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Abstract

In the field of computational neuroscience, complex mathematical models are used
to replicate brain behavior with the goal of understanding the biological processes in-
volved. The simulation of such models are computationally expensive and therefore,
in recent years, high-performance computing systems have been identified as a pos-
sible solution to accelerate their execution. However, most of those implementations
are model-specific and thus non-reusable for other modeling efforts, requiring a com-
pletely new development effort per model used. The challenge lies in offering high-
performance and scalable libraries (so as to support the construction and simulation of
large-scale brain models) while at the same time offering high degrees of modeling flex-
ibility and parameterization. This thesis presents flexHH, a scalable hardware library
implementing five accelerated and highly parameterizable instances of the Hodgkin-
Huxley neuron model, one of the most widely used biophysically-meaningful neuron
representations. As a result, the user is able to instantiate custom models using flexHH
and immediately take advantage of the acceleration without the mediation of the en-
gineer. The five flexHH implementations target the Maxeler Data-Flow Engine (DFE),
an FPGA-based acceleration solution, and incrementally support a number of features
such as custom ion channels, multiple cell compartments and inter-neuron gap-junction
connectivity. Furthermore, for each of the five implementations it is possible to se-
lect either the forward-Euler, second, or third-order Runge-Kutta numerical method. A
speedup between 14×-36× has been achieved compared to a sequential C implemen-
tation, when run on a 2.5-GHz Intel Core-i7 CPU, while no practical performance drop
is observed when compared to a hard-coded version of a DFE, an Intel Xeon-Phi CPU,
and an NVidia Titan X GPU. In this thesis, flexHH kernels are rigorously validated, an
evaluation of the influence of the numerical methods is done, and a comprehensive
resources usage, performance, and power-consumption evaluation of the various DFE
implementations is presented.
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Abstract

In the field of computational neuroscience, complex mathematical models are used to repli-
cate brain behavior with the goal of understanding the biological processes involved. The
simulation of such models are computationally expensive and therefore, in recent years, high-
performance computing systems have been identified as a possible solution to accelerate their
execution. However, most of those implementations are model-specific and thus non-reusable
for other modeling efforts, requiring a completely new development effort per model used. The
challenge lies in offering high-performance and scalable libraries (so as to support the con-
struction and simulation of large-scale brain models) while at the same time offering high
degrees of modeling flexibility and parameterization. This thesis presents flexHH, a scalable
hardware library implementing five accelerated and highly parameterizable instances of the
Hodgkin-Huxley neuron model, one of the most widely used biophysically-meaningful neuron
representations. As a result, the user is able to instantiate custom models using flexHH and
immediately take advantage of the acceleration without the mediation of the engineer. The five
flexHH implementations target the Maxeler Data-Flow Engine(DFE), an FPGA-based acceler-
ation solution, and incrementally support a number of features such as custom ion channels,
multiple cell compartments and inter-neuron gap-junction connectivity. Furthermore, for each
of the five implementations it is possible to select either the forward-Euler, second, or third-
order Runge-Kutta numerical method. A speedup between 14×-36× has been achieved
compared to a sequential C implementation, when run on a 2.5-GHz Intel Core-i7 CPU, while
no practical performance drop is observed when compared to a hard-coded version of a DFE,
an Intel Xeon-Phi CPU, and a NVidia Titan X GPU. In this thesis, flexHH kernels are rigorously
validated, an evaluation of the influence of the numerical methods is done, and a comprehen-
sive resources usage, performance, and power-consumption evaluation of the various DFE
implementations is presented.
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Introduction 1
Reverse engineering the brain is one of the grand challenges for engineering in the 21st
century [4]. The first goal of reverse engineering the brain is to get a better under-
standing of the brain and the second goal is brain rescue and tackling brain disorders.
A third, recurring goal, is the ability to build artificial intelligence. One of the fields
studying the brain is computational neuroscience. The field of computational neuro-
science seeks to understand the method by which biological-brain systems organize and
process information. Computational neuroscience is supplementary to direct biological
experiments, which are time-consuming and their results can be easily contaminated by
environmental or other factors (e.g. the impact of anesthesia on the subject). Addition-
ally, the current techniques have a limited potential in monitoring brain systems on a
large enough scale to reveal the systemic properties of biological neuron networks. Yet, it
is theorized that many systemic properties cannot be revealed though simple reduction
of the neuronal system to its simpler parts. This is one of the issues that computational
neuroscience attempts to solve by implementing biologically realistic in-silico simula-
tions using mathematical models describing neuron behaviour (themselves derived by
direct biological experiments). Hypotheses formulated using in-silico experimentation
can subsequently be validated by more informed and guided biological tests and in-vivo
or in-vitro experimentation.
Among the most widely used realistic models for such purposes are Spiking-neural-
network (SNN) models [5, 6] of the Hodgkin-Huxley (HH) variety [7] (other formalisms
exist as well such as Izhikevich, integrate-and-fire (I&F) model types [1]). The choice
of SNN model depends on the subject of the study [1]. If a researcher seeks to explore
the electrochemical characteristics that produce the neuron’s response, a biophysically
meaningful neuron model is required, such as the HH-model. HH models belong
in the family of conductance-based models and capture closely the electrochemical
behaviour that produces the neuron activity by modelling the various ion channels
observed inside neurons. The ultra-high computational complexity of the HH-model
and its variations are what makes such models challenging to simulate using traditional
computing methods. What is more, these models typically form sets of Ordinary
Differential Equations (ODEs) whose "solution" (i.e. simulation) forms the workloads
that need to be executed.
This thesis focuses on developing a general, Data-Flow Engine (DFE) library for simu-
lating five HH-model solver variants. Each of the five hardware ODE-solver implemen-
tations supports a different number and type of features which can be user-specified at
simulation startup–i.e. not at design time–and at marginal or no performance cost to
respective hard-coded designs. Furthermore, to investigate if the performance can be
improved by the use of different solvers each of those five implementations has been
adapted for the use with three different numerical ODE solvers.

1
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1.1 Motivation

Computational neuroscientists currently can use simulation environments such as NEU-
RON [8] and GENESIS [9] or frameworks such as NeuroML [10]. These environments are
relatively easily to program, however, they lack high performance. Consequently, there
have been developed a lot of high performance tools for simulations of neural networks
(e.g. the work of M.A. Bhuiyan et al. [11]). However, with those implementations the
usability for neuroscientists is low due to the required programming knowledge to use
those implementations. As a solution, this work introduces a library which will deliver
high performance and will be usable for neuroscientists. The challenge lies in offering
high performance and scalable libraries (so as to support the construction and sim-
ulation of large-scale brain models) while at the same time offering high degrees of
modelling flexibility and parameterization. While such flexibility is relatively easily
tenable on software-based Central Processing Unit (CPU) (Phi) and Graphics Processing
Unit (GPU) platforms, it is very challenging to achieve on a Field Programmable Gate
Array (FPGA)-based platform, such as a DFE. Coding modelling flexibility in DFEs will
allow neuroscientists to run their own simulations (and selecting their own parameters)
while enjoying the high performance of an FPGA-based platform. The implementations
of this thesis will address HH-type models, which are biophysically-meaningful models,
with high computational complexity costs [1], as is shown in Figure 1.1.

Figure 1.1: Graph plotting computational complexity involved versus achieved biolog-
ical plausibility of various SNNs [1]. HH models are clearly the most demanding but
also most detailed ones across the board.

1.2 Thesis scope and contributions

This work builds on top of BrainFrame [3, 12], a High Performance Computing (HPC)
framework for accelerating computational-neuroscience experiments by incorporating
multiple acceleration technologies (Intel Xeon-Phi CPU, NVidia GPU, Maxeler DFE). By
employing a mix of heterogeneous accelerators, BrainFrame assigns the best accelerator
to each provided model simulation by matching best accelerator features to model
quirks. BrainFrame has been validated with hard-coded brain models in the past. But
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for the framework to be useful in practice, neuroscientists must be able to develop their
own models within BrainFrame using general libraries.

1.2.1 Thesis goal

The main goal of the thesis can be formulated as follows:

Develop a flexible hardware library implementing the HH neuron model in a hardware-accelerated
and highly parameterizable fashion.

There is a great variety in HH-type models as different models support different fea-
tures. We have decided to let the original, most popular HH-model be the simplest
model the library is able to support and the most complex model to be the Inferior-
Olive (IO) [13] (this model was used to evaluate the BrainFrame platform). Both models
will be discussed in more detail in Chapter 2. The first challenge is how to generalize
the equations of those models in such a way that the equations can be reused to capture
different model instances, as per the ever-changing simulation needs. The equations
need to be parametrized else a new synthesis cycle will be required for new simulations
which will cancel out the performance gains by using the DFE. This fact has been
the major hindrance for the pervasive use of FPGAs in the computational-neuroscience
community and the pitfall of many attempts to publicize FPGA-based models. Further-
more, to increase user friendliness, it is convenient if the generalisation will be compliant
with an already existing and accepted language (such as NeuroML) which is used by
the neuroscientific community. The generalized equations will be used to calculate the
derivatives of the so-called model state variables. The calculation of the derivatives is
one part of a neural simulation. The other part is how the state variables are updated,
which is done by numerical solvers. To enable a change between numerical methods,
those two parts needs to be separated in the code. This results in the following subgoals:

1. Specify a general formulation of the equations in the considered HH-model vari-
ants.

2. Develop code which allows for relatively easy change of numerical ODE solvers.

3. Efficiently implement the generalized equations of the neural networks on the
DFE.

1.2.2 Thesis contributions

The contributions of this thesis are as follows:

• A scalable, hardware library (called flexHH) of accelerated, parameterizable and
NeuroML-compliant HH-model implementations which offer high-performance
gains.

• A set of crucial model extensions: custom ion gates, gap junctions connectivity
and multi-compartmental neurons.
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• An in-depth functional validation and error analysis of the solvers both in reference
software and in DFE hardware.

• An analysis of the difference between using three different ODE solvers for HH-
type models.

• A simple prediction method for the resource usage of the different solver kernels
on the DFE.

• A comprehensive performance and power/energy analysis of the library kernels
implemented.

1.3 Thesis organization
The structure of the rest of this thesis is as follows: In Chapter 2, background information
is given about the neural models considered in this work and the data-flow paradigm.
In Chapter 3, related work other implementations on FPGAs and simulations tools
used to stimulate neural networks are discussed. In Chapter 4, the implementation
of the general conductance-based models on the DFE are discussed into a new library
called flexHH. The evaluation of the flexHH kernel accuracy, performance, power, and
resource-usage results are discussed in Chapter 5. Finally, Chapter 6 concludes this
thesis with a discussion of the contributions and proposed future work.



Background 2
In this chapter, the background information required to understand the remainder of the
thesis is presented. In section Section 2.1 the biological neuron is described. Section 2.2
discusses Spiking-neural-networks (SNNs), after which the Hodgkin-Huxley (HH) and
Inferior-Olive (IO) models are discussed in more detail. In Section 2.3 a framework in
which neural models can be described (NeuroML) is discussed. In Section 2.4 numer-
ical methods, which are necessary for solving SNN models, are discussed.Section 2.5
describes data-flow computation. Finally, in Section 2.6 the BrainFrame framework is
discussed.

2.1 The biological neuron
This thesis focuses on brain simulation. To get an idea what the brain looks like the
biological neurons are shortly described. The brain consists of a network of neurons.
There are different kind of neurons with different kinds of morphology. However, there
is a classic way of describing a neuron. In this case the neuron consists of a dendrite, a
soma, and an axon. In Figure 2.1 visual representations of a single neuron are shown.
The dendrites can be described as the input stage of a single neuron, the soma as the
processing unit, and the axon as the output device. Each of the compartments dendrite,
a soma, and an axon have a membrane with ion channels. Consequently, depending if
the ion channels are open or closed ions can go through those channels changing the
voltage potential of the membrane. Depending, on the changes of the membrane voltage
signals could be generated. The signals are electric pulses which are also called spikes.
The information of the spikes is encoded in the shape and in the pattern of the spikes.
The neuron receives a spike by its dendrites which propagates the spike to the soma. If
the total of the incoming signals of a soma exceed the threshold, then a output signal is
sent to the axon, which is in connection with other dendrites through synapses.
A synapse is the connection between two neurons. The first of two types of synapses are
the chemical synapses. In a chemical synapse, bio-chemical processes lead to changing
the ion influx. Subsequently, this leads to a change in the voltage of the membrane. The
second type of synapses are electrical synapses or also called gap junctions [14].

2.2 Spiking neural networks
Having gotten a first idea of the neurons, the models which are simulated in this thesis
are discussed. For this thesis, SNNs [15] are of interest. SNNs are typically more complex
than Artificial-neural-networks (ANNs). ANNs abstractly represent neural networks
while SNNs are more complex and more biologically accurate [5, 6]. Consequently, in
computational neuroscience, SNNs are widely used nowadays.

5
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(a) Drawing by Ramón y Cajal [14]. In addi-
tion, a spike (action potential) can be seen.

Dendrite

Soma

Axon

(b) Schematic representation

Figure 2.1: Visual representations of a single neuron, with the compartments specified.

There is a large variety of different SNN models. To see the differences between the
models the paper of Izhikevich [1] is discussed. In this paper, different SNNs are clas-
sified based on 20 different characteristics which describe spiking dynamics together
with the computational cost of the models. Additionally to the spiking dynamics, the
way the neurons are connected in a network determines how accurate the models are.
However, in the paper it is not discussed how the neurons are connected. Consequently,
no conclusions can be made on how accurate the models are when modelling inter-
connected neurons. Nonetheless, the results of this paper can be used to indicate how
biologically accurate the models are, which is an important characteristic of models
targeted in this thesis. In Figure 2.2 a comparison of different models is given based on
the 20 different characteristics and in Figure 1.1 a visual representation is given. From
the results, it becomes clear that in general a model which is more biologically plausible
is computationally more expensive, with as exception the Izhikevich model [16] which
is relatively more efficient.
Although the Izhikevich model is the most efficient model regarding spiking dynamics,
we are interested in the most complete model, which is the HH-model [17]. This
because the Izhikevich model is not biophysically meaningful while the HH-model
is. That is, the HH-model uses physics to describe the behaviour of the neuron while
the Izhikevich model consists of only two equations (which are obtained by using
bifurcation methodologies [18] on the HH-model) and has only one non-linear term.
Additionally, there are more extensive HH models. HH models are very popular and
the basis for modern computational neuroscience, however recent findings suggest that
extended features need to be incorporated to the original HH-model, namely: multiple
cell compartments, an ion concentration model, more complex ion channels, and gap
junctions. One such in-house model that encompasses the above extra features and
is also of high importance to the Neuroscience Department of the Erasmus MC is the
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Figure 2.2: Overview of supported spiking behaviour for different models [1].

IO-model. As both the HH- and IO-model are used as reference models in this thesis,
they will be discussed next.

2.2.1 The Hodgkin-Huxley model

The HH-model was published in 1952 and has had a significant influence on computa-
tional neuroscience. As shown in [1], it is still the most biologically accurate model for a
single cell. The model gives a mathematical description of the axon of a squid of which
the equations can be seen in Equations (2.1) to (2.14).

dV
dt

=
Iapp − Ichannels − Ileak

CM
(2.1)

dn
dt

= αn(1− n)− βnn (2.2)

dm
dt

= αm(1−m)− βmm (2.3)

dh
dt

= αh(1− h)− βhh (2.4)
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where

αn =
0.01(V + 10)

exp(
V + 10

10
)− 1

(2.5)

βn = 0.125 exp(V/80) (2.6)

αm =
0.1(V + 25)

exp(
V + 25

10
)− 1

(2.7)

βm = 4 exp(
V
18

) (2.8)

αh = 0.07 exp(
V
20

) (2.9)

βh =
1

exp(
V + 30

10
) + 1

(2.10)

Ichannels = IK + INa (2.11)
Ileak = gl(V −Vl) (2.12)

where

IK = gKn4(V −VK) (2.13)
INa = gNam3h(V −VNa) (2.14)

The derivative of the voltage of the membrane (V) is the sum of currents which go
through the membrane. Iapp is the membrane current and can be modelled by any
function as current clamp. Ileak is the leakage current and has a constant conductance.
Ichannels is the sum of the currents generated by the ion channels (the Na and K channel
in case of the HH-model). The conductances (conductance is the inverse of the electrical
resistance) are dependent on the so-called gate-activation variables (n, m, and h in case
of the HH-model). The gate-activation variables defines the proportion of ion gates in
the total population which are open. Depending on the values of those variables the
ionic currents gKn4 (GK) and gNam3h (GNa) change. How the gate-activation variables
change is described by Equations (2.2) to (2.4). The derivation of those equations were
done so that they match the experiments and thus are biophysically meaningful.

2.2.2 The Inferior Olive model

The IO is crucial for functioning of the cerebellum. Its functionality is associated with
learning, on line motor control [19], and has a role in timing independent of motor
behaviour [20]. The model used to simulate IO cells is an extended HH-model and is
developed by De Gruĳl [13]. Because it is an extended HH-model the derivatives of the
voltages are formulated by the sum of currents divided by a capacitance, however, the
model also adds a few extensions.
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The first extension of this model in comparison to the HH-model is the use of extra ion
channels with different gates. Therefore, some of the derivatives of the gate-activation
variables are described by more complex functions which can contain two exponents,
instead of one in case of the HH-model. The second extension is that the derivatives of
the gate variables not only vary with the voltage but also with the calcium concentration.
The third extension is the use of multiple cell compartments. Where the HH-model only
describes the axon, the IO-model describes a dendrite, a soma, and an axon. The adjacent
compartments exchange current with each other. Meaning that there is a bi directional
current between the dendrite and soma, and a current between the soma and axon.
The fourth and final difference is the that the cells are connected with gap junctions.
The gap junctions are the connections between cells and thus describe how the cells
are connected and thus responsible for one of the two important issues of the network
dynamics [1]. The gap junctions used in this model are described in [21]. For all the
equations see Appendix A.

2.3 NeuroML

To simulate the previously discussed models, the models need to be implemented
in code. Currently, a lot of neural models are implemented in different simulation
environments (such as: MATLAB, NEURON, and C/C++). This makes it hard and
time-consuming to reproduce, compare, and evaluate different neural models. Those
properties are needed for neural modelling to become a greater scientific tool. NeuroML
[10] is a solution as it is provides a framework in which neural models can be described
independent of specific simulation environments.
NeuroML makes use of a hierarchical structure for the descriptions of the neural models.
This hierarchy is visually presented in Figure 2.3. This shows that a network consists
of cells. The cells consist of compartments, the compartments consists of channels, and
the channels consist out of gates. Each component of this hierarchy is described by its
own set of parameters which allows for the creation of heterogeneous neural networks.
NeuroML offer just an XML declaration of the models. To simulate these modes, it
needs to be input to one of a growing number of simulation environments, consequently
making it relatively easy to compare the models. As NeuroML has been widely adopted
by the neuroscience community, making our implementation NeuroML-compliant will
increase the likelihood of it being used by neuroscientists.

2.4 Numerical methods

The neural models consist of Ordinary Differential Equations (ODEs), therefore, to
simulate those models, numerical methods needs to be used. There are two different
kinds of numerical methods, explicit and implicit methods [22]. The difference between
explicit and implicit methods is that an explicit method calculates the next step in time
based on the current state of the model, while an implicit method calculates the next
step in time based on the current state and the next state of the model. Mathematically,
an explicit method can be represented with Equation (2.15). On the other hand, to use
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Compartment

Network

Cell Cell Cell

Channel Channel Channel

Gate Gate

Gate

Gate

Compartment Compartment

Figure 2.3: Hierarchical representation of network structure in NeuroML.

an implicit method an equation in the form of Equation (2.16) needs to be solved. The
advantage of implicit methods is that the conditions on the time-step-size, which are
required for a stable solution, are less severe. However, this comes at the cost of higher
computational since root-finding algorithms, such as the Newton’s Method [23], are
required on top of the numerical method.

Xn+1 = F(Xn) (2.15)
G(Xn, Xn+1) = 0 (2.16)

Both methods are approximations as they are a discretization of the real continued
solutions. The errors of the approximate (the difference between the approximate
solution and the actual outcome) are called either truncation or discretization errors.
Besides the truncations error, there is a round-off error due to the finite precision of the
representation of numbers on computers.

To analyse how accurate the numerical methods are, three concepts are introduced:
consistency, stability, and convergence. Consistency means that the solution of a dis-
crete problem which is solved by the numerical method is the same as the continuous
problem. In other words, this means that the truncation error goes to zero if the
discretization step goes to zero. A method is stable if the solution and therefore the
error is bounded. If a method is both consistent and stable then the method converges,
which means that when the discretization step goes to zero, the error between the real
and discrete solution goes to zero.

A characteristic of an ODE system which influences how accurate a numerical method
needs to be is the stiffness of the system. The stiffness of an ODE system is a measure of
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how difficult the system is to solve with a specific accuracy (if a system is more difficult
to solve, it is more stiff). The accuracy can be analysed though the local and global
truncation error. The local truncation error is the error in a single step and the global
truncation error is the error at a given time after n steps.

To keep the error small with stiff problems, in general implicit solvers are used, while
with non-stiff problems explicit solvers are sufficient. The local error is dependent on
both the time-step-size (∆t) and the order of the solver (p) as the error is equal toO(∆tp).
Thereby, if the solver is convergent then it holds that O(∆tp) for the global truncation
error [22]. Therefore, it may be that with a higher-order solver the same simulation
can be done in fewer simulation steps in comparison to a lower-order solver. If the
decrease in steps is greater than the increase of the computational cost then the use of a
higher-order solver is beneficial in terms of performance.
The simplest numerical method to solve ODEs is the (first-order) forward-Euler method
which is described by Equation (2.17).

Xn+1 = Xn +
dX
dt

∆t (2.17)

Gottlieb et. al. [24] introduced a method for explicit Strong Stability Preserving (SSP)
higher-order Runge-Kutta methods. The equations for the second-order can be seen
in Equations (2.18) to (2.19) and the equations of the third-order can be seen in Equa-
tions (2.20) to (2.22). These Runge-Kutta methods are explicit and therefore, relatively
cheap to implement in hardware. The computational cost of the forward-Euler method
and the Runge-Kutta methods scale linearly with the order of the methods. When the
global truncation error will scale exponentially (as indicated by O(∆tp)) and thus the
number of simulations steps will scale exponentially, then the Runge-Kutta methods
use less computations in a simulation. However, as the HH-type models are classified
as stiff problems, the Runge-Kutta methods may not have an exponential decrease in
number of simulation steps compared to the forward-Euler method. As implicit models
will require a root-finding algorithm which has high computational costs and conse-
quently, is relatively expensive in hardware it has been decided not to look into implicit
numerical methods.

X1 = Xn +
dX
dt

∆t (2.18)

Xn+1 =
1
2

Xn +
1
2

X1 +
1
2

dX
dt

∆t (2.19)

X1 = Xn +
dX
dt

∆t (2.20)

X2 =
3
4

Xn +
1
4

X1 +
1
4

dX
dt

∆t (2.21)

Xn+1 =
1
3

Xn +
2
3

X2 +
2
3

dX
dt

(2.22)
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2.5 Data-flow computing
In the last decades, the performance of computers has increased enormously. The
increase in performance was caused among other things, by the increase in frequencies
of the processors. However, the increase in frequency has slowed down because of the
power usage. Previously, it was possible to lower the voltage, to lower the power usage,
while increasing the frequency. However, lowering the voltage, and thus power, of the
current state of the are Central Processing Units (CPUs) will lead to a too high leakage
current. This problem is know as the power wall.

As a solution, the change from sequential computing to parallel computing was made,
in the form of multi-core CPUs and additionally Graphics Processing Units (GPUs).
However, the speedup is limited by how much of a program can be executed
in parallel, as is described by Ahmdal’s law [25]. Thereby, even if the application
can be executed completely in parallel, then the memory may become a huge bottleneck.

On the other hand there is the Multiscale Data-flow Computing paradigm. In this
paradigm there are no instructions, as data is streamed into a chip, and then the func-
tionality is dependent on the structure of the functional units. This is because, contrary
to the Von-Neumann architectures, after data leaves a functional unit it goes to the next
functional unit without any interaction of the memory. Therefore, data-flow computa-
tion can also be called computation in time, while the Von-Neumann architecture is an
example of computation in space. The difference in the architectures of both systems
can be seen Figure 2.4.
Maxeler has developed a system which uses the Multiscale Data-flow Computing
paradigm. The architecture, which can be seen in Figure 2.5, consists of a CPU host with
its own Dynamic Random-Access Memory (DRAM) and one or multiple Data-Flow
Engines (DFEs). A DFE is an Field Programmable Gate Array (FPGA) together with
on-board DRAM on which the kernels are implemented in hardware. The data transfers
to the DFE are conducted in one of two methods:

• via the CPU through a PCIe interconnect.

• via the on-board DRAM which is called the Large Memory (LMem).

The DFE has another memory which is called Fast Memory (FMem) which are the
Block Random-Access Memories (BRAMs) of the FPGA. Besides the connections of
the DFE to the CPU and LMem, it is possible to connect to other DFEs via the so
called MaxRing interconnect. This is a high bandwidth interconnect which supports
full overlap of computation and communication so that that applications on multiple
DFEs scale efficiently.
The programming of the DFE is done with at least one kernel and a manager. In the
kernel the functional part is defined, while in the manager the data movement is set
up. Both the kernel and the manager are programmed with MaxJ which is an extended
version of Java. On the CPU host the Simple Live CPU (SLiC) interface is used. This
interface is automatically generated from the code in the Manager and is used to activate
the kernels and data transfer between the CPU and DFE.
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(a)

(b)

Figure 2.4: Architectures of different computer paradigms. (a) Data-flow. (b) Control
flow
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Figure 2.5: Maxeler data-flow architecture.

2.6 BrainFrame

BrainFrame [3] is a High Performance Computing (HPC) framework for accelerating
computational-neuroscience simulations by incorporating multiple acceleration tech-
nologies (Intel Xeon-Phi CPU, NVidia GPU, Maxeler DFE), using PyNN [26], or since
recently using NeuroML, as an interface. PyNN is an interface which uses Python
scripts to use multiple simulators. Therefore, allowing for an increase in productivity
of neural network modelling and an increase in reliability of modelling studies. Brain-
Frame assigns the best accelerator to each provided model simulation by matching best
accelerator features to model quirks (network size and connectivity). BrainFrame has
been validated with hard-coded brain models in the past. The hard-coded DFE imple-
mentation only supports the IO-model and was first introduced in [12] by Smaragdos
et al. In this implementation all of the compartments of a single cell could be executed
in parallel, as each compartment has its own pipeline. However, the gap junctions were
shown to be the most computationally expensive part of the simulation due to there
quadratic computational cost in relation to the number of cells in the network while
the other computations scale linearly. This also explains why unrolling the loop of the
gap junctions is a more efficient way to achieve speedup than duplicating the kernel
on the DFE. This DFE implementation showed great performance with certain quirks
in comparison to the CPU (Phi) and GPU platforms. However, for the framework to
be useful in practice, neuroscientists must be able to develop their own models within
BrainFrame using general libraries. As discussed previously, the challenge lies in of-
fering high performance and scalable libraries so as to support the construction and
simulation of large-scale brain models while at the same time offering high degrees of
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modelling flexibility and parameterization.

2.7 Summary
To get an idea of the simulations run in this thesis, this chapter started with a description
of the biological neuron. After this SNNs, with in particular the HH- and IO-model,
were discussed. Subsequently, NeuroML, a general language to describe neural mod-
els was described. Making our implementation NeuroML-complaint will increase the
chance of our implementation being used. Afterwards, numerical methods were dis-
cussed. Those methods influence the accuracy of the simulations and consequently, the
number of steps. The number of simulation steps have, in and of themselves, an influ-
ence on the execution time of the simulation. Furthermore, data-flow computing was
discussed which is another computing paradigm to the Von-Neumann (or control-flow)
paradigm, on which programs can be efficiently computed. Finally, the HPC framework
for simulations of neural models BrainFrame was described. This framework showed
great performance, however, the DFE implementation is not flexible. Consequently,
flexHH will be a great addition to BrainFrame.
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Related work 3
Currently, neuroscientists already have the choice of multiple brain simulation simu-
lators to simulate their models. To indicate where those simulators can be improved,
Section 3.1 discusses the most popular brain software simulators. Subsequently, in
Section 3.2 other implementations on FPGAs are presented.

3.1 Software simulators

Tikidji-Hamburyan et al. [2] discuss the three most popular neural network simulators,
based on frequency of occurrence in Model DB [27]: NEURON [8], GENESIS [9], and
Brian [28]. Additionally, Nest [29] is added to the comparison. These simulation tools
attempt to make the programming of the models, including using numerical methods,
transparent to the user, which is useful for neuroscientists without a special expertise in
programming and/or numerical methods.
To compare the computational performance of the different simulators Tikidji-
Hamburyan et al. investigated the simulation time of NEURON, Brian, and Nest for two
single-threaded test cases (GENESIS was not included in these simulations as Tikidji-
Hamburyan et al. could not find a way to simply implement both test cases) run on a CPU
(dual-core Intel Core i5 2.70 GHz, 16 Gb RAM). The first test case simulates a simplified
network with simple integrate-and-fire (I&F) neurons and synapses (this network is dis-
cussed in more detail in [30] and [31]). The second test case is the simulation of a so-called
PIR-ING network [32], which is based on a more complex Hodgkin-Huxley (HH)-type
model. The performance of both tests cases show significantly different behaviour, as
can be seen in Figure 3.1. This figure shows that Brian performs best and NEURON the
worst for the first simple use case, while in the second use case Brian performs worst and
NEURON best. Hence, the aforementioned simulators cannot guarantee a specific per-
formance, which can be explained as the simulators are designed with different model
types in mind. Therefore, this strengthens the decision to make the flexHH library to
compatible with a language (NeuroML) which is simulator independent.
To make use of the efficient use simulator it may be required that the user has to
develop low-level code (C/C++) or make use of external modules. For example, to
efficiently program NEST the user has to develop in C++ (e.g. for using lookup tables
instead of doing computations) and if in GENESIS an equation is not supported the user
has to develop C-code. Consequently, it can be concluded that even these simulators
have their limitations regarding user-friendliness. Furthermore, as some models are
computationally expensive NEURON, NEST, and Brian support parallel-execution as can
be seen in Table 3.1. However, this introduces limitations in functionality. For example,
Brian has no MPI support and Nest does not support distributed computations for
complex multi-compartmental neurons on several clusters through MPI. Consequently

17
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(a) Test case 1 (b) Test case 2

Figure 3.1: Simulation time for different simulators [2].

we can conclude that the software simulators for neural networks have the following
limitations:

• Limited exploited parallelism:
All simulators make attempts to use parallelization/optimization features which,
however, are not fully supported across all simulator functionality.

• Model-specific optimizations:
Simulation speeds are not consistent across simulators (since each simulator has
been designed with different model types in mind).

• Poor code portability:
As discussed in Section 2.3, interoperability among different simulators is limited.
Thus, effort spent on building a model in one simulator/language cannot be
(easily) migrated to another simulator. This problem is nowadays being addressed
by efforts like NeuroML and PyNN, which have been developed with the aim
of standardizing the modelling of neuron descriptions and making model-code
portable across different simulators.

We thus, see a need for High Performance Computing (HPC)-enabled simulators, with
high levels of model-code portability across simulators. In the following section, we
will discuss a subset (Field Programmable Gate Array (FPGA)-based simulators) of these
HPC-enabled simulators.

3.2 FPGA-based simulators
As far as hardware simulators are concerned, we focus on solutions with the following
properties:
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Table 3.1: Characterization of computational efficiency and parallelization of neural
network simulators [2].

Feature NEURON Nest Brian GENESIS

MPI support for
neuron-to-neuron
communication

Y Y N Y

MPI support for
gap junctions Y Y N N

Distributed computations
for complex
multi-compartmental
neurons on
several clusters
nodes through MPI

Y N N ?

Multithreading support
on single compute node

Y
(p-threads)

Y
(OpenMP)

Y
(OpenMP or
GPU(limited))

?

1. FPGA-based simulators:
There is chosen for FPGA-based simulators due to the element of flexibility they
offer compared to for example, Application-Specific Integrated Circuit (ASIC)
solutions.

2. Simulators using floating-points:
This because as shown in [33], the differences between a 32-bit fixed-point model
and a 32-bit floating-point model can lead to a significance phase difference be-
tween the neuron spikes. As the functional behaviour of a neuron is defined
by the spikes, the principles of neural information processing could be altered.
Consequently, without a comprehensive study of the accuracy, the functional cor-
rectness of a fixed-point representation for the class of models we assume in this
work cannot be guaranteed. However, it must be noted that the use of fixed-point
arithmetic can lead to a significant reduction of hardware-usage on a FPGA and
therefore, the use of fixed-point arithmetic is potentially preferable if a tolerable
accuracy can be achieved.

3. Simulators using Spiking-neural-network (SNN) models:
There is chosen to focus on SNN models due to their high potential in constructing
biologically plausible neural simulations.

Blair et al. [34] introduce an FPGA platform for the simulation of I&F models. This
implementation uses an XML language to describe the models and thus enables neu-
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roscientists to directly translate the model on FPGAs. However, to achieve optimal
performance, design parameters which are used for loop unrolling need to be modified.
Those design parameters are dependent on which part of the algorithm is the bottle-
neck for parallel execution. This does require competence on parallel programming to
accomplish, that the neuroscientist might not posses. Furthermore, this platform only
simulates I&F models, which are simpler than the HH models.
Another implementation by Graas et al. [35] implements two conductance-based models,
namely the original HH-model and a model of a motorneuron as a two-compartment
model as is presented in Booth and Rinzel [36]. However, a relatively simple FPGA
(Xilinx XC2V1000-4FG256 Virtex-II FPGA, 40 MHz) was used. Still, significant speedup,
16x for the HH-model and 72x for the motorneuron, could be achieved in comparison to
a CPU (AMD Athlon processor, 1333MHz). Although Simulink was used to generate the
model descriptions, understanding of the hardware of the FPGA was required to make
efficient use of the pipeline. Additionally, if a new model needs to be implemented, a
new synthesis cycle is required (which is time-consuming).
An implementation which can simulate large networks is presented by M.A. Bhuiyan et
al. [11]. This implementation can simulate a network of HH up to 0.5 million (720x720)
neurons. The hardware used for this implementation is the SRC 7 H MAP, which
contains an Intel Xeon dual core processor together with two 150 MHz Altera Stratix
II EP2S180 FPGAs. In the implementation, both the CPU and one FPGA are used. A
maximum performance speedup of 38x against the Intel dual core Xeon was achieved.
Although the implementation supports large networks, which can be simulated with a
good performance, the usability for neuroscientists is again low.
The main problem with all previously discussed implementations is that they require
expert acceleration knowledge to be used optimally, thus requiring the modification of
an acceleration engineer, which can significantly delay the research process.
R.K.Weinstein et al. [37] introduce an architecture which describes the algorithms used
in conductance-based models in a more generalized way. They created their own
modelling language called DYNAMO together with their own compiler. Using this new
interface incurred effort, even though this environment was functionally complete, thus
the platform failed to become widely adopted.
Cheung et al. [38] introduces the most promising solution called NeuroFlow. Neu-
roFlow is a platform which uses PyNN as a high-level API which is understandable
for the neuroscientist. Moreover, the hardware mapping, with optimizations such as
the degree of parallelism, of the neural methods is done automatically. Therefore, the
performance of the hardware system can be used relatively easily. The platform trans-
lates the derivatives of the neural model, which are derived from the model in PyNN, to
Maxeler-code. Consequently, as one equation of the derivatives is changed, a new time-
consuming (multiple hours) synthesis cycle is required. The performance and efficiency
analysis for NeuroFlow is presented for a single use case of a generally simpler model
(Izhikevich) with relatively low connectivity density (about 10%), showing impressive
results. The behaviour and performance of the system for the rest of the supported
features, on the other hand, is not self-evident and is expected to be significantly re-
duced, especially for more demanding modelling [3]. Furthermore, the applicability of
NeuroFlow in the case of (especially gap-junctioned) HH models is very limited due to
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relying only on event-driven simulations, which is impractical for HH models. From the
above, it becomes apparent that no prior work has tackled the problem of flexible and
fast HH-model simulations on a FPGA-based platform showing significant acceleration
results.
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Implementation 4
This chapter discusses the first version of flexHH, targeting a single Data-Flow En-
gine (DFE) node. The structure of the remainder of this chapter is as follows. First,
preliminary work for this thesis conducted by me is discussed. Secondly, an overview
of the five kernels implemented is given. Then, in Section 4.3 the way equations of
Hodgkin-Huxley (HH)-type models are generalized is discussed and in Section 4.4 the
implementation of those functions on a DFE is discussed. Both sections start with the
discussion of the general implementation of the basic HH kernel, which is used as a
foundation for all the other kernels, after which the extensions are discussed.

4.1 Preliminary work
In this section, we will present some preliminary work of a DFE-based Ordinary Differ-
ential Equation (ODE) solvers, conducted by me prior to the work presented in Chapter 4.
Four different ODE solvers used in this preliminary work are:

• Forward-Euler method (fwd-Euler)

• Modified-Euler method (mod-Euler)

• Optimal second-order SSP Runge-Kutta method (rk2)

• Optimal third-order SSP Runga-Kutta method (rk3)

With the use of those solvers, Equation (4.1) and Equation (4.2) were simulated with a
variable number of elements (Nelements) as Algorithm 1 shows.

f (u, v) = 0.4u− 0.0002uv (4.1)
g(u, v) = 0.3v− 0.0001uv (4.2)

The state variables ui and vi (where 0 ≤ i < Nelements−1) were simulated, with Equa-
tion (4.1) and Equation (4.2), as can be seen in Algorithm 1.
In the preliminary work the used ODE solvers were implemented (by me) on the DFE
and had the following characteristics:

1 An efficient use of the pipeline, meaning that all the stages of the pipeline where
concurrently active.

2 Optimized performance of the implementations by increasing the frequency and

(a) unrolling the loop of elements in hardware (with an unroll factor u fe),

23
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Algorithm 1 Pseudocode for the simulation used in the preliminary work.
1: procedure Sim(u, v, dt, Nsteps, Nelements)
2: for 0 ≤ j < Nelements do
3: for 0 ≤ i < Nsteps do
4: uOld = u[j]
5: vOld = v[j]
6: u[j]← updateU(uOld, dt, f (uOld, vOld))
7: v[j]← updateV(vOld, dt, g(uOld, vOld))
8: end for
9: end for

10: end procedure

(b) unrolling the number of simulation steps in hardware (with an unroll factor
u fs)

3 Usage of the PCI express bus for the data transfer during the simulation.

The maximum speedup, against a sequential C implementation run on a Central Pro-
cessing Unit (CPU), can be seen in Table 4.1. Those results show that both the increase
of frequency and unrolling the loops leads to significant performance benefits. The
following conclusion can be made from these results:

• The more complex solvers have better performance if the same unroll factors are
used. This is because a more complex solver has a deeper pipeline and therefore
more pipeline stages are working concurrently.

• Both unrolling methods create multiple instances of updateU and updateV in hard-
ware. Consequently, a higher unroll factor will lead to more hardware-usage. The
unroll factor u fs was limited by the amount of hardware on a DFE. On the other
hand, u fe is limited by the limited amount of data streams which can be present on
the PCI express bus, while there still was unused hardware on the DFE. Therefore,
the unroll factor u fs could be increased more than u fe.

• A simpler solver allows for a larger unroll factor, in comparison to the more com-
plex solvers. Moreover, the larger unroll factor for the simpler solvers, provides a
better speedup against the CPU than the more complex solvers with lower unroll
factors.

Finally, the execution times of the DFE instances showed a large variance due to the
data transfer during the simulation on the PCI express. Consequently, the kernels were
re-implemented to make use of the Large Memory (LMem) (instead of the PCI express).
Those execution times showed a more stable kernel performance.
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Table 4.1: Maximum speedup for different implementations on the DFE in comparison
with the C-code on the CPU host.

ODE solver f (MHz) u fe u fs max speedup

fwd

100 1 1 0.61
350 1 1 2.04
250 6 1 8.70
200 1 50 57.34

mod

100 1 1 1.31
340 1 1 4.23
250 6 1 18.75
200 1 15 37.29

ssp2

100 1 1 1.25
340 1 1 4.02
250 6 1 17.68
200 1 20 46.72

ssp3

100 1 1 1.87
340 1 1 6.00
250 6 1 26.37
200 1 12 42.04

4.2 The flexHH library
The models we want to simulate can be as simple as a network of HH cells or as complex
as Inferior-Olive (IO) cells. The IO-model extends the basic HH-model with three extra
features:

1. Custom ion gates:
The description ’custom’ follows from the fact that to support all gate equations
of the IO-model, some equations are custom defined in NeuroML, this in compar-
ison to gate equations of the HH-model, which can be described by predefined
equations in NeuroML.

2. Gap junctions:
Gap junctions are inter-cellular connections.

3. Multiple cell compartments:
The feature “multiple cell compartments“ allows a neuron cell to consist of one
or more compartments (which have their own membrane voltages) allowing for a
current flow between them.

The features are implemented as extensions. The extensions come at the cost of the use
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Table 4.2: Overview of the supported features per implemented kernel in the flexHH-
library.

Custom
ion gates

Gap
junctions

Multiple cell
compartments ODE solvers

HH 7 7 7

fwd-Euler
rk2
rk3

HH+gap 7 3 7

fwd-Euler
rk2
rk3

HH+custom 3 7 7

fwd-Euler
rk2
rk3

HH+custom+multi 3 7 3

fwd-Euler
rk2
rk3

HH+custom+multi+gap 3 3 3

fwd-Euler
rk2
rk3

of extra hardware resources. Those resources could be used for increasing performance
or network capacity. Therefore, flexHH will provide five different kernel instances of
the HH representation. Each instance incorporates more or less a superset of features
compared to its predecessor. Consequently, flexHH gives the option of using simpler
kernels (depending on the simulation) with a benefit in performance and/or maximum
network capacity. The five kernel instances together with which feature each kernel
instance supports can be seen in Table 4.2. The most basic kernel supports the basic HH-
model. The HH+custom+multi+gap kernel supports all features and is able to simulate
the IO-model.
The feature “multiple cell compartments“ states that there can be one or more compart-
ments per cell. However, as can be seen in Table 4.2, not all kernel instances support
this. In the case that multiple cell compartments are not supported, the terms cell and
compartment are interchangeable.
The HH neuron models are generally described as ODE systems. These systems are
represented by so-called state variables. In the case of the discussed neuron models,
these state variables comprise the membrane potentials of the compartments (Vi) and
gate-activation variables (yi), where i is the index of the variable. The index can be a
combination of multiple integers; for example, to represent gate h of compartment k of
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cell j the index (j, k, h) can be used. Those state variables are updated as described in
Algorithm 2 when a first-order solver is used. In this algorithm the voltages are stored
in array V and the gate-activation variables in array Y. When an higher-order explicit
solver is used, each (time) step contains multiple stages and therefore, another loop
needs to be added. The use of different solvers is discussed in Section 4.4.1.4.

Algorithm 2 Pseudocode for the simulation of a HH-type model evaluation.
1: for 0 ≤ i < Nsteps do
2: for 0 ≤ j < Ncells do
3: for 0 ≤ k < Ncomps[j] do
4: for 0 ≤ h < Ngates[j][k] do
5: Y[i][j][k][h]← updateY(gateConsts, Y, dt)
6: end for
7: V[i][j][k]← updateV(gateConsts, compConsts, cellConsts, V, dt)
8: end for
9: end for

10: end for

The algorithm shows that, for each simulation, the solver is invoked for updating the
neural network for a predefined number of simulation steps Nsteps and with a time-step
dt. For each gate (in Ngates) of each compartment (in Ncomps) of each cell (in Ncells),
across the simulations steps, an updateY function is called which iteratively updates
the values of the gate-activation variables yi. For each compartment (of each cell), a
second function updateV is called for updating the membrane potential Vi. The other
parameters (gateConsts, compConsts, cellConsts) are constant parameters (during a
single simulation) per gate, compartment, and cell, respectively. The description of
updateY, updateV, and the constant parameters will be discussed in the remainder of
this chapter.

4.3 Model function generalization
To implement generalized (thus, reusable) kernels on the DFE (in hardware) it is required
to generalize the functions, through parameters used for the simulation of HH-like
models. Otherwise, in case non-generalized functions are used, each time a new/
different equation is used for the simulation, a time-consuming synthesis cycle would
be required. To decide which equations and what parameters to use, NeuroML is used
as a guide. We rely on NeuroML since it has done an excellent job of hierarchically
structuring neuron models; see Figure 2.3.
Making the kernels NeuroML-compatible has the additional benefit of being familiar
for neuroscientists. The first thing to take from NeuroML is the hierarchal description of
neural models. Furthermore, in NeuroML an effort is made to generalize the equations
used in neural networks. This generalization is done using predefined functions which
can be altered by changing the parameters. This suits a hardware implementation
because the functionality is predefined while parameters can be changed and thus
reusable for multiple simulations.
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4.3.1 HH
The original HH-model is the foundation of all other HH-like models and was described
in Section 2.2.1. In the equations of the HH-model (Equations (2.1) to (2.14)) it can be

seen that the derivative of the voltage (dV
dt

) is a summation of different currents divided
by the capacitance of the membrane, where Iapp is the applied current, Ichannels is the
sum of the currents generated by the ion channels (the Na and K channel in case of the

HH-model), and Ileak the leakage current. The equation to calculate dV
dt

does not change
between the simulations and consequently, this equation does can be used directly.
The first current Iapp can be represented by any function. However, the support for any
function in hardware is impossible as it will use too many resources. Therefore, it was
decided to only support pulse functions, which in NeuroML is represented by creating
a pulseGenerator. The pulse function has three parameters: a start time (tstart), an end
time (tend), and an amplitude (A), as can be seen in Equation (4.3).

Iapp(t) =

{
A, if tstart ≤ t < tend

0, otherwise
(4.3)

The next current needed to calculate dV
dt

is the current relating to the channels Ichannels.
This current is the sum of the current flowing through all the ion channels. In the
HH-model there are two ion channels, the Na and K channel. Both channel currents
(INa and IK) and every other channel current in an IO cell can be represented with
Equation (4.4). In this equation, Mgates[i] is different from the Ngates[j][k] in Algorithm 2,
as Mgates[i] is the number of gates per channel and Ngates[j][k] is the number of gates per
compartment. Moreover, from the documentation from NeuroML (see the ionChannelHH
and channelDensity objects in the documentation) it follows that Equation (4.4) is indeed
a general equation for Ichannels. As an explanatory example, Equation (4.4) is used to
represent the equations of both channel currents of the HH-model as shown in Table 4.3.
The final current needed is Ileak, which is simpler than Ichannel as the calculation of the
current does not require an exponent and there is always only one gate (see Equa-
tion (4.5)). Therefore, the equation is always the same and thus the equation of Ileak
does not need to be generalized. So, all the functions which are required to calculate the
derivative of the voltages are now general enough to be implemented in hardware.

Ichannel = gchannel

Mgates[i]−1

∏
i=0

ypi
i (V −Vchannel) (4.4)

where

pi ∈ Z>0

Ileak = gleak(V −Vleak) (4.5)

The equations for the other derivatives, used for the gate-activation variables, in the
HH-model are described by Equations (2.2) to (2.4). Those equations show that each
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Table 4.3: Parameters of the HH-model filled into Equation (4.4).

channel gchannel Mgates y1 y2 p1 p2 Vchannel

K gK 1 n 4 VK
Na gNa 2 m h 3 1 VNa

differential equation of the gate-activation variables is in the form of Equation (4.6).
To represent Equations (2.5) to (2.10), three different functions, which are presented in
Equation (4.7), are needed. In this equation, x1, x2, and x3 are floating-point values to
represent the variables of the equation and f Type is an integer value to select a function
branch. In NeuroML, also three different functions are implemented to represent the
equations of the derivatives of the gate-activation variables. These are shown in Equa-
tions (4.8) to (4.10). Coincidentally, it is possible to present them with Equation (4.7).
The way the variables relate to each other can be seen in Table 4.4. Consequently, no
additional changes are required to make equations of the gate-activation derivatives of
the flexHH library compatible with NeuroML.

dyi

dt
= αi(1− yi)− βiyi (4.6)

f (Vi, x1, x2, x3, f Type) =



x1 · (x2 −Vi)

e(x2−Vi)·x3 − 1
if f Type = 0

x1 · e(x2−Vi)·x3 if f Type = 1
x1

e(x2−Vi)·x3 + 1
if f Type = 2

(4.7)

hhSigmoidRate =
rate

1 + exp
midpoint−Vi

scale

(4.8)

hhExpLinearRate =
rate

midpoint−Vi

scale

exp
midpoint−Vi

scale
− 1

(4.9)

hhExpRate = rate exp
Vi −midpoint

scale
(4.10)



30 CHAPTER 4. IMPLEMENTATION

Table 4.4: Parameter translation from NeuroML to the implementation on the DFE.

Function f Type x1 x2 x3

hhSigmoidRate 2 rate midpoint
1

scale

hhExpLinearRate 0 rate
scale

midpoint
1

scale

hhExpRate 1 rate midpoint
−1

scale

4.3.2 Custom ion gates
As discussed before, the IO-model requires the use of custom-defined ion gates in Neu-
roML. The equations which require a custom definition can be seen in Equations (4.11)
to (4.15). In these equations sd, qd, ls, and ns are gate variables. Ca2Plusd is the con-
centration of the Ca2+ ion concentration in the dendrite and thus adding dynamics of
a calcium concentration in addition to the dynamics of gate-activation variables. The
current Icah,d is the high-threshold calcium current in the dendrite. These equations
reveal that the differences between the standard gate equations (as discussed above)
and these used in the IO-model are: (a) that a equation can contain multiple exponent
functions and (b) that the equation can be a min function. Additionally, in case of the
standard gates, the voltage is always used as input for the function, while the custom
gates can also use the calcium current or another gate-activation variable as input.

dsd

dt
= min(0.00002 · Ca2Plusd, 0.01) · (1− sd)− 0.015 · sd (4.11)

dqd

dt
=

1

1 + e
Vdend + 80

4

− qd

1
e−0.086·Vdend−14.6 + e0.070·Vdend−1.87

(4.12)

dCa2Plusd

dt
= −3 · Icah,d − 0.075 · Ca2Plusd (4.13)

dls

dt
=

1

1 + e
−

Vsoma + 85.5
−8.5

− ls

20 · e
Vsoma + 160

30

1 + e
Vsoma + 84

7.3

+ 35

(4.14)
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f Custom( f Type, V, xs) =



x5(xs[1]−V)

x0 exp((x1 −V)x2) + x3
+ x8 if f Type = 0

x8

x0 exp(x2(x1 −V)) + x3 + x4 exp(x5(x6 −V)) + x7
if f Type = 1

x0 exp((x1 −V)x2) + x3

x4 exp((x6 −V)x5) + x7
+ x8 if f Type = 2

min(x0v, x1) if f Type = 3
(4.16)

dns

dt
=

1

1 + e
−

Vsoma + 3
10

− ns

5 + 47 · e
−(−50−Vsoma)

900

(4.15)

To generalize those functions, similarly to the standard ion gates, a predefined set of
equations is used. The predefined set of equations are presented in Equation (4.16).
Besides the costs of the more complex functions, nine instead of three floating-point
parameters (the xs) are used in f Custom. With those modifications the standard gates,
the custom gates from the IO-model, and the dynamics of the calcium concentration
can be described using the custom gates. Note that, because the standard gates can be
described, Equation (4.16) can be used instead of Equation (4.7).
Another difference in comparison with the equations for the standard gates is that,
besides Equation (4.6), the gate derivative may be calculated with Equation (4.17). In
this equation, similar to the standard gates, the variables αi, βi, in fi, and taui are
calculated by the predefined set of equations.

dyi

dt
=

in fi − yi

taui
(4.17)

In addition to the custom gates, instantaneous gate-activation variables are used in the

IO-model, which means that the dyi

dt
variable is not used in case of those variables.

However, those instantaneous variables can be described by the set of equations used to
calculate αi, βi, in fi, or taui and therefore, no new function needs to be implemented.
The generalization of the custom ion gates specifically aimed specifically to support
the custom-defined ion gates in NeuroML of the IO-model. However, the generalized
equations used for the custom ion gates are in fact useful for more extended Hodgkin-
Huxley (eHH) models. That is, the here presented generalized equations are not IO-
specific only but have general value. Thus, using them as guidelines in flexHH does not
diminish flexHH’s applicability.

4.3.3 Multiple cell compartments
When multiple compartments are supported, a current between two connected compart-
ments in the same cell is formed. The relation between compartments is unspecified in
NeuroML and therefore dependent on the simulation environment (such as NEURON).
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To calculate the current flowing from compartment i to compartment j, Equation (4.18),
the same equation as in the IO-model, as specified in [21], is used. This equation makes
use of internal conductance of the cell (gint), the surface ratio between compartments
(pi,j), and the voltage difference between compartments (Vi − Vj). If this extension is

supported, this current is added to the sum of currents to calculate dV
dt

, as shown in
Equation (4.19).

Imc,i,j =
gint

pi,j
(Vi −Vj) (4.18)

dV
dt

=
Iapp − Ichannels − Ileak − Imc

CM
(4.19)

4.3.4 Gap junctions

Gap junctions are intercellular connections. In NeuroML, the current through a gap-
junction is represented by Equation (4.20). In this equation, the intercellular current
(Igap,i,j) between two cells (cell i and cell j) is simply calculated as a conductance mul-
tiplied with the voltage difference. Consequently, the total current for a single cell i is
calculated with Equation (4.21). In the IO-model the gap-junction current for a single
cell i is calculated with Equation (4.22) (wi,j is a constant weight which scales the strength
of the connection between two cells).

Igap,i,j = gi,jVij (4.20)

Igap,i =
NCells−1

∑
j=0

gi,jVi,j (4.21)

Igap,i =
NCells−1

∑
j=0

(wi,j(0.8 exp(−0.01 ·V2
i,j) + 0.2)Vi,j) (4.22)

The current of the gap junctions in the IO-model shows that the conductance may be
represented by an equation. Similar to the reasoning in the calculation of Iapp, not
all possible equations can be implemented on the DFE. Therefore, it was decided to
generalise the calculation of Igap,i with Equation (4.23), where gx0, gx1, and gx2 are
floating-point variables. By generalising the current in this way, it is both possible to
use the gap-junction current as described in the IO-model or use a single-floating-point
variable as conductance. By adding gap junctions to a model, the current is used for the

calculation of dV
dt

, as can be seen in Equation (4.24).

Igap,i =
NCells−1

∑
j=0

(wi,j(gx0 exp(gx1 ·V2
i,j) + gx2)Vi,j) (4.23)

dV
dt

=
Iapp − Ichannels − Ileak − Igap

CM
(4.24)
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4.4 DFE implementation

Now that the generalized functions are defined,they can be implemented as in DFE
kernels where the parameters can change without the need of resynthesising. In what
follows we describe how the algorithm to simulate HH model instances is implemented
on the DFE. For the floating-point variables, single-floating-point precision was chosen
as it has been proven accurate enough in the BrainFrame implementation and shifting
the arithmetic precision (e.g. to fixed-point variables) will require an extensive accuracy
analysis which is out of scope for this thesis. In the remainder of this section, first the
implementation of the HH kernel is described after which the implementation of the
features needed for the rest of the kernels is discussed.

4.4.1 HH

The implementation which supports the basic HH-model follows Algorithm 3. Note
that, in comparison with Algorithm 2, the for-loop which iterates over the number of
cells is removed. This is because, as previously discussed, it is a single-compartmental
model and to prevent confusion with the other models, the cells are represented by
compartments.

Algorithm 3 Pseudocode for the simulation of the HH-model.
1: for 0 ≤ i < Nsteps do
2: for 0 ≤ k < Ncomps do
3: for 0 ≤ h < Ngates[k] do
4: ys[i][k][h]← updateY
5: end for
6: vs[i][k]← updateV
7: end for
8: end for

To implement Algorithm 3, the hardware required on the DFE consists of the updateY,
updateV, the storage, and the control logic. The control signals are used to enable/disable
the I/O streams, select the right streams of data from multiplexers, and enable memory
reads/ writes. The for-loop sizes of Algorithm 3 are needed for the control signals. On
the DFE, the loops are implemented with hardware counters. The input of the most (the
loop of Ngates) receives its input from a stream (as Ngates is variable). Therefore, a buffer
is used to hide the input latency of the stream inspired by the library dfesnippets [39]
to allow for a efficient data-flow implementation. Consequently, the number of ticks
is increased by 4 (the input latency), however, this is negligible in comparison to total
amount of ticks needed for simulations. Furthermore, the most inner loop will be
unrolled to speedup the kernel with a factor denoted as the unroll factor (u f ). By
unrolling the most inner loop, multiple pipelines are created. The hardware of these
pipelines fit on the DFE, contrary to the hardware required for the outer loops, since
this would require all the hardware required to calculate each of the more inner loop(s)
to be on the DFE.
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4.4.1.1 updateY

To update the y variables, the derivative dy
dt

from Equation (4.6) is used. For this
equation, the calculations of both α and β are done with Equation (4.7). For the im-
plementation of Equation (4.7), the amount of divisions and exponential functions are
minimized, as Algorithm 4 shows, to reduce the hardware-usage of this function. This
optimization is done so that–independent of the Maxeler tools–the hardware-usage is
minimized. Both α and β employ this function, consequently, this algorithm is generated
twice for the implementation. The first input argument of f is the voltage of compart-
ment i (Vi). The xs, (x1, x2, x3) are single-precision floating-point variables which can
vary per gate. The variable f Type needs to be able to represent three different numbers,
as there are three different equation branches. This can be done with two bits. The
output of this function will be a single-precision floating-point variable.

Algorithm 4 Pseudocode of f, a generalized function to calculate α and β.
1: function f(Vi, x1, x2, x3, f Type)
2: Vdi f f ← x2 −Vi
3: if fType == 0 then
4: num← x1 ×Vdi f f
5: c← −1
6: else if fType == 1 then
7: num← x1
8: c← 0
9: else if fType == 2 then

10: num← 1
11: c← 1
12: end if
13: denum← exp (Vdi f f × x3) + c

14: return num
denum

15: end function

4.4.1.2 updateV

Derivate voltage

To calculate the derivative of the voltage for a compartment, a sum of three currents
is needed and a division by the conductance of the membrane of the compartment.
However, instead of using a division with the conductance, a multiplication with the
elastance is done as this is cheaper in terms of hardware costs. Consequently, Equa-
tion (4.25) is implemented. The elastance is set on the CPU host. When the conductance
is given as variable of a model (as in NeuroML) then the elastance can be calculated, on
the CPU host, with Equation (4.26).

dV
dt

= (Iapp − Ichannels − Ileak)SM (4.25)
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where

SM =
1

CM
(4.26)

Applied current Iapp

The first current which is needed to calculate the derivative of the voltage is the applied
current Iapp. Iapp is implemented similar to Equation (4.3). The difference is that tstart
and tend are converted to 32-bit unsigned integer step numbers (stepstart, stepend), with
the formula stepstart/end =

tstart/end

dt
. This is done as the variable step (representing

the current step number) is already available as it is needed for the control of the
implementation and therefore, can be used as input to calculate Iapp. The other input
variable A is the amplitude of the block function and is represented as a single floating-
point value. The pseudocode for the function can be seen in Algorithm 5.

Algorithm 5 Pseudocode of calcIApp.
1: function calcIApp(stepstart, stepend, A, step)
2: if (step ≥ stepStart) ∧ (step < stepEnd) then
3: iApp← A
4: else
5: iApp← 0
6: end if
7: return iApp
8: end function

Channel current Ichannels

The equation for Ichannels can be seen in Equation (4.27). The sum of all channel currents
is calculated by either accumulating the additions or by unrolling the whole equation.
The advantage of choosing for the accumulating option is that only one adder is needed.
Furthermore, there is no need for an extra loop as updateY already needs to be calcu-
lated for each gate. However, an accumulation requires the old value before the new
accumulated value can be calculated. The delay of a floating-point adder, in comparison
to fixed-point adder, will give a loss in performance as the accumulation cannot be effi-
ciently pipelined and therefore, creates idle ticks. Consequently, the option of unrolling
the summation is chosen which has the benefit that it does not incur performance loss
at the cost of using more hardware resources. There is only one issue with unrolling the
summation, which is that Nchannels is a variable and unrolling a variable number is not
possible in hardware. Therefore, there is a need for a maximum value. It was decided
to set this maximum value to the number of gates per compartment (Ngates,max) as a
channel consists out of 1 or more gates. This leads to the implementation of Algorithm 6
to calculate Ichannels on the DFE.

Ichannels =
Nchannels−1

∑
j=0

Ichannel [j]
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=
Nchannels−1

∑
j=0

gchannel [j](V −Vchannel [j])
Mgates[j]−1

∏
i=0

y
pj,i
j,i (4.27)

Algorithm 6 Pseudocode for calcIChannels.
1: function calcIChannels(Ngates, vChannel, yProd, gGate, vCompartment, Ngates,max)
2: iChannels← 0
3: for 0 ≤ i ≤ Ngates,max do
4: o f f setG ← stream.o f f set(g,−i)
5: o f f setVChannel ← stream.o f f set(vChannel,−i)
6: o f f setYProd← stream.o f f set(yProd,−i)
7: iChannel ← o f f setYProd× o f f setG(vCompartment− o f f setVChannel)
8: if i < Ngates then
9: iChannels← iGates + iGate

10: else
11: iGates← iGate
12: end if
13: end for
14: return iGates
15: end function

The variable gGate is either equal to 0 or gchannel depending on whether the currently
processed gate is the final gate of the channel, so that iChannels can only be updated once
per channel. This is required as we loop over the gates instead of the channels. The loop
is over the gates so as to have the flexibility of supporting a variable number of gates
per channel without creating the need for extra variables. Additionally, the variable
yProd is needed per channel. The definition of yProd can be seen in Equation (4.28)
and is implemented as in Algorithm 7. As there is no generic exponential function in
hardware, the variable yj will be multiplied with itself one or more times as described
by Algorithm 7. With this implementation, a p of 1 up to and including 4 is supported.
The maximum of 4 is chosen as this is the maximum exponent needed to support
both the basic HH and IO-models. Furthermore, yProd can be the product of multiple
exponential functions; see Equation (2.14) as an example. The solution is to let those
gates be consecutively processed and then let gGate only be non-zero for the final of
the consecutive gates of a channel (which was already the case so that iChannels is
only updated once per channel). Then, Algorithm 7 calculates the right yProd for a
single pipeline. When the unroll factor is greater than one and a channel consists of
more than one gates then, the calculation of yProd is distributed over multiple pipelines.
Subsequently, the results of the different pipelines need to be combined. However, for
simplicity this is not shown in Algorithm 7.

yProd =
Mgates−1

∏
i=0

ypi
i (4.28)
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Algorithm 7 Psuedocode for calcYProd.
1: function calcYProd(y, p, gGate)
2: yProd← y
3: if p > 1 then
4: yProd← yProd ∗ y
5: end if
6: if p > 2 then
7: yProd← yProd ∗ y
8: end if
9: if p > 3 then

10: yProd← yProd ∗ y
11: end if
12: gOld← stream.o f f set(gGate,−1)
13: if gOld == 0 then
14: yProdOld← stream.o f f set(yProd,−1)
15: yProd← yProd ∗ yProdOld
16: end ifreturn yProd
17: end function

Leakage current Ileak

The calculation of the leakage current Ileak (Equation (2.12)) is implemented in a straight-
forward way. vl and gl are single-floating-point variables which can change per com-
partment. The voltage V is the voltage of the compartment being processed.

4.4.1.3 Data-transfer needs

In the DFE, the variables can be:

• scalar variables derived from the host CPU.

• stored in Fast Memory (FMem).

• stored in LMem.

• received from a stream from the host CPU.

For large amounts of data, the data needs to be streamed from either the LMem or the
host CPU. Because the LMem has a higher throughput and a more constant data transfer
rate than streaming from the host CPU, the LMem will be used for large amounts of
data.
The state variables of HH-type models are consisting of both the voltages (Vi) and gate-
activation variables (yj). The state variables are stored on the board of the DFE itself
to prevent any performance loss of transferring the data between the CPU and DFE.
Consequently, the state variables can be stored in either the LMem or FMem. In our
design we store state variables in the FMem as they are updated every simulation step. It
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is expected that when the state variables are stored into LMem the latency for updating
the memory will be too high resulting in a decline in performance.
The memory for the voltages is called vMem and the memory of the gate-activation
variables yMem. The vMem holds all the voltages, whose amount is equal to the total
number of compartments (Ncomps,total). To prevent the need to synthesize for a differ-
ent number of compartments per simulation, a maximum number of compartments
(Ncomps,max) is set. This maximum is used as the size of the vMem. Consequently, as long
as Ncomps,total ≤ Ncomps,max all the voltages can be stored and updated.
In yMem, in the case of a single pipeline, the total number of gate-activation variables
(Ngates,total) needs to be stored. The total number of gates is the sum of the number of gates

per compartment Ngates,total =
Ncomps,total

∑
i=1

Ngates[i] and if each compartment has the same

number of the gates the total number of gates is equal to Ngates,total = Ncomps,total ·Ngates[0].
Similar to vMem, the size of yMem is set to to a maximum size. This maximum is equal
to the product of the maximum number of compartments and a maximum number of
gates per compartment (Ngates,max). yMemsize = Ncomps,max · Ngates,max. When the loop of
the gates is unrolled, each pipeline will have its own memory. The size of each memory

of yMem is then equal to
⌈

Ngates,max · Ncomps,max

u f

⌉
.

Ngates,max and Ncomps,max are two variables which are set at compile time. Another
variable which is set at compile time is the unroll factor u f .
All the other variables are defined at runtime and can therefore be changed between
each simulation, without the requirement of a new synthesis cycle. The scalar variables
contain singular variables, which do not change during the simulation. The scalar
variables used for the HH implementation are presented in Table 4.5. Nsteps represents
the number of simulation steps, Ncomps represents the number of compartments, and
totalGatesPipe is an array with the total number of gates per pipeline. All those variables
are used for control signals. The time-step-size dt is used for the ODE solvers. The
throwAwayFactor represents a factor which reduces the output size. The output of
the state variables will be stored every throwAwayFactor steps into LMem. So when
throwAwayFactor is equal to two, the state variables are stored into LMem, at every
other step, instead of at every step,. Therefore, it is possible to store less data, which still
may be enough for a neuroscientist to analyse, while keeping the same size of the time
steps (dt) and thus the same accuracy during the simulation.
The other input variables are stored into LMem as the space required to store the
variables is large. There are two constrains when using the LMem. The first constraint
is that the data needs to be a multiple of 96 bytes as the data transfer happens in bursts
of 96 bytes. The second constraint is that there is a limited number of LMem streams.
Because of those two constraints the data is grouped together as much as possible while
taken into account that a burst consists of 96 bytes. Considering that, data is needed
much or less often based on whether the variables are needed to be logged per gate or
per compartment. Two structures are made:

• The gateConstants
For the constants which are needed as input per gate.
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Table 4.5: Scalar variables for the HH implementation.

Variable Type

Nsteps 64-bit integer
Ncomps 64-bit integer
totalGatesPipe 64-bit integer array of size u f
dt 32-bit single-precision-floating-point
throwAwayFactor 64-bit integer

Table 4.6: Variables of the structure gateConstants for the HH implementation.

Variable Type

aFType 32-bit unsigned integer
aX1 32-bit single-precision-floating-point
aX2 32-bit single-precision-floating-point
aX3 32-bit single-precision-floating-point
bFType 32-bit unsigned integer
bX1 32-bit single-precision-floating-point
bX2 32-bit single-precision-floating-point
bX3 32-bit single-precision-floating-point
p 32-bit single-precision-floating-point
g 32-bit single-precision-floating-point
vGate 32-bit single-precision-floating-point
yInit 32-bit single-precision-floating-point

• The compConstants
For the constants which are needed as input per compartment.

The structure gateConstants can be seen in Table 4.6. It contains the variables for the

calculation of α and β, using Algorithm 9, which are needed for dy
dt

. The xs, are of the
type single-precision-floating-point. The f Type variable only needs 2 bits, however, due
to the memory alignment it is decided to make this variable 32 bits. Additionally to the

variables needed for dy
dt

, the variables needed to calculate calcIGates are added to the
structure. As a result, the structure contains 44 bytes so far. By adding the initial value
of each yi (yInit) also to the structure, finally it contains 48 bytes in total. This comes at
the cost of increased data transfers between the kernel and the LMem.
The structure compartmentConstants is shown in Table 4.7. It contains the variables for
the calculation of the iApp, the elastance, and the conductance and voltage of the leak
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Table 4.7: Variables of the structure compartmentConstants for the HH implementation.

Variable Type

iAppStart 32-bit unsigned integer
iAppEnd 32-bit unsigned integer
iAppAmplitude 32-bit single-precision-floating-point
S 32-bit single-precision-floating-point
vLeak 32-bit single-precision-floating-point
gLeak 32-bit single-precision-floating-point

gate. This structure, which contains 24 bytes, is already dividable by 96 and therefore,
no initial voltage value for the compartments is padded to this structure.
The value of the initial voltage (vCompIn) is instead sent in its own stream. Another
variable which is sent in its own stream is the number of gates per compartment Ngates.
The type of vCompIn is a single-precision-floating-point number and Ngates is a 32-bit
unsigned integer. By knowing all the input variables it is possible to calculate the size
needed to store all those variables. This is equal to: sizeIn = 48 · Ngates,total + (24 + 8) ·
Ncomps,total bytes.
Finally, the output variables consist of both the voltages and gate-activation vari-
ables (both of the type single-precision-floating-point) for each compartment or gate
of multiple steps, where based on the throwAwayFactor all or just a set of all
steps are stored. The total size of stored output variables is equal to sizeOut =
(Ncomps,total + Ngates,total) · 4 · Nsteps

throwAwayFactor
bytes.

4.4.1.4 Choice of numerical solvers

How the state variables are updated is depending on which ODE solver is used. For the
HH kernel the following three ODE explicit methods are implemented:

• Forward-Euler (see Equation (2.17).)

• Second-order Runge-Kutta (see Equations (2.18) to (2.19).)

• Third-order Runge-Kutta (see Equations (2.20) to (2.22).)

The forward-Euler method can directly be taken over from Equation (2.17). In case of

the higher-order solvers there are multiple stages, where in each stage both dy
dt

and dV
dt

are calculated. Those extra stages introduce an extra loop as seen in Algorithm 8.

The first method which can be used to implement higher-order solvers is to place all
stages on the DFE, by unrolling the loop in hardware. The second method is that
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Algorithm 8 Psuedocode for a simulation of a HH-like model with a variable-order of
ODE solver.

1: for 0 ≤ i < Nsteps do
2: for 0 ≤ j < NODE do
3: for 0 ≤ k < Ncomps do
4: for 0 ≤ h < Ngates[k] do
5: ys[i][j][k][h]← updateY
6: end for
7: vs[i][j][k]← updateV
8: end for
9: end for

10: end for

an extra loop, with hardware counters, is implemented, which loops over the stages.
The first method requires more hardware resources, as all the stage are implemented
on the DFE while the second method requires that only one stage is implemented on
the DFE. However, the first method uses less ticks for the same simulation because a
longer pipeline is created. If the pipeline is filled efficiently, more computations are
done simultaneously, leading to a better performance as the same number of ticks are
used for different-order solvers. However, the extra hardware resources could also be
used to achieve a higher unroll factor. The second method needs to store intermediate
state variables and therefore, requires more Block Random-Access Memories (BRAMs)
to store those variables and more ticks are required to complete the simulation and the
number of ticks scales with the order of the solver. The expected better performance
of the first method combined with the extra required BRAMs for the second method,
which is the limiting resource type as shown in Section 5.3, is the reason why it was
decided to implement the first method in the case of the HH kernel.

4.4.1.5 Overview

In the previously discussed implementation, the performance complexity of both
updateY and updateV is equal to Θ(1). Therefore, the performance scales with the
total number of gates. As discussed before, to speedup the implementation it was de-
cided to unroll the most inner loop with an unroll factor u f . As a result, the number of
ticks needed for a simulation is given by Equation (4.29).

NTicks = Nsteps · NComps

Ncomps

∑
i=1

Ngates[i]
u f

+ 4 (4.29)

The top-level, which shows the architecture of the DFE and the CPU is shown in Fig-
ure 4.1. The connections between the CPU and the LMem, the scalar inputs which are
directly fed into the kernel, and the connection between the LMem and the kernel on
the DFE are visible.
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Figure 4.1: Architecture of the DFE and CPU.
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Figure 4.2: Visualization of the HH kernel when the forward- Euler method is used.
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Figure 4.3: Visualization of the HH kernel when the second-order Runge-Kutta is used.
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Figure 4.4: Visualization of the HH kernel when the third-order Runge-Kutta method is
used.
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Figure 4.5: Visualization of the ”stage” block in the HH kernel. The red blocks contain
the hardware of the algorithms with the same label.
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The architecture of each solver kernel can be seen in Figures 4.2 to 4.4. These figures
also show the unrolling of the stages for higher-order solvers. A "stage" contains the
hardware which calculates one of the equations of the ODE solvers (Equations (2.17)
to (2.22)), thus a ”stage” contains the hardware required to calculate the derivatives and
one "ODE update". Note that, the "stage" design is repetitive as an extra "stage" can
be added as-is per solver order for the ODE solvers implemented. A visualization of
a single ”stage” can be seen in Figure 4.5. The segments of a "stage" will be discussed
below. Before the segments of a single stage are discussed it is important to note that
the implementation on the DFE depend on parameters Ncomps,max, Ngates,max, and u f .
The parameters Ncomps,max and Ngates,max affect how big the supported network is. On
the other hand, u f influences the performance. Each of these discussed parameters
(Ncomps,max, Ngates,max, and u f ) influence the maximum value of each other as there is
a limit in hardware resources available. Additionally, it depends on the order of ODE
(NODE) used. To get a better understanding how the kernel is influenced buy these
variables the HH kernel is divided into the following kernel segments:

• vMem
The memory to store the membrane voltages. The size of the memory is equal to
4 · Ncomps,max bytes.

• yMem
The memory to store the gate-activation variables. The size of the memory is equal
to 4 · Ncomps,max · Ngates,max bytes.

• calcIChannel
The function to calculate Ichannels, which is divided over u f pipeline. Therefore,

this segment uses u f for loops with a size of
Ngates,max

u f
. Consequently, this segment

is expected to scale with Ngates,max · NODE.

• iChannel
This is the summation in each ”stage” of u f outputs of calcIChannel. This sum-
mation takes u f − 1 additions and is needed in stage which gives that this segment
is expected to scale with (u f − 1)NODE.

• pipe
Each pipe consists of hardware for (a) to select the initial value of variable (yInit)
or the value of the previous step (y) of the gate-activation variable, (b) the imple-
mentations of f using Algorithm 4 for both α and β, (c) the implementation of
Equation (4.6), (d) the calculation of yProd, (e) and the ODE update of y. This
segment is needed in every stage and there are u f pipes. Therefore, the segment
pipe is expected to scale with u f · NODE.

• proc
The remaining hardware which does calculations in a stage. This consists of the
implementations of Equation (2.12) and Algorithm 5 and the ODE update of Vi.
This segment is expected to use the same amount of resources per stage and
therefore, the hardware-usage is expected to scale with NODE.
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• control
The hardware needed to control the simulation consisting of the hardware counters
and the control signals. This part of the implementation is expected to be roughly
constant.

4.4.2 Custom ion gates
To not only support the standard HH gate equations from NeuroML but also all the gate
equations from the IO-model (some are custom defined in NeuroML), some adjustments
are required as discussed in Section 4.3.2. The first adjustment to support the custom
gates is that both Equation (4.6) and Equation (4.17) are used. The variables of those
functions can be calculated with the parameters of the other function as can be seen
in Equations (4.30) to (4.33). However, choosing to rewrite the equations will not lead
to a drop in hardware-usage, as each conversion requires a division. Therefore, it was
decided to implement both equations and use a select signal, to select between the two
as needed.

α =
in f
tau

(4.30)

β =
1− in f

tau
(4.31)

in f =
α

α + β
(4.32)

tau =
1

α + β
(4.33)

The second adjustment in comparison to the basic HH-kernel instance is replacement of
Algorithm 4 by Algorithm 9. With this new implementation, similar to the standard ion
gates, the amount of exponentials and divisions is minimized. It must be noted that, in
fCustom, f Type requires two bits instead of one bit to select the right function.

The third adjustment is that instantaneous variables are supported. Instantaneous
variables are variables which change instantaneously instead of being updated by an
ODE solver. The values for the instantaneous variables can be calculated with the
equations from Equation (4.16). Due to the instantaneously changing variables the
variables does not have to be yi, but can also be an output of Equation (4.16). Although,
the instantaneous variables are no gate-activation variables, they are treated as such.
Meaning that the equation is described by the variables of gateConstants, the count
of Ngates will be increased, the variables are stored in yMem and written into LMem.
The storage of the instantaneous variables in both yMem and in the LMem serve no
purpose. The storage space of yMem and in the LMem is precious for the flexHH kernels.
Alternatively, the instantaneous variables could be processed detached from the gate-
activation variables. This would have as an advantage that no extra storage space in
both the yMem and in the LMem is used. However, it was decided to not make implement
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Algorithm 9 Psuedocode for fCustom, a generalized function to calculate α, β, inf,
τ, and the instantaneous variables for kernels which support custom ion gates. The
functionallity of fExp is described in Algorithm 10.

1: function fCustom( f Type, V, xs)
2: Vdi f f ← xs[1]−V
3: Vdi f f 2 ← xs[6]−V
4: if ( f Type&3) == 0 then
5: z12 ← Vdi f f
6: else
7: z12 ← Vdi f f 2
8: end if
9: z1 ← xs[2] ·Vdi f f

10: z2 ← xs[5] ·Vdi f f 2
11: exp1← f Exp(xs[0], z1, xs[3])
12: exp2← f Exp(xs[4], z2, xs[7])
13: if fType == 0 then
14: num← z2
15: denum← exp1
16: else if fType == 1 then
17: num← xs[8]
18: denum← exp1 + exp2
19: else if fType == 2 then
20: num← exp1
21: denum← exp2
22: else if fType == 3 then
23: num← 0
24: denum← VDi f f
25: end if
26: y0 ←

num
denum

27: if fType != 1 then
28: y0 ← y0 + xs[8]
29: end if
30: y1 ← min(z1, xs[0])
31: if fType == 3 then
32: y← y1
33: end if
34: return y
35: end function

Algorithm 10 Psuedocode for fExp.
1: function fExp(scale, x, o f f set)
2: return scale · exp(x) + o f f set
3: end function
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this approach, as the adjustments would require serious development effort to map both
memories, as it is variables which gates are instantaneous.
The fourth adjustment in comparison to the standard gates is that the input of Algo-
rithm 9 does not have to be the voltage of a compartment but can be a current or another
gate-activation variable. Consequently, between these different input variables the right
variable needs to be selected. Moreover, to support custom ion gates more select signals
are required. Per select signal the requirement is given after which it is discussed how
this requirement is fulfilled in the implementation.

• Select the right function of Equation (4.16).
Similar to the HH kernel, two bits of f Type (both of aFtype and bFtype) will be
used to select the right function of Equation (4.16).

• Select the right streams to get the result of either Equation (4.6) or Equation (4.17).
The result of either Equation (4.6) or Equation (4.17) is only needed once per gate.
Consequently, one bit from aFtype is used.

• Select the right input for calcYProd.
The input for calcYProd can either be a gate-activation or an instantaneous variable.
For the instantaneous variables, β is used and therefore, a bit from bFtype is used
to select the right input for calcYProd.

• Select gate-activation variable instead of voltage as input for Algorithm 9.
There is only one function (the min function) which uses a gate-activation as input
variable. Consequently, we decided to use the same bits of f Type which selects
the (min) function to select a gate-activation as input.

The fifth and final adjustment is that a specific ion current, such as ICa, can be calculated.
An ion current is the sum of the currents of the gates influenced by the specific ion
(instead of all the gates in case of Igates). The number of gates which contribute is the
only difference between ICa and Igates. Consequently, NCa is introduced to represent the
number of gates which influence the specific ion current. Moreover, because the number
of gates is the only difference between the currents the same hardware, to calculate the
currents, can be used as is shown Algorithm 11. (Although here the current (ICa) and
the number of gates (NCa) are called after the Ca ion, any other ion could be chosen).
This implementation requires that the all NCa gates which are influenced by the ion are
processed first (before gates which are influenced by other gates), as ICa is only updated
in the first NCa ticks. Consequently, a limitation is added to this implementation, which
is that only on specific ion current per compartment can be calculated.

The variable NCa can change per compartment and therefore is placed in the
compStructure. The gateConstants contains two times eight instead of two times three
x’s (parameters to calculate Equation (4.7) or Equation (4.16)), which can be seen in
Table 4.8. This structure now contains 88 bytes instead of the 48 bytes when using the
standard gates as in the HH kernel instance.
The number of Ca (or other specific ion) gates (NCa) is added to the compConstants.
Without any other modifications this would lead to a structure of 28 bytes, which is non
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Algorithm 11 Psuedocode of calcIChannelsCustom.
1: function calcIChannelsCustom(Ngates, nCa, vGate, yProd, g, vCompartment, Ngates,max)
2: iGates← 0
3: iCa← 0
4: for 0 ≤ i ≤ Ngates,max do
5: o f f setG ← stream.o f f set(g,−i)
6: o f f setVGate← stream.o f f set(g,−i)
7: o f f setYProd← stream.o f f set(yProd,−i)
8: iGate← o f f setYProd× o f f setG(vCompartment− o f f setVChannel)
9: iGate← yProd[i]× o f f setG(vCompartment− o f f setVChannel)

10: if i < Ngates then
11: iGates← iGates + iGate
12: else
13: iGates← iGates
14: end if
15: if i < nCa then
16: iCa← iCa + iGate
17: else
18: iCa← iCa
19: end if
20: end for
21: return iGates, iCa
22: end function

Table 4.8: Variables of the structure gateConstants for the HH+custom implementation.

Variable Type

aFType 32-bit unsigned integer
aXs 8 32-bit single-precision-floating-points
bFType 32-bit unsigned integer
bXs 8 32-bit single-precision-floating-points
p 32-bit single-precision-floating-point
g 32-bit single-precision-floating-point
vGate 32-bit single-precision-floating-point
yInit 32 -bit single-precision-floating-point

optimal because 96 is not dividable by 28. Therefore, the structure is padded with vInit,
as this variable needs to be send anyway, so the structure contains 32 bytes and thus
vInit is removed from the remaining streams. The compConstants for the HH+custom
implementation can be seen in Table 4.9. This means that the total input size will change
to 88 · Ngates,total + (32 + 4) · Ncomps bytes.
In comparison to the HH kernel the same kernel segments are used in the HH+custom.
The significant difference in hardware is the replacement of f (Algorithm 4) by fCustom
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Table 4.9: Variables of the structure compConstants for the HH+custom implementation.

Variable Type

iAppStart 32-bit unsigned integer
iAppEnd 32-bit unsigned integer
iAppAmplitude 32-bit single-precision-floating-point
S 32-bit single-precision-floating-point
vLeak 32-bit single-precision-floating-point
gLeak 32-bit single-precision-floating-point
nCa 32-bit unsigned integer
vInit 32-bit single-precision-floating-point

(Algorithm 9), the replacement of calcIChannels (Algorithm 6) by calcIChannelsCustom
(Algorithm 11), and the support of Equation (4.17). This because of the extra exponent
and divisions which are used in those functions. The other changes are not expected
to give significant differences as the control signals to select the right streams require
relatively simple hardware.

4.4.3 Multiple cell compartments

When a single cell can have multiple cell compartments, an additional loop is added (as in
Algorithm 2) to loop both over the cells and the compartments. The support of multiple
cell compartments allows for a current to flow between compartments. This current,
between compartments i and j, is represented by the compartments Imc,i,j. The structure
of the connections between the compartments can potentially form a tree the structure
of which can differ per model. Still, to generate hardware which will be efficient, not
creating empty stages in the pipeline, only sequential connections are supported in the
current version of flexHH. This structure is visually represented in Figure 4.6. This
simplification has been negotiated carefully with the in-house neuromodelers and has
been agreed to be a reasonable compromise. A large volume of existing models can be
captured by sequentially connected compartments.
Because of the sequential structure, compartment k will only receive currents (which is
calculated by Equation (4.18)) from compartments k− 1 and k + 1, when k− 1 and k + 1
are within the limits of the cell. Because of the supported structure, for the outgoing
current to other compartments of a single compartment Icomp,i, there are three positions
a compartment can be in:

• The starting position.
In this case the compartment only exchanges current with the compartment next
in line as there is no compartment before. This results in Equation (4.34) for the
calculation of the current.

Icomp,i =
Vi −Vi+1

1− pi,i+1
gint (4.34)
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1 2 k-1 k k+1 Ncomps

Figure 4.6: Visualization of multiple cell compartments in a sequential structure.

• In between other compartments.
When a compartment i is in between other compartments it means that compart-
ment i is connect to two other compartments. Therefore, it exchanges current
with both neighbouring compartments. This results in Equation (4.35) for the
calculation of the current.

Icomp,i = (
Vi −Vi+1

1− pi,i+1
+

Vi −Vi−1

pi−1,i
)gint (4.35)

• The ending position.
In this case the compartment only exchanges current with the compartment which
lays before in the line. This results in Equation (4.36).

Icomp,i =
Vi −Vi−1

pi−1,i
gint (4.36)

As follows from Equations (4.34) to (4.36), Equation (4.35) (the current when compart-
ment i is between other compartments) is the sum of Equation (4.34) (the current at the
starting position) and Equation (4.36) (the current at the ending position). Consequently,
Equation (4.34) is stored in Icomp,next and Equation (4.36) is stored in Icomp,prev and based
on the position one, of these currents or the sum of these current is chosen for Icomp,i.
Additionally, a current of zero could be chosen which will allow single-compartmental
cells in the network. This leads to the pseudocode in Algorithm 12.

In the pseudocode, i is the index of the compartment in the cell, the variable Ncomps is
equal to the number of compartments of the cell which is being process, Vs is an array
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Algorithm 12 Psuedocode of calcIComp.
1: function calcIComp(i, Ncomps, Vs, ps, gint)
2: iCompNext← (Vi −Vi+1)gint/(1− pi,i+1)
3: iCompPrev← (Vi −Vi−1)gint/pi−1,i
4: iCompAll ← iCompNext + iCompPrev
5: if Ncomps == 1 then
6: iComp← 0
7: else if i == 0 then
8: iComp← iCompNext
9: else if i == (Ncomps − 1) then

10: iComp← iCompPrev
11: else
12: iComp← iCompAll
13: end if
14: return iComp
15: end function

containing the voltage of the previous compartment (Vi−1), the voltage of the current
compartment (Vi), and the voltage of the next compartment (Vi+1), ps consist of two
ratios pi−1,i and pi,i+1, and finally gint is the internal conductance of the cell.
The method of how gint, ps, and the voltages Vs are retrieved on the DFE need special
attention. If a cell has Ncomps and the compartments are sequentially connected then
there are Ncomps− 1 ratios between the cells, which are represented with single-floating-
point v. The other variable gint is also a floating-point variable, which gives a total of
Ncomps new variables (in comparison to kernels without multiple cell compartments).
Therefore, for the implementation a variable gp is introduced, which is added to the
compConstants. This variable will contain gint when the first compartment of the cell is
being processed (i is equal to 0). This variable needs to be changed only once per cell.
Otherwise, when compartment i is processed, this variable holds pi−1,i as is shown in
Equation (4.37) (pi,i+1 can be retrieved using the stream.offset function). Note that,
when either the first or last compartment is being processed, the value of either pi−1,i
or pi,i+1 is incorrect. However, this incorrect ratio has no influence on the output as
is not needed for the calculation of Imc. The voltage Vi will be present as it is needed
in other equations. The voltages from the previous compartment (Vi−1) and the next
compartment (Vi+1) are either read from memory or retrieved from the pipeline itself
(in the case of the higher-order solvers not all voltages are stored).

gp =

{
gint if i = 0
pi−1,i else

(4.37)

The extra loop has a variable limit Ncomps which can vary per cell. This is the only variable
which is needed per cell and therefore, is sent through its own stream. Consequently,
to receive one value per cell, and one compStructs per compartment, two hardware
counters with different limits are required to keep track of which compartment is being
processed. Consequently, the variable Nchannels which consists of 32 bits is for the data
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transfer split into two parts. The first 16 bits represent the channels per compartment
(Nchannels,comp = Nchannels) and the other 16 bits are used to represent the channels per
cell (Nchannels,cell). This is done so that no extra data transfer is required for those values,
while still being able to represent large enough maximums for the number of channels
per either the compartment or cell. To support multiple compartments, the only extra
variable which needs to be streamed into the kernel is gp, so only the compConstants is
updated. Compared to the HH+custom implementation, the variable vInit is replaced
by gp and therefore vInit is transferred by its own stream. Consequently, the total
input size will change to 88 · Ngates,total + (32 + 8) · Ncomps,total + 4 · Ncells bytes for the
HH+custom+multi implementation.
With the support of multiple cell compartments a new kernel segment calcIComp is
added to a ”’stage’. The kernel segment calcIComp contains the hardware needed to
calculate Icompartment. For higher-order solvers a stream offset equal to Ngates is used (to
retrieve Vi−1). However, this is expected to have a negligible effect on the hardware-
usage as the offset will be relatively small (<20) and therefore, also the differences
between configurations with different number of gates. Additionally, because the func-

tion calcIComp is needed to calculate dV
dt

, this part will scale with the order of ODE.
Because this is expected to be the only scaling factor, it could be placed under the proc
segment. However, to let the segment proc be unambiguous calcIComp will be placed
in its own kernel segment, which is called calcIComp).

4.4.4 Gap junctions
From Equation (4.23) it follows that two for-loops are needed to calculate the gap-
junction currents. The order of the for-loops is of large significance to the performance.
There are two loop-traversal possibilities for scheduling the loops which we will call
row-wise and column-wise. The pseudocode of both situations can be seen in Algo-
rithm 13 and Algorithm 14. Furthermore, both situations are visually presented in
Figure 4.7. If the calculations are done per cell (row-wise) the execution order and the
data dependencies of Igap,i are in the same direction (meaning that the same Igap,i is
updated in consecutive iterations of the most inner loop). In this case, a latency of one
tick is needed so as to make efficient use of the pipeline. Otherwise, the pipeline has
to wait on the results before it can continue with the next iteration in order to give a
correct output. However, the latency for calculating Equation (4.38) (which is the equa-
tion of one iteration) is larger than one and thus the pipeline will be used inefficiently.
This will have a significant impact on performance. As a solution, the calculations are
done column-wise. In that case, the data dependencies and the execution order are in
a different directions (meaning different Igap,is are updated in consecutive iterations of
the most inner loop). In that way the previous value of the accumulation is needed after
Ncells ticks. Consequently, only if Ncells is bigger than the length of the pipeline, the
pipeline can be filled completely and is efficiently used.

Igap,i,j = wi,j(0.8 exp(−0.01 ·V2
i,j) + 0.2)Vi,j (4.38)
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Algorithm 13 Psuedocode of calcIGap (row-wise)
1: procedure calcIGap(Ncells, V, iGap, gxs,W)
2: for 0 ≤ i < Ncells do
3: iGap[i]← 0
4: for 0 ≤ j < Ncells do
5: vDi f f ← V[i]−V[j]
6: Igap[i]← Igap[i] + W[i][j](gx0exp(gx1vDi f f 2) + gx2)vDi f f )
7: end for
8: end for
9: end procedure

Algorithm 14 Psuedocode of calcIGap (column-wise)
1: procedure calcIGap(Ncells, V, iGap, gxs,W)
2: iGap← 0
3: for 0 ≤ i < Ncells do
4: for 0 ≤ j < Ncells do
5: vDi f f ← V[j]−V[i]
6: Igap[j]← Igap[j] + W[i][j](gx0exp(gx1vDi f f 2) + gx2)vDi f f )
7: end for
8: end for
9: end procedure

Because the column-wise traversal of the gap junctions is better for performance, the
gap junctions are implemented this way on the DFE, as can be seen in Algorithm 15.

The implementation requires that the intermediate results of the gap junctions currents
are stored, which is the reason of the use of iGapMem in Algorithm 15. This memory
stores the intermediate results of the gap-junction currents of all cells. This data has its
maximum size when when there is one compartment per neuron cell. Therefore, the
size of this memory is set to Ncomps,max (in single-precision-floating-point numbers). So,
the performance gain of the column-wise traversal comes at the price of more memory.
The memory needs to be updated multiple times in a single simulation step. Therefore,
FMem is used for iGapMem. Another adjustment which is required in the case multiple
cell compartments are supported is that it must be indicated which of the compartments
in the cell are connected through gap junctions. This is done by splitting Ncomps into
two variables. The first 16 bits of Ncomps will contain the actual value of the Ncomps,
and the last 16 bits contain gapAddress. The latter variable is the address of voltage
in vMem of the compartment which is connected by a gap-junction. The calculations
for Igap and the other currents are asynchronous and need gapAddress. Therefore, the
variables of gapAddress are stored into FMem. The size of the memory is equal to
⌈log2(NComps,max)⌉ · Ncomps,max bits as there are ⌈log2(Ncomps,max)⌉ bits needed to reach
each element in vMem.
Besides the extra storage needed for iGapMem and gapAddress, more variables are re-
quired to be stored in FMem due to the gap-junction calculations. The sum of Imc, Igates,
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(a) row-wise (b) column-wise

Figure 4.7: Directions of the execution order (red arrows) and the data dependencies
(black arrows) for both row-wise and column-wise calculations.

Algorithm 15 Psuedocode of calcIGap.
1: procedure calcIGap(Ncells, iGapMem, vMem, gxs)
2: for i ∈ {0, u f , 2u f , ..., Ncells} do
3: for 0 ≤ j < Ncells do
4: if i == 0 then
5: iGapOld← 0
6: else
7: iGapOld← iGapMem.read(j)
8: end if
9: vOwn← vMem.read(j)

10: for 0 ≤ k < u f pardo
11: vOther ← vMem.read(i + k)
12: vDi f f ← vOwn− vOther
13: iGapTemp[k]← wj,i+k(gx[0] exp(gx[1]vDi f f 2) + gx[2])vDi f f )
14: end for
15: iGapNew← iGapOld + sum(iGapTemp)
16: iGapMem.write(j, iGapNew)
17: end for
18: end for
19: end procedure

Ileak, and Iapp cannot be calculated fast enough to keep up with the gap junctions. This
as due to the column wise computation at the final iteration of the gap junctions Igap,i
is updated per tick, while the calculation of Igates,i takes Ngates[i] ticks. Therefore, the
sum of Imc, Igates, Ileak, and Iapp is stored in another memory (iRestMem), for the com-
partments which are connected to gap junctions. Then, when the calculation of iGap is
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done, iRestMem is read and dV
dt

is calculated and the voltage is updated. This is shown in
Algorithm 16, where the computations of updateY and iRest (where calcICompartment
only is computed in case multiple compartments are supported) are done in parallel
with the computations of calcIGap.

Algorithm 16 Psuedocode of a HH-type model with gap junctions
1: for 0 ≤ i < Nsteps do
2: for 0 ≤ j < Ncells do
3: for 0 ≤ k < Ncomps[j] do
4: for 0 ≤ h < Ngates[j][k] do
5: ys[i][j][k][h]← updateY
6: end for
7: iRest← calcIGates + calcILeak + calcICompartment + calcIApp
8: iRestMem.write(iRest, k)
9: end for

10: end for
11: calcIGap
12: for 0 ≤ j < Ncells do
13: vs[i][j][k]← updateV
14: end for
15: end for

The only adjustment in relation to the I/O is related to the weight variables wi,j. The
weight variables wi,j are stored in the so-called connectivity matrix of size N2

cells single-
precision-floating-points numbers. Due to the size of this matrix, the matrix is stored
into LMem and therefore, remains constant during the simulation.
For the use of higher-order solvers, another adjustment is required. In the kernels
without gap junctions, it was possible to unroll all the stages of the higher-order solvers.
However, when gap junctions are supported, the hardware resources are not enough.
Therefore, another hardware counter is added for implementing the loop iterating over
the solver stages. As a result, the number of ticks of the simulation now also scale with
NODE. Additionally, the intermediate results of the state variables need to be stored too.
Therefore, the size of both vMem and yMem is doubled, independent of the order of the
solver.
Equations (2.17) to (2.22), the equations of the ODE solvers, can be represented by
Equation (4.39). Here, xnew is the value of x (a state variable) of next stage (which can
be the value of the next simulation step), xold the value of the current simulation step,

xODE the value of the intermediate stage, and dx
dt

the derivative. Furthermore, the cs (c0,
c1, c2) are constant and depend on the ODE method and the stage of the ODE method.
The constants for the used ODE solvers can be seen in Table 4.10. This table shows
that c1 = 1− c0 and c2 is equal to 1 in the first stage and equal to 1− c0 in the other
stages. Consequently, only the values of c0 are stored in FMem to save memory space,
although the saved space is negligible in comparison to the amount of used FMem. The
asset of storing the constants of multiple ODE solvers is that the solver can be chosen on
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the host CPU. Therefore, the same hardware implementation can be used for multiple
ODE solvers. It must be noted that the forward-Euler method can also be used with this
implementation, however, this is inefficient due to the extra storage needed for vMem and
yMem.

xnew = c0 · xold + c1 · xODE + c2 · dt · dx
dt

(4.39)

Table 4.10: Constants for different ODE solvers, to be filled in Equation (4.39)

ODE stage c1 c2 c3

fwd 1 1 0 1

rk2
1 1 0 1

2 1
2

1
2

1
2

rk3

1 1 0 1

2 3
4

1
4

1
4

3 1
3

2
3

2
3

The gap-junction current Igap,i for cell i is calculated with Equation (4.22). As can be seen
in the equation it is a summation of Ncells parts. Furthermore, each cell will calculate
the gap-junction current. Consequently, the total ticks will scale with Θ(N2

cells). The
other calculations scale with Θ(Ncells · Ngates,avg,cell), where Ngates,avg,cell are the average
number of gates per cell. Therefore, the total simulation will scale with Θ(max(Ncells ·
Ngates,avg,cell , N2

cells)). It is expected that Ncells will be larger than Ngates,avg,cell in most
cases and thus the gap junctions will be the most time-consuming part of the program.
Therefore, it was decided to unroll the loop of the gap junctions instead of the loop of
the gates, with an unroll factor u fgap. Consequently, the overall number of simulation
ticks used for the gap junctions is equal to Equation (4.40) and overall number of
simulation ticks to complete the other ticks is equal to Equation (4.41). To synchronize
the calculations, the control signals for the gap junctions and other calculations must
be dependent on each other. Because it is expected that the gap junctions will take
more ticks, the condition Ncells ≥ Ngates,avg,cell · u fgap must hold. This condition arises
as there was not found a way to successfully build a single implementation which can
simulate both Ncells ≥ Ngates,avg,cell · u f and Ncells < Ngates,avg,cell · u f . On the other hand,
as u f is a maxConstant, this condition is checked to hold on the CPU so the user of the
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flexHH-library cannot run an invalid simulation.

NTicks,gap =
N2

cells
u fgap

· NODE · Nsteps (4.40)

NTicks,other∗ = Ncells · Ngates,avg,cell · Nsteps (4.41)

Besides the double amount of memory when a higher-order solver is used, when a
kernel supports the gap junctions the following kernel segments are added:

• iGapMem
Memory used to store the intermediate results of the gap-junction calculations.
The size of the memory is equal to 4 · Ncomps,max bytes.

• gapAddressMem
Memory used to store the gapAddresses. The size of the memory is equal to
⌈log2(NComps,max)⌉ · Ncomps,max bits.

• iRestMem
Memory used to store the results of the sum of Imc, Igates, Ileak, and Iapp. The size
of the memory is equal to 4 · Ncomps,max bytes.

• calcIGap
The hardware needed to do the calculations of the gap junctions, which can be
seen in Algorithm 15. The hardware can be split between control (gapControl)
and functional hardware gapProc. The control is expected to have a constant
hardware-usage, while the functional hardware is expected to scale with u fgap.

Furthermore, for the segments where in the kernels without gap junctions the gate
equations were unrolled, this old unroll factor is set to one since, instead, the calculations
of the gap junctions are unrolled.
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Evaluation 5
In this chapter, the flexHH-library evaluation is presented. Firstly, the kernels on the
Data-Flow Engine (DFE) are functionally validated in Section 5.1. Secondly, in Section 5.2
an exploration of time-step sizes using different Ordinary Differential Equation (ODE)
solvers is done in the hopes of scoring better simulation speeds. Thirdly, the resource
usage, depending on the hardware parameters and the flexHH kernel used, is analyzed
in Section 5.3. The performance of the simulations is evaluated in Section 5.4 and finally,
in Section 5.5 the energy usage is discussed.

5.1 Validation

This section discusses the validation of the output of the implementations on the DFE. To
guarantee functional correctness of our implementations, we must validate our flexHH
kernels in two levels. Initially, we need to make sure that the models in flexHH (one
model per kernel instance) are validated against the established (by the community) ver-
sions of the same models. For this reason, we first check, in Section 5.1.1, the correctness
of our kernels in C-code compared to reference NEURON and C implementations of the
basic Hodgkin-Huxley (HH) model and the Inferior-Olive (IO) model . Secondly, we
need to guarantee functional correctness in the porting from the C software implemen-
tations to the DFE versions, as precision errors can easily emerge when porting between
different architectures. The functional correctness of the DFE versions is discussed in
Section 5.1.2. A schematic overview of the validation steps is shown in Figure 5.1.

5.1.1 C-code validation

Reference code is only available for the original HH-model and for the IO-model, and
will be used for the validation of the C-code. The reference code of the HH-model is used
to ensure correctness for the basic HH equations and therefore used to validate the HH C
kernel. The IO-model is used to validate all extra features that are utilized in this model
and therefore, used to validate the HH+custom+multi+gap C kernel. The other C kernels
(HH+gap, HH+custom, and HH+custom+multi) use the basic HH equations with one or
two extra features. Every feature in those kernels is implemented in exactly the same way
as in the HH+custom+multi+gap C kernel. Therefore, we hope that each kernel instance
which utilizes an extra feature is functionally correct, if the HH+custom+multi+gap C
kernel is functionally correct.
The reference code for the HH-model comes from NEURON, which is widely accepted
as a standard by computational neuroscientists. However, the HH-model in NEURON
does diverge a little compared to the originally defined HH-model. In NEURON, the
resting potential is −65 mV instead of the 0 mV defined in the formal definition in [7].
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Figure 5.1: Schematic overview of the validation steps.

We follow the formal definition for both of our C and DFE implementations. To make
the two implementations comparable, the neuron voltage output in NEURON is shifted
accordingly after the simulation. Furthermore, each voltage is negated in comparison
with the formal definition. This means that in all the equations where a voltage is
involved, this variable is negated. Consequently, the voltage plots are mirrored in the
y-axis. The voltage is also negated in the C and DFE implementations.
The simulator in NEURON uses a backward-Euler ODE solver while the forward-Euler
method is not supported, because this solver can have numerical stability problems
when the time-step becomes to large [8]. As a result, the output of the C-code and
NEURON-code are not expected to be identical. However, a qualitative comparison–as
is often common practice in this domain–is possible to asses correctness.
The simulation used for validation has a duration of 300 ms and a time-step-size (dt)
equal to 0.01 ms. Moreover, the initial parameters and the values used for Iapp can be
seen in Appendix B.1.1.1.
The voltage trace of the output of the simulation in NEURON together with the errors for
the output of the C-code for each of the three solvers is shown in Figure 5.2. The errors
for each of the three solvers are substantial during the spiking period. Because there
is only a significant difference between the voltage traces during the spiking period,
those errors are likely to be the results of the use of different numerical methods. This
assumption is reinforced by inspecting the voltage traces during a small time period, as
shown in Figure 5.3. This figure shows the voltage traces are shifted, indicating a phase
error, which can be expected when using different solvers.
To guarantee that the error is only caused by a phase shift and not caused by an accu-
mulation error from other sources, extra tests are required. Firstly, the phase error is
expected after a longer period of time to reduce to zero again, after full period. To verify
this, a simulation is ran with the only difference being a longer simulation time. The
output and the errors for this simulation are shown in Figure 5.4 revealing the error to
be indeed a bounded phase error.
To see if the error is indeed the result of using different solvers, three additional simu-
lations are ran. First, the same simulation is ran with a smaller dt. Consequently, each
simulation (independently of the solver) is expected to be more accurate, resulting in
a smaller difference/error between the solvers. The results in Figure 5.5, where a dt of
0.005 ms instead of 0.010 ms is used, indeed show improved accuracy in comparison to
the results where a dt of 0.010 ms was used.
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Secondly, the same simulation is run where the NEURON-code uses the Crank-Nicolson
method instead of the backward-Euler method and thus uses a second-order instead
of a first-order method. Therefore, it is expected that the NEURON-code becomes
more accurate. The results, as can be viewed in Figure 5.6, show a smaller error than
when using backward Euler. This reinforces the thought that the error is caused by
using different solvers. Interestingly, the error peaks look mirrored when using Crank-
Nicolson instead of the backward-Euler method (Figure 5.7 with Figure 5.3). Meaning
that the forward-Euler solver has a positive phase shift in comparison to the backward-
Euler solver method and a negative phase shift in comparison to the Crank-Nicolson
solver. Furthermore, to make sure the error with Crank-Nicolson is also a phase error,
and thus bounded, this simulation is also ran for an even longer time period (30000 ms).
This result is shown in Figure 5.8 and shows indeed a bounded error.
Finally, the methods implemented in the C-code are compared to an exact solution. An
exact solution of the HH-model is only possible under the condition that gK and gNa
are equal to zero. Then, the equations of the HH-model simplify so that the ODE can
be solved by using the method of separation of variables, The exact solution, with an
initial condition of V(0) = 0, can be seen in Equation (5.1).

V(t) =
IApp + gL · vL − exp(−((gL · t)/C)(IApp + gL · vL))

gL
(5.1)

The other initial conditions can be seen in Appendix B.1.1.2.
The output of this function and the error which is calculated as the differences between
the output of the exact solution and the output of the numerical solvers are depicted
in Figure 5.9. Although the forward-Euler solver shows a larger error than the two
Runge-Kutta solvers, the error is small enough to not affect functional correctness, as
was confirmed by our in-house neuroscientists.
Since the error is periodical and bounded, a smaller dt gives a smaller error, a higher-
order solver produces a smaller error, and the error in the exact case is relatively small,
it can be concluded that the error is indeed a phase error. Looking at the output of the
C-code it can be concluded to give qualitatively correct output and thus can be used as
a reference for the accelerated implementation.
By showing that the HH-model is simulated correctly, the most basic simulation is
verified. In order to verify all the extra features, the IO-model will be used. The IO-
model was described in Section 2.2.2 and the equations can be found in Appendix A. For
the IO-mode,l the reference code, which was verified by neuroscientist peers, is written
in C and uses the forward-Euler method. However, to match a standard description
of ODEs (splitting the equations used for the derivative and the solver) the code was
rewritten. The new code separated the calculation of the derivatives (for the membrame
voltages and gate-activation variables) from the rest of the code. Consequently, by using
this modified version, the implementations using the Runge-Kutta methods were easier
to implement. New simulations were run to validate the new code versions. For the
simulation, a network of 480 cells was used. The initial values, the values of Iapp, and
the weights of the connectivity matrix are presented in Appendix B.1.1.3.
The axonal-voltage (from a single neuron in the grid) together with the output errors
for each of the three solvers (rewritten in C) are shown in Figure 5.10. The plots indeed
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show that the error between the two simulations using the forward-Euler method is
small. However, the errors for both Runge-Kutta methods are larger which, again, is to
be expected to be the result of using different solvers. This is because the large errors
present themselves during the spiking phases and during the spiking phases a small
phase shift leads to large error.
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Figure 5.2: (a) Output of the voltage for a simulation in NEURON of a single HH cell.
(b) Error between NEURON and fwd-Euler C. (c) Error between NEURON and rk2 C.
(d) Error between NEURON and rk3 C. dt = 0.01 ms.
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Figure 5.3: Output of the voltage for a simulation in NEURON of a single HH cell,
dt = 0.01 ms.
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Figure 5.4: (a) Output of the voltage for a simulation in NEURON of a single HH cell.
(b) Error between NEURON and fwd-Euler C. (c) Error between NEURON and rk2 C.
(d) Error between NEURON and rk3 C. dt = 0.01 ms, tsim = 6000 ms.
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Figure 5.5: (a) Output of the voltage for a simulation in NEURON of a single HH cell.
(b) Error between NEURON and fwd-Euler C. (c) Error between NEURON and rk2 C.
(d) Error between NEURON and rk3 C. dt = 0.005 ms, tsim = 300 ms.
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Figure 5.6: (a) Output of the voltage for a simulation in NEURON (using Crank-Nicolson)
of a single HH cell. (b) Error between NEURON and fwd-Euler C. (c) Error between
NEURON and rk2 C. (d) Error between NEURON and rk3 C. dt = 0.01 ms, tsim = 300
ms.
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Figure 5.7: Output of the voltage for a simulation in NEURON (using Crank-Nicolson)
of a single HH cell, dt = 0.01.
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Figure 5.8: (a) Output of the voltage for a simulation in NEURON (using Crank-Nicolson)
of a single HH cell. (b) Error between NEURON and fwd-Euler C. (c) Error between
NEURON and rk2 C. (d) Error between NEURON and rk3 C. dt = 0.01ms, tsim =
30000ms.
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Figure 5.9: (a) Output of the exact solution using Equation (5.1). (b) Error between
the exact solution and NEURON using the bwd-Euler method. (c) Error between the
exact solution and NEURON using the Crank-Nicolson method. (d) Error between the
exact solution and fwd-Euler C. (e) Error between the exact solution and rk2 C. (f) Error
between the exact solution and rk3 C. dt = 0.01 ms, tsim = 25 ms.
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Figure 5.10: (a) Output of the axonal-voltage for a simulation with the reference code
for a single cell (cell 0, in the code). (b) Error of fwd-Euler C. (c) Error of rk2 C. (d) Error
of rk3 C. dt = 0.01 ms.
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5.1.2 DFE-code validation

For the validation of the implementations on the DFE, the C-code is used as a reference,
as previously mentioned. For each kernel, each ODE solver is compared against its own
C counterpart. In the remainder of this section, the structure of presented results will
be similar for all kernel instances. This structure is as follows: first, a reference to the
initial values is given, after which a plot is shown. This plot shows the output of the
forward-Euler C-code and the errors of each of three solvers (fwd-Euler, rk2, and rk3)
on the DFE.

5.1.2.1 HH

The simulation, whose parameters can be found in Appendix B.1.1.1, to validate the
HH DFE implementation is the same as the one used to validate the C-code against
NEURON-code. The voltage trace and the errors are presented in Figure 5.11. The
higher the order of the solver, the higher the error is observed. This can be explained by
the fact that, for higher-order solvers, more calculation needs to be done and thus more
rounding errors occur. However, the error in case of the third-order is concerning as
it shows an increasing error over time, which is not the case when using the other two
solvers.
To see if the error of the third-order solver arises from using different hardware, the same
DFE-code was run in simulation mode, which means that the DFE-code was executed
on the Central Processing Unit (CPU) host. The error of the simulation in comparison
with the output of C is shown in Figure 5.12. This shows that the error when running
the DFE-code on the CPU in simulation mode is just as large as when the code is run on
the DFE.
As the use of different hardware is not the cause of the error between the C and DFE
implementation, there are three possible causes for the error:

1. The MaxCompiler does some optimisations while generating the binary for the
DFE implementation.

2. The use of generalized functions (as described in Section 4.3) instead of hard-coded
functions introduces extra rounding errors.

3. There is a bug in the implementation.

To rule out either the first or second cause, a C implementation is made which also
uses the general functions. If those results show the same error as before, then the
optimisations of the MaxCompiler can be dismissed as the source of error since for
generating the C binary, a different compiler is used. However, if the error is different,
then the generalized functions can be dismissed as the source of the error as both C and
the DFE use the generalized functions.
The error of the C implementation which uses the generalized functions is shown in
Figure 5.13. This error is smaller than when simulating the DFE-code and therefore, the
use of generalized functions can be excluded as the source of the error.
To see if either the different compilers or a bug is the source of the error, some variables,
of C and DFE implementations which both use generalized functions are investigated.
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Table 5.1: Variables during simulation. The index indicates to which stage the variable
belongs to.

variable CPU DFE

dvdt1 50.00 50.00
dvdt2 49.66040802 49.66040802
dvdt3 49.83286285 49.83285904
v1 0.52567053 0.52567053
v2 0.27482155 0.27482155
v3 0.52399033 0.52388027

Table 5.2: Variables which are used to calculate dvdt3.

variable CPU DFE

Iapp 50.00 50.00
INa -1.22870898 -1.22870898
IK 4.52340126 4.52340126
Ileak -3.12755370 -3.12755370
C 1.00 1.00

To see which variable(s) are different, first a simulation of one step is conducted. The
period of interest is where Iapp is non-zero because this is where the error becomes
relatively large. Therefore, the initial values for this simulation are set to values of time
t = 100.00 ms which. Those initial values are shown in Appendix B.1.2.1.
First, we check in which stage the error is visible. Therefore, the values of the voltage
derivative and the voltage after each stage are printed. The values show, see Table 5.1,
that the error occurs in the third stage.
The derivative of the voltage is calculated with Equation (2.1), to check which variables
differ between implementations; those values are printed in Table 5.2. It is interesting
that all those variables are the same as those variables to calculate dvdt3. A possible
explanation for this is that the MaxCompiler has done an optimisation which improves
the precision. Therefore, introducing a difference between the C and DFE-code. This
difference starts small however, becomes larger because old values are used to update
the state variables.
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Figure 5.11: (a) Output of the voltage for a simulation in C of a single HH cell. (b) Error
between C and the DFE-code using fwd-Euler. (c) Error between C and the DFE-code
using rk2. (d) Error between C and DFE-code using rk3. dt = 0.01 ms.
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Figure 5.12: Error between C and the DFE-code in simulation mode using rk3. dt = 0.01
ms, tsim = 300 ms.

0 50 100 150 200 250 300
time (ms)

0.00025

0.00000

0.00025

V 
(m

V)

Figure 5.13: Error when using and not using generalized functions in C. dt = 0.01 ms,
tsim = 300 ms.
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5.1.2.2 HH+gap

For the HH+gap implementation, a simulation of an network with 288 cells was simu-
lated. The initial parameters for cell i, the values for the applied current, and the weight
values are presented in Appendix B.1.2.2. The output and the errors are depicted in
Figure 5.14. Results are similar to the HH-model; using higher-order solvers leads to
bigger differences between the C and DFE implementation.
The validation of the HH+gap implementation was done with the output of a single cell.
This is expected to be sufficient because each cell is connected through gap junctions and
therefore, an error will manifest within each cell. However, to see the error on a network
scale, a new simulation is done and the average error per simulation step is plotted for
each cell in a colormap. The initial parameters for cell i can be seen, the parameters
for the applied current, and the weight are shown in Appendix B.1.2.3. As shown in
the appendix, the weights are different for three different regions in the network. This
is done to study if there is a relation between the connectivity of the network and the
produced error. Then. the average error per cell using the forward-Euler method is
shown in Figure 5.15. The results when the second-order Runge-Kutta is used are shown
in Figure 5.16. Figure 5.17 shows the error when the third-order Runge-Kutta method
is used.
These figures show that there is no relation between the network connectivity and the
error. A relatively higher error is observed for a specific neuron cell in the simulation
using the third-order Runge-Kutta method (the error when using the other methods is
expected to be small enough to assume functional correctness). Therefore, this cell is
inspected further. The voltage trace on both the CPU and DFE of this cell can be seen in
Figure 5.18. What stands out from the output is that the simulation on the CPU shows
one more spike than the simulation on the DFE.
To find the reason for the discrepancies noticed between the output of the CPU and
DFE, two additional tests on the CPU were performed. For these tests the following
steps were taken:

1. Retrieve the values of the state variables of the CPU at time 195 ms of the previously
discussed simulation.

2. Retrieve the values of the state variables of the DFE at time 195 ms of the previously
discussed simulation.

3. Run a simulation, with a duration of 6 ms, on the CPU with the values of the state
variables from step 1 as initial values (test 1).

4. Run a simulation, with a duration of 6 ms, on the CPU with the values of the state
variables from step 2 as initial values (test 2).

By performing these two tests it could be inspected if the discrepancies were the result
of a bug in the DFE code, rounding errors because different errors are used, or a small
difference in the values of state variables. The output of both simulations on the CPU
can be seen in Figure 5.19. As the both simulations were run with the same hardware
and same kernel, it can be concluded ,that based on the different input values, there is a
spike or not (it cannot be said if there should be a spike or not as we do not know if the
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C or DFE code gives more accurate results). Consequently, the discrepancies are caused
by a small difference in the values of the state variables. However, as the third-order
Runge-Kutta solver was used to get these disparate results, the functional correctness
of this solver on the DFE cannot be guaranteed. Furthermore, although it expected
that the differences in state variables at time 195 ms is caused by rounding errors, since
different hardware is used, the exact reason for the differences cannot be given, it cannot
be concluded what the source of the error is. To find the source of the error this problem
should be investigated further.
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Figure 5.14: (a) Output of the voltage for a simulation in C of a single cell (cell 0, in the
code) of a HH network with gap junctions. (b) Error between C and the DFE-code using
fwd-Euler. (c) Error between C and the DFE-code using rk2. (d) Error between C and
the DFE-code using rk3. dt = 0.01 ms.
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Figure 5.15: Average error per simulation step using the forward-Euler method for a
simulation of the HH+gap implementation (i and j are indices of a cell).
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Figure 5.16: Average error per simulation step using the second-order Runge-Kutta
method for a simulation of the HH+gap implementation (i and j are indices of a cell).
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Figure 5.17: Average error per simulation step using the third-order Runge-Kutta
method for a simulation of the HH+gap implementation (i and j are indices of a cell).
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Figure 5.18: (a) Voltage trace, (b) error using the third-order Runge-Kutta method for a
simulation of the HH+gap implementation.
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Figure 5.19: Voltage trace of the output of the HH+gap rk3 implementation in C (a)
Voltage trace with initialization from CPU values, (b) Voltage trace with initialization
from DFE values.
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Figure 5.20: (a) Output of the voltage for a simulation in C of a single axon. (b) Error
between C and the DFE-code using fwd-Euler. (c) Error between C and the DFE-code
using rk2. (d) Error between C and the DFE-code using rk3. dt = 0.01 ms.

5.1.2.3 HH+custom

The HH+custom implementation simulates a single axon where the parameters for the
simulation can be found in Appendix B.1.2.4. The output and the errors are depicted
in Figure 5.20. The first thing which stands out is the fact that the error for each solver
is relatively large in comparison with the voltage trace. The use of custom channels
and thus more complex functions may have contributed to this increase of the errors.
Secondly, it is interesting to note that the errors are relatively large during the first
spiking period in comparison to the second spiking period. It is unknown why this is
the case.
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Figure 5.21: (a) Output of the axonal-voltage for a simulation in C of a single IO cell.
(b) Error between C and the DFE-code using fwd-Euler. (c) Error between C and the
DFE-code using rk2. (d) Error between C and the DFE-code using rk3. dt = 0.01 ms.

5.1.2.4 HH+custom+multi

The HH+custom+multi implementation simulates a single IO cell where the parameters
for the simulation can be found in Appendix B.1.2.5. The output and the errors are
shown in Figure 5.21. Those results show the same behaviour as discussed in the
previous kernel instances.
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Figure 5.22: (a) Output of the voltage for a simulation in C of a single axon (the axon
from cell 0, in the code) of an IO network. (b) Error between C and the DFE-code using
fwd-Euler. (c) Error between C and the DFE-code using rk2. (d) Error between C and
the DFE-code using rk3. dt = 0.01 ms.

5.1.2.5 HH+custom+multi+gap

The simulation of the HH+custom+multi+gap is the same as the one used to validate the
C-code. Appendix B.1.1.3 shows the parameters of this simulation. The output and the
errors are depicted in Figure 5.22. Those results show the same behaviour as discussed
in the previous kernel instances.
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5.1.2.6 Concluding remarks

The errors of most implementations show negligible effect on correctness. In these
cases the errors are negligible. However, some of the errors when using the third-order
Runge-Kutta method are relatively large in comparison with the output. Although
no bug in the code could be found, it cannot be guaranteed that the output of those
simulations will be functionally correct as the errors are relatively large in comparison to
the output traces, for this specific solver using the default time-step-size. For the other
two numerical methods, the errors are small enough to expect that the simulations on
the DFE are functionally correct. To gauge the effect step size has on the above observed
errors, in the next section we perform an exploration of different step sizes.

5.2 Exploration of time-step-size
After the validation of the different ODE solvers on the DFE, the influence of using
a different ODE solver on the maximum time-step-size (dt) will be discussed in this
section. To do this for each kernel, a simulation is executed with a dt equal to 0.01
ms using the forward-Euler method. The output of this simulation will be used as a
reference, then with each of the solvers the time-step will be increased to see what the
influence on the output is. By visually comparing the output between the solvers, an
indication can be given of how much the time-step can be changed while still producing
a correct trace. The visual comparison is justified as the goal of simulations of neuron
models is to give a qualitative insight instead of a quantitative one as the precision of
the model parameters is unknown [40].
Naturally it is expected that the higher-order solvers will allow for larger time-step sizes,
in the general case, since the global error is presented by O(dtp), where p is the order
of the solver.

HH
The initial values and the variables used for Iapp applied on each cell can be seen in
Appendix B.2.1. To find the maximum value of dt while still producing a accurate
output, the simulations start with a dt equal to 0.01 ms, after which the step-size is
increased in increments of 0.01 ms until the simulation does not give any valid results
any more. In the case of the forward-Euler solver, the maximum dt is equal to 0.06
ms, results of which can be seen in Figure 5.23. When the dt was further increased the
output produced NaN values.
In the case of using the second-order Runge-Kutta solver the maximum dt which gives
a correct trace is 0.05 ms. Increasing dt to 0.06 ms changes the shape of the first spike
as is shown in Figure 5.24. It is interesting that the maximum time-step-size for the
second-order Runge-Kutta solver is lower that the time-step-size of the forward-Euler
solver. The third-order Runge-Kutta solver had a higher dt than the other solvers, as it
could be increased to 0.07 ms, as is depicted in Figure 5.25. Increasing the time-step-size
makes the trace even more inaccurate as NaN values are produced.
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Figure 5.23: Output of the voltage for a simulation of a single HH cell using the forward-
Euler solver.(a) dt = 0.01 ms, (b) dt = 0.06 ms
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Figure 5.24: Output of the voltage for a simulation of a single HH cell using the second-
order Runge-Kutta solver. (a) dt = 0.05 ms, (b) dt = 0.06 ms
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Figure 5.25: Output of the voltage for a simulation of a single HH cell using the third-
order Runge-Kutta solver.
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Figure 5.26: Output of the voltage of compartment 0 for a simulation of a HH+gap
network using the forward-Euler method, dt = 0.01 ms.

HH+gap
In the case of the HH+gap, a network of 288 cells is simulated. The initial values, the
variables used for Iapp, and the values for the weights of the connectivity matrix are
presented in Appendix B.2.2.
For the simulation of the HH+gap network, the maximum dt for each solver is equal
to 0.01 ms. The voltage of compartment 0 for this simulation is shown in Figure 5.26.
When dt was increased to 0.02 ms all solvers produced NaN values. This is a strong
confirmation of the impact gap-junction modelling has on overall model stiffness, thus
requiring small time-step sizes to maintain solution stability.
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Figure 5.27: Output of the voltage of a single compartment for a simulation of a
HH+custom (soma) compartment when using the forward-Euler solver for different
time-step sizes.

HH+custom

The initial values of cell i used to simulate a soma compartment and additionally, the
mathematical description can be seen in Appendix B.2.3.
The time-step-size (dt) is increased for the forward Euler solver from 0.01 ms to 0.13 ms
in increments of 0.01 ms. Various simulation voltage traces can be seen in Figure 5.27.
We see that for larger dt the behaviour around the spike diverges more from the most
accurate solution where dt is 0.01 ms. For a dt larger than 0.05 ms, the shape of the spike
is different. However, it must be noted that this is done with visual inspection of the
plots and thus not with a specific accuracy specification.
The second-order Runge-Kutta solver allows for using larger time-step sizes in compar-
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Figure 5.28: Output of the voltage of a single compartment for a simulation of a
HH+custom (soma) compartment when using the second-order Runge-Kutta solver for
different time-step sizes.

ison to the forward-Euler solver, as is shown in Figure 5.28. This figure shows that for
a dt of 0.10 ms, only the maximum of the peak is lower. The shape of the peak only
changes when dt increases to 0.15 ms or higher. The results in Figure 5.29 show that,
for the same time-step sizes as the second-order Runge-Kutta solver, the third-order
Runge-Kutta solver is more accurate. This can be seen when inspecting the shape and
the maximum voltage of the spike. Furthermore, the shape of the peak starts to change
at larger values of dt compared to using the second-order solver. In this case, the trace
for a dt equal to 0.15 ms still matches the trace where dt is equal to 0.01 ms.
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Figure 5.29: Output of the voltage of a single compartment for a simulation of a
HH+custom (soma) compartment when using the third-order Runge-Kutta solver for
different time-step sizes.
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Figure 5.30: Output of the voltage of a single cell for a simulation of a HH+custom+multi
(IO) cell when using the forward-Euler solver for different time-step sizes.

HH+custom+multi

The initial values of a single IO cell used for the accuracy tests and the mathematical
description for the applied current Iapp can be seen in Appendix B.2.4. The time-step-
size (dt) is increased for the forward-Euler solver from 0.01 ms to 0.06 ms. The respective
simulation voltage traces are shown in Figure 5.30. This reveals around 1000 ms that for
larger dt tested, the amplitude of the post-spike oscillation becomes bigger.
The time-step-size can be increased more for the second-order and third-order solvers ,
while the amplitude of the oscillations does not vary as much in comparison with the
first-order solver, as can be seen in Figure 5.31 and Figure 5.32. To define the maximum
step-size, we need to pay attention to the amplitudes of the spikes and the amplitude
of the oscillation. For the forward-Euler method, a maximum step-size of 0.03 ms is
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Figure 5.31: Output of the voltage of a single cell for a simulation of a HH+custom+multi
(IO) cell when using the second-order Runge-Kutta solver for different time-step sizes.

chosen while for both of the Runge-Kutta methods a maximum of 0.05 ms is chosen.
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Figure 5.32: Output of the voltage of a single cell for a simulation of a HH+custom+multi
(IO) cell when using the third-order Runge-Kutta solver for different time-step sizes.
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Figure 5.33: Output of the axonal-voltage of cell 0 for a simulation of the IO network.

HH+custom+multi+gap
The initial values of cell i used to simulate an IO network connected by gap junctions, the
mathematical description for the applied current Iapp, and the weights of the connectivity
matrix can be seen Appendix B.2.5. Increasing dt = 0.01 ms, in increments of 0.01 ms,
only led to valid results for the second-order Runge-Kutta solver, with output shown in
Figure 5.33, as the other solvers do produce NaN values when dt is increased. Although
the simulation with the use of the second-order Runge-Kutta solver does not produce any
NaN values, the change of dt still produces a trace which varies from the reference trace
as can be seen by the large negative spike at the start of the simulation. Furthermore, it
is interesting that the third-order Runge-Kutta solver does not produce a valid output
while theoretically having a better precision than the second-order solver.



98 CHAPTER 5. EVALUATION

Table 5.3: Maximum time-step-size in ms for a simulation of each kernel.

Kernel fwd rk2 rk3

HH 0.06 0.05 0.07
HH+gap 0.01 0.01 0.01
HH+custom 0.05 0.10 0.15
HH+custom+multi 0.03 0.05 0.05
HH+custom+multi+gap 0.01 0.01 0.01

5.2.1 Discussion
The maximum steps sizes, which can be seen in Table 5.3, do not show an exponential
increase of the time-step-size when using higher-order solvers. What is more, the only
simulation where the time-step-size can be significantly increased is the simulation of the
HH+custom kernel. But even in this case, the time-step-size increase is only linear. The
computational cost scale linearly. Because the DFEs work with the data-flow principle,
this will either influence performance or the resource usage also linearly. Therefore, the
extra resources needed when the higher-order solvers are used, could be committed,
instead, to achieve a higher unroll factor (in case of the first-order solver). Thus, there is
no gain in using higher-order solvers for the use cases in flexHH, given the low observed
gains in time-step sizes. The performance, and resource usage of the different numerical
methods is discussed in more detail in Section 5.4.1.
These important findings are in line with a recent publication by Börgers et al. [40], the
use of different ODE solvers for HH-like models is discussed. It is stated that using
explicit numerical methods requires a dt in the order of 0.01 ms. Using larger dts, even
for higher-order methods, will have catastrophic results for the simulations. However,
it is also stated that the use of such small dts gives often more accuracy than is needed.
This is supported by the following statements from [40]:

• The goal of simulations of neuron models is more likely to be for qualitative insight
than quantitative precision as there is uncertainty about the precision of the model
parameters.

• Constraints on dt are caused by voltage spikes. Therefore, dt must be much shorter
than the duration of a voltage spike for the output to be produced accurately.

• Between spikes there is no need to use a small dt, as dt = 1 ms can produce
adequate accuracy.

• Adaptive time-step-size is not useful when spiking is asynchronous in networks
with connected neurons. In such cases, the frequency of spikes in the network is
high, rendering time-step adaptivity a useless feature.

• When using implicit methods the dt size must be constrained by the same amount
as when using explicit methods, due to convergence conditions of solving a system
of equations needed for the implicit solution.
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These conclusions indicate that the use of other ODE solvers would not be beneficial
in comparison to the forward-Euler solver for HH-like models and, thus, also not for
the flexHH-library. Additionally, it shows that the results obtained for the Runge-Kutta
solvers are not unique to the simulations done in this thesis. However, to further explore
whether the use of higher-order solvers can be beneficial, two other tests in which no
spikes are generated at all are done. Therefore, a larger time-step-size is expected for
each solver, as the spikes are the constraint for the small time-step-size.

The first test is of a single HH cell for which the initial values can be seen in Ap-
pendix B.3.1. The output of the simulation when using a dt equal to 0.01 ms can be seen
in Figure 5.34.
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Figure 5.34: Output of the voltage for a relaxed simulation of a single HH cell, dt = 0.01
ms.

For the second test, a single IO cell is simulated. The initial values used for this
simulation can be seen in Appendix B.3.2 and the output of the axon can be seen in
Figure 5.35.
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Figure 5.35: Output voltage of the axon for a relaxed simulation of a single IO cell,
dt = 0.01 ms.

For both tests the time-step was increased as much as possible before the voltage trace
became incorrect. The maximum step sizes which could be achieved are presented in
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Table 5.4: Maximum time-step-size in ms for relaxed simulations.

Model fwd rk2 rk3

HH 0.70 0.70 0.90
IO 0.80 0.80 0.80

Table 5.4. If time steps higher than those reported in the table are used (in increments
of 0.1 ms), then the simulation produces NaNs. These results show that, indeed also
for relaxed simulations, the use of higher-order solvers is expected not to be beneficial
on a DFE. This is because, the computational cost scale linearly and the DFEs work
with the data-flow principle, a higher-order solver will either influence performance
or the resource usage also linearly. Therefore, the extra resources needed when the
higher-order solvers are used, could be committed, instead, to achieve a higher unroll
factor (in case of the first-order solver).

5.3 Hardware-resource usage

As previously discussed in Chapter 4, the hardware-usage of the kernel instances of
flexHH depends on which features are supported, Ncomps,max 1, Ngates,max 2, u f 3, and
NODE 4. The features Ncomps,max, and Ngates,max dictate what neural networks can be
simulated and how large those networks can be. On the other hand, u f and NODE
influence the performance of the simulations. An increase in any of those variables leads
to an increase in hardware-usage. Consequently, the variables influence each other in
which values can be chosen, before the hardware-usage reaches the capacity of the DFE.
Therefore, it is interesting to inspect how each of those variables influence the hardware-
usage. Moreover, as neuroscientists should only choose what neural network (including
size of the network) they want to simulate, the performance of the kernel instances
should be maximised automatically. An approach to optimizing the performance, is
to resynthesize hardware different configurations for each set of the above features in
order to get resource usage statistics however, this will be prohibitively time-consuming
as a single synthesis cycle requires multiple hours to complete. As a solution, we try
to model and predict the hardware-usage to get insight how the hardware parameters
(Ncomps,max, Ngates,max, u f , and NODE) and the features influence the hardware-usage.
In the remainder of this section, first the methodology of hardware-usage prediction
is discussed. Then, the validation of the prediction method is done and finally, the
prediction method is used to inspect the influence of using different features on the
hardware-usage.

1Ncomps,max are the maximum number of compartments in a network.
2Ngates,max are the maximum number of gates per compartment.
3u f is the unroll factor.
4NODE is the order of the solver.
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Table 5.5: Configurations of the HH implementation with different frequencies.

u f Ncomps,max Ngates,max NODE f LUTs FFs BRAMs DSPs

3 52 10 1 100 143318 195656 2168 106
3 52 10 1 140 143355 196001 2168 106
3 52 10 1 180 143373 196157 2168 106
4 44 10 1 100 158758 216561 2139 127
4 44 10 1 140 158833 216604 2139 127
4 44 10 1 180 158767 216651 2139 127
6 28 10 1 100 194181 261642 2158 169
6 28 10 1 140 194197 261942 2158 169
6 28 10 1 180 194180 261840 2158 169
8 12 10 1 100 229475 310643 2224 219
8 12 10 1 140 229442 311099 2224 219
8 12 10 1 180 229444 311724 2224 219

5.3.1 Methodology for the prediction of hardware-usage
For the prediction, it is assumed that the clock frequency does not influence the
hardware-usage. To confirm this assumption, four configurations using the same hard-
ware parameters (u f , Ncomp,max, Ngates,max, NODE) of the HH kernel instance are syn-
thesized with different frequencies. The results, which can be seen in Table 5.5, show
that the influence of the frequency on the hardware-usage is minimal. Therefore, we
can conclude that the assumption that the operating frequency does not influence the
hardware is valid. A possible explanation for this might be that because of the data-flow
principle a deep pipeline is made to increase performance. As a side effect the stages
could function with different frequencies without changing the hardware much, as the
path of a single stage is relatively small.
To predict the resource usage, the kernels are divided into the same kernel segments
as those discussed in Chapter 4 and some more, which will be introduced below. For
each of the segments discussed in Chapter 4, the scaling factor is known as is the same
as discussed in Chapter 4. The scaling factor per segment for each kernel instance can
be seen in Tables 5.6 to 5.10. To predict the hardware-usage using the scaling factors, a
reference for the hardware-usage is required. By using the reference and calculating the
ratio between the scaling factors of the configuration which needs to be predicted and
the reference configuration, using Equation (5.2), the hardware-usage can be predicted,
using Equation (5.3). The hardware-usage per segment of the reference can be obtained
by parsing the annotated kernel file (in the annotated kernel file per line of code the
resource usage is given).

ratio(hwparams, hwparams,re f ) =
f actorscaling(hwparams)

f actorscaling(hwparams,re f )
(5.2)

where
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Table 5.6: Scaling factors per kernel segment for HH kernel instances.

Segment Scaling factor

vMem Ncomps,max

yMem
⌈

Ngates,max · Ncomps,max

u f

⌉
· u f

calcIGates Ngates,max · NODE
iGate (u f − 1)NODE
pipe u f · NODE
proc NODE
control constant

Table 5.7: Scaling factors per kernel segment for HH+custom kernel instances.

Segment Scaling factor

vMem Ncomps,max

yMem
⌈

Ngates,max · Ncomps,max

u f

⌉
· u f

calcIGates Ngates,max · NODE
iGate (u f − 1) · NODE
pipe u f · NODE
proc NODE
control constant

hwparams = (u f , Ncomps,max, Ngates,max, NODE)

hwparams,re f = (u fre f , Ncomps,max,re f , Ngates,max,re f , NODE,re f )

ressegment(hwparams) = ressegment,re f (hwparams,re f ) · ratio(hwparams, hwparams,re f ) (5.3)
where

hwparams = (u f , Ncomps,max, Ngates,max, NODE)

hwparams,re f = (u fre f , Ncomps,max,re f , Ngates,max,re f , NODE,re f )

There are more segments than the previously discussed ones, which contribute to the
total hardware-usage of the kernel instances in the DFE. The file, which gives a complete
overview of the hardware-usage on the DFE (report.txt) and is generated by the
MaxTools, shows the segments ”kernel extra” and ”manager” Finally, there is also
hardware used for things such as I/O streams, First In First Out (FIFO) buffers and
memory controllers. Those things are placed under the label ”rest”. The "kernel extra",
"manager", and "rest" segments are all automatically generated. Therefore, it is not
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Table 5.8: Scaling factors per kernel segment for HH+custom+multi kernel instances.

Segment Scaling factor

vMem Ncomps,max

yMem
⌈

Ngates,max · Ncomps,max

u f

⌉
· u f

calcIGates Ngates,max · NODE
iGate (u f − 1) · NODE
pipe u f · NODE
proc NODE
control constant
calcICompartment NODE

Table 5.9: Scaling factors per kernel segment for HH+gap kernel instances.

Segment Scaling factor

vMem Ncomps,max · NODE · u f

yMem
⌈

Ngates,max · Ncomps,max

u f

⌉
· u f *

calcIGates Ngates,max ∗ NODE
proc constant
control constant
iCellMem Ncomps,max
iGapMem Ncomps,max
gapProc u f
gapControl constant

known what resources are in those segments and thus no scaling factor could be given
of how the particular segment will scale. However, by inspecting the hardware-usage
of different configurations, it was found out which parameter influences which kernel
segment. The results of the inspection can be seen in Table 5.11. It is likely that the
"manager" is affected by how many pipelines it drives and therefore, is influenced by
u f ). Additionally, "kernel extra" could be anything and therefore, it is not surprising
that more hardware parameters influence this segment.
Although an exact scaling cannot be given it is still handy to predict the resource usage
of the automatically generated segments. To be able to predict, for now a first-order
approach, based on the parameters in Table 5.11, is used. The first-order approach
is made with the use of Python scripts. In the python scripts, to predict "manager"
polyfit from the Python numpy library was tried. The polyfit from numpy was able
to predict "manager" as its hardware-usage is only dependent on one parameter. If
more a prediction with more parametersneeds to be predicted (as is the case with
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Table 5.10: Scaling factors per kernel segment for HH+custom+multi+gap kernel in-
stances. *NODE is added after inspection of hardware-usage.

Segment Scaling factor

vMem Ncomps,max · nODE · u f

yMem
⌈

Ngates,max · Ncomps,max

u f

⌉
· u f · NODE*

calcIGates Ngates,max · NODE
proc constant
control constant
calcICompartment NODE
iCellMem Ncomps,max
addressMem Ncomps,max · u f
iGapMem Ncomps,max
gapProc uf
gapControl constant

Table 5.11: Overview of which hardware parameters influence the hardware-usage of
which kernel segment.

Segment Hardware parameters

kernel extra u f , Ngates,max, NODE
manager u f
rest constant

"kernel extra"), polyfit will not be working as it only supports linear models with
one variable. Consequently, another library which supports multiple parameters is
used, called sklearn, for the prediction of ”kernel extra”. Finally, to use the prediction
methods reference configurations (with their hardware-usage) are required. This as their
hardware-usage is required as a reference. The kernel segments from Tables 5.6 to 5.10
require one reference configuration, to use the scaling factor to predict the hardware-
usage of these segments. The polyfit library requires two reference configurations and
sklearn requires four reference configurations. Consequently, in total four reference
configurations are used as the hardware-usage of those configurations can be reused.

5.3.2 Hardware-usage prediction validation

The previously discussed method to predict the hardware-resource usage is simple
and its purpose is then only to get a good first indication of the hardware-usage on
the DFE. To validate how accurate the predictions are for each kernel instance the
predicted hardware-usage is compared against the actual hardware-usage of multiple
configurations for all the kernel instances. The results of the hardware-usage are all
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Table 5.12: Reference configurations used for the hardware-usage prediction of the HH
kernel instances.

Segment u f Ncomps,max Ngates,max NODE

kernel & rest 4 12288 10 1

kernel extra 2 12288 10 1
4 12288 6 1
4 12288 10 1
4 12288 10 2

manager 2 12288 10 1
4 12288 10 1

Table 5.13: Reference configurations used for the hardware-usage prediction of the
HH+custom kernel instances.

Segment u f Ncomps,max Ngates,max NODE

kernel & rest 2 16384 10 1

kernel extra 2 16384 6 1
2 16384 10 1
4 16384 10 1
2 16384 10 2

manager 2 16384 10 1
4 16384 10 1

Table 5.14: Reference configurations used for the hardware-usage prediction of the
HH+custom+multi kernel instances.

Segment u f Ncomps,max Ngates,max NODE

kernel and rest 4 24 10 1

kernel extra 4 12 4 1
4 24 10 1
2 16 10 2
1 4 10 3

manager 4 24 10 1
2 16 10 2
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Table 5.15: Reference configurations used for the hardware-usage prediction of the
HH+gap kernel instances.

Segment u f Ncomps,max Ngates,max NODE

kernel & rest 12 12288 10 1

kernel extra 12 12288 10 1
12 12288 6 1
4 12288 10 1

16 12288 10 2

manager 12 12288 10 1
4 12288 10 1

Table 5.16: Reference configurations used for the hardware-usage prediction of the
HH+custom+multi+gap kernel instances.

Segment u f Ncomps,max Ngates,max NODE

kernel & rest 4 12288 10 1

kernel extra 4 12288 10 1
4 12288 6 1
6 12288 10 1
4 12288 10 2

manager 4 12288 10 1
6 12288 10 1

taken from the Maia DFE; the available resources on this DFE can be seen in Table 5.17.
Additionally, because during the inspection of the resource usage it was found that
the Block Random-Access Memories (BRAMs) always were the limiting factor while
synthesizing, only the accuracy of the prediction of the BRAMs is inspected. The used
configurations for the validation of the prediction method can be found in Appendix C.
The results per kernel segment for each kernel instance are shown in Tables 5.18 to 5.22.

For the discussion on how accurate the hardware predictions are, the accuracy of the
total resource prediction can be seen in Table 5.23. One finding is that if a kernel
instance has more segments, the error becomes larger. This is as expected as there
are more sources for error. The results show that the maximum mean error is 6.60 %.
Therefore, it is expected that the prediction method can give a good first indication of
the hardware-usage on a Maia DFE.
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Table 5.17: Available resources on the Maia DFE.

available resources

LUTs 524800
FFs 1049600
BRAMs 2567
DSPs 1963

Table 5.18: Error of the resource prediction of HH configurations as a percentage of the
available resources on the Maia DFE.

Segment mean (%) std (%)

total 3.38 3.56
vMem 0.02 0.03
yMem -0.12 0.69
calcIchannels -0.09 0.65
iChannels 0.01 0.06
pipe 0.70 1.21
proc 0.12 0.20
control 0.21 0.28
extra kernel -0.40 2.70
manager 0.46 1.45
rest 0.14 0.30

Table 5.19: Error of the resource prediction of HH+custom configurations as a percentage
of the available resources on the Maia DFE.

Segment mean (%) std (%)

total 2.77 5.46
vMem 0.03 0.07
yMem 0.33 0.58
calcIChannels 0.21 0.69
iChannels 0.04 0.15
pipe 0.87 2.49
processing 0.02 0.11
control 0.24 0.47
extra kernel 0.09 1.47
manager 0.31 1.07
rest 0.03 0.08
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Table 5.20: Error of the resource prediction of HH+custom+multi configurations as a
percentage of the available resources on the Maia DFE.

Segment mean (%) std (%)

total 3.92 5.37
vMem 0.27 0.73
yMem 0.83 2.26
calcIChannels -0.24 0.69
iChannels 0.06 0.19
iComp -0.03 0.06
pipe 1.32 3.06
processing 0.05 0.13
control 0.13 0.36
extra kernel -0.11 0.83
manager 0.40 1.24
rest 0.14 0.23

Table 5.21: Error of the resource prediction of HH+gap configurations as a percentage of
the available resources on the Maia DFE.

Segment mean (%) std (%)

total 5.51 6.62
vMem 0.30 1.73
yMem -1.28 1.44
iMem 0.01 0.02
calcIChannels -0.76 1.55
processing -0.33 0.98
control 0.00 0.00
extra kernel 0.54 1.32
iGapMem 0.01 0.02
gapFunct -1.60 2.89
gapControl 0.00 0.00
manager -0.09 0.12
rest -0.26 0.37

5.3.3 Influence of model features on hardware-usage

Besides the hardware parameters Ncomps,max, Ngates,max, u f , and NODE, the support of
extra features also influences the hardware-usage. To see the influence on the hardware-
usage of different features different kernel instances will be compared. For the compari-
son between the kernel instances, the hardware-usage is obtained by using the prediction
model. This has a drawback that the hardware-usage is not perfectly accurate, as the
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Table 5.22: Error of the resource prediction of HH+custom+multi+gap configurations as
a percentage of the available resources on the Maia DFE.

section mean (%) std (%)

total 6.60 6.60
vMem -3.04 5.90
yMem -0.42 1.02
iMem 0.01 0.03
gapAddressMem -0.96 1.91
calcIChannels -0.35 0.71
calcIComp -1.18 1.44
processing -0.01 1.05
control 0.51 0.72
extra kernel -0.19 0.80
iGapMem 0.01 0.03
gapFunct -0.54 2.05
gapControl 0.00 0.00
manager -0.02 0.12
rest -0.08 0.26

Table 5.23: Error of the total resource prediction for all kernel instances as a percentage
of the available resources on the Maia DFE.

Kernel mean (%) std (%)

HH 3.38 3.56
HH+gap 5.51 6.62
HH+custom 2.77 5.46
HH+custom+multi 3.92 5.37
HH+custom+multi+gap 6.60 6.60

predictions give a small error. However, the predictions are good enough to get a good
impression of how the kernel instances scale.
Firstly, the influence of using custom channels is analysed. This is done by choosing
the same hardware parameters and then comparing the hardware-usage between the
HH and HH+custom kernel instances. This is interesting because both implementations
have the same kernel segments with the same scaling factors. The hardware parameters
are set to: u f = 1, Ncomps,max = 1024, Ngates,max = 1, and NODE = 1. The used BRAMs for
each kernel segment can be seen in Table 5.24.
The difference of BRAMs used for yMem, iChannels, and proc is interesting. Although
the same code is used in both implementations, there is still a difference. This can be
expected as heuristics are used for the synthesis of the kernel instances. This difference
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Table 5.24: BRAMs used for HH, HH+custom, and HH+custom+multi kernel instances
with the hardware parameters, u f = 2, Ncomps,max = 10240, Ngates,max = 4, and NODE = 1.

Segment HH HH+custom HH+custom+multi

total 1089.50 1175.00 1461.00
vMem 17.00 17.00 52.00
yMem 70.00 65.00 65.00
calcIchannels 42.00 48.00 51.00
iChannels 4.00 8.00 8.00
iComp - - 40.00
pipe 142.00 266.00 266.00
proc 22.00 23.00 27.00
control 0.00 0.00 0.00
extra kernel 204.50 178.00 289.00
manager 500.00 482.00 575.00
rest 88.00 88.00 88.00

shows an inaccuracy of the predictions, however, the differences between those segments
are relatively small. On the other hand, the difference between the implementations for
the pipe segment can be as high as 87.3 %, which is significantly larger. This segment is
expected to use significantly more hardware resources in case of the HH+custom kernel,
because the equations of the gate-activation variables when custom gates are used are
more complex and therefore, require more resources. It must be noted that the pipe
scales with the unroll factor, which was equal to 2. Consequently, an increase of 43.7 %
in BRAMs per u f unit for the kernel segment pipe is expected.
To measure the influence of using multiple cell compartments, the predicted resource
usage of a HH+custom kernel instance and HH+custom+multi kernel instance are com-
pared. Those results can be seen in Table 5.24. The first interesting observation is that
when multiple compartments are supported, the resource usage of vMem is increased
while Ncomps,max is equal between the implementations. This can be explained by the
increment in number of reads of the vMem as besides the voltage of the cell being pro-
cessed, also the voltages of the 2 neighbouring compartments are read. This explanation
is reinforced by the fact that the increment in usage of BRAMs is 3.06, with the number
of reads being 3 times as high. The second interesting thing is that the BRAMs required
to calculate iComp are relatively small in comparison with the total amount of BRAMs
needed. On the other hand, the increase in BRAM usage in both the extra kernel and
manager is relatively large. A possible explanation for this increment is the addition of
two extra streams (vCompIn and Ncomps), however, we offer this hypothesis cautiously, as
it is unknown how those two segments are implemented.
To measure the influence of enabling gap junctions, two comparisons are done. The
first comparison is done between a HH and a HH+gap kernel instance. The second
comparison is between a HH+custom+multi and a HH+custom+multi+gap kernel instance.
Table 5.25 shows the predicted resource usages for the HH and HH+gap kernel instances
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Table 5.25: BRAMs used for the kernel segments of the HH and HH+custom kernel
instances with the hardware parameters, u f = 1, Ncomps,max = 30720, Ngates,max = 8, and
NODE = 1.

Segment HH HH+gap

total 1302.00 1493.00
vMem 52.00 65.00
yMem 424.00 420.00
iMem - 52.00
calcIChannels 84.00 105.00
iChannels 0.00 -
pipe 71.00 -
proc 22.00 85.00
control 0.00 0.00
extra kernel 108.00 106.25
iGapMem - 52.00
gapFunct - 23.00
gapControl - 0.00
manager 454.00 496.75
rest 88.00 88.00

with the hardware parameters, u f = 1, Ncomps,max = 30720, Ngates,max = 8, and NODE = 1.
The unroll factor is set to 1 because in this case the only difference in hardware between
the two kernels is the hardware used for the gap junctions. The results show a significant
increase in the amount of resources used for calcIChannels. This is surprising as, in both
implementations, the same code is used for this segment. Secondly, the HH+gap kernel
instance contains more segments and therefore, more resources. Another interesting
observation o is the fact that the BRAMs used for the pipe are larger than for the
gapFunct. Therefore, it is expected that the unroll factor could be higher when unrolling
gap junctions instead of pipes when the rest of the hardware parameters are equal.
When comparing the results of the HH+custom+multi and HH+custom+multi+gap ker-
nels, BRAM predictions are shown in Table 5.26; the same conclusions can be drawn
as when the HH and HH+gap implementations were compared. Additionally, there
is a interesting observation which are the difference between resource usage of the
calcIChannels and yMem segments as they are expected to be roughly the same. This,
because calcIChannels uses the same equations between both kernels and yMem has the
same size and the same number of reads in both kernels. Due to automatic synthesis,
an explanation for this difference could not be found.

5.4 Performance evaluation
In this section, the performance of the implementations on the DFE will be discussed.
Before discussing the performance on the DFE, first the influence of numerical meth-
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Table 5.26: BRAMs used for the kernel segments of the HH+custom+multi and
HH+custom+multi+gap kernel instances with the hardware parameters, u f = 1, Ncomps,max
= 30720, Ngates,max = 8, and NODE = 1.

Segment HH+custom+multi HH+custom+multi+gap

total 1461.00 1842.50
vMem 52.00 118.00
yMem 65.00 420.00
iMem - 52.00
gapAddressMem - 45.00
calcIChannels 51.00 124.00
iChannels 8.00 -
calcIComp 40.00 40.00
pipe 266.00 -
processing 27.00 154.00
control 0.00 0.00
extra kernel 289.00 177.00
iGapMem - 52.00
gapFunct - 22.00
gapControl - 0.00
manager 575.00 550.50
rest 88.00 88.00

Table 5.27: Specifications of the hardware used for the performance measurement.

Specification Maia Intel Core i7-4870HQ

On-board DRAM (GB) 48 16
RAM bandwidth (GB/s) 76.8 25.6
On-chip memory 6 MB (FPGA BRAMs) 256 KB (L2 Cache)
Chip frequency (GHz) Implementation specific 2.5
Chip Architecture Stratix V (5SGSD8) Crystal Well
Manufacturing Technology (nm) 28 22

ods on the number of ticks is discussed. Secondly, an indication is given of how the
performance of the kernel instances is expected to scale and what the expected bot-
tlenecks are. Then, the results of the performance measurements will be shown. The
performance measurements are done on a Maia DFE, whose specifications can be seen
in Table 5.27. To set a reference point, the performance of the DFE implementations are
compared against C implementations run on an Intel Core i7-4870HQ processor. Finally,
a comparison against the High Performance Computing (HPC) framework BrainFrame
is made.
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Table 5.28: Optimized kernel configurations, based on the resource prediction method,
which support 10 channels and minimally 16384 compartments.

Kernel NODE u f Ncomps,max Ngates,max

HH 1 8 36864 10
2 4 39936 10
3 3 26624 10

HH+gap 1 16 21504 10
2/3 4 18432 10

HH+custom 1 6 19456 10
2 3 20480 10
3 1 39936 10

HH+custom+multi 1 4 33792 10
2 2 26624 10
3 1 22528 10

HH+custom+multi+gap 1 8 18432 10
2/3 1 16384 10

5.4.1 Performance influence of numerical methods

In Section 5.2, the influence of numerical methods on the time-step-size was discussed.
Additionally, the numerical methods have an influence on what unroll factor can be used,
which directly affects performance through influencing the number of ticks. Therefore,
for each kernel the best performing (the one with the highest unroll factor within the
bounds of the hardware resources available) configuration of each numerical method
is defined, using the prediction method discussed in Section 5.3.1, which supports 10
channels and minimally 16384 compartments. The result can be seen in Table 5.28.
The total number of ticks of a simulation is given either by Equation (5.4) or Equation (5.6)
depending whether the simulation uses gap junctions. To simplify Equation (5.4), the
number of gates per compartment is assumed to be constant, changing the equation
to Equation (5.5), where Ngates is the number of gates per compartment. Nsteps can
be calculated by dividing the simulation time (SimTime) by the time-step-size (dt), see
Equation (5.7). Therefore, to compare the numerical methods for the different kernel
instances Ncomps/Ncells, Ngates, and SimTime needs to be chosen. The values used for
the simulation can be seen in Table 5.29. With the use of those values it is possible to
compare the performance between the three different numerical methods.

Nticks,noGap =
Ncomps−1

∑
k=0

⌈
Ngates[k]

u f

⌉
· Nsteps (5.4)
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Table 5.29: Parameters used to see influence numerical methods on performance.

Variable Value

Ncomps, Ncells 16384
Ngates 10
SimTime 1000.0

Table 5.30: Parameters used to the see influence of different numerical methods on
performance.

dt speedup
fwd-Euler rk2 rk3 fwd-Euler rk2 rk3

HH 0.06 0.05 0.07 1.00 0.56 0.58
HH+gap 0.01 0.01 0.01 1.00 0.13 0.08
HH+custom 0.05 0.10 0.15 1.00 1.00 0.60
HH+custom+multi 0.03 0.05 0.05 1.00 1.00 0.50
HH+custom+multi+gap 0.01 0.01 0.01 1.00 0.06 0.04

Nticks,noGap = Ncomps ·
⌈

Ngates

u f

⌉
· Nsteps (5.5)

Nticks,gap =
N2

cells
u f
· Nsteps · NODE (5.6)

Nsteps =
SimTime

dt
(5.7)

The results, from the non-relaxed simulations to test how high the time-step-size could
be increased (the dts from the relaxed simulations do not improve the performance of
higher-order solvers, as shown in Section 5.2.1), can be seen in Table 5.30. These show
that using a higher-order solver for HH models is at best as good as the forward-Euler
solver (i.e. a speedup of 1.00 in the table). However, in most cases the performance is
significantly worse. Consequently, the use of higher-order solvers seems not beneficial
and therefore, will no be taken into account for the evaluation of the actual performance
and energy. This observation is done based on 5 different tests (one for each kernel
instance) and additionally, the relaxed simulations did not show better performance.
Therefore, it is expected that in general higher-order solvers will not be beneficial in
terms of performance.

5.4.2 Theoretical performance scaling

The first indication of how the execution time scales is given by the number of ticks
required. As discussed in Chapter 4, the number of ticks needed to complete the
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simulation depends on whether gap junctions are supported. If gap junctions are not
supported, the number of ticks needed to complete the simulation is given by Equa-
tion (5.4). To simplify this equation, the compartments are assumed to be homogeneous
so that the number of gates is constant per compartment. If this assumption holds, then
the number gates per compartment is constant, changing the number of ticks for kernel
instances without gap junctions to Equation (5.5). This shows that the number of ticks
scales linearly with the Ncomps, Ngates,comp, and Nsteps.
If gap junctions are supported, the number of ticks is given by Equation (5.6), under the
assumption that the calculation of the gap junctions requires more ticks than the calcu-
lation for the gate-activation variables. See Section 4.4.4 for the reason this assumption
should hold.
Apart from the number of ticks, the execution time is expected to scale linearly to the
frequency as this is the rate at which the calculations are done. For the performance
measurements, the frequency is kept constant at 180 MHz.
Under optimal circumstances, the performance scales with Nticks · f . Therefore, the
minimum number of ticks will be achieved with the highest u f possible. However, an
increase of u f will lead to higher throughput needs between the chip and the Large
Memory (LMem). Therefore, before showing the actual performance measurements,
how different parameters will influence the throughput is analysed.

5.4.3 LMem bandwidth evaluation

To analyse whether the LMem bandwidth of the DFE is a bottleneck for the performance,
the total required throughput is needed. We can derive total throughput using the
throughput per stream. The required throughput per stream for the five kernel instances
is shown in Tables 5.31 to 5.35, respectively.
The total required throughput is calculated as the sum of the throughput of all streams.
This sum includes the stream of vCompIn, although it is only needed in the first simu-
lation step. Knowing that the frequency is equal to 180 MHz, the required throughput
of each kernel instance can be seen in Table 5.36.
For the HH kernel, the total required throughput can be seen in Figure 5.36a. This shows
that the unroll factor has the biggest influence on the required throughput. Additionally,
it can be seen that the bandwidth is exceeded when the u f is bigger than six. In the case
of the HH+custom it is interesting that, depending on Ngates, the throughput will or will
not exceed the bandwidth when the unroll factor is equal to four. However, as it is the
theoretical bandwidth, it is expected that increasing u f to higher values than four will
not lead to a performance benefit as it will saturate the LMem bandwidth.
For the HH+custom+multi kernel instance, for which the results can be seen in Fig-
ure 5.37a, the throughput depends on three parameters, Ncomps, Ngates, and u f . How-
ever, as can be seen the influence of Ncomps is small in comparison to either Ngates or u f .
Therefore, to have a more clear indication, a 2D plot is made, which kept Ncomps constant
at 960. This plot is shown in Figure 5.37b. For the HH+custom+multi kernel instance it,
just as the HH+custom kernel, depends on the number of gates if the throughput exceeds
the bandwidth when uf is 4.
For the HH+gap kernel instance, it can be seen that next to u f , when Ncomps is small the
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Table 5.31: I/O communication with LMem of the HH kernel instance. *vCompIn is
only needed in the first simulation step.

variable size (B) throughput (B/s)

gateConstants 12 · 4 size · f · u f

compConstants 6 · 4 size · f · 1⌈
Ngates

u f

⌉
vCompIn 4 size · f · 1⌈

Ngates

u f

⌉ *

Ngates 4 size · f · 1⌈
Ngates

u f

⌉
yOut 4 size · f · u f

vOut 4 size · f · 1⌈
Ngates

u f

⌉

Table 5.32: I/O communication with LMem of the HH+custom kernel instance.

variable size (B) throughput (B/s)

gateConstants 24 · 4 size · f · u f

compConstants 8 · 4 size · f · 1⌈
Ngates

u f

⌉
Ngates 4 size · f · 1⌈

Ngates

u f

⌉
yOut 4 size · f · u f

vOut 4 size · f · 1⌈
Ngates

u f

⌉

required throughput significantly increases. However, for the parameter space shown
in Figure 5.38 the bandwidth is not exceeded.
In the case of the HH+custom+multi+gap kernel instance, the throughput depends on
four parameters namely u f , Ncells, Ncomps,cell , and Ngates. Therefore, no clear plot of a
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Table 5.33: I/O communication with LMem of the HH+custom+multi kernel instance.
*vCompIn is only needed in the first simulation step

variable size (B) throughput (B/s)

gateConstants 24 · 4 size · f · u f

compConstants 8 · 4 size · f · 1⌈
Ngates

u f

⌉
vCompIn 4 size · f · 1⌈

Ngates

u f

⌉ *

Ncomps 4 size · f · 1⌈
Ngates

u f

⌉ · 1
Ncomps

Ngates 4 size · f · 1⌈
Ngates

u f

⌉
yOut 4 size · f · u f

vOut 4 size · f · 1⌈
Ngates

u f

⌉

Table 5.34: I/O communication with LMem of the HH+gap kernel instance. *vCompIn
is only needed in the first simulation step.

variable size (B) throughput (B/s)

gateConstants 12 · 4 size · f ·
u f · Ngates

Ncomps

compConstants 6 · 4 size · f · u f
Ncomps

vCompIn 4 size · f · u f
Ncomps

*

Ngates 4 size · f · u f
Ncomps

w 4 size · f · u f

yOut 4 size · f ·
u f · Ngates

Ncomps

vOut 4 size · f · u f
Ncomps
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Table 5.35: I/O communication with LMem of the HH+custom+multi+gap kernel in-
stance. *vCompIn is only needed in the first simulation step.

variable size (B) throughput (B/s)

gateConstants 24 · 4 size · f ·
u f · Ngates,cell

Ncells

compConstants 8 · 4 size · f ·
u f · Ncomps,cell

Ncells

vCompIn 4 size · f ·
u f · Ncomps,cell

Ncells
*

Ngates 4 size · f ·
u f · Ncomps,cell

Ncells

Ncomps 4 size · f · u f
Ncells

w 4 size · f · u f

yOut 4 size · f ·
u f · Ngates,cell

Ncells

vOut 4 size · f ·
u f · Ncomps,cell

Ncells

Table 5.36: Required throughput for each kernel instance.

Kernel Throughput

HH (52 · u f + 32 ·
⌈

Ngates

u f

⌉
)180 · 106

HH+custom (100 · u f + 40 ·
⌈

Ngates

u f

⌉
)180 · 106

HH+custom+multi (100 · u f + (
4

Ncomps
+ 44) · 1⌈

Ngates

u f

⌉ )180 · 106

HH+gap u f (4 +
1

Ncomps
(36 + 52 · Ngates))180 · 106

HH+custom+multi+gap u f (4 +
1

Ncells
(44 · Ncomps,cell + 100 · Ngates,cell))180 · 106
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Figure 5.36: LMem bandwidth (thick line) and total required throughput for multiple
unroll factors (other lines) f = 180MHz. (a) For the HH kernel instance. (b) For the
HH+custom kernel instance.

complete parameters space can be made. To still be able to get an indication of how the
throughput will scale, two different plots where Ncomps,cell is constant are made. The
values chosen for Ncomps,cell are 1 and 3 as this are the number of compartments per cell
for a HH or IO cell. Furthermore, the number of gates per compartment is assumed to
be identical between compartments. The predictions of the throughput can be seen in
Figure 5.39. It is interesting that, for a small number of cells, the throughput exceeds the
bandwidth depending on the number of gates and unroll factor. Intuitively, this result
can be understood as the number of ticks scales quadratically (see Equation (5.6)) while
the amount of data scales linearly (see Table 5.35). Therefore, the ratio of data/ number
of ticks will increase if the number of cells decreases. Additionally, it must be noted
that besides the extra data sent per cell, if Ncomps,cell is increased, the Ngates,cell increases
faster as Ngates represents the amount of gates per compartment.
To see if the calculation of the throughput holds in practice, each kernel is simulated.
To simplify the plots and thus make the plots less cluttered, Ngates,max is set to 10. The
used configurations can be seen in Tables 5.37 to 5.41.
The performance measurements of the HH kernel are shown in Figure 5.40a. It can
be seen that until a u f 4 is reached, the performance increases. For larger u f , no
performance gain is observed. This is the consequence of reaching the bandwidth limit
between the DFE and the LMem. It must be noted that the bandwidth limit is reached
with a lower unroll factor than was calculated. This can be explained by the fact that
a throughput equal to the bandwidth can be achieved under optimal circumstances,
meaning that the data alignment and clock speed of the memory can cause deviations
from the predicted behaviour.
The performance measurements of the HH+custom kernel instance can be seen in Fig-
ure 5.40b. This shows that the maximum performance is achieved when u f is equal to
2. This is lower than the expected maximum u f of four. This could again be expected
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Figure 5.37: LMem bandwidth (red plane or thick line) and total required throughput
for multiple unroll factors (other planes or other lines) for HH+custom+multi kernel
instance, f = 180MHz. (a) 960 ≤ Ncomps ≤ 19600. (b) Ncomps = 960.
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Table 5.37: Configurations used for performance measurements of the HH kernel in-
stance.

uf Ncomps,max Ngates,max

1 61440 10
2 57344 10
3 40960 10
4 53248 10
6 28672 10

Table 5.38: Configurations used for performance measurements of the HH+gap kernel
instance.

uf Ncomps,max Ngates,max

1 65536 10
2 65536 10
3 61440 10
4 57344 10
6 53248 10
8 49152 10
12 40960 10
16 32768 10
24 24576 10

Table 5.39: Configurations used for performance measurements of the HH+custom kernel
instance.

uf Ncomps,max Ngates,max

1 57344 10
2 53248 10
3 53248 10

Table 5.40: Configurations used for performance measurements of the HH+custom+multi
kernel instance.

uf Ncomps,max Ngates,max

1 40960 10
4 28672 10
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Figure 5.38: LMem bandwidth (red plane) and total required throughput for multiple
unroll factors (other planes) for HH+gap kernel instance, f = 180MHz.

Table 5.41: Configurations used for performance measurements of the
HH+custom+multi+gap kernel instance.

uf Ncomps,max Ngates,max

8 23552 6
12 23552 6
16 24576 10

as the LMem bandwidth could be achieved only under optimal circumstances.
The performance measurements of the HH+custom+multi kernel instance are depicted in
Figure 5.40c. Although increasing the unroll factor from 1 to 4 achieves a performance
gain, the expected performance (10/⌈10/4⌉ = 3.33) gain is not achieved. This is as
expected because the maximum achievable throughput is lower than the bandwidth as
results from the HH and HH+custom kernels have shown.
The performance results of the HH+gap kernel can be seen in Figure 5.41a. This shows
that, as expected (see Figure 5.38) the HH+gap kernel instance is not bounded by the
LMem bandwidth.
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Figure 5.39: LMem bandwidth (red plane) and total required throughput for multiple
unroll factors (other planes) HH+custom+multi+gap kernel instance, f = 180MHz. (a)
Ncomps,cell = 1. (b) Ncomps,cell = 3

Finally, the performance measurements of the HH+custom+multi+gap kernel instance can
be seen in Figure 5.41b. Those show that, as expected (see Figure 5.39), the throughput
is not a bottleneck for the performance. Thus, in both kernels featuring gap junctions,
the value of u f is only dictated by the available hardware resources, rather than the
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(a) (b)

(c)

Figure 5.40: Time per simulation step for the kernel instances without gap junctions,
Ngates = 10, f = 180MHz. (a) HH. (b) HH+custom. (c) HH+custom+multi.

LMem bandwidth. In other words, this means that the kernels become compute-bound
instead of data-bound.
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(a) (b)

Figure 5.41: Time per simulation step for the kernel instances with gap junctions,
Ngates = 10, f = 180MHz. (a) HH+gap. (b) HH+custom+multi+gap.
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Figure 5.42: Estimation of the frequency of compartments per compartment.

5.4.4 Experimental performance results

Based on the scaling analysis above, it can be seen that the performance of the kernel
instances without gap junctions depends on Ncomps, Ngates and u f . On the other hand,
the kernel instances with gap junctions scale with Ncells and u f (under the assumption
that Ncells ≥ Ngates,avg,cell · u fgap). As the maximum values Ncomps,max, Ngates,max, and
u f are dependent on each other, the performance depends on which network sizes are
supported. To set a starting point, Ngates,max is set to 10. The value of 10 is chosen
as most of the models are covered. To justify this decision, 10% of the 660 realistic
single-neuron models in modelDB5 were investigated. To get an estimation of the gates
per compartment, the number of different channels on the front page of the model
in modelDB were counted. This estimation has as a downside that the channels are
counted per cell and thus not the gates per compartment. The results can be seen in
Figure 5.42 and show 10 gates per compartment covering 89% of the cases.
After this simplification of having a constant value for Ngates,max, for each u f that is viable
the maximum of Ncomps,max is found with an accuracy of 4096 compartments, while not
letting the throughput exceed the theoretical LMem bandwidth. The results can be seen
in Tables 5.42 to 5.46.
As the best performance is achieved with an as high as possible unroll factor, smaller
networks will be able to be simulated faster if the configuration is not bounded by
the bandwidth. For smaller networks, a higher unroll factor can be used than when
larger networks are simulated. Therefore, the HH kernel models up to and including
53248 compartments can best be simulated with the configuration of u f = 4, while if
the number of compartments is between 53248-57344 the configuration with u f = 2
gives the best performance. The best performance for each range of the number of
compartments per kernel instance is shown in Figures 5.43 to 5.44. Interesting is that
the performance of the kernel instances without gap junctions show a linear relation

5https://senselab.med.yale.edu/ModelDB/ModelList.cshtml?id=3537

https://senselab.med.yale.edu/ModelDB/ModelList.cshtml?id=3537
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Table 5.42: Best u f possible for configurations with maximum Ncomps,max, where
Ngates,max = 10 and f = 180MHz for the HH kernel instance.

u f Ncomps,max

1 61440
2 57344
3 40960
4 53248
6 28672

Table 5.43: Best u f possible for configurations with maximum Ncomps,max, where
Ngates,max = 10 and f = 180MHz for the HH+gap kernel instance.

u f Ncomps,max

1 65536
2 65536
3 61440
4 57344
6 53248
8 49152
12 40960
16 32768
24 24576

Table 5.44: Best u f possible for configurations with maximum Ncomps,max, where
Ngates,max = 10 and f = 180MHz for the HH+custom kernel instance.

u f Ncomps,max

1 57344
2 53248
3 53248
4 45056

Table 5.45: Best u f possible for configurations with maximum Ncomps,max, where
Ngates,max = 10 and f = 180MHz for the HH+custom+multi kernel instance.

u f Ncomps,max

1 40960
4 28672
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Table 5.46: Best u f possible for configurations with maximum Ncomps,max, where
Ngates,max = 10 and f = 180MHz for the HH+custom+multi+gap kernel instance.

u f Ncomps,max

1 49152
2 45056
3 45056
4 40960
6 36964
8 32768
12 28672
16 24576
24 12288

to Ngates, while u f is not equal to one so by equation Equation (5.8) (the number of
ticks required per compartment), the number of ticks does not scale linear. This can
be explained by the fact that the kernel instances are bounded by the bandwidth of
the memory. Secondly, the number of compartments per cell in the HH+custom+multi
kernel instance does not influence the performance. This is as expected because the total
number of compartments stays the same. Note that Ncomps represents the total number
of compartments.

Nticks,comp =

⌈
Ngates,comp

u f

⌉
(5.8)
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Figure 5.43: Time per simulation step for the kernel instances without multiple cell
compartments, f = 180MHz. (a) HH (b) HH+gap (c) HH+custom

.

Figure 5.44: Time per simulation step for the kernel instances with multiple cell com-
partments, f = 180MHz. (a) HH+custom+multi (b) HH+custom+multi+gap

.
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Table 5.47: Configurations used to get performance results for the comparison against
the CPU and the speedup against the CPU with 23040 compartments.

kernel u f Ncomps,max Ngates,max Speedup

HH 4 53248 10 35.49
HH+gap 24 24576 10 36.36
HH+custom 3 53248 10 15.88
HH+custom+multi 4 28672 10 14.33
HH+custom+multi+gap 16 24576 10 23.98

5.4.5 Performance comparison

Previously, the scaling of the execution time has been shown. In the remainder of this
section, the performance of each kernel instance on the DFE will be compared against
its counterpart on the CPU. Additionally, the HH+custom+multi+gap kernel instance is
compared against the implementations of BrainFrame.

5.4.5.1 Performance comparison against sequential CPU

For the simulation of the HH and HH+gap kernels, HH cells are simulated, without
gap junctions in case of the HH kernel and with gap junctions in case of the HH+gap
kernel instance. The HH+custom simulation simulates soma compartments from the
IO-model. Finally, for both the HH+custom+multi and HH+custom+multi+gap kernel in-
stances IO cells, again with or without gap junctions depending if the kernel instance
supports the gap junctions. For each of the simulations 23040 compartments are sim-
ulated, which means that in case of the simulations using the HH+custom+multi and
HH+custom+multi+gap kernels 7680 cells are simulated as a single IO cell consists out of
3 compartments.
The optimal configurations of the DFE used for the simulations and the speedups against
the CPU can be seen in Table 5.47. The first interesting finding of the speedups is that
although the unroll factor of the HH+gap junction kernel instance is much higher than
the unroll factor of the HH kernel instance, the speedup is not. An explanation for
this is that the computations which are unrolled in the HH-model are more compu-
tationally intensive than the computations which are unrolled in the HH+gap kernel.
As the part which is more computationally intensive takes more time, execution of the
more computationally intensive parts in parallel will achieve a higher speedup for the
same parallelization factor in comparison with a less computationally intensive part.
The second interesting observation is that the speedup of both the HH+custom and
HH+custom+multi kernel instance is relatively low in comparison with the HH kernel.
It is expected that this is caused by bottleneck of the LMem bandwidth. Finally, the
speedup of the HH+custom+multi+gap kernel instance is in line with our expectations if
compared against the speedup of the HH+gap kernel instance based on the ratio of unroll
factors, as follows: (16/24) · 36.36 = 24, 24. Additionally, simulations of the HH-model
are compared to the implementation in NEURON (Python-based) . The C-code was
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Table 5.48: Fabric specialisations of the Xeon Phi and NVidia Titan X used in [3].

Specification Xeon Phi 5110P NVidia Titan X

On-Board DRAM 8 Gb 12 Gb
RAM bandwidth 320 Gb/s 336.5 Gb/s
Memory streams/channels 16 -
On-chip Memory 30 Mb (L2 cache) 3 Mb (L2 cache)
Number of chip cores 61 3072 CUDA Cores
Chip Frequency 1.053 GHz 1 GHz
Manufacturing Technology (nm) 22 28

30.17x faster than NEURON which accounts for an overall speedup of 1065x of the DFE
kernel against NEURON.

5.4.5.2 Performance comparison against BrainFrame

Additionally to the comparision with the CPU, the performance of the flexHH
HH+custom+multi+gap kernel, with an unroll factor of 16, is compared to three Brain-
Frame [3] implementations. The three implementations of BrainFrame are on a Maxeler
Maia DFE (this is a hard-coded implementation), an Intel Xeon Phi, and a NVidia Titan
X GPU. The specifications of the Xeon PHI and the GPU can be seen in Table 5.48.
The performance of the simulation of the IO-model for the implementations of Brain-
Frame and the flexHH kernel is shown in Figure 5.45. This shows that the flexHH kernel
is performing better than all three implementations of BrainFrame. It must be noted
that, the performance of the Xeon Phi and Graphics Processing Unit (GPU) are expected
to have better perfromance for larger scale networks as a lower unroll factor will be
required for the DFE kernels.
The speedup of flexHH against the hard-coded DFE implementation of BrainFrame,
which kernels both have the same unroll factor, shows a constant speedup of 1.36 ×.
The speedup of the flexHH implementation is partly caused by a higher frequency (180
MHz vs 150 MHz). As the increase in frequency accounts only for 20 % of the speedup
(assuming linear correlation of frequency to performance) there must be another factor
for this gain. It is expected that it is caused by the fact that the flexHH implementation
uses a column-wise calculation for the gap junctions (as explained in Section 4.4.4).
Because of the column-wise calculations, there is no need to explicitly flush any pipeline
during the execution, which is needed in the hard-coded implementation.
A disadvantage of the kernel in flexHH is the data transfer. This is due to the fact that,
besides the initial values of the state variables, also the parameters of the equations
are sent to the DFE in the flexHH implementation, however, this is the price to pay for
deploying general kernel instances in hardware. Additionally, during the execution of
the kernel, all those parameters are repeatedly transferred from the LMem in flexHH
as opposed to the hard-coded version. Another disadvantage is the case that all the
parameters used in the flexHH implementation need to be stored in the LMem of the
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Figure 5.45: Time per simulation step for the implementations of BrainFrame and the
flexHH HH+custom+multi+gap kernel.(DFE hc is the hard-coded DFE variant from Brain-
Frame, DFE gen is the flexHH kernel)

DFE as opposed to the BrainFrame implementation where the parameters are hard-
coded.
On the other hand, an advantage in favour of the kernel in flexHH, and possibly the
reason why a higher frequency is achieved, is that in case of the hard-coded kernel, all
the gate equations are calculated simultaneously which requires all the hardware to be
available. In contrast, in the flexHH implementation the gate equations are implemented
with the use of general equations, which require more hardware per gate equations
in comparison to the hard-coded solution. In this case, as those general equations
can be used for each of the gate equations, the hardware can be reused and these
equations do not have to be unrolled to improve the performance as the calculation of
the gap junctions is the critical part of the simulation. This hardware re-usability comes
yet, at the cost of higher BRAM use: The hard-coded version is more efficient as the
flexHH implementation uses more YMem than is needed as the three compartments have
a different number of gates and the maximum of the YMem is a multiplication of Ncomps,max
and Ngates,max (see Chapter 4). However, this overhead is not big enough to undo the
more efficient use of hardware needed for the gate equations. It must be noted that the
flexHH implementation only functions correctly when the gap junctions require more
time to calculate than the gate equations, which is the case if Ncells > Ngates,avg,cell · u f ,
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as discussed in Section 4.4.4.

5.5 Energy results
In this section, the energy usage of the implementations on the DFE will be discussed.
To get the power usage of the implementations, the maxtop command was used. The
configurations used for the power measurements are the same as the configurations
used for the performance measurements. To have a variety of measurement points per
configuration, the power is measured with the minimum and maximum number of
compartments and gates it supports. Consequently, four points per configuration are
measured. All the results of the power measurements can be seen in Appendix D. Those
results show that when a higher unroll factor is used, the power usage increases. The
reason is, of course, that more computations are done simultaneously. Consequently,
the data rate of the LMem is increased. Additionally, the number of compartments
seems to have a negligible influence on power usage. This is to be expected as the
number of compartments only changes the duration of the simulation and therefore, the
power usage while the kernel is active will not change.
On the other hand, the number of gates is of influence on the power usage for the kernel
instances without gap junctions. This can be explained, as the unroll factor for those
kernel instances creates multiple pipelines which are active or inactive based on the
number of gates. Based on this, it is expected that when more pipelines are active, the
power usage increases.
Inspecting the power results in Appendix D, this seems to be the case. The only kernel
instance where this relation is not clear is the HH+custom kernel between u f = 3 and
u f = 4. However, because the unroll factor only differs by one and the results are not
significantly different, this is assumed to not contradict the general relation between the
power usage and unroll factor. Although a general trend is observed between the u f
and the power usage, a precise relation between u f , Ncomps, Ngates and the power usage
has not been found.
Consequently, for the calculation of the energy, the maximum value per kernel instance
is taken. The maximum values of the power measurements per kernel instance are
presented in Table 5.49. Interesting from those results is a difference in power con-
sumption depending on whether the kernel instance supports gap junctions. Possibly
this due to the fact that kernel instances without gap junctions do not have to transfer
the connectivity matrix. Another possible explanation might be that the power of the
kernel instances with gap junctions is measured while only the calculations of the gap
junctions were active and not the rest of calculations. The power results of each of the
implementations are shown in Figures 5.46 to 5.47. These figures are showing a power
consumption between 40.1 and 46.8 Watts. The energy results are calculated by multi-
plying the power from Table 5.49 with the performance results of Figures 5.43 to 5.44.
Being able to show those energy results is an important practical consideration for the
using flexHH in HPC-systems like BrainFrame.
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Table 5.49: Maximum power consumption per kernel instance.

Kernel Power (W)

HH 46.8
HH+gap 40.1
HH+custom 45.8
HH+custom+multi 44.3
HH+custom+multi+gap 40.5

Figure 5.46: Energy usage for the implementations without multiple cell compartments,
f = 180MHz. (a) HH. (b) HH+gap (c) HH+custom
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Figure 5.47: Energy usage for the implementations with multiple cell compartments,
f = 180MHz. (a) HH+custom+multi. (b) HH+custom+multi+gap.
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Conclusions 6
6.1 Discussion
In this thesis, we presented a flexible, scalable and high performing HH-model library
called flexHH implemented on a Data-Flow Engine (DFE) (Field Programmable Gate
Array (FPGA)-based) platform. flexHH provides clear performance benefits compared
to C-based, single-threaded execution and traditional NEURON-based simulation en-
vironments. flexHH also performs uniformly better than a prior hard-coded hardware
implementation, while not sacrificing simulation flexibility. The flexibility and com-
pliance with NeuroML makes flexHH immediately useful for computational neurosci-
entists, giving this library a major advantage towards community adoption. Besides
the performance benefit that hardware-based libraries like flexHH provide, they also
give performance guarantees. Since all design features are defined at design time
and resources are allocated statically, both power and execution times can be accu-
rately predicted based on problem size, resulting in accurate energy usage predictions,
which is an important practical consideration for the use of High Performance Com-
puting (HPC)-systems on the field. This makes this DFE-based, HH-model library a
significant addition for HPC-based acceleration platforms like BrainFrame that wish to
provide a heterogeneous-computing system incorporating multiple acceleration plat-
forms, including FPGA-based substrates.
To make flexHH flexible, the equations of the models were parametrized so that they
can be stored in the Large Memory (LMem) on board of the DFE. Consequently, for new
simulations there is no need for a new time-consuming synthesis cycle. However, all
those variables require to be stored in memory, creating a limitation in the network size
and simulation time as at some point there won’t be any more memory left. Further-
more, the amount of hardware resources used is dependent on the variables Ncomps,max,
Ngates,max, and u f , creating a trade-off between the network size and performance. Other
limitations which this version of the library has are:

• Not every gate and gap-junction equation is supported as this would have required
an infinite amount of resources. Consequently, the focus was laid to support the
equations used in the classical Hodgkin-Huxley (HH)-model and the Inferior-
Olive (IO)-model. However, there are other HH-type models which require other
equations, than are able to be generated with the predefined set of generalized
equations, to describe their gates and/ or gap junctions.

• The multiple cell compartments only support one structure (a sequential struc-
ture).

• The gap-junction calculations always take
N2

cells
u f

ticks even if the network is not all

137
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to all connected.

• It must hold that Ncells > Ngates,avg,cell · u f as this is how the control signals are
implemented. Otherwise, an incorrect simulation will be run.

6.2 Contributions
The contributions of this thesis are as follows:

• A scalable, hardware library of accelerated, parameterizable and NeuroML-
compliant [10] HH-model implementations which offer high performance gains.

• A set of crucial model extensions: custom ion gates, gap junctions connectivity
and multi-compartmental neurons resulting in five different kernels (independent
of the numerical solver used).

• A analysis of the difference between using three different orders of solvers for
HH-type models. This showed only in some cases a linear (instead of exponential)
benefit in increasing the time-step-size. As the benefits were not uniform and
the extra hardware-usage required for the higher-order solvers, the higher-order
solvers were not beneficial performance-wise. Consequently, the decision was
made to only further evaluate the forward-Euler solver.

• A simple prediction method for the resource usage of the kernels on the DFE.
During the analysis of this method, it became clear that the Block Random-Access
Memories (BRAMs) of the underlying FPGA were the limiting resource factor.
This method could predict the BRAM usage with a mean error between 3.28 and
7.30 % of the Maia DFE resources, where the error increased when more features
were supported. Furthermore, it showed that the influence of the frequency on
the hardware-usage was minimal.

• A comprehensive performance analysis showing that the bandwidth of the LMem
was a bottleneck for the kernel instances without gap junctions. The kernel in-
stances with gap junctions are compute bound. However, speedups of 1065x
against (sequential Python-based) NEURON, between 14-36x against sequential
C implementations. Furthermore, the flexHH library performed uniformly better
than all BrainFrame implementations, with a speedup of 1.36x against a hard-
coded DFE implementation were achieved.

• A power analysis showing a power consumption between 40.1 and 46.8 Watts,
which is only a fraction of the power consumed on the other acceleration platforms
of BrainFrame (Intel Xeon-Phi Central Processing Unit (CPU) and NVidia Graphics
Processing Unit (GPU)).

6.3 Future work
In this section recommendations are given for further improvements of the flexHH-
library.
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• Develop a parser to translate NeuroML to C-code.
The flexHH-library is NeuroML-compliant, however, it is not possible to use
NeuroML-code with this version of flexHH. as there is no automatic method
which translates the variables of the NeuroML-code to the variables in the C-
code of the host CPU. Therefore, the first recommendation is to develop a parser
which can translate the NeuroML-code to C-code which the CPU host can use.
Developing this parser will increase the usability of the library for neuroscientists.

• Add extra functionality to the kernel instances.
Adding more features (for example other equations for the gates and gap junctions)
will increase the range of neural models which can be simulated.

• Remove limitations of current version.
Per limitation (see Section 6.1) a possible migration strategy is given:

– Not every gate and gap-junction equation is supported as this would have required
an infinite amount of resources.
To add extra equations the current functions need to be extended with more
function branches.

– The multiple cell compartments only support one structure (a line).
To add support for a general three structure a matrix multiplication between
the compartments in a cell is required. The matrix multiplication is expected
to be sparse, as it is not expected that in the most compartments within a single
cell are connected. When supporting multiple structures, first challenge is
how to map the multiple cell compartments. Specifically challenging is how
this mapping will efficiently support a variable number of compartments per
cell.

– The gap-junction calculations always take
N2

cells
u f

ticks even if the network is not all

to all connected.
The current gap-junction calculations do a naive matrix multiplication. To
reduce the number of ticks when the network is not all to all connected, a
sparse matrix multiplication could be implemented.

– It must hold that Ncells > Ngates,avg,cell · u f as this is how the control signals are
implemented. Otherwise an incorrect simulation will be run.
To address this limitation a way needs to be found how the control sig-
nals of both the gap-junction and gate equations depend on each other.
Otherwise, another kernel instance could be made which functions when
Ncells ≤ Ngates,avg,cell · u f

• Efficiently implement instantaneous variables.
The instantaneous variables are treated as gate-activation variables in the first
version of the flexHH library. Therefore, the instantaneous variables unnecessary
use space of the yMem (BRAMs) and the LMem. If the instantaneous variables
are processed detached from the gate-activation variables, then the space which
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is used by the instantaneous variables of both memories will be available. The
challenge to efficiently implement this, is how to manage the addresses of the
memories, as it is flexible which variable is an instantaneous variable.

• Use fixed-point instead of floating-point variables.
In the current version of the library single-precision-floating-point variables are
used. The use of floating-point variables leads to a high resource usage on the DFE
in comparison to the use of fixed-point variables. For using fixed-point variables
for the simulations of a HH-model, an analysis should be done on the precision
of the variables as a small rounding error can lead to faulty simulation. As HH
models are biophysically meaningful the state variables are within specific bounds
and therefore, such an analysis can be done. Furthermore, the Maxeler tools enable
the use of look-up tables with fixed-point computations. Those look-up tables can
replace the hardware needed for some complex functions, such as divisions or
multiple exponentials. Consequently, the hardware-usage for such functions can
be lower and thus those hardware resources can be used for extra features, bigger
networks, and/or better performance.

• Study of ODE solvers to simulate HH-type models.
The use of different numerical solvers was compared and showed that there was
no exponential increase of the time-step-size when using higher-orders solvers.
Moreover, in most cases there was increase in time-step-size when using higher-
order solvers. Further investigation of this point can potentially lead to added
benefits. Understanding the full details of using different Ordinary Differential
Equation (ODE) solvers for HH-type models, can give a explanation why which
solver performs best. Consequently, a future version of flexHH that provides
automatic selection of the most optimal solver per experiment can be constructed.

• Supporting variable-time step-size ODE solvers.
Additionally to the above study, solvers with a variable time-step-size could be
implemented, as a higher time-step-size could be used for non-spiking periods.
This will reduce the overall execution time of the simulation, as the simulation can
be done in less steps, when there are periods without spiking activity, which can be
a significant portion of the execution in simulations without gap junctions. How-
ever, it must be noted that for the use of the variable step-size, the accuracy of the
simulation needs to be checked at runtime, which will require extra development
effort and hardware resources.
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Mathematical description
Inferior-Olive model A
Constants

Cm,d = Cm,s = Cm,a = 1
gcah,d = 4.5
Vcah,d = 120
gkca,d = 35
Vkca,d = −75

gh,d = 0.125
Vh,d = −43

gcal,s = 0.68
Vcal,s = 120
gna,s = 150
Vna,s = 55
gkdr,s = 9
Vkdr,s = −75

gk,s = 5
Vk,s = −75

gna,a = 240
Vna,a = 55

gk,a = 20
Vk,a = −75

gleak,d = 0.016
Vleak,d = 10
gleak,s = 0.016
Vleak,s = 10
gleak,a = 0.016
Vleak,a = 10

p1 = 0.25
p2 = 0.15

gint = 0.13
wi,j = 0.4
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simStep = index of current simulation step, starts at 0

iApp =

{
6, if (simStep ≥ 20000) & (simStep<20500-1)
0 otherwise

Derivatives

dVdend

dt
=
−Igap + Iapp − Isd + Icah,d + Ikca,d + Ih,d + Ileak,d

Cm,d
(A.1)

where:

i = number current cell
j = number other cell

Vi,j = Vdend,i −Vdend,j

Igapi =
N−1

∑
j=0

(wi,j · (0.8 · e−0.01·V2
i,j + 0.2) ·Vi,j)

Iapp = input current, can vary per simulation step

Isd =
gint

1− p1
· (Vdend −Vsoma)

Icah,d = gcah,d · r2
d · (Vcah,d −Vdend)

Ikca,d = gkca,d · sd · (Vkca,d −Vdend)

Ih,d = gh,d · qd · (Vh,d −Vdend)

Ileak,d = gleak,d · (Vleak,d −Vdend)

drd

dt
= 0.2(· 1.7

1 + e
−

Vdend − 5
13.9

· (1− rd)−
0.1 · Vdend + 8.5

−5

1− e
Vdend + 8.5

5

· rd) (A.2)

dsd

dt
= min(0.00002 · Ca2Plusd, 0.01) · (1− sd)− 0.015 · sd (A.3)

dqd

dt
=

1

1 + e
Vdend + 80

4

− qd

1
e−0.086·Vdend−14.6 + e0.070·Vdend−1.87

(A.4)

dCa2Plusd

dt
= −3 · Icah,d − 0.075 · Ca2Plusd (A.5)

dVsoma

dt
= − Ids − Ias + Ical,s + Ina,s + Ikdr,s + Ik,s + Ileak,s

Cm,s
(A.6)
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where:

Ids =
gint

p1
· (Vsoma −Vdend)

Ias =
gint

1− p2
· (Vsoma −Vaxon)

Ical,s = gcal,s · k3
s · ls · (Vcal,s −Vsoma)

ms =
1

1 + e
−

Vsoma + 30
5.5

Ina,s = gna,s ·m3
s · hs · (Vna,s −Vsoma)

Ikdr,s = gkdr,s · n4
s · (Vkdr,s −Vsoma)

Ik,s = gk,s · x4
s · (Vk,s −Vsoma)

Ileak,s = gleak,s · (Vleak,s −Vsoma)

dks

dt
=

1

1 + e
−
(Vsoma + 61)

4.2

− ks (A.7)

dls

dt
=

1

1 + e
−

Vsoma + 85.5
−8.5

− ls

20 · e
Vsoma + 160

30

1 + e
Vsoma + 84

7.3

+ 35

(A.8)

dhs

dt
=

1

1 + e
Vsoma + 70

5.8

− hs

3 · e
Vsoma + 40
−33

(A.9)

dns

dt
=

1

1 + e
−

Vsoma + 3
10

− ns

5 + 47 · e
−(−50−Vsoma)

900

(A.10)

dxs

dt
=

1.3 · Vsoma + 25
10

1− e
−

Vsoma + 25
10

· (1− xs)− 1.69 · e
Vsoma + 35
−80 · xs (A.11)

dVaxon

dt
= − Isa + Ina,a + Ik,a + Ileak,a

Cm,a
(A.12)
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where:

Isa =
gint

p2
· (Vaxon −Vsoma)

ma =
1

1 + e
−

Vaxon + 30
5.5

Ina,a = gna,a ·m3
a · ha · (Vna,a −Vaxon)

Ik,a = gk,a · x4
a · (Vk,a −Vaxon)

Ileak,a = gleak,a · (Vleak,a −Vaxon)

dha

dt
=

1

1 + e
−

Vaxon + 60
−5.8

− ha

1.5 · e
Vaxon + 40
−33

(A.13)

dxa

dt
=

1.3 · Vaxon + 25
10

1− e
−

Vaxon + 25
10

· (1− xa)− 1.69 · e
Vaxon + 35
−80 · xa (A.14)

Initial values

V0
dend = −60

r0
d = 0.0112788

s0
d = 0.0049291

q0
d = 0.337836

Ca2Plus0
d = 3.7152

V0
soma = −60

k0
s = 0.7423159

l0
s = 0.0321349

h0
s = 0.3596066

n0
s = 0.2369847

x0
s = 0.1

V0
axon = −60

h0
a = 0.9

x0
a = 0.2369847



Simulation parameters B
In this appendix the simulation parameters, consisting of the initial values , the values for
the applied current and the weight values for the connectivity matrix, of the simulations
used in Section 5.1 are shown.

B.1 Validation

B.1.1 C-code validation

B.1.1.1 HH

V = 0 (B.1)
m = 0.5 (B.2)
h = 0.5 (B.3)
n = 0.5 (B.4)

Iapp =

{
50, if (t ≥ 100) & (t < 200)
0 otherwise

(B.5)

where
t is the time in ms

B.1.1.2 Exact solution HH

V = 0 (B.6)
m = 0.5 (B.7)
h = 0.5 (B.8)
n = 0.5 (B.9)

Iapp =

{
50, if (t ≥ 0) & (t < 20)
0 otherwise

(B.10)

where
t is the time in ms

B.1.1.3 IO

Vdend = −60 · −5(i%10) (B.11)
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rd = 0.0112788 (B.12)
sd = 0.0049291 (B.13)
qd = 0.0337836 (B.14)

Ca2Plus = 3.7152 (B.15)
Vsoma = −60 (B.16)

ks = 0.7423159 (B.17)
ls = 0.0321349 (B.18)
hs = 0.3596066 (B.19)
ns = 0.2369847 (B.20)
xs = 0.1 (B.21)

Vaxon = −60 (B.22)
ha = 0.9 (B.23)
xa = 0.2369847 (B.24)

Iapp =

{
(i%20), if (t ≥ 200) & (t < 250)
0 otherwise

(B.25)

wi,j = 0.005 (B.26)
where

t is the time in ms
i, j are indexes of the cells

B.1.2 DFE-code validation

B.1.2.1 HH

V = 0.02567053 (B.27)
m = 0.05309296 (B.28)
h = 0.59523809 (B.29)
n = 0.31807682 (B.30)

Iapp =

{
50, if (t ≥ 0) & (t < 0.01)
0 otherwise

(B.31)

where
t is the time in ms

B.1.2.2 HH+gap

V = 0 (B.32)
m = 0.5 (B.33)
h = 0.5 (B.34)



B.1. VALIDATION 151

n = 0.5 (B.35)

Iapp,i =

{
20(i%10), if (t ≥ 100) & (t < 200)
0 otherwise

(B.36)

wi,j = 0.003 (B.37)
where

t is the time in ms
i, j are indexes of the compartments

B.1.2.3 HH+gap colormap

V = −10 + 20 ∗ sin(i) (B.38)
m = 0.05293139070272 (B.39)
h = 0.59613484144211 (B.40)
n = 0.31768223643303 (B.41)

Iapp,i =

{
(i%10), if (t ≥ 100) & (t < 200)
0 otherwise

(B.42)

wi,j =


0.003, if (i < 96 & j < 96)
0.006, ·sin(i), if (96 ≤ i < 192 & 96 ≤ j < 192)
0.0 otherwise

(B.43)

where
t is the time in ms
i, j are indexes of the compartments

B.1.2.4 HH+custom

V = −60 (B.44)
h = 0.90 (B.45)
x = 0.2369847 (B.46)

Iapp =

{
50, if (t ≥ 100) & (t < 200)
0 otherwise

(B.47)

where
t is the time in ms

B.1.2.5 HH+custom+multi

Vdend = −60 (B.48)
rd = 0.0112788 (B.49)
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sd = 0.0049291 (B.50)
qd = 0.0337836 (B.51)

Ca2Plus = 3.7152 (B.52)
Vsoma = −60 (B.53)

ks = 0.7423159 (B.54)
ls = 0.0321349 (B.55)
hs = 0.3596066 (B.56)
ns = 0.2369847 (B.57)
xs = 0.1 (B.58)

Vaxon = −60 (B.59)
ha = 0.9 (B.60)
xa = 0.2369847 (B.61)

Iapp =

{
6, if (t ≥ 1000) & (t < 1050)
0 otherwise

(B.62)

where
t is the time in ms
i, j are indexes of the cells

B.2 Exploration time step-size

B.2.1 HH

V = 0 (B.63)
m = 0.5 (B.64)
h = 0.5 (B.65)
n = 0.5 (B.66)

Iapp =

{
50, if (t ≥ 9.5) & (t < 10.0)
0 otherwise

(B.67)

where
t is the time in ms

B.2.2 HH+gap

V = 0 (B.68)
m = 0.5 (B.69)
h = 0.5 (B.70)
n = 0.5 (B.71)
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Iapp =

{
50 · i, if (t ≥ 5) & (t < 6)
0 otherwise

(B.72)

wi,j = 0.01 (B.73)
where

t is the time in ms
i, j are indexes of the compartments

B.2.3 HH+custom

V = −60 (B.74)
k = 0.7423 (B.75)
l = 0.0321349 (B.76)
h = 0.3596066 (B.77)
n = 0.2369847 (B.78)
x = 0.1 (B.79)

Iapp =

{
30, if (t ≥ 8) & (t < 9)
0 otherwise

(B.80)

where
t is the time in ms

B.2.4 HH+custom+multi

Vdend = −60 (B.81)
rd = 0.0112788 (B.82)
sd = 0.0049291 (B.83)
qd = 0.0337836 (B.84)

Ca2Plus = 3.7152 (B.85)
Vsoma = −60 (B.86)

ks = 0.7423159 (B.87)
ls = 0.0321349 (B.88)
hs = 0.3596066 (B.89)
ns = 0.2369847 (B.90)
xs = 0.1 (B.91)

Vaxon = −60 (B.92)
ha = 0.9 (B.93)
xa = 0.2369847 (B.94)

Iapp =

{
6, if (t ≥ 1000) & (t < 1050)
0 otherwise

(B.95)
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where
t is the time in ms

(B.96)

B.2.5 HH+custom+multi+gap

Vdend = −4 · (i%20) (B.97)
rd = 0.0112788 (B.98)
sd = 0.0049291 (B.99)
qd = 0.0337836 (B.100)

Ca2Plus = 3.7152 (B.101)
Vsoma = −2 · (i%30) (B.102)

ks = 0.7423159 (B.103)
ls = 0.0321349 (B.104)
hs = 0.3596066 (B.105)
ns = 0.2369847 (B.106)
xs = 0.1 (B.107)

Vaxon = −6 · (i%10) (B.108)
ha = 0.9 (B.109)
xa = 0.2369847 (B.110)

Iapp =

{
i%20, if (t ≥ 200) & (t < 250)
0 otherwise

(B.111)

wi,j = 0.01 (B.112)
where

t is the time in ms
i, j are indexes of the cells

B.3 Discussion

B.3.1 HH

V = 10.50 (B.113)
m = 0.17 (B.114)
h = 0.25 (B.115)
n = 0.48 (B.116)

Iapp = 0 (B.117)
(B.118)
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B.3.2 IO

Vdend = −60 (B.119)
rd = 0.0112788 (B.120)
sd = 0.0049291 (B.121)
qd = 0.0337836 (B.122)

Ca2Plus = 3.7152 (B.123)
Vsoma = −60 (B.124)

ks = 0.7423159 (B.125)
ls = 0.0321349 (B.126)
hs = 0.3596066 (B.127)
ns = 0.2369847 (B.128)
xs = 0.1 (B.129)

Vaxon = −60 · (i%10) (B.130)
ha = 0.9 (B.131)
xa = 0.2369847 (B.132)

Iapp = 0 (B.133)
(B.134)



156 APPENDIX B. SIMULATION PARAMETERS



Hardware configurations
used for the evaluation of
the resource usage C
Table C.1: Hardware configurations used for prediction of the hardware-usage of the
HH kernel instances.

u f Ncomps,max Ngates,max NODE

2 12 4 1
2 12 10 1
2 12 16 1
2 24 10 1
3 24 10 1
4 4 10 1
4 12 4 1
4 12 6 1
4 12 10 1
4 12 16 1
4 24 10 1
5 24 10 1
6 12 6 1
6 12 10 1
6 12 16 1
6 24 10 1
6 55 10 1
8 24 10 1
2 12 10 2
4 4 10 2
4 12 5 2
4 12 10 2
4 12 14 2
4 16 10 2
2 6 6 3
2 6 10 3
2 6 14 3
2 18 10 3
3 6 6 3
3 6 10 3
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OF THE RESOURCE USAGE

Table C.2: Hardware configurations used for prediction of the hardware-usage of the
HH+custom kernel instances.

index u f Ncomp,max Ngates,max NODE

0 2 12 10 1
1 2 16 6 1
2 2 16 10 1
3 2 16 14 1
4 3 23 10 1
5 3 36 6 1
6 3 48 6 1
7 4 12 10 1
8 4 16 10 1
9 4 16 16 1

10 4 23 6 1
11 4 24 10 1
12 2 12 6 2
13 2 12 10 2
14 2 16 10 2
15 1 4 10 3

Table C.3: Hardware configurations used for prediction of the hardware-usage of the
HH+custom+multi kernel instances.

index u f Ncomp,max Ngates,max NODE

0 2 12 6 1
1 3 32 9 1
2 4 8 10 1
3 4 12 4 1
4 4 12 10 1
5 4 12 12 1
6 4 23 12 1
7 4 24 10 1
8 2 16 10 2
9 1 4 10 3
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Table C.4: Hardware configurations used for prediction of the hardware-usage of the
HH+gap kernel instances.

index u f Ncomp,max Ngates,max NODE

0 2 12 6 1
1 2 12 10 1
2 2 16 10 1
3 4 12 10 1
4 12 12 6 1
5 12 12 8 1
6 12 12 10 1
7 12 16 10 1
8 12 20 10 1
9 16 23 6 1

10 24 16 10 1
11 24 23 6 1
12 4 12 10 2
13 8 16 6 2
14 8 16 10 2
15 8 16 12 2
16 12 12 6 2
17 12 12 8 2
18 12 12 10 2
19 16 12 6 2
20 16 12 10 2
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OF THE RESOURCE USAGE

Table C.5: Hardware configurations used for prediction of the hardware-usage of the
HH+custom+multi+gap kernel instances.

index u f Ncomp,max Ngates,max NODE

0 1 12 10 1
1 2 12 10 1
2 4 4 10 1
3 4 4 20 1
4 4 12 6 1
5 4 12 10 1
6 4 12 14 1
7 4 16 10 1
8 4 23 6 1
9 4 32 10 1

10 6 12 10 1
11 6 12 12 1
12 6 16 10 1
13 6 23 6 1
14 8 12 10 1
15 8 23 6 1
16 12 12 10 1
17 16 23 6 1
18 24 12 10 1
19 1 4 10 2
20 2 4 10 2
21 4 4 6 2
22 4 4 10 2
23 4 4 14 2
24 4 12 10 2
25 8 4 10 2
26 8 8 10 2
27 12 4 10 2
28 12 8 10 2



Power results D

HH

Table D.1: Power results for the HH kernel instance on a Maia DFE. The parameters
u f , Ncomps,max, and Ngates,max are configuration parameters while Ncomps and NGates are
parameters of the simulation itself.

u f Ncomps,max Ngates,max Ncomps Ngates Power (W)

1 61440 10 57600 1 34,7
10 57600 10 33,7
10 61440 1 35,2
10 61440 10 33,6

2 57344 10 53760 1 35,3
10 53760 10 39,0
10 56640 1 35,7
10 56640 10 39,0

4 53248 10 960 1 36,5
10 960 10 45,8
10 52800 1 37,0
10 52800 10 46,8
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HH+gap

Table D.2: Power results for the HH+gap kernel instance on a Maia DFE. The parameters
u f , Ncomps,max, and Ngates,max are configuration parameters while Ncomps and Ngates are
parameters of the simulation itself.

u f Ncomps,max Ngates,max Ncomps Ngates Power (W)

2 65536 10 62400 1 29,9
10 62400 10 30,0
10 65280 1 30,0
10 65280 10 30,0

3 61440 10 57600 1 30,6
10 57600 10 30,7
10 61440 1 30,7
10 61440 10 30,7

4 57344 10 53760 1 31,0
10 53760 10 31,0
10 56640 1 31,0
10 56640 10 31,0

6 53248 10 49920 1 31,8
10 49920 10 31,8
10 52800 1 31,9
10 52800 10 31,9

8 49152 10 41280 1 32,4
10 41280 10 32,6
10 48960 1 32,5
10 48960 10 32,5

12 40960 10 33600 1 34,3
10 33600 10 34,1
10 40320 1 34,3
10 40320 10 34,1

16 30720 10 24960 1 35,9
10 24960 10 35,9
10 32640 1 36,0
10 32640 10 35,9

24 24576 10 960 1 39,3
10 960 10 40,1
10 24000 1 39,1
10 24000 10 39,2
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HH+custom

Table D.3: Power results for the HH+custom kernel instance on a Maia DFE. The
parameters u f , Ncomps,max, and Ngates,max are configuration parameters while Ncomps and
Ngates are parameters of the simulation itself.

u f Ncomps,max Ngates,max Ncomps Ngates Power (W)

1 57344 10 53760 1 39,6
10 53760 10 38,2
10 56640 1 40,2
10 56640 10 38,1

3 53248 10 45120 1 41,7
10 45120 10 45,8
10 52800 1 42,3
10 52800 10 45,7

4 45056 10 960 1 43,2
10 960 10 44,8
10 44160 1 43,2
10 44160 10 45,0

HH+custom+multi

Table D.4: Power results for the HH+custom+multi kernel instance on a Maia DFE. The
parameters u f , Ncomps,max, and Ngates,max are configuration parameters while Ncomps and
Ngates are parameters of the simulation itself.

u f Ncomps,max Ngates,max Ncomps Ngates Power (W)

1 40960 10 28800 1 40,4
10 28800 10 37,3
10 40320 1 40,4
10 40320 10 37,4

4 28672 10 960 1 44,3
10 960 10 43,8
10 27840 1 43,9
10 27840 10 43,8
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HH+custom+multi+gap

Table D.5: Power results for the HH+custom+multi+gap kernel instance on a Maia DFE.
The parameters u f , Ncomps,max, and Ngates,max are configuration parameters while Ncomps
and Ngates are parameters of the simulation itself.

u f Ncomps,max Ngates,max Ncomps Ngates Power (W)

1 49152 10 45120 1 30,3
10 45120 10 30,3
10 48960 1 30,3
10 48960 10 30,3

3 45056 10 41280 1 31,4
10 41280 10 31,5
10 44160 1 31,5
10 44160 10 31,5

4 40960 10 37440 1 31,6
10 37440 10 31,6
10 40320 1 32,0
10 40320 10 32,0

6 36864 10 33600 1 32,3
10 33600 10 32,2
10 36480 1 32,8
10 36480 10 32,8

8 32768 10 28800 1 33,1
10 28800 10 33,1
10 32640 1 33,2
10 32640 10 33,2

12 28672 10 24960 1 34,6
10 24960 10 34,7
10 27840 1 34,7
10 27840 10 34,6

16 24576 10 12480 1 36,2
10 12480 10 36,3
10 24000 1 36,3
10 24000 10 36,3

24 12288 10 960 1 39,5
10 960 10 40,5
10 11520 1 39,6
10 11520 10 39,9
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