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Abstract

Grace is a dynamic object oriented programming language
designed to aid programming education. We present a formal
model of and give an operational semantics for its object
model and name resolution algorithm. Our main contribu-
tions are a systematic model of Grace’s name resolution using
scope graphs, relating linguistic features to other languages,
and an operationalization of this model in the form of an
operational semantics which is readable and executable. The
semantics are extensively tested against a reference Grace
implementation.

CCS Concepts «Software and its engineering — Classes
and objects; Semantics;

Keywords object orientation, name resolution, dynamic
semantics

ACM Reference Format:

Vlad Vergu, Michiel Haisma, and Eelco Visser. 2017. The Semantics
of Name Resolution in Grace. In Proceedings of 13th ACM SIG-
PLAN International Symposium on Dynamic Languages (DLS’17).
ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3133841.
3133847

1 Introduction

Grace is a dynamic object-oriented programming language
designed to aid learning the art of programming. It is de-
signed to be a small and simple programming language
to learn. Its designers and maintainers are experienced re-
searchers and educators in the field of programming lan-
guages. Grace embodies findings from decades of research in
the field, drawing inspiration from reference languages such
as Smalltalk [1], Self [31], Newspeak [7] and Java [15]. At its
core Grace is lean: it consists of nested object literal expres-
sions with multiple inheritance and anonymous functions.
Other language features (e.g. classes, traits and modules) are
defined in terms of these concepts [4, 17, 18]. There are two
mainstream implementations: a Grace to C compiler and a
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Grace to JavaScript transpiler. The latter is available as a
web-based development environment.

Various implementations and documentations of Grace
exist, each implementing and documenting slightly differ-
ent semantics. Lengthy discussions around the language’s
object model and name resolution are common within the
design team. We posit (and our conversations with the Grace
design team support this basis) that the fuel for discussion
is the effect on name resolution of combining nested object
expressions, multiple inheritance using traits, overriding
and shadowing. The use of arbitrary expressions as ancestor
objects (in the style of Newspeak) further hinders under-
standing. It becomes difficult to explain intended behavior
to people both within and outside of the project.

The Grace community puts significant effort in creating
and maintaining the Grace documentation which comes in
two forms: an interactive tutorial and a language specifica-
tion. Both are in prose with concrete code examples. The
intended audience of the documentation is the user of the
language. But a common feature of prosaic documentation
is that it cannot afford the verbosity to describe all special
and interesting cases of the language. Details of object con-
struction and name resolution take a back seat in favor of
explanations of how the language can be used. There is also
no formal definition of the core linguistic features. Languages
that inspired the design of Grace also either (1) lack formal-
izations themselves, (2) are conceptually distant from Grace,
or (3) are statically typed: (1) Self and Newspeak have prose
specifications [7, 31], (2) Smalltak-80 has an operational se-
mantics [37] but Smalltalk lacks nested objects, and (3) Java’s
semantics [30] in K [5] defines static name resolution. As a
consequence it is hard to fully grasp the underlying concepts
in Grace.

In this paper we propose that a concise definition of Grace’s
object model and name resolution algorithm resolves this
problem. The definition, available at https://github.com/
MetaBorgCube/metaborg-grace/tree/dls17, serves as read-
able documentation and as executable specification that can
be used for experimental validation and as a reference im-
plementation. Our approach is to model Grace’s name reso-
lution using scope graphs [26, 32] and to operationalize this
model as a specification for Grace in the Spoofax language
workbench [20, 35].

Figure 1 shows the architecture of our implementation.
A syntax definition in SDF [36] derives a parser with error
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Figure 1. Architecture of the Grace language artifact.

recovery and an IDE with syntactic editor services. Source-to-
source transformations implemented in Stratego[8] desugar
high-level Grace features to lower level concepts. We use
scope graph notation to model the key aspects of name res-
olution in desugared programs. An operational semantics
in DynSem [34], a domain-specific language for dynamic
semantics specifications, serves as a concise and executable
definition for object construction and name resolution se-
mantics. The contributions of this paper are:

e We model run-time name resolution using the scope
graph paradigm.

e We give a concise and executable definition of Grace’s
object model and name resolution semantics in the
DynSem dynamic semantics specification language.

o We separate name resolution from naming and con-
fidential access policies. Policies are configurable by
the language designer.

e We have validated our specification through extensive
testing against a reference implementation of Grace.

Outline The remainder of this paper is structured as fol-
lows. We begin with an overview of desugaring source-to-
source transformation in Section 2. In Section 3 we model
Grace name resolution using the scope graph paradigm and
give a systematic account of key aspects of name resolution.
Section 4 defines the operational semantics of the object
model, the name resolution algorithm and enforcement of
policies. We evaluate our approach in Section 5, discuss re-
lated work in Section 6 and conclude with Section 7.

2 Desugaring

We desugar high-level features of Grace in terms of lower
level concepts using a transformation implemented in Strat-
ego [8]. The transformation is local (does not require global
knowledge of the program) and is performed statically. Desug-
aring reduces the feature set which we must formally define.
It applies the following transformations which are relevant to
the object model and name resolution. (1) All Grace programs
live in an implicit object — the module object. Desugaring
rewrites a program P to object {r}. (2) Class and trait decla-
rations are rewritten as factory methods. Factory methods
are regular methods which contain an object expression in
their bodies. For example, the class declaration of Figure 2a
desugars to the factory method of Figure 2b. Trait decla-
rations are treated similarly. Classes and traits are always
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class A { method A is public {
method m {...} object {
} method m {...}
}
(a) )
method (b)
if (e) then(bl) {
} method if (_)then(_) (e, bl) {
if (1==1) then ({
R }
} if (L) then (L) (1==1, {...})
(© (@)

Figure 2. (a) class declaration before desugaring to (b) fac-
tory method. Multi-part method before (c) and after (d) name
canonicalization.

public, hence the public annotation of the factory methods.
(3) Method names are canonicalized such that all name parts
are concatenated. The canonical method name encodes the
arity of the method. For example, the method and call of
Figure 2c desugar to the method and call of Figure 2d. The
canonicalized method name is if(_)then(_). The number
of _ symbols encodes the arity. Throughout the remainder
of the paper we assume that programs have been desugared
as described above.

3 Name Resolution

Much of Grace’s semantics revolves around name resolution,
a concern which is strongly related to object orientation.
Grace has lexical scoping of declarations and allows arbi-
trarily deep nesting of object expressions. Expressions may
explicitly refer to lexically surrounding objects and objects
may have multiple ancestors. The use of expressions to de-
termine ancestors means that meaningful name resolution
can only be performed at run time. Method aliasing and
exclusion combined with shadowing and overriding poli-
cies complicates name resolution. When lexical nesting and
inheritance combine, name resolution becomes a complex
comb-like search [6]. Some of the design decisions taken
to aid learning Grace introduce additional name resolution
concerns.

In this section we discuss the key aspects of Grace’s name
resolution by means of scope graphs [26, 32]. A scope graph
is the result of distilling the abstract syntax tree of a program
to information about names and scoping in the program. A
scope graph is a directed graph consisting of the following
ingredients. A scope represents a region in a program that
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behaves uniformly with respect to name binding. In scope
graph diagrams, scopes are represented by circles. A declara-
tion is the introduction of a name in a program. In diagrams,
declarations are represented by a box with an incoming edge
from the scope they are declared in. A reference is a use of a
name in a program. In diagrams, references are represented
by boxes with an outgoing edge to the scope in which they
reside. Edges between scopes determine visibility inclusion.
Name resolution consists of finding a path from each ref-
erence to a declaration with the same name, following the
edges in the graph. As originally introduced, scope graphs
represent purely static information about a program. How-
ever, in a dynamic language such as Grace, the scope graph
partially emerges at run time. In diagrams we represent such
dynamically constructed connections using red edges.

As an introductory example, consider the scope graph
and program of Figure 3. It identifies five scopes, of which
scopes s1, s2, s3 and s4 are in a lexical structure. Scope s1
corresponds to the top-level object. It has two declarations:
one for field x and one for method m(_). Method m(_) has
its own scope s2. The P edge from s2 to s1 corresponds
to the nesting of method m(_) in the top-level object. The
declaration of y in scope s2 corresponds to parameter y of
method m(_). Reference y in scope s2 refers to this parameter
y. Scope s3 is the scope of the object created by method m(_).
The L edge from s3 to s2 corresponds to the nesting of the
object expression in the method scope. Distinguishing P and
L edges allows object and method scopes to be distinguished,
a requirement for policy enforcement.

Name resolution comes down to two tasks: maintaining
the scope graph for the program and calculating paths in the
scope graph. In a statically typed language much of these
tasks can be performed statically [29]. In a dynamic language
such as Grace the two tasks are interleaved at run time.

We systematically describe Grace’s name resolution in
terms of scope graphs. Details of the intuition behind Grace’s
name resolution can be found in the extended version [33].

Initialization statements make a constructor. Statements
directly within the body of an object which are not decla-
rations are initialization statements. Figure 3 illustrates an

object with scope s3. The initialization expression of field

z and the expressions below are initialization statements

which reside in an implicit constructor method with scope

s4. This additional method scope s4 simplifies reasoning

about initialization statements and allows us to model all

statements in an object uniformly.

Names are lexically scoped. Grace declarations are lexi-
cally scoped. Blocks (delimited by {3}) scope declarations
within. Lexical scoping implies that the declarations in a
scope are only reachable from the scope itself or from scopes
with a path to the declaration scope.

A reference is in lexical range of its declaration if there is a
resolution path in the scope graph from the reference scope
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m(_) <—@—> X
P
outer
()
y
object { s1
def x = .. L
method mCy) { s2 « z
y
object { s3 2:=C)
var z = ..
X s4 y P
y
z 2 outer
outer[x]
}
+ outer X
}

Figure 3. Program illustrating nested scopes and its scope
graph.

to the declaration scope and this resolution path contains
only P and L edges. In Figure 3, declarations in scope s2 of
method m(_) are reachable only from s2, s3 and s4.

Outer identifies surrounding object. A distinctive feature
of Grace is the outer pseudo-variable: the outer of an object
0, s 0y if the declaration of o, is enclosed by the declaration
of 0;. The outer of the top-level object is undefined. (An
exception are programs with dialects, which are outside of
the scope of this paper).

Every method implicitly declares an outer. The outer
pseudo-variable can be used to qualify references to mem-
bers in surrounding objects. Enclosing objects can be reached
with successive outer references, e.g. outer.outer.outer.x.
Consider the qualified reference outer. x in the implicit con-
structor scope s4 of Figure 3. The qualified reference to x is a
reference in anonymous scope s5, which imports outer. Ref-
erence outer in s4 resolves to a declaration in same scope
which is dynamically bound to the object scope s1.

Fields are slots with getters and setters. AsFigure 3 shows,
fields and method declarations live in the same namespace.
The declaration of field x in the object with scope s1 induces
a declaration for a method x which reads the value of the slot
in the object corresponding to the field. Mutable fields, such
as z in the object with scope s3, also induce a declaration
for a setter method (e.g. z: =(_)) which writes the value of
the parameter into the slot for the field.

Ancestor is determined dynamically. Grace objects can
inherit from other objects, an unsurprising feature for an
object oriented language. What sets Grace aside from many
other languages is that an ancestor object is determined by
evaluating an inheritance expression. The expression can
perform arbitrary computation as long as it evaluates to a
fresh object.
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object { s1

method t1 { s2
object { s3
def a = .. 1

3

}

method t2 { s4

object { s5
def a = ..

outer

}

3

(=(2)=

object { s7
inherit t2
use tl1

def ¢ = ..
a s8

}

outer

outer

t2

tl

Figure 4. Scope graph (right) for a program with objects having multiple inheritance (left).

Consider the scope graph of Figure 4. The inheritance
expression t2 is resolved in the inheriting scope s7. The
value of the inheritance expression identifies the scope of
the ancestor — s5 from within method t2 — and induces
an import edge — I(1). The target of this import edge can
only be computed at run time after evaluating the inheri-
tance expression. (We discuss the auxiliary import scopes —
namely s7ila and s7i1b in the context of method aliasing
and exclusion.)

Method resolution entails finding a path in the scope graph
from the scope of the youngest descendant object to a declar-
ing scope. For example, resolving reference a in scope s8 of
the constructor method of object with scope s7 of Figure 4
yields the resolution path [P,I(1),I,I] to s5.

Allowing arbitrary inheritance expressions increases the
expressivity of the language but complicates name resolution.
Meaningful static name resolution requires intra- and inter-
procedural data-flow analyses.

Objects have multiple ancestors. Objects in Grace can in-
herit from multiple traits. Traits are just objects without state,
a restriction enforced syntactically. A desugaring rewrites
trait declarations to factory methods. Consider the object
with scope s7 of Figure 4 which inherits as a trait the object
scope s3 identified by t1. Import edges for traits induce ad-
ditional I edges. I edges are indexed so that a path uniquely
identifies a resolution.

Descendants may alias and exclude methods. The pro-
grammer may choose to alias and exclude methods when
inheriting from objects and traits. The scope graph of Fig-
ure 5 illustrates how method aliasing and exclusion affects
name resolution. For example, the alias a = x introduces
the declaration for a as an alias to the inherited method x,
in an auxiliary alias scope s8i1b. Exclusions introduce dec-
laration filters in a separate auxiliary scope, s8i1a, directly
importing from the alias scope.

Resolving an alias to the actual method declaration takes
place in two steps. Firstly, the alias reference, e.g. a in scope

s9 of the constructor method, is resolved to a declaration in
the auxiliary scope s8i1b via path [P,I(1),I]. Secondly,
having found an alias declaration, a new resolution is per-
formed for reference x starting from the alias scope s81i1b,
yielding path [I] to scope s3.

If resolution of a reference, say y in scope s9, reaches
a filter declaration for that name, for example y from aux-
iliary scope s8i1a, that resolution path is abandoned and
resolution must backtrack.

Lexical scope may not be imported. Objects may not be
used as proxies for their lexical scopes. It is a design decision
that maintains encapsulation and ensures privacy of an ob-
ject’s internal details. The restriction has a natural parallel
in the scope graph model: I edges may only be followed by
I edges.

Methods and local variables have different names. Grace
enforces two restrictions on local variables: (1) two local vari-
ables in lexical range may not have the same name and (2) a
local variable may not have the same name as a method in
lexical range.

We enforce both restrictions by examining resolution
paths. Prior to recording a declaration for x in a method
scope s, we resolve a fictive reference x from scope s. If a
path without any I edge exists, the new declaration for x
would be in lexical range of another declaration and must
be rejected. The declaration violates restriction (1) if the last
path edge is L, or restriction (2) otherwise.

Ambiguous references are illegal. A reference may have
two resolution paths in the scope graph, one strictly lexical
and one via an import edge. Such references are illegal in
Grace and raise run-time exceptions.

Latest overriding method wins. Resolving a reference may
yield multiple resolution paths. For example, resolving x from
scope s9 of the constructor method in Figure 5 yields two
paths: [P,I(1),I,I]to s3 and [P,I(2),I,I] to s5;two
declarations are inherited from two separate scopes. The
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object { s1
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def z = ..

method f { s2,
object { s3
def x
def y
def z

3

i outer

method g { s4
object { =
} X

Ii

s7

object { s8 y
inherit f

alias a = x
exclude y z
use g

def z = ..
a s9

X
z

b3

outer

Figure 5. Multiple inheritance with aliases and excludes, shadowing and overriding (left) and corresponding scope graph

(right).

Grace-specific disambiguation policy for this situation is to
choose the path containing the import edge with the high-
est index. This translates to a method overriding semantics
where a later inherited declaration overrides earlier ones.

Alocal declaration overrides inherited declarations. For ex-
ample, resolution prefers path [P] over path [P,I(1),I,I]
when resolving reference z in s9.

Members shadow outer’s members. A reference may have
multiple resolution paths, all lexical. Reference z in construc-
tor method scope s9 of Figure 5 has two potential resolution
paths, both lexical: [P] and [P,L,P]. The disambiguation
policy is to prioritize the shortest path. This translates to a
shadowing semantics: member declarations shadow declara-
tions in outer object scopes.

Confidentiality requires name resolution. We conclude
this section by claiming that confidentiality of an object’s
members is not part of name binding. Whether or not a ref-
erence to a particular member declaration is allowed from
outside of the object, a resolution path will exist for that ref-
erence. More so, deciding whether access should be granted
or rejected requires information about the reference and dec-
laration scopes, the latter being the result of name resolution.

Suppose for instance that a qualified reference o.x from
some scope s,f resolves to a confidential declaration in some
object scope s,p;. Access should be granted if s, = sop;. If
Sref # Sobj» access should only be granted if the path from
Sref t0 sop; has a P edge, i.e. that s,.r reaches s,; through a
lexically enclosing scope.
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4 Operational Semantics

The dynamic semantics of a programming language defines
the run-time behavior of its constructs. In this section we
give an operational semantics for Grace’s object model, name
resolution algorithm, and enforcement of naming policies.

We use DynSem [34] as a specification language for the
semantics. DynSem is a domain-specific language for spec-
ifying the dynamic semantics of programming languages.
Specifications are given in terms of syntax-oriented rules
over named arrows from program terms to values. Rules
can access contextual evaluation information from read-only
components (mentioned left of the  symbol) and from read-
write components. A rule can omit semantic components
which it does not use; these are implicitly propagated. Read-
only components propagate downwards (environment se-
mantics), read-write components thread through the rules
(store semantics). The DynSem compiler derives an inter-
preter for the object language from the specification.

4.1 Object Model

The object model is responsible for constructing objects from
object expressions and for evaluating and linking objects in
an inheritance hierarchy. We first describe the representation
of object expressions and object values, and then give an
operational semantics for their construction.

Desugaring object expressions. At evaluation time we fur-
ther desugar object expressions by means of two transfor-
mations. (1) We replace each field declaration by a slot with
a getter and an optional setter method. (2) We lift the ob-
ject initialization statements in the object expression into
a constructor method. This transformation helps to keep
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module obj—desugar
imports grace-sig
signature

sorts LInh

sort aliases

LAliases = Map(String, String)

LExcludes = Map (String, String)

LSlots = List (Int)

LMethods = List ((String x Declaration))
constructors

LObj: List (LInh) » LSlots * LMethods — Exp

LInh: Exp x LAliases x LExcludes — LInh

Figure 6. Signature of desugared objects.

the semantic rules concise without changing the meaning of
programs. In Section 3 we have discussed name resolution
for these desugared object expressions.

Desugared object expressions follow the signature defined
in Figure 6. An object expressions (LObj) is a triple consisting
of (1) a list of parent expressions (LInh) with aliases and
exclusions, (2) a list of slot numbers (LSlots), and (3) a map
(association list) mapping names to method declarations,
including the derived getter and setter methods for fields
and the object constructor method named #ctr.

Representing objects. The signature in Figure 7 defines the
structure of object instances which result from evaluation of
LObj terms. The value visible in a Grace program is RefV(a),
a reference value to a store address a (objects are passed
by reference rather than by value). The store associates ad-
dresses to object data.

An object (Obj) is a quadruple of (1) the store address of
the lexically surrounding object, (2) an ordered list of parents
(ancestors), (3) the object’s data, a map of slot numbers to
values, and (4) its operations, a map from method names
to closures. Given a store address the <=5 arrow checks
whether the address is allocated in the store and the <=5,
arrow accesses the address of the enclosing object.

This representation of objects in the store encodes the
scope graph information. Consider the scope graph fragment
of Figure 8a. If we regard scope names (s1, s2, s3 and s4)
as store addresses then import edges from scope s2 denote
the addresses of the lexical parent and of objects inherited
into the object at store location s2, as shown in Figure 8b.
In the store, scope graph information is augmented with the
objects’ data and operations.

At any point during run time the store contains sufficient
information to inspect the scope graph of a running program.
We revisit this claim in Section 4.2 when we formalize the
semantics of name resolution.

Binding self and outer. A method declaration closes over
the address of the object which encloses its owner object.
In Section 3 we modeled this as a declaration for the outer
pseudo-variable in the method scope. It is the responsibility
of the method call mechanism to bind the correct value for
outer. The same mechanism also binds the self pseudo-
variable which identifies the address of the object handling
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module obj-—repr
imports store functions values

signature

constructors
RefV: Addr — V

sorts Obj

sort aliases
Slots = Map (Int, V)
Methods = Map(String, AnnotatedClosure)
Aliases = Map(String, String)
Excludes = Map(String, String)
Parent = (Addr * Aliases * Excludes)
Parents = List (Parent)

constructors

Obj: Addr * Parents = Slots % Methods — Obj

arrows
outer

Addr —— Addr

exist
Addr — Bool

Figure 7. Representation of objects.
ORI

(a)
{s2 > 0Obj(sl, [s3,s4],...,{xm— ..., #ctr=> ...})
sl— ... s3> ... sd> ...}

(b)

Figure 8. (a) Scope graph fragment and (b) corresponding
store after construction of s2

module self-outer
imports obj-repr store
signature components

S : Addr
O : Addr
rules
S F Self() — RefV(S)
O F Outer () — RefV(0)

Figure 9. Semantics of self and outer.

the method call. In our semantics we treat self and outer as
semantic components, rather than explicit variables. Instead
of the method call mechanism binding them as variables, it
makes them available to method code as read-only evaluation
contexts.

Figure 9 shows the declaration of components S (Self) and
0 (Outer). Resolving program references to self or outer
becomes a matter of wrapping the contextual information
as a value as we show in the rules of Figure 9. We believe
this treatment of self and outer to lead to a more elegant
semantics.

Object construction and initialization. Object construc-
tion is concerned with evaluating an object expression to
create a fresh object value in the store. It encodes the struc-
ture of the scope graph into the store, and produces a value
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module obj—constr
imports obj-desugar obj—repr obj—init
obj—self-outer store
signature
sorts EvalMode
constructors
E : EvalMode
B : Addr — EvalMode
components
EB : EvalMode
arrows

Exp E) Addr
add—-parents (Addr, List (LInh)) — U
add-parent (Addr, LInh) — U

rules

bld
o — S';

enforce—locals—policy(S') — _;
S' F init—-obj(S') — _

o@LObJj(_, _, _) — RefVv(S'")
. store
Obj(s, [1, {}, {}) ——38";
EB=B(S'') or S' => S'"';
S S'', O S F add-parents(S', ps) — _;

O S + add-slots(S', ss) — _;
O S F add-methods (S', ms) — _

bld
gt

S, EB F LObj(ps, ss, ms)
par = LInh(e, als, exs);
EB B(S) F e — RefV(S'"');

record—-parent (S', (S'', als, exs)) —

S + add—parent (S', par) — U()

EB E() v e — recv; EB E() + es — vs;
EB B(S) F call—qualified(recv, x, vs) — Vv
(4)
EB B(S) F MCallRecvL(e, ID(x), es) — v
(a)

signature arrows
add—-slots (Addr, LSlots) — U
add—-slot (Addr, LSlot) — U
add—methods (Addr, LMethods) — U
add—-method (Addr, LMethod)
rules
record—-slot (S',

— U

—

{s > def-val()})

add—-slot (S', s) — U()

enforce-method-policy(S', m) — _;
method—closure (decl) — clos;

record—-method (S', {mr clos}) — _

add—-method (S', (m, decl)) — U()

(b)

Figure 10. (a) semantics of object construction and (b) slot
and method installation.

referring to the new object. Object initialization is concerned
with evaluating the initialization statements of objects.

An object expression may be evaluated to either the root
of an object hierarchy (the youngest descendant) or to an
ancestor node. Run-time context determines in which mode
to evaluate an object expression. The same object expression
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may be evaluated in different modes throughout the lifetime
of a program. We must distinguish between the two modes
in order to correctly initialize object hierarchies. Figure 10a
introduces component EB which will propagate in read-only
fashion to object construction rules. The component has a
dual purpose: (1) to maintain the current evaluation mode
and (2) to hold the address of the hierarchy root (the self
of a hierarchy) when evaluating ancestors. EB will be E()
when evaluating code that is part of a hierarchy root and
conversely EB is B(S) when evaluating an ancestor of the
hierarchy rooted at the object with address S.

Object construction as defined in rule (1) of Figure 10a
consists of three stages: first the object is built using the
219, arrow, second the policy governing local variable nam-
ing is enforced, and third the object is initialized using the
init-obj meta-function.

Rule (2) builds the object structure in the store. It allocates
a fresh (and empty) object in the store, evaluates parents
(ancestors) and adds links to them, creates slots and records
method declarations. The P edge in the scope graph between
nested objects materializes in the store as a link from the
fresh object to its enclosing object identified by component
S.

After arrow 2% completes, the state of the store reflects
the structure of the scope graph and contains sufficient infor-
mation to perform name resolution. This information is used
at this stage to enforce the policy governing local variable
names (using the enforce-locals-policy meta-function).
Policy enforcement happens after an object’s structure is
created but before it is initialized. There is insufficient infor-
mation about inherited methods prior to construction. We
discuss naming policies in Section 4.4, for now it suffices
to know that enforcement will halt evaluation if any of the
object’s methods violates the policy.

As the final step rule (1) initializes the new object by
invoking the constructor method (using the init-obj meta-
function) in ancestor-first order. Note that rule (1) evalu-
ates both hierarchy roots and ancestor objects. To prevent
initialization of incomplete hierarchies the init-obj meta-
function is a noop when EB is B(_).

Ancestor Evaluation. We discuss the semantics of evaluat-
ing ancestors and linking descendants to them. Rule (2) of
Figure 10a evaluates each ancestor using rule (3). It deter-
mines the self of the hierarchy root and passes it to rule
(3).Rule (3) evaluates the ancestor expression e with EB set
to B(S) to flag that ancestor initialization should be deferred.
Rule (4) defines the special semantics of method calls when
EB is B(_). It evaluates the receiver and parameters as nor-
mal but flags the invoked code (using the call-qualified
meta-function) as ancestor code.

As an illustration consider constructing the object with
scope s3 from Figure 11. The context of rule (2) of Figure 10a
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object { s1
object { s2
object { s3
inherit e
method i{.};

object { s4
object { s5
method e {

object {.} s6 i

} P

2!

I

}
¥ s3

oo™

}

Figure 11. Fragment of program (left) and scope graph frag-
ment after construction of s3 (right).

when applied to object s3 is S=s2 and EB=E(). It first allo-
cates object s3 linking s2 as its enclosing object, and then
evaluates its ancestor expression. Rule (3) evaluates the an-
cestor expression e in B(s3) mode eventually entering rule
(2) for the object with scope s6. At this second invocation
of rule (2) the context is S=s5 and EB=B(s3). Had s6 itself
had an ancestor expression, rule (2) would evaluate it in a
context where self is the hierarchy root (S=s3) and outer
is the object surrounding the object expression (0=s5).

4.2 Name Resolution

Name resolution is the task of computing a path in the scope
graph from a reference scope to a declaration scope. We first
describe the structure of resolution paths, the outcome of
name resolution, and then give a semantics for the name
resolution algorithm of Grace.

Local variables. Grace has a strict no-shadowing policy for
local variables. This allows us to model them outside of
the name resolution algorithm. We choose to define their
behavior with traditional environment-passing semantics
with closures. The environment maps local variable names
to locations in a separate variable store. The store threads
through the semantics.

Resolution paths. A path is the list of edges traversed be-
tween the reference scope and the declaration scope. We
build on the paths of Section 3 and enrich them with more
resolution information as defined in Figure 12. An empty
path indicates failure to resolve. Arrow ~2, reduces a path
to a success value. The path resulted from successful reso-
lution always ends with an L(x) segment, where x is the
declaration name. It is easier to use a path later if it includes
the declaration name. Paths into lexical scope have a P()
edge. Paths into inherited scopeshavean I (i, x) edge, where
i is the index of the import edge and x is the name to resolve
in the inherited scope.

Resolution semantics. Name resolution is the task of find-
ing a path in the scope graph from a reference scope to a
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module path
signature
sorts PathPart
sort aliases

Path = List (PathPart)
constructors
L: String — PathPart

I: Int » String — PathPart
P: PathPart

arrows
found local

Path —— Bool Path —— Bool
lex s-lex

Path — Bool Path —— Bool

inh s-inh
Path — Bool Path —— Bool

Figure 12. Definition of resolution paths.

module method-resolution
imports path obj-repr
signature arrows

resolve (String, Addr) — Path

(String, Addr) —> Path
rules
res found
(x, 8') — p; p—— false;

err ("Unknown method " ++ x)

resolve(x, S') — 2?7

found

(x, S") ie—S—>p; p — true;

resolve(x, S') —p
read .
s' —— Obj(_, _, _, methods);
methods [x?] = true
(3)
res
(x, §') — [L(x)]
read
S' —— 0bj(0', parents, _, methods);
methods[x?] = false; O # 0';
res—inhs
O, P 0O F (x, parents)
(4)
res
O Fr (x, S")
read
S' —— O0bj(0', ps, _, methods);
methods [x?] = false; O = 0';
res—inhs
O F (%, ps) — p—inh;
res-lex
0, S' F (x, S'") — p-lex;

disamb

(x, p—inh, p-lex) ——p

(5)

res

OF (x, S'") —™ p

Figure 13. Semantics of method resolution. ??? is a syntactic
placeholder for a rule which halts evaluation. Arrow =%
access an object in the store.

declaration scope. The recursive name resolution algorithm

is shown in Figure 13. Rule (3) over == encodes the base

case of finding a local declaration named x in scope S’.
Two resolution directions are possible if the declaration is

not local: in inherited scopes and in lexical scope.

Resolution in inherited scopes. The algorithm maps over in-
herited scopes (using the 222", arrow) in reverse order
until it finds a matching declaration.
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signature arrows
res-in

h
—Path

(String, Parent)
res-inhs
(String, Parents) Path
rules
exs[x?] = true
(1)
res-inh
(x, (L, _, exs))———
exs[x?] = false;
als[x?] = true; als[x] = x';
O F resolve(x', S') — p
(2)
res—-inh
0, P+ (x,(S8', als, exs)) [IT(P,x")Ip]
exs[x?] = false; als[x?] = false;
res found
OF (x, S') — p; p— false
(3)
res-inh
o, P F (x,(S', als, exs)) —
exs[x?] = false; als[x?] = false;
res found
OF (x, S') — p; p— true
(4)
res-inh
0, P F (x,(S', als, exs)) —— [I(P, x)|p]

Figure 14. Method resolution in inherited scope

signature arrows

res-lex

(String, ——— Path

rules

Addr)

outer exist
S —— 0; O —— false

res-lex
_—

(—, S)

outer outer exist
S —— 0; O —— 0'; 0' —— true
found

o' + (x, O) ie—S—>p; p — false

res-lex

(x, 8) —— []

outer outer

exist
S —— 0; O —— 0'; 0' —— true

res exist
O' F (x, 0) — p; p — true

res—lex
_

(x, S) [P () Ip]

Figure 15. Method resolution in lexical scope

Figure 14 shows the semantics of name resolution in inher-
ited scope. Rules over arrow -, resolve a reference x in
the inherited scope S’ subject to aliases (als) and exclusions
(exs). The inherited scope is abandoned if the method was
excluded (rule (1)). If the method is an alias, rule (2) starts a
new resolution from the alias declaration to the target decla-
ration. As an optimization it concatenates the two resolution

paths.

Resolution in lexical scope. Resolution in lexical scope (Fig-
ure 15) moves the resolution outwards by one lexical scope
and sets the lexical context 0 accordingly. Objects may not
act as proxies to their lexical scope, so lexical resolution is
only permitted if it originated from nested scopes. Rules (4)
and (5) of Figure 13 enforce this by checking equality of

disamb

enclosing scopes. Rule (5) uses arrow —"=; to choose the
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P

P
x —»{ sl

Figure 16. Scope graph with multiple resolution paths for a
reference.

successful path or to raise an error if both an inherited and
lexical declaration are reachable.

For example, consider the scope graph of Figure 16 and
suppose we invoke name resolution for x in s1. Resolu-
tion starts with O=s2, and searches inherited scope s3 after
searching local scope s1. It cannot proceed lexically because
outer (s1) #outer (s3), and resolution returns to scope s1. It
may search in lexical scope and finds the declaration of x in
scope s2.

4.3 Lookup Using Paths

Looking up a declaration entails following a resolution path.
The algorithm simply walks the resolution path to return a
declaration and its scope. It is noteworthy that the returned
scope is (1) always the receiver object in the case of a qualified
call and (2) always the self of a hierarchy of objects. A
definition of %, semantics can be found in the extended

version [33].

4.4 Enforcing Name Policies

Grace has three policies regarding names: a confidential
access policy, a local variable naming policy and a method
naming policy. We briefly discuss each of them.

Local variable naming policy. We would like to have name
policies which the language designer can easily modify. To
achieve this we introduce a policy configuration which can
be changed without modifying the enforcement mechanism.
Figure 17 shows the local variable policy for Grace. It speci-
fies whether a local variable name is legal in certain condi-
tions. Rule (1) of Figure 10a applies this policy after it has
constructed an object.

Figure 17 illustrates the rejection mechanism for a local
variable that shadows a method. The rules decide whether
to reject local variable x using the name resolution path p.
A local path (p 22*%true) indicates that x shadows a local
method. A strictly lexical path (p ~~true) indicates that x
shadows a method in enclosing scope.

Method naming policy. We create a similar policy for method
names, as shown in Figure 18. Rule (2) of Figure 10b enforces
this policy before recording a method declaration.

Figure 18 illustrates how to forbid methods that shadow
lexical methods. Rule (1) rejects a new method m if there is
a strictly lexical path to a declaration. The language designer
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module policy-locals
signature arrows

local—allow—duplicates () — false
local—allow—shadow—local () — false
local—-allow—shadow—method () —> false

local—allow—shadow—inherited () — true
rules

local—-allow—shadow—method () — false;
found local

res
(x, S) — p; p—— true; p —— true;
err ("Variable '" ++ x ++ "' shadows

member in surrounding object")

S F enforce—local—-shadow—method(x) — 27?7

local—allow—shadow—method () — false;

res found local

(x, S) — p; p — true; p —— false;
s-lex

p — true;

UL

err ("Variable shadows

member in enclosing scope")

(2)

S F enforce—local—-shadow—method (x) — 2?7

Figure 17. Local variable name policy and example of en-
forcement semantics.

module policy-members
signature arrows

member—allow—duplicates () — false
member—allow—override () — true
member—allow—shadow—local () — false
member—allow—shadow—lex () — true

member—allow—shadow—lex—inh () — true

rules
member—allow—shadow—lex () — false;
(m, S) =5 pi P ﬂ true; p ﬂ) true;
err ("Member '" ++ m ++ "' shadows

member surrounding scope")

(1)

S + enforce—member—shadow—lex (m) — 2?27

Figure 18. Method name policy and example of enforcement
semantics.

enables this behavior by setting member—allow-shadow-1lex ()
to false.

Confidential access. Methods annotated public may be
accessed from anywhere. Confidential methods may only
be accessed from (1) within their declaration scope or (2)
from descendant objects. We store each method together
with its annotation so that it can be retrieved with —%,,
Given a reference x in scope s,f, its resolution path p, dec-
laration scope sq.. and visibility annotation a, we take an
access decision as follows. If ais confidential then access
is granted if (1) the declaration is local (b= 25t rue) or (2) if
the declaration is reachable through lexical scope (p ~>true).
A method alias is regarded confidential.If ais public and
the method is not an alias then access is permitted.

5 Evaluation

We evaluate our executable specification of Grace with re-
spect to three criteria: (1) correctness, (2) specification size
and readability, (3) time complexity of name resolution and
policy enforcement.
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Correctness. We have developed an extensive test suite of
unit-style tests for corner cases of name resolution and object
model. Each test is a small program paired with an output/er-
ror expectation recorded from the output produced by the
Grace to JavaScript implementation. The test set includes
214 test programs directly testing aspects of the object model
and name resolution. The most notable of these are: 51 tests
of the object model (object creation, inheritance and initial-
ization), 31 tests of traits, aliasing and exclusion, 71 tests
for scoping and 24 tests of confidentiality enforcement. On
average each test covers 66% of semantic rules and 65% of
rule premises. The most comprehensive test covers 78% of
rules and 80% of premises. We use these tests to validate that
our executable specification has the same behavior as the
mainstream Grace implementation.

There is an ongoing discussion within the Grace commu-
nity about how dynamic Grace should be. Proponents of
static name resolution aim to limit the freedom of inheri-
tance expressions to allow static checking. Proponents of
more dynamic behavior enforce no restrictions on inheri-
tance expressions. Various implementations with various
degrees of dynamism therefore exist. We have chosen to
model the most dynamic and generic behavior possible by
not enforcing any restrictions on the inheritance expressions.
Our aim is to provide a specification which acts as a baseline
for experimentation and validation. Principled restrictions
can be applied to the specification to limit the dynamism of
the language.

Size and readability. We compare implementation size of our
solution to that of the Grace to JavaScript implementation,
as a weak measure of maintenance burden. Our desugaring
transformation and semantics specification together account
for 2.0K LOC (44.8K characters). In comparison the Grace
transpiler accounts for 3.5K LOC (70.8K characters). The
compiler is quite small since Grace and JavaScript have simi-
lar abstraction levels. While our specification is complete for
object model and name resolution, it does not yet cover pat-
tern matching, lineups and Grace’s gradual type system. We
conjecture that the maintenance burden of our specification
is not higher than that of the mainstream Grace compiler.

Code readability is subjective. The transpiler encodes Grace
semantics in JavaScript which hides the semantics of Grace.
Conversely the DynSem specification is explicit. A seman-
ticist will have no difficulties understanding the DynSem
specification since rules are similar to natural semantics. Our
target audience consists of people wanting to understand
(or develop) Grace semantics. We think that our DynSem
specification is accessible for them.

Time complexity. The number of objects visited during name
resolution dominates its execution time. Name resolution
from outside of an object with n ancestors has an O(n) com-
plexity. Name resolution from within an object with n an-
cestors, m enclosing objects each with n ancestors has an
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O(mxn) complexity. For an object with m methods each with
v variables, checking local variable names requires m * v
name resolutions. Enforcing the method name policy re-
quires m name resolutions. Although name resolution if the
semantics does not flatten objects is expensive, it gives a prin-
cipled definition which serves as a baseline for principled
optimizations.

6 Related Work

Object oriented languages. Grace is inspired by Smalltalk, Self,
Newspeak and Java. Smalltalk [14] is a dynamic object ori-
ented language with single inheritance and no nested class
declarations. Names are resolved upwards in the inheritance
chain. Self [31] is the first programming language with proto-
type inheritance. Self unifies the representation of attributes,
methods and local variables. Resolution of methods is indis-
tinguishable from resolution of local variables. Newspeak [7]
has nested classes and single inheritance identified by ex-
pressions. Each object maintains a link to its outer object.
Method references can reach declarations in lexical range;
inheritance chains of outer objects are never searched. Self
has no explicit outer pseudo-variable. Java [15] has classes
with single inheritance. Classes may be nested arbitrarily
deep and references are lexically resolved. Name resolution
is static. Similarly to Grace, Python allows arbitrary class
inheritance expressions.

Formal definitions of object-oriented languages Wolczko [37]
gives a denotational semantics for a significant subset of
Smalltalk. The semantics does not distinguish resolution
from lookup and does not enforce name policies. The opera-
tional semantics of Méki-Turja et al. [25] separates resolution
from lookup. K-Java [5] is a complete specification of Java
1.4. Name resolution is static and emits equivalent programs
with fully qualified names. Maffeis et al. [23] give an opera-
tional semantics of JavaScript [10]. Objects are not flattened,
both inheritance and scope nesting are encoded as object
hierarchies. A;s [16] is a core of JavaScript with a reduction
semantics. JavaScript programs are compiled to Ays. The
compilation phase changes name binding to allow for a sim-
pler definition. Politz et al. [28] take a similar approach for
Python and give reduction semantics for a core language A,.

Dynamic semantics formalisms. DynSem is most related to
I-MSOS [24], where it borrows the concepts of semantic
components and implicit propagation from. Typical DynSem
specifications give semantics in a big-step style [19]. Rules
resemble SOS [27] rules if meta-functions and implicit re-
ductions are used.

Funcons [9] is a semantics formalism aiming to provide a
definitive collection of reusable semantics. Redex [13] em-
beds meta-notation for Felleisen-Hieb reduction rules. K [30]
is a semantics formalism that has been applied to production-
sized languages (C [11] and Java [5]). XSemantics [3] is a
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DSL for the specification of type systems of languages imple-
mented in Xtext [2], but it can also be applied to the imple-
mentation of interpreters. XSemantics allows only a single
environment to be used per rule, which must be explicitly
propagated.

Name Resolution The use of scope graphs [26] for name res-
olution results from a formalization of the declarative NaBL
name binding language [22]. The distinguishing feature of
NaBL and scope graphs with respect to other name binding
approaches (see [26] for a discussion of related work) is the
support for imports. In this paper, we have used scope graphs
as conceptual model to explain name resolution in Grace. In
the implementation we use a custom object model instead of
frames derived from scopes. In future work, we would like to
derive the object model automatically from the scope graph
model according to the scopes and frames approach [29].

Language workbenches. We used the Spoofax language work-
bench [20, 35]. Spoofax provides a meta-DSL for each aspect
of a language definition. Spoofax is part of the family of
language workbenches. The Rascal [21] approach is to use
a single language for all aspects of a language. There is no
specific formalism for dynamic semantics, but interpreters
can be written using rewrite rules. The Redex [13] approach
is to extend a single language with meta-notation for the
various aspects of a definition. Specifications are given as
reduction semantics. Erdweg et al. [12] thoroughly compare
language workbenches.

7 Conclusion and Future Work

We modeled the run-time name resolution of Grace using
the scope graph paradigm. This served as a basis for dis-
cussion of the key aspects of name resolution in Grace. We
defined operational semantics for the object model which
encodes the name binding information from scope graphs
into the object representation. We defined the operational
semantics of the name resolution algorithm in Grace. Sepa-
rating name resolution from naming policies allowed us to
keep the name resolution algorithm concise. We showed how
name resolution results are used to enforce naming policies.
The specification as a whole serves as readable documen-
tation and as executable specification that can be used for
experimental validation and as reference implementation.
We envision the specification as a baseline for discussion
and experimentation around Grace’s semantics. It can be
used in the Grace community to experiment with various
flavors of Grace as well as to compare existing implementa-
tions. Principled optimizations, such as flattening of object
hierarchies, can be specified on top of the specification. By
comparing the behavior of the derived interpreter with that
of an existing implementation it is possible to discover dif-
ferences with or bugs in the existing implementation.
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We developed an extensive suite of unit-style tests and
used it to validate the correct behavior of the specification
with respect to the mainstream Grace implementation.

As future work, we plan to explore principled optimiza-
tions of the name resolution algorithm, in particular to find
ways to reduce the number of objects that name resolution
must search. One idea is to define evaluation contexts for
which caching of name resolution results is allowed. We
also plan to define the semantics of the missing features:
pattern matching, lineups and the gradual type system. Our
hope is that by collaborating with the Grace community
the specification becomes a reference implementation of the
language.
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