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Abstract  

  The stability of rock engineering projects is tightly related to the mechanical behaviour of rock 

discontinuities. Although the mechanical behaviour of a discontinuity is often associated with 

shearing (sliding), experimental data have shown that it can be accompanied by more complex 

phenomena such as dilation and post-peak strength reduction. 

Numerous researchers have contributed to the understanding and modelling of discontinuities 

behaviour. However, many of the constitutive models available in the literature are 

questionable when applied in practice either because they are highly empirical with parameters 

that are hardly determined or because they oversimplify the examined behaviour. Moreover, 

the models are often proposed for a certain range of stresses and specific stress paths, which 

makes numerical implementation difficult for large-scale engineering applications. This 

dissertation aims to evaluate the capabilities and the limitations of different constitutive models 

for rock discontinuity in the context of both numerical implementation and simulation of the 

mechanical behaviour of rock discontinuity.  

The first part of the research project investigates the main features of the existing models in the 

literature. From the investigated models, the two models highly adopted in research and 

engineering practice, namely the Coulomb’s model and Barton-Bandis’s model, are extensively 

investigated. Some enhancements and modifications are made to these two models to improve 

their modelling capabilities and ensure the numerical stability of numerical implementation. 

Regarding the Coulomb model, the adopted modifications include the reformulation of the 

model within the framework of strain softening providing a rigorous implemented version that 

describes the post-peak behaviour of a discontinuity adopting a linear reduction of the strength. 

Additionally, the employed modifications to the Barton-Bandis model provide a robust version 

of the model applying reformulations to the original yield surface that increase its validity in 

the whole range of the τ-σn space. Furthermore, a simplified definition of the post-peak 

behaviour, which aligns with the original formulation of the model but at the same time allows 

for a straightforward numerical implementation, is proposed. To validate the implementation 

of these models in PLAXIS (implementation done by the PLAXIS research team), the models 

are implemented in Python scripts for Constant Normal Load (CNL) shear test configuration. 

Concretely the implemented models are calibrated with experimental data to simulate CNL 

tests using a PLAXIS 2D Finite Element (FE) model and the obtained results are compared 

with both Python theoretical simulation and experimental results to verify the FE 

implementation. The results of these simulations validate the numerical implementation in 

PLAXIS and prove the applicability of the enhanced models to reproduce with adequate 

accuracy the mechanical behaviour of a rock discontinuity on a lab scale.  

Finally, the implemented constitutive laws are employed to perform a FE analysis of a large-

scale application of a deep underground excavation in a discontinuous rock layer using 

PLAXIS 2D. To facilitate the creation of this complex geometry, an automatic discontinuity 

network generator is developed and improved using PLAXIS Python scripting API. The 

implemented discontinuity laws are then applied to the randomly generated discontinuity sets 

to simulate the behaviour of the rock mass. Stress and failure analyses are performed for the 

most critical discontinuities and wedges formed around the excavation to validate the numerical 

implementation and analyze the applicability of the constitutive models. The analysis of the 

boundary value problem confirms both the reliability of the numerical implementation and the 

applicability of the enhanced constitutive laws to simulate the analyzed large-scale problem.  
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1 Introduction 

1.1 Problem description 

1.1.1 Overview 

The term “Rock Mass” refers to the generally discontinuous, inhomogeneous, anisotropic, and 

non-linear elastoplastic material consisting of intact rock and discontinuities of different types 

and scales that represent breaks in the rock continuum. ”Discontinuity” is a general term 

denoting any separation in a rock mass having low (or nil) tensile strength. It is a collective 

term for most types of joints, weak bedding planes, weak schistosity planes, weakness zones, 

and faults. Discontinuities and intact rock blocks dictate the overall behaviour of rock mass. 

Rock engineering projects like underground excavations, designing and stabilization of slopes, 

foundations on rocks, and dams are vulnerable to movements of intact rock blocks along rock 

discontinuities even if the intact rock blocks themselves are stiff. 

Movements along discontinuities can occur in multiple directions depending on kinematic 

constraints and the external forces acting on the structure. The importance of acquiring a deep 

understanding of the mechanical behaviour of discontinuities is highlighted by several cases 

which indicate the failure of rock engineering constructions due to the limited understanding 

or wrong estimation of the discontinuities’ behaviour. These considerations have been 

documented by many case studies where failures occurred, such as the failure of the Malpasset 

dam in 1954, in the southern part of France, which caused a considerable number of fatalities. 

After the sudden failure, investigations were executed in the rock valley, where the dam was 

located, and it was observed that the structure failed due to the sliding of rock blocks along 

discontinuities which were in the foundation rock mass (Duffaut, 2013). 

In the last decades, many researchers focused their interest on understanding all the aspects of 

the behaviour of rock masses and trying to suggest reliable estimates of the variation of strength 

and deformation characteristics of discontinuities in fractured rock masses. Generally, the main 

characteristics which control the stress and strain behaviour of discontinuities are the level of 

the effective normal stress acting on them, the properties of the rock walls (including the rock 

type) and the filling material between them (if exists), the degree of roughness and weathering 

and the size of the discontinuities. 

Several constitutive models have been developed to simulate the mechanical behaviour of rock 

discontinuities, based on either empirical or theoretical methods. However, constitutive models 

are only a simplification of reality, and it is of fundamental importance to understand the 

assumptions they are based on, together with the possible advantages and limitations, when 

modelling rock mass behaviour. Frequently, simple linear models are preferred because they 

require few and easy-to-determine parameters, but their drawback is that they cannot capture 

important aspects of the mechanical behaviour observed experimentally. Therefore, this Master 

of Science thesis focuses on performing numerical analyses with the FE software PLAXIS 2D 

of discretely fractured rock mass using two constitutive laws for simulating the mechanical 

behaviour of discontinuities. 

1.1.2 Problem statement 

The stability of rock engineering projects is highly dependent on the mechanical behaviour of 

discontinuities. Neglecting the behaviour of fractures often leads to a misinterpretation of the 

rock mass response to external loading conditions. Although the mechanical behaviour of a 



10 

 

discontinuity is often associated with shearing (sliding), experimental data have shown that it 

can be accompanied by more complex phenomena such as dilation and post-peak strength 

reduction. These concepts indicate that the mechanical behaviour of discontinuities is non-

linear. Proper consideration of discontinuity behaviour is crucial for the reliable stability 

assessment of rock engineering works. Numerous models have been proposed by researchers 

(e.g. Patton (1966), Goodman (1976), Barton et al. (1985), Saeb and Amadei (1992), Grasselli 

and Egger (2003)) which have helped rock engineers to understand the evolution of stress and 

deformation characteristics of discontinuities. However, many of the models available in the 

literature are questionable when applied in practice either because they are very simplistic 

(linear models like Coulomb) or because they are strongly dependent on empirical parameters 

or require complex input parameters which are hard to calibrate through lab or in situ tests. 

1.2 Objective 

In this context, the main objective of this Master’s project is to evaluate the capabilities and 

limitations of different constitutive models for rock discontinuities in terms of numerical 

implementation and modelling of the mechanical behaviour of fractured rock masses. 

1.3 Research questions 

To accomplish the research objective, the following research questions were formulated: 

 How, can the behaviour of a single discontinuity be modelled? 

– Which mechanical features control the behaviour of discontinuities under mechanical 

loading? 

– Which are the capabilities of the discontinuity constitutive models proposed in the 

literature? 

– Do the conditions under which these models were developed apply to practical 

engineering problems?  

– How accurate are the proposed models with respect to the observed behaviour? 

– How to calibrate the parameters of these models? 

 How to validate the implemented model? 

– How to set up a FEM model for validation?  

– Which test conditions are going to be applied? 

– Which experimental data are going to be selected for comparison?  

 To what extent can the implemented model capture the real mechanical behaviour of a 

fractured rock mass? 

– How does each model perform in a FEA of a Boundary Value Problem?  

– Which features of the fractured rock mass cannot be modelled in the analysed practical 

application? 

1.4 Research approach 

The research methodology is divided into the following consecutive procedures: 

 Literature review: 

An indispensable part of this Master’s Thesis is to primarily conduct a literature review to 

acquire the theoretical background required to adequately respond to the research questions. 

The literature review will be focused on the investigation of constitutive models available in 



11 

 

the literature which can model the behaviour of discontinuities. For each model mainly the 

following four aspects will be examined: 

– The assumptions that each model is based on  
– The complexity of the used parameters 

– The understanding of the proposed mathematical approaches which describe the evolution 

of shear stress, shear stiffness, normal stress, normal stiffness, and normal closure with 

the increase of shear displacement  

– The amount of data through which the model has been validated and the alignment of the 

extracted results with the experimental data 

 Formulation of the incremental equations of the models for the theoretical simulation of a 

typical Constant Normal Load shear test: 

The constitutive laws found in the literature which will be considered the most suitable 

from the aspect of both their theoretical consistency and practical values will be selected 

for further investigation. The governing equations of the selected models will be written in 

an incremental form within the framework of Plasticity theory to serve as the base for the 

Finite Element implementation (FE) In addition, the formulated equations are implemented 

in a Python script to theoretically simulate a typical shear test under Constant Normal Load 

conditions (using an explicit integration scheme) and support the reliability of the FE 

numerical implementation.  

 Further development of the tool for generating discontinuity networks: 

During previous research activities, a tool for the automatic generation of sets of 

discontinuities in a FEM model has been created. The research framework of this Master’s 

thesis includes the further development of the existing tool. The considered tool will be 

updated with the aim of being able to generate the complete geometry of a Boundary Value 

problem with sets of discontinuities that can automatically be trimmed when extending 

outside the boundary of the model. The tool will be used in the following phases. 

 Models’ validation: 

Once the implementation of the constitutive laws is completed by members of the research 

team of PLAXIS, its validity will be confirmed. More specifically, for each constitutive 

law, a simple numerical model (made of two blocks and a single discontinuity) will be used 

to simulate shear tests. Furthermore, the implemented Python script will be used to simulate 

theoretically the same shear tests. A comparison between the two simulations will be 

conducted to verify the validity of the implementation in PLAXIS.  

 Boundary value problem application: 

Finally, the applicability of the implemented constitutive laws will be tested in an 

underground rock excavation application where the rock mass is simulated as a discretely 

fractured medium. To further investigate the impact of using more advanced constitutive 

laws, a comparison of the results obtained through the adoption of the Mohr-Coulomb 

model (which is already implemented in PLAXIS) for the same engineering application 

cases will also be performed. 
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 Results analysis: 

The results of the performed analysis will be critically evaluated to verify the 

implementation of different models and analyse the advantages and limitations of the 

implemented constitutive models for the simulation of a fractured rock mass and to provide 

recommendations for potential future improvements. 
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2 Theoretical Framework 

2.1 Introduction 

In the last few decades, many researchers have provided essential contributions to studying the 

mechanical response of rock discontinuities. The main scope of the present chapter is to 

introduce and describe existing constitutive models from the field of discontinuity modelling 

found in the literature by indicating their main characteristics.  

The first part of this chapter delineates in detail the experimentally observed mechanical 

response of a rock discontinuity subjected to normal and shear loading. Then, different factors 

which affect this behaviour are described. Finally, the last part of this chapter introduces 

existing constitutive models, discussing their formulations, advantages as well as limitations.  

2.2 Mechanical behaviour of a single rock discontinuity 

This section aims to introduce the main aspects of the mechanical behaviour of a single rock 

discontinuity, including the stress-strain response under normal loading (perpendicular to the 

discontinuity plane) as well as shear loading (parallel to the discontinuity plane).  

2.2.1 Behaviour under normal stress 

A non-linear trend governs the relationship between a discontinuity's normal stress-normal 

deformation behaviour. At low normal stress, two rough joint surfaces are only in contact at a 

few contact points. However, during the increment of the applied normal stress the number of 

contact points is increased. According to Goodman (1976), the non-linear behaviour of a 

discontinuity is observed because the increment of the normal stress leads some contact points 

to deform elastically while others deform plastically either by crushing or cracking under 

tension. 

 

Figure 2.1: Idealised behaviour of discontinuity under normal stress 

Figure 2.1, illustrates the idealised behaviour of a discontinuity under normal loading. 

Goodman (1976) noted two considerations concerning physical constraints on normal 

deformations. Firstly, an open joint has null tensile strength and secondly, he noted the 

existence of a limit to the amount of compression which corresponds to the maximum possible 

closure, 𝑢𝑛𝑚𝑎𝑥
. This amount of maximum closure (as indicated in Figure 2.1) is represented 
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mathematically as an asymptote to the non-linear function which described the normal 

deformation of a discontinuity under the application of normal loading. The non-linear closing 

behaviour can be described either by a hyperbolic (e.g., Goodman, 1976; Bandis et al., 1983) 

by a logarithmic (e.g., Brown and Scholtz, 1986; Evans et al., 1992) or by power (e.g., Itasca, 

2019) function. 

Barton et al., (1983) noted that upon stress loading and unloading of a discontinuity, the 

hysteresis effect is caused by processes arising from the surface mismatch, sampling 

disturbances, and crushing of asperities. Furthermore, it was proved by the same author, that 

upon return to the initial stress level, a considerably large amount of permanent deformation 

occurs. Subsequent loading cycles produce much steeper curves. Finally, Barton et al. (1983) 

based on interlocked fractured block samples which were subjected to a sequence of 

loading/unloading cycles proved that the normal stiffness of discontinuity is not cyclic-

dependent. More specifically he showed that almost three cycles are required to obtain a single 

reproducible stress-deformation curve. Figure 2.2 illustrates the experimental results obtained 

from a typical test case of cyclic normal loading on a sample of limestone. The non-linear 

stress-strain behaviour and the hysteresis experienced by the fracture during the cycling loading 

can be observed. 

 

Figure 2.2: Normal stress-closure of fracture sample of limestone under repeated loading cycles 

 (modified after Barton et al.,1983) 

2.2.2 Behaviour under shear stress 

It can be stated that the evolution of shear stress, as well as the normal deformation of a 

discontinuity subjected to shear displacement, are affected by the magnitude of the applied 

normal stress, the roughness of the two surfaces of the discontinuity and the strength of both 

rock matrix and infilling material. Commonly, the shear behaviour of a rock discontinuity is 

investigated in the laboratory under Constant Normal Load conditions (CNL) where the applied 

normal stress remains constant, and the walls of the discontinuity can dilate freely during the 

shearing process. In situ, a rock slope where a rock block slides along the existing discontinuity 

without any constraint is considered the ideal representation of a CNL condition.  

On the other hand, in rock engineering practice the applied normal stress on a rock discontinuity 

may vary during the shearing and the dilation may be constrained by the stiffness of the 
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surrounding rock. In these cases, the shear behaviour of the rock discontinuity is studied under 

constant Normal Stiffness Conditions (CNS). This in situ boundary condition is simulated 

laboratory by using a spring perpendicular to the fracture. Unstable rock blocks in the roof or 

walls of underground cavity constructions (caverns, mining, tunnels) or reinforced rock wedges 

sliding in a rock slope or foundation are practical applications in which the shearing of a rock 

discontinuity is executed under CNS conditions (Leichnitz, 1985; Thirukumaran and 

Indraratna, 2016).  

Figure 2.3 describes schematically both CNL and CNS boundary conditions but also indicates 

how these in situ conditions are simulated in the laboratory: 

 

Figure 2.3: Representation of CNL and CNS conditions in situ and laboratory (Leichnitz, W., 1985) 

A typical shear stress-shear deformation behaviour of a rough and clean discontinuity that 

undergoes shearing under CNL conditions is characterized by a relatively rapid increase in 

shear stress up to a peak 𝜏𝑝𝑒𝑎𝑘 which is observed after a relatively small amount of shear 

displacement,  𝑢𝑠𝑝𝑒𝑎𝑘
. This peak of the value of shear stress is followed by a significant loss in 

load-carrying capacity up to residual value 𝜏𝑟𝑒𝑠 (Figure 2.4, curve A). On the other hand, 

experimental data that describe the shear stress-shear deformation behaviour of filled 

discontinuities under the same boundary conditions (Figure 2.4, curve B), denote a more 

gradual increase of shear stress with a peak shear stress which is poorly defined (Goodman, 

1976). In both cases, the slope characterizing the elastic region denotes the value of the shear 

stiffness 𝑘𝑠. 
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Figure 2.4: Idealised shear stress-shear deformation behaviour of clean (A) and filled (B) discontinuities under CNL 

conditions (modified after Goodman, 1976) 

The shearing behaviour of a rock discontinuity is also accompanied by the mechanism of 

dilation (normal deformation) which originates from surface roughness. In more detail, the 

elastic phase of the shear deformation is characterized by a small amount of dilation. Many 

researchers (Barton et al., 1985; Barton and Choubey, 1977; Goodman, 1976), showed that 

dilation starts before the shear stress reaches its peak value. Dilation onsets when the asperities 

start to slide against each other (approximately after an amount of shear displacement which is 

equal to 1% of the fracture sample length (Barton et al., 1985)). 

Figure 2.5 illustrates the experimentally observed mechanical behaviour of discontinuity after 

the application of shear stress under CNL conditions. 

 
Figure 2.5: Experimentally observed mechanical behaviour of discontinuity under shear stress (modified after Barton, 1976) 

Figure 2.6 illustrates the idealized mechanical behaviour of a discontinuity subject to shearing 

under CNL conditions. In general, it can be observed that the elastic phase of the shear 

deformation is characterized initially by a small amount of compression while later by a very 

small amount of dilation. Once the peak shear strength has been reached dilation starts and 

obtains its maximum value when the shear stress attains its residual value. The rate of dilation 

is quantitatively described by the tangent of the dilation angle.  
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Figure 2.6: Idealised shear behaviour of a rough fracture under CNL condition (after Goodman, 1976) 

Barton and Bandis (1982), based on shear tests under CNL conditions indicated that the 

evolution of shear stress-shear displacement is scale-dependent. It was proven that the shear 

stiffness reduces with the increase in sample size. On the other hand, they proved that an 

increase in the applied normal stress during the shearing process leads to a stiffer response of 

the material. 

A typical shear behaviour under CNS conditions is characterized by a steep increase in shear 

stress (Figure 2.7). With the further application of shear displacement, the rate of the evolution 

of shear stress becomes lower until a constant value of shear stress is obtained. The higher value 

of the applied normal stress leads to the highest shear stiffness (Goodman, 1976). Finally, the 

shearing of fracture under CNS conditions leads to lower values of normal displacement 

(dilation). 

 
Figure 2.7: Shear behaviour of rough discontinuity under CNS conditions (modified after Jing and Stephansson, 2007) 
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Experimental results reported by Bandis et al. (1983) denoted that the shear strength of a 

discontinuity is increased with the increment of the applied normal stress. In more detail, Barton 

(1976) indicated that, at a low level of effective normal stress, the frictional strength of a joint 

can be related to the strength of the intact rock by means of the unconfined compression 

strength. On the other hand, under high effective normal stress, the frictional strength of a joint 

can be related to the strength of the intact rock by means of the confined compression strength 

which is expressed by the differential stress (𝜎1 − 𝜎3). Finally, under very high normal stress 

levels it was observed that the stress required to fracture the intact rock in non greater than the 

shear strength of the resulting discontinuity. 

2.3 Properties of discontinuities which control their mechanical behaviour 

When a fractured rock mass is subjected to mechanical loads both the intact rock and rock 

discontinuities will deform. However, most of the deformation occurs in discontinuities 

(Fardin, 2003). A discontinuity or rock fracture consists of two rock surfaces with irregular 

shapes which are in contact in randomly distributed zones along their length. The existing 

volume of the void between the two surfaces could be either filled or not (Hakami, 1995). 

 In particular, the mechanical behaviour of a discontinuity (strength and stress-strain 

relationship) depends on several parameters (e.g., Patton, 1966; Goodman, 1976; Barton et al., 

1985; Saeb and Amadei, 1992; Grasselli and Egger, 2003). Figure 2.8, illustrates the main 

properties of rock discontinuities which control their mechanical response. 

 

 
Figure 2.8: Features of discontinuities which control their mechanical behaviour (modified after Hakami, 1995) 

A brief description of the properties depicted in Figure 2.8 follows. 
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2.3.1 Aperture 

According to the International Society of Rock Mechanics (ISRM), the aperture is the 

perpendicular distance separating the adjacent rock walls of an open discontinuity, in which the 

intervening space is air or water-filled. More specifically, the displacement of the adjacent rock 

walls relative to each other and/or the differences in the morphology of the adjacent rock walls 

are principally the two reasons why the aperture of a discontinuity is not zero. The difference 

in the morphology of the rock walls of a discontinuity is created mainly by the damaging and 

crushing of the asperities or by chemical processes like mineral precipitation and dissolution. 

The aperture can be determined either through the analysis of the profiles of the rock surfaces; 

or by filling the void space with casting material. Furthermore, the distribution of the aperture 

is only valid at a certain state of stress and if the stress changes the distribution will be altered 

(Hakami, 1995). More specifically, at a given stress state the value of the aperture (mechanical 

aperture, 𝑒𝑚) is related to the mechanical parameters of a discontinuity. From this aspect, the 

mechanical aperture is calculated by subtracting the measured value of closure from the value 

of maximum closure: 

 
𝑒𝑚 = 𝑢𝑛𝑚𝑎𝑥

− 𝑢𝑛 
(2.1) 

where 𝑢𝑛 renders the measured value of closure which describes the normal relative 

displacement of the discontinuity walls, while 𝑢𝑛𝑚𝑎𝑥
 indicates the maximum closure. In more 

detail, the maximum closure defines the closure corresponding to normal stress beyond which 

no further normal deformation in excess with respect to one of the intact rock is observed 

(Cammarata, 2005).  

2.3.2 Roughness 

All natural discontinuity surfaces exhibit some degree of roughness, varying from relatively 

smooth surfaces with very low roughness to rough and irregular tension joints with a 

considerable degree of roughness (Wyllie and Mah, 2004). 

The measurement of the roughness can be accomplished using a simple mechanical 

profilometer. Using the profilometer, rock engineers can acquire the surface morphology of 

natural discontinuities. In engineering practice, it is accepted to give the parameter an empirical 

number in some way irrespective of its real physical meaning and relate this number with the 

relevant mechanical parameter. 

In this context, Barton and Choubey (1977) reported the JRC (Joint Roughness Coefficient) 

coefficient through which the roughness of a discontinuity can be quantified. Based on a large 

number of shear tests on natural discontinuities the authors proposed ten standard roughness 

profiles that provide typical JRC values (Figure 2.9). The introduced scale varies from 0, which 

indicates smooth discontinuity, to 20 which denotes rough discontinuities. The importance of 

the parameter JRC for the normal deformation and shearing analysis of discontinuities is 

highlighted by Barton who introduced the well-known strength criterion based on the concept 

of mobilized roughness (Barton et al., 1985). This concept indicates that the shear strength of 

a discontinuity and the occurred dilation during the shearing process are highly controlled by 

the roughness of the discontinuity walls. 
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Figure 2.9: Roughness profiles and corresponding JRC values ( Barton and Choubey 1977) 

2.3.3 Matedness 

According to Hakami (1995), the term matedness is used to describe the general match between 

the two opposing discontinuity surfaces. Mated discontinuities have different properties 

compared to unmated ones. In more detail, the mated discontinuities are stronger and stiffer 

than the unmated discontinuities while the permeability of the unmated discontinuities is 

significantly higher than the permeability of the mated ones.  

2.3.4 Size Effects (length) 

According to Pratt et al. (1972), an important consideration for the determination of the 

mechanical properties of jointed rock is the effect of specimen size on strength and deformation 

characteristics. Based on the extensive investigation of Pratt, Barton and Choubey (1977) and 

Barton et al. (1985) continued the research work and proved that the mechanical behaviour of 

a discontinuity subjected to shearing is significantly affected by the size of the examined 

sample. More specifically, Barton et al. (1985) stated that the shear stiffness is the parameter 

affected most, due to the simultaneous reduction of shear strength and increase of peak shear 

displacement as the dimensions of the discontinuity are increased. In the context of 

discontinuity modelling, the increment of discontinuity size causes notable reductions in JRC 

and JCS parameters and leads to the increment of the shear displacement required for the peak 

shear strength to be reached. 

2.3.5 Mechanical wall properties 

The strength of the discontinuity rock walls may significantly differ from the strength of the 

surrounding intact rock. The properties of rock walls are commonly estimated through the Joint 

wall Compressive Strength (JCS) coefficient which was introduced by Barton (1973). 

The values of this fundamentally important parameter are obtained by conventional unconfined 

compression tests on intact cylinders or from point load tests on rock cores. In engineering 

practice, this parameter is also measured using the Schmidt hammer test which consists of a 
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spring released when the plunger is pressed against a surface. The impact of the piston onto the 

plunger transfers energy to the material (ISRM, 2007).  

According to Barton (1976), the values of the JCS are closely dependent on the weathering 

conditions of the discontinuity. Unweathered discontinuities provide the rock engineers with 

significantly higher JCS values in comparison with the weathered ones. Furthermore, Barton 

(1976), after conducting a series of shear tests in fractured rock blocks with different 

morphological and mechanical properties, stated that the value of the JCS parameter in rough 

discontinuities is crucial when the applied stress levels are low (as in most rock engineering 

projects). On the other hand, he noted that discontinuities with lower degrees of roughness are 

progressively less affected by the value of JCS.  

2.3.6 Filling material 

In rough discontinuities where no filling material exists between the rock walls of a 

discontinuity, the derivation of shear strength is controlled entirely by the friction angle of the 

rock material.  However, it is common in the field that the discontinuities contain an infilling 

which affects their mechanical behaviour.  

According to Goodman (1970), the effect of infilling on shear strength depends on both the 

thickness and strength properties of the filling material. In more detail, if the thickness of the 

filling material covers more than 25-50% of the thickness of the discontinuity, then the shear 

strength is dictated by the properties of the infilling. Therefore, in engineering practice, it is of 

high importance to identify and assess the filling material (if it exists) as it is a factor with a 

significant effect on the stability of rock engineering structures. 

2.3.7 Stiffness 

 The deformability of a discontinuity subjected to mechanical loading is controlled by its 

normal 𝑘𝑛 and shear 𝑘𝑠 stiffness (Goodman, 1968). Normal stiffness 𝑘𝑛, was defined to 

describe the rate of change of normal stress 𝜎𝑛  with respect to normal displacement (closure) 

𝑢𝑛. On the other hand, with the definition of shear stiffness 𝑘𝑠, the rate of change of shear stress 

𝜏 with respect to shear displacement 𝑢𝑠 is described. A schematic representation of the stiffness 

components is given in Figure 2.9. 

 

Figure 2.9: Schematic representation of normal stiffness 𝑘𝑛, shear stiffness 𝑘𝑠 (modified after Olsson, 1998) 

2.4 Constitutive Models of rock discontinuities 

This section aims to introduce some of the most well-known constitutive models in the field of 

discontinuity modelling found in the literature. A constitutive model is considered a complete 
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model which can be used to simulate the mechanical behaviour of a discontinuity when it 

clearly defines the formulation of the strength criterion based on which the shear strength of a 

discontinuity is calculated, as well as the formulations of both normal and shear stiffness which 

control the evolution of stress-deformation relationship under normal and shear loading 

respectively. Therefore, the selected constitutive models will be described by highlighting the 

formulation of these three main components and by mentioning their main advantages and 

limitations. Note that in this chapter, normal stress is conventionally positive in compression.  

2.4.1 Coulomb’s model 

The most well-known and simplest model to simulate the mechanical behaviour of a 

discontinuity is Coulomb’s model. The considered model uses Coulomb’s strength criterion, 

one of the simplest linear shear failure criteria through which the peak shear strength of a rock 

fracture can be determined. The failure envelope of this criterion is expressed as follows: 

 
𝜏𝑝𝑒𝑎𝑘 = 𝑐 + 𝜎𝑛′𝑡𝑎𝑛𝜑𝑝𝑒𝑎𝑘 (2.2) 

where c is the cohesion, 𝜎𝑛′ denotes the effective normal while the 𝜑𝑝𝑒𝑎𝑘 indicates the value 

of friction angle at peak shear stress.  

When the peak shear strength is exceeded, the shear strength reaches its residual value which 

is calculated by replacing in Equation (2.2) c and 𝜑𝑝𝑒𝑎𝑘 with their residual values, 𝑐𝑟𝑒𝑠 and 

𝜑𝑟𝑒𝑠 respectively: 

 
𝜏𝑟𝑒𝑠 = 𝑐𝑟𝑒𝑠 + 𝜎𝑛′𝑡𝑎𝑛𝜑𝑟𝑒𝑠 (2.3) 

Discontinuities often have very small or nil tensile strength 𝜎𝑇, namely the normal stress is 

bounded to 𝜎𝑛
′ > − 𝜎𝑇.  Figure 2.10 illustrates Coulomb’s shear failure criterion. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10: Coulomb's shear failure criterion 

Due to its simplicity, this model has been widely used for practical engineering applications, 

generally associated with constant values for both the normal and shear stiffnesses. 

Furthermore, the shear behaviour of discontinuities at very high levels of normal stress (under 

which the asperities of the discontinuity walls are sheared-off) or at very low stresses can be 

captured with adequate accuracy adopting Coulomb’s model considering that the friction angle 

is constant at the examined stress range. In rock engineering applications where no significant 
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fluctuations of the applied normal stress levels are expected the friction angle is also considered 

as constant. Therefore, Coulomb’s model despite its simplicity and its weakness which lies in 

that it overestimates the shear strength at low stresses, (Fardin, 2003), can provide rock 

engineers with reliable results when the expected stress range is considered and the friction 

angle in this range is constant. 

Improvements for the simulations of the discontinuity behaviour through Coulmb’s model have 

been also proposed through the use of non-linear functions for the stiffnesses. An example is 

the Non-linear joint model by Itasca (2019) where power-law functions are employed. These 

simple mathematical functions are in fact the first empirical formulations carried out from the 

early investigation by several authors (Nassir, 2013). 

Another example of the improvement in the adoption of the Coulomb model is the use of 

peak/residual behaviour through either a brittle behaviour (e.g. Bentley, 2023) or linear 

softening behaviour (e.g. Itasca, 2019). 

The simple linear formulation of this strength criterion in combination with the small number 

of the required and easy-to-determine parameters, render it applicable in practice and one of 

the most well-known shear failure criteria. 

2.4.2 Goodman’s model 

Goodman (1976) introduced the first comprehensive constitutive model for the description of 

the evolution of stress and deformation characteristics of discontinuities. Goodman’s model is 

an empirical approach for 2D fractures which has been formulated in total stresses and 

displacements, based on experimental data of shear tests under constant normal stress 

conditions conducted on rock discontinuities (Jing and Stephansson, 2007). 

Goodman based his constitutive model on the strength criterion suggested by Ladanyi and 

Archambault (1969). In more detail, Ladanyi and Archambault (1969) developed a peak shear 

strength criterion for rock fractures by combining the contributions of friction, roughness and 

shearing through the asperities. The peak shear strength is defined by the following equation: 

 𝜏𝑝𝑒𝑎𝑘 =
𝜎𝑛(1 − 𝑎𝑠) (�̇�𝑛 + tan(𝜑𝜇)) + 𝑎𝑠𝑠𝑅 

1 − (1 − 𝑎𝑠)�̇�𝑛 + tan(𝜑𝑓)
 (2.4) 

where 𝑎𝑠 is the proportion of the joint area sheared through the asperities, �̇�𝑛 indicates the rate 

of dilation at failure (secant dilatancy rate), 𝜑𝜇 renders the friction angle of smooth surfaces 

without any asperities (as introduced by Patton, 1966), 𝜑𝑓 is the statistical mean friction angle 

when sliding occurs along the asperities and 𝑠𝑅 denotes the shear strength of the rock 

composing the asperities which can be evaluated with the following formulation: 

 𝑠𝑅 = 𝑞𝑢

√1 + 𝑛 − 1 

𝑛
(1 + 𝑛 𝜎𝑛/𝑞𝑢) 1/2 (2.5) 

where 𝑞𝑢 is the unconfined compressive strength (𝜎𝑐) and 𝑛 is the ratio of compressive to the 

tensile strength, of the rock comprising the asperities. 

Furthermore, the difficulties in determining the remaining parameters of the criterion led to the 

following empirical relations (Ladanyi & Archambault, 1980):  
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 𝑎𝑠 = 1 − (
1 −  𝜎𝑛 

𝜂𝜎𝑡
)

𝐿

 (2.6) 

 �̇�𝑛 = (1 −
 𝜎𝑛 

𝜂𝜎𝑡
)

𝐾

tan ( 𝑖) (2.7) 

where 𝜎𝑡 is the transition pressure which can be further described as the normal stress at which 

the fracture ceases to be weaker than the rock itself and in the absence of sufficient data can be 

considered equal to the unconfined compressive strength. The terms 𝐿 and 𝐾 are dimensionless 

constants and their values were suggested by Ladanyi and Archambault (1969). More 

specifically, the suggested values of these parameters are 1.5 and 4 respectively. Furthermore, 

 𝑖 denotes the average inclination of the intact irregularities (as introduced by Patton, 1966). 

Finally, the parameter 𝜂 is called the degree of interlocking and is defined by the same authors 

as follows: 

 𝜂 = 1 −
1 −  𝛥𝑥 

 𝛥𝐿
 (2.8) 

where  𝛥𝑥 denotes the shear displacement along the ascending asperity while L indicates the 

projection of the ascending part of the asperities (Figure 2.11): 

 

Figure 2.11: Definition of the interlocking term (modified after Ladanyi and Archambault, 1969) 

In conclusion, Ladanyi and Archambault’s strength criterion through its parameters and 

especially through  𝑎𝑠 and �̇�𝑛 represents the effect of roughness of the discontinuities. During 

the deformation process the roughness of the discontinuity can only be decreased due to the 

accumulated damage of the asperities. However, the formulation of 𝑎𝑠 and �̇�𝑛 proposed by the 

authors in  Equations (2.7) and (2.8), denotes that the value of these two terms is reversible 

with respect to the normal stress. Thus, the introduced strength criterion is more suitable for 

discontinuities which are subjected to shear displacement under constant or monotonically 

increasing normal stress (Jing and Stephansson, 2007). 

In addition, Goodman’s model captures the non-linear closing behaviour by adopting a 

hyperbolic. In more detail, Goodman (1976) introduced his hyperbolic function based on two 

considerations concerning physical constraints on normal deformations (as stated also in 

Section 2.2.1). Firstly, an open joint has null tensile strength and secondly, he noted that there 

is a limit to the amount of compression which corresponds to the maximum possible closure, 

𝑢𝑛𝑚𝑎𝑥
. Based on experimental testing of an artificially created fracture in granodiorite sample, 

Goodman (1976) derived the following empirical relation for both mated and unmated 

discontinuities: 
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𝜎𝑛 − 𝜎𝑛𝑖𝑛𝑖

  

𝜎𝑛𝑖
= 𝐴 (

𝑢𝑛  

𝑢𝑛𝑚𝑎𝑥
− 𝑢𝑛

)

𝑡

 (2.9) 

where 𝜎𝑛𝑖𝑛𝑖
 denotes the normal stress at the initial reference stage while 𝐴 and 𝑡 are empirical 

constants. 

Derivation of Equation (2.3) leads to the expression of normal stiffness 𝑘𝑛 as follows: 

 𝑘𝑛 =
𝑡(𝜎𝑛 − 𝜎𝑛𝑖𝑛𝑖

)  

𝑢𝑛𝑚𝑎𝑥
(1 −

𝑢𝑛  
𝑢𝑛𝑚𝑎𝑥

)
 (2.10) 

The model assumes a zero normal stiffness when the initial normal stress is zero.  

The last property which is used from Goodman’s model to describe the mechanical behaviour 

of a discontinuity and especially the evolution of the shear stress-shear deformation relationship 

is the shear stiffness 𝑘𝑠. Goodman (1976) introduced two models which can be adopted during 

the study of the mechanical behaviour of a discontinuity under shearing. The first model 

considers the shear stiffness constant (Figure 2.12, graph a) while the second one considers the 

shear stiffness as a function of the shear strength 𝜏𝑝𝑒𝑎𝑘 and the amount of the shear 

displacement which is required to reach the peak shear strength, 𝑢𝑠𝑝𝑒𝑎𝑘
 (Figure 2.12, graph b)  

In this case, the value of shear stiffness is calculated as follows: 

 𝑘𝑠 =
𝜏𝑝𝑒𝑎𝑘  

𝑢𝑠𝑝𝑒𝑎𝑘

 (2.11) 

 

 

Figure 2.12: Shear deformations models (modified after Goodman 1976) 

Goodman based on the above-introduced formulations of the shear strength criterion of Ladanyi 

and Archambault (1970) and shear stiffness, formulate the following constitutive relationships 

that describe the mechanical behaviour of a discontinuity subjecting to shearing: 

I)                                      𝜏 =  −𝜏𝑟𝑒𝑠,    𝑓𝑜𝑟  𝑢𝑠 ≤ 𝑢𝑠
𝑟𝑒𝑠(−)

 (2.12) 
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where 𝜏𝑜 is the initial shear stress, 𝑢𝑠
𝑝𝑒𝑎𝑘(−)

 and 𝑢𝑠
𝑝𝑒𝑎𝑘(+)

denote the shear displacements which 

correspond to the peak shear stress and 𝑢𝑠
𝑟𝑒𝑠(−)

 and 𝑢𝑠
𝑟𝑒𝑠(+)

 indicate the shear displacement which 

corresponds to the residual shear stress. The values of residual and peak shear displacement are 

determined based on the formulations suggested by Goodman (1976): 

 𝑢𝑠𝑝𝑒𝑎𝑘(+)
= 𝑢𝑠𝑝𝑒𝑎𝑘

=
𝜏𝑝𝑒𝑎𝑘 − 𝜏𝑜

𝑘𝑠
 

(2.17) 

 
𝑢𝑠𝑟𝑒𝑠(+)

= 𝑢𝑠𝑟𝑒𝑠
=

𝑀(𝜏𝑝𝑒𝑎𝑘 − 𝜏𝑜)

𝑘𝑠
 (2.18) 

 
𝑢𝑠𝑝𝑒𝑎𝑘(−)

= −𝑢𝑠𝑝𝑒𝑎𝑘
−

2𝜏𝑜

𝑘𝑠
 (2.19) 

 
𝑢𝑠𝑟𝑒𝑠(−)

= −𝑢𝑠𝑟𝑒𝑠

2𝜏𝑜

𝑘𝑠
 (2.20) 

 

Figure 2.13 illustrates the piecewise linear formulation of the stress-strain relationship in the 

shear direction based on the constitutive formulations proposed by Goodman: 

 
Figure 2.13: Goodman's constitutive law for shear deformation (modified after, Goodman 1976) 

 

II)   𝜏 =  −𝜏𝑝𝑒𝑎𝑘 +
𝜏𝑝𝑒𝑎𝑘−𝜏𝑟𝑒𝑠

𝑢𝑠𝑝𝑒𝑎𝑘−𝑢𝑠𝑟𝑒𝑠

𝑢𝑠 − 𝑢𝑠𝑝𝑒𝑎𝑘(−)
,   𝑓𝑜𝑟  𝑢𝑠𝑟𝑒𝑠(−)

< 𝑢𝑠 < 𝑢𝑠𝑝𝑒𝑎𝑘(−)
 

 
(2.13) 

III)                        𝜏 = 𝑘𝑠𝑢𝑠 + 𝜏𝑜 , 𝑓𝑜𝑟  𝑢𝑠𝑝𝑒𝑎𝑘(−)
< 𝑢𝑠 < 𝑢𝑠𝑝𝑒𝑎𝑘(+)

 

 
(2.14) 

IV)  𝜏 =  −𝜏𝑝𝑒𝑎𝑘 +
𝜏𝑝𝑒𝑎𝑘−𝜏𝑟𝑒𝑠

𝑢𝑠𝑝𝑒𝑎𝑘−𝑢𝑠𝑟𝑒𝑠

𝑢𝑠 − 𝑢𝑠𝑝𝑒𝑎𝑘(+)
,   𝑓𝑜𝑟  𝑢𝑠𝑝𝑒𝑎𝑘(+)

< 𝑢𝑠 < 𝑢𝑠𝑟𝑒𝑠(+)
 

 
(2.15) 

V)                                    𝜏 =  −𝜏𝑟𝑒𝑠,    𝑓𝑜𝑟  𝑢𝑠 ≥ 𝑢𝑠𝑟𝑒𝑠(+)
 

 
(2.16) 
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Furthermore, Goodman (1976) introduced the following formulations to capture the occurred 

increment of normal displacement (dilatancy) during the shearing (Jing and Stephansson, 

2007):  

 
𝑑𝑢𝑛 = −

𝑑𝑝𝑒𝑎𝑘

𝑢𝑠𝑝𝑒𝑎𝑘

(|𝑢𝑠| − |
𝜏𝑜

𝑘𝑠
|) , 𝑓𝑜𝑟  𝑢𝑠

𝑟𝑒𝑠(−)
< 𝑢𝑠 < 𝑢𝑠

𝑟𝑒𝑠(+)
 

(2.21) 

 
𝑑𝑢𝑛 = −

𝑑𝑝𝑒𝑎𝑘

𝑢𝑠𝑝𝑒𝑎𝑘

(𝑢𝑠
𝑟𝑒𝑠(+)

+ |
𝜏𝑜

𝑘𝑠
|) , 𝑓𝑜𝑟  𝑢𝑠 ≥ 𝑢𝑠

𝑟𝑒𝑠 (2.22) 

where 𝑑𝑝𝑒𝑎𝑘 is the dilatancy of the fracture at 𝑢𝑠
𝑝𝑒𝑎𝑘

. 

 

Goodman’s model was a pioneer constitutive law that can represent the post-peak softening 

phenomenon (but in a simplified way). Moreover, this model in contrast to the simple 

elastoplastic models can capture that dilation occurs much earlier before shear displacement 

reaches the peak shear displacement. However, it must be noted that in contrast to the 

experimental results discussed in Section 2.2.2 that denote that dilation onsets approximately 

after an amount of shear displacement which is equal to 1% of the discontinuity length this 

model considers that dilation starts once the shearing process begins.  

 
Figure 2.14: Idealised shear displacement vs normal displacement evolution according to Goodman’s model (1976) 

Furthermore, important factors for the adequate description of the mechanical behaviour of 

discontinuities such as scale surface roughness and cyclic shear paths are not considered.   

2.4.3 Barton-Bandis model 

The Barton-Bandis model is an empirical model for rock fractures which was first introduced 

in 1981. Since then, the Barton-Bandis model has been well-tested against extensive laboratory 

measurements of different rock types and fracture types. 

The peak shear strength in the Barton-Bandis model is calculated based on the well-known 

shear strength criterion (e.g. Barton, 1976; Barton and Choubey, 1977; Bandis et al., 1983; 

Barton et al., 1985). Barton introduced his strength criterion based on experimental results on 

artificial, rough discontinuities and has the same general form as Patton’s criterion. More 

specifically, Patton (1966) was the first researcher who tried to correlate the shear strength of 

a discontinuity with the roughness of the surface. The author conducted several shear tests on 

“saw-tooth” fractured replicas assuming that the asperities on the fracture surface have identical 
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shapes and angles of inclination 𝑖. Patton (1966) based on these tests developed his bi-linear 

strength criterion shown in Figure 2.15. 

 
Figure 2.15: Patton's bi-linear failure envelope (Goodman, 1976) 

By assuming that the asperities slide on each other at low normal stress, the strength criterion 

is formulated as follows: 

 
𝜏𝑝𝑒𝑎𝑘 = 𝜎𝑛tan(𝜑𝜇 + 𝑖) (2.23) 

where 𝜑𝜇 renders the friction angle of smooth surfaces without any asperities and 𝑖 is the angle 

of inclination of the failure surface which in this case is equivalent to the dilation angle (Fardin, 

2003). The value of 𝑖 is determined as the statistical mean of the angles between the mean 

smooth reference surface and the first-order roughness along the whole fracture (Jing and 

Stephansson, 2007). 

By increasing the applied normal stress, it is assumed that the asperities are sheared off and the 

dilatancy is constrained. Under this high value of normal stress, the strength is rewritten as 

follows: 

 𝜏𝑝𝑒𝑎𝑘 = 𝑐 + 𝜎𝑛tan(𝜑𝑟) (2.24) 

where 𝑐 and 𝜑𝑟 denote the cohesion and the residual friction angle respectively. 

The arduous calculation of the asperity angle in combination with the fact that Patton’s criterion 

“overlooks” the scale effect and the roughness evolution/mobilisation during the deformation 

process summarise the main limitations of this peak shear strength criterion. However, despite 

its simplicity, this criterion is considered a conceptual breakthrough.  

Having introduced briefly the Patton’s shear strength criterion it can be noted that the main 

difference in the formulations of Patton’s criterion in comparison with Barton’s law is that the 

constant value of the dilation angle 𝑖 in Patton’s bilinear law is replaced by the following 

relation which denotes that in Barton’s criterion the dilation angle varies as a function of the 

applied normal stress: 

 𝑖 = log (
𝐽𝐶𝑆 

 𝜎𝑛
) 𝐽𝑅𝐶 (2.25) 
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Thus, Barton’s strength criterion is expressed as follows: 

 𝜏𝑝𝑒𝑎𝑘 = 𝜎𝑛tan (𝐽𝑅𝐶𝑝𝑒𝑎𝑘log10 (
𝐽𝐶𝑆 

 𝜎𝑛
) + 𝜑𝑟) (2.26) 

where 𝜏𝑝𝑒𝑎𝑘 is the shear strength of the discontinuity, 𝜎𝑛 is the applied normal stress, 𝜑𝑟 is the 

residual friction angle while 𝐽𝑅𝐶 is the peak value of roughness coefficient and 𝐽𝐶𝑆 the joint 

wall compressive strength described in Sections 2.3.2 and 2.3.5 respectively. At peak shear 

stress the terms inside the brackets of the tangent correspond to the value of the peak friction 

angle: 

 𝜑𝑝𝑒𝑎𝑘 = 𝐽𝑅𝐶𝑝𝑒𝑎𝑘log10 (
𝐽𝐶𝑆 

 𝜎𝑛
) + 𝜑𝑟 (2.27) 

According to Barton et al. (1985), peak shear strength is reached after the subjection of the 

fracture on a small shear displacement denoted by 𝛿𝑝𝑒𝑎𝑘. Barton and Bandis indicated that for 

the case of laboratory-size samples, the peak shear strength is reached when a shear 

displacement equal to 1% of the sample’s length has been applied. In more detail, based on the 

obtained experimental results after 650 shear tests, they developed an empirical equation for 

the estimation of 𝛿𝑝𝑒𝑎𝑘: 

 𝛿𝑝𝑒𝑎𝑘 =
𝐿𝑛

500
[
𝐽𝑅𝐶𝑛

𝐿𝑛
]

0.33

 (2.28) 

 

The introduced parameters 𝐽𝑅𝐶 and 𝐽𝐶𝑆 are scale dependent. Therefore, Barton et al. (1985) 

proposed the following relations to determine their large-scale value using laboratory tests on 

small samples: 

 𝐽𝑅𝐶𝑛 = 𝐽𝑅𝐶0 (
𝐿𝑛

𝐿0
)

−0.02𝐽𝑅𝐶0

 (2.29) 

 𝐽𝐶𝑆𝑛 = 𝐽𝐶𝑆0 (
𝐿𝑛

𝐿0
)

−0.03𝐽𝑅𝐶0

 (2.30) 

where 𝐽𝑅𝐶𝑛 is the value of 𝐽𝑅𝐶 for the field scale and 𝐽𝑅𝐶0 is the value of 𝐽𝑅𝐶 for the laboratory 

scale. Accordingly, 𝐽𝐶𝑆𝑛 is the value of 𝐽𝐶𝑆 for the field scale and 𝐽𝐶𝑆0 is the value of 𝐽𝐶𝑆 for 

the laboratory scale. Finally, 𝐿𝑛 is the field scale of the examined fracture while 𝐿𝑜 is the 

laboratory scale which according to Barton et al. (1985) the nominal length of a laboratory 

sample is equal to 100 mm.  

It can be seen, that at a low stress level when the normal stress approaches zero, Equation (2.26) 

loses its meaning. According to Barton, the strength envelop is linearized when the secant 

friction angle (Equation 2.27) is higher than 70°. This means the friction angle is limited to 70°. 

On the other hand, Equation (2.26) also loses its meaning when the normal stress reaches JCS.  

Barton and Choubey (1977) developed an empirical relation to estimate the value of residual 

friction angle based on the value of basic friction angle using the Schmidt hammer test. The 

hammer tests were executed on both unweathered, dry rock (rebound 𝑅) and on weathered 

saturated joint walls (rebound 𝑟) (Barton, 1985). 

 𝜑𝑟 = (𝜑𝑏 − 20) + 20
𝑟

𝑅
 (2.31) 
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Later, Barton (2013) reformulated the empirical relation for the calculation of residual friction 

angle as follows: 

 𝜑𝑟 = (𝜑𝑏 − 20) + 20
𝐽𝐶𝑆0

𝜎𝑐
 (2.32) 

where 𝜎𝑐 is the uniaxial unconfined strength.  

After the introduction of the strength criterion which is adopted by the Barton-Bandis model, 

the next important component of this model which must be defined is the formulation of normal 

stiffness. This constitutive model uses a hyperbolic function to describe the non-linear closing 

behaviour of a discontinuity subjected to normal stress. More specifically, Bandis et al. (1983), 

based on 65 interlocked jointed block samples which were subjected to a sequence of 

loading/unloading cycles, derived the following empirical formulations for the calculation of 

normal displacement 𝑢𝑛, and normal stiffness 𝑘𝑛: 

 
𝑢𝑛 =

𝜎𝑛𝑢𝑛𝑚𝑎𝑥
 

𝑘𝑛𝑖𝑛𝑖
𝑢𝑛𝑚𝑎𝑥

+ 𝜎𝑛
 

(2.33) 

 
𝑘𝑛 = 𝑘𝑛𝑖𝑛𝑖

(1 −
𝜎𝑛 

𝑢𝑛𝑚𝑎𝑥
𝑘𝑛𝑖𝑛𝑖

− 𝜎𝑛
)−2 

(2.34) 

where 𝑘𝑛𝑖𝑛𝑖
 is the initial normal stiffness, 𝑢𝑛𝑚𝑎𝑥

 denotes the maximum amount of normal 

displacement that a discontinuity can sustain while 𝜎𝑛 indicates the applied stress level. 

Furthermore, in contrast to Goodman’s model, this model assumes a non-zero normal stiffness 

when the normal displacement is nil.  

As far as the shear stiffness is concerned, the authors of the model suggested adopting 

hyperbolic functions such as those derived by Kulhawy (1975): 

 𝑘𝑠 = 𝑘𝑗(𝜎𝑛)𝑛𝑗 (1 −
𝜏𝑅𝑓

𝜏𝑝𝑒𝑎𝑘
)

2

 (2.35) 

 

where 𝑘𝑗 is the stiffness number while 𝑛𝑗  denotes stiffness exponent and 𝑅𝑓 is the failure ratio. 

The Barton-Bandis model can capture a wide range of fracture closing behaviour including stiff 

fractures (whose stiffness has a high initial value and slowly increases with the increment of 

the applied normal stress) but also fractures that are highly compressible in low normal stress 

regimes but become very stiff when the value of the occurred closure is close to the value of 

max closure 𝑢𝑛𝑚𝑎𝑥
 (compliant fractures). 

The Barton-Bandis model describes the shear stress-shear displacement behaviour of fracture 

based on the concept of “mobilized roughness”. In this way, this constitutive model can capture 

the displacement-dependent non-linear evolution of shear strength of a discontinuity during 

both pre- and post-peak shear phases. More specifically, at any given shear displacement, the 

calculation of the shear stress is calculated as follows: 

 𝜏 = 𝜎𝑛tan (𝐽𝑅𝐶𝑚𝑜𝑏log10 (
𝐽𝐶𝑆𝑚𝑜𝑏 

 𝜎𝑛
) + 𝜑𝑟) (2.36) 

where: 
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 𝜑𝑚𝑜𝑏 = (𝐽𝑅𝐶𝑚𝑜𝑏log10 (
𝐽𝐶𝑆𝑚𝑜𝑏 

 𝜎𝑛
) + 𝜑𝑟) (2.37) 

In the formulation of mobilized friction angle Equation (2.37), 𝐽𝑅𝐶𝑚𝑜𝑏 the mobilized roughness 

coefficient of the fracture at the corresponding shear displacement, 𝐽𝐶𝑆𝑚𝑜𝑏 the mobilized 

uniaxial compressive strength of the rock material.  

Barton et al. based on the concept of mobilized roughness used two dimensionless coordinates 

to facilitate the simulation of shear stress-shear displacement behaviour. These two coordinates 

are expressed as follows: 

 
𝐽𝑅𝐶𝑚𝑜𝑏  

𝐽𝑅𝐶𝑝𝑒𝑎𝑘
=

𝜑𝑚𝑜𝑏 − 𝜑𝑟 

𝑖𝐵
 (2.38) 

where 𝑖𝐵 according to Barton et al. (1985) is calculated as follows: 

 𝑖𝐵 = 𝐽𝑅𝐶𝑝𝑒𝑎𝑘 log (
𝐽𝐶𝑆

𝜎𝑛
) (2.39) 

the whole shear stress-shear displacement behaviour is divided into five key aspects (Barton et 

al. 1985): 

1. The beginning of shearing is accompanied by the mobilisation of friction  

2. Dilation occurs once the mobilisation of roughness begins. According to Barton, during 

the shearing of a rock discontinuity, recoverable strains are generated until the amount 

of the applied displacement becomes equal to 30% of the total amount of shearing. From 

this point and after the mobilisation of roughness begins and the phenomenon of 

dilations is observed. The calculation of generated dilation is calculated as follows: 
 

𝑑𝑢𝑛 =
1

2
𝐽𝑅𝐶𝑚𝑜𝑏  log (

𝐽𝐶𝑆

𝜎𝑛
) (2.40) 

3. Peak shear strength is reached a 𝐽𝑅𝐶𝑚𝑜𝑏/𝐽𝑅𝐶𝑝𝑒𝑎𝑘=1 and 𝛿/𝛿𝑝𝑒𝑎𝑘=1. At peak shear 

displacement the dilatancy is given as: 

 
𝑑𝑢𝑛𝑝𝑒𝑎𝑘

=
1

2
𝐽𝑅𝐶𝑝𝑒𝑎𝑘 log (

𝐽𝐶𝑆

𝜎𝑛
) (2.41) 

4. Both shear stress and dilatancy decrease with the further increment of  the shear 

displacement 

5. Dilation is eliminated once the residual stress is reached.  

Figure 2.16 depicts, the key features that describe the evolution of 𝐽𝑅𝐶𝑚𝑜𝑏 of a rock fracture 

subjecting to shear displacement:  
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Figure 2.16: Dimensionless graph illustrating the evolution of  𝐽𝑅𝐶𝑚𝑜𝑏 during the shearing process (Barton et al., 1985) 

Furthermore, Barton (1976), based on experimental results obtained after the conduction of 

direct shear tests on a variety of artificial discontinuities, noted that the shear strength of a 

discontinuity can be estimated with adequate accuracy under low levels of normal stress (0.08 

kPa-0.2kPa) if an appropriate value of the JRC parameter is adopted. In addition, based also on 

experimental data of shear tests under very low normal stresses (lower than 0.05 kPa) he 

highlighted that for rough discontinuities a strength envelope having a vertical tangent at/close 

to the shear stress axis instead of a cohesion (as it is suggested by Coulomb) is inherently 

satisfying as limiting condition.  

In conclusion, the Barton-Bandis model is a physically motivated empirical model for rock 

discontinuities which has been extensively used for a wide range of rock mechanics 

applications. Its popularity can be attributed to the fact that it can represent realistically, the 

mechanical behaviour of a rock fracture as this has been observed in laboratory experiments. 

More specifically, this model can reproduce the non-linear pre- and post-peak strength and 

dilation evolution considering the consequences of overriding and damaging the asperities 

during the shearing process. Moreover, the Barton-Bandis accurately captures the 

fundamentally essential behaviour which denotes that shear stress reaches its maximum value 

when the dilation also reaches its peak. Finally, as explained in Section 2.3.3.4 Barton considers 

the scale effects by estimating the values of JRC and JCS in several scales. 

On the other hand, the strong non-linearity of the Barton-Bandis model represents a challenge 

for implementation in geomechanics simulations due to possible numerical convergence issues 

(Lei and Barton, 2022). In particular, the mathematical expressions are not valid over the entire 

stress zone, which makes the numerical implementation very challenging. This will be 

discussed in more detail in Chapter 3. Furthermore, because it is a highly empirical model some 

of the parameters which are used are difficult to be determined through standard laboratory 
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tests. In addition, according to Grasseli and Eager (2003), the estimated values of JRC provided 

by Barton have been acquired based on the analysis of only a single profile in the direction of 

shearing whereas it has been shown that shearing strictly depends on three-dimensional contact 

area location and distribution. Finally, even though the Barton-Bandis model is applied for 

monotonic shear paths of increasing (or constant) normal stresses with adequate flexibility, it 

presents theoretical difficulties for complex loading paths due to its empirical nature (Jing and 

Stephansson, 2007).  

2.4.4 Gens’s model 

Gens et al. (1990), introduced an elastoplastic constitutive law to describe the three-

dimensional mechanical behaviour of a rock discontinuity. The main objective of the authors 

of this constitutive law was to introduce a model for use in numerical analysis that can 

reproduce the mechanical behaviour of a discontinuity considering also the three-dimensional 

effects (anisotropy). For this reason, the suggested model was devised with a great degree of 

flexibility so that it can accommodate easily any observed laboratory or field test results. 

Gens et al. (1990) adopted a hyperbolic function for the calculation of peak shear strength. In 

more detail, they proved that the following hyperbolic function extracts results that fit with 

sufficient accuracy the shear strength of natural and artificial discontinuities determined in both 

the laboratory and field: 

 
𝜏 = 𝛣√𝜎𝑛

2 + 2𝑎𝜎𝑛 
(2.42) 

where 𝛣 is a constant which renders the slope of the asymptote when normal stress (𝜎𝑛) tends 

to infinity while 𝑎 is a constant which denotes the distance between the origin and the point 

where the asymptote intercepts the axis of normal stress (Figure 2.17). 

 

Figure 2.17: Hyperbolic strength criterion adopted in Gens et al. model (modified after Gens et al. 1995) 

Furthermore, the normal stress-normal deformation relationship in Gens et al. (1990) model is 

described through a hyperbolic formulation which is a simplified version of the expression that 

Goodman suggested: 

 𝜎𝑛 = 𝑚
𝑢𝑛

𝑒

𝑢𝑛𝑚𝑎𝑥
− 𝑢𝑛

𝑒
 (2.43) 

where  𝑢𝑛
𝑒 is the elastic normal deformation while 𝑚 is a constant. On unloading Equation 

(2.43) is modified as follows: 
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 𝜎𝑛 = 𝑚
𝑢𝑛

𝑒 − 𝜂

𝑢𝑛𝑚1
− (𝑢𝑛

𝑒 − 𝜂)
 (2.44) 

Where 𝑢𝑛𝑚1
 is a model parameter (𝑢𝑛𝑚1

< 𝑢𝑛𝑚𝑎𝑥
) and 𝜂 is the value of the normal 

displacement reached during the unloading process when the applied normal stress is nil. Upon 

reloading Equation (2.43) is reformulated as follows: 

  

 𝜎𝑛 = 𝑚
𝑢𝑛

𝑒 − 𝜂

𝑢𝑛𝑚𝑎𝑥
− 𝑢𝑛

𝑒
 (2.45) 

Thus, the value of the normal stiffness at each stage of loading cycles (loading, unloading, 

reloading) is calculated by differentiating the corresponding equation which describes the 

normal stress-normal deformation relationship.  On the other hand, it must be noted that elastic 

shear stiffness in this model is considered constant. 

Based on these considerations Gens et. al. (1990) introduced their elastoplastic constitutive 

model. For consistency with the strength criterion that was described by Equation (2.42) the 

expression of the yield surface is described also by a non-linear hyperbolic (yield) function as 

follows: 

 
𝐹 = 𝜏1

2 + 𝜏2
2 − 𝑡𝑎𝑛2𝜑(𝜎𝑛

2 + 2𝑎) (2.46) 

where 𝜏1 and 𝜏2 are the two components of shear stress while 𝑎 and 𝑡𝑎𝑛𝜑 are the hardening 

parameters.  

The variation of hardening parameters with plastic strains, which denotes the ability of the 

created model to capture the hardening and softening behaviour of a discontinuity, is controlled 

by an internal variable 𝜉 which is defined as follows: 

 𝑑𝜉 = √(𝑑𝑢𝑠1

𝑝 )2 + (𝑑𝑢𝑠2

𝑝 )2 (2.47) 

where 𝑑𝑢𝑠1

𝑝
 and 𝑑𝑢𝑠2

𝑝
 are the two components of plastic shear displacement. Figure 2.18 

illustrates the variation of the hardening parameter 𝑎 with 𝜉: 

 

Figure 2.18: Variation of hardening parameter α with ξ 
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Observing Figure 2.18, it can be noted that the pre-peak variation of the 𝑎 parameter is 

described by a second-degree parabola while the post-peak variation is described by a third-

degree polynomial. The residual conditions are reached once the internal variable 𝜉 is equal to 

its residual value (𝜉𝑟). Gens et al. (1990) stated that the value of the second hardening parameter 

𝑡𝑎𝑛𝜑 but also the value of the dilation varies with the value of the internal variable 𝜉 adopting 

the same variation as the variation of 𝑎. Regarding the calculation of the peak dilation angle, 

they introduced the following formulation: 

 𝑡𝑎𝑛𝑖𝑝𝑒𝑎𝑘 = 𝑡𝑎𝑛𝑖𝑝𝑒𝑎𝑘
0 (1 −

𝜎𝑛

𝜎𝑐
)

4

 (2.48) 

where 𝑖𝑝𝑒𝑎𝑘
0  is the peak dilation angle for zero applied normal stress 

It must be pointed out that the formulation of the yield function corresponds to yield surfaces 

that are symmetrical with respect to the axis of normal stress (as indicated by Figure 2.17). This 

condition implies that the model can capture only isotropic because a possible change in the 

shearing direction will not affect the mechanical behaviour unless it involves a change from 

loading to unloading (Gens et al., 1990). Further improvement of the introduced model 

suggested a non-symmetrical formulation of the yield function making the model able to 

capture the anisotropic behaviour. In more detail, the new formulation of the yield function is 

written as follows: 

 𝐹 = 𝜏𝑠
2 + 𝜎𝑛(|𝜎𝑛| + 2𝛼𝑠) 

(2.49) 

where: 

 𝜏𝑠
2 =

𝜏1
2

𝑡𝑎𝑛2𝜑1
+

𝜏2
2

𝑡𝑎𝑛2𝜑2
 (2.50) 

 𝛼𝑠 = 𝛼1

𝜏1
2

𝜏1
2 + 𝜏2

2
+ 𝛼2

𝜏2
2

𝜏1
2 + 𝜏2

2
 (2.51) 

the superscripts 1 and 2 correspond to the two components of shear stress.  

Concluding, the elastoplastic constitutive law introduced by Gens et al. (1990) can represent 

with adequate accuracy the three-dimensional mechanical behaviour of a discontinuity. Its 

ability to model the anisotropic behaviour of a discontinuity in combination with the high 

degree of flexibility of its formulation so that can accommodate different types of rock 

discontinuities summarise the main advantages of this model. On the other hand, even though 

this model is intended for use in numerical analysis, the numerical implementation of the model 

requires a complex integration procedure to consider all the modes of the behaviour of a 

discontinuity (Gens et al.,1990). 

2.4.5 Saeb and Amadei model 

Saeb and Amadei (1992) based on modifications that they did to Goodman’s model (1976) (for 

the evolution of shear stress-shear strain behaviour) and the hyperbolic model of Barton et al. 

(1985) (for the evolution of normal stress-normal closure behaviour), they introduced a model 

which accounts not only for the effect of boundary conditions on the shear response of a rough 
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(dilatant) fracture but also for the fluctuation of its normal deformability as it undergoes 

shearing.  

 

More specifically, the peak strength of a discontinuity in the developed model is calculated 

based on a re-examined version of the Ladanyi and Archambault strength criterion suggested 

by Saeb (1990). The new version of the strength criterion is written as follows: 

 𝜏𝑝𝑒𝑎𝑘 = 𝜎𝑛tan(𝜑𝜇 + 𝑖)(1 − 𝑎𝑠) + 𝑎𝑠𝑠𝑅 (2.52) 

The physical meaning and the formulations of the used parameters in Equation (2.52) are the 

same as the ones introduced in Section (2.4.2). 

The Saeb and Amadei model relates the normal stress-strain behaviour of a discontinuity in the 

normal direction with its shear stress-strain and dilatant behaviour. According to this model, 

the rock joint deformability is described as a non-linear incremental formulation whose 

applicability was assessed using the experimental results of Leichnitz (1985): 

 
[
𝑑𝜎𝑛

𝑑𝜏
] = [

𝑘𝑛𝑛 𝑘𝑛𝑠

𝑘𝑠𝑛 𝑘𝑠𝑠
] [

𝑑𝑢𝑛

𝑑𝑢𝑠
] 

(2.53) 

The (2 x 2) non-symmetrical matrix in Equation (2.53), is the material tangent stiffness. The 

terms 𝑘𝑛𝑠 and 𝑘𝑠𝑛 represent the coupling between the shear and normal strain. Saeb and Amadei 

introduced formulations for the calculation of all the elements of the stiffness matrix for both 

constant displacement and constant stiffness models suggested by Goodman(1976) for the 

description of the evolution of the shear stress-shear deformation relationship. The formulations 

of both models for the calculation of the stiffness terms are expressed as follows: 

For both models the two normal stiffness terms are given from the following formulations: 

 
𝑘𝑛𝑛 =  

𝜕𝜎𝑛

𝜕𝑢𝑛
=

1

−𝑢𝑠𝑘2

𝜎𝑇
(1 −

𝜎𝑛

𝜎𝑇
)

(𝑘2−1)

𝑡𝑎𝑛𝑖0 +
𝑉𝑚

2𝑘𝑛𝑖

(𝑉𝑚𝑘𝑛𝑖 − 𝜎𝑛)2

 
(2.54) 

 

𝑘𝑛𝑠 =  
𝜕𝜎𝑛

𝜕𝑢𝑠
=

− (1 −
𝜎𝑛

𝜎𝑇
)

(𝑘2−1)

𝑡𝑎𝑛𝑖0

−𝑢𝑘2

𝜎𝑇
(1 −

𝜎𝑛

𝜎𝑇
)

(𝑘2−1)

𝑡𝑎𝑛𝑖0 +
𝑉𝑚

2𝑘𝑛𝑖

(𝑉𝑚𝑘𝑛𝑖 − 𝜎𝑛)2

 

(2.55) 

 

Constant displacement model 

Main diagonal: 

 
𝑘𝑠𝑠 =  

𝜕𝜏

𝜕𝑢𝑠
=

𝑢𝑠

𝑢𝑠𝑝𝑒𝑎𝑘

𝑘𝑛𝑠

𝜕𝜏𝑝𝑒𝑎𝑘

𝜕𝜎𝑛
+

𝜏𝑝𝑒𝑎𝑘

𝑢𝑠𝑝𝑒𝑎𝑘

, if  𝑢𝑠 < 𝑢𝑠𝑝𝑒𝑎𝑘
 

(2.56) 
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𝑘𝑠𝑠 =  

𝜕𝜏

𝜕𝑢𝑠
=

𝜏𝑝𝑒𝑎𝑘 − 𝜏𝑟𝑒𝑠

𝑢𝑝𝑒𝑎𝑘 − 𝑢𝑟𝑒𝑠
{
𝜕𝜏𝑝

𝜕𝜎𝑛
(𝑢𝑠  

− 𝑢𝑟𝑒𝑠) + (𝑢𝑝𝑒𝑎𝑘

− 𝑢𝑠) [
𝜕𝜏𝑝𝑒𝑎𝑘

𝜕𝜎𝑛
(Bo +

1 − 𝐵𝑜

𝜎𝑡
𝜎𝑛) +

𝜏𝑝𝑒𝑎𝑘

𝜎𝑡
(1 − 𝐵𝑜)]}  

 

if  𝑢𝑠𝑝𝑒𝑎𝑘
< 𝑢𝑠 < 𝑢𝑠𝑟𝑒𝑠

 

(2.57) 

 
𝑘𝑠𝑠 =  

𝜕𝜏

𝜕𝑢𝑠
= 0, if  𝑢𝑠 > 𝑢𝑠𝑟𝑒𝑠

 
(2.58) 

Off-diagonal coupling terms: 

 
𝑘𝑠𝑛 =  

𝜕𝜏

𝜕𝑢𝑛
=

𝑢𝑠

𝑢𝑠𝑝𝑒𝑎𝑘

𝑘𝑛𝑛

𝜕𝜏𝑝𝑒𝑎𝑘

𝜕𝜎𝑛
, if  𝑢𝑠 < 𝑢𝑠𝑝𝑒𝑎𝑘

 

 

(2.59) 

 
𝑘𝑠𝑛 =  

𝜕𝜏

𝜕𝑢𝑛
=

𝑘𝑛𝑠

𝑢𝑝 − 𝑢𝑟𝑒𝑠
{
𝜕𝜏𝑝

𝜕𝜎𝑛
(𝑢𝑠  

− 𝑢𝑟𝑒𝑠)

+ (𝑢𝑝𝑒𝑎𝑘 [
𝜕𝜏𝑝𝑒𝑎𝑘

𝜕𝜎𝑛
(Bo +

1 − 𝐵𝑜

𝜎𝑡
𝜎𝑛) +

𝜏𝑝𝑒𝑎𝑘

𝜎𝑡
(1 − 𝐵𝑜)]},  

if  𝑢𝑠𝑝𝑒𝑎𝑘
< 𝑢𝑠 < 𝑢𝑠𝑟𝑒𝑠

 

(2.60) 

 
𝑘𝑠𝑛 =  𝑘𝑛𝑛 [

𝜕𝜏𝑝𝑒𝑎𝑘

𝜕𝜎𝑛
(Bo +

1 − 𝐵𝑜

𝜎𝑡
𝜎𝑛) +

𝜏𝑝𝑒𝑎𝑘

𝜎𝑡

(1 − 𝐵𝑜)] , if  𝑢𝑠 > 𝑢𝑠𝑟𝑒𝑠
 

(2.61) 

Constant stiffness model 

Main diagonal: 

 𝑘𝑠𝑠 =  
𝜏𝑝𝑒𝑎𝑘

𝑢𝑠𝑝𝑒𝑎𝑘

, if  𝑢𝑠 < 𝑢𝑠𝑝𝑒𝑎𝑘
 

(2.62) 

 
𝑘𝑠𝑠 =  

𝜕𝜏

𝜕𝑢𝑠
=

𝜏𝑝𝑒𝑎𝑘 − 𝜏𝑟𝑒𝑠

𝑢𝑝𝑒𝑎𝑘 − 𝑢𝑟𝑒𝑠
+ 𝑘𝑛𝑠

𝜕𝜏𝑝𝑒𝑎𝑘

𝜕𝜎𝑛

1

𝜏𝑝𝑒𝑎𝑘
(

𝑢𝑝𝑒𝑎𝑘𝜏𝑟𝑒𝑠 − 𝜏𝑝𝑒𝑎𝑘𝑢𝑟𝑒𝑠

𝑢𝑝𝑒𝑎𝑘 − 𝑢𝑟𝑒𝑠
)  

 

if  𝑢𝑠𝑝𝑒𝑎𝑘
< 𝑢𝑠 < 𝑢𝑠𝑟𝑒𝑠

 

(2.63) 

 𝑘𝑠𝑠 is given using the defined Equation (2.58), if  𝑢𝑠 > 𝑢𝑠𝑟𝑒𝑠
  

Off-diagonal coupling terms: 

 
𝑘𝑠𝑛 =

𝜕𝜏

𝜕𝑢𝑛
= 0, if  𝑢𝑠 < 𝑢𝑠𝑝𝑒𝑎𝑘

 (2.65) 

 
𝑘𝑠𝑛 =  

𝜕𝜏

𝜕𝑢𝑠
= 𝑘𝑛𝑛

𝜕𝜏𝑝𝑒𝑎𝑘

𝜕𝜎𝑛

1

𝜏𝑝𝑒𝑎𝑘
(

𝑢𝑝𝑒𝑎𝑘𝜏𝑟𝑒𝑠 − 𝜏𝑝𝑒𝑎𝑘𝑢𝑟𝑒𝑠

𝑢𝑝𝑒𝑎𝑘 − 𝑢𝑟𝑒𝑠
)  

 

if  𝑢𝑠𝑝𝑒𝑎𝑘
< 𝑢𝑠 < 𝑢𝑠𝑟𝑒𝑠

 

(2.66) 

 𝑘𝑠𝑛 is given using the defined Equation (2.61), if  𝑢𝑠 > 𝑢𝑠𝑟𝑒𝑠
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In conclusion, Saeb and Amadei’s model is considered a pioneer model because, in contrast 

with the existing models at that period, which were assuming that the normal stiffness is 

independent of the shear displacement (only valid for non-dilatant fractures), they proved that 

the normal stiffness of a rough discontinuity depends on both normal stress and shear 

displacement. Furthermore, Souley et al., (1995) presented a generalization of the Saeb and 

Amadei model to loading with changes in normal and shear loading directions (cyclic loading. 

On the other hand, Saeb and Amadei’s model implicitly assumes that the shear strength of a 

discontinuity is independent of the stress path. This assumption may lead to incorrect results 

since depending on the stress path the contribution of shearing through asperities and sliding 

over asperities may vary with the stress path resulting in different joint surface damage. 

2.4.6 Grasseli and Egger model 

Grasselli and Egger (2003) introduced an empirical constitutive law for the description of the 

mechanical behaviour of a mated discontinuity subjected to shearing under CNL conditions. 

Based on observations on the experimental results of 45 shear tests on fresh tensile rough rock 

discontinuities, they derived an expression for the peak-shear strength that is valid for both 

natural rock discontinuities and mortar replicas. More specifically, observing the surfaces of 

sheared rock discontinuities they noted that the tensile strength is more important than 

compressive strength in quantifying the peak shear strength of matching rock discontinuities. 

Furthermore, in contrast to Barton-Bandis’s strength criterion, which does not consider the 

three-dimensionalities of rock joints, they considered the morphology of the asperities 

concerning the shear direction. 

Based on the assumption that the mechanical behaviour discontinuities can be properly 

reproduced though experiments on mortar replicas, their strength criterion is expressed as 

follows: 

 𝜏𝑝𝑒𝑎𝑘 = 𝜎𝑛𝑡𝑎𝑛𝜑𝑟
∗(1 + 𝑒−(𝜃𝑚𝑎𝑥

∗ 𝐵𝐴0𝐶)(𝜎𝑛/𝜎𝑐)) (2.68) 

where 𝜎𝑛 expresses the applied normal stress, 𝜎𝑐 is the uniaxial compressive strength (of intact 

rock), 𝜑𝑟
∗ is the residual friction angle measured after a shear displacement of 5mm, 𝜃𝑚𝑎𝑥

∗  is 

the maximum apparent dip angle concerning to the shear direction (based on laboratory test on 

natural fractures the notes that has values in a range between 20° and 90°), 𝐵 is a dimensionless 

fitting parameter (multiple least-squares regression using experimental results from 37 rock 

joint samples indicated that its value is equal to 9), 𝐴0 is the maximum potential contact area 

for the specified shear direction and 𝐶 is the roughness parameter.  

The authors introduced the following empirical relationship for the calculation of the residual 

friction angle 𝜑𝑟
∗: 

 𝜑𝑟
∗ = 𝜑𝑏 + (

𝜃𝑚𝑎𝑥
∗

𝐶
)

1.18 cos 𝑎

 (2.69) 

where 𝜑𝑏 is the basic friction angle, 𝜃𝑚𝑎𝑥
∗  is the maximum apparent dip angle of the surface 

concerning the shear direction, C is the roughness parameter, and 𝑎 is the angle between the 

schistosity plane and the normal to the joint. If the examined rock does not exhibit schistosity 

𝑎 is considered equal to zero. The value of the roughness parameter is calculated using a best-

fit regression function (Grasseli, 2001). 

Grasselli and Egger (2003) also observed from experimental results, that at the beginning of 

the shearing process, the discontinuity is not perfectly mated. Therefore, it was noted that a 
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small displacement occurs before the joint provides all its strength. Based on this observation 

they suggested that the displacement which corresponds to the peak shear strength of the joint 

is expressed as follows: 

 
𝑢𝑝𝑒𝑎𝑘 = 𝑢𝑚 + 𝛥𝑢𝑝𝑒𝑎𝑘 (2.70) 

where 𝑢𝑚 denotes the horizontal displacement necessary to mate the joint while the 𝛥𝑢𝑝𝑒𝑎𝑘 is 

the occurred horizontal displacement of the discontinuity before reaching its peak shear 

strength. 

Moreover, through the observation of the experimental results Grasseli and Egger noted that as 

the discontinuity is mated, the shear stress-shear strain behaviour of a rock joint is almost linear 

till the peak shear stress. Thus, a linear relation is used to describe the shear stiffness of a rock 

discontinuity: 

 
𝑘𝑠 =

1

𝛥𝑢𝑝𝑒𝑎𝑘

𝜏𝑝𝑒𝑎𝑘

𝜎𝑛
 (2.71) 

where 𝜏𝑝𝑒𝑎𝑘 is the peak-shear strength, 𝜎𝑛 is the applied normal stress and 𝛥𝑢𝑝𝑒𝑎𝑘 is the 

occurred horizontal displacement of the discontinuity before reaching its peak shear strength 

 Furthermore, considering the characteristics of the experimentally observed shear stress-shear 

strain curves and based on the strength criterion that they introduced, they formulated a model 

able to capture the shear strength of a discontinuity subjected to shearing under CNL 

conditions: 

 𝜏

𝜎𝑛
= 0,  if  0 ≤ 𝑢𝑠 ≤ 𝑢𝑚 (2.72) 

 𝜏

𝜎𝑛
= 𝑘𝑠(𝑢𝑠 − 𝑢𝑚) =

1

𝛥𝑢𝑝𝑒𝑎𝑘

𝜏𝑝

𝜎𝑛
(𝑢𝑠 − 𝑢𝑚),   if  𝑢𝑚 ≤ 𝑢𝑠 ≤ 𝑢𝑝𝑒𝑎𝑘 (2.73) 

 𝜏

𝜎𝑛
=

𝜏𝑟𝑒𝑠

𝜎𝑛
+

𝜏𝑝𝑒𝑎𝑘−𝜏𝑟𝑒𝑠

𝜎𝑛

𝑢𝑝𝑒𝑎𝑘

𝑢𝑠
, if  𝑢𝑠 ≥ 𝑢𝑝𝑒𝑎𝑘 (2.74) 

Concluding, Grasseli and Egger (2003) introduced a constitutive model which delineates with 

adequate accuracy experimental shear tests conducted both on replicas and fresh rock 

discontinuities. Additionally, the main pioneering characteristic of the created model is that can 

capture the anisotropy of the shear stress caused by the three-dimensional character of 

roughness (Grasselli, G., & Egger, P. (2003). In the created model, the contribution of 

roughness is not calculated based on single profiles (as Barton et.al (1985) suggested) but it 

captures parameters that are calculated on the entire fracture surface. Furthermore, 

experimental tests conducted by the same authors using their introduced strength criterion 

indicated the contribution of roughness in shear strength by proving that a rough joint provides 

much bigger shear strength than a smooth one. 

 

On the other hand, the main limitations of the Grasseli and Egger model are that no attempt 

was made to investigate the influence of scale on shearing and that the model is based on the 

assumptions that the behaviour of replicas is the same as the behaviour of fresh rock fractures. 

2.4.7 Overview table 

In rock discontinuity modelling, a constitutive model is characterized as a “complete” model 

when it provides formulations which can be used to capture the stress-strain behaviour of a 
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discontinuity in both normal and/or shear direction. More specifically a complete constitutive 

model must provide the formulations of the strength criterion that is based on but also the 

formulation of shear and normal stiffness which it uses. The following table aims to denote the 

characteristics which are provided by each model which were described in the previous 

sections: 
Table 2.1: Overview table of models' main characteristics 

  

Table 2.1 provides an overview of the models which were found in the literature and described 

in the current chapter. Among the advanced models, the Barton-Bandis (BB) model is probably 

the most cited one, both in academic research and industry. However, in terms of practical 

adoption, Coulomb is the most adopted one due to its simplicity that is indicated by the adoption 

of one of the simplest linear shear failure criteria in combination with the small number and 

easy-to-determine required parameters. Furthermore, Coulomb’s model can be “enhanced” by 

taking advantage of the linear softening trend that Goodman’s model adopts. In this way, the 

post-peak behaviour of a discontinuity subjecting to shearing can be simulated using a simpler 

model with a simpler strength criterion than the one suggested by Landanyi and Archambault 

which is used by the original formulation of Goodman’s model. Therefore, in the following, 

these two main families of models, based on Coulomb and BB models, will be investigated in 

detail. Concretely, in the next chapter, theoretical simulation will be carried out on these models 

for the modelling of laboratory tests.  
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3 Theoretical simulation of Constant Normal Load tests 

with different discontinuity constitutive models 

3.1 Introduction 

Theoretical simulations of a typical Constant Normal Load (CNL) test will be carried out in 

this chapter. To this end, incremental equations are formulated for each constitutive model 

within the framework of Plasticity theory and integrated using an explicit integration scheme. 

These equations are then implemented in a Python script to simulate a two-phased laboratory 

test using a monotonic loading path (e.g., a normal compression test followed by a direct shear 

test keeping the loading level in the normal direction reached at the end of the compression 

phase constant).  

The objective of this simulation is multifold. First, it helps to enhance the understanding of the 

different constitutive models presented above. Second, the formulation of the incremental 

governing equations can serve as a base for the Finite Element (FE) numerical implementation 

presented in a later chapter. Finally, these theoretical simulations also serve as a reference 

solution for the verification of FE modelling.  

In this chapter, as aforementioned, only two families of constitutive models are selected for this 

in-depth investigation. These models are selected based on both their theoretical consistency 

and practical values. All of them are formulated within the Plasticity theory, which has been 

proven to be convenient and rigorous for FE implementation. They are also widely accepted in 

both practical rock engineering and academic research. Concretely, the following models are 

considered:  

1. Coulomb-based models, including different versions: elastic-perfectly plastic Coulomb 

model (original version), elasto-plastic model with strain softening, and elasto-plastic 

model with strain softening and nonlinear stiffnesses. 

2. Barton-Bandis-based models, including different versions: modified BB model and 

elastic-perfectly plastic BB model with hyperbolic nonlinear stiffnesses. 

In the following, the general equations of plasticity and an explicit integration scheme are 

presented. These equations will apply to each specific model for the simulation of CNL tests.  

3.2 General constitutive equations in plasticity theory 

The description of the mechanical behaviour of rock discontinuities is formulated through the 

following relations: 

The stress vector is composed of its directional components:  

where 𝜎𝑛 and 𝜏 represent the normal and shear stresses, respectively while 𝑑 denotes the 

increment. 

Similarly, the displacement vector can be represented as follows: 

 𝑑𝜎 = [𝑑𝜎𝑛 𝑑𝜏]𝑇 (3.1) 
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 𝑑𝑢 = [𝑑𝑢𝑛 𝑑𝑢𝑠]𝑇 (3.2) 

where 𝑢𝑛 and 𝑢𝑠 are the normal and shear displacements, respectively. 

Furthermore, elastoplastic modelling of rock discontinuities begins by postulating that the joint 

displacement can be additively decomposed into elastic and inelastic (plastic) parts (basic 

principle of elastoplasticity) as: 

 𝑢 =  𝑢𝑒 +  𝑢𝑝 (3.3) 

In Equation (3.3) the superscripts e and p denote the elastic and the plastic deformations, 

respectively. Accordingly, the normal and shear displacement of a rock discontinuity can be 

decomposed into their elastic and plastic components as follows: 

 𝑑𝑢𝑛 = 𝑑𝑢𝑛
𝑒 + 𝑑𝑢𝑛

𝑝
 (3.4) 

 𝑑𝑢𝑠 = 𝑑𝑢𝑠
𝑒 + 𝑑𝑢𝑠

𝑝   (3.5) 

Considering Hooke’s law and the just introduced formulations, the deformability of a 

discontinuity (stress-strain relationship) can be described using the following differential 

formulation: 

 [
𝑑𝜎𝑛

𝑑𝜏
] = [

𝑘𝑛  0  
0  𝑘𝑠  

] [
𝑑𝑢𝑛

𝑒

𝑑𝑢𝑠
𝑒] (3.6) 

In Equation (3.6), the stress vector is related to the strain vector based on the (2 x 2) non-

symmetrical matrix of the material’s tangent stiffness. Within the plasticity framework, the 

condition which defines the limit of elasticity and the beginning of plastic deformation under 

any combination of stresses is known as the yield condition or yield criterion. All the generated 

strains are recoverable in the elastic region once the applied stress is removed. However, once 

the yield criterion is reached, some of the generated deformations will be permanent and 

irrecoverable. This part of the deformation is also known as plastic deformation. 

The yield criterion is represented by a surface in the stress space, known as the yield surface. 

Mathematically, the yield surface is expressed through a formulation which is called yield 

function. When the stress state is located within the boundaries of the yield surface, the 

behaviour of the material is characterized as elastic. Once the generated stress state is located 

on the yield surface, the generation of plastic deformations is initiated. Plastic deformations 

lead to the hardening of the material and the increase of its elastic limit. In other words, the 

yield surface will not be fixed in the stress space, but it will change its size (expand or shrink) 

based on the previous plastic deformation and loading history.  

The expansion of the yield surface denotes the hardening of the material while the shrinking of 

the yield surface points out that the material is undergoing softening. The mathematical 

formulation of the yield function of the constitutive models which are capable of capturing the 

hardening and softening behaviour is often expressed as a function of the stress vector 𝜎 and 

of a so-called state parameter 𝜅 (the evolution of the state parameter itself is generally expressed 

as a function of the plastic displacement 𝑢𝑝) as follows: 

 𝐹(𝜎, 𝜅) = 0   (3.7) 
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On the other hand, the constitutive models which use simpler constitutive laws to describe the 

mechanical behaviour of discontinuities have been formulated within the framework of perfect 

plasticity. In this case, the size of the yield surface is fixed and does not fluctuate with stress 

history. The mathematical formulation of the yield function of these models is expressed only 

as a function of 𝜎 as follows: 

 
𝐹(𝜎) = 0 

(3.8) 

For each stress state, the value of the yield function is examined. If its value is below zero, the 

applied stress path is located within the yield contour and the generated strains remain elastic. 

On the contrary, if the yield function is reached the rate of plastic displacements is governed 

by a non-associative flow rule which requires the introduction of a plastic potential 𝐺 ≠ 𝐹. The 

rate of plastic displacements is calculated based on the so-called flow rule as follows: 

 𝑑𝑢𝑝 = 𝑑𝜆
𝜕𝐺

𝜕𝜎
 (3.9) 

where the plastic multiplier 𝜆 defines the magnitude of the plastic deformations. 

3.3 General incremental equations for an explicit integration scheme for CNL 

configuration 

The aim of this section is to provide a general framework of constitutive relationships 

compatible with an explicit integration algorithm. It must be pointed out that in favour of 

generality, the incremental formulations have been written considering the yield function of a 

non-elastoplastic model (the state parameter is represented by the plastic shear displacement 

𝑢𝑠
𝑝). 

The formulation of the relationship between stress rates and strain rates according to 

elastoplasticity theory starts from Hooke’s law of elastic strains. Therefore, using the 

differential formulation for the deformability of rock discontinuities derived in Equation (3.6), 

the evolution of normal stress 𝑑𝜎𝑛 can thus be expressed as a function of normal stiffness 𝑘𝑛 

and elastic normal strain rates 𝑑𝑢𝑛
𝑒
: 

 𝑑𝜎𝑛 = 𝑘𝑛𝑑𝑢𝑛
𝑒
 (3.10) 

Equation (3.10) can be further detailed as follows: 

 
𝑢𝑛𝑘

𝑒 =
(𝜎𝑛𝑘

− 𝜎𝑛𝑘−1
)

𝑘𝑛
+ 𝑢𝑛𝑘−1

𝑒  
(3.11) 

where 𝑘 denotes the current calculation step of the integration scheme while 𝑘 − 1 indicates 

the previous calculation step. 

Similarly, the evolution of shear stress can be expressed from the following equation: 

 𝑑𝜏 = 𝑘𝑠𝑑𝑢𝑠
𝑒
 (3.12) 
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Considering the basic principle of elastoplasticity introduced by Equation (3.5) and the flow 

rule expressed in Equation (3.9) the shear stress increment is further elaborated in the following 

relation: 

 𝑑𝜏 = 𝑘𝑠(𝑑𝑢𝑠 − 𝑑𝑢𝑠
𝑝) = 𝑘𝑠(𝑑𝑢𝑠 − 𝑑𝜆

𝜕𝐺

𝜕𝜏
)     (3.13) 

By integrating this formula, the following relation is obtained: 

 ∫ 𝑑𝜏
𝜏𝑘

𝜏𝑘−1

= ∫ 𝑘𝑠𝑑𝑢𝑠

𝑢𝑠𝑘

𝑢𝑠𝑘−1

− ∫ 𝑘𝑠𝑑𝜆
𝜕𝑔

𝜕𝜏

𝑢𝑠𝑘

𝑢𝑠𝑘−1

  (3.14) 

Further, elaboration of equation  (3.14) leads to the following formulation: 

 
   

𝜏𝑘 = 𝜏𝑘−1 + ∫ 𝑑𝜏
𝜏𝑘

𝜏𝑘−1

= 𝜏𝑘−1 + ∫ 𝑘𝑠𝑑𝑢𝑠

𝑢𝑠𝑘

𝑢𝑠𝑘−1

− ∫ 𝑘𝑠𝑑𝜆
𝜕𝐺

𝜕𝜏

𝑢𝑠𝑘

𝑢𝑠𝑘−1

   
 (3.15) 

By setting   

   𝜏∗ = 𝜏𝑘−1 + ∫ 𝑘𝑠𝑑𝑢𝑠

𝑢𝑠𝑘

𝑢𝑠𝑘−1

   
(3.16) 

 

and 

 
    

𝑑𝜏𝑝 = ∫ 𝑘𝑠𝑑𝜆
𝜕𝐺

𝜕𝜏

𝑢𝑠𝑘

𝑢𝑠𝑘−1

  
(3.17) 

considering also the derived Equation (3.9), Equation (3.17) can be specified as follows: 

 
    

𝑑𝜏𝑝 = ∫ 𝑘𝑠𝑑𝑢𝑠
𝑝

𝑢𝑠𝑘

𝑢𝑠𝑘−1

  
   (3.18) 

  

thus Equation  (3.15) can be rewritten as: 

 
   𝜏𝑘 = 𝜏∗ − 𝑑𝜏𝑝   (3.19) 

where 𝜏∗ represents the so-called elastic trial. 

Considering Equation    (3.18), Equation (3.19) can be further modified as follows: 

 𝜏∗ −  𝜏𝑘 = ∫ 𝑘𝑠𝑑𝑢𝑠
𝑝

𝑢𝑠𝑘

𝑢𝑠𝑘−1

 (3.20) 

Solving the integral of Equation (3.20) the following relation is obtained: 

 
𝜏∗ −   𝜏𝑘 = 𝑘𝑠(𝑢𝑠𝑘

𝑝 − 𝑢𝑠𝑘−1

𝑝 ) (3.21) 
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Equation (3.19) indicates that the calculated value of shear stress of each calculation step is 

equal to the calculated value of  𝜏∗ when the generated strains are purely elastic (no plastic 

strains, therefore, 𝑑𝜏𝑝 = 0). In more detail, for each calculation step of the integration scheme 

the value of the elastic trial 𝜏∗ is calculated. Based on its value the yield function 𝐹(𝜏∗, 𝜅) is 

calculated. If the calculated value of 𝐹(𝜏∗, 𝜅) is lower than zero, then the occurred stress state 

is within the boundaries of the yield surface and the generated strains are elastic. In this case, 

the value of shear stress of the calculation step 𝜏𝑘 is equal to the calculated value of 𝜏∗. 

On the other hand, if the value of the yield function 𝐹(𝜏∗, 𝜅) is larger than zero, then the trial 

stress state is located outside the yield surface and plastic strains are generated (plastic loading). 

As stress states cannot be outside the elastic region, a correction factor 𝑑𝜏𝑝, expressed as a 

function of the plastic multiplier 𝑑𝜆, is applied to return the occurred stress state on the yield 

surface. The shear stress at step 𝜏𝑘 is obtained by subtracting the value of 𝑑𝜏𝑝 to 𝜏∗.  

In addition, by further elaborating Equation (3.19), a general formulation for the calculation of 

the increment of the generated plastic shear displacements is obtained. We consider here a 

typical case where 

 𝜅 = 𝑢𝑠
𝑝
   (3.22) 

In this case, Equation (3.19) is further modified by applying the chain rule in partial 

differentiation as follows: 

 𝐹(𝜏∗, 𝑢𝑠
𝑝∗) − 𝐹(𝜏𝑘, 𝑢𝑠𝑘

𝑝 ) =
𝜕𝐹

𝜕𝜏
(𝜏∗ −  𝜏𝑘) +

𝜕𝐹

𝜕𝑢𝑠
𝑝 (𝑢𝑠

𝑝∗ − 𝑢𝑠𝑘

𝑝 )   (3.23) 

Assuming plastic conditions, the elastic trial of plastic shear strain  𝑢𝑠
𝑝∗

 is equal to the value of 

the generated plastic shear strain of the previous step of the integration scheme, 𝑢𝑠𝑘−1

𝑝
. 

Furthermore, also considering the derived Equation (3.21), Equation (3.23) can be further 

specialized as follows:  

𝐹(𝜏∗, 𝑢𝑠
𝑝∗) − 𝐹(𝜏𝑘, 𝑢𝑠𝑘

𝑝 ) =
𝜕𝐹

𝜕𝜏
𝑘𝑠(𝑢𝑠𝑘

𝑝 − 𝑢𝑠𝑘−1

𝑝 ) −
𝜕𝐹

𝜕𝑢𝑠
𝑝 ( 𝑢𝑠𝑘

𝑝 − 𝑢𝑠𝑘−1

𝑝 ) 
(3.24) 

Reformulation of Equation (3.24) leads to the following equation through which the calculation 

of the generated plastic shear strain of each step of the integration scheme can be executed: 

 𝑑𝑢𝑠
𝑝 =

𝐹(𝜏∗, 𝑢𝑠
𝑝∗) −  𝐹(𝜏𝑘, 𝑢𝑠𝑘

𝑝 )

𝜕𝐹
𝜕𝜏

𝑘𝑠 −
𝜕𝐹

𝜕𝑢𝑠
𝑝

 (3.25) 

Moreover, considering that during plasticity the value of the yield function is equal to zero the 

value of the term 𝐹(𝜏𝑘 , 𝑢𝑠𝑘

𝑝 ) should be zero. Therefore, the reported Equation (3.25) is 

simplified as given below: 

 𝑑𝑢𝑠
𝑝 =

𝐹(𝜏∗, 𝑢𝑠
𝑝∗)

𝜕𝐹
𝜕𝜏

𝑘𝑠 −
𝜕𝐹

𝜕𝑢𝑠
𝑝

 (3.26) 
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Finally, further elaboration on the Equation (3.26) using the derived equation (3.9) leads to the 

following expression of 𝑑𝜆: 

 𝑑𝜆 =
𝐹(𝜏∗, 𝑢𝑠

𝑝∗)

(
𝜕𝐹
𝜕𝜏

𝑘𝑠 −
𝜕𝐹

𝜕𝑢𝑠
𝑝)

𝜕𝐺
𝜕𝜎𝑛

 

(3.27) 

Thus, the calculation of the increment of the occurred normal displacement during the shear 

loading is executed as follows: 

 
𝑑𝑢𝑛

𝑝 = 𝑑𝜆
𝜕𝐺

𝜕𝜎𝑛
 (3.28) 

Using a state parameter represented by the plastic shear displacement is a convenient choice in 

plasticity numerical implementation. However, constitutive models for discontinuities are often 

calibrated based on standard laboratory tests using the total shear displacements rather than the 

plastic ones.  To be more in line with the existing models employing total shear displacement, 

which is easier to measure during lab tests, a new set of constitutive relationships using a special 

state variable is formulated hereafter. 

In more detail, the state parameter 𝜅 for each step of the employed explicit scheme is defined 

as follows: 

 𝜅𝑘 = {
  𝜅𝑘−1                  𝑖𝑓 𝐹(𝜏∗, 𝜅𝑘−1) < 0 
𝜅𝑘−1 + 𝑑𝑢𝑠     𝑖𝑓 𝐹(𝜏∗, 𝜅𝑘−1) ≥ 0

 

 

(3.29) 

 

This amounts to saying that the state variable is the accumulated total displacement only during 

plastic loading. Mathematically, this state variable may be written as:  

 
𝜅 = ∫ 𝑑𝑢𝑠𝛨(𝑑𝑢𝑠

𝑝) (3.30) 

With 𝛨 represents the Heaviside step function. As explained, the state variable accumulates the 

total displacements only when plastic strain is generated.  

In this way, the state variable can be updated based on the check of whether the loading step is 

plastic or elastic, based on the trial stress state 𝜏∗. Applying the chain rule in partial 

differentiation in Equation (3.19) leads to the following expression: 

 𝐹(𝜏∗, 𝜅𝑘) − 𝐹(𝜏𝑘, 𝜅𝑘) =
𝜕𝐹

𝜕𝜏
(𝜏∗ −   𝜏𝑘)   (3.31) 

Assuming plastic conditions, the value of the yield function of the current integration step 

𝐹(𝜏𝑘, 𝜅𝑘) is equal to zero. Thus, the Equation is further modified as follows: 

 𝜏𝑘 = 𝜏∗ −  
𝐹(𝜏∗, 𝜅𝑘)

𝜕𝐹
𝜕𝜏

    (3.32) 

Finally, further elaboration on the Equation (3.26) leads to the following expression of 𝑑𝜆: 
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 𝑑𝜆 =
𝐹(𝜏∗, 𝜅𝑘)

𝜕𝐹
𝜕𝜏

𝑘𝑠
𝜕𝐺
𝜕𝜎𝑛

 (3.33) 

The above equations can be written and simplified when applied to the specific configuration 

of the CNL test. During the normal compression stage, the normal stress is applied, and shear 

stress is kept at zero. The plastic strain is supposedly not generated, and we get: 

 𝑑𝜎𝑛 = 𝑘𝑛𝑑𝑢𝑛 
 

𝑑𝜏 = 0; 𝑑𝑢𝑠 = 0 

(3.34) 

During the shearing stage, a shear displacement is applied, while the normal stress is kept 

constant:  

 𝑑𝜎𝑛 = 0 (3.35) 

3.4 Enhanced Coulomb constitutive models 

This section introduces the formulated incremental equations for each constitutive model. The 

derived equations for each model were implemented in a Python script to simulate a two-phased 

laboratory test using a monotonic loading path. The results of the considered laboratory test are 

reported by highlighting the main characteristics of each constitutive law. The mechanical 

response of a discontinuity in a limestone (γ = 25 kN/m3) located at a 40m depth was selected 

to be theoretically simulated using the considered Python script.   

3.4.1 Perfect elastoplastic Coulomb model 

The first set of constitutive relationships considers the Coulomb strength criterion associated 

with linear formulations (constant) for both normal and shear stiffnesses. The Coulomb model 

is the most well-known linear elastic perfectly plastic model.  

As previously mentioned (Section 3.2), the yield function of a constitutive relationship 

formulated in the framework of perfect plasticity is a function of the stress tensor only. The 

shear strength of a discontinuity using the Coulomb model is characterized by the following 

formulation of the yield function: 

 𝐹(𝜏) = 𝜏 − 𝜎𝑛𝑡𝑎𝑛𝜑 + 𝑐 ≤ 0  (3.36) 

where 𝜑 indicates the friction angle. 

Furthermore, the Coulomb model is described by a non-associated flow rule. Once the peak 

strength is reached the yield function turns to zero and the plastic potential is activated. The 

form of plastic potential is given by: 

 𝐺(𝜏) = 𝜏 − 𝜎𝑛𝑡𝑎𝑛𝜓 + 𝑐 (3.37) 

where 𝜓 represents the dilation angle. 

The required parameters for the simulation of the two-phased laboratory test adopting the 

perfect elastoplastic Coulomb model and their values are illustrated in the table below: 
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Table 3.1: Required parameters for perfect elastoplastic Coulomb model 

Parameters Values 

𝒄 0 

𝝋 30° 

𝝍 15° 

𝒌𝒏 18.8 MPa/mm 

𝒌𝒔 10 MPa/mm 

Simulation of normal compression test  

For simulating the normal compression phase (no shearing occurs), a nil initial stress level has 

been assumed (𝜎𝑛𝑖𝑛𝑖
= 0) and a normal load equal to 1 MPa is incrementally applied for a 

specified number of calculation steps N. 

Considering that the value of normal stiffness does not vary with the amount of the applied 

normal stress and that during the compression phase, the plastic strain is supposedly nil (as 

stated in Section 3.3), Equation (3.11) was employed. 

Figure 3.1 shows the results obtained for this first phase of the simulated laboratory test for 

several selected calculation steps N. 

  

Figure 3.1: Normal Displacement vs Normal Stress using the perfect elastoplastic Coulomb model 

Simulation of direct shear test under CNL conditions 

The simulation of the direct shear test under CNL conditions assumes that the final compression 

level of the previous phase (𝜎𝑛 = 1 𝑀𝑃𝑎) is now kept constant while a shear displacement 

𝑢𝑠 = 10 𝑚𝑚 is incrementally applied. For the simulation of the direct shear test one thousand 

integration steps were considered.  
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The calculation of the applied shear stress was executed based on Equation (3.19). More 

specifically, the calculation of the elastic trial,  𝜏∗ was executed using the introduced Equation 

(3.16) 

It must be noted that in contrast with the introduced equations which have been formulated 

within the general framework of hardening the considered model is based on the framework of 

perfect plasticity. Thus, the formulated equations were specialized within the framework of 

perfect plasticity by taking into account two main changes. Firstly, the yield function is 

expressed as a function of stress only (as stated in Section 3.2) while secondly due to the 

absence of the state parameter, the values of all the presented derivatives with respect to the 

state parameter are equal to zero.    

Considering the noted changes and rearranging Equation (3.23) a formulation for the 

calculation of the correction factor 𝑑𝜏𝑝 was obtained as follows: 

 

 
𝑑𝜏𝑝 =  

   𝐹(𝜏∗) −   𝐹(𝜏𝑘)

𝜕𝐹
𝜕𝜏

  
(3.38) 

Accordingly, the value of the plastic multiplier was acquired by employing Equation (3.27). 

Having calculated the value of the plastic multiplier the value of the generated plastic normal 

deformation in each step of the integration step was obtained using Equation (3.28).  

Finally, by taking into account the formulations of both yield function and plastic potential 

reported in Equations (3.36) and (3.37) respectively, the values of the presented derivatives in 

the introduced equations are calculated as follows: 

 
  
𝜕𝐹

𝜕𝜏
=

𝜏 − 𝜎𝑛𝑡𝑎𝑛𝜑 + 𝑐

𝜕𝜏
= 1   (3.39) 

and 

 

     
𝜕𝐺

𝜕𝜏
=

𝜏 − 𝜎𝑛𝑡𝑎𝑛𝜓 + 𝑐

𝜕𝜏
= 1   (3.40) 

Figure 3.2 and Figure 3.3 show the results obtained for the direct shear test.  
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Figure 3.2: Shear displacement vs Shear stress using the perfect elasto-plastic Coulomb model 

The reliability of the shear stress-displacements plot (Figure 3.2) is confirmed by verifying that 

the slope of the elastic phase corresponds to the introduced valued shear stiffness and that the 

shear stress once the peak is reached complies with the value obtained from the expression of 

the adopted constitutive relation: 

 
𝜏𝑝𝑒𝑎𝑘 = 𝜎𝑛𝑡𝑎𝑛𝜑 = 1 ∗ 𝑡𝑎𝑛30° = 0.58 𝑀𝑃𝑎 

 

 

Figure 3.3: Shear displacement vs Normal displacement using the perfect elasto-plastic Mohr-Coulomb 

The phenomenon of dilation which is associated with the mechanical behaviour of a 

discontinuity subjecting to shearing, is illustrated in Figure 3.3. As was stated in Section 3.1 

the shearing phase under CNL conditions follows the compression phase which was described 

in the previous section. Considering this sequence, the observed (negative) value of normal 

displacement at the beginning of shearing corresponds to the maximum normal displacement 

(compression) which was noted during the first phase. In addition, it must be pointed out that 

the application of shear displacement makes the values of normal displacement increase 

(become less negative). This increment denotes the phenomenon of dilation.  

The reliability of the obtained results was confirmed by verifying that the dilation onsets at the 

amount of shear displacement which corresponds to the amount of shearing that is required to 
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be applied to reach the peak shear stress. More specifically, once the peak shear stress has been 

reached, plastic deformations (dilation) are generated. Furthermore, the next feature which was 

employed for the assessment of the results was the value of the slope of the line which describes 

the evolution of the dilation, and which was verified to be equal to the value of the dilation 

angle as was expected.  

3.4.2 Elastoplastic with linear softening Coulomb model 

In contrast with the set of constitutive relationships introduced in the previous section which 

describes the mechanical behaviour of a discontinuity within the framework of perfect 

plasticity, the second set of constitutive relationships captures more accurately the post-peak 

mechanical behaviour of a discontinuity by considering the softening behaviour.  

In more detail, the presented model of this section considers the Coulomb strength criterion in 

combination with the elastoplastic constitutive relationships with strain softening proposed by 

Goodman (1976). Modifying accordingly Goodman’s constitutive relationships presented in 

Section 2.4.2, the calculation of the shear strength of a discontinuity was based on the amount 

of the generated plastic strains (state parameter) as follows: 

As can be observed from the reported constitutive relationships, the calculation of shear stress 

of each step of the integration scheme is based on the relationship between the value of the state 

parameter 𝜅 and the value of the 𝐷𝑐 parameter. In more detail, 𝐷𝑐 is called critical distance and 

denotes the difference between the amount of shear displacement which is required to reach the 

peak and the residual shear displacement (𝐷𝑐 = 𝑢𝑠𝑟𝑒𝑠
− 𝑢𝑠𝑝𝑒𝑎𝑘

) . It must be pointed out that, 

the critical distance is considered an input parameter in the Coulomb with linear softening 

model.  

As was stated in Section 3.2, the mathematical formulation of the yield function of the models 

which can capture the softening behaviour is expressed not only as a function of the stress 

tensor 𝜎𝑖𝑗,but also as a function of the state parameter. Considering the formulation of the state 

parameter introduced by Equation (3.29) and combining this characteristic of the considered 

model with the reported elastoplastic constitutive relationships with strain softening the general 

form of the yield function was written. More specifically, Equation (3.42) was further 

elaborated as follows: 

𝐹(𝜏, 𝜅) = 𝜏 − 𝜏𝑝𝑒𝑎𝑘 (1 −
𝜅

𝐷𝑐
) − 𝜏𝑟𝑒𝑠 (

𝜅

𝐷𝑐
) ≤ 0  (3.44) 

Replacing in Equation (3.44) 𝜏𝑝𝑒𝑎𝑘 and 𝜏𝑟𝑒𝑠 with their formulation based on the Coulomb 

strength criterion: 

 

𝐹(𝜏, 𝜅) = 𝜏 − (𝜎𝑛𝑡𝑎𝑛𝜑 + 𝑐) (1 −
𝜅

𝐷𝑐
) − (𝜎𝑛𝑡𝑎𝑛𝜑𝑟𝑒𝑠 + 𝑐𝑟𝑒𝑠) (

𝜅

𝐷𝑐
) ≤ 0 

(3.45) 

𝜏 =  𝜎𝑛𝑡𝑎𝑛𝜑 + 𝑐,    𝑓𝑜𝑟  𝜅 = 0 (3.41) 

𝜏 =  𝜏𝑝𝑒𝑎𝑘 − (𝜏𝑝𝑒𝑎𝑘 − 𝜏𝑟𝑒𝑠)
𝜅

𝐷𝑐
,   𝑓𝑜𝑟  0 < 𝜅 <  𝐷𝑐 (3.42) 

 

𝜏 =  𝜎𝑛𝑡𝑎𝑛𝜑𝑟𝑒𝑠 + 𝑐𝑟𝑒𝑠,    𝑓𝑜𝑟  𝜅 >  𝐷𝑐 
 

(3.43) 
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Furthermore, as it was stated in Section 3.4.1, a non-associated flow rule is considered to avoid 

the overestimation of dilation given by the associated flow rule. Therefore, once the peak 

strength is reached the yield function turns to zero and the plastic potential is activated. The 

form of plastic potential is given as follows: 

𝐺(𝜏, 𝜅) = 𝜏 − (𝜎𝑛𝑡𝑎𝑛𝜓 + 𝑐) (1 −
𝜅

𝐷𝑐
) − (𝜎𝑛𝑡𝑎𝑛𝜓𝑟𝑒𝑠 + 𝑐𝑟𝑒𝑠) (

𝜅

𝐷𝑐
) 

(3.46) 

Finally, in the second set of the constitutive relationships, the experimentally proven behaviour 

which denotes that the dilation is limited was considered. In more detail, according to Zhao et 

al. (2011), the accumulated dilation is generally limited either by a critical normal stress level 

or by a critical shear displacement. Based on that statement, during the simulation of the direct 

shear test under CNL conditions, a critical distance was adopted after which no further dilation 

is observed (dilation cut-off). It should be pointed out that the value of this parameter denotes 

the amount of shear displacement that is required to be added to the amount of shear 

displacement which corresponds to the peak shear strength to eliminate the dilation. 

The required parameters for the simulation of the considered two-phased laboratory test 

adopting the elastoplastic with linear softening Coulomb model and their values are illustrated 

in the table below: 

Table 3.2: Required parameters for elastoplastic with linear softening Coulomb model 

Parameters Values 

𝒄 0 

𝒄𝒓𝒆𝒔 0 

𝝋 30° 

𝝋𝒓𝒆𝒔 20° 

𝝍 15° 

𝝍𝒓𝒆𝒔 10° 

𝒌𝒏 18.8 MPa/mm 

𝒌𝒔 10 MPa/mm 

𝑫𝒄 2 mm 

dilation cut-off 8.95 mm 

 

Simulation of normal compression test 

The new set of constitutive relationships presented in this chapter significantly affects the 

evolution of the mechanical behaviour of a discontinuity only during the application of shear 

displacement. Thus, considering also that the current model adopts a constant value of normal 

stiffness the compression phase of this section is the same as the one presented in Section 3.4.1. 

Simulation of direct shear test under CNL conditions 

Similarly, to the previous section, the simulation of the direct shear test under CNL conditions 

assumes that the final compression level of the previous phase (𝜎𝑛 = 1 𝑀𝑃𝑎) is now kept 

constant while a shear displacement 𝑢𝑠 = 10 𝑚𝑚 is incrementally applied. For the simulation 

of the direct shear test ten thousand integration steps were considered. 
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The process followed for the calculation of the evolution of shear stress during shearing for 

each step of the implemented explicit scheme is illustrated in detail in the following flowchart: 

 

 

Figure 3.4: Flowchart for the calculation of shear stress using the Coulomb model with linear softening model 

In addition, considering also the general formulations of the yield function and plastic potential 

reported in Equations (3.45) and (3.46) the values of the presented derivatives were calculated 

as follows: 

 
𝜕𝐹

𝜕𝜏
= 1 

 

(3.47) 

 
𝜕𝐹

𝜕𝑢𝑠
𝑝 =

𝜏𝑝𝑒𝑎𝑘 − 𝜏𝑟𝑒𝑠

𝑢𝑠
𝑝𝑒𝑎𝑘 − 𝑢𝑠

𝑟𝑒𝑠
 

 

 

(3.48) 

 
𝜕𝐺

𝜕𝜎𝑛
= tan𝜓 (3.49) 

Finally, the occurred normal displacements (dilation) were calculated, using the derived 

Equation (3.28). 

 

Figure 3.5 and Figure 3.6 show the results obtained for the direct shear test.  
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Figure 3.5: Shear displacement vs Shear stress using the Coulomb with linear softening model 

As in the previous section, so in this chapter also, the reliability of the shear stress-

displacements plot (Figure 3.5) is confirmed by verifying that the slope of the elastic phase 

corresponds to the introduced valued shear stiffness and that the shear stress once the peak is 

reached while also once the residual condition is reached complies with the value obtained from 

the expressions of the adopted constitutive relations: 

 
  𝜏𝑝𝑒𝑎𝑘 = 𝜎𝑛𝑡𝑎𝑛𝜑 = 1 ∗ 𝑡𝑎𝑛30° = 0.58 𝑀𝑃𝑎 

 
 

 
𝜏𝑟𝑒𝑠 = 𝜎𝑛𝑡𝑎𝑛𝜑𝑟𝑒𝑠 = 1 ∗ 𝑡𝑎𝑛20° = 0.36 𝑀𝑃𝑎 

 

 

 

Figure 3.6: Shear displacement vs Normal displacement using the Coulomb with linear softening model 

 Figure 3.6, denotes that the created model can simulate adequately the phenomenon of dilation 

during the shearing process. The obtained peak value of dilation is equal to 1.62 mm. The first 

feature, which was used for the verification of the correctness of the results was the amount of 

shear displacement which is required for the generation of plastic strains. More specifically, 

similar to the previous shearing simulation the generation of dilation starts once the peak shear 

stress is reached. Additionally, it must be noted that the reliability of the results is verified by 

verifying that the slope of the dilation angle is as expected. More specifically, it can be observed 

that once the dilation starts the inclination of the line which describes its evolution changes. 



55 

 

Once the dilation starts the inclination of the line which describes the evolution dilation is equal 

to the value of the dilation angle 𝜓 as was expected. However as denoted from Figure 3.6 after 

the further application of 2 mm of shear displacement the strength of the discontinuity obtains 

its residual values, and the inclination of the observed line is equal to the value of the residual 

dilation angle 𝜓𝑟𝑒𝑠 (as it was also expected). Finally, the last feature that verifies the correctness 

of the extracted result is that the dilation reaches a plateau when an amount of shear 

displacement is equal to the value of the set critical distance (8.95 mm) applied once the peak 

shear strength is reached. 

3.4.3 Elastoplastic with linear softening and non-linear stiffness Coulomb model 

3.4.3.1  Power law 

The third set of constitutive relationships considers the Coulomb strength criterion associated 

with nonlinear stiffnesses (stress-dependent) complying with a power law for both normal and 

shear stiffnesses: 

 
𝑘𝑛 = 𝑘𝑛𝑖𝑛𝑖

(𝜎𝑛)𝑒𝑛 
(3.50) 

 
𝑘𝑠 = 𝑘𝑠𝑖𝑛𝑖

(𝜎𝑛)𝑒𝑠 
(3.51) 

where 𝑘𝑛 and 𝑘𝑠 denotes the stiffness values for the considered calculation step and are 

obtained based on their initial values (𝑘𝑛𝑖𝑛𝑖
 and 𝑘𝑠𝑖𝑛𝑖

) and the so-called stiffness exponents (𝑒𝑛 

and 𝑒𝑠). Both normal and shear stiffnesses depend on the current normal stress level (𝜎𝑛) which 

varies during the loading path.  

Furthermore, the formulations of the yield function and the plastic potential have been reported 

by Equations (3.36) and (3.37) respectively. 

The required parameters for the simulation of the considered two-phased laboratory test 

adopting the elastoplastic with linear softening Coulomb model and their values are illustrated 

in the table below: 

Table 3.3: Required parameters for elastoplastic Coulomb model with linear softening and power non-linear stiffnesses 

Parameters Values 

𝒄 0 

𝒄𝒓𝒆𝒔 0 

𝝋 30° 

𝝋𝒓𝒆𝒔 25° 

𝝍 15° 

𝝍𝒓𝒆𝒔 10° 

𝒌𝒏𝒊𝒏𝒊
 18.8 MPa/mm 

𝒌𝒔𝒊𝒏𝒊
 10 MPa/mm 

𝒆𝒏 1.1 

𝒆𝒔 1.1 

𝑫𝒄 2 mm 

dilation cut-off 8.95 mm 
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Simulation of normal compression test 

Accordingly, to the previous sections for simulating the normal compression phase (no shearing 

occurs), a nil initial stress level has been assumed (𝜎𝑛𝑖𝑛𝑖
= 0) and a normal load equal to 1 MPa 

is incrementally applied for a specified number of calculation steps N. 

Considering that during the compression phase, the plastic strain is supposedly nil (as stated in 

Section 3.3), the formulation of 𝑘𝑛 reported in Equation (3.50) was employed to specialised 

Equation (3.11) through which the occurred normal deformation of each integration step was 

calculated. 

Figure 3.7 shows the results obtained for this first phase of the simulated laboratory test for 

several selected calculation steps N.  

To assess the reliability of this model, the obtained results are compared with the concerning 

analytical solution which formulation can be obtained through the integration of Equation 

(3.10): 

 
∫ 𝑑𝑢𝑛

𝑒
𝑢𝑛𝑓𝑖𝑛

𝑢𝑛𝑖𝑛𝑖

= ∫
𝑑𝜎𝑛

𝑘𝑛

𝜎𝑛𝑓𝑖𝑛

𝜎𝑛𝑖𝑛𝑖

   (3.52) 

and further specialised by replacing 𝑘𝑛 from Equation (3.11): 

 𝑢𝑛𝑓𝑖𝑛
𝑒 − 𝑢𝑛𝑖𝑛𝑖

𝑒 = ∫
𝑑𝜎𝑛

𝑘𝑛𝜎𝑛𝑒𝑛

𝜎𝑛𝑓𝑖𝑛

𝜎𝑛𝑖𝑛𝑖

   (3.53) 

Considering that the initial condition corresponds to nil normal displacement (𝑢𝑛𝑖𝑛𝑖
𝑒 = 0) and 

solving the integral of Equation (3.29), the formulation of the analytical solution of the adopted 

model is obtained: 

 𝑢𝑛𝑓𝑖𝑛
𝑒 =

1

𝑘𝑛
(

𝜎𝑛𝑓𝑖𝑛
−𝑒𝑛+1 − 𝜎𝑛𝑖𝑛𝑖

−𝑒𝑛+1

−𝑒𝑛 + 1
)    (3.54) 

In this equation the exponent −𝑒𝑛 + 1 has a value lower than 0 (in general 𝑒𝑛  > 1). This has 

required setting the value of the initial stress level (𝜎𝑛𝑖𝑛𝑖
) slightly higher than zero. A value 

equal to 0.1 KPa has been assumed. 

The analytical loading curve is shown in Figure 3.7 together with the curves obtained from the 

implemented solution solved for different incremental steps N. The results confirm the 

reliability of the implementation. However, as expected (due to the adoption of an explicit 

integration scheme), the implemented solutions required a high number of steps (approximately 

N  20 M) to fit the analytical results. 
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Figure 3.7: Normal Displacement vs Normal Stress for a different number of steps using the perfect elasto-plastic Coulomb 

with power nonlinear stiffnesses 

Simulation of direct shear test under CNL conditions 

Considering that the shearing phase is executed under CNL conditions and that the reported 

Equation (3.51) denotes that the shear stiffness is expressed as a function of the applied normal 

stress, it can be noted that the value of shear stiffness is constant. Thus, a constant value of 

shear stiffness equal to the selected value of the previous shear simulations was adopted. 

Therefore, the process followed as well as the obtained results of the simulation of the direct 

shear test under CNL conditions were the same as those presented in Section 3.4.2. 

3.4.3.2 Hyperbolic function 

Furthermore, as stated in Section 2.4, Barton suggested a hyperbolic formulation of shear 

stiffness derived by Kulhawy (1975) (Equation 2.35). However, the suggested hyperbolic 

function was not adopted by the presented model because of its complexity during the 

implementation phase of the FE algorithm. More specifically, the complexity of the 

implementation of this model using an implicit integration algorithm lies in the strong 

dependence of the value of shear stiffness, on the obtained value of shear stress (for each step 

of the used integration scheme). This dependency causes convergence issues in the FE 

algorithm. In addition, the parameters included in the formulation of shear stiffness presented 

in Equation (2.35) are strongly empirical and their values are difficult to be acquired using 

standard laboratory tests. Considering these limitations, a linear approximation for the 

formulation of shear stiffness was employed as follows: 

 
𝑘𝑠 =

𝜏𝑝𝑒𝑎𝑘 

 𝑢𝑠𝑝𝑒𝑎𝑘

=
𝜎𝑛𝑡𝑎𝑛𝜑 + 𝑐 

 𝑢𝑠𝑝𝑒𝑎𝑘

 
(3.55) 

Moreover, according to the previous section the considered behavioural model captures the 

softening behaviour in combination with the Coulomb strength criterion. For this reason, the 

formulations of the yield function and plastic potential presented in section 3.4.2 (Equations 
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(3.36) and (3.37)) are also eligible to be used during the formulation process of the required 

relationships to describe the mechanical behaviour of a discontinuity. 

The required parameters for the simulation of the considered two-phased laboratory test 

adopting the presented constitutive law and their values are illustrated in the table below: 

Table 3.4: Required parameters for elastoplastic Coulomb model with linear softening and hyperbolic non-linear stiffnesses 

Parameters Values 

𝒄 0 

𝒄𝒓𝒆𝒔 0 

𝝋 30° 

𝝋𝒓𝒆𝒔 25° 

𝝍 15° 

𝝍𝒓𝒆𝒔 10° 

𝒌𝒏𝒊𝒏𝒊
 18.8 MPa/mm 

𝒖𝒏𝒎𝒂𝒙
 0.091 mm 

𝒖𝒔
𝒑𝒆𝒂𝒌

 3.46 mm 

𝑫𝒄 2 mm 

dilation cut-off 8.95 mm 

 

Simulation of normal compression test 

Considering the same conditions for the simulation of a normal compression test as described 

in Section 3.4.3.1, the formulation of 𝑘𝑛 reported in Equation (3.50) was employed to 

specialised Equation (3.11) through which the occurred normal deformation of each integration 

step was calculated. Figure 3.8 illustrates the extracted results of this first phase of the simulated 

laboratory test for several selected calculation steps N.  

The solution of this integral provides the formulation of the analytical solution of the adopted 

model: 

 𝑢𝑛𝑓𝑖𝑛
= −𝑢𝑛𝑚𝑎𝑥

2𝑘𝑛𝑖 [(𝑢𝑛𝑚𝑎𝑥
𝑘𝑛𝑖𝑛𝑖

+ 𝜎𝑛𝑘𝑓𝑖𝑛
)−1 − (𝑢𝑛𝑚𝑎𝑥

𝑘𝑛𝑖𝑛𝑖
+ 𝜎𝑛𝑖𝑛𝑖

)−1]   

+ 𝑢𝑛𝑖𝑛𝑖
 

(3.57) 

The analytical loading curve is shown in Figure 3.8 together with the curves obtained from the 

implemented solution solved for different incremental steps N. The results confirm the 

reliability of the implementation. However, as expected (due to the adoption of an explicit 

integration scheme), the implemented solutions required a relatively high number of steps 

(approximately N  1 thousand) for fitting the analytical results. 

    

𝑢𝑛𝑓𝑖𝑛
𝑒 − 𝑢𝑛𝑖𝑛𝑖

𝑒 = ∫
𝑑𝜎𝑛

𝑘𝑛𝑖𝑛𝑖
(1 −

𝜎𝑛

𝑢𝑛𝑚𝑎𝑥
𝑘𝑛𝑖𝑛𝑖

+ 𝜎𝑛
)

−2

𝜎𝑛𝑓𝑖𝑛

𝜎𝑛𝑖𝑛𝑖

 

(3.56) 
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Figure 3.8: Normal Displacement vs Normal Stress for a different number of steps using the perfect elasto-plastic Mohr-

Coulomb with hyperbolic nonlinear stiffnesses 

Simulation of direct shear test under CNL conditions 

It must be pointed out, that in this model also, the value of shear stiffness is constant during the 

application of shear loading. Moreover, the values of the required parameters are the same as 

those selected in the simulation of the direct shear test presented in Section 3.4.2. More 

specifically, the value of the adopted shear stiffness was estimated based on Equation (3.55) as 

follows: 

𝑘𝑠 =
𝜏𝑝𝑒𝑎𝑘 

 𝑢𝑠𝑝𝑒𝑎𝑘

=
0.58 

 0.058
= 10 𝑀𝑃𝑎/𝑚𝑚 

Therefore, the process followed as well as the obtained results of the simulation of direct shear 

test under CNL conditions were the same as the results presented in Section 3.4.2. 

3.5 Modified Barton-Bandis constitutive model 

Before the description of the constitutive laws which have been based on the Barton-Bandis 

model, the yield surface (in the 𝜏 − 𝜎𝑛 space) of the considered model must be discussed. 

Although the empirical BB strength criterion (introduced by Equation 2.26) fits well with 

experimental data, its numerical implementation requires some mathematical treatments to 

ensure theoretical rigorousness. It can be seen from Equation (2.26) that the equation loses its 

validity when 𝜎𝑛 approaches (and exceeds) JCS. The roughness angle i will become negative 

which is physically incorrect. Mathematically the overall secant friction angle 𝑖 + 𝜑𝑟 =

 𝐽𝑅𝐶𝑝𝑒𝑎𝑘log10 (
𝐽𝐶𝑆 

 𝜎𝑛
) + 𝜑𝑟 may be negative when  𝜎𝑛 > 𝐽𝐶𝑆 which is also invalid. Moreover, 

according to Barton (1973), the BB strength criterion has been suggested for applications in 

which the expected normal stress levels are within the range of: 

0.01 <
𝜎𝑛

𝐽𝐶𝑆
< 0.3 
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Therefore, in this research project, an open yield surface is adopted, assuming a constant 

tangent friction angle when 
𝜎𝑛

𝐽𝐶𝑆
≥ 1. This choice is motivated by mathematical validity and 

convexity of the yield function, as well as the lack of experimental evidence at high normal 

stress level.  

In addition, Equation (2.26) loses its validity when 𝜎𝑛 approaches zero. It should be noted that 

Barton (1973) suggested that at low-stress levels the value of the friction angle (𝜑𝜇 + 𝑖), should 

be considered equal to 70°, and the strength envelop becomes linear without any cohesion in 

this zone. Although disregarding cohesion and tensile strength might be proven for many rock 

discontinuity types, it might be a bit too conservative and lead to numerical instability. To 

improve usage flexibility, the considered yield surface of this research project captures the 

tensile strength and cohesion of a discontinuity in the low-stress zone.  

In more detail, considering the aspects introduced by Barton, the projection of the yield surface 

started by calculating the cohesion and the friction angle of the yield surface at a low-stress 

level. Concretely, the low-stress domain is governed by the typical Coulomb model described 

in Sections 2.4.1 and 3.4.1. This zone is characterized by a cohesion, a friction angle, a dilation 

angle and a tensile strength (Table 3.5). To ensure numerical stability, the values of these 

quantities are subject to the following theoretical restrictions.   

Although Barton suggested an empirical value of the ‘transition friction angle’ of 70°, this 

transition value was defined as a parameter 𝜑𝑇𝑟 .  Considering Equation (2.25) and that at low 

normal stress, the friction angle should be equal to 𝜑𝑇𝑟: 

 𝐽𝑅𝐶𝑝𝑒𝑎𝑘log10 (
𝐽𝐶𝑆 

 𝜎𝑛
) + 𝜑𝑟 ≤ 𝜑𝑇𝑟 (3.58) 

the value of the normal stress at the transition was calculated: 

 
 𝜎𝑛,𝑇𝑟 = 10(log10(𝐽𝐶𝑆)−(𝜑𝑇𝑟−𝜑𝑟) 𝐽𝑅𝐶𝑝𝑒𝑎𝑘⁄ ) 

(3.59) 

Moreover, the value of the shear stress which corresponds to the calculated normal stress was 

executed using the following relationship: 

 𝜏𝑇𝑟 =  𝜎𝑛,𝑇𝑟𝑡𝑎𝑛(𝜑𝑇𝑟) 
(3.60) 

Projecting this set of coordinates (𝜏 − 𝜎𝑛) on the yield surface of the Barton-Bandis model an 

intersection point was created. Using this point, a tangent line to the non-linear shear stress-

normal stress behaviour was also projected. The intersection of this line with the axis of the 

shear stress denotes the value of the cohesion while its inclination indicates the friction angle. 

More specifically, the inclination of the tangent line was calculated through the following 

derivative: 

 
𝜕𝜏

𝜕𝜎𝑛
= 𝑡𝑎𝑛 (𝜑𝑟 + 𝐽𝑅𝐶𝑝𝑒𝑎𝑘 log10 (

𝐽𝐶𝑆

 𝜎𝑛,𝑇𝑟
))

−
𝜋𝐽𝑅𝐶𝑝𝑒𝑎𝑘 

180𝑙𝑛(10)
[𝑡𝑎𝑛2 (𝜑𝑟 + 𝐽𝑅𝐶𝑝𝑒𝑎𝑘 log10 (

𝐽𝐶𝑆

 𝜎𝑛,𝑇𝑟
)) + 1] 

(3.61) 



61 

 

The value of the tangent friction angle which corresponds to the calculated inclination was 

determined as follows: 

 
𝜑𝑡𝑎𝑛,𝑇𝑟 = 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝜕𝜏

𝜕𝜎𝑛
) (3.62) 

Furthermore, considering the determined value of the tangent friction angle, the maximum 

cohesion can be determined to ensure convexity: 

 
𝑐𝑚𝑎𝑥 = 𝜏𝑇𝑟 −  𝜎𝑛,𝑇𝑟𝜑𝑡𝑎𝑛,𝑇𝑟 

(3.63) 

The friction angle in the low-stress zone is therefore not a parameter but calculated based on:  

 𝜑 =
(𝜏𝑇𝑟 − 𝑐)

𝜎𝑛,𝑇𝑟
 

(3.64) 

Finally, it is important to note that at high stress domain (the applied normal stress level is 

larger than the value of 𝐽𝐶𝑆) the original Barton’s equation may be invalid as the secant friction 

angle is reducing. Considering that the yield surface remains open and convex, a tangent line 

which intersects the non-linear behaviour of shear stress-normal stress at the point which 

corresponds to a normal stress level equal to the value of 𝐽𝐶𝑆 was projected. This line describes 

the shape of the yield surface in the high-stress zone. In this way, a convex yield surface which 

captures the mechanical behaviour of a discontinuity under both high and low stress levels was 

introduced. 

 

Figure 3.9: Modified yield surface of Barton-Bandis model  
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Figure 3.10: Modified yield surface of Barton-Bandis model (focused on low normal stress levels) 

Finally, similarly to the previous Section 3.4, the mechanical response of a discontinuity in a 

limestone (γ = 25 kN/m3) located at a 40m depth was selected to be theoretically simulated 

using the considered Python script.   

3.5.1 Modified Barton-Bandis model  

The fifth set of constitutive relationships describes the mechanical response of a discontinuity 

within the framework of strain softening. More specifically, the presented constitutive law of 

this section considers the Barton-Bandis strength criterion and the concept of mobilized 

roughness.  

In more detail, as described in Section 2.4.3 Barton-Bandis model describes the evolution of 

the shear strength of a rock discontinuity considering that, once the amount of the applied 

displacement becomes equal to 30% of the total amount of shearing the mobilisation of 

roughness begins and the phenomenon of dilations is observed. This condition is described with 

the introduced empirical formulations by Barton (reported also in Section 2.4.3) which make 

his model highly non-linear and its implementation a challenging process. Therefore 

considering the high empiricism nature of the evolution of 𝐽𝑅𝐶𝑚𝑜𝑏,  the highly non-linear trend 

which dictates the mechanical response of a discontinuity and taking into account that the 

concept of the mobilized roughness is of great importance for the realistic simulation of the 

mechanical behaviour of a discontinuity under the application of shear displacement, the 

presented constitutive model considers a reduction factor to linearly reduce the value of the 

𝐽𝑅𝐶𝑝𝑒𝑎𝑘. More specifically, the value of the  𝐽𝑅𝐶𝑝𝑒𝑎𝑘 was set to be linearly reduced with the 

value of state parameter 𝜅. However, it should be noted that considering that the value of shear 

strength is non-linearly dependent on the value of the 𝐽𝑅𝐶𝑝𝑒𝑎𝑘  the evolution of shear strength 

after the linear reduction of roughness should follow a non-linear trend as well. In addition, it 

must be pointed out that the adopted linear law could lead to a more conservative strength 

prediction in the post-peak domain compared to the original highly non-linear Barton-Bandis 

which consequently will lead to an earlier reach of the residual state. Finally, the applied 
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reduction factor is the same as the one used in Equation (3.44). Thus, in the presented 

constitutive model the calculation of the value of the mobilized roughness 𝐽𝑅𝐶𝑚𝑜𝑏 is carried 

out as follows: 

 𝐽𝑅𝐶𝑚𝑜𝑏  = 𝐽𝑅𝐶𝑝𝑒𝑎𝑘 (1 −
𝜅

𝐷𝑐
) (3.65) 

where 𝜅 is the state parameter as it has been introduced by Equation (3.29).   

Considering the formulation of the Barton-Bandis strength criterion introduced by Equation 

(2.26), the modified relationship of the mobilized roughness and that the presented constitutive 

law is formulated within the framework of strain softening the mathematical formulation of the 

yield function was written: 

 𝐹(𝜏, 𝜅) = 𝜏 − 𝜎𝑛tan (𝐽𝑅𝐶𝑚𝑜𝑏log10 (
𝐽𝐶𝑆 

 𝜎𝑛
) + 𝜑𝑟) ≤ 0 (3.66) 

A non-associated flow rule is also considered to avoid the overestimation of dilation: once the 

peak strength is reached the yield function turns to zero and the plastic potential is activated. 

Thus, considering the formulation of the yield function reported in equation (3.66) and the 

introduced equation by Barton for the calculation of the peak dilation angle (Equation 2.41), 

the formulation of the plastic potential is expressed as follows: 

 𝐺(𝜏, 𝜅) = 𝜏 − 𝜎𝑛tan (
1

2
𝐽𝑅𝐶𝑚𝑜𝑏log10 (

𝐽𝐶𝑆 

 𝜎𝑛
)) (3.67) 

Considering the applied modifications regarding the shape of the yield surface of the Barton-

Bandis model described in Section 3.5 and the introduced formulation of mobilized roughness 

which leads to the reduction of the strength of the discontinuity, the yield surface which 

captures the mechanical behaviour of a discontinuity at the residual state under both high and 

low-stress levels can be introduced as indicated by Figure 3.11 and Figure 3.12. More 

specifically, it should be pointed out that the shape of the yield surface at the residual state is 

governed by the same trend as the intact yield surface (at the peak strength). In this case the 

yield surface is always convex and remains open when the applied normal stress level is larger 

than the value of 𝐽𝐶𝑆. Moreover, in this research project considering the limitation of the 

Barton-Bandis strength criterion to describe the shear behaviour of a discontinuity at a high-

stress level, it is assumed that the yield surface at a stress level higher than 𝐽𝐶𝑆 stays unchanged 

during the softening process. This assumption at least allows for a convex yield surface in the 

entire stress zone at any residual state.  
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Figure 3.11: Modified yield surface of Barton-Bandis model at peak and residual state   

  

Figure 3.12: Modified yield surface of Barton-Bandis model at peak and residual state (focused on low normal stress levels) 

In addition, considering the formulation of  𝐽𝑅𝐶𝑚𝑜𝑏  introduced by Equations (3.65), the 

evolution of the 𝐽𝑅𝐶𝑚𝑜𝑏 during the application of the shear displacement is calculated as 

follows: 

𝐽𝑅𝐶𝑚𝑜𝑏 = 𝐽𝑅𝐶𝑝𝑒𝑎𝑘,    𝑓𝑜𝑟  𝜅 = 0 (3.68) 

𝐽𝑅𝐶𝑚𝑜𝑏 =  𝐽𝑅𝐶𝑝𝑒𝑎𝑘 (1 −
𝜅

𝐷𝑐
) ,   𝑓𝑜𝑟  0 < 𝜅 < 𝐷𝑐 

 

(3.69) 
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In parallel, the newly introduced cohesion and dilation in the low-stress zone is also reduced 

with the state variable:  

In conclusion, it must be stated that the reported equation regarding the evolution of 𝐽𝑅𝐶𝑚𝑜𝑏 

denotes that the value of the 𝐽𝑅𝐶𝑚𝑜𝑏  reaches its maximum value when the value of the state 

parameter is equal to zero. As the value of the state parameter 𝜅, is further increased the value 

of the mobilized roughness 𝐽𝑅𝐶𝑚𝑜𝑏, is decreasing which consequently leads to a reduction of 

the shear strength. Finally, Equation (3.70) renders that at the residual state, all the existing 

asperities have been sheared off ( 𝐽𝑅𝐶𝑚𝑜𝑏 = 0) and the shear strength obtains its residual value.  

Similar to the previous sections, the derived equations of the modified Barton-Bandis model 

were implemented in a Python script to simulate a direct shear test under CNL conditions. For 

the simulation of the considered laboratory test four new parameters must be introduced.  In 

more detail, these four parameters are related to the modifications which were applied in the 

original version of the Barton-Bandis model regarding the shape of the yield function 

(described in section 3.5). More specifically, the newly added parameters concern the area of 

the yield surface which corresponds to low-stress levels. Table 3.5 indicates the four new 

parameters which were adjusted to the implemented version of the Barton-Bandis model:  

Table 3.5: Four newly added parameters of the Barton-Bandis model with linear reduction of roughness 

Parameters Description 

Transitional friction angle, 𝜑𝑇𝑟 
The value of friction angle at low-stress levels is equal 

to 70° as suggested by Barton (1973)   

Cohesion, 𝑐 
The value of cohesion at low-stress levels (calculated 

using derived Equation (3.63)) 

Dilation angle at low-stress levels, 

𝜓𝐿𝑆 

The value of the dilation angle at low-stress levels (its 

value should be larger than the value which 

corresponds to a higher stress level) 

Tensile strength, 𝜎𝑇 
The tensile strength of a discontinuity is very low or 

equal to zero  

𝐽𝑅𝐶𝑚𝑜𝑏 =  0,    𝑓𝑜𝑟  𝜅 >  𝐷𝑐 (3.70) 

𝑐 =  𝑐𝑝𝑒𝑎𝑘 ,    𝑓𝑜𝑟  𝜅 = 0 (3.71) 

𝑐 =  𝑐𝑝𝑒𝑎𝑘 (1 −
𝜅

𝐷𝑐
) ,   𝑓𝑜𝑟  0 < 𝜅 <  𝐷𝑐 

(3.72) 

𝑐 =  𝑐𝑟𝑒𝑠,    𝑓𝑜𝑟  𝜅 >  𝐷𝑐 
 

(3.73) 

𝜓 =  0,    𝑓𝑜𝑟  𝜅 = 0 
 

(3.74) 

𝜓 =  𝜓𝑝𝑒𝑎𝑘 (1 −
𝜅

𝐷𝑐
) ,   𝑓𝑜𝑟  0 < 𝜅 <  𝐷𝑐 (3.75) 

𝜓 =  𝜓𝑟𝑒𝑠,    𝑓𝑜𝑟  𝜅 >  𝐷𝑐 

 
(3.76) 
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Having introduced the four new parameters of the Barton-Bandis model with linear reduction 

of roughness, the required parameters for the simulation of the considered two-phased 

laboratory test adopting the presented constitutive law and their values are illustrated in the 

table below: 

Table 3.6: Required parameters for the Barton-Bandis model with linear reduction of roughness 

Parameters Values 

𝝋𝑻𝒓  70° 

𝒄 20 

𝝍𝑳𝑺   30° 

𝝈𝑻 0 

𝝋𝒓𝒆𝒔   20° 

𝑱𝑹𝑪 15 

𝑱𝑪𝑺 100 MPa 

𝒌𝒏 18.8 Mpa/mm 

𝒌𝒔 10 Mpa/mm 

𝑫𝒄 9 mm 

dilation cut-off 0 mm 

The final feature of the considered model which should be discussed is related to the dilation 

cut-off. As it can be observed in Table 3.6 the value of this parameter has been set equal to 

zero. The reason behind this selection lies in the fact that according to the Barton-Bandis model, 

the dilation is eliminated once the existing asperities within the walls of the discontinuity have 

been sheared off. As was stated before the entire degradation of the asperities is completed at 

the residual state (after the application of 9 mm of shear displacement) in which the value of 

the mobilized roughness 𝐽𝑅𝐶𝑚𝑜𝑏, is equal to zero.  

Simulation of normal compression test 

Considering that in this model also, the normal stiffness has been employed as a constant 

parameter and the same values of the required parameters have been adopted as those in the 

model presented in Section 3.4.1, identical results to those shown in Figure 3.1 are obtained for 

the simulation of the normal compression test. 

Simulation of direct shear test under CNL conditions 

Similarly, to the previous sections, the simulation of the direct shear test under CNL conditions 

assumes that the final compression level of the previous phase (𝜎𝑛 = 1 𝑀𝑃𝑎) is now kept 

constant while a shear displacement 𝑢𝑠 = 10 𝑚𝑚 is incrementally applied. For the simulation 

of the direct shear test ten thousand integration steps were considered.  

Moreover, accordingly, with the perfect elastoplastic Coulomb model presented in Section 2, 

the calculation of applied shear stress was executed based on Equation (3.19) while for the 

calculation of the correction factor 𝑑𝜏𝑝 the derived Equation (3.24) was used. In addition, the 

values of both plastic multiplier and generated plastic normal deformations were obtained 

through Equations (3.27) and (3.28) respectively.  
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However, considering that in this model the formulations of both yield function and plastic 

potential have been changed compared to the introduced model in Section 2 the values of the 

values of the presented derivatives in the introduced equations were recalculated as follows: 

 𝜕𝐹

𝜕𝜏
=

𝜏 − 𝜎𝑛𝑡𝑎𝑛 (𝜑𝑟 + 𝐽𝑅𝐶𝑚𝑜𝑏 log10 (
𝐽𝐶𝑆
𝜎𝑛

))

𝜕𝜏
= 1 

(3.77) 

 𝜕𝐺

𝜕𝜏
=

𝜏 − 𝜎𝑛tan (
1
2 𝐽𝑅𝐶𝑚𝑜𝑏  log10 (

𝐽𝐶𝑆
𝜎𝑛

))  

𝜕𝜏
= 1 

(3.78) 

 
𝜕𝐺

𝜕𝜎𝑛
= tan𝜓 ⇒ 

 

 

 
𝜕𝐺

𝜕𝜎𝑛
= tan (

1

2
𝐽𝑅𝐶𝑚𝑜𝑏log10 (

𝐽𝐶𝑆

𝜎𝑛
))  (3.79) 

Figure 3.13 and Figure 3.14 show the results obtained from the simulation of the direct shear 

test. 

 

Figure 3.13: Shear displacement vs Shear stress using the modified Barton-Bandis model 

Similarly, to the previous sections, the reliability of the exported result presented in Figure 3.13 

is assessed by verifying the shear stress once the peak is reached complies with the value 

obtained from the expression of the adopted constitutive relation: 

  𝜏𝑝𝑒𝑎𝑘 = 𝜎𝑛𝑡𝑎𝑛 (𝐽𝑅𝐶𝑝𝑒𝑎𝑘𝑙𝑜𝑔10 (
𝐽𝐶𝑆 

 𝜎𝑛
) + 𝜑𝑟) = 

1tan (15log10 (
100

1
) + 20°) = 1.19 MPa  
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Figure 3.14: Shear displacement vs Normal displacement using the modified Barton-Bandis model  

The phenomenon of dilation which is associated with the mechanical behaviour of a 

discontinuity subjecting to shearing, is illustrated in Figure 3.14. The obtained peak value of 

dilation is equal to 1.15 mm. Accordingly, to the previous shear simulations, two key features 

were used to confirm the reliability of the extracted results. Firstly, it is verified that the dilation 

onsets once the peak shear stress has been reached (at the same amount of shear displacement). 

Finally, the next feature that was employed for the assessment of the results was the amount of 

shear displacement further which no dilation is observed. The obtained results illustrated in 

Figure 3.14 indicate that the dilation is eliminated once the residual state is reached. More 

specifically as denoted by the exported results the dilation reaches a plateau when the value of 

the applied shear displacement is equal to 9 mm. 

 

3.5.2  Perfect elastoplastic Barton-Bandis model with hyperbolic stiffness 

The last set of constitutive relationships considers the Barton-Bandis strength criterion 

associated with a hyperbolic function to describe the normal stiffness. On the other hand, the 

shear stiffness was considered to be dependent on the peak shear stress and the amount of shear 

displacement that is required to be applied to reach this peak (as described by introduced 

Equation (3.55). 

Considering that this model also adopts the Barton-Bandis strength criterion, the formulation 

of both the yield function and plastic potential is obtained by the reported Equations (3.66) and 

(3.67) respectively. The required parameters for the simulation of the considered two-phased 

laboratory test adopting the presented constitutive law and their values are illustrated in the 

table below: 

 

 

 



69 

 

Table 3.7: Required parameters for the perfect elastoplastic Barton-Bandis model with hyperbolic stiffness 

Parameters Values 

𝒄 0 

𝝋𝒓 30° 

𝑱𝑹𝑪𝒑𝒆𝒂𝒌 15 

𝑱𝑪𝑺 100 MPa 

𝒌𝒏 18.8 MPa/mm 

𝒌𝒔 10 MPa/mm 

𝒖𝒏𝒎𝒂𝒙
 0.091 mm 

𝒖𝒔
𝒑𝒆𝒂𝒌

 0.058 mm 

dilation cut-off 8.95 mm 

 

Simulation of normal compression test 

Because the same hyperbolic normal stiffness adopted in the constitutive configuration 

described in the previous Section 3.4.3.2 is employed here (with the same values for the 

required parameters), identical results to those shown in Section 3.4.3.2 are obtained for this 

scenario.   

Simulation of direct shear test under CNL conditions 

The formulations introduced in Section 2.5 were adopted by the presented behavioural model 

by just specialized them by replacing the constant value of shear stiffness with the formulation 

reported by Equation (3.55). Considering that the value of the required amount of shear 

displacement to reach the peak shear stress, 𝑢𝑠
𝑝𝑒𝑎𝑘

, was set equal to 0.058 mm the value of 

shear stiffness was calculated as follows: 

𝑘𝑠 =
𝜏𝑝𝑒𝑎𝑘 

 𝑢𝑠𝑝𝑒𝑎𝑘

=
0.58 

 0.058
= 10 𝑀𝑃𝑎/𝑚𝑚 

Thus, observing also Table 3.6 and Table 3.7 it can be noted that the adopted behavioural model 

has the same values of the required parameters as the perfect elastoplastic Barton-Badis model 

presented in Section 2.5.  For this reason and considering that because of CNL conditions the 

difference in the formulations of normal stiffness was not affecting the mechanical response, 

identical results to those shown in Section 2.5 were also obtained for this simulation. 
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4 Discontinuity network generation tool for PLAXIS 2D 

4.1 Introduction 

Finite element methods can be successfully used for advanced numerical analysis involving 

fractured rock masses. However, the manual creation of a discontinuity network may be a 

complex and time-consuming task which limits the usage of numerical modelling in practical 

rock engineering. For this reason, a tool that allows for the automatic generation of realistic 

discontinuity patterns has been developed for PLAXIS 2D, by means of the PLAXIS Python 

scripting API. In more detail, the tool can automatically generate multiple discontinuity sets of 

both persistent and non-persistent discontinuities. 

The developments have started during prior research activities. Both the existing and newly 

developed functionalities will be described in this chapter. The tool is then applied in the case 

of a FE model of an underground excavation in a fractured rock mass. 

4.2 Geometrical characteristics of a discontinuity 

The study of a discontinuity in an observed outcrop on the field contains some major 

measurements. The discontinuity planes in space are mainly characterised by two parameters: 

1) Dip: angle between the studied discontinuity plane and the horizontal plane (from 0 to 90 

degrees) 

2) Dip Direction or Azimuth: angle between the studied plane and the true North (measuring 

clockwise from the north) 

Both Dip and Dip Direction are referring to the line of the steepest declination in the plane of 

the discontinuity. These two angles are very useful for understanding how the discontinuity 

planes are distributed in 3D space. However, when representing the discontinuities in 2D, the 

plane of each discontinuity is represented by its trace. Therefore, five geometrical 

characteristics must be considered for the representation of a discontinuity in 2D space.  

1) Trace Length (TL): length of the discontinuity projected on a representative two-dimensional 

plane (e.g., as inferred in an outcrop). 

2) Plunge: the inclination of the feature relative to the horizontal plane for the projection of 

discontinuity in the 2D space. If the plunge is measured downward then it takes positive values 

while if it is measured upward (counter-clockwise) it takes negative values.  

3) Persistence Ratio (PR): calculated as a function of the trace length of the single discontinuity, 

TL, i, and the rock bridge, RB (described below) according to the following formula: 

 
𝑃𝑅 =  

𝑇𝐿, 𝑖

𝑇𝐿, 𝑖 + 𝑅𝐵, 𝑖
 

 

(4.1) 

It should be noted that when the value of the Persistence Ratio is equal to one, a fully persistent 

discontinuity is considered along the rock mass while, as its value becomes lower than one, the 

persistence starts to decrease. According to many researchers in the field of rock mechanics, 

discontinuity persistence is one of the most significant rock mass properties but at the same 
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time is one the most difficult to determine. The persistence of discontinuities has a major 

influence on the shear strength developed in the plane of the discontinuity.  

4) Rock Bridge (RB): portion of intact rock (in units of length) which separates two in-plane 

discontinuity traces. Rock bridges occur at a number of different scales. It is important to 

underline the fact that the less the value of the rock bridge the more persistent the studied 

discontinuity is. The calculation of the value of Rock Bridge can be performed using the 

formula below:  

 𝑅𝐵 =  
𝑇𝐿 ∗ (1 − 𝑃𝑅)

𝑃𝑅
 

(4.2) 

5) Discontinuity trace pole: point in the middle of the trace length. Based on its coordinates and 

knowing also the trace length and the orientation of the considered discontinuity, it is possible 

to project easily each trace for the whole domain. 

The above-mentioned parameters for the representation of discontinuities in 2D space are 

depicted clearly in Figure 4.1: 

 

Figure 4.1: Illustration of the required parameters for the projection of the traces (depicted on a randomly generated domain) 

4.3 A tool for the generation of discontinuity networks 

The tool has been developed in Python and generates one or multiple sets of discontinuities 

based on the user input. 

 

First, the remote scripting server must be activated by going to the Expert menu and selecting 

the Configure remote scripting server option. The corresponding window pops up and the 

server can be started on an available port (Figure 4.2). 
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Figure 4.2:Window of Configure remote scripting server option in PLAXIS 2D 

It is possible to either assign the coordinates of a rectangular polygon to be drawn in PLAXIS 

2D or to load an existing project and indicate the name of the polygon inside which the 

discontinuity sets will be generated. Each discontinuity set is described by a certain number of 

input parameters. A summary of the modelling choices available in the tool is presented in 

Table 4.1: 

Table 4.1: Functionalities of the tool for the automatic generation of discontinuity networks 

 
Persistent discontinuity sets 

Non-persistent discontinuity 

sets 

Parameters 

Constant 

spacing 

 

Variable 

spacing 

 

Constant trace 

length 

Variable trace 

length 

Plunge X X X X 

Trace length X X X X 

Spacing X X X X 

Spacing variation - X - - 

PR ratio - - X X 

Trace variation - - - X 

Multiple sets of discontinuities can be assigned to the same polygon. Table 4.2 presents the 

required parameters for the projection of two persistent discontinuity sets while the extracted 

results are illustrated in Figure 4.3. 

Table 4.2: Required parameters for the projection of two persistent discontinuity sets 

Discontinuity set 1st set 2nd set 

Plunge 30° -45° 

Trace length 40 m 40 m 

Spacing  2 m 1.5 m  

Spacing Variation 0.5 0.5 
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Figure 4.3: Modelling of two persistent discontinuity sets 

Table 4.3 presents the required parameters for the projection of a discontinuity network 

consisting of two non-persistent discontinuity sets. It must be pointed out, that in contrast to 

the previous example in which the spacing between the discontinuity traces was varying, in the 

considered network the length of the traces of both sets was selected to be varied. Furthermore, 

considering that the projected discontinuity sets are non-persistent a value which describes the 

Persistence Ratio of the considered sets was introduced as an input. The obtained results are 

illustrated in Table 4.3. 

Table 4.3: Required parameters for the projection of two non-persistent discontinuity sets 

Discontinuity set 1st set 2nd set 

Plunge 15° -45° 

Mean trace length 4 m 3 m 

Trace length variation 0.5 0.3 

Spacing 1.5 m 2 m 

PR 0.5 0.7 
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Figure 4.4: Modelling of two non-persistent discontinuity sets 

 

The results (Figure 4.4 and Figure 4.4) show that the tool can project automatically and 

consistently both persistent and non-persistent discontinuity networks. However, many 

discontinuities lie either completely outside of the domain or cross the polygon boundary. In 

the first case, the reason is related to the fact that the number of the generated traces is hard 

coded and set to an arbitrarily high value to ensure that the domain of interest is fully covered. 

This means that more time is required to complete the projection process and that, manual work 

is necessary at the end to delete the numerous traces which are located outside of the boundaries 

of the considered polygon. In the other case, the user needs to manually generate an intersection 

point between the discontinuity line and the polygon boundary, delete the original line and the 

point outside the domain and draw a new one between the two remaining points. This is also a 

very time-consuming process, especially in the case of large and complex domains. 

Further work during this research aimed at improving the efficiency of the tool and automating 

as much as possible the processes of discontinuity generation and intersection.  

4.4 Extended version of the tool for the generation of discontinuity networks 

Considering the limitations of the existing version of the tool for the generation of discontinuity 

networks described in the previous section, improvements were introduced and adjusted to the 

tool to enhance its efficiency. 

The first step consists in estimating the number of traces required to cover the area of the 

selected polygon. The calculation of the number of the required traces is based on the length of 

the main diagonal of the considered polygon and the input values of spacing and spacing 

variation if specified. Note that only polygons with a rectangular or squared shape are 

considered and that the starting point for the generation of the discontinuities is in the center of 
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the polygon. Therefore, the number of discontinuities (for each side with respect to the initial 

point) is automatically calculated as indicated in Equation (4.3): 

 
𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑖𝑒𝑠 =  

(𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑚𝑎𝑖𝑛 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙/2)

(𝑠𝑝𝑎𝑐𝑖𝑛𝑔 + 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛)
 

 

(4.3) 

 

After generating the set, all the discontinuities that are completely outside of the domain are 

deleted, while the ones that are partially outside are automatically trimmed. In fact, the tool 

intersects each line with the polygon and, when no points are generated, the script files a 

command to delete the line, otherwise it deletes the line and regenerates a new one based on 

the input values of the required parameters (plunge, spacing etc.) and the corresponding 

intersection point/s. 

Figure 4.5 illustrates the obtained results considering the input values introduced by Table 4.2 

and the new functionalities of the extended version of the discussed tool. 

 
Figure 4.5: Modelling of two persistent discontinuity sets using the extended version of the tool 

Finally, considering that in the last part of this research project the efficiency of the constitutive 

laws introduced in Chapter 3, will be tested in an underground excavation application in a 

fractured rock mass consisting of persistent discontinuity sets, the capabilities of the tool were 

verified by automatically projecting a discontinuity network of persistent discontinuities in the 

created FE model.  

 

The properties of the generated discontinuity sets are the same as those presented in Table 4.2 

with the only difference that a trace length equal to 100 m was adopted to ensure that the 

generated discontinuities have sufficient length to cover even the larger dimension of the 

considered polygon. Figure 4.6 presents the obtained results using the extended version of the 

tool. 
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Figure 4.6: Example of the geometry of an underground excavation in a fractured rock mass 
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5 Verification of the implemented models: CNL test 

simulations  

5.1 Introduction 

The numerical implementations of the elastoplastic with linear softening Coulomb model and 

the modified Barton-Bandis model were carried out in the finite element software PLAXIS by 

members of the PLAXIS research team. Considering the complexity of the numerical 

implementation this project focused on the first step of the implementation which considers 

only linear shear and normal stiffness. Treatment of nonlinear stiffness models will be carried 

out in future work. 

In this chapter, the finite element implementation is verified by simulating direct shear tests 

under CNL conditions using a simple numerical model in PLAXIS 2D. The simulations were 

carried out by employing the same sets of parameters used for the theoretical simulation of the 

mechanical response of a single discontinuity reported in Chapter 3.  A comparison between 

the obtained numerical results and theoretical simulations (as described in Chapter 3) is 

conducted to verify the correctness of the numerical implementation. In some cases, where 

experimental results are also available for parameter calibration, comparisons are also made 

with experimental data to validate the accuracy of the implementation.   

5.2 Simulation of Direct Shear test under CNL conditions in PLAXIS 2D 

The validity of the numerical implementation of the considered constitutive laws was assessed 

by simulating in PLAXIS 2D the same two-phased laboratory test as the one described in 

Chapter 3 (a normal compression test followed by a direct shear test where the loading level in 

the normal direction reached at the end of the compression phase is kept constant).  

Model configuration and material properties  

The simulation of the considered laboratory test was performed using a simple numerical model 

of two rock blocks and a single discontinuity. The geometry of the created numerical model is 

shown in Figure 5.1.  

 
Figure 5.1: Created numerical model for the simulation of the two-phased laboratory test 

Similarly, to the performed theoretical simulations (described in Chapter 3) the examined 

discontinuity was assumed to be located within the mass of a limestone. However, in the 
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framework of this simulation, two characteristics of great importance regarding the mechanical 

properties of the adopted rock material must be noted. Firstly, to ensure that during the 

simulation of the compression phase, the mechanical response of the discontinuity will not be 

affected by the mechanical behaviour of the rock blocks, the modelling of these two rock blocks 

was performed using the linear elastic model. In this way, the mechanical response of the two 

blocks was assumed to be purely elastic. Secondly, the rock material that was assigned to the 

two rock blocks was assumed to be zero-weight and very stiff with a value of Poisson’s ratio 

equal to zero to ensure that during the simulation of the considered laboratory test only the 

mechanical behaviour of the discontinuity is examined. In this way, during the first phase of 

the laboratory test (compression phase) the upper rock block is deformed elastically by 

transferring the applied load to the existing discontinuity without having the possibility to 

deform laterally. Therefore, the generation of stresses at the lateral boundaries of the model 

which may lead to the misconception of the mechanical response of the discontinuity is 

avoided. The discussed properties of the adopted rock material are presented in Table 5.1. 

Table 5.1: Properties of the rock blocks of the simulated laboratory test 

Material Soil model 
Eref 

(MPa) 

Poisson’s ratio, 

ν 

Limestone 
Linear 

Elastic 
15E6 0 

 

 

Mesh 

In terms of element type and mesh, 15-node triangular elements were used for the simulation 

of the considered test with smaller elements being adopted in the zones of the model where 

larger strains were expected (i.e., along the discontinuity). On the other hand, a coarser mesh 

is adopted in the zones where the smaller strains are expected to develop. Furthermore, it should 

be stated that the discontinuity was modelled as a discrete zero-thickness 1D element. More 

specifically, the existing discontinuity element in PLAXIS was employed for the modelling of 

the created discontinuity. Figure 5.2 illustrates the mesh adopted in the present analysis: 

 

Figure 5.2: Generated mesh for the simulation of the two-phased laboratory test  

Having generated the FE model of a direct shear test the corresponding boundary and loading 

or deformation conditions were applied to each phase as follows: 
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Compression phase 

The test starts with the compression phase. The simulation of this phase was performed 

considering the lateral boundaries, as well as the lower boundary of the numerical model 

normally fixed. On the other hand, the upper boundary of the model was simulated as a free 

boundary on which a linearly distributed load is applied. Figure 5.3 illustrates an example of 

the deformed mesh at the end of a compression phase as well as the described boundary 

conditions. 

 

Figure 5.3: Boundary and loading conditions of the compression phase 

Shearing phase under CNL conditions 

Finally, the last phase of the considered two-phased laboratory test concerns the application of 

a shear displacement under CNL conditions. For the simulation of this phase, the fixity 

condition of the model had to be updated. More specifically, the shearing phase was carried out 

by applying fixities only to the lower boundary of the created model which was normally fixed 

and on the lateral boundaries which remained fixed to simulate that no lateral deformations of 

the block are allowed. Furthermore, it should be noted that in this phase the simulation of the 

CNL conditions was achieved by keeping activated the distributed load which was applied on 

the upper rock block during the compression phase. Additionally, in combination with the 

considered load, a uniform prescribed displacement was also applied on the lower block to 

simulate the application of the shear displacement. Figure 5.4 depicts an example of the 

deformed mesh at the end of a shearing phase under CNL conditions as well as the adopted 

boundary conditions.  

 

Figure 5.4: Boundary and loading conditions of the shearing phase under CNL conditions 
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5.3 Elastoplastic with linear softening Coulomb model 

5.3.1 Verification of the Elastoplastic with linear softening Coulomb model 

Having created the FE model in PLAXIS 2D, the simulation of the two-phased laboratory test 

was carried out using the elastoplastic with linear softening Coulomb model. Firstly, the same 

set of parameters, as those adopted during the theoretical simulation of the same test using the 

created Python script (presented in Chapter 3) was assigned to the discontinuity. The considered 

set of parameters is presented in Table 3.2.  

The obtained results of the performed simulation using the implemented version of the 

elastoplastic with linear softening Coulomb model in PLAXIS were compared against the 

corresponding results of the theoretical simulation presented in Section 3.4.2. In Figure 5.5 and 

Figure 5.6, the obtained results of shear stress and normal displacement are plotted against the 

shear displacement. 

 

Figure 5.5: Shear displacement vs Shear stress response 

 

Figure 5.6: Shear displacement vs Normal displacement response 
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Figure 5.5 and Figure 5.6 confirm the reliability of the numerical implementation by indicating 

that the obtained results using the implemented version of the elastoplastic with linear softening 

Coulomb model in PLAXIS comply with the corresponding results of the theoretical 

simulation.  

Having confirmed that the implemented constitutive law can reproduce theoretically the 

mechanical behaviour of a discontinuity subjecting to shearing under CNL conditions, the 

model was also verified based on the experimental results reported by Hencher and Richards 

(2015) who assessed the shear strength of rock discontinuities at the laboratory and field scales. 

In more detail, having obtained a rock core (andesite) with a tightly interlocking natural 

discontinuity they performed several direct shear tests under CNL conditions. More 

specifically, the reported experimental results indicate the evolution of both shear stress and 

normal deformation of the considered andesite sample under four different normal stress levels 

while a shear displacement equal to 10 mm is applied. However, considering that only for the 

normal stress levels of 150 kPa and 300 kPa the reported results indicate clearly all the 

important features of the mechanical response of the examined discontinuity, the calibration of 

the parameters of Coulomb with linear softening model was performed based only on the results 

which correspond to these two normal stress levels.  

The experimental tests performed by Hencher and Richards (2015) were simulated employing 

the implemented version of the elastoplastic with linear softening Coulomb model in PLAXIS 

2D. The model parameters and the adopted values are indicated in Table 5.2.  Additionally, to 

further confirm the validity of the numerical implementation the same tests were also simulated 

theoretically, and the results were plotted. The obtained results are shown in Figure 5.7 and 

Figure 5.8. 

 
Table 5.2: Parameters of elastoplastic with linear softening Coulomb model for interlocking natural andesite discontinuity 

Parameters Values 

𝒄 0.005 MPa 

𝒄𝒓𝒆𝒔 0.002 Mpa 

𝝋 60° 

𝝋𝒓𝒆𝒔 41° 

𝝍 20° 

𝝍𝒓𝒆𝒔 7° 

𝒌𝒏 18.8 Mpa/mm 

𝒌𝒔 0.5 Mpa/mm 

𝑫𝒄 3.4 mm 

dilation cut-off 4.5 mm 

 

PLAXIS 2D simulation of a direct shear test on andesite discontinuity under CNL conditions 

(𝜎𝑛=150 kPa): 

 

 



82 

 

 

  

Figure 5.7: Simulation of direct shear test on natural interlocking basalt discontinuity under 150 kPa  

shear displacement-shear stress (upper) and shear displacement-normal displacement (below) 
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Figure 5.8: Simulation of direct shear test on natural interlocking basalt discontinuity under 300 kPa  

shear displacement-shear stress (upper) and shear displacement-normal displacement (below) 

Figure 5.7 and Figure 5.8 show that the obtained results follow adequately the trend of the 

mechanical response obtained by Hencher and Richards (2015) by respecting some key 

features. In more detail, the implemented model represents accurately the peak and the residual 

strength while also the evolution of shear stiffness. Furthermore, it can be observed that the 

adopted linear softening provides a fair and safe approximation of the evolution of shear stress 

at the post-peak area considering that in contrast with the experimentally observed behaviour, 

the obtained results denote a slight underestimation of the strength after the peak. Additionally, 

it should be noted that the considered model can reproduce nicely the non-linear evolution of 

dilation by providing a reasonably accurate and safe estimation as well. Finally, the obtained 
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results indicate that as expected, the theoretical simulation complies with the response coming 

from the finite element implementation of the model. In conclusion, the above-mentioned 

observations suggest that the implementation of elastoplastic with linear softening Coulomb 

model in PLAXIS 2D has been successful. 

5.4 Modified Barton-Bandis model  

5.4.1 Verification of the modified Barton-Bandis model  

Similarly to what was reported in the previous section, the validity of the numerical 

implementation of the modified Barton-Bandis was assessed by simulating in PLAXIS 2D the 

same two-phased laboratory test as the one described in Chapter 3. 

The simulation of the considered test was performed using the same numerical model as the 

one described in section (3.5.1). In addition, the values of the required parameters are the same 

as those introduced in Table 3.6. 

The obtained results of the performed simulation using the implemented version of the 

modified Barton-Bandis in PLAXIS 2D were compared against the corresponding results of 

the theoretical simulation presented in Section 3.5.1. Figure 5.9 and Figure 5.10 show the 

results obtained from the simulation of the direct shear test. 

 

Figure 5.9: Shear displacement vs Shear stress response 
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Figure 5.10: Shear displacement vs Normal displacement response 

Figure 5.9 and Figure 5.10 confirm the reliability of the numerical implementation by 

indicating that the obtained results using the implemented version of the Barton-Bandis model 

in PLAXIS comply with the corresponding results of the theoretical simulation. 

Finally, taking into account that both the theoretical simulation of the two-phased laboratory 

test and the simulation of the same test using the modified Barton-Bandis in PLAXIS 2D were 

performed considering a discontinuity in a limestone (γ = 25 kN/m3)  located at a 40m depth 

(as stated in Section 3.5) a normal load equal to 1 MPa was set to be applied on the 

discontinuity. Consequently, employing Equation (3.59), the value of the normal stress which 

corresponds to the transitional point between the low and high-stress level areas was 

determined. The calculated value was found to be equal to 0.046 Mpa which denotes that the 

set value of the applied normal stress was not lying within the area of the low-stress level. 

Therefore, considering also that the applied normal stress level remains constant during the 

shearing phase indicates that the current simulation was not affected by the selected values of 

cohesion and transitional friction angle.  

Similarly, to the previous section, having confirmed that the implemented can reproduce 

theoretically the mechanical behaviour of a discontinuity subjecting to shearing under CNL 

conditions, the model was also verified based on the experimental results found in the literature. 

In more detail, the model was verified based on the experimental results reported by Skinas et 

al. (1990) who assessed the mechanical response of the rock discontinuities subjected to shear 

displacement under constant normal load conditions. The discontinuity surfaces studied by 

Skinas et al. (1990) were tilt-tested to measure the index of JRC. Four types of discontinuities 

of the same type of rock which are characterised by different values of JRC were tested with 

the following properties: 
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Table 5.3: Properties of the discontinuities studied by Skinas et al., (1990) 

Parameters Values 

𝑱𝑹𝑪 9, 12, 15 and 18 

𝑱𝑪𝑺 28 MPa 

𝝋 37° 

The mechanical response of the considered discontinuities under the application of   30 mm of 

shear displacement was examined for three different levels of applied normal stress. For the 

verification of the Barton-Bandis model with linear reduction of roughness, the reported results 

which correspond to the discontinuity characterized by a JRC equal to 9 were employed and 

the implemented version of the Barton-Bandis model in PLAXIS 2D was used for the 

simulation of the experimental test performed by Skinas et al. (1990). Similarly, to the previous 

section, to further confirm the validity of the numerical implementation the same tests were 

also simulated theoretically, and the results were plotted. 

Table 5.4 presents the adopted parameters for the simulation of the considered experimental 

test using the modified Barton-Bandis. 

Table 5.4: Adopted parameters of the modified Barton-Bandis model for the simulation of the mechanical response of the 

rock discontinuity studied by Skinas et al. (1990) 

Parameters Values 

𝝋𝑻𝒓 70° 

𝒄 0.0035 MPa 

𝝍𝑳𝑺 30° 

𝝈𝑻 0 

𝝋𝒓𝒆𝒔 37° 

𝑱𝑹𝑪 9 

𝑱𝑪𝑺 28 MPa 

𝒌𝒏 25 MPa/mm 

𝒌𝒔 2.5 MPa/mm 

𝑫𝒄 20 mm 
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Figure 5.11: Simulation of shear stress-shear displacement response under 𝜎𝑛=5 MPa 

 

Figure 5.12: Simulation of shear stress-shear displacement response under 𝜎𝑛=2 MPa 
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Figure 5.13: Simulation of shear stress-shear displacement response under 𝜎𝑛=1 MPa 

Considering that no experimental data were given by Skinas et al., (1990) for dilation at normal 

stress values of 5 MPa and 2 MPa only the exported results for a value of normal stress equal 

to 1 MPa were plotted against the experimental results. 

 

Figure 5.14: Simulation of normal displacement-shear displacement response under 𝜎𝑛=1 MPa 

Although no experimental data were given by Skinas et al., (1990) for the dilative behaviour at 

normal stress values of 5 MPa and 2 MPa, to further test the validity of the numerical 

implementation, the dilation was also numerically and theoretically simulated and plotted in 

Figure 5.15 and Figure 5.16. A perfect agreement between the finite element and theoretical 

results illustrates the correctness of the numerical implementation of the model in PLAXIS. 
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Figure 5.15: Simulation of normal displacement-shear displacement response under 𝜎𝑛=5 MPa  

 

Figure 5.16: Simulation of normal displacement-shear displacement response under 𝜎𝑛=2 MPa 

Figure 5.11, Figure 5.12 and Figure 5.13 show that the implemented version of the modified 

Barton-Bandis in PLAXIS 2D can capture adequately the non-linear trend of the mechanical 

response of the discontinuity denoting that the evolution of shear stiffness and the value of the 

peak shear strength of the examined discontinuity can be reproduced accurately.  

On the other hand, the results indicate that the considered model underestimates the post-peak 

mechanical shear strength. This underestimation can be explained considering the way through 

which the value of the 𝐽𝑅𝐶𝑝𝑒𝑎𝑘 parameter is decreased upon shearing. More specifically, as 
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described in 3.5.1 the linear decrease of JRC implies that the fully residual state is reached 

earlier than expected in the original Barton-Bandis model.  

In addition, as it can be observed in Figure 5.14, even though the implemented constitutive law 

reproduces correctly the non-linear trend of the dilative behaviour of the discontinuity, the 

model overestimates dilation in this case. This might originate from the fact that Barton’s 

dilation law is empirical and restrictive (there is no parameter to calibrate the initial dilation), 

which is not flexible enough to calibrate the dilation curve in this case.  

In conclusion, regarding the residual state, it should be noted that in the range of shear 

displacement within the reported experimental results were performed, the discontinuity did 

not reach its residual strength, at least according to the definition of the Barton-Bandis model 

(residual state is defined when all the roughness is sheared-off and only the residual friction 

angle contributes to the shear strength). This definition is respected in the current 

implementation, i.e., the value of the ultimate residual strength is similar to what is predicted 

by the original Barton-Bandis model. However, the implemented simplified softening law 

might infer that the residual state is reached earlier than in the original model, leading to a more 

conservative strength prediction in the post-peak domain. Moreover, the empirical Barton-

Bandis dilation law seems to be too restrictive to calibrate experimental data, as dilation is 

purely controlled by strength parameters.  
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6 Simulation of a deep excavation using the advanced 

implemented discontinuity models 

6.1 Introduction 

Having tested the validity of the numerical implementation of the selected constitutive laws for 

lab test simulations, these models are now tested in a large-scale rock engineering application, 

which consists of an underground tunnel excavation in a highly discontinuous rock mass. The 

tunnel is assumed to be long enough so that the excavation can be modelled by a 2D plane 

strain model.  

The chosen network of discontinuities was generated using the extended version of the tool for 

the automatic projection of discontinuity networks (Chapter 4). For the generated system of 

discontinuities, the simulation of the considered engineering application was carried out 

employing four different constitutive laws. Concretely, the following models are considered:  

1. Coulomb-based models: elastic-perfectly plastic Coulomb model (original version), 

elasto-plastic model with strain softening 

2. Modified Barton-Bandis-based model  

An investigation of the influence of the implemented laws on the stability of the jointed rock 

mass is executed by comparing qualitatively and quantitatively the exported results from the 

numerical analysis of the considered engineering application.  

6.2 Model definition 

6.2.1 Model configuration and meshing  

A circular deep tunnel excavated in a layer consisting of homogeneous and highly 

discontinuous (weathered) limestone is modelled. The underground excavation was selected to 

be performed at a depth of 1 km. To practically model the considered application, only a block 

of 50m x 50m around the excavation is modelled. A thin fictitious layer of 1m thickness is 

introduced with its unit weight corresponding to the overburden pressure to represent the in-

situ stresses. The limestone layer was assumed to be disrupted by two sets of fully persistent 

discontinuities The model shown in Figure 6.1 illustrates a two-dimensional plane strain 

representation of an excavated tunnel with a diameter equal to 5.5 m. Additionally, Figure 6.2 

provides a closer representation of the distribution of the generated discontinuities around the 

excavated tunnel while also an indication of the blocks which are prone to instability 

mechanisms around the cavity. In more detail, it can be observed that the generation of the 

selected discontinuity network results in the creation of four wedges around the tunnel. In 

engineering practice, the stability of these blocks is examined closely considering that they are 

prone to failure under tensile stresses. 

In addition, it should be noted that the discontinuity sets were projected using the extended 

version of the tool for the generation of discontinuity networks. The adopted geometrical 

properties for the projection of the considered discontinuity sets are illustrated in Table 6.1.  
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Figure 6.1: Geometry of the underground rock excavation model 

 

Figure 6.2: Closer presentation of the excavated tunnel and indication of possible unstable blocks  
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Table 6.1: Properties of the projected discontinuity sets 

Component Persistence Plunge 
Trace 

length (m) 

Spacing 

(m) 

Spacing 

Variation 

1st Discontinuity set  Persistent -55° 100 1.5 0.5 

2nd Discontinuity set Persistent 41° 100 2 0.5 

 

Meshing 

Similarly, to the created numerical model described in Section 5.2, 15-node triangular elements 

were used for the simulation of the considered engineering application with smaller elements 

being adopted in the zones of the model where larger strains were expected. Overall, a fine 

mesh was adopted within a square area (10m x 10m) around the tunnel. Within this area, a 

circular area with a radius equal to 5m from the centre of the tunnel was selected to be 

discretised with even finer mesh. On the other hand, a coarser mesh is adopted when the 

distance from the centre of the tunnel is larger than 10 m, considering that smaller strains are 

expected to develop. Figure 6.3 illustrates the generated mesh for the analysis of the considered 

underground rock excavation. 

 

Figure 6.3: Generated mesh for the FE analysis of the underground excavation 
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6.2.2 Material parameters  

The created model of the considered underground rock excavation model is divided into two 

main components. The first component concerns the properties of the adopted rock material 

and the fictitious layer as they are presented in Table 6.2. It must be pointed out that within the 

framework of the performed analysis, the intact rock blocks of both layers were modelled as 

linear-elastic and isotropic materials. In this way, it was ensured that the considered FE analysis 

is focused only on the mechanical behaviour of the discontinuities.  

Table 6.2: Properties of the rock components of the underground excavation model 

Component Soil model 
γunsat 

(kN/m3) 

γsat 

(kN/m3) 

Eref 

(MPa) 

Poisson’s 

ratio, ν 

Weathered Limestone 
Linear 

Elastic 
25 25 15E3 0.25 

Fictitious Layer 
Linear 

Elastic 
20E6 20E6 15E3 0.25 

 

Additionally, the second component concerns the properties of the adopted constitutive laws. 

As stated in Section 6.1, the simulation of the considered engineering application was carried 

out employing four constitutive laws. The derivation of the values of the required parameters 

for each constitutive law was based on the experimental results reported by Skinas et al. (1990) 

which were also used for the verification of the Barton-Bandis model with linear reduction of 

roughness. Skinas et al. (1990) studied the mechanical response of artificial discontinuities 

which have been cast from natural discontinuity surfaces using a brittle artificial material. The 

mechanical properties of the generated material are listed below: 

Table 6.3: Mechanical properties of the artificial material used by Skinas et al. (1990) 

σc (MPa) Eref (GPa) Poisson’s ratio, ν 

25-30 3-3.5 0.2 

The reported mechanical properties of the artificial material used by Skinas et al. (1990) lead 

to the implicit assumption that using the considered material the behaviour of a weathered 

limestone was simulated. In addition, considering that the influence of the constitutive laws 

will be investigated by simulating a deep rock excavation where high-stress levels are expected 

in combination with the limitation of the Barton-Bandis model, to perform in applications that 

are governed by stress levels higher than the value of the 𝐽𝐶𝑆, add the requirement of simulating 

the engineering application adopting a material with high value of uniaxial compressive 

strength, σc. Table 6.3 denotes that the examined material (limestone) has a considerably high 

value of σc which makes it suitable for the simulation of the considered application employing 

the implemented version of the Barton-Bandis model. Finally, the implicit assumption that the 

discussed replicas correspond to limestone can justify the generation of the dense discontinuity 

network considering that the assumed lithology is often found fractured on the field.  
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Concluding having verified the modified Barton-Bandis model as described in Section 5.4.1, 

the same experimental data reported by Skinas et al. (1990) were used for the calibration of the 

Coulomb-based models. Considering that all the Coulomb models are based on the Coulomb 

strength criterion in combination with the fact that the Coulomb with linear softening also 

requires the calibration of the 𝐷𝑐 parameter, the calibration was performed using only the newly 

implemented version of Coulomb model with linear strain softening. The adopted values of 

required parameters for each law are summarized in Table 6.4 while the obtained results of the 

calibration were plotted against the shear displacement and are illustrated in the following 

figures (Figure 6.4-Figure 6.7). Finally, it should be noted that the adopted values of the 

parameters related to the implemented version of Barton-Bandis are the same as those presented 

in Table 5.4. 

Table 6.4: Calibrated parameters of Coulomb-based models 

Model 
𝒄 

(Mpa) 
𝒄𝒓𝒆𝒔 

(Mpa) 

𝝋
(°) 

𝝋𝒓𝒆𝒔

(°) 

𝝍 

(°) 

𝝍𝒓𝒆𝒔

(°) 
𝒌𝒏 

(Mpa/mm) 

𝒌𝒔 
(Mpa/mm) 

𝑫𝒄 

(mm) 

Dilation 

cut-off 
(mm) 

Coulomb 

(original) 
0.342 X 41 X 4 X 25 2.5 X X 

Coulomb 

with strain 

softening 

0.342 0.27 41 36 4 1.55 25 2.5 16 29 

Coulomb 

(brittle) 
0.342 0.27 41 36 4 1.55 25 2.5 0 29 

 

Figure 6.4: Simulation of shear stress-shear displacement response under 𝜎𝑛=5 MPa 
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Figure 6.5: Simulation of shear stress-shear displacement response under 𝜎𝑛=2 MPa 

 

Figure 6.6: Simulation of shear stress-shear displacement response under 𝜎𝑛=1 MPa 

Similarly, to section 5.4.1, considering that Skinas et al. provided results regarding the dilative 

behaviour only when it is subjected to a normal stress level equal to 1 MPa only the exported 

results for a value of normal stress equal to 1 MPa were plotted against the experimental results.  
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Figure 6.7: Simulation of normal displacement-shear displacement response under 𝜎𝑛=1 MPa 

The obtained results show that the Coulomb with linear softening model adopting the 

considered values can capture adequately the non-linear behaviour of a discontinuity subjected 

to shearing under CNL conditions indicating the peak and residual shear strength while also 

providing a fair approximation of the post-peak behaviour. Furthermore, the examined model 

matches very well the experimental results regarding the dilative behaviour of the discontinuity. 

This might be due to a higher number of parameters used in this model, which allows for a 

more flexible calibration from experimental data.   

 

6.2.3 Initial, boundary conditions and staging 

Geostatic stress initialization 

The initial stress state of the created model was generated using a K0 condition which requires 

the definition of the earth pressure coefficient at rest, K0. In this research project, the value of 

K0 was set equal to 0.3. Furthermore, considering that the overburden pressure is applied 

through the modelled fictitious layer whose unit weight is equal to 20 MN/m3 and its thickness 

equal to 1m, the applied vertical stress varies linearly from the top to the bottom of the model. 

At the top of the model, the vertical stress is equal to: 

 𝜎𝑣𝑡𝑜𝑝
 = 𝛾 ∗ 𝑧 = 20

𝑀𝑁

𝑚3
∗ 1𝑚 = 20 𝑀𝑃𝑎  

While at the bottom of the generated model the vertical stress is equal to: 

 𝜎𝑣𝑏𝑜𝑡𝑡𝑜𝑚
 = 𝜎𝑣𝑡𝑜𝑝

+ 𝛾 ∗ 𝑧 = 20 𝑀𝑃𝑎 + 25
𝑘𝑁

𝑚3
∗ 50𝑚 = 21.25 𝑀𝑃𝑎  

Additionally, using the defined value of the earth pressure coefficient at rest the value of the in 

situ horizontal stress is calculated employing the K0 condition. Similarly, to vertical stress 

horizontal stress varies with the same linear pattern. At the top of the model, the horizontal 

stress is equal to: 
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 𝜎ℎ𝑡𝑜𝑝
 = 𝐾0 ∗ 𝜎𝑣𝑡𝑜𝑝

= 0.3 ∗ 20 𝑀𝑃𝑎 = 6 𝑀𝑃𝑎  

While at the bottom of the model, the horizontal stress is equal to: 

 𝜎ℎ𝑏𝑜𝑡𝑡𝑜𝑚
 = 𝐾0 ∗ 𝜎𝑣𝑏𝑜𝑡𝑡𝑜𝑚

= 0.3 ∗ 21.25 𝑀𝑃𝑎 = 6.37 𝑀𝑃𝑎  

Phases of the analysis  

For each constitutive law, the modelling sequence was initiated with the generation of the in-

situ stresses using the K0 procedure. The second phase of the simulation concerns, the 

excavation of the tunnel. It must be pointed out that the excavation was performed in one phase 

and the tunnel was assumed to be self-supporting without the need for installation of any 

supporting measures (i.e. lining). The unbalance between the externally applied forces and the 

internal stresses in the rock layer due to the absence of the excavated material is solved using 

the FE software PLAXIS 2D.   

 

Boundary conditions  

Considering that the examined underground excavation is performed in a great depth, the 

deformations that will occur due to the removal of the excavated material will be limited to a 

considerably large area around the tunnel without having any effect on the ground surface. For 

this reason, it should be pointed out that all the boundaries of the generated model were 

modelled as fully fixed. Figure 6.8 illustrates the mesh adopted in the present analysis in 

combination with the applied boundary conditions: 

 

Figure 6.8: Adopted mesh and applied boundary conditions 
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6.3 Analysis of the results  

The simulation of the underground excavation was performed employing the four selected 

constitutive laws. The exported results were analysed to highlight the differences between the 

considered laws. In this research work, the analysis of the exported results was mainly focused 

on two features: 

 Stability and deformation around the tunnel 

 Stress analyses of some critical discontinuities  

6.3.1 Stability and deformation around the tunnel 

Magnitude of total displacement around the tunnel 

  

Figure 6.9: Total displacements employing each constitutive law 

Observing Figure 6.9 it can be noted that the distribution of total displacements around the 

tunnel is similar for all the employed models. Furthermore, observing the obtained results in 

combination with the obtained deformed mesh at the end of the calculation phase presented in 

Figure 6.10, it can be noted that the displacements are concentrated on a zone which crosses 

the tunnel vertically. This deformation pattern can be justified considering the low value of K0 

which has been adopted to the model and results in the limitation of the effect of horizontal 

field stress. Additionally, from a quantitative point of view, all the selected models render a 

relatively small value of total displacements after the excavation of the simulated tunnel.  

The total displacements obtained with the original Coulomb model do not deviate considerably 

from the obtained values using the implemented more advanced constitutive laws (around 16 

mm). This might be explained by the fact that the rock mass is quite stiff and as a result, the 

shear displacements along the discontinuity are not high enough to create a big difference in 

the post-peak region between the perfect plastic and softening models. Moreover, in this case, 

differences between the Coulomb and Barton-Bandis strength envelopes are not significant (see 
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the experimental calibration in Section 6.2). To further explain, the Coulomb and modified 

Barton-Bandis yield surfaces are plotted in Figure 6.11 considering the adopted values of the 

required parameters reported in Table 5.4 and Table 6.4. In the zone of small normal stresses 

(less than 7 MPa), where most of the local failures happen, the difference between the two yield 

surfaces is not so significant. 

 

Figure 6.10: Obtained deformed mesh at the end of the simulation  

 

Figure 6.11: Yield surfaces of Coulomb-based models and modified Barton-Bandis model 
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Furthermore, it should be noted that higher displacements are concentrated on the two wedges 

located at the roof and the floor of the tunnel. This can be explained by a high-stress release 

around these wedges due to the excavation. Concretely, when radial stresses are completely 

removed at the end of the excavation, these two wedges are then ‘pushed’ towards the centre 

of the tunnel which causes the movement of the intact rock blocks of the wedges under both 

shearing and especially opening along the discontinuities. 

Failure and instabilities 

The shear failure and tension cut-off points along the discontinuities are illustrated in Figure 

6.12.  

 

  

Figure 6.12: Obtained failure and tension cut-off points for each constitutive law 

Similar to the deformation pattern, it can be observed that the distribution of both shear failure 

and tension cut-off points does not deviate considerably among the used constitutive models. 

Furthermore, in all the cases some discontinuities around the tunnel fail in shear or tension. 

Tension reasonably occurs around the critical wedges in the vicinity of the excavation.  

However, the extracted results using the implemented version of the Barton-Bandis model 

indicate tension cut-off points only along the discontinuities which form the wedges on the roof 

and the floor of the tunnel. Compared to the other models, in the modified Barton-Bandis 
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model, no plastic points are visible at the two small wedges on the left and right of the 

excavation at the end of the phase (Step 193). This is related to the PLAXIS numerical stepping 

control procedure because these wedges did fail in previous steps as indicated by Figure 6.13. 

 

Figure 6.13: Obtained plastic point at step 120 using the implemented version of the Barton-Bandis model 

An important point is that the 120th step already represents an end stage of the excavation, as 

the value of ΣΜstage is already very close to 1 as can be seen in Figure 6.14. Note that ΣΜstage 

is the proportion of the unbalanced that is to be solved in a staged construction calculation, 

which should reach 1 at the end of the excavation when stress removal due to excavation is 

almost complete. From Figure 6.14 it can also be seen that ΣΜstage changes very little from 

step 100 but due to localized failure at the wedges, PLAXIS activates its automatic stepping 

and loading control procedure to slowly capture these local mechanisms, leading to a stress 

redistribution. Some stress points then move slightly inside the yield domain and become 

elastic. 

 

Figure 6.14: Plot ΣΜstage vs Number of steps for each constitutive law 
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In addition, the model failure and instability can be assessed indirectly through a measurement 

of the Current relative Stiffness Parameter (CSP). CSP is 1 for elastic loading and close to zero 

when failure is detected, i.e., when a large amount of deformation is generated with a very 

small amount of load. Figure 6.15 shows the evolution of CSP with step numbers in the 4 

analyses. For the modified Barton-Bandis model, CSP reaches a much lower value (and close 

to zero) compared to other models. Note that at step 150 of the Barton-Bandis analysis, CSP 

jumps back to 1 before going down again to a very small value (0.01435) at the end of the 

analysis, indicating a numerical unloading procedure explained earlier. Overall, the very small 

CSP obtained with the Barton-Bandis model gives an indication in all the cases, that the local 

wedge failures do not explicitly lead to global instability and that the model using the modified 

Barton-Bandis law is more prone to failure compared to other models. This again can be 

explained by the difference between these two models at very low-stress region (Figure 6.11). 

In this zone of low or zero normal stresses, while the Coulomb models still allow to mobilize a 

quite high amount of shear strength which contributes to the stability of the wedges due to the 

cohesion, the modified Barton-Bandis has a very low shear strength which might indicate more 

instability of the wedges.  

 

Figure 6.15: Plot CSP vs Number of steps for each constitutive law 

To explain further the failure obtained in the models, a stress analysis is performed hereafter 

for a critical wedge.  

6.3.2 Behaviour of the discontinuities of the most critical wedge 

The evolution of the generated shear and normal stresses along the discontinuities which form 

the wedge at the roof of the tunnel was further investigated. The selection of the upper wedge 

was done considering that all the performed simulations using the four different constitutive 

laws denote the existence of several tension cut-off points along the discontinuities which are 

related to the generation mechanism of this wedge. Furthermore, it should be noted that the 

position of the selected wedge in combination with the fact that is larger than the wedges at the 

sides of the tunnel enhance the effect of the gravitational loading which is critical for the 
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stability of the considered wedge. Figure 6.16 illustrates the examined wedge and 

discontinuities.  

   

Figure 6.16: Examined wedge and discontinuities at the roof of the tunnel 

6.3.2.1 Stress analysis of the first discontinuity   
 

Figures 6.17 and 6.18 present the evolution of normal and shear stress along the 1st discontinuity 

respectively. The measuring of the length of both examined discontinuities started from the 

points where the two discontinuities intersect the tunnel. 

  

Figure 6.17: Evolution of normal stress along the 1st Discontinuity for each constitutive law 
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Figure 6.18: Evolution of shear stress along the 1st Discontinuity for each constitutive law 

From a qualitative aspect, the obtained results presented in Figure 6.17 indicate that for all 

constitutive laws, the normal stress is negligible when being close to the excavated tunnel which 

is in accordance with the distribution of the tension cut-off points along the examined 

discontinuity presented in Figure 6.12. 

Furthermore, it can be observed that the normal stress using the modified Barton-Bandis model 

remains negligible for a larger distance than the one using one of the Coulomb-based models. 

In this way, the existence of more tension cut-off points using the considered model can be 

explained. Additionally, the observed peak value of normal stress using the Coulomb-based 

models is considerably higher than the corresponding one using the implemented value of 

Barton-Bandis.  

Moreover, Figure 6.18 indicates that the original Coulomb model and the Coulomb with linear 

softening model show a higher value of shear stress as was expected considering that the highest 

value of the applied normal stress was obtained using these two constitutive laws. Additionally, 

the brittle version of the Coulomb model leads to lower shear strength as was expected while 

the use of the implemented version of the Barton-Bandis model results in a considerably lower 

peak value of shear stress. This can be justified by the differences between the strength envelops 

used laws as previously analysed (Figure 6.11), especially at low or nil normal stresses. 

Hereafter, a more in-depth verification of the stress state of two specific plastic points is carried 

out in order to further check the accuracy of the implementation for each examined model. In 

more detail, for both examined discontinuities two points were selected. The first point 

corresponds to the intersection point of the examined discontinuity with the excavated tunnel 

while the second point corresponds to the intersection point of the two examined 

discontinuities. Figure 6.19 indicates the selected point for each discontinuity. 
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Figure 6.19: Selected Plastic points of each discontinuity  

As it is indicated by Figure 6.19 the second examined plastic point of the first discontinuity lies 

in the same location with the corresponding examined point of the second discontinuity.  

Original Coulomb model  

The obtained results of the calculated stresses at the end of the calculation phase show that the 

first point fails in shearing while the second fails in tension (Table 6.5).  

Table 6.5: Results of the stress analysis of the 1st Discontinuity using the original Coulomb model 

   

The depicted results in Table 6.5 indicate the obtained stress results of these two nodes. Node 

20181 corresponds to the first point where the discontinuity intersects with the tunnel while 

node 26463 corresponds to the intersection point of the two discontinuities.  For the first point, 

the value of the current shear stress (𝜏1) is equal to the value of the peak shear strength (𝜏𝑚𝑎𝑥) 

which corresponds to the current normal stress level (easily calculated with the Coulomb 

criterion 3.36), indicating a shear failure state. For the second node, the value of 𝜏1 is also equal 

to the value of 𝜏𝑚𝑎𝑥 but due to its nil normal stress, the stress state is considered to be at the 

corner of the yield contour, namely at the intersection of shear and tensile failure. Therefore, 

the validity of the exported plastic failure point is confirmed.  
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Coulomb with linear softening model  

For this newly implemented model, the peak shear strength (𝜏𝑚𝑎𝑥) of the discontinuity is not 

available from the software output and must be calculated manually. The obtained results from 

the stress analysis of the two examined nodes of the 1st discontinuity using the considered model 

after the calculation of the 𝜏𝑚𝑎𝑥 are presented in Table 6.6. Note that these points are also in a 

failure state.  

Table 6.6: Results of the stress analysis of the 1st Discontinuity using the Coulomb with linear softening model 

 

The current shear strength should be calculated based on the current normal stress, which are 

both zero for both these two points. It is important to note that at zero normal stress, the shear 

strength is less than the peak cohesion (342 kN), which can be explained by the fact that the 

points have already undergone softening. To exactly calculate the maximum shear strength the 

adopted state parameter had to be exploited using the VBin tool which is provided with the 

installation of PLAXIS software. 

Knowing the number of each examined discontinuity element and knowing that each 

discontinuity element includes five nodes, the exact rows that correspond to the nodes which 

were selected for further investigation, were spotted. For each examined node two values are 

provided by the tool. The first value indicates whether the node is elastic or plastic while the 

second value indicates the value of the state parameter. If the node is elastic the first value is 

equal to 0. On the other hand, if the node is plastic the first value is equal to 1. The second 

value indicates the state parameter. The softened cohesion is calculated as follows: 

𝑐 = 𝑐𝑝𝑒𝑎𝑘 (1 −
𝜅

𝐷𝑐
) − 𝑐𝑟𝑒𝑠 (

𝜅

𝐷𝑐
) ≤ 0  

(6.1) 

Employing Equation (6.1) and the retrieved value of the state parameter the current value of 

cohesion was calculated. For both nodes, it can be seen that the current value of cohesion is 

equal to the obtained value of current shear stress indicating that both points are located 

consistently at the corner between the tensile and shear strength failure lines. 

Coulomb with linear softening model (brittle) 

In this case, the value of the 𝜏𝑚𝑎𝑥 of the discontinuity was also calculated manually. 

Furthermore, considering the brittle softening nature, the current cohesion drops immediately 

to the residual value (270 kN) once the point has reached failure. Table 6.7 presents the obtained 

results.  
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Table 6.7: Results of the stress analysis of the 1st Discontinuity using the brittle version of the Coulomb with linear 

softening model 

 

The depicted results in Table 6.7 denote that the values of the current shear stress for the 

examined points are equal to the adopted value of the cohesion at the residual state, which again 

indicates the failure state of these points and the consistency of the implementation. 

Modified Barton-Bandis model 

For the modified Barton-Bandis model, the same process as the one described in the case of 

Coulomb with the linear softening model was followed to obtain the value of the state variable 

(accumulated slip). The mobilized roughness 𝐽𝑅𝐶𝑚𝑜𝑏 (equation 3.65) is then evaluated to 

calculate the current shear strength. The obtained results are depicted in Table 6.8: 

Table 6.8: Results of the stress analysis of the 1st Discontinuity using the modified Barton-Bandis model 

  

The calculated values of current cohesion (for point 1) and peak shear strength (for point 2) 

were equal to the corresponding values of current shear stress which being exported by PLAXIS 

2D. Therefore, the failure state of each examined plastic point along the examined discontinuity 

is justified.   

6.3.2.2 Stress analysis of the second discontinuity  

Similarly, to the analysis performed for the distribution of the stresses along the 1st 

Discontinuity, the evolution of both shear and normal stress along the 2nd Discontinuity was 

also assessed. Figure 6.20 and Figure 6.21 present the evolution of normal and shear stress 

along the examined discontinuity. 
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Figure 6.20: Evolution of normal stress along 2nd Discontinuity for each constitutive law 

   

Figure 6.21: Evolution of shear stress along the 2nd Discontinuity for each constitutive law 

The obtained results regarding the evolution of the normal stress along the 1st Discontinuity 

presented in Figure 6.20, indicate that for all constitutive models, the normal stress is null close 

to the excavated tunnel while an increment of the normal stress value is observed close to the 

point where the two examined discontinuities are intersected. Moreover, it should be noted that 

the extracted evolution of normal stress is in accordance with the distribution of the tension 

cut-off points along the examined discontinuity which is presented in Figure 6.12. More 

specifically, tension cut-off points are depicted in the same points where the value of normal 

stress is nil. 
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On the other hand, a considerable difference between the Coulomb-based models and the 

modified Barton-Bandis model is noted. Concretely, the obtained results show that the 

calculated value of peak normal stress employing the Coulomb-based models is considerably 

higher than the corresponding one using the Barton-Bandis model with linear reduction of 

roughness. This difference in the maximum value of the applied normal stress justifies also the 

observed difference in the obtained value of the maximum shear stress for each law. 

As in the performed stress analysis for the 1st Discontinuity so in this case also a further 

investigation of the exported results was carried out to give an insight into the distribution of 

the stresses along the 2nd Discontinuity. Accordingly, to the performed analysis for the 1st 

discontinuity, the validity of the two plastic points as indicated by Figure 6.19. 

Coulomb model original 

The stress analysis started with the verification of the exported results using the original version 

of the Coulomb model. The obtained results are illustrated in Table 6.9: 

Table 6.9: Results of the stress analysis of the 2nd Discontinuity using the original Coulomb model 

 

The depicted results in Table 6.9 indicate the obtained stress results of two nodes. Node 27063 

corresponds to the point where the discontinuity intersects with the tunnel while node 30021 

corresponds to the intersection point of the two discontinuities.  For the first point, the value of 

the current shear stress (𝜏1) is equal to the value of the peak shear strength (𝜏𝑚𝑎𝑥) which 

corresponds to the current normal stress level (easily calculated with the Coulomb criterion 

3.36), indicating a shear failure state. For the second node, the value of 𝜏1 is less than the value 

of 𝜏𝑚𝑎𝑥 indicating that the stress state of the considered node remains in the elastic area. 

However, it must be pointed out that in the intersection point of the discontinuities, two points 

are overlapping. Considering that in the previously performed analysis using the Coulomb 

model the existence of the plastic failure point was justified it can be concluded that the 

obtained failure point corresponds to the first discontinuity while for the second discontinuity, 

no point was projecting (because for the applied normal stress no failure state occurs).  

Therefore, the validity of the exported plastic failure point is confirmed.  

Coulomb with linear softening model  

The second step of the analysis concerns the investigation of the obtained results after the 

simulation of the modelled underground rock excavation using the Coulomb with linear 

softening model. The analysis of the obtained results using the considered model was 

performed using the same process as the one described for the assessment of the validity of the 

extracted plastic points along the first discontinuity using the same model. The obtained results 

after the calculation of the 𝜏𝑚𝑎𝑥 Table 6.10: 
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Table 6.10: Results of the stress analysis of the 2nd Discontinuity using the Coulomb with linear softening model 

 

For the first point it is important to note that at zero normal stress, the shear strength is less than 

the peak cohesion (342 kN), which can be explained by the fact that the points have already 

undergone softening. Therefore, using Equation (6.1) and the retrieved value of state parameter 

the current value of cohesion was calculated. The calculated value of cohesion is equal to the 

obtained value of current shear stress indicating that the first point is located consistently at the 

corner between the tensile and shear strength failure lines. Additionally, for the second point 

the value of the peak shear strength (𝜏𝑚𝑎𝑥) which corresponds to the current normal stress level 

was calculated denoting that the calculated value is larger than the obtained value of the 𝜏1. 

Considering this condition, it can be stated that the examined point is elastic. Therefore, the 

reliability of the exported results is confirmed.  

Coulomb with linear softening model (brittle) 

The next step of the analysis was focused on the investigation of the results obtained after the 

simulation of the considered underground excavation using the brittle version of the Coulomb 

with linear softening model. According to the previously presented results, the value of the 

𝜏𝑚𝑎𝑥 of the discontinuity was also calculated manually. Furthermore, as stated before 

considering the brittle softening nature, the current cohesion drops immediately to the residual 

value (270 kN) once the point has reached failure. Table 6.11 presents the obtained results: 

  
Table 6.11: Results of the stress analysis of the 2nd Discontinuity using the brittle version of the Coulomb with linear 

softening model 

 

 

The depicted results in Table 6.11 denote that the values of the current shear stress for the first 

examined point is equal to the adopted value of the cohesion at the residual state, which again 

indicates the failure state of this point. However, the extracted value of the current shear stress 

for the second examined point is lower than the peak shear strength which corresponds to the 

current normal stress denoting that the considered point is elastic. Therefore, the consistency 

of the implementation is confirmed. 

Modified Barton-Bandis model  

The final step of the analysis regarding the investigation of the obtained stress results along the 

2nd discontinuity concerns the modified Barton-Bandis model. The same process as the one 

described in the case of Coulomb with the linear softening model was followed to obtain the 

value of the state variable (accumulated slip). The mobilized roughness 𝐽𝑅𝐶𝑚𝑜𝑏 (equation 3.65) 
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is then evaluated to calculate the current shear strength. The obtained results are depicted in 

Table 6.12. 

Table 6.12: Results of the stress analysis of the 2nd Discontinuity using the modified Barton-Bandis model. 

  

The calculated value of current cohesion (for point 1) was equal to the corresponding value of 

current shear stress which has being exported by PLAXIS 2D justifying the existence of the 

extracted failure point. On the other hand, the extracted value of the current shear stress for the 

second examined point is lower than the peak shear strength which corresponds to the current 

normal stress denoting that the considered point is elastic. Therefore, the stress state of each 

examined plastic point along the examined discontinuity is verified.   

6.3.2.1 Results of the analysis 

The performed analysis of the stress regimes that govern the behaviour of the two 

discontinuities which form the wedge at the roof of the excavated tunnel denote that the 

employed constitutive laws result in noticeable differences regarding the level of the applied 

normal stress and the evolution of shear stress along the examined discontinuities.  

More specifically, the obtained results using the Coulomb-based models showed a higher value 

of peak normal stress in comparison with the one obtained using the implemented version of 

Barton-Bandis. This difference consequently leads to a smaller value of shear strength using 

the modified Barton-Bandis model. Additionally, it must be pointed out that the performed 

analysis indicated that in the framework of the considered engineering application, no 

difference was noted between the original Coulomb model and the Coulomb with linear 

softening model. This behaviour of the considered models is closely related to the obtained 

results illustrated in Figure 6.9. In more detail, as was described in Section 6.3.1 a non-

considerable amount of displacements is caused due to the excavation of the simulated tunnel. 

Considering the small amount of displacement in combination with the fact that the behaviour 

of the Coulomb model in comparison with the behaviour of the Coulomb with linear softening 

model differs significantly at the post-peak area, it can be safely assumed that the generated 

displacements are not enough to denote the capabilities of the most advanced constitutive 

relationships adopted by the Coulomb with linear softening model. 

Therefore, the aforementioned observations lead to the following conclusions regarding the 

stability of the examined discontinuity using the implemented constitutive laws: 

 Coulomb-based models: Despite the several plastic failures and tension cut-off points the 

wedge at the roof of the tunnel is stabilised after a relatively small amount of displacements 

The stabilisation of the wedge can be explained considering that the Coulomb-based 

models generate high normal stress levels which consequently lead to adequately high 

shear strength levels to secure the stability of the wedge. In addition, the adopted value of 

cohesion which controls the shear strength at the areas where no normal stress is applied 

is large enough to resist the gravitational loading and prevent the collapse of the wedge.  
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 Modified Barton-Bandis model: Several plastic failure and tension cut-off points were also 

obtained employing the modified Barton-Bandis model. However, even though 

considerably lower values of stresses are generated using the considered model in 

comparison with those extracted using the Coulomb-based models, it was concluded that 

the generated stresses are enough to keep the wedge stable. Additionally, similar to the 

Coulomb-based models, the adopted value of cohesion which was added to the 

implemented version of the Barton-Bandis model after the described modifications, was 

judged adequate to prevent the occurrence of a failure mechanism along the discontinuities 

which form the examined wedge. 
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7 Conclusion and recommendations 

 

The aim of this research project was to evaluate the capabilities and the limitations of different 

constitutive laws for rock discontinuities in terms of numerical implementation and modelling 

of the mechanical behaviour of fracture rock masses. To accomplish the research objective, the 

following research questions were formulated. 

The first question concerns on how the mechanical behaviour of a discontinuity can be 

modelled. The carried-out literature review indicated that several constitutive models have been 

introduced by many researchers which help the rock engineers to understand the mechanical 

behaviour of discontinuities. These models are of either theoretical or empirical nature with 

different degrees of complexity. In this research project, two constitutive laws were selected 

for a more detailed investigation due to their high adoption in research and industry: the 

Coulomb law and its enhanced versions, and the modified Barton-Bandis model. The first 

constitutive law concerns the Coulomb model which is considered as the most adopted model 

in engineering practice. The Coulomb model is a simple model with a small number of easy-

to-determine parameters. However, because of its simplicity, it cannot capture several features 

of the mechanical behaviour of the discontinuities.  Considering its limitations, the Coulomb 

model was enhanced with the addition of strain softening, residual dilation and dilation cut-off. 

The enhanced model was implemented as a user-defined model in PLAXIS 2D.  

 

To answer the second research question, concerning the proper validation of the implemented 

model, a simple numerical model of two rock blocks and a single discontinuity was simulated 

in PLAXIS 2D (as described in detail in Section 5.2). Employing the created model, the 

implementation was successfully verified against the theoretical simulation and experimental 

data for the behaviour of a discontinuity subject to shearing under Constant Normal Load 

(CNL) conditions. This enhanced version proves to be able to reproduce more accurately the 

mechanical response of discontinuity than the original Coulomb model by capturing with 

adequate accuracy several important features of the peak and residual shear strength, as well as 

the non-linear evolution of dilation usually observed in the post-peak region. Compared to the 

existing Coulomb brittle softening model in PLAXIS which uses a unique reduction factor for 

both friction angle and cohesion, this enhanced version allows for a more flexibility in the 

calibration of experimentation, as well as a better representation of post-peak dilation. 

Additionally, the adopted enhancements allow for a more accurate representation of the post-

peak dilation in contrast with the current PLAXIS Coulomb brittle model which assumes a nil 

residual dilation.  

 

The second constitutive law which was selected for further investigation was the Barton-Bandis 

model which is probably one of the most cited models in research. The model can generally 

reproduce more accurately the strength envelope as well as the non-linear behaviour of a 

discontinuity subject to shear displacement. Their parameters, although not very easy to 

determine, have clear physical meaning. However, its high non-linearity and especially the 

empirical nature makes the numerical implementation of the model challenging.  

Considering these limitations several improvements were adopted to the Barton-Bandis model 

to enhance its applicability to ensure the theoretical rigorousness. Firstly, considering that 

during the simulation of an engineering application, several stress paths along the 𝜏 − 𝜎𝑛 space 
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will occur, the applied improvements were focused on the mathematical treatment of the model 

to ensure its validity in the areas of high and low normal stress. Therefore, within the framework 

of this thesis, the modifications described in Section 3.5 were applied to the mathematical 

formulations of the Barton-Bandis model and an open and convex yield surface which is valid 

for every stress state was adopted. The second set of improvements was focused on the 

generation of a linear approximation of the highly non-linear Barton-Bandis model which can 

provide accurate results and be aligned with the considerations of Barton regarding the 

contribution of the roughness of the discontinuity walls in the evolution of shear strength. 

Concretely, the linear softening feature was adopted to the examined law with the application 

of a reduction factor whose value was dependent on the value of the state parameter. The 

formulated reduction factor was applied to the 𝐽𝑅𝐶𝑝𝑒𝑎𝑘 to reduce linearly its value and represent 

the concept of mobilized roughness. In this way, a simplified model that can capture the shear 

strength of the post-peak area was formulated based on the Barton-Bandis model.  

The modified Barton-Bandis model was implemented as a user-defined model in PLAXIS 2D. 

Accordingly to the implemented Coulomb model the validity of the modified Barton-Bandis 

model was verified by employing the same numerical model created in PLAXIS 2D and by 

comparing the simulation results of CNL shear tests with theoretical and experimental data. 

The obtained results indicated that the created model could capture the trend of the mechanical 

response of a discontinuity, including the peak and residual strength, although a conservative 

estimation of the strength evolution in the post-peak area is observed. The model could 

reproduce the dilation onset and evolution which is tightly related to the mobilized roughness. 

The obtained results indicated that the higher the amount of the mobilized roughness is, the 

larger the amount of dilation is. Moreover, when the amount of mobilized roughness is equal 

to zero indicates the end of the dilation and the complete shearing-off of the asperities.  

However, the empirical nature of the model seems to have little flexibility to capture 

quantitatively the evolution of dilation of different types of discontinuity, as no dilation 

parameter is available for such a calibration of the dilation curve. 

To answer the last question regarding the ability of the implemented constitutive laws to capture 

the real mechanical behaviour of fractured rock mass in a large-scale problem, their 

applicability was examined more extensively in a finite element simulation of a deep 

underground rock excavation in a discontinuous rock mass. For this practical application, 

considering that the projection of a realistic discontinuity network is a challenging and time-

consuming process, improvements were made to an existing generator tool that allows for the 

automatic generation of a discontinuity network by means of the PLAXIS Python scripting 

API. Employing the improved version of the tool the whole model geometry of the considered 

underground excavation was generated including two inclined fully persistent with random 

spacing discontinuity sets. The obtained results denoted that through the adopted improvements 

a useful and efficient tool for the automatic generation of realistic discontinuity networks had 

been created.  

 

Additionally, the performed FE simulations further validate the numerical implementation of 

the models. More concretely, deformation and local failure around the tunnel, as well as stresses 

developed in the discontinuities of the most critical wedges agreed with physical observation. 

The performed analysis showed that in this case, where only a small amount of displacement 

is expected compared to the critical distance, and the softening is not so significant, the original 

Coulomb model and the enhanced version of the Coulomb model with linear softening do not 

indicate significant differences in the calculation of the generated stresses. Finally, for the 

considered engineering application it was noted that the modified Barton-Bandis model 
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generated lower stresses for the tensile discontinuities due to its low cohesive strength, which 

might imply more instabilities on the critical wedges.  

Finally, the simulations performed in both lab and large scales indicated that the examined 

constitutive laws could provide reliable results regarding the mechanical behaviour of rock 

discontinuities. Based on the employed implemented versions of the examined models and the 

examined large-scale engineering application, the results highlight the importance for rock 

engineering practitioners to first consider the stress ranges that should be taken into account in 

the project to be designed before the selection of a more advanced law. In more detail, the 

simulated underground excavation performed within the framework of this research work 

indicated that for the considered stress levels the yield surfaces of the examined models do not 

present significant differences to justify the selection of a more advanced constitutive laws, 

which would require a more challenging calibration of empirical parameters. The results in 

terms of deformations indicated that the investigated constitutive laws reproduce comparable 

results while in terms of stability, it can be noted that at low-stress levels the Barton-Bandis 

model provide a more conservative solution in comparison with the Coulomb-based models. 

Therefore, engineering judgment is always required to decide the most efficient way to model 

the behaviour of a rock discontinuity based on the effectiveness of the model and the easiness 

of the calibration of the required parameters.   

This research work opens several directions for future works. Firstly, only linear stiffnesses are 

considered in this work. Nonlinear stiffnesses will be considered in a future implementation, 

especially in the context of hydro-mechanical coupling where mechanical aperture mutually 

interacts with fluid flow through the discontinuity. Secondly, other enhancements on the 

dilative behaviour of the Barton-Bandis model, more realistic roughness mobilization law, as 

well as other constitutive laws, will be considered. Finally, it is important to note that this study 

focuses on the validation of the numerical enhancements and implementation of the models. A 

more in-depth study on different applications will be needed to clarify further the applicability 

of different models in rock practical engineering.  
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