relatively
small with respect to nonlinearity of the function F (x) around its expectation. This
assumption holds for high coherence values or a large number of looks. This is in fact
the reason that the variance of eq. (3.84) gives exactly the variance of interferometric
phase of point scatterers (see eq. (3.67)), which have a relatively large interferometric
amplitude compared to dispersion of their interferometric real/imaginary components.
As a demonstration for covariance evaluation between two interferometric phases φ12
and φ34, we simulate some numerical examples. The setting of the simulation has been
captured in fig. 3.8. Four SLC images P1, P2, P3, and P4 are considered, with absolute
coherence values |γij |. Four of the coherence values are assumed to be constant and
equal to an arbitrary value of 0.3, and the coherence values |γ13| and |γ24| are gradually
increased in the simulation from 0 to 1. The results of the simulation for four different
multilooking factors L = 1, 5, 20 and 50 are visualized in fig. 3.9. We can clearly see that
eq. (3.85) provides an good approximation for high number of looks. This is expected
as, for larger L, the dispersion of interferometric real and imaginary components gets
smaller and so the nonlinear error propagation gives a better approximation.
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Figure 3.8: Stylized setting for the
demonstration of covariance evalu-
ation between two interferometric
phases φ12 and φ34 (the results of
simulation are visualized in fig. 3.9).
Four SLC images P1, P2, P3, and P4
are considered, with absolute coher-
ence values |γij |. Four of the coher-
ence values assumed to be constant
and equal to an arbitrary value 0.3,
and the coherence values |γ13| and
|γ24| are gradually increased in the
simulation from 0.5 to 1.
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Figure 3.9: Demonstration of covariance evaluation between two interferometric phases φ12 and φ34,
and comparison between evaluations by the Monte-Carlo approach and the closed-form evaluation of
eq. (3.85), for four different multilooking factors: (A) L = 1, (B) L = 5, (C) L = 20, and (D) L = 50.
The stylized setting of the demonstration have been visualized in fig. 3.8. We can see for higher number
of looks, eq. (3.85) provides an good approximation.
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Rocca (2007) and De Zan et al. (2015) also have reported an equation for the evaluation
of covariance between interferometric phases as

Cov{φ
ij
, φ
kl
} ≈ |γil||γjk| − |γij ||γkl|2L|γij ||γkl|

. (3.87)

Note the difference between the numerators of eqs. (3.87) and (3.85). It is possible
to show that eq. (3.87) derived by Rocca (2007) and De Zan et al. (2015) has been
derived based on the simplified assumption that complex interferograms have a circular
complex distribution, which is an invalid assumption as the Hermitian product of cir-
cularly Gaussian distributed SLC values does not generally follow a circular distribution
(see Appendix A.1.1). Furthermore, we can see that eq. (3.85) is truly the function of
all the six absolute coherence values in Υ, in contrast with eq. (3.87) which is invariant
with respect to the coherence values |γik| and |γjl|. For example, for the demonstration
setting of fig. 3.8, eq. (3.87) evaluates the covariance values equal to zero which is clearly
wrong compared to the results of the Monte-Carlo simulation (see fig. 3.9). Hence, we
conclude that eq. (3.85) is more generic than eq. (3.87) and is a better approximation
for the phase covariance of interferometric phases.

3.5 Summary and conclusions

This chapter gave an overview of single-point statistics for distributed scatterers in both
SAR and InSAR stacks. For stacks of SAR images, a comprehensive review of the as-
sociated probability distribution functions and their first and second statistical moments
have been given in section 3.2, with the main focus on the coherence matrix as the
main descriptor of SAR stack statistics. Different aspects of the evaluation of coher-
ence matrices and the influence of different error sources on coherence values have been
elaborated. We also reviewed the single-point statistics of interferometric phase values,
for both cases of a single interferogram (section 3.3) and a stack of interferograms (sec-
tion 3.4). For a vector of (multilooked) interferometric phases associated with a single
DS-pixel, the stochastic model has been given in terms of second statistical moments
or the covariance matrix. We have introduced a Monte-Carlo numerical approach to
evaluate the covariance matrix of interferometric phases (section 3.4.4). As an alter-
native, an analytical approximation for evaluation of the variances and covariances of
interferometric phases has been also derived by nonlinear propagation of SAR statistics
(i.e., coherence matrix) into the dispersion of interferometric phases (section 3.4.5).

The covariance matrices constructed either by the proposed Monte-Carlo approach or
by the analytical approximation of eq. (3.85) can serve as the stochastic part of the
mathematical model for the ESM-phase estimation problem. In the next chapter, we
discuss the functional model and different existing estimators for ESM-phase estimation.

8Note that the assumption of zero mean phase is equivalent to changing the integration interval of
eqs. (3.58) and (3.59) to (φ0−π, φ0+π) instead of (−π, π) (see section 3.3 and eq. (3.63)).





ESM-Phase Estimation:
Complex optimization methods 4
This chapter is about Equivalent Single Master (ESM) phase estimation. The
concept of phase consistency is elaborated as the basic constraint imposed in all
ESM-phase estimation methodologies (sec. 4.1). A generic mathematical model
for ESM-phase estimation is introduced (sec. 4.2), and three different objective
functions are given for this problem, one in the real-valued phase domain and the
other two in the complex domain. The focus of this chapter is mainly on the ESM-
phase estimation by optimization in the complex domain, while the next chapter
will focus on the optimization in the phase domain. The existing estimators are
revisited, and it is shown that all complex-domain estimators are a particular case
of a generic mathematical model (sec. 4.3). Practical considerations about the
solution of different estimators are discussed (sec. 4.4), followed by an elabora-
tion of the lower Cramér-Rao Bound for the dispersion of ESM-phase estimation
(sec. 4.5).

Equivalent Single Master (ESM) phase estimation is the key processing step for informa-
tion extraction from DS-pixels (cf. sec. 2.5). This estimation filters out the decorrelation
noise, while estimating, for each pixel, the SM-phase time-series corresponding to the
physical path length differences between the targets and the sensor by exploiting a stack
of multi-master interferometric phases.

In principle, ESM-phase estimation can be applied either after unwrapping or before un-
wrapping (see sec. 2.5). The details of the post-unwrapping ESM-phase estimation were
discussed in section 2.5.1. The focus of this chapter is on pre-unwrapping estimation.
In contrary to the post-unwrapping procedure, which is formulated by a linear model
(eq. (2.48)), the functional relation between observations and unknown parameters is
highly nonlinear in the case of pre-unwrapping estimation, and so it requires a more
advanced estimation methodology compared to the post-unwrapping estimation.

Although various estimation methods can be found in InSAR literature (Monti-Guarnieri
and Tebaldini, 2008; Ferretti et al., 2011b,a; Pepe et al., 2015; Fornaro et al., 2015;
Cao et al., 2016) for pre-unwrapping ESM-phase estimation with different concepts and
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mathematical formulation, there is strong similarities between them (Cao et al., 2015).
Irrespective of the mathematical formulation, the ESM-phase estimation methodologies
are all based on the principle of phase consistency. In brief, phase consistency1 for each
pixel means that for each set of three interferometric phases, obtained from three SLC
images, each of the interferometric phases can be reconstructed from the other two
interferometric phases. In the following sections, we first describe, in detail, the concept
of phase consistency (sec. 4.1), followed by an introduction to a generic functional model
for ESM-phase estimation (sec. 4.2), and a review of different existing methodologies in
the framework of the proposed generic mathematical model (sec. 4.2.2).

4.1 Concept of phase consistency

Assume that Pm, Pn, and Po are three SLC values corresponding to a pixel P in three
different SAR images. (see fig. 4.1 as a simplistic example) in the form of

Pm = Am exp(jψm), (4.1)

where j is the imaginary unit, and Am∈R+ and ψm∈[−π, π) represent the amplitude
and phase of Pm, respectively. Then the single-look interferometric values Iom, Ion and
Imn constructed from these SLC values can be written as

Iom = PoP
∗
m, Ion = PoP

∗
n , Inm = PnP

∗
m, (4.2)

where .∗ denotes the complex conjugate. It is trivial that the phase of these interfero-
metric values follows (deterministically) from the other two, e.g.

φnm = W{φom − φon}, (4.3)

where φnm is the wrapped interferometric phase of Inm, and W{.} the wrapping (modulo-
2π) operator. The equality of eq. (4.3) is called phase consistency, which holds by
definition for single pixels.

However, for multilooked interferometric pixels, phase consistency does not necessarily
hold, see fig. 4.1 as a numerical demonstration of phase consistency for single- and
multilooked phases. The main source of inconsistency among multilooked phases is the
random noise. For example, in the demonstration of fig. 4.1, we assume the signal
to be zero, and random noise simulated based on a complex Gaussian distribution.
Hence, the observed inconsistency among the multilooked phases is purely induced by
the random noise. Apart from the noise, all other interferometric signal components
(e.g. the atmospheric phase, topographic phase, and ground deformation phase) follow
the phase consistency condition (even for multilooked phases) if they are constant within
the averaging window2.

1The concept of phase consistency is called phase triangularity in some literature, e.g. in Ferretti
et al. (2011b).

2However, it has been shown, see (De Zan et al., 2015; Zwieback et al., 2016), that there are also
some scattering mechanisms which can induce systematic phase inconsistencies unrelated to the effect of
random noise. Examples of these mechanisms are the volume scattering in the presence of perpendicular
baselines or variation in the soil moisture. To limit the scope of this study, these mechanisms and their
effects on phase estimation are not elaborated further, see the recommendations of sec. 7.3
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Under certain statistical conditions, the phase consistency for multilooked pixels can be
expressed in terms of phase expectation. Assuming a distributed scattering mechanism
(i.e. each SAR pixel as a superposition of contributions from many elementary scatterers
in a resolution cell), SLC pixels have a zero-mean circular Gaussian distribution (Madsen,
1986; Bamler and Hartl, 1998). Under this assumption, the expectation of complex
interferometric observations can be written as (cf. eq. (3.16))

E{Inm} = ζnm|γnm| exp
(
j(ϕn − ϕm)

)
, (4.4)

where E{.} is the expectation operator, |γnm| the absolute value of normalized inter-

ferometric coherence, and ζnm=
√

E{A2
n}E{A

2
m} is the expected power of the two SLC

pixels. The phase terms ϕn∈[−π, π) and ϕm∈[−π, π) are the deterministic components
of ψi and ψj , respectively, and they are defined as the phase contributions related to the
physical path difference between the target and the sensor (i.e. the phase contributions
of deformation, topography, atmosphere and orbital errors). We can rewrite eq. (4.4)
by adding and subtracting the true phase value of another image Po from the argument
of the complex interferogram Inm:

E{Inm} = ζnm|γnm| exp
(
j(ϕn − ϕm)

)
= ζnm|γnm| exp

(
j(ϕn − ϕo − ϕm + ϕo)

)
= ζnm|γnm| exp

(
j(ϕom − ϕon)

)
, (4.5)

where ϕom and ϕon are now the true values of the interferometric phases, and Anm the
interferometric amplitude. If φ̂

nm
denotes the multilooked phase, under the assumption

that the signal components ϕ are constant within the averaging window, we obtain (Just
and Bamler, 1994)

E{exp(jφ
nm

)} = E{exp(jφ̂
nm

)} = exp
(
j(ϕom − ϕon)

)
, (4.6)

or in alternative formulation in the phase domain:

E{φ
nm
} = E{φ̂

nm
} = W{ϕom − ϕon}. (4.7)

In contrast to eq. (4.3), we call the eq. (4.6) or (4.7) the expected phase consistency
condition, which is the same as the phase consistency but defined on the expected value
of interferometric phases.

Based on this formulation, ESM-phase estimation is defined as the estimation of a set of
consistent interferometric phases (i.e. where phase consistency holds for every combi-
nation of three interferograms) from a stack of inconsistent multilooked interferograms.
In other words, ESM-phase estimation is the extraction of a deterministic signal ϕ from
stochastic multilooked observations φ̂ under the expected phase consistency condition.
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Figure 4.1: Numerical demonstration of phase inconsistency: (A) Three 3×3 phase interferograms
constructed from the 3×3 SLC phases (∠(Po),∠(Pm),∠(Pn)), and the corresponding multilooked
interferometric phases (φ̂om, φ̂on, φ̂nm), (B) demonstration of the phase consistency condition for
single-look pixels, (C) demonstration of the phase inconsistency for multilooked pixels. Note that, in
this context, multilooking is always complex (i.e., it is applied by coherent averaging). Figure taken
from Samiei-Esfahany et al., 2016.

4.2 Generic mathematical model

4.2.1 Functional model

In a stack of N SLC images, for each pixel, the observation vector contains Mifg po-
tential multilooked wrapped interferometric phases. In the most generic, case where
all the interferometric combinations are used, the observation vector is a vector of size
Mifg=N(N−1)/2, containing the total number of multilooked wrapped interferometric
phases φ̂nm, where n and m are the radar image indices. The unknown parameters
are the true SM wrapped interferometric phases ϕoi, where the o-index indicates the
master acquisition. Then, eqs. (4.6) and (4.7) can be regarded as nonlinear observation
equations with φnm as observations, and ϕon and ϕom as the unknown parameters of
interest. In matrix notation, the nonlinear system of observation equations in the phase
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domain (based on eq. 4.7) can be written as

E

{


φ̂
o1
...

φ̂
o(N−1)
...

φ̂
nm
...


︸ ︷︷ ︸

y

}
= W

{


1
. . .

1
...

−1 . . . 1
...


︸ ︷︷ ︸

B

 ϕo1
...

ϕo(N−1)


︸ ︷︷ ︸

b

}
, (4.8)

or in a compact form as
E{y} = W

{
Bb
}
, (4.9)

where n,m=1 . . . (N−1), y is the observation vector, b the vector of unknown param-
eters, and B the design matrix depending on the set of multi-master interferograms.
Instead of formulating the problem in the real number domain (the phase domain) and
using a wrapping operator, the same functional model can be formulated in the complex
domain (based on eq. (4.6)), using the complex phasors as

E
{

exp◦(jy)
}

= exp◦(jBb), (4.10)

where exp◦(.) is Hadamard (entry-wise) exponential function (Horn and Johnson, 1990,
1991). Equations (4.9) or (4.10) can be considered as the generic functional model for
pre-unwrapping SM-phase estimation with Mifg observations and N−1 unknowns.

4.2.2 Objective functions

In order to solve the inconsistent system of equations in eq. (4.9) and find an optimal
estimate b̂, we require a metric as a measure of difference between the phase observations
in y and the predicted observations ŷ that are given by the forward model ŷ = W{Bb̂}.
As the values in both y and ŷ are wrapped phases, the difference between them should be
also wrapped. This difference is called the residual vector and defined as e = W{y− ŷ}.
In principle, it is possible to define different metrics (or objective function) for ESM-phase
estimation based on the length of the residual vector e or its complex phasor exp◦(je).

A common metric in estimation theory is the weighted L2-norm of the residual vector:

‖e‖2W = eTWe, (4.11)

where W is a weight matrix assigning weights to different observations. Based on this
metric, the least squares (LS) solution of ESM-phase estimation can be defined as a
nonlinear minimization problem:

b̂LS = argmin
b
‖e‖2W = argmin

b

∥∥W{y −W{Bb}
}∥∥2

W
. (4.12)
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Although the LS principle provides the optimal solution for many estimation problems,
its application for ESM-phase estimation requires coping with the strong nonlinearity
and discontinuity that is induced by the wrapping operator in eq. (4.12). We introduce
a new methodology for solving the nonlinear LS problem of eq. (4.12) in chapter 5. In
the rest of this chapter, we focus on alternative objective functions that are defined over
complex residual phasors instead of real residual phases. We define the vector of residual
phasors as

r = exp◦(je) = exp◦
(
j(y −W{Bb̂})

)
= exp◦

(
j(y −Bb̂)

)
. (4.13)

The vector of residual phasors r can be considered as the complex counterpart of the
real-valued residual vector e. For minimizing the residual phase values in e, two different
metrics can be defined over the complex vector r: one is based on the circular variance
of the phase values of the phasor elements in r, while the other is based on the real value
of the vector summation over r. We describe these two metrics and their corresponding
objective functions for ESM-phase estimation in the following.

Circular variance of residual phases
For circular variables3 like wrapped residual phases in e, a measure for the dispersion
around the mean is the (weighted) ensemble circular variance s2

e which has been defined
as (Fisher, 1995; Mardia and Jupp, 2000):

s2
e = 1−

∣∣∣∣∣
∑M
i=1 wi exp(jei)∑M

i=1 wi

∣∣∣∣∣ = 1−

∣∣∣∣∣
∑M
i=1 wiri∑M
i=1 wi

∣∣∣∣∣, (4.14)

where ei (i = 1 . . .M) are the residual phases, ri (i = 1 . . .M) are the elements of
the vector of residual phasors r, and wi (i = 1 . . .M) are the weighting factors. Note
that the second term in the right hand side of eq. (4.14) is the normalized length of the
resultant vector that is computed from weighted summation of residual phasors ri. The
weighted circular variance s2

e has a minimum value of zero and a maximum value of 1.
We can write eq. (4.14) in matrix form as

s2
e = 1−

∣∣∣ sum(Wr)
tr(W )

∣∣∣, (4.15)

where W is the M×M diagonal weight matrix whose ith diagonal element is equal to
wi, and sum(.) and tr(.) denote the sum of the vector elements and the trace of the
matrix, respectively.

For solving the ESM-phase estimation problem, the objective function can be defined as
the ensemble weighted circular variance of residual phases and the solution can be found

3Circular (or angular) variables are variables whose their possible highest and lowest values are
approaching together, while the definition of the higher and lower values for them is arbitrary. A
particular class is the wrapped interferometric phase whose lowest value −π is approaching to its highest
value π − ε (where ε is a small positive infinitesimal quantity). For more information about circular
variables and their statistics, see Fisher (1995); Mardia and Jupp (2000), and Jammalamadaka and
SenGupta (2001).
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Figure 4.2: Demonstration of the relation between phase variance and the length of the resultant
vector (i.e., |sum(r)|) in the complex domain: assuming 10 number of residual phases, we simulated
four different sets of residual phases from high to low dispersion, i.e., from left to right respectively.
In the latest set, the phase dispersion is zero, and so all the 10 phasors are identical and they are
super-imposed on each other. The resultant vector sum(r) is visualized in the bottom row plots by the
solid black lines. Maximizing the length of the resultant vector is equivalent to minimizing the phase
dispersion.

by the following nonlinear optimization

b̂LCV = argmin
b

(
1−

∣∣∣ sum(Wr)
tr(W )

∣∣∣)

= argmin
b

(
1−

∣∣∣ sum
(
W exp◦

(
j(y −Bb)

))
tr(W )

∣∣∣)

= argmax
b

∣∣∣ sum
(
W exp◦

(
j(y −Bb)

))
tr(W )

∣∣∣
= argmax

b

∣∣∣sum(W exp◦
(
j(y −Bb)

))∣∣∣, (4.16)

where LCV is the acronym for least circular variance. We see that minimizing the
weighted circular variance is equivalent to maximizing the length of the resultant vector
sum(r). In fig. 4.2, this fact is demonstrated. Assuming M = 10 number of residual
phases, we simulated four different sets of residual phases from high to low dispersion
(from left to right respectively). The resultant vector is visualized in the bottom row
plots. We observe that maximizing the length of the resultant vector results in the
minimization of the residual phase dispersion. It should be noted that the same metric
has been used by Pepe et al. (2015) for ESM-phase estimation with weights equal to
the estimated pixel coherence in every interferograms, see more details in sec. 4.3.4. A
discussion on different algorithms for solving the nonlinear optimization of eq. (4.16) is
given in sec. 4.4.

Real value of the resultant vector of r
An alternative metric for ESM-phase estimation can be defined based on the real value of
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Figure 4.3: Demonstration of the relation between residual phase values and the real part of the
resultant vector in the complex domain: assuming 10 residual phases, we simulated four different sets
of residual phases. The phase dispersion is reduced from left to right. The phase dispersion is zero
and identical for the third and the fourth set, but all the phases are equal to zero in the forth set.
The resultant vector and its real part are visualized in the bottom row plots (the solid lines/vectors).
Maximizing the real part of the resultant vector is equivalent to minimizing the residual phase values.
Although the phase dispersion is identical in the third and fourth cases, the real part of the resultant
vector is larger for zero phases.

the resultant vector sum(r). In fig. 4.3, it is demonstrated that the resultant vector that
contains phasors with minimum residual phases gives the maximum real value. Based
on this metric, the solution of the ESM-phase estimation is given by

b̂RR = argmax
b

Re
(
sum

(
W exp◦

(
j(y −Bb)

)))
, (4.17)

where RR is the acronym for Real value of the Resultant vector. Note the conceptual
difference between maximization of eq. (4.17) and the one of eq. (4.16): by maximizing
the real part of the resultant vector, the optimization of eq. (4.17) not only inserts the
condition of minimum phase variance (i.e, the same as eq. (4.16)), but also it constrains
the phasors ri to have minimum absolute phase values (see fig. 4.3). In other words, in
contrast to the objective function of eq. (4.16) which is invariant for a common offset
in the residual phases, eq. (4.17) has a maximum value when the phase offset is also
minimum.

It is possible to show that all the existing ESM-phase estimators are special cases of
one of the two optimization problems of eq. (4.16) or eq. (4.17), as elaborated in the
following section.
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4.3 A review of existing estimators

In this section, we revise the existing estimators and formulate them based on the generic
mathematical framework introduced in sec. 4.2. Note that in this section, we only focus
on the mathematical formulation of different estimators. Practical issues concerning the
solution of these estimators are discussed later in sec. 4.4.

4.3.1 Maximum Likelihood method

The maximum likelihood (ML) estimator for ESM-phase estimation was originally in-
troduced by Monti-Guarnieri and Tebaldini (2008), who referred to this estimation as
phase linking. Later, a similar ML concept was used in the framework of the SqueeSAR
algorithm (Ferretti et al., 2011b). The ML estimation is based on maximizing the mul-
tivariate joint-probability distribution of SLC values within the averaging/brotherhood
area that used for multi-looking. In order to formulate this joint PDF, the point of
departure is to consider the multivariate PDF of the N×1 SLC vector dk for a pixel k
(see eq. (3.21)):

fdk(dk|Ψ) = c · exp
(
− d∗kΨΥ−1Ψ∗dk

)
, (4.18)

which is conditioned on the unknown phase values in Ψ. Here, c is a constant value,
Υ is the N×N absolute coherence matrix, and Ψ is an N×N diagonal complex matrix
defined by:

Ψ = diag
{

exp(jϕo), exp(jϕ1), · · · , exp(jϕ(N−1))
}
, (4.19)

where ϕi is the true phase value in the ith image. Assuming the true phases ϕi are
constant within the multilooking area (denoted by Ω), and assuming statistical indepen-
dence between adjacent pixels, the multivariate joint-PDF of L number of pixels in Ω is
proportional to the multiplication of PDFs of individual pixels within Ω:

fdΩ
(dΩ|Ψ) ∝

L∏
k=1

exp
(
− d∗kΨΥ−1Ψ∗dk

)
, (4.20)

where dΩ = [dT1 , dT2 , . . . , dTL]T . Equation (4.20) can be re-arranged as (see the proof in
sec. A.2.1)

fdΩ
(dΩ|Ψ) ∝ exp

(
− tr(ΨΥ−1Ψ∗Γ̂)

)
, (4.21)

where Γ̂ is the complex coherence matrix estimated based on the pixels within Ω. Based
on this formulation, the ML estimates for the ϕi values in Ψ can be computed by
maximizing the conditional PDF of eq. (4.21). However, as only phase differences
(or interferometric phases) appear in Γ̂, the problem is under-determined considering
N unknown parameters, and the ϕi values can be estimated only up to an arbitrary
constant. Without loss of generality, to deal with this under-determined problem, the
ML methods set the ϕi of one of the images (e.g., master image) to zero (Monti-
Guarnieri and Tebaldini, 2008; Ferretti et al., 2011b). By doing so, in fact the phase
differences (or interferometric phases) with respect to the assumed master image are
estimated. Therefore, although the ML mathematical model is formulated explicitly
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based on SLC phases, by setting the master image phase to zero, the ESM-phases are
implicitly estimated. If we denote the master image by the index "o", the constraint
ϕo = 0 in Ψ is equivalent to subtracting the ϕo from all ϕi phases, and by doing so, a
new vector Φ can be defined as

Φ =
[

exp
(
j(ϕo − ϕo)

)
, exp

(
j(ϕo − ϕ1)

)
, · · · , exp

(
j(ϕo − ϕ(N−1))

)]T
(4.22)

=
[
1, exp

(
− jϕo1

)
, · · · , exp

(
− jϕo(N−1)

)]T
(4.23)

=
[
1, exp◦(−jb)

]T
, (4.24)

where b is the N−1 vector of unknown parameters of the ESM-phase estimation problem
(see eq. (4.8)). With this formulation, the ML estimates of the unknown parameters in
b are computed by the following maximization problem (Monti-Guarnieri and Tebaldini,
2008; Ferretti et al., 2011b):

b̂ML = arg max
b

{
Φ∗(−Υ−1 ◦ Γ̂)Φ

}
. (4.25)

As the true coherence matrix Υ is always unknown, the ML methods use the inverse of
the estimated absolute coherence matrix Υ̂ = abs(Γ̂), and therefore (Monti-Guarnieri
and Tebaldini, 2008; Ferretti et al., 2011b):

b̂ML = arg max
b

{
Φ∗(−Υ̂−1 ◦ Γ̂)Φ

}
. (4.26)

It is possible to show that the maximization problem of eq. (4.26) can be expressed in
the following form (see the proof in sec. A.2.2):

b̂ML = arg max
b

{
Re
( N∑
m=1

N∑
n>m

−[Υ̂−1][m,n]|γ̂mn| exp
(
j(φ̂mn − ϕom + ϕon)

))}
, (4.27)

where [Υ̂−1][m,n] is the element of matrix Υ̂−1 at row m and column n. Note that the
exponent of eq. (4.27) is equivalent to the complex residual phasors of the generic model
of the ESM-phase estimation problem (see eq. (4.13)). Therefore, by writing eq. (4.27)
in a vector form based on eq. (4.13), we get:

b̂ML = arg max
b

Re
(
sum

(
WML exp◦

(
j(y −Bb)

)))
, (4.28)

where WML is an M×M diagonal weight matrix (M is the number of interferograms,
in this case M=N(N−1)/2). The ith diagonal element of WML is defined as

[WML][i,i] = −[Υ̂−1][m,n]|γ̂mn|, i = 1 . . .M, (4.29)

where the i factor denotes the interferogram-index corresponding the the interferometric
combination mn.

We can see that eq. (4.27) is a specific case of the objective function of eq. (4.17),
with the weight matrix equal to WML. The main property of the ML mathematical
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model is that by exploiting the complex coherence matrix Γ̂, it uses all the N(N −
1)/2 possible interferometric combinations. Also it requires the inverse of the absolute
coherence matrix Υ̂, which is, in general, not positive-definite due to the biased coherence
estimation, and therefore the ML algorithms require the introduction of a damping factor
to remove small negative or null eigenvalues of Υ̂ prior to the matrix inversion (Ferretti
et al., 2011b).

4.3.2 Maximum coherence-based-weighted sum of residual phasors (MCSR)

Ferretti et al. (2011a) introduced an alternative objective function for the ESM-phase
estimation problem based on maximizing the real value of the coherence-based-weighted
sum of the residual phasors ri (see eq. (4.17)). In this approach, the N−1 unknown
SM-phases in vector b are estimated by the following maximization problem

b̂MCSR = arg max
b

{
Re
( N∑
m=1

N∑
n=1
|γ̂mn|p exp

(
j(φ̂mn − ϕom + ϕon)

))}
, (4.30)

where the exponent p is a positive real number used to assign different weights to the
coherence values |γ̂mn|. The summations in eq. (4.30) can be also re-written as (the
proof is similar to the proof of eq. (4.30), see sec. A.2.2)

b̂MCSR = arg max
b

{
Re
( N∑
m=1

N∑
n>m

|γ̂mn|p exp
(
j(φ̂mn − ϕom + ϕon)

))}
, (4.31)

which in the vectorized from can be expressed as

b̂MCSR = arg max
b

Re
(
sum

(
WMCSR exp◦

(
j(y −Bb)

)))
, (4.32)

whereWMCSR is anM×M diagonal weight matrix. The ith diagonal element ofWMCSR
is defined as

[WMCSR][i,i] = |γ̂mn|p (4.33)

where the i-factor (i = 1 . . .M) denotes the interferogram-index corresponding to the
interferometric combination mn. We can see that—similar to the ML estimator—the
MCSR estimator of eq. (4.32) is a specific case of the objective function of eq. (4.17),
but with the weight matrix equal to WMCSR. In contrast to the ML estimator, the
MCSR method does not require the inversion of the absolute coherence matrix. This
property can be considered as a computational advantage of this approach. Although
the original MCSR formulation uses all the possible interferograms, it is easy to exclude
interferograms in this method by assigning zero weights to them. In this way, the MCSR
formulation, in contrary to ML estimator, has the flexibility to digest also a subset of
interferograms.
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4.3.3 Eigendecomposition-based methods

The eigendecomposition-based method for ESM-phase estimation was originally intro-
duced by Fornaro et al. (2015) in the framework of the CAESAR algorithm. This ESM-
phase estimation is based on an eigenvalue decomposition (EVD) of the SLC data co-
variance matrix, which is estimated for each pixel by

Q̂yslc = 1
L

∑
k∈Ω

dkd
∗
k, (4.34)

where dk is the N×1 vector of SLC values for pixel k, Ω is the pixel multilook-
ing/brotherhood area, and L is the number of samples within Ω. Note that the [m,n]
elements of Q̂yslc are equal to:[

Q̂yslc
]
[m,n] = ˆ̄Imnγ̂mn = ˆ̄Imn|γ̂mn| exp(jφ̂mn), (4.35)

where Īmn denotes the [m,n] element of the average power matrix Ī, see eq. (3.7).

ˆ̄Imn = 1
N

√(∑
k∈Ω
|dkm |2

)(∑
k∈Ω
|dkn |2

)
. (4.36)

The ESM-phases are estimated by extracting the complex eigenvector corresponding
to the largest eigenvalue of the complex covariance matrix Q̂yslc . The phases of this
eigenvector are the estimates for the ESM-phase estimation. Assuming û1 to be the first
eigenvector corresponding to the largest eigenvalue of Q̂yslc , the û1 is the result of the
following maximization problem (Fornaro et al., 2015)

û1 = arg max
u

{
u∗Q̂yslcu

}
, subject to u∗u = 1. (4.37)

Because for the ESM-phase estimation the only free parameters are the SM-phase values,
the maximization of eq. (4.37) can be considered as a maximization over vector u whose
absolute values are fixed to the absolute value of the largest eigenvector û1 but its phases
are variable. Therefore, eq. (4.37) can be reformulated as (Cao et al., 2015)

û1 = arg max
u1

{
u∗1Q̂yslcu1

}
, subject to u∗1u1 = 1, (4.38)

where u1 is defined as

u1 =
[∣∣[u1]1

∣∣ exp(j(ϕo − ϕo)),
∣∣[u1]2

∣∣ exp(j(ϕ1 − ϕo)), . . . ,
∣∣[u1]N−1

∣∣ exp(j(ϕN−1 − ϕo))
]T
,

= |u1| ◦
[

exp(j0), exp(j(ϕ1 − ϕo)), . . . , exp(j(ϕN−1 − ϕo)
]T

= |u1| ◦
[
1, exp◦(−jb)

]T
.

(4.39)

By inserting the u1 of eqs. (4.39) and (4.35) in eq. (4.38), the maximization problem
can be written over phase differences in b as (Cao et al., 2015)

b̂EVQ = arg max
b

{
Re
( N∑
m=1

N∑
n>m

[
|u1||uT1 |

]
[m,n]

ˆ̄Imn|γ̂mn| exp
(
j(φ̂mn − ϕom + ϕon)

))}
,

(4.40)
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which in the vectorized from can be formulated as

b̂EVQ = arg max
b

Re
(
sum

(
WEVQ exp◦

(
j(y −Bb)

)))
, (4.41)

where WEVQ is a M×M diagonal weight matrix with diagonal elements as

[WEVQ][i,i] =
[
|u1||uT1 |

]
[m,n]

ˆ̄Imn|γ̂mn|, (4.42)

where the i-factor (i = 1 . . .M) denotes the interferogram-index corresponding the the
interferometric combination mn. This formulation shows that the Eigendecomposition-
based estimator b̂EVQ is a specific case of the objective function of eq. (4.17), but this
time with the weight matrix equal to WEVQ.

It should be noted that the Eigendecomposition-based method can also be applied to
the full complex coherence matrix Γ̂, instead of the covariance matrix Q̂yslc (Cao et al.,
2016). If Γ̂ is used, a new estimator can be defined, denoted by EVC and written as
(Cao et al., 2016):

b̂EVC = arg max
b

{
Re
( N∑
m=1

N∑
n>m

[
|v1||vT1 |

]
[m,n]
|γ̂mn| exp

(
j(φ̂mn − ϕom + ϕon)

))}
, (4.43)

where v1 is the first eigenvector corresponding to the largest eigenvalue of Γ̂. In the
vectorized from, eq. (4.43) is

b̂EVC = arg max
b

Re
(
sum

(
WEVC exp◦

(
j(y −Bb)

)))
, (4.44)

where WEVC is a M×M diagonal weight matrix with diagonal elements

[WEVC][i,i] =
[
|v1||vT1 |

]
[m,n]|γ̂mn|, (4.45)

where the i-factor (i = 1 . . .M) denotes the interferogram-index corresponding the the
interferometric combination mn. Similar to the EVQ estimator, the EVC estimator
b̂EVC is a specific case of the objective function of eq. (4.17), but this time with the
weight matrix WEVQC. Note that in practice, the solution for EVQ/EVC estimators is
computed by eigenvalue decomposition of the full covariance matrix Q̂yslc , and there-
fore these estimators require the computation of all the possible interferometric phase
combinations.

4.3.4 Least circular variance estimator

The least circular variance (LCV) estimator has been introduced in sec. 4.2.2. This
estimator for ESM-phase estimation has been introduced by Pepe et al. (2015) in the
framework of the improved EMCF-SBAS processing chain. In this algorithm, the ESM-
phases are estimated by the following maximization problem (see eq. (4.16)):

b̂LCV = argmax
b

∣∣∣sum(WLCV exp◦
(
j(y −Bb)

))∣∣∣, (4.46)
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where WLCV is the diagonal weight matrix whose elements are defined based on the
absolute coherence values as

[WLCV][i,i] = |γ̂mn|, (4.47)

where the i-factor (i = 1 . . .M) denotes the interferogram-index corresponding to the
interferometric combinationmn. It should be noted that the LCV maximization problem
does not require the full coherence matrix, and so it has the flexibility of also digesting
a subset of interferograms.

4.3.5 Summary of the review of ESM-phase estimators

In summary, we saw that all the existing ESM-phase estimators are special cases of either
maximization of eq. (4.17) or eq. (4.16). The LCV estimator of eq. (4.46) is the only
one which is based on eq. (4.16), while the others are the special cases of the objective
function of eq. (4.17).

The key difference among the discussed estimators are the weight factors which they as-
sign to the multi-looked interferometric phases. Table 4.1 summarizes all the discussed
estimators and their properties. In this section, we only discussed the mathematical
formulation of different estimators. In the next section, we discuss the practical consid-
erations to solve the nonlinear maximization problems of different estimators.

4.4 Practical considerations

In this section, we discuss the practical considerations regarding the solution for the
nonlinear optimization problem of different ESM-phase estimators, which have been
described in sec. 4.3.

4.4.1 Solution of different estimators

As we discussed in sec. 4.3, all the existing ESM-phase estimators can be formulated
into one of the nonlinear maximization problems of eq. (4.17) or eq. (4.16). Except
the eigendecomposition-based estimators (see sec. 4.3.3) for which the solution can
be easily computed by an eigenvalue decomposition of coherence/covariance matrices,
the other estimators require a nonlinear optimization method in order to obtain the
solution. In principle, for the ESM-phase estimation, any nonlinear optimization routine
(e.g, Newton’s or quasi-Newton methods, simulated annealing, etc.) can be applied.
The common method is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (Press
et al., 2007)4, which is frequently used for ESM-phase estimation in InSAR literature
(Ferretti et al., 2011b,a; Pepe et al., 2015).

4The BFGS algorithm is an iterative quasi-Newton method for nonlinear optimization, and different
open-source BFGS solvers are available, e.g. the Fortran-based limted-memory BFGS subroutine for
large-scale optimization problems (Zhu et al., 1997), which has been used for ESM-phase estimation by
Pepe et al. (2015)
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In addition to nonlinear optimization algorithms (e.g.,BFGS), Monti-Guarnieri and Tebal-
dini (2008) proposed an iterative closed-form solution for the ML ESM-phase estimation.
This closed-form solution computes the ML estimates of each individual SLC phase ϕ̂n
as (Monti-Guarnieri and Tebaldini, 2008):

ϕ̂(k)
n = ∠

{ N∑
m6=n

[Υ̂−1][m,n]|γ̂mn| exp
(
j(φ̂mn + ϕ̂(k−1)

n )
)}
, (4.48)

where k is the iteration step. Then the estimate for the ESM-phases is computed as

ϕ̂(k)
on = ∠

{
exp

(
j(ϕ̂(k)

n − ϕ̂(k)
o

)}
, (4.49)

where the index o denotes the index of the master image. Note that, although the closed-
form evaluation of eq. (4.48) has been introduced for the ML method, it can be, in prin-
ciple, applied for all methods that are based on the maximization of eq. (4.17). To do so,
for a specific estimator, the weight factors of the ML estimator (i.e., ([Υ̂−1][m,n]|γ̂mn|)
in eq. (4.48)) can be set to the weight factors of the other estimators (see Table. 4.1).

In general, all the iterative non-linear optimization algorithms (e.g. BFGS or eq. (4.48))
require initial values of unknown parameters for starting the iteration. For ESM-phase
estimation, a simple choice for the initial values is the original multilooked SM-phase.
The other option, suggested by Ferretti et al. (2011a), is to use the estimates of one of
the eigen-decomposition estimators as the initial values.

4.4.2 Conditions for multilooking

The observation vector for ESM-phase estimation is the vector y, which contains mul-
tilooked interferometric phases (see eq. (4.9)). The multilooked phases are computed
by spatial coherent averaging over statistically homogeneous pixels (SHP). To satisfy
the homogeneity condition, we should use a spatially adaptive averaging window. See
sec. 2.4 for an overview of different methods for adaptive multilooking.

Another assumption in the computation of multilooked phases for each pixel is that the
signal components of ϕ are constant in the averaging area. This assumption may be
reasonable for relatively small areas with spatially correlated signals. However, if high
spatial variation of signal components is expected this phase variation should be removed
beforehand. Examples of variable signals are high topography gradients or orbital errors.
These kinds of spatially-variable signals can be removed by different kinds of phase
flattening or low-pass filters such as the adaptive multi-resolution defringe algorithm in
Davidson and Bamler (1999); Wang et al. (2012); Jiang et al. (2014b), patch detrending
in Zebker and Chen (2005); Bamler and Hartl (1998), or low-pass filtering in Hooper
et al. (2004).
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4.4.3 Posterior assessment

After SM-phase estimation, the quality of the estimated phase values should be assessed.
In Ferretti et al. (2011b), an ensemble temporal coherence γ̂PTA has been introduced as
a goodness-of-fit measure for SM-phase estimation:

γ̂PTA = 2
N(N − 1) Re

( N∑
m=1

N∑
n>m

exp
(
j(φ̂mn − ϕ̂om + ϕ̂on)

))
. (4.50)

This parameter can be written in the vectorized notation, and for a more generic case,
using a subset of interferograms, as:

γ̂PTA = 1
Mifgs

Re
(
HT exp

(
j(y −Bb̂)

))
, (4.51)

where Mifgs is the number of interferograms in the subset, and H is an all-ones column
vector with length of Mifgs. If all the possible interferometric combinations are used
Mifgs will equal to N(N−1)/2. The coherence γ̂PTA can be used for the final selection
of DS with reliable phase estimation (Ferretti et al., 2011b).

In addition to γ̂PTA as an indicator of the general quality of the estimates, it is desirable
to describe the quality of the results in the form of the second statistical moment or
a covariance matrix. To do so, the uncertainty of the multilooked observations in y

should be propagated to the final estimates b̂. However, as all the described estimators
are nonlinear, and their solution is derived based on different nonlinear optimization
routines, there is no single recipe or no closed-form expression for the evaluation of
the covariance matrix of the estimates. In the following section, a lower bound for the
precision (or covariance matrix) of the ESM-phase estimators is given.

4.5 Cramér-Rao Bound for ESM-phase estimation

Monti-Guarnieri and Tebaldini (2007, 2008) have proposed a generic formulation for
the evaluation of the lower Cramér-Rao bound (CRB) of the covariance matrix for the
ESM-phase estimation. This CRB evaluates the highest achievable precision (or the
lowest variance) for ESM-phase estimators given a stack of SAR values for a pixel with
a particular absolute coherence matrix, independent of the applied algorithm for the
estimation. Given the N×N absolute coherence matrix Υ, the CRB for ESM-phase
estimation is evaluated as (Monti-Guarnieri and Tebaldini, 2007) (see sec. A.2.3 for the
proof and more discussion):

Qb̂ ≥ (ΘTXΘ)−1, (4.52)

where the inequality (≥) indicates that the difference between the left and the right side
of the inequality should be a non-negative definite matrix, and the matrices Θ and X
are defined as follows:

• the matrix Θ = [0 IN−1]T is the N×(N−1) Jacobian matrix of the first-order
partial derivative of SLC phases with respect to the unknown parameters, and
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• the matrix X is the Fisher Information Matrix (FIM) associated with the estimates
and is defined as (Monti-Guarnieri and Tebaldini, 2007):

X = 2L(Υ ◦Υ−1 − IN ), (4.53)

where ◦ means the entry-wise product, L is the number of looks, and IN is a
N×N identity matrix.

Note that for the specific case of having only one interferogram constructed from two
SLC images (i.e., N = 2), the CRB of eq. (4.52) is reduced to

Qb̂,{N=2} = σ2
ϕ

12
≥ 1− |γ12|2

2L|γ12|2
, (4.54)

which has been already derived for single interferometric phases, see eq. (3.66). The
CRB of eq. (4.52) can be used to assess the efficiency of an estimator (for example, the
simulation study of sec. 5.3), or can be used as an approximation of the precision of the
ESM-phase estimators.

4.6 Conclusions

In this chapter, we introduced a generic functional model for ESM-phase estimation
problem in the form of a system of observation-equations (sec. 4.2). Based on this formu-
lation, different objective functions for SM-phase estimation were discussed (sec. 4.2.2).

We reviewed the ESM-phase estimators that are based on optimization in the complex
domain (sec. 4.3). A theoretical comparison of different estimators was given (see
Table. 4.1), and it was shown that all the estimators are particular solutions for the
proposed generic functional model. The fundamental difference among the estimators is
in the approach in which they assign weight factors to the interferometric observations.
Practical considerations that are important for solving the nonlinear optimization of
different estimators were elaborated (sec. 4.4). We also discussed a generic lower Cramér-
Rao bound of the variance of ESM-phase estimators (sec. 4.5). The CRB bound can be
used as the quality (precision) descriptor of estimated ESM-phases .

As an alternative to the estimators which are based on complex optimization, we briefly
discussed another objective function that can be directly applied on interferometric phase
residuals (see eq. (4.12)) based on the least squares (LS) principle. The LS formulation
results in a highly nonlinear minimization problem due to the wrapping operator in the
functional model. In the next chapter, we propose a methodology for solving the nonlin-
ear LS problem of eq. (4.12), followed by a synthetic study and a numerical comparison
of different ESM-phase estimators.



ESM-Phase Estimation:
Integer least squares method 5
In this chapter, we propose a new method for ESM-phase estimation based on
the integer least squares (ILS) principle. We model the ESM-phase estimation
problem in a linear form by introducing additional integer ambiguities (sec. 5.1),
and use a bootstrap estimator for the joint estimation of ESM-phases and the in-
teger unknowns (sec. 5.2). For validation, the proposed estimator is applied on
synthetic datasets, and the results are compared with the ESM-phase estimators
that were reviewed in the previous chapter (sec.5.3). A case study over the Tor-
fajökull volcano in Iceland demonstrates the performance of the proposed method
(sec.5.4).

5.1 Hybrid functional model for ESM-phase estimation

In the previous chapter, a generic functional model for ESM-phase estimation has been
formulated both in the real-valued phase domain (eq. (4.9)) as well as in the complex
domain (eq. (4.10)). For the latter, different objective functions were discussed, and
the existing estimators were reviewed. In this chapter, we will focus on the ESM-phase
estimation in the real-valued phase domain.

The main challenge to solve the problem in the phase domain is the nonlinearity imposed
by the wrapping operator. The basic building block of the functional model is the
expected phase consistency condition (cf. eq. (4.7)):

E{φ̂
nm
} = W{ϕom − ϕon}, (5.1)

where φ̂nm is the multilooked wrapped interferometric phase between radar images n
and m. The unknown parameters are the true SM wrapped interferometric phases ϕom
and ϕon, where the o-index indicates the master acquisition. Equation (5.1) can be

1This chapter has, in extended form, been published in the IEEE Transaction on Geoscience and Remote
Sensing 2016 (Samiei-Esfahany et al., 2016).
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regarded as nonlinear observation equation with φ̂
nm

as observable, and ϕon and ϕom
as unknown parameters of interest. We reformulate eq. (5.1) and write the nonlinear
wrapping operator in a linear form by introducing an integer ambiguity term anm as

E{φ̂
nm
} =

 ϕom − ϕon + anm(2π) if n,m 6= 0
ϕom if n = 0
−ϕon if m = 0

, (5.2)

where anm∈{−1, 0, 1}. Since the ϕ terms are wrapped phases, the value of (ϕnm−ϕon)
can only lie between −2π and 2π, and therefore the only possible values for the ambiguity
terms are 1, −1, or 0. In matrix notation, this linear system of observation equations is
written as

E{



φ̂
o1
...

φ̂
o(N−1)
...

φ̂
nm
...


︸ ︷︷ ︸

y

} =



0 . . . 0
...

. . .
...

0 . . . 0

2π
. . .

2π


︸ ︷︷ ︸

A


...

anm
...


︸ ︷︷ ︸

a

+



1
. . .

1
...

−1 . . . 1
...


︸ ︷︷ ︸

B

 ϕo1
...

ϕo(N−1)

 ,
︸ ︷︷ ︸

b

(5.3)
where n,m=1 . . . (N−1). Although the most generic case is presented here, in which all
the interferometric combinations are used, the model is flexible and can be written for
any subset of interferograms. With the model of eq. (5.3), we describe the ESM-phase
estimation problem in a hybrid system of linear equations with real unknowns ϕon and in-
teger unknowns anm. The solution of this system of equations is given by ILS estimation,
as described in the next section.

5.2 Integer Least Squares (ILS) for ESM-phase estimation

In order to solve the hybrid system of equations (eq. (5.3)) with both integer and real
values unknowns, we use the concept of Integer Least Squares (ILS) estimation. ILS
is a geodetic estimation method, originally designed for GPS applications (Teunissen,
1995; Teunissen and Kleusberg, 1998), and later also applied to InSAR temporal phase
unwrapping (Hanssen et al., 2001; Hanssen and Ferretti, 2002; Kampes and Hanssen,
2004; Teunissen, 2006).

5.2.1 ILS Estimator

Consider a hybrid system of linear observation equations with n integer and p real-valued
unknown parameters:

E{y} = Aa+Bb, (5.4)
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where E{.} is the expectation operator, y ∈ Rm the vector of observations, and a ∈ Zn
and b ∈ Rp the vectors of integer and real-valued unknown parameters, respectively. The
matrix [A B] is given and assumed to be a full column rank matrix. Equation (5.4)
is called the functional model as it describes the functional relation between the obser-
vations and the unknown parameters. The weighted integer least squares solution of
eq. (5.4) is (Teunissen, 1995)

ǎ, b̌ = argmin
a∈Z,b∈R

‖y −Aa−Bb‖2W , (5.5)

whereW is the weight matrix, and ‖.‖2W a quadratic norm defined as ‖.‖2W = (.)TW (.).
The weight matrix W is used to assign different weights to different observations. In
sec. 5.2.2, we discuss the implication of the weight matrix for ILS ESM-phase estimation.
To account for the integer constraint of vector a, it has been shown by Teunissen
(1995); Teunissen and Kleusberg (1998) that the objective function of eq. (5.5) can be
orthogonally decomposed into the sum of three L2−norm components:

‖y −Aa−Bb‖2W =∥∥∥y −Aâ−Bb̂∥∥∥2

W︸ ︷︷ ︸
1

+ ‖â− a‖2Wa︸ ︷︷ ︸
2

+
∥∥∥b̂|a − b∥∥∥2

Wb︸ ︷︷ ︸
3

, (5.6)

where â and b̂ are the real-valued unconstrained weighted least-squares estimates of the
a and b vectors, and b̂|a the conditional least squares estimates of vector b, conditioned
on a. The matrices Wb and Wa are defined as:

Wb = BTWB, (5.7)

and
Wa = FTWF, (5.8)

where
F = A−B(BTWB)−1BTWA. (5.9)

Because of the orthogonality condition among the three L2-norm components, as soon as
â and b̂ are computed using ordinary least squares, the minimization problem of eq. (5.5)
can be regarded as two individual minimization problems of :

ǎ = argmin
a∈Z

‖â− a‖2Wa
, (5.10)

and
b̌ = argmin

b∈R

∥∥∥b̂|a − b∥∥∥2

Wb

. (5.11)

As a consequence the solution of eq. (5.5) can be derived in three steps as follows
(Teunissen, 1993).

1. The standard weighted least-squares estimation is performed disregarding the in-
teger constraint a∈Zn in order to compute â and b̂:[

â

b̂

]
= ([A B]T W [A B])−1 [A B]T Wy. (5.12)
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These solutions are called float solutions.

2. To solve the minimization of eq. (5.10), the integer unknowns in vector ǎ are esti-
mated by mapping the float solution â to the corresponding integer (fixed) solution
using a mapping operator S:Rn 7→ Zn, i.e. ǎ = S(â). In this mapping, the float
solution vector â is mapped to the nearest integer vector. However, nearest must
be measured in the metric of matrix Wa in order to account for the correlation
among float solutions in vector â.
To estimate ǎ, there exist two common integer estimators. The integer least-
squares estimator accounts for all the correlation among float solutions, and the
integer bootstrapping estimator considers some of the correlations among the en-
tries of â. Although the ILS estimator is more optimal, its solution cannot be given
in a closed form and its computational time is larger compared to the bootstrap-
ping method. Here we use the bootstrapping approach. A detailed explanation
of these algorithms can be found in Teunissen (1995); Teunissen and Kleusberg
(1998). We also briefly describe the bootstrapping algorithm in Appendix B.1.

3. Solving the minimization of eq. (5.11)) is the most straightforward as it is a well-
determined problem (same number of unknowns as equations). So in principle,
the solution is given as:

b̌ = b̂|a. (5.13)

However the true value a is unknown. Assuming that the ǎ is the correct estimation
of a, we have a=ǎ. Based on this assumption, once the fixed solution ǎ is obtained,
the fixed solution of real parameters b̌ is computed as

b̌ = b̂|ǎ = (BTWB)−1BTW (y −Aǎ). (5.14)

Assuming Qy as the covariance matrix of observation vector y, the covariance
matrix of the fixed solution b̌ can be obtained as

Qb̌ = Qb̂|â = (BTWB)−1BTWQyWB(BTWB)−1. (5.15)

Note that, although we formulate the ILS problem with a generic weight matrixW
(not with W = Q−1

y ), we use the covariance matrix Qy in eq. (5.15) to propagate
the dispersion of the observations to the final estimates and to obtain Qb̌, which is
a full covariance matrix describing the precision of the final real-valued estimates
b̌.

Having the functional model of eq. (5.3) for each pixel in an interferogram stack, the
three ILS steps can be applied to estimate the ESM-phases. For the evaluation of
eqs. (5.12), (5.14), and (5.15), two more ingredients are required: the covariance matrix
of the phase observations, Qy, and the proper weight matrix W . The covariance matrix
Qy can be constructed either by a Monte-Carlo approach as proposed in sec. 3.4.4, or
by the analytical approximation of eq. (3.85). In the following, we address the choice of
the weight matrix W for the ESM-phase estimation.
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5.2.2 The choice of weight matrix

ILS problem has been conventionally formulated with a weight matrix equal to the
inverse of the covariance matrix of the observations. This is logical for observations
with a Gaussian distribution, because using W=Q−1

y provides the maximum likelihood
estimation. As the multilooked interferometric phases are not normally distributed, their
statistics cannot be explained fully by the phase covariance matrix. Also, an accurate
covariance matrix may not always be available (e.g. due to biased coherence estimation).
Therefore, we express ILS with a generic weight matrix W , increasing the flexibility of
the method to digest different kinds of weight matrices.

Focusing on the fundamental difference between non-Gaussian random variables (such as
interferometric phases) and Gaussian variables: while for the latter, the variance/dispersion
is truly the measure of information loss (as the PDF of Gaussian variables can be com-
pletely characterized by the dispersion or the covariance matrix in multivariate cases),
for interferometric phases, the variance is always bounded and is not representative of
information loss. In fact, a zero coherence interferometric phase conveys no information
(corresponding to infinite information loss), while its variance is equal to (2π)2

12 , which is
the variance of uniformly distributed phase between −π and π.

In the case of ESM-phase estimation, a reasonable choice for weighting the observations
is the coherence of each interferometric phase in observation vector y (cf. eq. (5.3)). In
this case, W is defined as a diagonal matrix in which the weight of an observation φ

mn
is defined as

wφ̂
mn

= γmn, (5.16)

where γmn is the absolute coherence value.

Another weighting strategy is based on the information content of interferometric mul-
tilooked phases. A common measure for the information content that a random variable
carries about an unknown parameter is the Fisher information index (Rice, 2001). If we
consider ϕmn to be the expected interferometric phase of the multilooked observation
φ̂
mn

, the amount of information included in φ̂
mn

about ϕmn can be quantified by the
Fisher information index of the interferometric phase as (cf. eq. (3.65))

Iφ̂
mn

{ϕmn} = 2Lγ2
mn

1− γ2
mn

, (5.17)

which results in zero information for γmn=0 and maximum information (of infinity)
when γmn approaches 1. In other words, Iφ̂

mn

{ϕmn} accounts for the loss of in-

formation about ϕmn due to noise and decorrelation. So the diagonal elements of a
Fisher-information-based weight matrix W is defined as:

wφ̂
mn

= Iφ
mn
{ϕmn}. (5.18)

In sec. 5.3.2.3, we will compare the influence of different weighting strategies on the
precision or efficiency1 of the ILS ESM-phase estimator.

1In this section the term "efficiency" indicates the closeness of the estimator precision to the Cramér-
Rao bound.
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5.2.3 Practical Considerations

With the functional model of eq. (5.3), the covariance matrix Qy, and the weight ma-
trix of eq. (5.18), we have all the required ingredients to apply ILS. Here, we list some
practical considerations for the proposed ESM-phase estimation:

• Float solution: In eq. (5.3), if all the SM interferograms are included in the
observation vector y, the number of equations and unknowns are equal and hence
the solution of the first ILS step (the float solution) can be simply computed as[

â

b̂

]
= [A B]−1

y. (5.19)

However, if we use a smaller subset of interferograms and if this subset does not
include all the SM interferograms, the number of unknowns will exceed the num-
ber of equations, and the float solution is not computable as the matrix [A B]
is rank-deficient and not invertible. As a consequence, the limitation of the pro-
posed model is that the subset should always include all the SM interferograms.
If some of the SM interferograms are not available, pseudo-observations can be
introduced in the model to overcome rank-deficiency (e.g., a pesudo-observation
equal to zeros can be used).

• Constraints on integer unknowns: The application of the ILS method for ESM-
phase estimation requires a modification in the original ambiguity resolution algo-
rithm (e.g. in the integer bootstrapping algorithm) regarding the constraints on
integer unknowns. For ESM-phase estimation, each ambiguity a is constrained to
a ∈ {−1, 0, 1}. Therefore, in the second step of ILS, when the float solutions are
fixed to their nearest integers, this constraint should be exerted.

• Statistical homogeneity of the averaging area: The multilooked phases in
vector y are computed by spatial averaging over statistically homogeneous pixels
(SHP). In order to satisfy the homogeneity condition, we use a spatially adaptive
averaging window. Ferretti et al. (2011b) introduced a spatial adaptive filtering
algorithm in order to, for each pixel, define a brotherhood area including neighbor-
ing SHP based on Kolmogorov-Smirnov test. Alternative approaches with different
tests and implementations are also given in (Parizzi and Brcic, 2011; Wang et al.,
2012; Goel and Adam, 2014; Jiang et al., 2014b,a). To reduce the influence of
non-homogeneous pixels (outliers) in the averaging areas, the concept of robust
coherence estimation can be also used (Wang and Zhu, 2016).

• Signal consistency in the averaging area: Another assumption in the compu-
tation of multilooked phases for each pixel is that the signal components of ϕ
are constant in the averaging area. This assumption is reasonable for relatively
small areas with spatially correlated signals. However, if high spatial variation of
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Figure 5.1: Coherence matrices of the synthetic data for two scenarios: - (A) exponential decay Ce,
(B) seasonal periodicity Cs. The images are ordered based on their acquisition dates, equidistantly
spaced in time with a revisit time of 35 days.

signal components is expected this phase variation should be removed beforehand.
Examples of variable signals are high topography gradients or orbital errors. These
kinds of spatially variable signals can be removed by different kinds of phase flat-
tening or low-pass filters such as the adaptive multi-resolution defringe algorithm
(Davidson and Bamler, 1999; Wang et al., 2012; Jiang et al., 2014b), patch de-
trending (Zebker and Chen, 2005; Bamler and Hartl, 1998), or low-pass filtering
(Hooper et al., 2004).

• Posterior assessment: After ESM-phase estimation, the quality of the estimated
phase values should be assessed. Ferretti et al. (2011b) introduced an extended
temporal coherence γ̂PTA as a goodness-of-fit measure for ESM-phase estimation.
This parameter can be written in our model notation as (cf. eq.(4.51)):

γ̂PTA =
∣∣∣ 1
Nifgs

HT exp
(
j(y −Bb̌)

)∣∣∣, (5.20)

where j is the imaginary unit, and Nifgs the number of interferograms in the stack,
H is an all-ones column vector with length Nifgs. If all the possible interferometric
combinations are used, Nifgs=N(N−1)/2. The coherence γ̂PTA is used for the
final selection of DS with reliable phase estimation.

5.3 Synthetic Data Processing

In order to validate the ILS ESM-phase estimation and evaluate its performance, we test
it on a set of synthetic datasets. Here, we describe the simulation settings, followed by
results and discussion.



110 Chapter 5: Equivalent SM-phase Estimation: Integer least squares method

(A) (B)

(C) (D)

Figure 5.2: Example of baseline configurations used in the synthetic experiment - (A) Single master
(SM), (B) small temporal baselines (STB), (C) Small baseline subset (SB), (D) all interferometric
combinations.

5.3.1 Simulation setting

We generated two radar data stacks with different noise behavior. Each dataset included
24 SLC images with a revisit time of 35 days. A deformation signal was simulated
assuming a simple Gaussian deformation bowl with a maximum line-of-sight deformation
rate of 3 cm/year at the center, and a radius of 600 m. We assumed a flat area resulting
in zero topographic signal. Atmospheric signal was simulated assuming the power law
behavior presented by Hanssen (2001). A crop of 1000×1000 m, a radar wavelength
of 56 mm, and a pixel size of 20×20 m were also assumed. For noise simulation, we
assume that all the pixels have the same statistics. The noise components are simulated
based on the assumption of a zero-mean multivariate circular Gaussian distribution. For
the simulation of noise components in interferometric phases, only a coherence matrix is
required. In this synthetic study, we have assumed two arbitrary scenarios for temporal
decorrelation: exponential decay and seasonal periodicity. The corresponding coherence
matrices are constructed for the two scenarios as explained in Appendix B.2 and shown in
fig. 5.1. The noise time-series for each pixel is simulated by generating a random vector
of complex numbers which have a multivariate zero-mean circular Gaussian distribution
with the associated coherence matrix. The noise-free and noisy simulated datasets are
visualized in figs. 5.3-5.4A and B, respectively.
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Figure 5.3: Synthetic example (exponential decay scenario)- (A) simulated signal (deformation and
atmosphere) for SM interferograms using the first acquisition as the master image, (B) interferograms
after adding decorrelation noise. (C) SM interferograms after multi-looking, (D) reconstructed SM
interferograms from consecutive multilooked small temporal baseline (STB) interferograms, (E) results
of the ILS method using all interferograms, (F) residuals of the ILS method (i.e. the difference between
sub-figures A and E).

5.3.2 Simulation results

We first analyse the overall results, before discussing the specific aspects that influence
the simulation results.

5.3.2.1 Overall analysis

We applied the ILS ESM-phase estimation on the two simulated datasets. In order to
construct the observation vector y for each pixel, the simulated phases were multilooked
by coherent phase averaging over 5×5 windows. As discussed in sec. 5.2.3, to meet
the signal consistency assumption in the averaging windows, the spatially variable signal
within an averaging area should be removed by a defringing/detrending algorithm. In this
simulation, in order not to be affected by the sub-optimality of detrending algorithms,
the spatially variable signal (or the trend) in the averaging windows is computed and
corrected based on the known noise-free simulated signal.
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Figure 5.4: Synthetic example (seasonal periodicity scenario)- simulated data results: (A) simulated
signal (deformation and atmosphere) for SM interferograms using the first acquisition as the master
image, (B) interferograms after adding decorrelation noise. (C) SM interferograms after multilooking,
(D) reconstructed SM interferograms from consecutive multilooked small temporal baseline (STB)
interferograms, (E) results of the ILS method using all interferograms, (F) residuals of the ILS method
(i.e. the difference between sub-figures A and E).

The weight matrix for each dataset is constructed using the Fisher information of multi-
looked phases computed from the true coherence values based on eq. (5.18). To provide
a generic comparison with conventional ad hoc phase retrieval methods, we also ex-
amined the ESM-phase construction by multilooking the original (SM) interferograms
(fig. 5.2B), and by consecutive integration of the temporally adjacent multilooked inter-
ferograms, denoted as the small temporal baseline (STB) configuration, see fig. 5.2B.

The results are summarized in figs. 5.3–5.4 for the two scenarios. Figures 5.3–5.4A and
B show the noise-free and noisy simulated SM phases, respectively. Figures 5.3–5.4C
show the reconstructed phases computed by multilooking the original SM phases, and
figs. 5.3–5.4D show the reconstructed phases from STB interferograms. The results of
ILS ESM-phase estimation using all the interferograms (i.e. the baseline configuration
in fig. 5.2D) are presented in figs. 5.3–5.4E. Finally, the difference between the original
simulated signal and the ILS estimates is plotted in figs. 5.3–5.4F.

Initial qualitative evaluation shows that in both scenarios, ILS can effectively filter out
noise and is able to reconstruct the original signal. The results indicate better phase
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(A) exponential decay scenario (B) seasonal decay scenario

Figure 5.5: Empirical standard deviation of the residuals for three different reconstruction approaches
(the multilooked SM stack, the STB reconstructed stack, and the ILS ESM-phase estimation for the two
simulation scenarios: (A) exponential decay, (B) seasonal periodicity. For comparison, we also plotted
the theoretical standard deviation computed as square root of the diagonal elements of Qb̌ and also the
lower Cramer-Rao bound of ESM-phase estimation. In both scenarios, the results of ILS ESM-phase
estimation outperforms the STB and SM reconstruction methods. There is a good agreement between
the theoretical and empirical standard deviations. The empirical standard deviations are close to CRB,
indicating the efficiency of the ILS ESM-phase estimation.

reconstructions than SM and STB methodologies, demonstrating the generic added value
of using the ESM-phase estimation procedure. In both scenarios, the residuals between
the ILS-reconstructed signal and the true signal have zero mean, indicating an unbiased
estimation.

Figures 5.5A-B provide a more quantitative evaluation. We calculated the standard
deviation of the residuals (i.e. the difference between the constructed interferograms and
the true values) for the multilooked SM, the STB reconstructed, and the ILS estimated
stacks. For comparison, we also computed the theoretical standard deviations of ILS
results from diagonal elements of Qb̌, see eq. (5.15). To assess the efficiency of the ILS
estimator, we also calculated the lowest achievable standard deviation as the square-root
of the Cramér-Rao bound (CRB) for ESM-phase estimation, cf. sec. 4.5 (Monti-Guarnieri
and Tebaldini, 2008).

In both scenarios, we see that the results of ILS ESM-phase estimation outperforms
the STB and SM reconstruction methods. The residual standard deviations of the STB
reconstruction increases with temporal baseline, because of the accumulation of noise in
the reconstruction process. For SM multilooking, as expected, the standard deviations
are variable and dependent on the coherence level; the higher the coherence, the lower
the phase standard deviation. For ILS, there is a good agreement between the theoretical
and empirical standard deviations. Note that in general, for Gaussian observations, least
squares is a minimum-variance estimator, and its variance is equivalent to the CRB.
However, interferometric phases are not Gaussian, and empirical standard deviations
are hence compared with the analytical CRB. In both scenarios, the empirical standard
deviations approach the CRB with an average difference of ∼0.07 rad or 4◦ (equivalent
to 0.3 mm for C-band) which is negligible compared to the standard deviation expected
for high SNR point targets. The closeness to the CRB is an indicator of the efficiency
of the ILS estimator.
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(A) exponential decay scenario (B) seasonal decay scenario

Figure 5.6: The effect of non-stationary signal within averaging windows on the empirical standard
deviation of the residuals for (A) exponential decay, (B) seasonal periodicity. For comparison, we also
plotted the lower Cramer-Rao bound of ESM-phase estimation.

(A) exponential decay scenario (B) seasonal decay scenario

Figure 5.7: The effect of assigned weights on empirical standard deviation of the residuals for (A)
exponential decay, (B) seasonal periodicity. For comparison, we also plotted the lower Cramer-Rao
bound of ESM-phase estimation.

5.3.2.2 On the influence of non-stationary signal within averaging windows

As mentioned before, we computed and corrected for the spatially variable signal (trend)
in the multilooking windows using the known noise-free simulated signal. To evaluate the
effect of the trend on the efficiency of ESM-phase estimation, we applied the ILS estima-
tion on both the detrended dataset and the one with the trend included. The results are
summarized in fig. 5.6. We observe that trend removal reduces the standard deviation
of the residuals significantly. The ratio between the CRB and the standard deviations is
approximately two times smaller for the detrended datasets. This indicates the impor-
tance of applying a defringing/detrending algorithm during the multilooking/averaging
process.

5.3.2.3 On the influence of assigned weights

We applied ILS ESM-phase estimation on the two simulated scenarios with four differ-
ent weighting strategies (see sec. 5.2.2): (i) setting W as the inverse of the observation
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(A) exponential decay scenario (B) seasonal decay scenario

Figure 5.8: The effect of coherence bias and using interferogram subsets for two simulation scenarios:
(A) exponential decay, (B) seasonal periodicity.

covariance matrix (i.e, W = Q−1
y ), (ii) with diagonal elements as inverse variance, (iii)

coherence, and (iv) the Fisher information index. The resulting effects on the precision of
the phase estimation is summarized in fig. 5.7. We observe that the Fisher-information-
based weight matrix is the most efficient. This demonstrates that the dispersion-based
weighting strategies (i.e., the inverse of the covariance matrix, or the inverse of the vari-
ances) are not optimal for multi-looked phase observations, which have a non-Gaussian
distribution. In other comparison of this section, we only show the results of ILS esti-
mation based on the Fisher-information weighting strategy.

5.3.2.4 On the influence of coherence bias and interferogram selection

All the aforementioned weighting strategies require coherence values for calculating W .
The coherence values for each pixel can be practically computed from interferograms by
spatial coherent averaging (Seymour and Cumming, 1994; Hanssen, 2001). It has been
shown that the estimated coherence is biased, particularly for low coherence and small
averaging areas (Joughin and Winebrenner, 1994; Tough et al., 1995; Touzi et al., 1996b,
1999; Bamler and Hartl, 1998; Hanssen, 2001; Zebker and Chen, 2005). Increasing
the number of looks reduces this bias. Here, we evaluate the effect of the coherence
bias on estimation precision. We applied ILS ESM-phase estimation using the Fisher-
information-based weight matrix computed both from the true coherence values (i.e. the
one used in the simulation) and the estimated coherence values. The results are shown
in figs. 5.8A-B. In addition to using all the interferometric combinations, we also applied
the ILS estimation on a small baseline subset (SB) of interferograms. Figures 5.2C and
D demonstrate the baseline configuration for SB and all interferograms, respectively.

We notice that in both scenarios, using all the interferograms with the true coherence
gives the best results. When using all the interferograms with the estimated coherences,
the precision deteriorates (approximately with a factor of two) due to the biased co-
herence estimation. However, in case of SB, there is no significant difference between
using the true or the estimated coherences in the weight matrix. This is because we
only use interferograms with a relatively high coherence (i.e. a low bias in the coherence
estimation), and hence the results are minimally affected by the coherence bias. We also
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observe that in the exponential-decay scenario (fig. 5.8A), using the SB subset provides
results with the same precision as using all the interferograms with the true coherences.
This is expected because, in this scenario, the large temporal baseline interferograms
have zero coherence and do not convey any information. Therefore, they do not have
any added value on the estimation precision or efficiency. This is an important conclu-
sion: for SAR stacks with a large number of images, where the computation of all the
interferometric combinations can be cumbersome, using an SB subset of interferograms
can provide the same phase precision for ESM-phase estimation as using the set of all the
interferograms. It should be noted, however, that selecting the most informative sub-
set of interferograms is a challenging task, for which currently no generic methodology
exists, as it requires a priori knowledge on the coherence behavior of DS targets.

5.3.2.5 Comparison with other ESM-phase estimation methods

We compared the results of the ILS method with the results obtained by application of
three other ESM-phase estimation methodologies (see sec. 4.3). These three method-
ologies are:

• the maximum likelihood (ML) ESM-phase estimation used in the phase-linking
method (Monti-Guarnieri and Tebaldini, 2008) and SqueeSAR (Ferretti et al.,
2011b) (see sec. 4.3.1).

• the ESM-phase estimation methods based on eigenvalue decomposition (EVD) of
the full complex coherence matrix as in Fornaro et al. (2015) and in Cao et al.
(2015) (see sec. 4.3.3),

• the ESM-phase estimation method based on the minimization of the weighted cir-
cular variance of the complex interferometric residuals, as presented in the frame-
work of an improved-SBAS (ISB) algorithm (Pepe et al., 2015) (see sec. 4.3.4).

The first two methods (ML and EVD) exploit the full complex coherence matrix, and
hence they use all the interferometric combinations. For a fair comparison, we use all
the interferometric combinations for both ILS and ISB as well. To study the influence
of biased coherence estimation on the efficiency of different methods, we apply all the
methods both with the true absolute coherences and with the estimated coherences;
fig. 5.9 shows the results of this comparison. Using the true coherence values (figs. 5.9A
and B), all the methods show comparable performance. Using the true coherence values,
the ML method gives the most efficient results, approaching the CRB. The ILS and ISB
methods show comparable efficiency, which is slightly lower than the ML estimation,
and EVD provides the lowest efficiency. However, when we look at the results based
on the estimated coherences (figs. 5.9C and D), the results vary significantly, showing
different sensitivities of the methods to the biased estimation of coherence values. The
ML estimator is affected the most by the biased coherences. This is logical as the ML is
the only estimator that requires the inversion of the coherence matrix, and hence small
numerical biases in coherence estimation are amplified during the matrix inversion, and
severely affect the estimation efficiency. In fact, it has been discussed in the SqueeSAR
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(A) Exponential decay - using true γ (B) Seasonal periodicity - using true γ

(C) Exponential decay - using estimated γ (D) Seasonal periodicity - using estimated γ

Figure 5.9: Empirical standard deviation of the residuals for different ESM-phase estimation method-
ologies (A) exponential decay scenario with true coherence values, (B) seasonal periodicity scenario with
true coherence values, (C) exponential decay scenario with estimated coherence values, (D) seasonal
periodicity scenario with estimated coherence values. For comparison, the lower Cramer-Rao bound of
ESM-phase estimation is also plotted. The ILS and ISB methods provide comparable efficiency and they
are less sensitive to the biased estimation of coherence values. The ML estimator is the most efficient
method when the true coherences are used, but it is severely affected by biased coherence estimation
and numerical instabilities in the matrix inversion. Generally EVD method shows a lower efficiency than
the ILS and ISB methods.

algorithm that the estimated coherence matrix is not, in general, positive definite and
is ill-conditioned, requiring the use of a pseudo-inverse or a damping factor before the
matrix inversion (Ferretti et al., 2011b). In our implementation of ML estimation, we
use the pseudo-inverse. Among other methods, when using estimated coherences, ILS
and ISB show comparable results, and once again EVD provides relatively low efficiency.

To summarize, the results of the comparison among different methods (see fig. 5.9)
show that the ILS and ISB methods provide comparable efficiency, and they are less
sensitive to the biased estimation of coherence values. Even though the ML estimation
is theoretically the most efficient method, it is severely affected by biased coherence
estimation and numerical instabilities in the matrix inversion. Generally EVD shows lower
efficiency than the ILS and ISB methods. However, EVD has an additional functionality
compared to other methods. In case of DS with multiple scattering mechanisms, recent
studies have showed that EVD is capable of decomposing the contribution of different
mechanisms (Fornaro et al., 2015; Cao et al., 2015; De Zan et al., 2015). However, in
our specific simulation based on a single scattering mechanism, the efficiency of EVD is
lower than other methods.
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Method ILS ML ISB EVD
Exponential decay scenario 42.1 6.2 6.2 2.8
Seasonal periodicity scenario 42.5 6.3 6.4 3.1

Table 5.1: Comparison of the computation time (in seconds) of different ESM-phase estimation methods
applied on the two simulation scenarios.

(A) exponential decay scenario (B) seasonal decay scenario

Figure 5.10: Temporal coherence γ̂PTA for the two simulation scenarios: (A) exponential decay, (B)
seasonal periodicity, over the simulated area of 50×50 pixels. A low value of γ̂PTA indicates large
disagreement between observations and the estimated parameters.

Regarding the computational time of different methods, it is difficult to give an accurate
and fair analysis, as it strongly depends on the implementation of the different methods.
An indication of the relative computational times of different estimators applied on the
simulation of this study is summarized in table 5.1. We see that the main drawback of ILS
with respect to other estimators is its high computational time, which is approximately
seven times higher than the ML and ISB methods in our implementation. In this context,
recent numerical improvements in the implementation of fast ILS estimation algorithms,
as for example in Jazaeri et al. (2011), can be considered.

5.3.2.6 On the posterior assessment of the results

Figure 5.10 shows the temporal coherence γ̂PTA (see equation (5.20)) for both simulation
scenarios. A low value of γ̂PTA indicates a large disagreement between the observations
and the estimated parameters and so sub-optimal ESM-phase estimation. The source
of these large residuals may be related to the erroneous estimation of ambiguities in the
second step of ILS ESM-phase estimation. When ambiguities are mapped to the wrong
integers, the quality of the final estimation will be lower and it will result in a low γ̂PTA.
Therefore, by excluding the pixels with low γ̂PTA, we can remove unreliable pixels with
erroneous ESM-phase estimation. Figure 5.11 shows the effect of this exclusion on the
final precision. The threshold of γ̂PTA<0.7 was used. We can see that the standard
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(A) exponential decay scenario (B) seasonal decay scenario

Figure 5.11: The effect of the exclusion of unreliable estimates with γ̂PTA<0.7 on the final precision
of ILS ESM-phase estimation for the two simulation scenarios: (A) exponential decay, (B) seasonal
periodicity. By excluding the unreliable pixels, the standard deviations are reduced and approaching
the CRB, confirming that the extended temporal coherence γ̂PTA can be used effectively for the final
selection of DS with reliable phase estimation.

deviations were reduced and are approached the CRB. These results confirm that the
temporal coherence γ̂PTA can be used effectively for the final selection of DS with reliable
phase estimation.

5.4 Case study

We applied the ILS ESM-phase estimation method to a stack of 20 Envisat SAR images
(track 324), covering the period between 03 Sep 2003 and 28 Jul 2010 over Torfajökull
volcano, Iceland (see fig. 5.12). Torfajökull’s latest eruption was in the 15th century, but
the volcano caldera has been subsiding with linear rates in recent years (Scheiber-Enslin
et al., 2011). We coregistered all slave images to a single master (4 Jul 2007), which
was chosen to minimize the average value of perpendicular and temporal baselines. The
distribution of both temporal and perpendicular baselines of the radar images is depicted
in fig. 5.13. The crop used in the study is approximately 40×26 kilometer wide, see
fig. 5.12.

The multilooked phases for each pixel are computed by spatial averaging over statis-
tically homogeneous pixels (SHP) detected by the Kolmogorov-Smirnov test (Ferretti
et al., 2011b). The weight matrix was constructed based on estimated coherence values,
using eq. (5.18). In order to reduce the spatially variable signal within the multilook-
ing areas, the topographic phase component is computed and subtracted from all the
interferograms, using a 25 m digital elevation model from the national land survey of
Iceland. We also apply the defringe algorithm presented in Jiang et al. (2014b) dur-
ing the multilooking step. After SHP selection and multilooking, we applied the ILS
ESM-phase estimation using all the interferometric combinations. Then, for pixels with
more than 50 SHP (in order to have a large number of looks), we replaced the phase of
the original SM interferograms with the phase estimates of ILS ESM-phase estimation.
In order to evaluate where the ESM-phase estimation is more effective, we plotted the
γ̂PTA for all pixels in fig. 5.14. The higher values (e.g., γ̂PTA≥0.7) indicate pixels with
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Figure 5.12: Right: Study area over Torfajökull volcano, Iceland. Torfajökull is located at the Eastern
Volcanic Zone (EVZ). The black dashed rectangle is the location of the Envisat SAR scenes, while the
black solid rectangle is the 40×26 km crop used in this study. Left: Google map view of the 40×26 km
area of interest.

Figure 5.13: The distribution of temporal and perpendicular baselines of the radar images used in the
case study over Torfajökull volcano.

reliably estimated SM phases, hence candidates to be selected as coherent distributed
scatterers. Figure 5.15 shows four examples of reconstructed interferograms compared
with the original single-looked interferograms. Visual investigation of these examples
shows that ESM-phase estimation can significantly improve the coherence by effectively
filtering the noise components.

In order to evaluate the added value of ESM-phase estimation, we compare the results
with the results with standard PSI processing when no ESM-phase estimation is applied.
For PSI processing, the StaMPS software was used (Hooper, 2006; Hooper et al., 2012).
Both methods estimate a deformation of ∼10 cm in 7 years. Within the volcano caldera
the surface is subsiding with rate of ∼15 mm/y (attributed to a possible crystallization
of the magma reservoir (Scheiber-Enslin et al., 2011)). In order to have fair comparison,
the same processing setup and selection criteria were used for both methods, except
that for the processing with ESM-phase estimation, we also used an additional selection
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Figure 5.14: Temporal coherence γ̂PTA for all pixels over the Torfajökull area. Higher values (≥0.7)
indicate pixels with reliable ESM-phase estimation. These pixels are selected as candidate coherent
distributed scatterers.
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Figure 5.15: Four examples of reconstructed interferograms by ILS ESM-phase estimation (bottom
row) compared with the original single-looked interferograms (top row). These examples show that
the ESM-phase estimation can significantly improve the coherence by effectively filtering the noise
components.

criterion, i.e. γ̂PTA≥0.7, on pixels with a number of SHP larger than 50. The final
results are shown in fig. 5.16 where the line of sight (LOS) velocity maps are plotted.
These velocities are relative with respect to the average velocity of the whole crop.
Using the standard method with single-looked interferograms, ∼32000 coherent pixels
were identified in contrast with ∼72000 identified coherent pixels via ILS ESM-phase
estimation. Over the main deforming area (the white rectangles in fig. 5.16), the number
of coherent pixels improved from 3300 to 13000. Improvements in point density increase
redundancy, leading to better precision, enhance the quality of the phase unwrapping or
atmospheric removal, and allow for the detection of spatially high-frequency deformation
signal. Moreover, a higher density in the deforming areas can introduce more constraints
in geophysical interpretation and subsurface modeling.
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Figure 5.16: Comparison between the velocity map applying StaMPS PS processing using (A) original
single-look SM interferograms, and (B) SM interferograms after ILS ESM-phase estimation. The average
velocity of the whole crop was used as a reference. The white rectangle shows the main subsiding area.
The density of points improved from 32000 to 72000 (3300 to 13000 in the deforming area). The
deformation time-series of points P1 and P2 are plotted in fig. 5.17 (A)-(B).

One of the main advantages of the ILS method is that it provides the precision, or the
full covariance matrix (i.e., Qb̂) of the inverted interferometric phases via eq. (5.15).
These matrices can be used as a proper weight matrix in further post-processing or
geophysical modeling of time-series InSAR results. Figures 5.17A–B demonstrate two
deformation time-series associated with the two pixels P1 and P2 identified with white
dots in fig. 5.16B. The coherence matrix and the full covariance matrix of the inverted
phases of these two pixels are visualized in figs. 5.17C–D and figs. 5.17E–F, respectively.
We should note that Qb̂ in eq. (5.15) is a function of the baseline configuration used in
the estimation (via the B matrix), the weight matrix (W ), and the covariance matrix
of multilooked interferometric phase (Qy), the latter itself is a function of the target
coherence matrix and the number of looks. The difference in the covariance matrix of
the inverted phases for the pixels P1 and P2 is due to the different coherence matrices
and different number of looks, which are 113 and 76 for P1 and P2, respectively. The
higher the number of looks is, the smaller the variances are. The variable coherence
structures and number of looks among detected DS results in deformation time-series
with variable quality in time and space. Consequently, with DS, we are dealing with
a set of deformation estimates with highly variable precision in time and apace. This
important fact should be considered in further interpretation of the DS results.

5.5 Conclusion

We proposed a new method for ESM-phase estimation based on integer least squares
(ILS) principle. The main advantages of ILS ESM-phase estimation is the flexibility to
be applied on any subset of interferograms and the quality description via the provision
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P1

(A) P1 deformation time-series

P2

(B) P2 deformation time-series

(C) P1 coherence CP1 (D) P2 coherence CP2

(E) P1 covariance Qb̌P1
(F) P2 covariance Qb̌P2

Figure 5.17: Two example deformation time-series associated with (A) point P1 and (B) point P2
identified with white dots in fig. 5.16(B). The coherence matrix of these two pixels are visualized in (C)
and (D) and their full covariance matrix are visualized in (E) and (F), respectively. The phase covariances
in (E) and (F) has been converted to [cm2]. The master image for construction of covariance matrices
in (E) and (F) is the master image indicated in fig. 5.13

of a full covariance matrix of the estimates. The obtained covariance matrices can be
further propagated to other InSAR derived parameters and can play an important role in
the further post-processing or geophysical modeling of time-series InSAR products. Via a
simulation study, we have shown that the ILS ESM-phase estimator is unbiased, and the
closeness of the variance of its residuals to the lower Cramér-Rao bound demonstrates
the high precision of the proposed estimator. We have also discussed the influence of
different factors such as detrending, weighting, and coherence bias on the precision of
the ILS method. The efficiency of the ILS method has been compared to alternative
estimators. The results show comparable or higher precision for ILS compared to other
estimators. The main drawback of the ILS approach is its high computational time,
which needs to be improved. The proposed method has been successfully applied to
a stack of interferograms over Torfajökull volcano in Iceland, resulting in double the
number of detected coherent pixels with respect to conventional PSI.





Feasibility analysis of DS exploitation:
A case study over Veendam subsidence field 6
This chapter presents the results obtained for a case study on the subsidence of
Veendam in northern Netherlands. We first give some background information on
the importance of subsidence monitoring (sec. 6.1), followed by an introduction of
the Veendam study area (sec. 6.2). The processing settings and the used dataset
are described, followed by a prior feasibility analysis of exploiting DS in this area
(sec. 6.3). The results of applying combined PS and DS processing are given, in-
cluding the comparison with PS processing (sec. 6.4). A new model is introduced
for temporal decorrelation of agricultural and pasture areas as a stochastic process
with non-stationary but periodic increments, and the parameters of the proposed
model are estimated for the typical observed coherence behavior around Veendam
(sec. 6.5). Finally, using the estimated decorrelation model parameters, the feasi-
bility of exploiting DS-pixels is assessed for different satellite missions (sec. 6.6).

6.1 Introduction

Land subsidence can cause serious socio-economic problems. Damage to infrastructure
and buildings can be mentioned as examples. In coastal and low-lying areas such as
the Netherlands, land subsidence is a highly consequential phenomenon with a great
societal importance due to its impact on water management and ecological systems,
and most importantly on flood risk. During the last decade, InSAR, particularly PSI, has
been applied to study different subsiding areas in the Netherlands, e.g., the subsidence
induced by hydrocarbon production in Groningen (Ketelaar, 2008), fault-related surface
deformation in the Roer Valley Graben (Caro-Cuenca, 2012), and the subsidence induced
by both gas and salt extraction in Noordwest-Friesland (Muntendam Bos et al., 2009).
Despite the challenging factors such as slow deformation rates (smaller than 1 cm/year)
and rural/agricultural landscapes, the results of these studies have proven the feasibility
of the technique for subsidence monitoring in the Netherlands. The majority of buildings
and structures appear to serve as reliable measurement points (i.e. PS), the accuracy of
PSI has been quantified by combining multiple satellite tracks, and a correlation of 94%
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Figure 6.1: PSI results of the Groningen area using the DePSI processing (A) based on an Envisat
dataset acquired between December 2003 and September 2010, and (B) based on a RadarSAT2 dataset
acquired between July 2009 and June 2013. Figures (C) and (D) show the PS density for the two
datasets, Envisat and RadarSAT2, respectively. The red box, in figures A and B, outlines the Veendam
salt mining area, which is the case study area of this chapter.

with ground optical leveling measurements was achieved for the Groningen subsidence
area (Ketelaar, 2008; Muntendam Bos et al., 2009). Nowadays PSI is operationally used
for various subsidence monitoring projects in the Netherlands.

Although PSI has been successfully applied for subsidence monitoring (e.g, over the
Groningen gas field, see the figs. 6.1A and B, there are still areas with a limited number
of PS targets. Especially smaller subsidence fields in rural areas may be sparsely covered
with PS measurements compared to the extent of the subsiding area. Figures 6.1C and D
show the PS density in the Groningen region based on two different datasets from two C-
band radar mission Envisat and RadarSAT2, respectively. We can see that the PS density
in urban areas reaches 500 PS/km2, while in some rural areas we have very few PSs.
Therefore, in order to improve the observation density in rural areas, there is a potential
value in methodologies that exploit DS. In addition to the density improvement, the
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Figure 6.2: The baseline configura-
tion of the used dataset, containing
25 radar images acquired between
October 2011 and May 2013. The
acquisition of 24 January 2012 has
been used as the master image.

information extraction from DS in rural areas can be useful for hydrological applications,
for example with the aim of studying the soil properties of different kinds of agricultural
fields (te Brake et al., 2013), or for water management and monitoring water table
variations (van Leijen and Hanssen, 2008).

Despite the potential value in methodologies exploiting DS, the feasibility of such meth-
ods for subsidence monitoring over rural areas in the Netherlands with a pasture and
vegetation landscape, which has a high phase-decorrelation rate (Morishita and Hanssen,
2015b), is still a pending question. Our objective, in this chapter, is to investigate the
feasibility of DS exploitation in these rural areas. To limit the scope, we chose a case
study area over a solution salt mining-induced subsidence field in Veendam, which is
explained in more details in the next section.

6.2 The Veendam test case

To evaluate the DS processing, a test site around a salt mining area close to the city
of Veendam in the north part of The Netherlands is chosen, see the red box in the
fig. 6.1A,B. The combination of having different kinds of landscape (e.g., both rural and
urban, see fig. 6.3B), and its high deformation rate together with the low density of PSs
in agricultural fields make this region a relevant case study area.

The salt extraction in the area started in 1981. Solution mining is used for the withdrawal
of magnesium chloride. This technique is based on the addition of a solvent (e.g., water)
to the mineral, following by pumping and separating the minerals from the solvent. The
salt production has induced a land subsidence in this region in the order of 17 mm/year
(van Leijen and Hanssen, 2007). The PSI results of the area show the PS density
of approximately 300 PS/km2 over city of Veendam, and a much lower density over
agricultural fields.

A RadarSAT2 dataset containing 25 radar images acquired between October 2011 and
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May 2013 is used for the study. Figure 6.2 shows the baseline configuration of the used
dataset, using the image of 24 January 2012 as the master image for PSI processing.

In the following sections we present the results and discuss the findings of this case study.
We divide the discussion into two parts:

1. A-priori analysis (Section 6.3). Here, with a-priori, we mean the study of the char-
acteristics of pixels prior to applying the ESM-phase estimation and PSI processing.
In this analysis, we evaluate the coherence behavior of different landscapes in the
area-of-interest (AOI), followed by an assessment of the feasibility of exploiting
DS based on the observed coherence histories.

2. A-posteriori analysis (Section 6.4). In a-posteriori analysis, we look at the final
results of applying the DS processing over the AOI, compare the results with
standard PSI processing, study the quality of the detected DS, and evaluate the
density improvements over different landscapes.

6.3 A priori analysis

The feasibility and the quality of the phase information extracted from DS-pixels de-
pends mainly on their coherence behavior. For example, in a case of high tempo-
ral/spatial/volume decorrelation in dense forest area (or in the extreme case of water
areas), it is almost impossible to extract any reliable phase information from DS-pixels
regardless of the applied methodology. On the other hand, over a dry and desert land-
scape, DS-pixels may be minimally affected by decorrelation and their quality can even
be comparable with the quality of point scatterers. In-between these two extreme sce-
narios, whether or not we can reliably estimate/extract phase time-series from DS-pixels
depends on the coherence behavior of the pixels in a given stack of images with particular
temporal and perpendicular baselines.

To study the coherence behavior over different landscapes in the Veendam case, we
estimated the coherence matrix of all the pixels in this area. Figure 6.3A and B show
the multi-reflectivity map and land-use map of the area of interest. For coherence
estimation, an adaptive brotherhood area is selected around each pixel based on the two-
sample Kolmogorov-Smirnov (KS) test (see sec. 2.4 for details of adaptive brotherhood
selection). The brother pixels are selected within a window of 25×25 pixels, so the
maximum number of brothers is 252=225. Figure 6.3C shows the number of selected
brothers for each pixel. We can see that the pixels over urban areas generally have a
lower number of brothers. This is expected due to the variable nature of pixels in urban
areas. Also it is well known that PS-pixels (e.g., pixels associated with buildings) have
a low number of brothers, i.e. less than 20 (Ferretti et al., 2011b). On the other hand,
over agricultural fields, most of the pixels within the surrounding 25×25 windows show
the same amplitude statistics and are selected as brother pixels. Consequently the pixels
over agricultural/pasture lands generally have a large number of brothers (more than
200).
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Based on selected brotherhood area around each pixel, the coherence matrices have been
estimated. In order to reduce the bias in the coherence estimation, the coherence matri-
ces have been estimated by the bootstrap estimator (Jiang et al., 2014b). Figure 6.3D
shows, for each pixel, the mean coherence over 300 possible interferogram combinations
(i.e., there are 25 SLC images, and so the total number of possible interferograms is
(25×24)/2 = 300). As a general observation, we see a high variability of the mean
coherence in agricultural/pasture lands, varying between 0 and 0.4. In urban areas, the
mean coherence is much higher compared to other terrain areas. Excluding the potential
PS from the analysis1, the mean coherence in urban areas is on average 0.53. In order
to get more detailed information and a quantitative assessment about the coherence
behavior over different classes of land use, we analyze example coherence matrices for
three typical classes (urban areas, agricultural/pasture lands, and road surfaces) in the
following.

6.3.1 Coherence behavior over urban areas

We analyze three typical examples of coherence behavior in urban areas in and around
the city of Veendam. The location of these three cases (denoted by UA, UB, and
UC) is indicated in fig. 6.4, and their corresponding coherence matrices are shown in
figs. 6.5A, B, and C, respectively. To get more precise coherence estimation, the matrices
presented here are the average of the estimated coherence matrices of the neighboring
pixels in a 300×300 meter surrounding. To compute the average coherence, we only use
pixels with approximately same number of brothers and same coherence-mean (whose
values N̄br and γ̄ are mentioned in the caption of figs. 6.5A-C).

In the coherence matrices, we observe as a general pattern that the interferograms
with a shorter temporal baseline have a relatively high coherence value, reaching to
∼0.65 (Note that the images are sorted based on the acquisition date, so the close-
to-diagonal elements represent interferograms with shorter temporal baselines.). The
other interferometric combinations show on average values around ∼0.3 − 0.4, which
is still high considering the large number of brothers of these pixels (100 − 150). This
almost-constant behavior of coherence over large temporal baselines indicates that these
pixels preserve some degree of coherence within the 1.5 years span of this data stack.
Figures 6.5D-F show the CRB standard deviations (σCRB computed by eq.(4.52)) of the
ESM-phase estimation for these three examples. For relative comparison, we also plot
the standard deviation of zero-coherence noise (i.e., σγ=0 ∼ 104◦, corresponding to the
uniform distribution between −π and π), and the assumed typical standard deviation of
a point scatterer (σps ∼ 25◦). The CRB standard deviation can be interpreted as an
indicator of the amount of information that exists in the data stack about each SM-
phase. A high σCRB (close to ∼ 104◦) means almost no information, and a low σCRB
(close to or smaller than σPS) indicates that the information content (or the quality) of
the corresponding ESM-phase is comparable with PS-pixels. For these three cases, all
the σCRB are smaller than the typical PS standard deviation. These results show that, by

1In order to focus on DS in the statistical analysis of this section, we consider pixels which have
less than 25 brothers, a mean coherence larger than 0.7, or an amplitude dispersion smaller than 0.4 as
potential PS pixels and exclude them from the rest of the a-priori analysis.
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Figure 6.3: The Veendam case study: (A) multi-image reflectivity map of the AOI (i.e., the incoherently
averaged amplitude of the 25 RadarSAT2 SLC images acquired between October 2011 and May 2013),
(B) Land-use map of the AOI, (C) Number of detected brothers as statistically homogeneous pixels
(SHP), (D) the mean coherence over 300 possible interferogram combinations. The outline of the
land-use map (B) is shown as a white dashed box in the other sub-figures. (Land-use map of (B) is
copyrighted: © Cadastre, Geoinformation, Zwolle, 2014).

applying the ESM-phase estimation, the phase quality of these kinds of DS-pixels in the
urban areas of Veendam reaches to the quality of a typical PS-pixel, and therefore, it is
feasible to utilize these pixels for further TInSAR processing and deformation estimation.

6.3.2 Coherence behavior over agricultural and pasture areas

We study the coherence behavior of three examples in agricultural and pasture areas
around Veendam. The locations of these cases are marked as PA, PB, and PC in fig. 6.4.
The coherence matrices of these examples are shown in figs. 6.6A, B, and C, respectively.

The first observation is that the interferograms with a short temporal-baseline show
a relatively high coherence in the winter period. In contrast, in the summer period
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Figure 6.4: The location of
eight example coherence matrices
from three typical land-use classes:
UA,B,C in urban areas, PA,B,C in
agricultural/pasture lands, and RA,B
on roads. The coherence matri-
ces of these eight examples are
shown/analyzed in figs. 6.5-6.7,
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Figure 6.5: (A), (B), and (C) are three examples of coherence matrices in urban areas, corresponding
to the locations UA, UB, and UC in fig. 6.4. In the coherence matrices, the images are sorted based on
the acquisition date (the months of acquisitions are indicated above the matrices). These matrices are
the result of averaging the coherence matrices of surrounding pixels. The average number of brothers
and mean coherence of averaged pixels is indicated by N̄br and γ̄, respectively. The bottom row plots
(D), (E), and (F) show the CRB standard deviations of ESM-phase estimation. The standard deviation
of zero-coherence noise (∼ 104◦), and the standard deviation of a typical point scatterer (∼ 25◦) are
also plotted. For these three cases, all the σCRB are smaller than the typical PS standard deviation,
indicating the feasibility of utilizing these pixels for further TInSAR processing.
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(between May and October), the coherence values are almost zero even for consecutive
acquisitions with a 24 days temporal baseline. These results indicate that the temporal
decorrelation in these cases is faster in summer than in winter, possibly as a result of crop
growth and tillage of agricultural lands during the summer period. For pasture areas in
the Netherlands, it has been shown by Morishita and Hanssen (2015b) that the coherence
level of C-band interferograms with repeat intervals of 24-35 days (for RadarSAT2 and
ERS/Envisat) is quite low. Even with a multilook factor of L = 200, the information
content of such interferograms is not significant. In fact, due to the loss of coherence,
the summer-acquisitions do not convey any useful geometrical information. The results
of fig. 6.6 also reveal that, although the coherence level of short-baseline interferograms
in winters is high, there is almost no coherence between two winter periods (as indicated
by the low coherence values in the upper-right and the lower-left part of the coherence
matrices). Such a coherence pattern results in sub-optimal ESM-phase estimation as
demonstrated by the CRB standard deviations in figs. 6.6D-F. The σCRB values do not
reach the PS standard deviation, indicating that the information content in the stack
may not be sufficient for the precise estimation of phase time-series for these pixels.

It should be noted that, in this study, we did not consider the option of exploiting
temporally coherent PS or DS. We only studied the feasibility of the exploitation of
the entire timeseries. Consequently, for correct parameter estimation and unwrapping
of DS-pixels after ESM-phase estimation, it is required that DS-pixels have a good
phase stability in the entire ESM-phase time-series. To obtain such a stable time-
series, it is important to have a connected path through all the acquisitions of the
dataset, via relatively high-coherence interferometric phases. The results of fig. 6.6 over
agricultural/pasture areas around Veendam, show that the summer-acquisitions cause
a disconnect time-series, and so the further PSI processing and reliable exploitation of
these kinds of pixels in agricultural/pasture areas is not feasible.

6.3.3 Coherence behavior over roads

In order to study the coherence behavior over roads, we analyzed two examples as shown
in figs. 6.7A and B. The location of these cases are denoted by RA and RB in fig. 6.4.
The coherence pattern of these two cases are significantly different compared to each
other. The point RA shows the coherence behavior similar to the DS-pixels in urbanized
areas with small CRB standard deviation (fig. 6.7C), whereas the point RB shows the
coherence pattern more similar to the pasture areas with seasonal coherence behavior
and low ESM-phase quality (see CRB standard deviation in fig. 6.7D). In order to get a
better understanding of the reason of these two different coherence behavior, we provide
an optical photo of the location of these two road examples in figs. 6.8A-B. For the RA
case, the road is a main highway with ∼ 40m width, elongated in the east-west direction
(i.e., almost in the radar-look direction). Considering the pixel-size of approximately
∼20m by ∼4m in range and azimuth direction (the white box in fig. 6.8A), the east-
west direction can result in a large number (N̄br∼120) of pixels whose area is fully
covered by hard material of the road pavement, and consequently, results in relatively
higher coherence values. On the other hand, the RB is a local road with ∼ 6m width, in
an almost north-south direction (and so perpendicular to the radar-look direction). This
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Figure 6.6: (A), (B), and (C) are three examples of coherence matrices in rural/pasture areas, corre-
sponding to the locations PA, PB, and PC in fig. 6.4. In the coherence matrices, the images are sorted
based on the acquisition date (the months of acquisitions are indicated above the matrices). These
matrices are the result of averaging coherence matrices of surrounding pixels. The average number of
brothers and mean coherence of averaged pixels is indicated by N̄br and γ̄, respectively. The bottom
row plots (D), (E), and (F) show the CRB standard deviations of ESM-phase estimation. The standard
deviation of zero-coherence noise (∼ 104◦), and the standard deviation of a typical point scatterer
(∼ 25◦) are also plotted. For these three cases, the σCRB values do not reach to the PS standard
deviation, indicating that the information content in the stack is not sufficient to estimate reliable phase
time-series for these pixels.

particular geometry results in resolution cells that are partially covered by the road surface
and the surrounding vegetation. Furthermore, the brotherhood area used in coherence
estimation may be contaminated by the adjacent pixels from agricultural areas. This
situation causes the coherence pattern of fig. 6.7D that is very similar to the pattern
we observed over agricultural and pasture areas. We can conclude that, for DS-pixels
over roads, the feasibility of extracting useful information and reliable phase estimation
is case-dependent and varies road-by-road, depending on different factors such as the
width and direction of the roads.

6.3.4 Cramèr-Rao bound study of the whole area

In the examples that we analyzed so far, we used the CRB bound of ESM-phase esti-
mation as the indicator for feasibility of extracting useful information from DS-pixels.
For a feasibility assessment over the entire Veendam area, we performed similar anal-
yses and estimate the σCRB-time-series for all the pixels. Then for each pixel we took
the maximum of CRB standard deviations (i.e., max(σCRB)). The results are shown in
fig. 6.9. The pixels with max(σCRB) smaller or equal to the standard deviation of a
typical point scatterer (σps∼25◦) are the potential DS-pixels with sufficient coherence,
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Figure 6.7: (A) and (B) are two examples of coherence matrices of roads, corresponding to the locations
RA and PB in fig. 6.4. In the coherence matrices, the images are sorted based on the acquisition date (the
months of acquisitions are indicated above the matrices). These matrices are the result of averaging
coherence matrices of surrounding pixels. The average number of brothers and mean coherence of
averaged pixels is indicated by N̄br and γ̄, respectively. The bottom row plots (C) and (D) show
the CRB standard deviations of ESM-phase estimation. The standard deviation of zero-coherence noise
(∼ 104◦), and the standard deviation of a typical point scatterer (∼ 25◦) are also plotted. For these two
examples, we observe entirely different coherence behaviors due to the geometry of the road. Optical
images of these two roads are shown in figs. 6.8A-B).
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Figure 6.8: Optical (Google-Earth) photo of the roads (A) RA and (B) PB. The satellite geometry
and the pixel size of approximately 20 × 4m are also visualized for comparison with the direction and
the width of the roads.
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σps ∼ 25◦

Figure 6.9: The map of maxi-
mum of CRB-standard-deviations,
max(σCRB), for all the pixels in
the Veendam area. The stan-
dard deviation of a typical point
scatterer (∼25◦) is also indicated
on the colorbar. The pixels with
max(σCRB)<σps are potential DS-
pixels with sufficient coherence (or
information) for further processing.

hence information, for further processing. The majority of these kinds of pixels are lo-
cated in urbanized/developed areas. The agricultural and pasture fields do not generally
show a sufficient level of information for reliable phase estimation. These results can
be considered as feasibility indicators, which are based on the coherence analysis of the
data before any ESM-phase estimation or other processing steps such as unwrapping
and parameter-estimation. In the next section, we will discuss the results obtained by
ESM-phase estimation and further combined PS-DS processing.

6.4 A posteriori analysis

With "a-posteriori analysis" we mean the analysis of the results of applying ESM-phase
estimation combined with a standard PSI processing to the RadarSAT2 stack over Veen-
dam. We will compare the results of the combined PS-DS processing with the results
obtained by standard PSI processing, and evaluate the density improvements over dif-
ferent landscapes.

6.4.1 Processing setting

We applied a two-step hybrid methodology similar to the SqueeSAR approach by Ferretti
et al. (2011b) (see sec. 2.2.2.3 for more information). The flowchart of the algorithm is
depicted in fig. 6.10. The particular settings that we used in each step are described in
the following.

• Adaptive multilooking: The multilooked phases for each pixel are computed
by spatial averaging over statistically homogeneous pixels (SHP) detected by the
Kolmogorov-Smirnov test (see sec. 2.4 for details of adaptive brotherhood selec-
tion). The brother pixels are selected within a window of 25×25 pixels. figure 6.3C
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shows the number of selected brothers for each pixel. In order to reduce the spa-
tially variable signal within the multilooking areas, the topographic phase com-
ponent is computed and subtracted from all the interferograms, using the SRTM
digital elevation model.

• EMS-phase estimation: After SHP selection and multilooking, we applied the
ILS SM-phase estimation using all the possible interferometric combinations. This
step is applied on all the pixels in the used crop (see fig. 6.3A). The weight
matrix for ILS estimation is constructed based on the Fisher information index
(eq. (5.18)), using the estimated coherence matrix of each pixel.

• Selection of DS candidates: After ESM-estimation, the posterior coherence
factor γ̂PTA (see eq. (5.20)) was estimated for each pixel. Pixels with a γ̂PTA
larger than 0.4 and with more than 25 brothers were selected as potential DS. In
order to make the final ESM-stack of interferograms, for the selected pixels, we
replaced the phase of the original SM interferograms with the phase estimates of
ILS ESM-phase estimation. By using the pixels with more than 25 brothers, the
phase time-series of PS-pixels are not affected by ILS-phase estimation. In fact, in
the new ESM-stack the PS-pixels get their original phase, whereas for the selected
DS-pixels, the ESM-phases are used.

• Conventional PSI processing: For PSI processing, we used the Delft imple-
mentation of persistent scatterer interferometry (DePSI) (van Leijen, 2014). We
made a modification to DepSI regarding the combined PS-DS processing by chang-
ing the initial PS-candidate selection method. The PS candidates were selected
using the standard amplitude dispersion method (see eq. (2.24)), while the DS-
candidates, which had been selected in the previous step, were added to the set of
PS-candidates. The combined set of PS and DS pixels was processed by DePSI2.
The final selection of coherent points (both PS and DS) was abstained by thresh-
olding on the estimated ensemble coherence (see eq. (2.25)) of the pixels. The
threshold of 0.7 was used for the final selection. In addition, pixels with an absolute
estimated velocity larger than 3 cm/year and an estimated height larger than 100
meter were selected as false-detections, and were removed from the final results.

In the next section, we analyze the final results obtained by applying the aforementioned
algorithm.

6.4.2 Results

The results of applying the hybrid PS-DS processing on the Veendam case are shown
in fig. 6.11. We applied both the standard DePSI processing with the original SM
interferograms, and also with the estimated equivalent SM interferograms. The obtained

2Specific settings of DePSI processing used in this study: a linear model and the bootstrapping
approach have been used for temporal phase unwrapping, a Gaussian kernel with a length of one year
has been used for atmosphere filtering, and the pixels associated with side-lobes of PS-pixels have been
detected and removed before further processing (van Leijen, 2014).
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Figure 6.10: Generic flowchart of the hybrid methodology used for the Veendam case study. The
processing steps are classified into the five basic TInSAR processing blocks as introduced in sec. 2.3
(S: pixel selection, U: unwrapping, A: atmospheric-signal mitigation, F: filtering, and E: equivalent
SM-phase estimation.)

velocity maps are presented in figs. 6.11A and B, respectively. The same processing
setup has been used for both cases. Also, the density of detected PS/DS-pixels is
shown in figs. 6.11C and D. The results show a significant increase in the number of
scatterers, especially in urban areas (see fig. 6.3B for the land-use map of the Veendam
area). Although the general density is also improved in the rural areas, most of the new
detected DSs are in areas around buildings or on the roads. Only a very low number of
DS-pixels is detected over agricultural fields or pasture areas. In fact, this low density
was expected based on the a-priori analysis of the temporal-coherence behavior over
agricultural/pasture landscapes (sec. 6.3.2). In these areas, the coherence is almost
entirely lost during the summer period, and the phase quality of DS-pixels in ESM-
phase timeseries is not sufficient to detect these points as being persistent in the PSI
processing.

Based on the land-use map of fig. 6.3B, we classified the detected PS/DS-pixels into
two classes of urban/roads and agricultural/pasture. While the number of points in
urban/road areas increased from 12594 to 144815 (almost 12 times larger), it improved
from 1709 to 11003 pixels in the agricultural/pasture areas (i.e., four times more).
As stated in sec.6.3.1, the limited relative improvement in point density for agriculture
regions is mainly due to the fact that the entire timeseries is used, rather than focusing on
coherent subsets in time. Another important remark is that the phases, and consequently
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all other phase-derived estimates (e.g. velocities), of adjacent DS-pixels have some
degree of correlation. This is due to the overlap between DS brotherhood areas that have
been used in the adaptive multilooking. Therefore, the effective density-improvement is
less than what we observe just by counting the detected DS-pixels independently and
assuming no correlation between them.

Nevertheless the main message of these results is that the added-value of DS processing,
in areas with similar landscape, is mainly in urbanized areas. The DS-pixels over agri-
cultural and pasture regions do not generally have sufficiently consistent phase quality
in order to be successfully exploited over multiple years in the PSI processing. Based on
the a-priori analysis of sec. 6.3.2 over these areas, the main reason for this low phase
quality is the seasonal behavior of the temporal coherence, which causes almost zero
coherence during summer periods. In the next section, we will look further into the
observed coherence pattern over agricultural and pasture areas.

6.5 Analytical model for seasonal temporal decorrelation

Both the a-priori and the a-posteriori analyses of previous sections—using C-band data
with repeat time of 24 days—show limited improvement of measurement density in rural
areas by exploiting DS-pixels in agricultural/pasture fields. In these areas, the results
of the analyses indicate a seasonally varying coherence behavior of DS-pixels, resulting
in a different temporal-decorrelation rate between summer and winter periods. Such a
pattern has also been observed in other areas in the Netherlands. For example, Morishita
and Hanssen (2015b) reported the same seasonal pattern over pasture areas based on
an integrated analysis of radar data from various radar satellite missions.

To study the effect of different factors, such as satellite revisit time, radar wavelength,
or multilooking factor, on phase quality of DS-pixels and the feasibility of their ex-
ploitation, it is useful to have an analytical model for the observed seasonal temporal
decorrelation pattern. Such a model helps to parametrize the coherence behavior over
agricultural/pasture landscapes. The available models for temporal decorrelation (see,
for example, the models described in sec. 3.2.4.2), are usually based on a stationary be-
havior. For example, the common coherence model of exponential decay (see eq.(3.45))
is based on the assumption that scatterers within resolution cells are moving in a random-
walk manner (Rocca, 2007) with certain variance and with stationary increments. Such a
random process results in the same decorrelation rate in different periods, and therefore,
it cannot account for the observed periodic pattern in the agricultural/pasture areas.
In the following, we introduce a new model for the temporal decorrelation based on a
random processes with non-stationary but periodic increments.

6.5.1 Model for periodic temporal decorrelation

In principle, due to the wide range of physical mechanisms that cause temporal decorre-
lation, there is no one single analytical model that can explain the coherence loss induced
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Figure 6.11: Comparison between the velocity maps obtained by applying DePSI processing using (A)
original single-look SM interferograms, and (B) SM interferograms after ILS ESM-phase estimation.
Figures (C) and (D) show the density of the detected PS/DS for the two processing methods, respec-
tively. Note the different color scales of the density maps. The main density improvement is observed
around buildings in the urbanized areas.

by these effects. There are some models, however, for processes which induce natural
and gradual changes within resolution cells. Hypothetically, if all the elementary scat-
terers within a cell stay intact, but move independently but in a homogeneous manner,
the temporal correlation can be described as (Zebker and Villasenor, 1992; Rocca, 2007)

γT = exp
(
− 1

2
(4π
λ

)2
σ2
r

)
, (6.1)

where σ2
r is the variance of the LOS motion of the elementary scatterers within the

resolution cells. The motion variance σ2
r can be modeled in different manners as a

function of time. The most common model assumes that the elementary scatterers
move in a Brownian motion (or random-walk) manner with stationary increments that
have certain variance. For example, see fig. 6.12A, which shows the stationary variance
(σ2

0) of the increments. For such a motion, the variance of the total motion between



140 Chapter 6: Feasibility study: Veendam subsidence field

Time [years]

Time [years]

Time [years]

BT [years]

BT [years]

BT [years]

BT [years]

BT [years]

BT [years]

σ
2 0
[m

m
2
/d

ay
]

σ
2 0
[m

m
2
/d

ay
]

σ
2 0
[m

m
2
/d

ay
]

σ
2 r
[c
m

2
]

σ
2 r
[c
m

2
]

σ
2 r
[c
m

2
]

γ
γ

γ

stationary increments

periodic increments

periodic increments

cumulative variance

cumulative variance

cumulative variance

(tM = 0)

(tM = 0.5)

coherence

coherence

coherence

(tM = 0)

(tM = 0.5)

A

D

G

B

E

H

C

F

I

Figure 6.12: Demonstration of different temporal decorrelation models. Top row (A), (B), and (C):
Random walk model with stationary increments of σ2

0 = 1 mm2/day. Middle row (D), (E), and (F)
seasonal random process with non-stationary and periodic increments with period T = 1 year, t0 = 0,
σ2

1 = σ2
2 = 1 mm2/day (see eq. (6.5)), and the master time tM = 0. Bottom row (G), (H), and (I):

the same as the middle row but with the master time tM = 0.5. First column: the variance of the
motion increments. Second column: the variance of the cumulative motion. Third column: coherence
as the function of BT.

two acquisitions with dates tM and tS increases linearly as

σ2
r =

∫ tS

tM

σ2
0dt = σ2

0BT, (6.2)

where BT = tS − tM is the temporal baseline, and σ2
0 represents the motion variance

for the unit of time. Figure 6.12B shows, as an example, the temporal increase of σ2
r

as a function of BT for σ2
0 of 1 mm2/day. Inserting eq. (6.2) in eq. (6.1) gives the

well-known exponential decay model for temporal coherence γT as

γT = exp
(−BT

τ

)
, (6.3)

where
τ = 2

σ2
0

( λ
4π
)2
. (6.4)

The parameter τ can be considered as the temporal decorrelation range. Figure 6.12C
shows, for X, C, and L bands, the decorrelation pattern derived by eq. (6.3) for the
stationary-increments motion with σ2

0 of 1 mm2/day. Note that the τ parameter is
proportional to λ2. So, for example, with the wavelength of λL = 23.5 cm and λC =
5.6 cm, the decorrelation rate for L-band is the factor of ( 23.5

5.6 )2 ≈ 17 slower than the
the decorrelation rate of C-band. These factors hold under the assumption that the
"physical" elementary scatterers are equal for, e.g., C and L-band observations. Most
likely this is not the case.
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The decorrelation model of eq.(6.3) is a function of BT only, and it cannot account for
a periodic decorrelation. For example, an interferogram with BT of one month in winter
results in the same predicted decorrelation as one month in summer. In order to model
the periodic behavior, we assume that elementary scatterers move in a similar manner
as the Brownian motion but with increments that have non-stationary variance, which
develops in time periodically with period T (e.g., for annual signal T = 1 year). For
such a process we can write the increment variance as a function of time

σ2
0(t) = σ2

1 + σ2
2 sin

(
ω(t− t0)

)
, (6.5)

where ω = 2π
T is the angular frequency, t0 the initial time, σ2

1 the variance factor which
is constant in time, and σ2

2 the variance of the periodic component. The introduction
of two different variance factors σ2

1 and σ2
2 is necessary to guarantee that we always get

positive (or zero) variance3, provided that σ2
1 ≥ σ2

2 . As an example, see figs. 6.12D
and G, which show the non-stationary variance σ2

0(t) with t0 = 0, T = 1 year, and
σ2

1 = σ2
2 = 1 mm2/day. The difference between the plots D and G is that the σ2

0(t) has
been evaluated for two different time intervals of [0 − 3] and [0.5 − 3.5], respectively.
For such a random process with periodic-variance increments, we derive the variance of
the total movement between two time instants tM and tS = tM +BT by the integration
over eq. (6.5) as

σ2
r =

∫ tM+BT

tM

σ2
0(t)dt =

∫ tM+BT

tM

σ2
1 + σ2

2 sin
(
ω(t− t0)

)
dt

= σ2
1t−

σ2
2
ω

cos
(
ω(t− t0)

) ]tM+BT

tM

= σ2
1BT + σ2

2
ω

(
cos
(
ω(tM − t0)

)
− cos

(
ω(tM +BT − t0)

))
.

(6.6)

Note that eq. (6.6) is an extension of the random-walk model of eq. (6.2). The first
component in the left-hand side of eq. (6.6) is the same as the random-walk model,
and the second term is the periodic component. Unlike the random-walk model which
is only dependent on the temporal baseline BT, the periodic component also depends
on the master acquisition time tM . Figure 6.12E and H shows, as examples, the annual
variation of σ2

r as a function of BT for two different master time tM = 0 and tM = 0.5
years, respectively. By inserting eq. (6.6) in eq. (6.1), we obtain a new model for the
temporal coherence as a function of BT and tM ,

γT = exp
(−BT

τ1

)
exp

(
cos
(
ω(tM +BT − t0)

)
− cos

(
ω(tM − t0)

)
ωτ2

)
, (6.7)

where τ1 and τ2 are

τ1 = 2
σ2

1

( λ
4π
)2
, and τ2 = 2

σ2
2

( λ
4π
)2
, (σ2

1 ≥ σ2
2 , τ2 ≥ τ1). (6.8)

3In eq. (6.5), if we only consider the second term (i.e., the periodic component), the σ2
0(t) can

get negative values, which is contradictory with the very definition of variance. In order to solve this
problem, we introduce the constant variance of σ2

1 . In this way, the σ2
0(t) is always positive or zero if

σ2
1 ≥ σ

2
2 .
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Figure 6.13: The white box shows
the location of a 1 km2 area that
has been used for estimating the co-
herence matrix used for the tempo-
ral decorrelation modeling. The ob-
tained coherence matrix, and the re-
sults of the modeling are presented
in fig. 6.14.

The conditions of σ2
1 ≥ σ2

2 , and τ2 ≥ τ1 are necessary in order to get positive-definite
covariance matrices and coherence values smaller than 1. Examples of the decorrelation
model of eq. (6.7) as a function of BT are shown in figs. 6.12F and I, for X-, C-, and
L-bands, and for two different master dates (i.e., tM = 0 and tM = 0.5 years). First of
all we can see that the proposed model provides two different coherence-loss mechanisms
for the two master timings. For example, if we assume t0 is within summer, the case
of tM = t0 = 0 shows the coherence behavior in summers, and the second case of
tM = t0 + T/2 = 0.5 demonstrates the coherence loss during the winter period, in
which the pixels lose their coherence much slower than in summer.

The model of eq. (6.7) can be considered as the extension of the random-walk model of
eq. (6.3). When the τ2 parameter becomes very large (i.e., the variance of the periodic
motion σ2

2 is very small), the periodic part of the model will vanish as

lim
τ2→∞

exp
(−BT

τ1

)
exp
(

cos
(
ω(tM +BT − t0)

)
− cos

(
ω(tM − t0)

)
ωτ2

)
= exp

(−BT

τ1

)
, (6.9)

and only the random-walk part remains.

With the proposed model of eq. (6.7), it may be possible to describe the observed
seasonal coherence behavior in agricultural and pasture areas. Assuming that the period
T is one year, the model has three free parameters τ1, τ2, and t0. In the next section,
we estimate these model parameters based on the observed coherence matrices in the
Veendam case study.

6.5.2 Estimation of coherence model parameters

For the modeling of temporal-decorrelation, it is helpful to have timeseries of images,
which are as long as possible. For this analysis, we used an stack of 74 RadarSAT2 SLC
images acquired between July 2009 and July 2014 (i.e., 5 years of data with a 24 days
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Figure 6.14: Results of the coherence modeling: (A) observed coherence matrix in a sample agricul-
tural/pasture area, west of Veendam (see fig. 6.13), (B) model of the biased coherence matrix based
on the estimated parameters, (C) model of the unbiased coherence matrix based on the estimated
parameters, and (D) the modeling residuals or misfit between observations and the model (note the
different color-scale).

revisit time). An approximately 1 km2 area west of Veendam is chosen as visualized in
fig. 6.13.

The coherence values have been estimated by the conventional coherence estimator (see
eq. (3.28)). To get a more precise coherence estimation, we averaged the coherence
values over the whole selected area. To compute the average coherence, we only use
pixels with approximately the same number of brothers and the same mean coherence.
The estimated coherence matrix is shown in fig. 6.14A. The seasonal pattern is clearly
visible in the estimated coherence matrix. In order to estimate the model parameters
of temporal decorrelation, the other decorrelation mechanisms, such as geometrical and
thermal decorrelation, should be also included in the model. The total coherence can
be written as

γ = γothersγT (6.10)
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where γothers accounts for other decorrelation mechanisms as

γothers = γthermalγproccγgeomγdc. (6.11)

The γothers is evaluated by analytical models reviewed in sec. 3.2.4.2 and based on the
RadarSAT2 satellite parameters. As a result, the final total coherence is only a function
of the three unknown parameters of the temporal decorrelation model of eq. (6.7) (i.e.,
τ1, τ2, and t0):

γ(τ1, τ2, t0) = γothers. exp
(−BT

τ1

)
. exp

(
cos
(
ω(tM +BT − t0)

)
− cos

(
ω(tM − t0)

)
ωτ2

)
(6.12)

The parameters of the model of eq. (6.12) can now be estimated against the estimated
coherence values γ̂. The estimated coherences are results of the standard coherence
estimation. It is well-known that the coherence estimator is biased especially for small
coherence values (Touzi et al., 1999; Hanssen, 2001). The expectation of the estimated
coherence4 (i.e., E{γ̂}) is not equal to the true coherence γ, but is a function of it (Touzi
et al., 1999):

E{γ̂} = G(γ) = Γ(L)Γ(3/2)
Γ(L+ 1/2) 3F2(3/2, L, L;L+ 1/2, 1; γ2)(1− γ2)L, (6.13)

where L is the number of looks, Γ(.) is the gamma function, and 3F2(.) the general-
ized hypergeometric function (for more information about eq.(6.13), see eq.(3.32) and
fig. 3.1). For simplicity, we used the function G(γ) to denote the function of eq.(6.13).
To estimate the model parameters τ1, τ2, and t0 based on the biased coherence observa-
tions γ̂, we used eq. (6.13) as the functional model, and minimize the following objective
function

τ̂1, τ̂2, t̂0 = argmin
τ1,τ2,t0

∥∥γ̂vec −G(γvec(τ1, τ2, t0)
)∥∥2

, (6.14)

where γ̂vec and γvec are the vectors of all the γ̂ values and the corresponding γ(τ1, τ2, t0)
functions, respectively. A nonlinear least squares algorithm5 was used for the estimation,
resulting in the following estimates for the three parameters

τ̂1 = 13.5 days,
τ̂2 = 17 days,

t̂0 = 78 ≈ 18th of March.

Figure 6.14B shows the modeled observations, and fig. 6.14D shows the residuals of
the modeling (note the different color scales of the residual plot). Despite some small
differences, the results show reasonable agreement between the "observations" and the
model. Using eq. (6.12), the unbiased coherences were also computed, and the results
are presented in fig. 6.14C.

4In this section, for simplicity, we use γ as indicator of the absolute coherence |γ|.
5For nonlinear least squares estimation, we used the trust-region-reflective algorithm (Coleman and

Li, 1996), as implemented in Matlab2014A.
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Satellite R2 Env/ERS SenA SenA/B TSX ALOS
Wavelength [mm] 56 56 56 56 31 236

Constant components
γthermal = 1

1+SNR−1 SNR [db] 12 12 12 12 12 12

γprocc = sinc2(σcoreg,a,r) σcoreg,az,ra [pixel] 0.1 0.1 0.1 0.1 0.1 0.1

Geometrical dec. σB⊥ [m] 200 200 50 50 50 100
γgeom = max(1− |B⊥|

B⊥max
, 0) B⊥max [km] 1.3 1.1 1.2 1.2 3.8 7.0

Temporal dec. Repeat
eq.(6.7) interval [days] 24 35 12 6 11 46

τ̂1 [days] 13.5 13.5 13.5 13.5 4.1 239
τ̂2 [days] 17 17 17 17 5.2 301
t̂0 (date) 18Mar 18Mar 18Mar 18Mar 18Mar 18Mar

Table 6.1: Parameters used in the synthetic feasibility study for different radar satellite missions.

The estimated parameters τ̂1, τ̂2, t̂0 can be used to simulate synthetic coherence matrices
for datasets with a different number of images, a different number of looks, and different
radar wavelengths. In the next section, we use these estimated parameters to assess
the feasibility of exploiting DS-pixels in agricultural/pasture areas for different satellite
missions.

6.6 Feasibility study

We used the estimated seasonal temporal-decorrelation for agricultural and pasture areas
to simulate the corresponding coherence matrix for different satellite missions. Using
this setting, the important question to answer is whether the DS exploitation method is
capable to extract the high quality phase timeseries in these areas. In addition to the
temporal decorrelation, other coherence components also are simulated. Table. 6.1 shows
the used parameters for each satellite. Note that the decorrelation rate components τ
was estimated, in the previous section, only for the C-band data. For other bands these
parameters can be simply computed as

τX-band =
(λX
λC

)2
τC-band, τL-band =

(λL
λC

)2
τC-band, (6.15)

assuming that the elementary scatterers are the same for different wavelengths. The
estimated τ̂1 and τ̂2 components are presented in the last two rows of table. 6.1 for
different missions.

For simulation of the coherence matrices, a period of three years data was considered.
In other words, we want to assess the feasibility of the utilization of DS-pixels if we
have three years of data from each satellite. Consequently the number of images for
each satellite is different due to the different repeat intervals. The simulated coherence
matrices are visualized in fig. 6.15. The number of SLCs is also indicated in the plots.
The seasonal pattern is clear, and the relatively high coherence for L-band ALOS and
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(A) RadarSAT2, NSLC = 46 (B) Envisat/ERS, NSLC = 32 (C) Sentinel-1A, NSLC = 92

(D) Sentinel-1A&B, NSLC = 183 (E) TerraSAR-X, NSLC = 100

0

1

(F) ALOS, NSLC = 24

Figure 6.15: Predicted coherence matrices for studying the feasibility of DS exploitation for different
radar satellite missions over agricultural/pasture areas, based on the estimated and assumed model
parameters in table 6.1. Three years of data are assumed, resulting in different number of images for
each mission (due to their different repeat interval).

σps ∼ 25◦

σγ=0 ∼ 104◦

Figure 6.16: Predicted max(σCRB) for different multilooking factor L for different satellite missions in
the case of three years data and for simulated coherence matrices of fig. 6.15. The standard deviation
of typical PS-pixels (25◦), and the maximum possible standard deviation (104◦) are also plotted. Note
the logarithmic scaling of y-axis.
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(A) RadarSAT2, NSLC = 8 (B) Envisat/ERS, NSLC = 6 (C) Sentinel-1A, NSLC = 16

(D) Sentinel-1A&B, NSLC = 31 (E) TerraSAR-X, NSLC = 17

0

1

(F) ALOS, NSLC = 4

Figure 6.17: Predicted coherence matrices for studying the feasibility of DS exploitation for different
radar satellite missions over agricultural and pasture areas, based on the estimated and assumed model
parameters in table. 6.1. Six months of data are assumed, resulting in a different number of images for
each mission (due to their different repeat interval).

the low coherence for X-band TSX is evident. To assess the feasibility, we compute
the maximum CRB bound of ESM-phase estimation max(σCRB) (similar to the a-priori
analysis of sec. 6.3) based on different simulated coherence matrices. The closeness of
max(σCRB) to the expected standard deviation of typical PS-pixels (in this case 25◦)
is used as an indicator that the information content of DS-pixels is sufficient to exploit
their associated phase timeseries. As the max(σCRB) is dependent to the number of
looks (L), we evaluated max(σCRB) for a number of looks L in the range of 20-400.
The results are shown in fig. 6.16 for different satellite missions. The standard deviation
of typical PS-pixels (25◦), and the maximum possible standard deviation (104◦) are also
plotted. Note the logarithmic scaling of the computed max(σCRB) parameters.

We see that the CRB bound can possibly be larger than the maximum possible standard
deviation of 104◦. For interpretation, we should consider the CRB bound as the inverse of
the Fisher information content. Unlike the phase standard deviation (or variance) which
has the upper-bound of 104◦, the CRB bound (or its inverse, the Fisher information) can
be between zero to infinity by definition. In fact, a zero coherence phase has standard
deviation of 104◦, while it has no information and consequently its CRB bound is infinity.
For high information, the square root of the CRB bound approaches to the expected
standard deviation. The results show that, except for the L-band ALOS mission, non
of the other sensors can provide sufficient information for the exploitation of DS-pixels
with the assumed coherence behavior. Although different coherence components are
simulated, the main driving mechanism behind the observed pattern in these results is the
temporal decorrelation which is mainly affected by the repeat time interval. For example,
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σps ∼ 25◦

σγ=0 ∼ 104◦

Figure 6.18: Predicted max(σCRB) for different multilooking factor L for different satellite missions in
the case of six months data and for simulated coherence matrices of fig. 6.17. The standard deviation
of typical PS-pixels (25◦), and the maximum possible standard deviation (104◦) are also plotted. Note
the logarithmic scaling of y-axis.

between Sentinel-1A case and the Sentinel-1A/B combination, the only difference is the
repeat interval (i.e., 12 and 6 days, respectively), resulting in a better performance
of Sentinel-1A/B. Based on these results we conclude that the information content of
DS-pixels in three years datasets from these missions (except ALOS) is not enough for
a successful utilization of these kinds of DS pixels, at least upto an L-factor of 400,
which is already very large. Note that, in theory, if we continue to increase the L-factor,
at some point we will approach to the quality of typical persistent scatterers and even
better. However, for large multilooking factor we require a valid assumption of ergodicity
over extremely large areas, which is not practical in real cases.

The results of fig. 6.16 are an indication of the information content of DS-pixels within
the entire phase timeseries of three years. One would ask what would happen if we only
process the coherent seasons (in this case winters). By processing the individual winter
periods, it may be possible to use these kinds of DS-pixels. To assess this possibility,
we repeat the experiment but, this time, using only 6 months of data during the winter
period. The corresponding coherence matrices are shown in fig. 6.17, and the evaluated
max(σCRB) parameters are presented in fig. 6.18. These results show a quite promising
capability of Sentinel-1 data, which reach to the desired quality (i.e., σps) with an L-
factor of approximately 100 or higher (approximately 100×100 m), which is practical
in real scenarios. For TSX data, the information content is still very poor. For other
C-band data, i.e., RadarSAT2, Envisat, and ERS, the phase quality is still not sufficient
if we only process six months of data during the high coherence season. It should also
be noted that, in addition to a sufficient phase quality, the number of images is also
an important factor for a final feasibility study. By limiting the period of the full stack,
we in fact reduce the number of final SM interferograms significantly. For example, for
Envisat/ERS/RadarSAT2, over six months we get less than 10 images which is too low
for standard timeseries processing. However the Sentinel-1 datasets have enough images
for proper time-series processing even over six months. In summary, the high revisit time
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of Sentinel-1 data shows a promising expectation regarding DS exploitation by C-band
data over agricultural and pasture areas. The X-band data have a limited potential over
these kinds of landscapes, and L-band ALOS data have very good performance, however
with limitations of a lower resolution and a long repeat interval.





Conclusions and Outlook 7
In this study, we formulated and applied ESM-phase estimation of DS-pixels in a
standard geodetic methodology. Additionally, we assessed the feasibility of exploit-
ing distributed scatterers for deformation monitoring over a typical rural landscape
in the Netherlands. Here, we present the main conclusions (sec. 7.1), and the con-
tributions (sec. 7.2) of this study, followed by recommendations for further research
(sec. 7.3).

7.1 Conclusions

The main conclusions of this study relate to the four research questions, as listed in
chapter 1, are given in the following.

7.1.1 Mathematical model for ESM-phase estimation

How to formulate the functional and the stochastic part of the mathematical model
for ESM-phase estimation in the form of a Gauss-Markov model of observation-
equations?

Equivalent single-master (ESM) phase estimation is the key processing step for infor-
mation extraction from DS-pixels. The objective of this processing step is to estimate,
for each DS-pixel, a phase time-series equivalent to a single-master stack from phase
differences in a multi-master stack of interferograms. From a physical point of view,
this estimation reduces the decorrelation noise, while estimating, for each pixel, the
equivalent SM-phase time-series corresponding to the physical path length differences
between the targets and the sensor. The Gauss-Markov model for this estimation com-
prises a functional and a stochastic model. The functional model has been established
and discussed in chapters 4 and 5, while the stochastic model has been established and
elaborated on in chapter 3.
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Functional model. The basic building block of the functional model for ESM-phase
estimation is the expected phase consistency condition. This condition provides a func-
tional relation between the expectation of the wrapped, multi-looked, and multi-master
phases (or "observations") and ESM-phases (or "unknowns"). The most challenging
property of the ESM-phase estimation is that the functional relation between the obser-
vations and unknown parameters is highly nonlinear due to the wrapping operation. The
nonlinear model has been converted to a linear form by introducing additional integer
ambiguity unknowns, resulting in a linear system of observation equations, as commonly
used in geodetic methodology. This new model is a hybrid model as it comprises both
real-valued unknowns (i.e. ESM-phases) and additional integer unknowns (i.e., ambi-
guities). The functional model is flexible to digest different subsets of interferograms.
An important property of this hybrid model is the constraint on the integer ambiguities:
due to the arithmetic properties of the wrapping operation, the possible values for the
ambiguities are limited to 1, -1, and 0.

Stochastic model. In the Gauss-Markov framework, the stochastic model is described
by the second statistical moment of observations. In the case of ESM-phase estimation,
the stochastic model has been given in terms of the full covariance matrix of the wrapped
multi-looked and multi-master phases associated to each DS-pixel. In case of indepen-
dent observations, the covariance matrix would be diagonal. However the assumption
of independency does not hold due to different reasons, e.g., due to a common master
or slave image, or an overlap between the object spectra or time-periods covered by two
interferograms.

In order to evaluate the full covariance matrix for each DS-pixel, the SAR statistics
described by the pixel coherence matrix should be propagated into the dispersion of
multilooked interferometric phases. We proposed a numerical Monte-Carlo approach to
evaluate the full covariance matrix of DS-pixels. Also, we derived a closed-form approx-
imation for all the elements of the covariance matrix. The closed-form approximation
is computationally much more efficient than the Monte-Carlo approach, but it is only
precise for DS-pixels with a large number of looks (e.g. L > 50). The covariance matri-
ces constructed either by the Monte-Carlo approach or by the analytical approximation
serve as the stochastic part of the Gauss-Markov model for the ESM-phase estimation
problem.

7.1.2 ILS ESM-phase estimator

How to estimate ESM-phases using the weighted least squares estimator and how
does it compare to other existing methods?

Integer Least Squares Estimator. The solution for the ESM-phase estimation, as
formulated by the Gauss-Markov hybrid model, is given by the integer least squares
(ILS) estimator (discussed in chapter 5). For this estimator, the weighted least squares
objective function is defined as the L2-norm of the interferometric phase residuals.

The application of the ILS method for ESM-phase estimation requires two main mod-
ifications in the original ILS approach. The first modification is about inserting the
constraints on integer unknowns. For ESM-phase estimation, each ambiguity a is con-
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strained to a ∈ {−1, 0, 1}. Therefore, in the second step of ILS, when the float solutions
are fixed to their nearest integers, this constraint should be exerted.

The second modification regards the choice of the weight matrix for ILS estimation.
The ILS problem has been conventionally formulated with a weight matrix equal to the
inverse of the covariance matrix of the observations. This is logical for observations with
a Gaussian distribution because it provides the maximum likelihood estimation. As the
multilooked interferometric phases are not normally distributed, their data statistics can-
not be explained fully by the phase covariance matrix. Moreover, an accurate covariance
matrix may not always be available (e.g. due to a bias and uncertainties in coherence
estimation), and the numerical uncertainties in the evaluation of the covariance matrix
may be amplified by the matrix inversion. Therefore, in the theoretical formulation, we
expressed the ILS objective function with a generic weight matrix W , increasing the
flexibility of the method to digest different kinds of weight matrices. However, an in-
crease in flexibility also increases the subjectivity of the method. Therefore, for practical
applications, we proposed and validated a weighting strategy based on the Fisher infor-
mation index of multilooked interferometric phases. Via synthetic studies, we compared
the performance of using the Fisher-information-based weight matrices with three other
weighting strategies: (i) the inverse of the full covariance matrix of multilooked phases,
(ii) a weight matrix with diagonal elements equal to the inverse of the phase variances,
and (iii) a weight matrix with diagonal elements equal to the absolute coherence values.
The results demonstrate that the Fisher-information-based weight matrix provides more
precise ESM-phase estimates, compared to the other weight matrices (see sec. 5.3). In
addition, using Fisher-information-based weight matrices has an advantage regarding the
computational complexity of the ILS method, as it does not require a matrix inversion.

One of the advantages of ILS ESM-phase estimation is the quality description via the
provision of a full covariance matrix of the estimates. These covariance matrices can be
further propagated to other InSAR derived parameters and can play an important role
in the further post-processing or geophysical modeling of time-series InSAR products.

Via a simulation study, we have shown that the ILS SM-phase estimator is unbiased,
and the closeness of the variance of its residuals with the lower Cramér-Rao bound
demonstrates the minimum-variance property (or "efficiency") of the proposed approach.
The method has been successfully applied to a stack of interferograms over Torfajökull
volcano in Iceland, resulting in doubling the number of detected coherent pixels with
respect to conventional PSI.

Comparison of different estimators. The main difference between ILS ESM-phase
estimation and all the other existing methodologies is that the ILS method is an opti-
mization in the real-valued phase domain, while all the other five existing methods (as
listed in sec. 4.3) have been formulated as optimizations in the complex domain. In
order to situate both the ILS estimator and the other estimators in a unified mathemat-
ical framework and provide a theoretical comparison among them, a generic functional
model, in the form of a system of observation equations is proposed. The observations of
this unified model—i.e. the multilooked phases—can be expressed either by the phases
themselves in the real-valued phase domain (i.e. φ̂ ∈ R) or by their associated phasors
in the complex domain (i.e. exp(jφ̂) ∈ C). The ILS estimator gives a solution to the
real-valued version of this unified model. We showed that all the other five discussed
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methods provide specific solutions for the complex-valued representation of this model.
The only difference between these methods are the objective function that they utilize to
solve the unified functional model (see an overview in table 4.1). An important conclu-
sion is that, despite some minor differences in their objective functions, the fundamental
difference among the complex-domain estimators is in the approach that they use to
assign weights to the interferometric observations.

The comparison between the efficiency and performance of four methods (i.e. maximum
likelihood estimation (ML), eigendecomposition-based methods, least circular variance
estimator, and the ILS approach) has been performed via a synthetic-data experiment.
Two main aspects have been considered: (i) computational cost, and (ii) optimality of
the estimators in terms of precision.

Regarding the computation time, the eigendecomposition-based estimators are much
faster than the other estimators, as their solution can be simply computed by eigen-value
decomposition which does not requires any iterative algorithm, while the other methods
(including ILS) require iteration. However there is a trade-off between the computational
cost and the precision. While it is a faster estimator, the eigendecomposition-based
method provides the lowest precision compared to the others. Among all the investigated
estimators, the ILS method has the highest computational time, almost seven times
slower than the maximum likelihood and circular variance estimator, and 15 times slower
than the eigendecomposition-based estimators. This is the main drawback of the ILS
EMS-phase estimation compared to other methods1.

Regarding the precision of different estimators, the results show that the maximum like-
lihood estimator provides the best (minimum-variance) solution when the true coherence
values are used in the estimation. However, in practice, the ML estimator suffers from
instabilities induced by uncertainties and biases in the coherence estimation (as the ML
estimator requires the inverse of the coherence matrix). Based on the results of the
synthetic-data experiment, when the estimated coherences are used in the estimation,
the ILS and the least circular variance estimator have comparable precision and show a
better performance than the other estimators. The main conclusion is that the estimators
that do not require the coherence matrix inversion and use direct coherence factors—or
a function of coherence factors—as the weights provide a more stable solution than the
ML estimator.

7.1.3 DS density over rural landscapes

How much can the DS-exploitation methods improve the spatial density of time-
series InSAR measurements over a typical rural landscape in the Netherlands?

We performed a case study on a mining area close to the city of Veendam, the Nether-
lands. The combination of having different kinds of landscape and its high deformation
rate together with the low PS density in agricultural areas makes this region a relevant

1It should be noted that the comparison on computational cost is subjective as it is strongly dependent
on the algorithmic implementation. In this study, a simple prototype implementation of the ILS algorithm
was used, with a strong potential for improvement. Nevertheless, the results of the comparison provide
a relative measure of computational complexity among different ESM-phase estimators.
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case study area. The assessment of point density improvement by exploiting DS-pixels
has been performed in two steps: (i) a-priori analysis based on studying coherence be-
havior of different kinds of landscape prior to applying the ESM-phase estimation (see
sec. 6.3), and (ii) a-posteriori analysis based on actual point density obtained by applying
ESM-phase estimation together with PSI processing.

The a-priori feasibility analysis of exploiting DS-pixels in the test area shows that the
majority of DS-pixels with sufficient coherence over the entire time-series are located in
urbanized and developed areas, and the agricultural and pasture fields do not show an
adequate level of information (i.e., comparable to typical PS targets with phase standard
deviation of 25 degree) for optimal phase estimation. Note that we did not consider the
option of temporally correlated targets.

In the a-posteriori analysis, a combined PS and DS processing has been applied on the
Veendam test site. The results confirm the conclusions derived from the a-priori analy-
sis. The main added-value of DS processing is in urbanized and developed landscapes,
with almost a factor of 5-10 in density improvement in developed areas. It should be
noted that, due to the overlapping windows, used in multilooking, neighboring DS-pixels
are not independent, and therefore, the effective density improvement is less than the
numbers that we report just by counting the detected DS-pixels. Nevertheless, these
numbers provide a qualitative measure of relative density improvement among different
landscapes. Based on the number of detected DS-pixels, the agricultural and pasture
areas show very limited improvement in the point density compared to the PS density
in the conventional PSI processing. The main reason for this limited improvement is
the seasonal behavior of the temporal coherence, which causes almost complete drop in
coherence during summer periods. Therefore, the ESM-phase timeseries of DS-pixels in
these areas do not have persistent coherence in the entire stack and cannot be exploited
for the estimation of deformation time-series. Although, the scope of the study has been
limited to the feasibility of the exploitation of the entire timeseries, the results show
that, in temporally coherent subsets, there is still some unexploited information that
cannot be extracted from processing the entire timeseries. In this regard, the potential
of temporally coherent targets (TCS) should be evaluated (as applied e.g. by Ferretti
et al., 2012).

7.1.4 Temporal decorrelation model

How to model the coherence behavior and its temporal variations over agricultural
and pasture areas in the Netherlands? With such a model, what is the performance
of different existing satellite missions regarding the exploitation of distributed scat-
terers?

A new model was introduced to describe the temporal decorrelation of agricultural and
pasture areas. The hypothetical movements of elementary scatterers in a resolution cell
were modeled as a stochastic process with non-stationary but periodic increments. The
proposed periodic model results in a new temporal decorrelation model as a function
of the temporal baseline and the date of the master image of each interferogram. This
model is the extension of the exponential decay model, which is commonly used to
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describe the temporal decorrelation. The main difference to the exponential decay model
is that the proposed model is also capable of describing a seasonal coherence-loss.

The parameters of the proposed decorrelation model have been estimated for the Veen-
dam data. The results showed a good agreement between the observed coherence
behavior and the model. The estimated model shows an almost entire loss of coherence
in the summer periods for C-band RadarSAT2 data over agricultural areas.

The estimated parameters of the decorrelation model have been used to simulate syn-
thetic coherence matrices that are used to assess the feasibility of exploitation of DS-
pixels in agricultural areas by different satellite missions. The results show that assuming
a three years stack of data, the information content of DS-pixels from current C-band
and X-band missions is not enough for successful utilization of these kinds of pixels,
considering the condition that the entire timeseries is used. However, the L-band data
show a good phase quality over agricultural/pasture area.

By processing the individual coherent periods/subsets (i.e. six months from October-
March), the feasibility study also shows that it may be possible to exploit DS-pixels
over agricultural areas. For C-band data of RadarSAT2, Envisat, and ERS, the phase
quality is not sufficient even in individual seasons due to the relatively long revisit time.
In contrast, the short revisit time of Sentinel-1 data shows a promising expectation
regarding DS exploitation by C-band data over agricultural and pasture areas. The X-
band data generally have a very limited potential for these kinds of landscapes, and
L-band ALOS data have very good performance, however with limitations of a lower
resolution and a long repeat interval.

7.2 Contributions

The contributions of this research are:

• We introduced a generic framework, consisting of five basic processing blocks, to
describe different time-series processing methodologies in a unified manner (chap-
ter 2).

• We proposed a Monte-Carlo approach to evaluate the full covariance matrix of
DS-pixels (chapter 3).

• We derived a closed-form approximation to evaluate the second-order statistics of
interferometric phases (chapter 3).

• We gave a theoretical comparison of existing ESM-phase estimators, and showed
that the main difference between them is only in the used weight matrix in the
estimation (chapter 4).

• We introduced a mathematical model for ESM phase estimation in the form of
a linear system of observation-equations (chapter 5) and (Samiei-Esfahany et al.,
2016).

• We introduced the weighted ILS ESM-phase estimator (chapter 5).
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• We compared different ESM-phase estimators on synthetic datasets (chapter 5).

• We analyzed the effect of different factors, such as detrending, the multilooking
factor, weighting, and subset selection, on the efficiency and precision of the ILS
ESM-phase estimator (chapter 5).

• We analyzed the temporal coherence behavior of three different landscapes (ur-
banized, agricultural and pasture, and roads) in the Netherlands (chapter 6).

• We applied a hybrid PS-DS processing on the Veendam subsidence. Results show
a maximum subsidence rate of −17 mm/year in this area (chapter 6).

• We introduced a new model for the temporal decorrelation of agricultural and
pasture areas as a stochastic process with non-stationary but periodic increments
(chapter 6).

• We estimated the temporal decorrelation parameters for the agricultural/pasture
areas around Veendam (chapter 6).

• We assessed the feasibility of complete timeseries exploitation of DS-pixels for dif-
ferent satellite missions over typical agricultural and pasture areas in the Nether-
lands (chapter 6).

• We designed, implemented, and validated DS software as an extension to the Delft
Persistent Scatterer Interferometry (DePSI) software.

7.3 Recommendations

Regarding the exploitation of DS-pixels in InSAR stacks, there are still complications and
improvements that we did not address in this study. A few topics for further research
are listed in the following.

• In this study, we only studied the exploitation of DS-pixels that show a good
phase stability over the entire timeseries. However, over agricultural areas, as
tillage and harvesting are known to destroy coherence completely, this approach
is sub-optimal. The observed seasonal coherence behavior over agricultural areas
shows the potential of extracting information from subsets of interferograms (for
example subsets in the coherent seasons). In this regard, the potential of exploiting
temporally coherent targets needs to be studied (e.g., see Ferretti et al., 2012).

• The focus in this study, and also in most of the other existing DS algorithms, is to
process single-track data acquired from an individual satellite mission. However,
recent research demonstrates the potential of joint processing of data stemming
from different sensors to better estimate small deformation signals in pasture ar-
eas (Morishita and Hanssen, 2015a). The feasibility of this kind of multi-sensor
estimation over different landscapes should be assessed. It should be evaluated
how the ESM-phase estimation can be integrated into a multi-sensor processing.
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• The periodic temporal decorrelation model proposed in this study has been vali-
dated against data from a limited area around Veendam. It is desirable to estimate
the parameters of this model over different kinds of landscapes. The results can be
used for land-use classification based on the coherence behavior. Such an analysis
allows a more precise feasibility study and error budget assessment for DS-pixels
over different landscapes.

• The fundamental assumption behind all ESM-phase estimators is the validity of
the expected phase consistency condition. That is, it is assumed that all the
inconsistencies are purely induced by random noise. However, it has been recently
shown that there are also some mechanisms that can induce systematic phase
inconsistencies, for example, due to volume scattering or due to variation in soil
moisture (De Zan et al., 2015; Zwieback et al., 2016). The indication of the
existence of such inconsistencies raises a question regarding the extent to which the
ESM-phase estimators are affected by them. It should be investigated what would
happen to the soil moisture effect by postulating the expected phase consistency
in the estimation process, and whether the systematic phase inconsistencies are
optimally or partially filtered out, or may leak into the final ESM-phase estimates.
The sensitivity of different ESM phase estimators to these systematic effects should
be assessed.

• The main limiting factor of using the proposed ILS ESM-phase estimation is its
computational time, especially in the step of ambiguity resolution. It is desirable
to speed-up the ILS algorithm. In this context, recent advances in numerical
improvements in the implementation of fast ILS estimation algorithms, as in Jazaeri
et al. (2011), should be considered.

• One of the attractive properties of the geodetic methodology is the special atten-
tion to the quality aspects of the obtained results in terms of precision and reliability
of the estimated parameters. Although some aspects of quality description—e.g.
the error propagation in the ILS method and the precision of the ESM-phase
estimator—were utilized in this study, the geodetic quality description was not
exploited to full extent. The possibility of using by-products of the ILS estimator,
e.g. the success rate, or the a-posteriori variance factor as a quality indicator of
DS-pixels should be considered. These by-products can be used for optimal de-
tection of high quality DS-pixels. Also, the body of knowledge about hypothesis
testing in an ILS framework can be used to detect/remove low-quality interfero-
grams ("outliers") in the ESM-phase estimation. Another aspect is the full error
propagation through the entire time-series processing. It is desirable to design an
algorithm to propagate all the error sources from SLC observations to final InSAR
timeseries and to final derived products such as deformation rates. Due to the
large number of points and images, an efficient error propagation scheme through
all the processing steps should be designed.

• From a computational perspective, DS processing algorithms are computationally
much more expensive than the PSI algorithms. The reason is twofold: (i) the
number of DS-pixels is generally much larger than the number of PS, and (ii) a
multi-master set of interferograms (or all the possible interferometric combinations
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in some algorithms) should be constructed compared to SM-stacks of PSI algo-
rithms. The second condition can be relaxed. The results of synthetic examples
in this study show that there is redundant information in the set of all possible
interferograms. The same amount of information may be possible to extract from
smaller subsets. A design methodology should be defined to optimally select the
most informative subset of interferograms. The feasibility of recursive ESM-phase
estimation should be investigated, to speed-up the DS algorithms in case of near
real-time processing.
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Derivations A
A.1 Derivations of Chapter 3

A.1.1 Derivation of the covariance matrix of eq. (3.83)

Objective:
The objective is to evaluate the covariance matrix of the vector y = [φ12, φ34]T via the
approximation (nonlinear error propagation):

Qy = D{
[
φ12
φ34

]
} ≈ JF (x|x0) Qx JF (x|x0)T , (A.1)

where

• x is the vector of interferometric real and imaginary components as

x =


x1
x2
x3
x4

 =


Re(< I1,2 >)
Re(< I3,4 >)
Im(< I1,2 >)
Im(< I3,4 >)

 , (A.2)

• F (x) is the multivariate function describing the relationship between the vector of
two interferometric phases (i.e., y = [φ12, φ34]T ) and x:

y =
[
φ12
φ34

]
= F (x) =

[
F1(x)
F2(x)

]
=
[

arctan(x3
x1

)
arctan(x4

x2
)

]
, (A.3)

and

• JF (x|x0) is the Jacobian of the multivariate function F (x) with respect to the
vector x evaluated at an initial value x0.
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Derivation of JF (x|x0):
The Jacobian of JF (x) is computed by taking the partial derivatives of F with respect
to the elements of x, so

JF (x) =
[ −x3

x2
1+x2

3
0 x1

x2
1+x2

3
0

0 −x4
x2

2+x2
4

0 x2
x2

2+x2
4

]
(A.4)

The initial value x0 can be selected at the expected value of the elements of x:

x0 =


x01

x02

x03

x04

 =


E
{

Re(< I1,2 >)
}

E
{

Re(< I3,4 >)
}

E
{

Im(< I1,2 >)
}

E
{

Im(< I3,4 >)
}

 . (A.5)

Assuming zero-mean interferometric phase (i.e. E{φ1,2}=E{φ3,4}=0), the elements of
x0 are evaluated as:

x0 =


x01

x02

x03

x04

 =


|γ12|
|γ34|

0
0

 . (A.6)

Evaluating the Jacobian of eq. A.4 at x0 gives

JF (x|x0) =
[

0 0 1
|γ12| 0

0 0 0 1
|γ34|

]
. (A.7)

Derivation of Qx:
First, it should be noted that, generally speaking, complex interferograms that are com-
puted by the Hermitian product of circularly Gaussian distributed SLC values, do not
follow a circular distribution, and hence, the multivariate PDF of the vector of complex
interferometric values may not be circular. In general, for a non-circularly distributed
random vector z, the dispersion or covariance matrix defined as D{z} = E{zz∗} does
not entirely describe the second order statistics of z (Mandic and Goh, 2009). This is
due to the fact that the vector z and its conjugate transpose z∗ are correlated in case of
non-circularity. For a full description of the second statistical moment of non-circularly
distributed complex vectors, a complementary quantity called pseudo-covariance or com-
plementary covariance needs to be taken into account (Neeser and Massey, 1993; Picin-
bono and Bondon, 1997; Schreier and Scharf, 2003; Mandic and Goh, 2009). The com-
plementary covariance is defined as E{zzT } where the .T denotes the standard transpose
operation. In agreement with the terminology complementary covariance, we introduce
the term complementary dispersion denoted by D̃ which is defined as D̃{z} = E{zzT }.
It is known that the dispersion of the vector of real and imaginary component of z can
be computed as (Neeser and Massey, 1993)

D
{[ Re(z)

Im(z)

]}
=

 1
2 Re

(
D{z}+ D̃{z}

)
1
2 Im

(
D{z}+ D̃{z}

)
− 1

2 Im
(
D{z} − D̃{z}

)
1
2 Re

(
D{z} − D̃{z}

)  (A.8)
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Assuming the complex vector of the interferometric phases z = [I12, I34]T , the vector
x can be reformulated as

x =
[

Re(z)
Im(z)

]
, (A.9)

and so the dispersion of x (i.e., Qx) can be evaluated by eq. (A.8). In order to evaluate
eq. (A.8), the dispersion and the complementary dispersion of z = [I12, I34]T should be
derived.

The dispersion of z = [I12, I34]T is written as

D{z} = D
{[

I12
I34

]}
= D

{[
P 1P

∗
2

P 3P
∗
4

]}
(A.10)

= E
{[

P 1P
∗
2

P 3P
∗
4

] [
P 2P

∗
1 P 4P

∗
3
]}

(A.11)

=
[

E{P 1P
∗
2P 2P

∗
1} E{P 1P

∗
2P 4P

∗
3}

E{P 2P
∗
1P 3P

∗
4} E{P 3P

∗
4P 4P

∗
3}

]
(A.12)

Using the Gaussian moment factoring theorem1 (Reed, 1962; Krishnan and Chandra,
2006), eq. (A.12) is written as

D{z} =
[

E{P 1P
∗
2}E{P 2P

∗
1}+ E{P 1P

∗
1}E{P

∗
2P 2} E{P 1P

∗
2}E{P 4P

∗
3}+ E{P 1P

∗
3}E{P

∗
2P 4}

E{P 2P
∗
1}E{P 3P

∗
4}+ E{P 2P

∗
4}E{P

∗
1P 3} E{P 3P

∗
4}E{P 4P

∗
3}+ E{P 3P

∗
3}E{P

∗
4P 4}

]
(A.14)

Assuming amplitude-normalized SLC images (i.e. E{A2
i }=1) and zero-mean interfer-

ometric phases (i.e. E{φ
i,j
}=0), the expected value of the interferograms is equal to

the absolute coherence values (i.e., E{P iP
∗
j} = E{P jP

∗
i } = |γij |, see eq. (3.5)), and

so eq. (A.14) can be evaluated as

D{z} = D
{[ I12

I34

]}
=
[

1 + |γ12|2 |γ12||γ34|+ |γ13||γ24|
|γ12||γ34|+ |γ13||γ24| 1 + |γ34|2

]
. (A.15)

In the same manner the complementary dispersion of z is computed as

D̃{z} = D̃
{[

I12
I34

]}
= D̃
{[

P 1P
∗
2

P 3P
∗
4

]}
= E
{[

P 1P
∗
2

P 3P
∗
4

] [
P 1P

∗
2 P 3P

∗
4
]}

=
[

E{P 1P
∗
2P 1P

∗
2} E{P 1P

∗
2P 3P

∗
4}

E{P 1P
∗
2P 3P

∗
4} E{P 3P

∗
4P 3P

∗
4}

]
=
[

E{P 1P
∗
2}E{P 1P

∗
2}+ E{P 1P

∗
2}E{P

∗
2P 1} E{P 1P

∗
2}E{P 3P

∗
4}+ E{P 1P

∗
4}E{P

∗
2P 3}

E{P 1P
∗
2}E{P 3P

∗
4}+ E{P 1P

∗
4}E{P

∗
2P 3} E{P 3P

∗
4}E{P 3P

∗
4}+ E{P 3P

∗
4}E{P

∗
4P 3}

]

=
[

2|γ12|2 |γ12||γ34|+ |γ14||γ23|
|γ12||γ34|+ |γ14||γ23| 2|γ34|2

]
.

(A.16)

1Gaussian moment factoring theorem: if X1, X2, X3, and X4 are zero mean variables with a
complex jointly Gaussian distribution, the following relationship holds:

E{X1X
∗
2X3X

∗
4} = E{X1X

∗
2}E{X3X

∗
4}+ E{X1X

∗
4}E{X

∗
2X3} (A.13)
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Substituting eqs. (A.15) and (A.16) into eq. (A.8) gives the dispersion of x (for single-
look pixels)

D{x} = Qx =

1
2



3|γ12|2+1 2|γ12||γ34|+... 0 0
|γ13||γ24|+|γ14||γ23|

2|γ12||γ34|+... 3|γ34|2+1 0 0
|γ13||γ24|+|γ14||γ23|

0 0 1− |γ12|2 |γ13||γ24|−|γ14||γ23|

0 0 |γ13||γ24|−|γ14||γ23| 1− |γ34|2

 ,
(A.17)

Finally for multilooked pixels computed by coherent averaging over L independent ho-
mogeneous pixels with covariance matrix Qx, the covariance matrix of the vector of
interferometric real and imaginary components is computed by linear error propagation
as

Qx|L = 1
L
Qx. (A.18)

Derivation of Qy:
By substituting eqs. (A.18), (A.17), and (A.7) into eq. A.1, the covariance matrix of the
interferometric phase vector is approximated as

D{
[
φ12
φ34

]
} ≈

 1−|γ12|2
2L|γ12|2

|γ13||γ24|−|γ14||γ23|
2L|γ12||γ34|

|γ13||γ24|−|γ14||γ23|
2L|γ12||γ34|

1−|γ34|2
2L|γ34|2

 . (A.19)

A.2 Derivation of Chapter 4

A.2.1 Proof of eq. (4.21)

Eq. (4.20) can be witten as:

fdΩ
(dΩ|Ψ) ∝

L∏
k=1

exp
(
− d∗kΨΥ−1Ψ∗dk

)
(A.20)

= exp
(
−

L∑
k=1

dk ∗ΨΥ−1Ψ∗dk
)
. (A.21)

Based on the property of quadratic forms that b∗Ab = tr(Abb∗), eq. (A.21) can be
written as

fdΩ
(dΩ|Ψ) ∝ exp

(
−

L∑
k=1

tr(ΨΥ−1Ψ∗dkd∗k)
)
. (A.22)
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Using the fact that
∑
i

(
tr(Ai)

)
= tr

(∑
i(Ai)

)
, eq. (A.22) is written as

fdΩ
(dΩ|Ψ) ∝ exp

(
− tr

( L∑
k=1

ΨΥ−1Ψ∗dkd∗k
))

(A.23)

= exp
(
− tr

(
ΨΥ−1Ψ∗

L∑
k=1

dkd
∗
k

))
. (A.24)

Considering that the estimated coherence matrix Γ̂ ∝ 1
L

∑L
k=1 dkd

∗
k, eq. (A.24) can be

written as

fdΩ
(dΩ|Ψ) ∝ exp

(
− tr(ΨΥ−1Ψ∗Γ̂)

)
, (A.25)

which is equivalent to eq. (4.21).

A.2.2 Proof of eq. (4.27)

Based on the property of quadratic forms that a∗Aa =
∑N
i

∑N
j A[i,j]a

∗
i aj (where a

is the N×1 vector, and A is the N×N Hermitian matrix), the objective function of
equation (4.26) can be written as

Φ∗(−Υ̂−1 ◦ Γ̂)Φ =

=
N∑
m

N∑
n

−[Υ̂−1][m,n]|γ̂mn| exp(jφ̂mn)Φ∗[m]Φ[n]. (A.26)

Based on the fact that

N∑
i

N∑
j

A[i,j]a
∗
i aj = (A.27)

=
N∑
i=1

A[i,i]a
∗
i ai +

N∑
i=1

N∑
j>i

A[i,j]a
∗
i aj +

(
N∑
i=1

N∑
j>i

A[i,j]a
∗
i aj

)∗
(A.28)

=
N∑
i=1

A[i,i]a
∗
i ai + 2 Re

( N∑
i=1

N∑
j>i

A[i,j]a
∗
i aj

)
, (A.29)

the double summation in Ee. (A.26) can be decomposed in two terms as:

Φ∗(−Υ̂−1 ◦ Γ̂)Φ =
N∑
m=1
−[Υ̂−1][m,m] + . . . (A.30)

. . .+ 2 Re
( N∑
m=1

N∑
n>m

−[Υ̂−1][m,n]|γ̂mn| exp(jφ̂mn)Φ∗[m]Φ[n]

)
. (A.31)
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Based on eq. (4.22), we have Φ[m] = exp(−jψom). By inserting this definition to
eq. (A.31), we get:

Φ∗(−Υ̂−1 ◦ Γ̂)Φ =
N∑
m=1
−[Υ̂−1][m,m] + . . . (A.32)

. . .+ 2 Re
( N∑
m=1

N∑
n>m

−[Υ̂−1][m,n]|γ̂mn| exp(jφ̂mn + ψom − ψon)
)
.

The first term in eq. (A.32) is invariant with respect to the unknown parameters ψom.
Therefore, the maximization problem of equation (4.26) can be written as

b̂ML = arg max
b

{
Φ∗(−Υ̂−1 ◦ Γ̂)Φ

}
= arg max

b

{
Re
( N∑
m=1

N∑
n>m

−[Υ̂−1][m,n]|γ̂mn| exp
(
j(φ̂mn − ψom + ψon)

))}
, (A.33)

which is equivalent to eq. (4.27).

A.2.3 Explanation and proof of eq. (4.52)

Monti-Guarnieri and Tebaldini (2007) and Monti-Guarnieri and Tebaldini (2008) gave
a general formulation for the computation of the hybrid Cramér-Rao bound (HCRB)
for estimators which use InSAR stacks as observations to estimate any set of unknown
(and deterministic) parameters, e.g. x = [x1, x2, . . . , xK ]T (where K is the number of
unknown parameters). Assume we have a vector of N focused SAR SLC images, and
φn (n=0, 1, . . . , N−1) is the multilooked interferometric phase for the nth image with
respect to an arbitrary reference, expressed as:

φn = ψn(x) + αn, (A.34)

where ψn(x) is a known function of x describing the functional relation between the
interferometric phases and the unknown parameters. The parameter αn represents the
(stochastic) atmospheric component affecting the nth image.

The HCRB formulation is based on the assumption of scattering with a multivariate cir-
cular Gaussian distribution with absolute coherence matrix Υ, and atmospheric noise (α)
as a zero-mean normal stochastic process: α∼N(0, Qα, where Qα is the N×N covari-
ance matrix of the atmospheric signal. If x̂ is the unbiased estimator of x, the dispersion
or variance matrix of x̂ is bounded from below as (Monti-Guarnieri and Tebaldini, 2008)

D{x̂} = E{(x̂− x)(x̂− x)T } = Qx̂ ≥

lim
ε→0

(
ΘT
(

(X + εIN )−1 +Qα

)−1
Θ
)−1

. (A.35)

where the matrix Θ and X are defined as the follows.
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• The matrix Θ is the N×K Jacobian matrix of the first-order partial derivatives of
the interferometric phases with respect to the unknown parameters. The elements
of Θ are defined as:

{Θ}np = ∂ψn(x)
∂xp

. (A.36)

• The matrix X is the Fisher Information Matrix (FIM) associated to the estimates
of ψn(x) and is defined as (Monti-Guarnieri and Tebaldini, 2007):

X = 2L(Υ ◦Υ−1 − IN ), (A.37)

where ◦ means the entry-wise product, L is the number of looks, and IN is a
N×N identity matrix.

The inequality ≥ in eq. (A.35) indicates that the difference between the left and the
right side of the inequality is a non-negative definite matrix.

For the problem of equivalent SM-phase estimation, the unknown vector x = b includes
the true interferometric phases with respect to the master image:

b = [ϕo1 ϕo2 . . . ϕo(N−1)]T . (A.38)

Assuming the first image as the master image (and deterministic), the Jacobian Θ is
evaluated as

Θ =



∂ψo
∂ϕo1

∂ψo
∂ϕo2

. . . ∂ψo
∂ϕo(N−1)

∂ψ1
∂ϕo1

∂ψ1
∂ϕo2

. . . ∂ψ1
∂ϕo(N−1)

∂ψ2
∂ϕo1

∂ψ2
∂ϕo2

. . . ∂ψ2
∂ϕo(N−1)

...
...

...
...

∂ψN
∂ϕo1

∂ψN
∂ϕo2

. . . ∂ψN
∂ϕo(N−1)


=


0 0 . . . 0
1 0 . . . 0
0 1 . . . 0
...

...
...

...
0 0 . . . 1

 = [0 IN−1]T . (A.39)

Furthermore, for equivalent SM-phase estimation, the atmospheric effect is treated as
deterministic and is part of the signal of interest and so the atmosphere covariance matrix
is set to zero. Then, the CRB for SM-phase estimation can be computed by eq. (A.35)
by inserting eq. (A.39) and setting Qα = 0 as

Qx̂ ≥ (ΘTXΘ)−1, (A.40)

which is equivalent to eq. (4.52).





Integer bootstrapping estimator,
and the simulation setting B

B.1 Integer Bootstrapping Estimator

Integer bootstrapping (IB) is an estimator to solve integer minimization problems with
the form of

ǎ = argmin
a∈Z

‖â− a‖2Wa
, (B.1)

where

â = [â1â2 . . . ân]T . (B.2)

If Wa is a diagonal matrix, the solution of this minimization can simply be computed
by rounding the entries of â to their nearest integer. However, in case of a full Wa,
the nearest integer should be searched considering the mutual correlation among entries
of â, represented by off-diagonal elements in Wa. In order to do so, the IB estimator
uses the concept of sequential conditional rounding and the solution is computed as
follows. First, the first entry â1 is rounded to its nearest integer. After that, all other
elements of â are corrected based on their correlation with the first entry. Then the
second corrected entry is rounded to its nearest integer, etc. etc. This sequence of
corrections and rounding can be written mathematically as Teunissen (1998):

b̌B =


b̌B,1
b̌B,2
...

b̌B,n

 =


nint(â1)

nint(â2 − l21(â1 − b̌B,1))
...

nint(ân −
n−1∑
i=1

lni(âi|I − b̌B,i))

 , (B.3)

where nint(.) is the nearest-integer rounding operator. The notation âi|I stands for
the ith real-valued entry obtained through a conditioning on the previous I=1, . . . , i−1
sequentially rounded entries. The elements lji are entries of a unit lower triangular
matrix L computed from an LDLT -decomposition of Wa=LDLT .
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B.2 Simulation setting

In the synthetic studies, the noise components in interferometric phases were simulated
based on given coherence matrices. For construction of the coherence matrices, four
decorrelation sources were assumed:

1. Thermal or system decorrelation: the influence of thermal noise on system coher-
ence depends on the signal-to-noise (SNR) as Zebker and Villasenor (1992):

γthermal = 1
1 + SNR−1 . (B.4)

The value for SNR is dependent on system parameters and radar scene’s radar
cross section (SCR), the latter varying subject to terrain characteristics. In this
study, we have assumed the system parameters of the ERS satellite (as reported
in Zebker et al. (1994a); Hanssen (2001)) and a SCR of −14 dB, resulting in a
SNR of 12 dB and a γthermal of 0.92.

2. Coregistration induced decorrelation: this is mainly a function of the accuracy of
image coregistration. Assuming a subpixel coregistration accuracy of σcoreg,a and
σcoreg,r in azimuth and range directions, the decorrelation induced by coregistration
γcoreg is computed as Just and Bamler (1994); Hanssen (2001):

γcoreg = sinc(σcoreg,a)sinc(σcoreg,r). (B.5)

For the noise simulation here, we have assumed a coregistration accuracy of 0.1
resolution cell in both azimuth and range directions, resulting in γcoreg=0.96.

3. Geometric decorrelation: The geometric or baseline decorrelation is a result of
different incidence angles between the two radar paths at the earth’s surface. For
an interferometric pair of two radar images, geometric decorrelation is defined as
Hanssen (2001):

γgeom = max(1− |B⊥|
B⊥max

, 0). (B.6)

where B⊥ is the perpendicular baseline between two images, and B⊥max the critical
baseline. In this simulation, the critical baseline is assumed as 1.1 km, which is
equal to the ERS critical baseline for flat terrains. Perpendicular baselines are
simulated randomly as normally distributed with zero mean and standard deviation
of 300 m.

4. Temporal decorrelation: As the range of physical mechanisms causing temporal
decorrelation is too wide, there is no single analytical model to evaluate coherence
loss induced by this effect. In this study, we have assumed two arbitrary scenarios
for temporal decorrelation: exponential decay and seasonal decay. In case of
exponential decay, the temporal coherences are modeled as Rocca (2007):

γtemp = eBT/τ , (B.7)

where BT is the temporal baseline, and τ is the decorrelation rate, assumed here
to be 200 days. For the seasonal effect scenario, it is assumed that the coherence
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is exponentially decreasing but has also some seasonal variation. This is realistic
for areas with some degree of coherence during winter but very low coherence
during summer or vice versa. Such behavior has been observed by Morishita and
Hanssen (2015b) in pasture areas.

After computing all the aforementioned coherences, the total simulated coherence (γsim)
is derived as:

γsim = γthermalγcoregγgeomγtemp. (B.8)

By computing the γsim for all the interferometric combinations and for the two temporal
decorrelation scenarios, we construct the two coherence matrices Ce and Cs for the
exponential decay and seasonal decay scenarios respectively, visualized in fig. 5.1.
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