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Abstract

The nonlinear Fourier transform for the focusing periodic nonlinear Schrodinger equation
is investigated. This paper is focused on the approximation of the spines in the nonlinear
spectrum using results from Floquet theory. Algorithms for the numerical computation
of the spines based on the Fourier collocation method are being examined and a new
algorithm is presented. The new algorithm developed during the project computes the
spines by tracking sign changes of the function (A(-)) in the area |R(A(-))| < 1, where A
is the Floquet discriminant. The new algorithm is successfully applied to examples where
both the modified Fourier collocation method and the method implemented in the FNFT
software library fail. In addition, the spine points that are numerically computed by the
new algorithm are equally distributed along the curve, while using the other algorithms
the computed points are clustered around the periodic eigenvalues. Finally, the algorithm
provides information on which spectrum points belong to the same spine. The pseudocode
and the MATLAB source code of the algorithm developed are provided.
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Chapter 1

Introduction

Zakharov [1] initially derived the Nonlinear Schrédinger Equation (NSE)
10,q + Opeq + 25|q|*q = 0, (1.1)

where 7 is the imaginary unit, 0 is the partial derivative and ¢ : R xRy — Cis a
complex valued function of the location x € R and time ¢ > 0, as a model for waves in a
deep fluid. He used Stokes’ finding of an amplitude dependent correction to the dispersion
of surface water waves, which determines the non-linear behaviour of the equation. The
NSE has also been derived in various physical settings. Another physical phenomena for
which the NSE (1.1) provides a model is the evolution of a waveform in an optical fiber
[2]. We say that a signal ¢ : R x Ry — C is a solution of the periodic NSE if it is
governed by the NSE (1.1) and is subject to the periodic boundary condition

q(z,t) = q(z +(,1), (1.2)

where ¢ > 0 is the spatial period. If a signal ¢ : R x R>y — C is governed by the NSE
(1.1) and
lq(z, )] — 0, (1.3)

fast enough for |z| — oo, then we say that ¢ is a solution of the vanishing NSE.

The real coefficient k € {£1} of the non-linear term of the NSE (1.1) determines the
nature of the equation as focusing (k = +1) or defocusing (k = —1). The former case
describes a fiber with anomalous dispersion and can be solved by bright solitons, localised
waves that remain unchanged after interactions with other bright solitons, while the latter
case corresponds to a fiber with normal dispersion with dark solitons as a solution, which
are localised waves that cause a decrease in the wave amplitude [3]. Gardner et al. [4]
introduced and developed a new method called inverse scattering method for the solution
of the Korteweg-de Vries equation, which is another partial differential equation that
models e.g. waves in shallow water. Extending the inverse scattering method, Zahkarov
and Shabat solved the NSE for non-periodic signals with vanishing boundary conditions
[5]. The NSE belongs to a class of evolution equations that are integrable by the inverse
scattering method [6].

However, as a result of the mathematical complexity of the method, and the lack of
efficient numerical methods for its computation, the inverse scattering method has not
been widely used for the practical analysis of non-linear data in the past. In the last years,



however several new highly efficient algorithms have been developed. The transformations
used in the inverse scattering method can be thought of as a generalization of the Fourier
transforms used in the analysis of linear evolution equations [6]. In the inverse scattering
method, the signal is represented, by the forward scattering transform, in the form of
scattering data which play the role of Fourier coefficients [6, 7]. Whenever the amplitude of
the signal becomes small, the scattering data essentially reduces to the Fourier transform
of the signal [8]. The inverse scattering method can therefore be interpreted as a nonlinear
Fourier analysis and the scattering transforms as nonlinear Fourier transforms (NFT).
In Chapter 2 the underlying mathematical theory for the derivation of the nonlinear
Fourier transform for the periodic nonlinear Schrodinger equation and significant lemmas
regarding the computation of the spectrum will be presented. Algorithms that are found
in the literature, as well as the algorithm developed during the project for the numerical
computation of the spines are presented in Chapter 3. In the Appendix the pseudocodes
and the MATLAB source code of different versions of the new algorithm can be found.

1.1 Problem Description and Objectives

During my second year following the MSc Programme Applied Mathematics, I worked
as a project intern for three months on the project ”Identification of Spines in Nonlinear
Fourier Spectra for the Periodic Nonlinear Schrodinger Equation” under the supervision
of Associate Professor Sander Wahls. The main goals of the project were: to compute
spines, which are curves in the nonlinear spectrum in the spectrum faster than the current
method used and to identify which points of the nonlinear spectrum are on the same spine.

1.2 Delft Center for Systems and Control

The Delft Center for Systems and Control (DCSC) in the faculty of Mechanical, Maritime
and Materials Engineering (3mE) at Delft University of Technology was founded in 2003
and consists of four scientific sections, namely Numerics for Control and Identification,
Optimization and Learning for Control of Networks, Data-Driven Control, and Networked
Cyber-Physical Systems [9]. DCSC takes part in the national research school Dutch
Institute of Systems and Control, contributing to research on a wide range of subjects
within the spectrum of systems and control. In addition the center administrates the
educational activities in the area of systems and control at the university, aiming to
prepare students to become independent and highly-skilled professionals.

1.2.1 Nonlinear Fourier Transforms in Action

Since linear systems are well understood and can be solved analytically and numerically
efficiently, engineers often treat nonlinear effects using linear approximation. However,
there are engineering problems containing nonlinear effects that cannot be approximated
linearly. Nonlinear Fourier transforms can be used to solve many of these problems in a
similar way that the standard Fourier transform is used in the study of linear systems.
Although nonlinear Fourier transforms have been extensively studied by mathematicians
and physicists, since the initial use of a nonlinear Fourier transform by Gardner et al.



[4], nonlinear Fourier transforms are not yet widely used in engineering, with one reason
being that their efficient numerical computation is a challenging problem [10].

Associate Professor Sander Wahls and his research group are currently working on the
project Nonlinear Fourier Transforms in Action (NEUTRINO) [10], funded by a Starting
Grant from the European Research Council. The goals of the NEUTRINO project are
the development of efficient algorithms that are made available in an open source software
library and the use of these algorithms in the areas of fiber-optic communications and
water wave data analysis, in order to make nonlinear Fourier transforms a widespread
and practical engineering tool.



Chapter 2

Review of the nonlinear Fourier
transform for the periodic nonlinear
Schodinger equation

In this chapter, we present the mathematical theory that was studied during the project, in
order to have the necessary results for the numerical computation of the spines. Initially,
the class of finite gap solutions for the NSE (1.1) and the scattering data are presented.
After the derivation of the NFT, we use the Floquet theory to state several lemmas for
the computation of the spectrum. Finally, we briefly discuss the FNFT library that was
developed during the NEUTRINO project.

2.1 Finite Genus Solutions and the Nonlinear Fourier
Transform

2.1.1 Scattering Data

Finite gap (or band) solutions are a special class of solutions of the NSE (1.1) [11].
Solutions that belong in this class depend on a finite number of parameters that constitute
the scattering data, and can be compared to the linear Fourier series expansion with only
finitely many non-zero terms. A sufficiently smooth periodic solution of the NSE (1.1)
can be approximated over a finite space interval by finite gap solutions with an arbitrary
small error [12]. Two different types of finite gap solutions can be found in the literature
and were given by Kotlyarov and Its [13], and Ma and Ablowitz [14]. For the purpose of
this paper, the former type of finite gap solutions will be presented.

A solution ¢(z,t) to the NSE (1.1) is a finite gap solution, in the sense of Kotlyarov
and Its [13], if there exist finitely many of the parameters [7]

Main spectrum: A1, A9, Aoy € C,
Initial Auxiliary spectrum: pi(zo, to) € C, j=1, .., N -1, (2.1)
Initial amplitude: q(zo,t9) € Rso,
Riemann sheet indices: oj(xg,t9) € {£1},j=1,.., N—1



such that g(z,t) is generated by the following system of coupled partial differential equa-
tions [7]

N-1 12N
d,Inq = 2i AN 2.2
no=2( X0, 2 y (22)

j=1
2N 3 2N 2
9, Inq = 22( > N Z( Ak) )
Gk=1,j>k k=1
1 2N N-—1 N-—1
+4z(§(ZAk)(ZuJ)— > uguk), (2.3)
k=1 j=1 G k=1,j>k
2icj\/ TTpss (11 — M)
Oy Inji; = jjé/l’“ ’ L j=1,.,N—1, (2.4)
m=1(Hj = fim)
J
N-—1 1 2N
atlnﬂj:—2<zum—§ZAk>axw L j=1,.., N—1, (2.5)
m=1 k=1
m#j

For the periodic NSE the parameters in (2.1) represent the scattering data. Note that
q(z,t) can be recovered completely from the scattering data by using it as initial conditions
for (2.2)-(2.5). It should also be mentioned that not all combinations of (2.1) result in a
periodic solution of the problem (1.1)-(1.2). The main spectrum {\;}?Y, is defined as the
set of the periodic and anti-periodic eigenvalues and is independent of space x and time
t. On the other hand the auxiliary spectrum {u;(z, t)}j-vz_ll depends on x and ¢. Also, it
can be shown that the main spectrum is symmetric to the real axis.

2.1.2 Derivation of Nonlinear Fourier Transform

Let q(z,t) be a signal governed by the NSE (1.1) and fix a reference time ¢y3. The NFT is
a transform that maps the signal ¢(-,to) to the scattering data. Before we explain how to
compute the scattering data using the NFT, we introduce the notion of Lax pairs. Two
operators S and T are said to form a Lax pair if they satisfy 0,5 = [T,S] = TS — ST
and the equation 0,S = [T, S] is equivalent to a partial differential equation of interest.
It can be shown that the operator S has the isospectral property, i.e. the spectrum of the
operator S is independent of ¢, and that the time evolution of any eigenfunction ¢ of S is
given by 0;¢ = T'¢ [15]. For the differential operator

fo = La(‘% to) Q(—g )} | 20

a suitable differential operator B can be found such that L;, and B form a Lax pair [5]
for the NSE (1.1).

Consider the eigenvalue problem

L, v = (v, (2.7)



which is equivalent to

d _ | —i¢  —q(-to)
V= K7 (- o) ic v. (2.8)

Note that the matrix in (2.7) acts on a two component wave function v = [21 . One
2

can compute the quasi-periodic eigenvalues in the problem (2.8) with the use of Floquet
Theory [16], which studies the analysis of differential equations with periodic coefficients.
SUppose Gu, 15.c and @y 1o.¢ are solutions of (2.8), subject to the canonical initial conditions

1| - 0
(bxo,to,C(xO) = {O‘| a¢10,t074($0) = |:1:| : (29)
The monodromy matrix is defined as
Mlo,to (() = [(bxo,to,C(xO + 6) &xo,to,((xo + f)} (210)
_ [ glgo,to,c(xo +0) Qé}:o,toﬂC(xO T 6)} (2.11)
¢;2vo,t0,< (IO + g) ¢3¢0,t0,< ('Z‘O + E)

and represents the evolution of the solutions given by (2.9) over one period ¢ [7]. Using
the monodromy matrix, the Floquet discriminant A is defined as

1

A(C) = §Tr(Ma:0,to (C))? (212)

where Tr(-) denotes the matrix trace. With the use of Floquet Theory, solutions of the
eigenproblem (2.7) with the property

v(z +£,¢) = ePOu(z, ), (2.13)

can be found. Such solutions are called Bloch solutions of (2.7) and p(() is called the
Floquet exponent or quasi-momentum [16]. Bloch solutions can be expressed as a linear
combination of the standard solutions determined by (2.9)

’U(J?, C) = A¢xo,to,6(x? C) + Bézo,to,C(wa C) (2'14)

Using the initial conditions (2.9) we have

o(z0, ) = [g} | (2.15)
Combining (2.15) and (2.13) at o we have [16]:
Q) || = M) [ 5] i) =0, (2.16)

From the previous equation we can construct the Bloch functions and the Floquet expo-
nents. The following lemma provides the connection between the Floquet exponents and
the Floquet Discriminant.



Lemma 2.1.1. [7] Fiz {,m € C. The eigenproblem (2.7) admits a quasi-periodic
solution v # 0, i.e. v(x +€) = mo(z) if and only if the Floquet discriminant A(Q)
satisfies

m? —2mA() +1=0 (2.17)

Results that allow us to identify the main and auxiliary spectrum with the help of
monodromy matrix and the Floquet discriminant are now presented. Regarding the main
spectrum, the main result is Lemma 2.1.2.

Lemma 2.1.2. [7] Assume that there exist a finite gap solution q(x,t) and fix it. Let
{ Ak }e be a main spectrum for q(t,x) such that {\;}r does not contain any point more
than once, i.e. \j # X\;, Y i # j. Moreover, assume that the roots of 1 — A? are at most
double. Then the main spectrum corresponds exactly to the simple roots of 1 — A2, i.e.

Dt ={¢ e €1 A0 € 1 O 20

The main spectrum thus corresponds to the eigenvalues with periodic and anti-periodic
eigenfunctions. It can furthermore been shown that the equation 1 — A? has only finitely
many non-simple non-real roots [16].

Lemma 2.1.3. [7] Let q(xo,ty) # 0 and suppose we have the same assumptions of the
previous lemma (2.1.2). Define

1, if ¢ € C is a double oot of 1 — A?
n(¢) =

0, otherwise.

Then the auxiliary spectrum is given by
N1 _ e Magaohe
{nj(zo,t0) ;50 = {C c C: ll_{%m—o}

The points in the main spectrum form pairs that are connected by curves in the
complex plane known as spines or bands in the literature [17]. The spines consist of
quasi-periodic eigenvalues and usually connect two or more points of simple spectrum,
i.e. complex points in the main spectrum, guaranteeing that the Bloch eigenfunctions
are stable [18]. While spines are not required to reconstruct the signal ¢(x,t), they can
provide information about its behaviour. When a spine connects two points of the simple
spectrum we call this combination of spectral information a non-linear mode, and we can
further classify the mode based on whether the spines crosses the real axis or not [18, 19].
In the former case we have a stable sine wave or a Stokes wave, while in the latter case we
have two phase-locked unstable NSE Stokes wave or a breather. Furthermore, in the rarer
case of three or more points connected by the spine which does not cross the real axis,
the mode is classified as a superbreather in the spectrum [19]. Using Lemma 2.1.1, it can
be shown that the spines are the curves in the complex plane defined by the equations

%[TT<M$0¢0)/2]
or equivalently — J[A(C)]

) -1< §R['1-‘r<‘]\4350,750)/2]

0 (2.18)
0, —1 < R[A(Q)]

<1
<1 (2.19)



Since the system of equations (2.19) provides the spines, a method to numerically
compute the Floquet discriminant will now be discussed. Recall that the eigenvalue
problem (2.7) is equivalent to the problem (2.8)

d —i —q(-
lC Q( 7t0) v

%U - l{q('vtO) ZC
Divide the period ¢ into M intervals of length D, = ¢/M and choose z,, such that the

intervals are given by [z, — 2=z, + %] Approximate ¢(z,0) by a step function

2
D, Dy

C]($,O) =~ (Gn = Q($n>0)a Vo € [3771 - 9

By direct integration of (2.8) we get

v(zy + Dy, ¢) = Ulgn)v(2n, (), (2.20)
—i¢( —Qn . - v
where U(g,) = exp | D, . [8]. Now introducing = = , we have the
Rqy, ZC ¢V
: - B - | Ulgn) 0
recursion relation =Z(z,, + D,) = T(¢,)=(x,), where T'(q,) = and by

0cU(gn) Ulgn)
the discretization of ¢(x,0)

=(2a) = [ (@)= (o). (2.21)

j=0
Then computing the matrix
M—1
s0= 1170 = | 30) w(o] 222

we have that ¥(¢) = Hj]vigl Ul(g;) is a numerical approximation of the monodromy matrix
[8]. Furthermore, it can be proved that 0.3 approximates the derivative of the monodromy
matrix with respect to ¢ [8]. Hence, the Floquet discriminant can be approximated by
A(¢) &~ 5 Tr(2(¢)) and the derivative of the Floquet Discriminant % can be approximated

(
by 32(0) = 3 Tr(9:2(0))-

2.2 FNFT library

The lack of an efficient and reliable software for the numerical computation of Nonlinear
Fourier Transforms (NFT) has led Wahls et al. to publish the software library FNFT
(Fast Nonlinear Fourier Transforms) during the NEUTRINO project [20]. The library is
an open source software available on GitHub [21]. It is mostly focused on fast algorithms,
but also provides nonfast algorithms. FNFT was the first publically available software
library for the implementation of numerical NFT [20].

During the internship the algorithms that can be found in the library were studied,
with focus on the computations of the main and auxiliary spectrum of the NSE with
periodic boundary conditions (1.1). In addition, version 0.4.1 of the software [22] was
used as a reference point while implementing new fast algorithms for the problem in
Section 1.1.



Chapter 3

Numerical computation of spines

In this chapter, we initially present algorithms that are found in the literature for the
numerical computation of the spines. Ultimately, the algorithm developed during the
project is presented.

3.1 Existing algorithms

3.1.1 Numerical computation with the FNFT library

For the approximation of the spines the current method implemented in the FNFT initially
subsamples the signal given by ¢(z,%y). Then, a rational approximation of the Floquet
discriminant A is computed and a fast polynomial eigensolver is used in order to find initial
guesses for the spine points. The initial guesses are refined with the use of the Newton
Raphson method for the Floquet discriminant A. The functions A and % are numerically
computed from the full signal using (2.22) or, alternatively, high-order variants for the
refinement.

3.1.2 Fourier Collocation Method

The Fourier collocation method converts the Zakharov-Shabat problem for the periodic
NSE (1.1), (1.2) to a matrix eigenvalue problem [23]. Hence solving the matrix eigenvalue
problem provides the periodic spectrum. The eigenproblem for the first operator in the
Lax pair that is equivalent to the problem (1.1) can be written as

[Zj , (3.1)

For the Fourier collocation method the components of the periodic eigenfunction v as
well as the signal ¢(-, o) are expanded as Fourier series (using the periodicity) [23]

vi(z) = Zanen(x) , Vo) = Zﬁnen(x) q(z,tg) = Z%Len(x) , (3.2)

d
Ltov CU> Lto t |:qu(.’t0) _% 1 y U

2nmxi/l

where e,, denotes the exponential function e, (z) := e . By truncating the number of



Fourier modes in (3.2) and substituting in (2.8), we obtain

Kq(.to)  —%
o i [ R Z”e”“)] T wnls] _ ¢ [Zpow ()
KD e s Yn€n(T) — % =1 Pnen() D=1 Pnen(2)
7 %(ZQ/[:—M anen(x)) + ﬁ:( an M 7nen( ) ( n_—M Bnen( )) _ ZQ{ anen(aj)
= [“d( Er]t/lsz ﬂen(az)) ( Zﬁl— M O‘nen(x)) - a@ ( Erjy——M anen(:zr))} ‘ [Zﬁl— M ﬁneng?l).

From the equality of the first component of (3.3) we have

i (% ( Z anen(:p)> + ( Z ’Ynen(x)) < Z Bnen@f)) =(

2.
Z(Z an?ngm )+ Z Z YaBien(x)e;(x) | = ¢ Z apen(x),
2

n=—M M]—f n
M 2nme
JPIREEED vl P TINE) ED ot
n=—M —M j=— n=—M
and by comparing the coefficients of the basis {e, },ecz we have the equalities
o min{M,M+n}
= On +1 Z Yn—iBj = Con. (3.4)

j=max{—M,—M+n}

With a similar analysis for the second component of (3.3) we have

min{M,M+n} om
us

1K Z Vi—nQj + Tﬂn = (Bhn. (35)

j=max{—M,—M+n}

Hence the eigenproblem (2.8) reduces to the system [24]

_Man +ZZJ‘ ’yn—jﬁj = Can
ik Zj Yn—jQ + 2nT7Tﬁ71 = (B,

which is equivalent to the eigenproblem

[—%5 —CCQJ m =6 m ’ (3.6)

10



where

o = |:05—M a—M+1 .. Qg ... OZM]T,
/8 = |:/6—M /B—M-‘rl /8() /BM]T7
—2
C,= /Tdiag{—M, —-M+1,, .., M} € Mypy1(C), (3.7)

M i (C) denotes the set of the K x K matrices with elements from C,

C, is the Toeplitz matrix with first row

([ -1 7-2 -« 7-m 0 0 .. 0])
and first column

(il m %2 « 00 .. 0]"). (3.8)

Since the problem (3.6) approximates (3.1), we have that the eigenvalues of the matrix
in (3.6) approximate the periodic eigenvalues of L;,. When the signal is smooth, it can be
shown that the error of the discrete eigenvalues in the spectrum decays exponentially with
the number of Fourier modes [23]. Now, replacing the period ¢ by 2¢ and applying the same
analysis as before we can compute the eigenvalues of L;, that are periodic over two periods,
which are exactly the periodic and anti-periodic eigenvalues (i.e. those where A(\) = £1)
over the period ¢. Thus, using the Fourier Collocation method we can approximate the
main spectrum. In general, applying the previous analysis with period Nyl we compute
the quasi-periodic eigenvalues of quasi-momentum ka_z for every k € {0,1,2,..., No}, which
are points that belong in the spines. In order to compute multiple spine points we have
to use a sufficient number of periods. However as Ny increases, the complexity of the
method increases rapidly.

3.1.3 Modified Fourier Collocation Method

Using the Fourier Collocation method for computing spine points becomes computation-
ally expensive quickly, hence a modified version of the Fourier collocation method has
been proposed in [25]. This modified version computes the quasi-periodic eigenvalues of
the problem (2.7), which are spine points.

Suppose that @ is a periodic function of period ¢ such that v = e*? is a solution of
the eigenproblem (2.7). It can be observed that v is a quasi-periodic solution of quasi-
momentum equal to pf and noted that for p = 0 we have a periodic solution and for p = 7
we have an anti-periodic solution. In the following we suppose that p € [0, 7 ]. Using
the substitution v = ¢ ¢ and the fact that v satisfies equation (2.7), we have

11



Liyv =Cv <= Ly (e?" ) = ((e?" D)

= z{/ﬁé _q%_ (€7 §) = ((e?" D)
— z[(l) _OJ C%(e””%)+i Lf)a g (677 5) = (P )
s (L) e —p B _01_ (7% 5) = (e )

— Ltoﬂ—p{(l) _OJ 5= (3.9)

Since v is a periodic function, we can follow the same procedure as for the Fourier Collo-
cation method in Section 3.1.2 in order to approximate the quasi-periodic eigenvalues of
quasi-momentum p¢ numerically. Details here are omitted (see the computations in the
Fourier collocation method in Section 3.1.2). We arrive to the eigenproblem

so [3] =< [3] s =| G Gl (3.0
where
o= [oz_M QN1 - O .. on}T, (3.11)
B = [BfM Borrsr - Bo oo BM]T7 (3.12)
Ci=C1—ply1 € May1(C), (3.13)

where I is the K x K identity matrix and C , Cy are the matrices given by (3.7) and
(3.8) respectively. It is clear now that setting p = 0 in the problem (3.10) we have the
eigenproblem (3.6) and S(0) = %* CC% .

—C; -0,

Standard algorithms from numerical linear algebra can be used to compute the eigen-
values of the matrix eigenproblem (3.10). In order to compute the spines let Ny be
a natural number, Ng € N | Ny > 0, which corresponds to an upper bound to
the number of points computed in each spine. The eigenvalues of the problem (3.10)
for the cases p = 0 and p = w/¢ approximate all the points in the main spectrum,
while the rest of the spine points are approximated by the eigenvalues of S(p) when
p = ﬁ , 7 = 0,1,2, ..., Np— 1. Larger values of Ny provide better resolution for
the spines. The complexity of the modified method grows only linearly in Ny, while for
the Fourier collocation method the complexity grows cubically with Ny periods.

The method discussed in the previous paragraph is applied to a simple example that
can be found in [17], where

q(z,t) = 1+ 0.22¢ 0822 (3.14)
2
~0.822 (3.15)

for different choices for the number of points in the spines. The computed eigenvalues are
plotted and are shown in Figure 3.1. From the plots in Figure 3.1 we can see the spines
emerge as the number of points IV increases.

12



This algorithm for computing points in the spines has some drawbacks. The most
important disadvantage is that it produces a list of points, without indicating which
points belong in the same spine. After analysis of the points we can determine the spines
visually, by plotting for example, but this will be time consuming and not always efficient.
Another issue which makes this difficult is that the computed points are not equidistant,
but instead are clustered around the periodic eigenvalues. The latter drawback can also
be observed in Figure 3.1

3.2 New Algorithm: Spine tracking

During the project a new algorithm was developed that computes the spines on which
a given main spectrum point lies, with accuracy h chosen by the user in advance. The
algorithm was inspired by the phase jump tracking algorithm proposed by Chekhovskoy
et al. for the computation of the main spectrum [26]. Using Lemma 2.1.1 and taking
m = e?® for all p € [0, 7//], it can be shown that the spines are defined by the Equations
(2.19), which are repeated here for convenience,

A =0, -1 < RAQ)] <1, (3.16)

where A(() is the Floquet Discriminant computed at the point ¢ € C.

The following method is based on tracking points that lie on the curve S[A({)] = 0
and do not exceed the boundaries in (3.16). Let g be a main spectrum point and for
simplicity suppose that g is a periodic eigenvalue, i.e. A(g) = 1 by Lemma 2.1.1. Note
that the same algorithm can be used in the case that ¢ is an anti-periodic eigenvalue, i.e.
A(g) = —1. Then two points are located that belong in the two areas that are defined
by the curve I[A(¢)] = 0 in a small neighbourhood of g. Precisely, one point lies in
S[A(¢)] > 0 and one lies in S[A(()] < 0. In addition, the midpoint of these two points
should belong in the area |R[A(()]] < 1, since the midpoint will approximate a new spine
point, or equivalently a point that belongs in the curve defined by (3.16). In the plot in
Figure 3.2 we can see an example of the different areas in a neighbourhood of ¢ and a
possible choice of the two points g5 and grigne. A part of the spine in the plot is given
by the dashed curve that belongs in the area given by R(A(()) < 1 in the neighbourhood
of g. The points g s+ are located "left” and "right” of the spine respectively.

At each iteration the algorithm defines a new set of points g, grigne for which the

criterion
§R(A(gleft) + A(Qright))
2

is verified. This criterion checks whether the spine curve passes in between the points g s
and g.;gn: In that case, esetIright i¢ chosen as a point in the spine and it is used as the
initial point ¢ in the next iteration. In order to avoid approximating a point that belongs
in the part of the spine that was computed in previous iterations and to approximate a new
point of the spine, we introduce an angle ¢ that is perpendicular to the direction in which
the spine moves in the complex plane. The variable ¢ will be updated at each iteration.
Methods to determine the initial value of the angle are examined later in Subsection 3.2.1.

Two different variants for determining the pair gieft, grighs Will be presented. Let A > 0
small enough, which will be the bound of the step-size between the points in the curve

S(A(Grest))S(A(Grignt)) < 0,

<1 (3.17)

13



Imag( \)

Imag( \)

Gong - Spines
1r © main spectrum
e,
05" K .
Or ]
05" = 1
@..
-1 [ @~.~® )
-0.1 -0.05 0 0.05 0.1 0.15 0.2
Real( M)
(a) No =10
—o - Spines
1r © main spectrum
051 G |
of : ]
05) -+ / 1
AL T 7
-0.1 -0.05 0 0.05 0.1 0.15 0.2
Real( M)
(¢) No = 100

Imag( \)

Imag( \)

—o - Spines
1 © main spectrum|
05+ - :
0F J
05" - ]
REREE
A+ > ]
-0.1 -0.05 0 0.05 0.15 0.2
Real( \)
(b) No = 50
—o - Spines
1r © main spectrum [
05+ ﬁw
o -
05+ J ]
Ar - 7
-0.1 -0.05 0 0.05 0.15 0.2
Real( \)
(d) No = 200
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Figure 3.2: An example of the different areas defines by A and a possible choice of points
{91, 92}

and let ¢, be the angle that perpendicular to the direction of the spine. At each iteration
of the first variation of the algorithm, we define the points

~ o
G=g+ ge‘“, T -
92 =9+ ge‘pi + shift, (3.18) 3 ,
g3 =g — ge¢i + shift, 9 o pevis traton -
G1=g— §e¢", Reall)

Figure 3.3: Plot of the points {g;}1_,
defined in (3.18). Note that the di-
rection of the spine is given by 6 and
the angle used in (3.18) is computed by
¢»=0—m7/2.
where shift = %e(¢+“/ 2% and ¢ is the initial point. Afterwards, the criterion (3.17) is
checked for the pairs {g1, g2} , {92, g3} and {g3, g4}. When a pair {g;, g;11} verifies
(3.17) then each point of the pair is stored in a pair of lists that correspond to curves
which enclose the spine curve. An example of these curves can be seen in Figure 3.5.
Also, in that case we set g = @, ¢ = Arg(g; — gi+1) and move on to the next iteration.
On the other hand, if the criterion is not met in either of the pairs checked, the algorithm
stops and the final spine point is set as 1(g1 + g2 + g3 + ga).

Regarding the second variant of the algorithm, the pairs that potentially verify the
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Figure 3.5: Curves and spine produce by the algorithm with initial eigenvalue
g=0.02905785 + 0.61950993i , h=0.005 and signal q given by (3.14)

criterion (3.17) are formed by points that lie on the circle with center g and radius h are
checked in each iteration. The potential pairs are the pairs {g;, gi11} of the set {g;}"}
given by

spine

><Q3

g1 =g+ he”, £ e,
g2 = g+ hel @7/
(3.19)
Gy = g+ he@+n-Dm/mi
(@+m)i Real( 1)

In+1 = g+h€

Figure 3.4: Plot of the points {g;}""}
defined in (3.19). Note that the direction
of the spine is given by # and the angle
used in (3.19) is computed by ¢ = 6 —
/2.

The full form of the variations of the algorithm are presented in the appendix in
Algorithm 2 and Algorithm 3. The second variation of the algorithm is presented for the
case of four circle points (3.19), but can be modified for the case of n points, n € N,
by taking shift = w/n and adding the appropriate subroutines in Algorithm 3. A more
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general form of the algorithm, which has as input the number of the points {g;} that
are checked in each iteration can be found in Algorithm 4. Note that the spines can be
extracted from the algorithms as the curves defined by the points

<spz'ne(j) = w)s ,where s = length(r) = length(l)

j=1

In addition, observe that the Algorithms 2 and 3 may track curves that are not smooth.
In order to overcome this problem, Algorithm 3 can be adjusted to only check if the
condition (3.17) is met by pairs that lie on an arc of the circle v(z) := g + he®. By
choosing an appropriate arc, the pairs that provide not sufficiently smooth curves can
be filtered out. For example, in the version of Algorithm 3 taking shift = 7, we have
subroutine checks for the pairs {g;, gi+1}, Vi=1,2,3,4,5,6,7, where {gj}§:1 are given by
(3.19). The algorithm can be modified to only check the pairs {g;, gi11}, Vi = 2,3,4,5,6,
or can be further modified to check the pairs {g¢;, gi11}, Vi = 3,4,5.

In order to overcome the problem of two or more spines intersecting the algorithm can
be modified into a recursive algorithm that runs separately for every pair that verifies the
criterion. A general form of the algorithm with filtering is presented in the Appendix in
Algorithm 5. A MATLAB function implemented during the project for the new algorithm
is presented in the Appendix in Listing 5. We demonstrate how to numerically compute
the spines of the signal given in (3.14), using the script in Listing 5.

3.2.1 Initial angle

The algorithms presented in this chapter require an angle ¢ as an input, which depends on
the direction of the spine in the complex plane. The modified Fourier collocation method
(3.1.3) and Lemma 2.1.1 provide that the spines can be constructed by quasi-periodic
eigenvalues of quasi-momentum p € [0, 7], i.e. eigenvalues of the matrix S(p) in (3.10).
A method to identify the angle/direction of the spine is to find a point in the spine of
quasi-momentum close to the one of the initial main spectrum point g. For example, if the
point g is a periodic (anti-periodic) eigenvalue, then we a point of quasi-momentum equal
to € (m—e), for € > 0 small, should be searched. In order to determine the spectrum point
on the spine, the initial main spectrum point can be refined, using e.g. Newton-Raphson
method, to solve the equation m? — 2mA({) + 1 = 0 (Lemma 2.1.1), for m = € and
p=corp=m— e depending on g. Let ¢ € C be the new point in the spine, after the
refinement of g. Then ¢ = Arg(g — ¢') is the angle/direction of the spine and ¢ = ¢ — 7
is used as input for the Algorithms 2 and 3.

A drawback to this method is that if the quasi-periodic spectrum point computed is
close to the initial main spectrum point, then it may result to an incorrect initial angle.
Precisely, if the distance between the computed point and the initial main spectrum point
g is considerably less than the step-size h then the possible pairs, that are placed in a
distance of h from g, may not verify the criterion and hence the tracking algorithm may
break in the first iteration. A similar phenomenon might also occur when the distance
between the computed point and the initial main spectrum point is significantly greater
than the step-size.

Solving the mentioned problem leads us to another algorithm for computing the initial
direction of the spine that uses the step-size h and is similar to an iteration of Algorithm

17
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Figure 3.6: Plots of the non-linear spectrum for different choices of h using the tracking
algorithm

3. Equidistant points on the circumference of the circle with center g and radius h are
defined and the criterion (3.17) is checked for each pair of consecutive points. If the
criterion is met for a pair {g;, g;11}, then the angle ¢ = Arg(g; — gi+1) is used in the
Algorithms 2 and 3. The full form of this method is presented below in Algorithm 1. For
the plots that appear in Section 3.3 Algorithm 1 was used.

3.3 Results

The algorithm presented in Section 3.2 computes the spine curves with accuracy equal
to the given step size h, and for each main spectrum point, a list can be extracted
composed of points belonging in the spine passing through the point. Hence, the algorithm
overcomes the problems that arise using Fourier Collocation method to compute the
spines (Section 3.1.3). In detail, it can be observed that the step size h in the tracking
algorithm guarantees that the points computed are distributed equally along the curve.
This phenomenon can also be observed by comparing the plots in Figures 3.1 and 3.6
in an example setting. Furthermore, it is obvious that by construction the algorithm in
Section 3.2 provides a list of points for each spine and hence overcomes the other drawback
presented in Section 3.1.3.

Additionally, the algorithm developed during the project has been tested for several
signals for which the method based on the modified Fourier Collocation and the method
implemented in FNFT fail. The structure of the algorithm can provide results even for
complicated input data. For the plots in Figure 3.8 the modified Fourier collocation
method was applied, for the plots in Figure 3.9 the method implemented in the FNFT
library was applied, while for the plots in Figure 3.10 the MATLAB code in Listing 5
was used for the computation of the spines. The plots (a) in Figures 3.8, 3.9 and 3.10
show the computed main spectrum and spines of the signal ¢ given in Figure 3.7, after
the application of the different methods. The signal used in the plots (b) in Figures 3.8,
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3.9 and 3.10 is given by
q(z,t) =1, for x €10,0.1], (3.20)

with period ¢ = 0.1. We can observe that in these examples the modified Fourier Colloca-
tion method and the method in the FNFT library fail, while the new algorithm computes
the spines successfully.

19



Im(q)

%107

600

600

3
2 |
11 i
0 L
A |
2 i
3 I I I I l
0 100 200 300 400 500
X
(a) Real part of the signal
-3
3 x10 :
2 -
1 |
0 il
-1 H
ok J/
3 | I I I \
0 100 200 300 400 500
X

(b) Imaginary part of the signal

Figure 3.7: Sample collected from ocean waves

20



%104

Imag( X )

0.9 0.8 0.7 -06 0.5 0.4 0.3 0.2 -0.1 0 0.1
Real( )
(a)
1r O] *  Spines
O Main Spectrum
08 3
06
04
—~ 02}
p<
=% 0 o e ©
£
021
04 r
-06
-08 t
-1+ O]
-40 -30 -20 -10 0 10 20 30 40
Real( \)
(b)

Figure 3.8: Plots of the non-linear spectrum for examples after the application of the

modified Fourier Collocation method

21



%104

~
©  spines o] [0}
® ®®
©
© ®
U 500} ®® @
Co2aRo
05—
> ® ® o} [}
% 0 o @m-%oé%%e@@ee%ae@@%ﬁ%o9@9‘9@@@@@%(9@@@@9@@@%@@@%Gee%ee OGW
£
-0.5 —
@, &
°'~’ro
-
15—
| | | | | | | |
0.9 -0.8 -0.7 -0.6 -0.5 -04 -0.3 0.1
Real( \)
(a)
O main spectrum
1k ® N Sp
- spines
05
—
p<
S 0F ® @
[13]
E
057+
-1+ O]
1 1 1 1 1 1 1 1 1
-40 -30 -20 -10 0 10 20 30 40
Real( \)

(b)
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Chapter 4

Conclusion

The first part of the internship project was devoted on the study of the mathematical
theory of nonlinear Fourier analysis. Emphasis was given to derivation of scattering data
from the Monodromy matrix. In addition, several algorithms from the literature for the
computation of the non-linear spectrum were examined. During the final part of the
project, an algorithm for the solution of the Problem (1.1) was designed.

The algorithm in Section 3.2 determines the spines by tracking the sign changes of
the imaginary part of the Floquet Discriminant, J(A), in the area —1 < R(A) < 1. The
algorithm tracks the spine curves that pass through a given main spectrum point and
thus we can determine which other main spectrum points belong in the spines computed.
In addition, the mentioned algorithm can overcome some of the problems observed when
computing the spines with the use of the Fourier collocation method or the FNFT library.

The algorithm in Section 3.2 determines the spines by tracking the sign changes of
the imaginary part of the Floquet Discriminant, (A), in the area —1 < R(A) < 1. The
algorithm tracks the spine curves that pass through a given main spectrum point and
thus we can determine which other main spectrum points belong in the spines computed.
On the other hand the rest of the algorithms examined during the project did not pro-
vide any information on which points belong to the same spine. In addition, the points
approximated by the new algorithm are equally distributed along the spines, while for
the modified Fourier Collocation method and the FNFT this was not the case. The new
algorithm approximated the spines in examples where the other methods fail. Finally, it
was observed that the MATLAB function 5 computes numerically the spines faster than
the modified Fourier Collocation method in experiments, however a formal complexity
analysis was not carried out.
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Chapter 5

Appendix

Algorithm 1 Initial angle algorithm

Input: ¢ - signal, given by the signal samples {g;};

P - vector of period, i.e. P(1) is the initial position , P(2) is the final position,

g - main spectrum point , k£ - 2k=number of points on the circle , h - step-size

Output: ¢ - initial angle.

Notes: mod is the modulo operation. The operation mod (a, ) returns the remain-
der r of the division o/, where «, /3 are integers.

for j < 1to2k+1do
y(j) = g+ heli=Di!
a(j) < Ay(j); ¢, P)
end for
for j + 1 to 2k do
if S((a(j))) - S(a( mod (j,2k)+1)) <0
and |(R(a(y)) + R(a( mod (j,2k)+1))/2] < 1 then
¢ (j—3)m/k — /2
end if

end for
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Algorithm 2 Tracking algorithm version 1

Input: ¢ - signal, given by the signal samples {g;};

P - vector of period, i.e. P(1) is initial position , P(2) is the final position,
g - main spectrum point , ¢ - initial angle , h - step-size

Output: [,r - lists that enclose the spine , ezgvalue - final spine point.

m<+1
I(m) < g — Le?
r(m) < g+ Ze?
while true do
shift « Lelotm/2)i
Ttemp <— 7(m) + shift
liemp < l(m) + shift
ay — A(Ttemp; q, P)
a — A(ltemp; q, P)
if %((11) . %(ag) < 0 and |%<§R((l1) + §R(CL2>>| < 1 then
l(m~+1) < liemp
r(m 4 1) < Temp
else
a; < A(r(m); q, P)
as < A(Temp 5 ¢, P)
if S(aq) - S(az) < 0 and |%(3‘ﬁ(a1) + R(as))| < 1 then
I(m+1) < Tiemp
r(m+1) < r(m)
¢ ¢—m/2
else
a; < A(l(m); q, P)
Ay < A(ltemp; q, P)
if S(a1) - S(az) <0 and [5(R(a1) + R(as))| < 1 then
I(m+1) « l(m)
r(m—+1) < liemp
G O+ m/2
else
eigvalue < (I(m) +r(m) + Ttemp + liemp) /4
break
end if
end if
end if
m+—m+1
end while
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Algorithm 3 Tracking algorithm version 2

Input:q - signal, given by the signal samples {g; };

P - vector of period, i.e. P(1) is initial position , P(2) is the final position,
g - main spectrum point , ¢ - initial angle , h - step-size

Output: [, r - lists that enclose the spine , eigvalue - final spine point.

m<+ 1
I(m) < g — he?
r(m) < g+ he?
shift < pi/3
while true do
g (1m) + r(m)) /2
Tiemp < g + hel@Tshifbi
Liemp < g+ he(¢+2shift)i
ar < A(Teemp; ¢, P)
as < A(liemp 3 ¢, P)
if $(aq) - S(az) <0 and [3(R(a;) + R(az))| < 1 then
I(m+1) < liemp
r(m+1) < Tiemp
¢ ¢
else
Tiemp < g + he(®)
ltemp — g+ he(¢+shift)z‘
aj < A(Ttemp; q, P)
as < Alliemp ; q, P)
if S(a1) - S(az) < 0 and |%(%(a1) + R(az))| < 1 then
(m—+1) < liemp
r(m+1) < Tiemp
¢ < ¢ — shift
else
Ttemp < § + heldt2shift)i
ltemp — g+ he(¢+3shz’ft)z‘
ap < A('rtemP; q, P)
as < A(ltemp; ¢, P)
if %(Ch) . %(ag) < 0 and |%(§R(6L1) + %(ag)” < 1 then
l(m—+1) < liemp
r(m+1) < Tiemp
¢ < ¢+ shift
else
eigvalue < g+ (he@i 4 he@+shifti 4 pe(o+2shift)i 4 po(@+3shift)iy /4
break
end if
end if
end if
m<+ m-+1
end while

27



Algorithm 4 Tracking algorithm version 3

Input: ¢ - signal, given by the signal samples {g;};

P - vector of period, i.e. P(1) is initial position , P(2) is the final position,

g - main spectrum point , ¢ - initial angle , h - step-size, k - k+1=points on the semicircle
Output: [,r - lists that enclose the spine , eigvalue - final spine point.

m <1
I(m) + g — he?
r(m) < g + he?
shift < pi/k
while true do
g+ (I(m) + r(m)) /2
new_point = false
for j« 0tok—1do
Fremp < g + he(6+#shif0)
Liemp < g + he(@+(+1)xshift)i
ar < A(Tiemp; ¢, P)
a9 < A(ltemp; q, P)
if S(a1) - S(az) <0 and [5(R(ar) + R(asz))| < 1 then
(m+1) < liemp
r(m—+1) < Tiemp
qﬁ(—gb—i—(j—i—%)*shiﬁ—w/Q
new_point = true
end if
end for
if NOT (new_point) then
eigualue < g + k_il Z?:o e (@+ixshift)i
end if
m<+—m+1
end while
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Algorithm 5 General tracking algorithm for computing smooth spines

Input: ¢ - signal, given by the signal samples {g;};

P - vector of period, i.e. P(1) is initial position , P(2) is the final position,

g - main spectrum point ,

¢ - initial angle ,

h - step-size,

k - k+1=points on the semicircle

Output: [,r - lists that enclose the spine , etgvalue - final spine point.

Notes: Regarding the filtering, let y € N, y > 2, the algorithm checks only the pairs
that belong in the arc y(s) = g + hel®™)" s € [filter * shift,m — filter  shift] C
[7/(2y —1),m — 7 /(2y — 1)], where filter = ng

In the algorithm the filtering variable y is set y = 3

m <1
I(m) < g — he?
r(m) < g+ he?
shift < pi/k
filter « %]
while true do
g < (l(m) +1(m))/2
new_point = false
for j < filter to k — 1 — filter do
Premp < § + he@+ixshift)i
Liemp < g + he @+ (i+1)xshift)i
ap < A(Ttemp; Q7P>
as < Alliemp ; q, P)
if S(a;) - S(az) <0 and |3(R(ar) + R(az))| < 1 then
(m~+1) < liemp
r(m+1) < Temp
gb%qﬁ—i—(j—i—%)*shift—w/Q
new_point = true
end if
end for
if NOT (new_point) then
eigvalue < g + k—il ;?:0 hel®tixshift)i
end if
m+—m+1
end while
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Listing 5.1: MATLAB source code for the new algorithm Spine tracking

function [spine] = new_algorithm _spine_tracking(q,P,g,h)

%  Copyright <2021> <Christos Kitsios>

%

% Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated
documentation files (the ”Software”), to deal in the Software

without restriction , including without limitation the rights
to use, copy, modify, merge, publish, distribute , sublicense
, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the
following conditions:

%

%  The above copyright notice and this permission notice shall
be included in all copies or substantial portions of the
Software .

%

%  THE SOFTWARE IS PROVIDED "AS 1S”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR

COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

%

%  Author: Christos Kitsios

%

%

%Input: q — signal,

% P — vector of period, i.e. P(1) is initial position , P
(2) is the final position ,

% g — main spectrum point |

% phi — initial angle |

% h — step-—size ,

%

%Output: spine — spine that passes through the spectrum point g

[phi] = initial_angle(q,P,g,h);
[eigvalue ,1,r|]=spine_track(q,P,g,phi, h);

spine=(1+4r) /2;
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function [phi] = initial_angle(q,P,g,h)
k=5;
y=g+h /2xexp(li*xpi/k=*(0:1:2xk));
[a]=floquet_points (q,P,y);

phi=pi;
for j=1:2xk
if (imag(a(j))*imag(a(mod(j,2xk)+1))<0) && abs((real
(a(j))+real(a(mod(j,2xk)+1)))/2)<1
phi=j*pi/k—pi/(2xk)—pi/2;
end
end
end

function [eigvalues 1l ,r|=spine_track(q,P,g,phi,h)

%
% Output: 1, r lists that enclose the spine
% eigvalue final spine point

% NOTE: floquet_points is a function with input g, P and a
point x and

%0 output the floquet discriminant of x, \Delta(x), which
1s
% omputed numerically
0 computed numerically .
m=1;

1 (m)=g—0.5%h*xexp(lixphi);
r (m)=g+0.5xhxexp(1li*phi);
shift=pi/5;

while true

g=(1(m)+r (m)) /2;

r_temp=g+h /2xexp(ix*(phi+2xshift));
l_temp=g+h/2xexp(ix(phi+3xshift));
al=floquet_points(q,P,l_temp);
a2=floquet_points(q,P,r_temp);
midp=(al+a2) /2

condl=(imag(al)x*imag(a2)<0) && (abs(real(midp))
<1);

if condl
1 (m+1)=1_temp ;
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end

else

end

r (m+1)=r_temp ;
phi=phi;

r_temp=g+h/2xexp(i#*(phi+shift));
1 temp=g+h/2xexp(i*(phi+2xshift));
al=floquet_points (q,P,1 temp);
a2=floquet_points(q,P,r_temp);
midp=(alta2) /2

condl=(imag(al)x*imag(a2)<0) && (abs(real(midp
))<1);

if condl
1 (m+1)=1_temp;
r (m+1)=r_temp ;
phi=phi—shift;

else
r_temp=g+h/2xexp(i*(phi+3xshift));
l_temp=g+h/2xexp(ix*(phi+4xshift));
al=floquet_points(q,P,l_temp);
a2=floquet_points(q,P,r_temp);
midp=(al+a2) /2

condl=(imag(al)x*imag(a2)<0) && (abs(real(
midp) ) <1);
if condl
1 (m+1)=]_temp;
r (m+1)=r_temp;
phi=phi+shift ;
else
eigvalues =0.25%(g+h/2xexp(ix*(phi))
+...
g+h /2xex
shift

o
+
=

~
[\
*
o
>

shift
break
end
end

m=m+1;

end
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function [FD|= floquet_points(q,P,z)

N=length(q) ;

1=P(2)-P(1)
dT=(P(2)-P(1))/N;
T=P(1)+dT/2:dT:P(2)—dT/2;
kappa=1 ;

%Computations for Monodromy matrix and Floquet discriminant
for j=1:length(z)
S=eye(2);
clear U
for n=1:N
U(:,:,n)=(expm(dT«[—1i*xz(j) —q(n) ; kappaxconj(q(n))
ixz(i)]))
S=U(:,:,n)*S;

end

FD((ij):(1/2)*(S(171)—1—8(2,2));
end

end

Listing 5.2: Demo script for the numerical computation of the spines of the signal given
by (3.14)

clear all;
kappa=1;

%Define the signal
[q,” ,P]=buildsignal;

%Accurancy / Step—size
h=1e —2;

%Computation of main spectrum , here it is computed using FNFT
[main_spectrum , ] = mex_fnft_nsep(q, P, kappa);

%Computation of spines for the non—real main spectrum points
k=find (abs(imag(main_spectrum))>le—2);
eigvalue=main_spectrum (k) ;
spine =[J;
for j=1:length(eigvalue)

clear temp ;

x=eigvalue(j);

[temp| = new_algorithm_spine_tracking(q,P,x,h);
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spine{j }=[temp];
end
%Plot
figure; hold on;
plot (main_spectrum , "bo ")
for j=1:length(spine)
plot(real(spine{j}) ,imag(spine{j}), . ")
axis([—0.6 0.6 —1.3 1.3]); grid on;
end
xlabel ( "Real( \lambda )"); ylabel( Imag( \lambda )");
hold off;
function [q,T,P]=buildsignal
1=2%pi/0.822; %period
P=[0, 1]; %periodic vector
N=2"9; Ymumber of samples
dT=1/N ;. %step size
T=P(1)+dT/2:dT:P(2)-dT/2 ; Y%grid
q=1+0.22%xexp(—11%0.822xT) ;
end
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