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A B S T R A C T

This paper explores the potential application of quantum and hybrid quantum–classical neural networks in
power flow analysis. Experiments are conducted using two datasets based on 4-bus and 33-bus test systems.
A systematic performance comparison is also conducted among quantum, hybrid quantum–classical, and
classical neural networks. The comparison is based on (i) generalization ability, (ii) robustness, (iii) training
dataset size needed, (iv) training error, and (v) training process stability. The results show that the developed
hybrid quantum–classical neural network outperforms both quantum and classical neural networks, and hence
can improve deep learning-based power flow analysis in the noisy-intermediate-scale quantum (NISQ) and
fault-tolerant quantum (FTQ) era.
1. Introduction

Efficient and secure power system operation depends heavily on
power flow (PF) analysis. This analysis is traditionally performed using
iterative numerical methods, which pose computational challenges for
large-scale modern power systems and suffer from inaccuracies in
certain scenarios [1]. As a result, the development of scalable, reliable,
and computationally tractable PF methods is of great importance to
meet the evolving demands of modern power systems characterized
by a large number of distributed energy resources, variable loads, and
bidirectional power flows, among others [2,3].

Neural networks have been widely used for PF analysis due to their
capacity to address complexities present in modern power systems [4].
By learning from historical data, neural networks reveal nonlinear
and complex relationships between inputs and outputs even in cases
for which traditional iterative numerical methods fail to converge,
e.g. for ill-conditioned scenarios. This capability is especially critical
in accommodating varying load demands and integrating distributed
energy resources in large-scale modern power systems [5,6].

However, while neural networks offer significant advantages for
PF analysis, their practical implementation presents certain challenges.
Firstly, they rely on large, high-quality datasets, which can be hard
to obtain due to various reasons, such as privacy concerns and high
proportions of missing data. In addition, the computational complexity
of the training process increases with the size and complexity of power
systems. For instance, the increased depth of neural networks necessi-
tates complicated hyperparameter tuning, which demands substantial
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computational resources. Finally, ensuring scalability, generalization
ability, and robustness to noisy training data remains a critical concern
for classical neural networks (NNs). They are often case-specific and
prone to overfitting to training data, which can potentially compromise
the reliability of classical NNs in safety-critical applications (e.g. [7,8]).

A radically different machine learning approach that can help over-
come the challenges faced by classical NNs is quantum neural networks
(QNNs), which means the enrichment of NNs with quantum computing.
Quantum computing is increasingly gaining attention as it has the
potential to address the complexities of modern power systems, see
Table 1. The scope of the studies is grouped into two main quantum
computing paradigms: (i) the gate-based quantum computing model
(GQC) and (ii) the adiabatic quantum computing model (AQC). A
majority of the studies, summarized in Table 1, focus on the GQC
approach, which can simulate specific computations using quantum
gates and discrete time steps, while a few studies implemented the
AQC approach. AQC is polynomially equivalent to GQC, yet its nature
is analog, which means that there are no quantum gates and no
discrete time steps in this approach [9]. AQC is specifically suitable
for (combinatorial) optimization applications.

Table 1 shows that the Harrow–Hassidim–Lloyd (HHL) algorithm
has been widely used in different PF applications, including PF analysis
and state estimation (SE) (e.g. [7,10]). The HHL algorithm theoretically
offers up to exponential speedup in solving systems of linear equations
compared to state-of-the-art classical solvers. However, it requires a
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Table 1
Literature on the use of quantum computing for PF.

Paradigma Algorithmb Applicationc Test case sized Hardware

GQC HHL [17] DCPF 3-bus IBM
VQC [18] TSA 11-bus/NPCC IBM
HHL [7] FDPF 5-bus –
HHL [19] ACPF 3-bus/5-bus IBM
VQLS [12] ACPF 5-bus IBM
HHL [10] SE 2-bus/4-bus –
QAOA [20] UC 9-DER IBM
QAOA [21] MS 24-bus –
HHL [22] DCOPF 3-bus/14-bus –

AQC VQC [23] FD 30-bus D-Wave
QA [24] UC 2-TU D-Wave
QA [13] ACOPF 55-bas D-Wave

a GQC = gate-based quantum computing model, AQC = adiabatic quantum computing
model.
b HHL = Harrow–Hassidim–Lloyd algorithm, VQC = variational quantum circuits,
VQLS = variational quantum linear solver, QAOA = quantum approximate optimization
algorithm, QA = quantum annealing.
c DCPF = direct current power flow, TSA = transient stability assessment, FDPF = fast-
decoupled power flow, ACPF = alternating current power flow, SE = state estimation,
UC = unit commitment, MS = maximum sections of power delivery and data traffic,
DCOPF = direct current optimal power flow, FD = fault detection, ACOPF = alternating
current optimal power flow.
d NPCC = Northeast Power Coordinating Council test system [25], DER = distributed
energy resource, TU = thermal unit.

large number of quantum gates, even for small-scale problems, and
hence, its performance is adversely affected by the noise inherent in
current quantum computers [11]. Moreover, it does not allow to extract
the full solution vector 𝑧 efficiently but only a scalar key performance
indicator of the form 𝑧𝑇𝑀𝑧, where 𝑀 is some sparse matrix. In [12],
a variational quantum linear solver (VQLS) has been developed, which
uses fewer quantum gates and, therefore, enables resilient PF analy-
sis using noisy quantum computers. However, there is no theoretical
justification (yet) that VQLS might offer any computational speedup.
In addition to addressing the solution of linear systems of equations,
several studies have focused on Quadratic Unconstrained Binary Opti-
mization (QUBO) formulation for specific applications, such as Optimal
Power Flow (OPF) [13]. Note that QUBO formulation can be solved by
GQC and AQC approaches, as presented in Table 1.

This paper specifically looks at GQC and QNNs. QNNs are a topic
of active research in the broader field of quantum machine learning
(QML), which comprise layers of quantum gates. They are able to
explore high-dimensional feature spaces with a limited number of
quantum gates, which potentially leads to superior performance in
practical applications, including PF analysis [14]. In addition, the
inherent randomness of quantum phenomena allows for the capture of
complex relationships between inputs and output with reduced reliance
on large datasets [15]. These advantages not only enhance the training
process but also address data scarcity concerns and make QNNs a
potential candidate for learning from small, incomplete, and/or noisy
datasets [16].

Several studies have recently explored the successful application
of QNNs using quantum simulators in different fields and highlighted
their growing potential. In facial recognition and analysis, for exam-
ple, researchers developed a software system equipped with a camera
and a QNN to efficiently differentiate various face patterns [26]. An-
other example is in financial predictions, where the high accuracy
and efficiency of QNNs are proved in predicting financial time se-
ries [27]. Likewise, a novel QNN was proposed in precision oncology
for drug response prediction. The study showed that the developed
QNN outperformed classical methods in predicting drug effectiveness
values [28].

Although significant success has been achieved in the use of QNNs
in various fields, and different quantum algorithms have been de-
2

veloped for PF applications, QNNs have not yet been systematically
explored for PF analysis. This paper serves as a proof of concept and
represents the first endeavor to systematically investigate the use of
QNNs for deep learning-based PF analysis. The main contributions of
this paper are:

(1) A hybrid quantum–classical neural network (QCNN), and a pure
quantum neural network (QNN) are developed for PF analysis.
The proposed algorithms provide improved generalization abil-
ity and reduce the training dataset size needed compared to
classical NNs while maintaining similar accuracy compared to
iterative numerical methods, i.e. the Newton–Raphson method
(NR).

(2) A thorough performance comparison is conducted between clas-
sical NNs, QCNNs, and QNNs for PF analysis. The comparison is
based on (i) generalization ability, (ii) robustness, (iii) required
training dataset size, (iv) training error, and (v) training process
stability.

All quantum components are implemented in Qiskit (version 0.46.0)
and executed using the Aer statevector simulator on a classical com-
puting system, specifically Ubuntu 22.04, with 16 physical cores and
64 GB of RAM. The simulations are made more realistic by introducing
statistical noise and hardware noise. The same computer was used to
obtain the ground truth data with the Newton–Raphson method (NR).
The focus is on a 4-bus test system [29]. Supplementary experiments
are also performed on a 33-bus test system [30] to show the scalability
and the potential benefits of the QCNN for PF analysis.

2. Power flow analysis

The aim of PF analysis is to calculate the voltage magnitude and
phase angle for all buses within power systems. It can be performed
based on the alternating current power flow (ACPF) equations, which
are a set of nonlinear equations that relate the complex voltages and
power at each bus of a power system:

𝑝𝑖 =
𝑛
∑

𝑗=1
𝑣𝑖𝑣𝑗 (𝑔𝑖𝑗 cos 𝛿𝑖𝑗 + 𝑏𝑖𝑗 sin 𝛿𝑖𝑗 ), (1)

𝑞𝑖 =
𝑛
∑

𝑗=1
𝑣𝑖𝑣𝑗 (𝑔𝑖𝑗 sin 𝛿𝑖𝑗 − 𝑏𝑖𝑗 cos 𝛿𝑖𝑗 ), (2)

where 𝑖 and 𝑗 are the indices of the buses, 𝑛 is the total number of buses,
𝑣𝑖 and 𝛿𝑖 are the magnitude and phase angle of the complex voltage at
bus 𝑖, 𝑝𝑖 and 𝑞𝑖 are the active and reactive power injection/consumption
at bus 𝑖, 𝑔𝑖𝑗 and 𝑏𝑖𝑗 are the real and imaginary parts of the admittance
between buses 𝑖 and 𝑗, and 𝛿𝑖𝑗 = 𝛿𝑖 − 𝛿𝑗 is the phase angle difference
between the voltages at buses 𝑖 and 𝑗. The equations are traditionally
solved using the Newton–Raphson method (NR) [31].

3. Classical neural networks for PF analysis

A feed-forward NN is employed to approximate 𝑦 ∈ {(𝑣𝑖, 𝛿𝑖) ∶ 𝑖 =
1, 2,… , 𝑛} as output labels given �⃗� ∈ {(𝑝𝑖, 𝑞𝑖) ∶ 𝑖 = 1, 2,… , 𝑛} as input
features, see Fig. 1. That is, the input and output layers consist of 𝑛× 2
neurons each, where 𝑛 is the number of buses. The architecture employs
a chain of functions 𝑓 (�⃗�) = 𝑙𝑘◦… ◦𝑙1(�⃗�), sequentially processing �⃗�
through 𝑘 hidden layers to obtain 𝑓 (⋅) ∈ {( ⃗̂𝑣𝑖,

⃗̂𝛿𝑖) ∶ 𝑖 = 1, 2,… , 𝑛}. Here,
𝑙𝑘(�⃗�) = 𝜎(𝑊 𝑇

𝑘 ⋅�⃗�+𝑏𝑘) is the 𝑘th hidden layer. 𝑊 𝑇
𝑘 and 𝑏𝑘 are weight ma-

trix and bias vector for the respective hidden layer. Each hidden layer
applies a linear transformation, i.e. 𝑊 𝑇

𝑘 ⋅ �⃗�+𝑏𝑘, followed by a nonlinear
transformation, i.e. 𝜎(⋅), to capture complex relationships between �⃗�
and 𝑦.𝑊𝑘 and 𝑏𝑘 are trainable parameters optimized during the training
process to minimize the difference between 𝑓 (⋅), approximated by the
NN, and ground-truth output labels 𝑦, obtained from the NR, based on
a loss function of choice, e.g. the mean squared error (MSE):

ℒ = 1
𝑁

𝑁
∑

(𝑦𝑗 − 𝑓 (�⃗�𝑗 ))2, (3)

𝑗=1
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Fig. 1. Schematic depiction of the NN designed for PF analysis. �⃗� ∈ {(𝑝𝑖 , 𝑞𝑖) ∶ 𝑖 =
1, 2,… , 𝑛} and 𝑦 ∈ {(𝑣𝑖 , 𝛿𝑖) ∶ 𝑖 = 1, 2,… , 𝑛} respectively represent the input features and
output labels, where 𝑛 is the number of buses.

Fig. 2. Schematic representation of the quantum state, which can be in a superposition
of states |0⟩ and |1⟩. 𝜙 and 𝜑 determine the probability amplitude of the state being
|0⟩ and |1⟩, respectively. The qubit can be manipulated by applying quantum gates to
change 𝜙 and 𝜑.

where 𝑗 is the index of the training data point, 𝑁 is the total number
of training data points, �⃗�𝑗 and 𝑦𝑗 are the vector of input features and
output labels obtained from the NR for the 𝑗th training data point. 𝑓 (.)
is the vector of approximated output labels obtained from the NN.

4. Quantum neural networks for PF analysis

A qubit is defined by complex coefficients and is represented by two
angles on the Bloch sphere, as shown in Fig. 2. Unlike a classical bit
confined to the values 0 or 1, a qubit can exist in a superposition of
both. This means that prior to measurement, a qubit can be in a state
that is a linear combination of the states |0⟩ and |1⟩, which introduces a
probabilistic nature, and hence, improves the generalization ability of
QNNs but also their robustness against noisy datasets [16]. The state
of a qubit |𝜓⟩ is mathematically expressed as

|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩, |𝛼|2 + |𝛽|2 = 1, 𝛼, 𝛽 ∈ C, (4)

where 𝛼 = cos 𝜙2 and 𝛽 = sin 𝜙
2 are the probability amplitudes of the

basic state |0⟩ and |1⟩, respectively. This can be easily extended to a
quantum register |𝜓⟩ =

∑2𝑛−1
𝑖=0 𝛾𝑖|𝑖⟩, with 𝛾𝑖 ∈ C, ∑2𝑛−1

𝑖=0 |𝛾𝑖|
2 = 1 and |𝑖⟩

denoting the 𝑖th unit state.
In the context of QNN, parameterized quantum circuits (PQC) func-

tion as the core units rather than classical hidden layers. Fig. 3 illus-
trates a PQC that involves a pair of qubits interconnected with three
quantum gates. The first qubit undergoes a Hadamard gate 𝐻 and
the second qubit experiences a rotation around the 𝑦-axis 𝑅 (𝑤𝑟). A
3

𝑦

Fig. 3. Schematic representation of a PQC involving a pair of qubits. It includes both
parameterized gate 𝑅𝑦(𝑤𝑟) with adjustable parameter 𝑤𝑟, and non-parameterized gate
𝐻 . 𝐶𝑁𝑂𝑇 gate entangles the second qubit to the first, executing a two-qubit operation.
Finally, the measurement is performed to determine the expectation values of the
involved qubits.

controlled NOT gate 𝐶𝑁𝑂𝑇 entangles the second qubit to the first. The
probabilistic expected value of the measurement, i.e. the expectation
value of the probability distribution of the final quantum state, is then
determined. The expectation value is represented by ⟨𝜓|𝜓⟩, which is
subsequently subjected to post-processing to form the approximations.

Similar to NNs, QNNs can be fine-tuned through classical optimiza-
tion processes to find the relationship between �⃗� as input features
and 𝑦 as output labels. �⃗� is initially encoded into a quantum state
of multiple qubits, a phase known as feature map. Subsequently, the
data is processed using PQCs and form an ansatz. The measurement
of the PQCs is fed into a loss function. Optimization of QNNs can
happen through gradient-based methods, facilitated by the analytical
techniques for measuring the gradient of the expectation of PQCs, as
outlined in [32]. The representation of QNNs is given by:

|𝜓 in
⟩ = 𝑈 (�⃗�)|0…0⟩, |𝜓out

⟩ = 𝜔(�⃗�𝑟)|𝜓 in
⟩, (5)

where the input state |𝜓 in
⟩ is created by transforming �⃗� ∈ {(𝑝𝑖, 𝑞𝑖) ∶ 𝑖 =

1, 2,… , 𝑛} into valid quantum states using the feature map 𝑈 (.) applied
to the vacuum state |0…0⟩. The ansatz 𝜔(.) is applied to |𝜓 in

⟩. There
are no parameters for the feature map that need to be tuned by the
optimizer. In contrast, the vector of adjustable parameters of the ansatz
�⃗�𝑟 is fine-tuned through the training process using a dataset consisting
of 𝑁 training pairs {�⃗�, 𝑦}. The resulting output state |𝜓out

⟩ cannot be
read out directly but needs to be deduced by the measurement to obtain
̂⃗𝑦 ∈ {( ⃗̂𝑣𝑖,

⃗̂𝛿𝑖) ∶ 𝑖 = 1, 2,… , 𝑛}.
This paper explores two distinct implementations of QNNs: a pure

QNN and a hybrid quantum–classical neural network (QCNN), de-
scribed in the following subsections.

4.1. Quantum neural networks

Fig. 4 shows an illustration of pure QNNs, which includes three fun-
damental components: a feature map, an ansatz, and the measurement.
The feature map 𝑈 (⋅)|0…0⟩ transforms �⃗� ∈ {(𝑝𝑖, 𝑞𝑖) ∶ 𝑖 = 1, 2,… , 𝑛}
into a vector of quantum states |𝜓 in

⟩. The dimension of this vector
corresponds to the number of qubits in the PQC, i.e. 𝑛 × 2, where 𝑛
is the number of buses. The ansatz 𝜔(⋅)|𝜓 in

⟩ takes |𝜓 in
⟩ as input and

applies a combination of quantum gates. Finally, the expectation value
is determined, which is then subjected to additional post-processing to
derive ̂⃗𝑦 ∈ {( ⃗̂𝑣𝑖,

⃗̂𝛿𝑖) ∶ 𝑖 = 1, 2,… , 𝑛}.

4.2. Hybrid quantum-classical neural networks

For the QCNN, one or more of the hidden layers can be replaced by
PQC(s), as shown in Fig. 5. The data flow begins from a hidden layer,
propagates through the feature map and ansatz, and then proceeds
to the next hidden layer after the measurement. Note that the QCNN
architecture can potentially resemble classical auto-encoders, where the
first classical component encodes �⃗� ∈ {(𝑝𝑖, 𝑞𝑖) ∶ 𝑖 = 1, 2,… , 𝑛} to a lower
dimensional latent space at which the QNN operates. Subsequently,
the second classical component decodes the measurement to a higher
dimensional space to derive ̂⃗𝑦 ∈ {( ⃗̂𝑣 , ⃗̂𝛿 ) ∶ 𝑖 = 1, 2,… , 𝑛}. This
𝑖 𝑖
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Fig. 4. Schematic depiction of the QNN designed for PF analysis, including a feature
map, an ansatz, and the measurement. �⃗� ∈ {(𝑝𝑖 , 𝑞𝑖) ∶ 𝑖 = 1, 2,… , 𝑛} and 𝑦 ∈ {(𝑣𝑖 , 𝛿𝑖) ∶ 𝑖 =
1, 2,… , 𝑛} respectively represent the input features and output labels, where 𝑛 is the
number of buses.

Fig. 5. Schematic depiction of the QCNN designed for PF analysis with a PQC replacing
one hidden layer. �⃗� ∈ {(𝑝𝑖 , 𝑞𝑖) ∶ 𝑖 = 1, 2,… , 𝑛} and 𝑦 ∈ {(𝑣𝑖 , 𝛿𝑖) ∶ 𝑖 = 1, 2,… , 𝑛}
respectively represent the input features and output labels, where 𝑛 is the number of
buses. The data flow starts from a hidden layer, passes through the PQC, and continues
to the subsequent hidden layer after the measurement.

architecture has therefore the flexibility to accommodate larger input
features and output labels for large-scale power systems, as it is not
constrained by the number of available qubits.

In this study, two QCNNs are developed for the 4-bus and 33-bus
test systems, each having a PQC as the quantum component sandwiched
with classical hidden layers, as depicted in Fig. 5. The number of
classical hidden layers is the same as those of the corresponding NNs for
the 4-bus and 33-bus test systems. The immediate hidden layer before
and after the quantum component has 𝑛 × 2 neurons, where 𝑛 is the
number of buses. Note that in this setting, the total number of calls to
the quantum simulator matches that of the QNN as the qubit count, and
the number of shots remains consistent.

5. Results

Experiments are performed on modified versions of 4-bus and 33-
bus test systems [29,30]. The chosen systems contain one reference bus
with known 𝑣 and 𝛿 and unknown 𝑝 and 𝑞, and PQ buses for which 𝑝
and 𝑞 are known, while 𝑣 and 𝛿 are unknown. Note that PV buses are
not considered in this work to maintain computational simplicity.

For the two test systems, the dataset comprises a total of 512 data
points, which are randomly chosen from a pool of 5000 samples. These
samples are systematically generated based on calculated apparent
power 𝑠 and power factor 𝑝𝑓 for each bus. Initially, 𝑝 and 𝑞 are known
for a specific scenario of the test systems, as presented in [29,30].
Subsequently, 𝑠 =

√

𝑝2 + 𝑞2, and 𝑝𝑓 = 𝑝∕𝑠 are calculated for each bus.
The calculated 𝑠 is considered as the mean and a deviation of 30% from
𝑠 is considered as the standard deviation to obtain a normal distribution
4

Fig. 6. Illustration of the performance of the NN, QCNN, and QNN based on the MSE
obtained for the testing dataset under varying levels of noise in the training dataset
for the 4-bus test system. The MSE values are normalized relative to the testing MSE
obtained for the QNN at the noise level of 10%.

with 5000 samples for each bus. Finally, 𝑝 = 𝑠 × 𝑝𝑓 and 𝑞 =
√

𝑠2 − 𝑝2
are calculated for all buses and all samples. This approach ensures that
the datasets reflect the inherent variability in 𝑝 and 𝑞 across the power
system.

The input features and output labels of the datasets are respectively
�⃗� ∈ {(𝑝𝑖, 𝑞𝑖) ∶ 𝑖 = 1, 2,… , 𝑛} and 𝑦 ∈ {(𝑣𝑖, 𝛿𝑖) ∶ 𝑖 = 1, 2,… , 𝑛},
obtained from the NR. The dataset for each test system is divided into
three subsets, allocating 25% for training, 25% for validation, and the
remaining 50% for testing. The training dataset intentionally includes
only 128 training data points to highlight the enhanced performance
of the QNNs. The training process concludes after 1000 epochs for the
NN, QCNN, and QNN. The utilized loss function is the MSE (3), the
activation function is ReLU, and the Adam optimization algorithm is
employed.

5.1. Model performance

The performance of the NN, QCNN, and QNN is systematically
evaluated based on (i) generalization ability, (ii) robustness, (iii) impact
of training dataset size on generalization ability, (iv) training error, and
(v) the stability of the training process. Experiments are done for the
4-bus test system.

5.1.1. Generalization ability
The MSE obtained for the testing dataset for the QNN and QCNN is

41% and 52% lower, respectively, compared to that of the NN.

5.1.2. Robustness
The influence of noisy training dataset is investigated by systemat-

ically introducing controlled levels of noise, ranging from 1% to 10%,
to both �⃗� ∈ {(𝑝𝑖, 𝑞𝑖) ∶ 𝑖 = 1, 2,… , 𝑛} and 𝑦 ∈ {(𝑣𝑖, 𝛿𝑖) ∶ 𝑖 = 1, 2,… , 𝑛}
of the training points. A certain percentage of the input features and
output labels of the training dataset is randomly selected. The corrupted
vectors are 𝑥′ = �⃗� ± 𝑟𝑥 and 𝑦′ = 𝑦 ± 𝑟𝑦, where 𝑟𝑥 and 𝑟𝑦 are vectors
of random values between 0 and 1, and 0 and 0.1, respectively. The
investigation is based on the testing MSE. The QNN and QCNN exhibit
superior robustness against the noisy training dataset compared to
the NN, as shown in Fig. 6. The performance of the NN significantly
decreases by up to two times as the noise level increases.

5.1.3. Training dataset size
The impact of training dataset size on the performance of the NN

is investigated. Fig. 7 shows the changes in the MSE obtained for the
testing dataset with varying training dataset sizes. The comparison is
made relative to a constant curve, which represents the MSE obtained
for the testing dataset for the QCNN using 128 training data points. It
is observed that the NN necessitates a training dataset four times larger
than that of the QCNN to achieve a performance level that still remains
inferior.
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Fig. 7. Illustration of the performance of the NN based on the MSE obtained for the
testing dataset for the 4-bus test system under different training dataset sizes, compared
to that of the QCNN with 128 training data points relative to which the MSE values
are also normalized.

Fig. 8. Illustration of the impact of the NN architecture depth on the training and
testing MSE for the 4-bus test system. Linear regression (LR) serves as a benchmark
model. NN architectures with varying numbers of hidden layers, ranging from two
(NN2) to eight (NN8), are assessed. The MSE values are normalized relative to the
testing MSE obtained for the NN7.

5.1.4. Training error
The MSE obtained for the training dataset for the QNN and QCNN

after 1000 epochs is 48% and 54%, respectively, less than that of the
NN.

5.1.5. Training process stability
The mean and standard deviation of the MSE obtained over 1000

epochs for the training dataset is evaluated. The QNN and QCNN
show a respective reduction of 39% and 45% in the mean of the
training MSE compared to the classical NN. Similarly, the standard
deviation of the training MSE for the QNN and QCNN is lower by 25%
and 34%, respectively, compared to the classical NN. Note that the
differences in the training processes are due to the differences in the
gradient calculation methods employed. For the classical NN and the
classical component of the QCNN, the gradients are computed using
backpropagation [33]. However, for the pure QNN and the quantum
component of the QCNN, gradient calculation is achieved using the
parameter shift rule [32].

5.2. Sensitivity analysis for NN

The architecture of the NN, i.e. the number of hidden layers and
neurons per hidden layer, but also the hyper-parameters, i.e. the learn-
ing rate, the weight decay rate, and dropout percentage, are achieved
through sensitivity analysis to ensure a fair comparison between the
NN, QCNN, and QNN1:

1 The Optuna Python package is used to conduct an exhaustive search
across 2000 unique hyperparameter combinations.
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5.2.1. Model architecture
Seven different depths of NN architectures are explored to ascertain

the architecture that enhances the generalization ability of the NN.
Deep architectures with more than eight hidden layers are not con-
sidered due to the small size of both the test system and the training
dataset. Across all architectures, the first and last hidden layers consist
of 𝑛×2 neurons, while the intermediate hidden layers each contain 𝑛×4
neurons. A linear regression model (LR) is included in the evaluation as
a benchmark. Fig. 8 illustrates the MSE obtained for both the training
and testing datasets. It is observed that as the number of hidden layers
decreases, the generalization ability of the NN decreases.

5.2.2. Hyper-parameters
An exploration of different learning rates, weight decay rates, and

dropout percentages is conducted. The learning rates are explored
across a range of values between 1 × 10−1 and 1 × 10−6. Wight decay
rates are considered from 1 × 10−1 to 1 × 10−6. Dropout percentages are
considered between 0% and 2%. The selection of the optimal values
is based on the training and testing MSE, along with their relative
proximity to ensure generalization ability.

The architecture with seven hidden layers is selected as the basis
for evaluating the QCNN and QNN due to its lower MSE obtained for
training and testing datasets. The proximity of the training and testing
MSE also suggests a lack of overfitting in the proposed architecture.
The NN is trained with a learning rate of 1.5 × 10−4, a weight decay
rate of 3 × 10−3, and a dropout percentage of 0%, with a batch size of
16. The training and testing MSE obtained for the 4-bus test system and
a noisy training dataset with 128 training data points are 2.41 and 2.83,
respectively.

5.3. Sensitivity analysis for QNN

A PQC serves as the core unit of the QNN architecture. It comprises
a feature map, an ansatz, and the measurement, as illustrated in Fig. 9.
The feature map is responsible for translating the six input features
into quantum states. The ZFeatureMap method from the Qiskit standard
library is used, that is, the vacuum state |000000⟩ passes through a
layer of Hadamard gates 𝐻 before each qubit undergoes a z-rotation,
i.e. 𝑅𝑧(ℎ(𝑝, 𝑞)), where ℎ(⋅) maps the input features �⃗� ∈ {(𝑝𝑖, 𝑞𝑖) ∶ 𝑖 =
1, 2,… , 𝑛} to the interval [− 𝜋

2 ,
𝜋
2 ] through the formula 𝑥′ = tan−1(�⃗�). The

RealAmplitude method from the Qiskit standard library is employed as
the ansatz. This entails each qubit undergoing a y-rotation 𝑅𝑦(�⃗�𝑟𝑖 ) ∶
𝑖 = 1, 2,… , 𝑛 × 2, followed by a CNOT gate, and another y-rotation
𝑅𝑦(�⃗�𝑟

′
𝑖 ) ∶ 𝑖 = 1, 2,… , 𝑛 × 2. Consequently, the ansatz has 𝑛 × 4 free

parameters, where 𝑛 is the number of buses. From the measurement in
the Z-basis, the expectation value for each qubit is obtained within the
interval [−1, 1]. A classical post-processing conversion is then employed
to map these values to problem-specific intervals. These intervals are
determined based on the lower and upper bounds of the dataset with an
additional margin to ensure coverage of extreme values. Accordingly,
the intervals for 𝑣 and 𝛿 are determined as [0.85, 1.15] and [−8, 8],
respectively. Details about the sensitivity analysis for the QNN are
provided in the following subsections.

5.3.1. Convergence analysis of shots
The error between the predictions obtained from the Aer statevector

simulator and those obtained from the shot simulator is investigated,
where each shot represents a repetition of the measurement. The results
are shown in Fig. 10. It can be observed that the error stabilizes when
the shot count reaches 1024 or higher. Therefore, a shot number of 1024
is selected for the training of the QNN and the quantum component of
the QCNN.
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Fig. 9. Detailed representation of the PQC shown in Fig. 4 for the 4-bus test system. �⃗� ∈ {(𝑝𝑖 , 𝑞𝑖) ∶ 𝑖 = 1, 2,… , 𝑛} is initially encoded into a quantum state of multiple qubits using
the feature map. Then, the data is processed through the ansatz. The feature map utilizes the Hadamard gate 𝐻 and a rotation around the 𝑧-axis 𝑅𝑧 on individual qubits. The
ansatz applies a y-rotation 𝑅𝑦(�⃗�𝑟

𝑖 ), followed by a CNOT gate, and subsequently another y-rotation 𝑅𝑦(�⃗�𝑟′
𝑖 ) on each qubit. The expectation value for each qubit is then obtained

within the interval of [−1, 1] from the measurement in the Z-basis.
Fig. 10. Illustration of the error between the predictions obtained from the Aer
statevector simulator and those from the shot simulator as a function of the number
of shots.

Fig. 11. Illustration of the impact of various noise levels on the performance of the
QNN for the 4-bus test system. Measurement error, gate imperfection, depolarizing
error, and amplitude-damping error are considered.

5.3.2. Impact of hardware noise
The impact of different sources of noise, including measurement

error, gate imperfection, depolarizing error, and amplitude-damping
error, is examined. This exploration simulates the real-world behavior
of quantum hardware. The noise levels range from 0% to 10% and the
analysis utilizes the dataset for the 4-bus test system. The results are
depicted in Fig. 11. Details about different error types can be found in
Ref. [34].

5.3.3. Impact of the number of qubits
Increasing the number of qubits inherently complicates the training

process, particularly for the QCNN which integrates both quantum and
classical components. The impact of qubit count on the MSE obtained
6

Fig. 12. Illustration of the impact of the qubit count on the training and testing MSE
for the 4-bus test system. Different QCNNs with varying numbers of qubits, ranging
from one (QCNN1) to seven (QCNN7), are assessed. The MSE values are normalized
relative to the testing MSE obtained for the QCNN6.

Table 2
Performance comparison of the NN relative to the results obtained by the NR method
for the 4-bus test system.

Approacha mean [p.u] std [p.u] mean [degree] std [degree]

LR 8.85 × 10−1 6.74 × 10−2 9.53 × 10−1 4.02 × 10−2

NN 1.44 × 10−1 4.02 × 10−2 3.18 × 10−1 3.24 × 10−2

QCNN 2.67 × 10−3 1.03 × 10−2 1.23 × 10−2 2.4 × 10−2

QNN 6.1 × 10−3 3.08 × 10−2 2.26 × 10−2 2.98 × 10−2

a LR = linear regression model, NN = classical neural network, QCNN = hybrid
quantum–classical neural network, QNN = quantum neural network.

for the training and testing datasets is therefore studied to highlight the
trade-offs between the model complexity and model performance. The
analysis uses the dataset for the 4-bus test system. The results, shown
in Fig. 12, lead to the selection of six qubits for the QCNN.

5.4. Power flow analysis

The mean and standard deviation of ̂⃗𝑦 ∈ {( ⃗̂𝑣𝑖,
⃗̂𝛿𝑖) ∶ 𝑖 = 1, 2,… , 𝑛}

approximated by the NN, QCNN, and QNN for the 4-bus test system are
computed relative to the ground truth data 𝑦 ∈ {(𝑣𝑖, 𝛿𝑖) ∶ 𝑖 = 1, 2,… , 𝑛}
obtained from the NR, see Table 2. A linear regression model (LR) is
also included in the evaluation as a benchmark. The mean and standard
deviation obtained for the QCNN exhibit the superior performance of
the QCNN compared to the QNN, NN, and LR.

An investigation is also done to explore the performance of the
NN and QCNN for the 33-bus test system under extreme conditions,
where the power system experiences over-voltage or under-voltage sit-
uations. According to the results shown in Fig. 13, the QCNN achieves
a maximum MSE of 0.011 pu for the testing dataset, while the NN
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Fig. 13. Comparison of 𝑣 obtained from the NR and ⃗̂𝑣 obtained from the NN and
QCNN for the 33-bus test system under extreme conditions.

obtains a maximum MSE of 0.032 pu for the testing dataset, compared
to the ground truth data obtained by the NR. This improvement is
significant for power system operations, where unexpected events can
induce deviations in 𝑣 from the nominal value.

6. Discussion

Quantum neural networks (QNNs) are developed for power flow
(PF) analysis with the aim of providing fast and accurate estimations
compared to the traditional PF solvers, such as the Newton–Raphson
method (NR). In this sense, deep learning approaches do not aim
to replicate traditional PF solvers. Instead, these approaches serve as
surrogate models, wherein complex relationships between inputs and
outputs are captured through linear and nonlinear transformations.
While the same inputs and outputs can be shared by traditional solvers,
e.g. the NR, and surrogate models, e.g. neural networks, their difference
lies in the computational process employed to derive the output from
the provided input. Generally, the success of a surrogate model depends
on the size and quality of historical data on inputs and outputs. In
contrast, traditional solvers rely on mathematical models to obtain
outputs from inputs. Note that the output of QNNs can serve as an
initial estimate, which can then be further refined by conducting a few
iterations of the NR method to converge towards a solution sufficiently
fast.

In this work, quantum simulations are conducted using the Aer
statevector simulator of Qiskit. However, real quantum hardware, such
as that provided by IBM, remains an available option for future research
and experimentation. Note that the current high noise levels in today’s
NISQ hardware make it impractical to implement the proposed QNN
approaches. However, it is expected that as NISQ hardware evolves and
early Fault-Tolerant (FT) computers with reduced noise levels and a
moderate number of logical qubits emerge, the proposed approaches
will become viable for successful execution.

Although this work shows the potential of QNNs for PF analysis,
and their superior performance compared to classical NNs, further
investigation is needed to fully understand the added value of using
such complex approaches. Note also that the superior performance
of the hybrid quantum–classical neural network (QCNN) in terms of
generalization, robustness, training dataset size needed, training error,
and training process stability compared to the classical NN can be
attributed to the capacity of the QCNN to leverage the strengths of
both classical and quantum paradigms, which makes it a more robust
choice, particularly in the NISQ era. On the other hand, the limited
performance of the classical NN can be attributed to the limited number
of training data points and the noises introduced into the training
dataset.
7

7. Conclusion

This paper systematically investigates the application of quantum
neural networks for power flow analysis. A comprehensive compar-
ison of a classical neural network (NN), a hybrid quantum–classical
neural network (QCNN), and a quantum neural network (QNN) is
performed. The comparison is based on (i) generalization ability, (ii)
robustness, (iii) training dataset size needed, (iv) training error, and
(v) training process stability. Experimentation and sensitivity analyses
are conducted on 4-bus and 33-bus test systems. The results indicate
the superiority of the QCNN over the NN and QNN.

The QNN and QCNN exhibit enhanced generalization ability com-
pared to the NN by 41% and 52%, respectively, when trained on a
small noisy training dataset of 128 data points. In terms of robustness
against noisy training data, the QNN and QCNN outperform the NN.
In addition, it is observed that the NN necessitates a training dataset
approximately four times larger than that of the QCNN to achieve a
performance that still remains inferior. The training error obtained
for the QNN and QCNN is 48% and 54% less than that of the NN.
Furthermore, the QNN and QCNN show a more stable training process
compared to the NN.
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