
Technical Report

A vario-scale approach that improves in-
tegration of point clouds with different
point densities

T. Hemmes
W. Li
J. van der Maaden
B. Olsen
M. Veenendaal

Technical Report
A vario-scale approach that improves
integration of point clouds with different

point densities
by

Tom Hemmes 4161726
Weiran Li 4575717
Jippe van der Maaden 4156617
Brenda Olsen 4149556
Marc-Julien Veenendaal 1241966

in partial fulfilment of the requirements for the degree of

Master of Science
in Geomatics

at the Delft University of Technology,
presented on Friday June 23th, 2017 at 09:20 AM.

Project committee: Stefan van der Spek TU Delft, course coordinator
Peter van Oosterom TU Delft, project coordinator
Martijn Meijers TU Delft, project coach
Theo Tijssen TU Delft, project coach

Preface
This report is written for the Geomatics Synthesis Project 2017, which is part of the Geomatics master
at the Delft University of Technology. During this project, three teams worked on different topics in
the field of point clouds. These topics included: scale, time and location. Our team, called GRIND
(GRanular INtegration of Data), did research on the integration of point clouds with different scales and
granularity.

We would like to thank our supervisors Martijn Meijers and Theo Tijssen for their support and guid-
ance during this project. We would also like to thank our contact persons at Fugro, Martin Kodde and
Stella Psomadaki, for sharing their expert knowledge and data with us. This project would not have
succeeded without their support.

Tom Hemmes
Weiran Li

Jippe van der Maaden
Brenda Olsen

Marc-Julien Veenendaal
Delft, June 2017

iii

Contents

List of Tables 1

List of Abbreviations 3

Executive Summary 5

Scientific Part 13

1 Introduction 15
1.1 Purpose . 15
1.2 Methods. 16
1.3 Boundaries . 16
1.4 Reading Guide . 16

2 Related work 17
2.1 Point cloud server . 17
2.2 Vario-scale . 17
2.3 Point cloud viewers. 19

2.3.1 Three.js library . 19
2.3.2 Potree . 19

2.4 Server framework. 19
2.5 Data transfer . 20

3 Materials & Methods 23
3.1 Data Analysis . 23

3.1.1 Point Cloud Data . 23
3.1.2 AHN data . 23
3.1.3 Fugro data . 24
3.1.4 Data sets used . 24

3.2 Data model . 25
3.2.1 Computation of importance value . 25
3.2.2 Indexing . 26

3.3 Client/Server framework . 27
3.3.1 Uploading . 27
3.3.2 Downloading . 27
3.3.3 Viewing . 29

3.4 Performance analysis . 31
3.4.1 Hardware . 32

4 Results 33
4.1 Importance value . 33
4.2 Performance analysis . 39

4.2.1 Data insertion . 40
4.2.2 Visual inspection . 41

5 Discussion 45
5.1 Conclusion . 45
5.2 Future work . 46

5.2.1 Curvature . 46
5.2.2 pgpointcloud integration . 47
5.2.3 PDAL pipeline . 48
5.2.4 Clustering of points . 49
5.2.5 BRIN index . 49

v

vi Contents

5.2.6 Interactive viewer . 50

Organisational Part 51

6 Introduction 53

7 Project Plan 55
7.1 Organisational Breakdown Structure . 55

7.1.1 Role definition . 56
7.2 Work Breakdown Structure . 57
7.3 Work Package Descriptions . 58
7.4 Project Schedule . 59

7.4.1 Meetings . 59
7.4.2 Phases . 59
7.4.3 Time line . 59
7.4.4 Planning. 59

7.5 Project Logic Diagram . 61
7.6 Rich Picture . 61

8 Requirements 63
8.1 Identify Experts & Stakeholders . 63

8.1.1 Experts . 63
8.1.2 Stakeholders . 63

8.2 Use Cases . 64
8.2.1 Possible Use Cases . 64
8.2.2 Our Use Case . 64
8.2.3 Usability . 64

8.3 Requirements. 65
8.3.1 MoSCoW . 65
8.3.2 Functional Requirements. 66
8.3.3 Non-Functional Requirements . 66
8.3.4 Killer Requirements . 67
8.3.5 Boundary Conditions . 68

9 Critical path 69
9.1 Timeline . 69
9.2 Resource allocation . 69

9.2.1 Research . 69
9.2.2 Data model . 69
9.2.3 Client server . 70
9.2.4 Data insertion . 70
9.2.5 Benchmark . 70

9.3 Risk map . 71

A Data Specifications 73

B Python web frameworks 75

C GANTT 77

D Rich Picture 79

Bibliography 81

List of Tables

3.1 data set description . 24

4.1 PostgreSQL table . 39
4.2 Benchmark results . 40

1

List of Abbreviations

AHN Actueel Hoogtebestand Nederland

BRIN Block Range Index

CSS Cascading Style Sheets

DBMS Database Management System

fov Field Of View

GiST Generalised Search Tree

GRIND Granular Integration of Data

HTML Hypertext Markup Language

LOD Level Of Detail

PDAL Point Data Abstraction Library

PHP Hypertext Preprocessor

pov Point Of View

SSC Space Scale Cube

XML Extensible Markup Language

3

Executive Summary
The executive summary is written as a conference paper and can be found on the following pages.

5

A vario-scale approach that improves integration of point
clouds with varying point densities

Tom Hemmes
T.Hemmes

@student.tudelft.nl

Weiran Li
W.Li-7

@student.tudelft.nl

Jippe van der Maaden
J.D.N.vanderMaaden

@student.tudelft.nl

Brenda Olsen
B.Olsen

@student.tudelft.nl

Marc-Julien Veenendaal
M.J.Veenendaal

@student.tudelft.nl

ABSTRACT
Point clouds are becoming one of the most common ways
to represent geographical data. The scale of acquisition of
point clouds is growing steadily. However, point clouds are
often very large in storage size and require computationally
intensive operations. The integration of point clouds nowa-
days still face a lot of challenges. This project focuses on
one of these challenges; integrating point clouds of different
scales and granularity. Solving this challenge enables ap-
pealing visualisation, usability for low and high computation
powers and geometrical consistency for analysis. The follow-
ing question is researched: ’To what extent can a vario-scale
approach improve integration of point clouds with varying
point densities?’. A data model is created that uses impor-
tance as an additional dimension. This dimension contains
an importance value which is calculated using two meth-
ods. Firstly random assignment of values to the points and
secondly exact computed values. To compute this value the
smallest distances to its nearest neighbour is assigned as im-
portance value. A web application shows the results. Both
random and exact methods show an exponential decay in
distribution of the importance value. Though the random
methods run much faster, the exact methods preserve much
more edges and other details.

KEYWORDS: Point cloud, vario-scale, point density, scale,
granularity

1. INTRODUCTION
This paper is written for the Geomatics Synthesis Project
2017, which is part of the Geomatics master at Delft Univer-
sity of Technology. This project focuses on three different
topics within the field of point clouds. In a joint effort, Fugro
and TUDelft want to create an Open Point Cloud Map. Our
group GRIND (GRanular INtegration of Data) researches
the challenges related to scale & granularity of point clouds.

Other groups focus on the topics time & location. The ef-
forts of these three topics contribute to the implementation
of this platform. A problem that arises with current mas-
sive point cloud viewers is the ”block effect” where there is a
clearly visible difference between LoD (Level of Detail). We
research to what extent a vario-scale approach can improve
integration of point clouds with varying point densities. The
subtopics are the investigation of the best suited approach
and the needed processing steps to create one overall struc-
ture. Furthermore we test the performance of our proposal.
This is done within the time-span of 9 weeks of the Geomat-
ics Synthesis project. Our proposal covers storage, process-
ing, visualisation and recommendations on indexing. The
results are shown in a web application, which can be found
on https://github.com/openpointcloudmap/GRIND.

2. RELATED WORK

2.1 Point Cloud Server
Because of the storage size and simplicity most point cloud
systems still rely on file based storage. In a benchmark, [6]
shows not only the feasibility, but also the benefits regarding
functionality of storing point clouds in a Database Manage-
ment System (DBMS). Also [2] emphasises the added value
of a flexible point cloud server, to realise such a system they
use the point cloud extension for PostgreSQL. This exten-
sion, dubbed [5], proposes an approach of managing groups
of points. Instead of managing individual points, this ap-
proach allows to profit more of the advantages a (Relational-
) DBMS offers. Dealing with individual points would cause
for great numbers of entries in the tables, which in turn
would result in slow query results. [1] proposes in their pa-
per a point cloud management system fully based on [5] and
other open source tools.

2.2 Vario-Scale
The vario-scale structure with a non-discrete LoD (or im-
portance) is proposed in the works of [6] and [3]. [3] intro-
duces a new dimension in his paper to make a vario-scale
point cloud. This dimension could either be scale or impor-
tance. These levels are inherent with the implementation of
an octree, kd-tree or other common spatial indexing method.
However, discrete levels will result in non-smooth zooming
and when mixing scales in resolution bumps. [4] listed three
methods to compute a continuous dimension, instead of a
discrete one. These methods involve clustering, iterative

1

data set Name Points Format Data size (GB)

Random Patch 10,653 las 0.0003
AHN3 11,417,422 las 0.38
Drivemap 2016 49,737,433 las 1.65
Integrated 61,154,855 las 2.03

Table 1: data set description

simplification and particle simulation though these meth-
ods are often computationally expensive and rather com-
plex. Another way to add a continuous scale dimension is
introduced by [7]. This method adds a random importance
value between 0 and 1.

2.3 Point Cloud Viewers
Different libraries and framework already have an imple-
mentation to view point cloud data. Two examples of point
cloud viewers are Potree and ThreeGeoJSON. Both view-
ers are open source and free for use. Also both viewer
use the three.js library and WebGL for the creation and
rendering of 3D graphics. ThreeGeoJSON (from https:

//github.com/jdomingu/ThreeGeoJSON) is a rather simple
viewer that uses a geoJSON file as input. The UI (user in-
terface) consists of a scene, where the user is able to zoom
and rotate through the data. Potree on the other hand is
a more comprehensive viewer. It first has to convert the
point cloud data with the PotreeConverter.js. After this a
data structure (octree) has been applied on the data and it’s
ready to be inserted in the viewer.

2.4 Server/Client transfer
Also the server-client aspects are examined. There are some
front-end languages for web-applications for which there is
no substitution: HTML, CSS and JavaScript. But in the
back-end there are some alternatives that can be consid-
ered: JavaScript, the most used language generally on the
web, due to the success of Node.js. PHP with it’s possibility
to be embedded in HTML and generating a dynamic web-
page. Lastly we considered Python which can be considered
a ”Swiss knife” for connecting applications and libraries of
different fields.

3. MATERIALS & METHODS

3.1 Data Analysis
The data used during this research consists of four differ-
ent data sets. These are shown in Table 1 and visualised in
Figure 1. The first data set is a randomly generated set of
points, the small size makes it suitable to run preliminary
tests allowing for on-the-fly adjustments. The second data
set is the AHN3, a thinned .las file derived from AHN (Al-
gmeen Hoogtebestand Nederland). The third data set is the
Drivemap data provided to us by Fugro, which is acquired
in 2016. The fourth data set is a data set of the AHN3 and
Drivemap point clouds combined.

3.2 Importance value
The use case we focus on is a resolution output that de-
pends on the distance to the point-of-view (PoV). So more
detail close-by, and less further away. Another use case we
have implemented is a selection with consistent point den-
sity for a region with two data sets from different sources

Figure 1: Raw point cloud data. Top left: Random
Patch, Top right: AHN3, Bottom left: Drivemap,
Bottom right: Integrated.

with originally different densities. For true vario-scale rep-
resentation an additional dimension is added. This enables
the ordering of every point for smooth zooming and pro-
gressive data transfer. Our research lists two methods for
the computation of the importance value. The first method
is based on random assignment and is called FullRandom.
A variation on this first method is based on local random
assignment and is called LocalRandom, which intents more
consistency in point density. The second method is an exact
computation of importance. This algorithm takes for every
point the smallest distance to a neighbour. This distance
will be added as importance value. After this the specific
point will be deleted and the calculation to nearest neigh-
bours will be repeated. This iteration is done until all the
point are assigned an importance value. Two variations are
used for this method, ExactSlow and ExactFast, which are
shown in respectively Algorithm 1 and Algorithm 2.

Algorithm 1 ExactSlow: Computation of importance value

1: make KDtree index of dataset
2: for all point in dataset do
3: n = 1
4: calculate distance to n nearest neighboring points
5: while nearest neighboring point has importance

value do
6: n = n + 1
7: Calculate distance to n nearest neighboring point
8: if n is above threshold then
9: Remove processed points from dataset

10: Make KDtree index of dataset
11: end if
12: end while
13: add distance as importance value to point
14: add point to processed points
15: end for

2

Algorithm 2 ExactFast: Computation of importance value

1 make KDtree index of dataset
2 while dataset not empty do
3 for all point in dataset do
4 Calculate distance to pointnearest

5 if pointnearest has importance value then
6 continue
7 end if
8 Add distance as importance value to point
9 Add points to pointsprocessed

10 if point is last point in dataset then
11 Remove processed points from dataset
12 make KDtree index of dataset
13 break the for-loop
14 end if
15 end for
16 end while

3.3 Indexing
For some of the importance value computations a near-
est neighbour search is needed. To optimise searching for
neighbours a temporary index is constructed, specifically
the scipy.spatial.cKDTree. This is a C implementation of
the KD Tree for Python.

Figure 2: Histograms of importance values with
at the top AHN2 BK data set (1.2M points), and
the bottom two represent the random patch (10.6k
points). The columns represent the 3 different
approaches of algorithmic importance calculation:
LocalRandom, ExactSlow and ExactFast.

4. RESULTS

4.1 Importance Value
When we compare the implementations of the algorithms,

we see there is not much difference in the importance val-
ues it returns. They all resulted in an exponential decay
distribution, which is visualised in Figure 2. ExactFast re-
turns higher counts in the higher ranges of importance val-
ues. This can also be seen in image 01, where the points with
an importance value of over 300 are clearly higher in num-
ber in the ExactFast results. The AHN2 BK histograms
in Figure 2 are also showing the minimum resolution of the
AHN2 data set. There are no distances between points to
be found below the value of 20.

The comparison of the distance based algorithm varia-
tions, ExactSlow and ExactFast, shows differences on both
large and small scale. The overview of the entire data set
shows that ExactFast compared to ExactSlow contains
more points in the higher value ranges. This is because
ExactFast skips points as soon as no near neighbours are
found, this means distances increase more rapidly. In the
detailed view, Figure 3 the ExactSlow seems to preserve
edges and other details better compared to ExactFast.

4.2 Performance Data Insertion
The data stored in the database includes three-dimensional

location values for writing into a downloaded file according
to a query, an importance value obtained from our methods,
and a geometry code used for spatial queries. All the values
are stored based on a patch of 0.1M points, based on the
work of Project Pointless (repository https://github.com/

ivodeliefde/ProjectPointless). This method speeds up
the storage of one point after another by approximately 90%.

4.2.1 Data Insertion
The following Table 4 shows the results of the benchmark.

When comparing to Potree, most differences pop up in the
time it takes to run the .las files. In contrary to our data
model, Potree transforms the input point cloud data set to a

3

Figure 3: Detail view of AHN2 BK data set split up
in points having the highest percentages of impor-
tance value calculated by the two approaches of the
exact importance algorithm.

file based octree representation. The points are distributed
over levels and not just stored in the leaf nodes.

Figure 4: Benchmark results

4.2.2 Visual Inspection
If we visualise the AHN and the Integrated data set that

are processed with both PotreeConverter and our distance
based algorithm, it results in the following images (see Fig-
ure 5 and Figure 6).

Figure 5: Visualisation of AHN in Potree

Figure 6: Visualisation of Integrated data set after
ExactSlow computation

5. DISCUSSION

5.1 Conclusion
The integration, visualisation and distribution of point

clouds involve many challenges. One of these challenges lies
within the field of scale & granularity. To examine this topic
the following research question was stated: ’To what ex-
tent can a vario-scale approach improve integration of point
clouds with varying point densities?’. For the creation of
a true vario-scale approach, an additional fourth dimension
is proposed. This dimension is called the importance value
and is computed using two methods with two variations:
FullRandom, LocalRandom, ExactSlow and ExactFast.
Results show both random and exact methods have an ex-
ponential distribution of importance values on the points.
For the random algorithms this is due to the exponential
distribution where the random values are drawn from. The
importance values for the exact computations decay expo-
nentially because of fairly consistent point density within the
data set. This results in bisection of the amount of points for
every range in importance value. It takes much longer for
the exact methods to compute the importance values. This
is party caused by the use of a (temporary) KD-tree and
expensive computations. However, visualisation also shows
that the exact methods results in a better preservation of
edges, in contrary to the random method.

Reflecting on the two use cases we can state that the de-
creasing density distance from the viewpoint reduces clutter
in the background of the visualisation. It also eliminates
the artefacts that come with a discrete Level-of-Detail ap-
proach. The region selection use case on two different data

4

sets functioned as stepping stone because it was easier to
implement.

It is important to state that when determining the im-
portance value using the exact computation algorithm this
would first assign importance values to the densest data set.
Because of the iterative removal of point with an assigned
importance value, this dense data set will be reduced to the
same density as the less dense data set. The algorithm will
then continue generalisation on both data sets, creating an
integrated data set with a continuous importance dimension.

In conclusion there can be said that a vario-scale approach
can help the integration of point clouds. Though it is limited
by the fact that you have to compute neighbourhoods for
each iteration. This can be improved by the creation of
’patches’ as to limit the neighbourhoods to create, these
patches will have to grow ahead of the neighbourhoods to
prevent discrete levels. Other bottlenecks are performance
and the visual factor.

5.2 Future Work

5.2.1 Curvature
The ExactSlow method clearly best preserves the edges

of the building. However, this edge preserving property can
be improved. By adding and computing curvature a factor
could be added to the importance of certain points. This
would reduce consistency in point density, however for many
applications the detection of edges is more important.

5.2.2 PgPointCloud Integration
It could be recommended for future work to store the

points as PcPoint objects in PcPatch objects. For now they
are stored as point geometry in PostGIS.

5.2.3 PcPatch Optimalization
Points from a point cloud data set can be stored as Pc-

Point objects which can be stored in PcPatch objects (the
equivalent of blocks in Oracle). While the current method of
storing the points in PostGIS Point objects allows for four
attributes (x,y,z,imp), storing points in this format allows
for the creation of additional attributes. PcPoint objects
are defined in an XML schema, this means they are cus-
tomizable.

5.2.4 PDAL pipeline
PDAL allows for seamless integration of pgpointcloud in

PostgreSQL. Pgpointcloud comes with a PDAL writer and
reader; writers.pgpointcloud and readers.pgpointcloud. The
PDAL pipelines allow modelling of the data from reading to
processing and writing. Using a PDAL has multiple advan-
tages

5.2.5 BRIN index
BRIN (Block Range Index) is a form of indexing introduced
in PostgreSQL. This indexing takes far less storage space
and could improve the speed. It also has the advantage of
begin a part of the PostGIS extension that already supports
indexing on four dimensions.

5.2.6 Interactive Viewer
The viewer is built with three.js (https://threejs.org)
and provides the basic viewing tools such as rotating, zoom-
ing and panning. And the queries through which points are
selected and retrieved are in a separated page. However,
ideally, a user can selected points from the viewing page af-
ter seeing the data, but this is not yet within the scope of
this project, and is placed within future work.

6. ACKNOWLEDGEMENTS
We would like to thank our supervisors Martijn Meijers and
Theo Tijssen for their support and guidance during this
project. We would also like to thank our contact persons
at Fugro, Martin Kodde and Stella Psomadaki, for sharing
their expert knowledge and data with us. This project would
not have succeed without their support.

5

References
R. Cura, J. Perret, and N. Paparoditis. Point Cloud Server
(Pcs) : Point Clouds in-Base Management and Processing.
ISPRS Annals of Photogrammetry, Remote Sensing and
Spatial Information Sciences, II-3/W5:531–539, 2015.

R. Cura, J. Perret, and N. Paparoditis. A scalable and
multi-purpose point cloud server (PCS) for easier and faster
point cloud data management and processing. {ISPRS}
Journal of Photogrammetry and Remote Sensing, 127:–,
2016.

P. V. Oosterom, M. Meijers, and J. Stoter. Abstracting
Geographic Information in a Data Rich World. 2014.

M. Pauly, M. Gross, and L. Kobbelt. Efficient simplifica-
tion of point-sampled surfaces. 13th IEEE Visualization
conference., (Section 4):163–170, 2002.

pgPointCloud. pgPointCloud, 2014.

P. van Oosterom, O. Martinez-Rubi, M. Ivanova,
M. Horhammer, D. Geringer, S. Ravada, T. Tijssen,
M. Kodde, and R. Gonçalves. Massive point cloud data
management: Design, implementation and execution of a
point cloud benchmark. Computers & Graphics, 49:92–125,
2015.

B. Wouda. Visualization on a Budget for Massive LiDAR
Point Clouds. 2011.

6

Scientific Part

13

1
Introduction

Point clouds are becoming one of the most common ways to represent geographical data. Many acqui-
sition techniques result in this type of data set, from photogrammetry with drone imagery to deep-sea
sonar. The scale of acquisition of these point clouds is growing steadily. Governments, like the Nether-
lands and the United Kingdom, already provide airborne LIDAR rescans of their entire countries on a
multi-annual basis. Institutions and companies are also collecting point clouds on a more regular basis.
Not only the frequency of point cloud data is growing, coverage area and point density are growing as
well. This makes data sets even larger and more difficult to process.

The recent development of efficient processing tools avoids the need for transformations of the
representation (e.g. mesh). However, raw point clouds remain very large in storage size and require
computationally intensive operations. For future development of these tools more data is needed to
experiment with. Crucial factors in future development of point cloud tools are consistent quality and
sources. Most of the governments, institutions or companies that acquire point clouds have their own
solution for storing and distributing the point clouds. This means data sources are fragmented and
quality varies dramatically.

Figure 1.1: Discrete levels in point cloud visualisa-
tion

Making these point clouds available for both visualisa-
tion and use from a single location, will increase the avail-
ability and could solve problems with interoperability and
data quality. Integration of point clouds faces a lot of chal-
lenges within the temporal aspect, the locational aspect
and the Level of Detail the point clouds are represented in.
Combining multiple point clouds will increase difficulties al-
ready faced with visualising single point clouds.

Visualising point cloud data that is stored in a DBMSwith
conventional tree structures results in discrete levels being
visualised. An example of this, taken from the AHN2 point
cloud viewer, is visible in Figure 1.1. The red lines represent
the discrete levels that are visualised. A way to solve this visualisation issue is by using a vario-scale
representation. In this report a vario-scale approach of solving the integration of point clouds with
different scale and granularity is presented. The goal is to improve visualisation of integrated point
cloud data by using this vario-scale approach.

1.1. Purpose
To create a collaborative solution for storing point clouds, Fugro and the TU Delft propose the idea of
an OpenPointcloudMap. This idea entails a platform to which anyone could contribute by uploading
any point cloud data set, much like OpenStreetMap is for 2D vector maps.

Making the OpenPointcloudMap is no trivial assignment. The process of enabling contributors to up-
load data, integrating these data sets, visualising and redistributing, involves many challenges. Some
of these challenges are; firstly the alignment of the data sets and their coordinate reference system,
secondly the updating of the map and dealing with the time dimension and thirdly handling different

15

16 1. Introduction

scales and granularity of point clouds from different scanners and environments. Of these three, which
are just some of the many challenges, our team focuses on the last; integrating point clouds of different
scales and granularity. Solving this challenge enables appealing visualisation, usability for low and
high computation powers and geometrical consistency for analysis. These are the aspects we think
are needed to create a platform that is engaging for a community of users and contributors.

The following research question is stated.

• To what extent can a vario-scale approach improve integration of point clouds with varying point
densities?

In order to frame this research, the following questions are stated to collectively provide a solution
for the main research question.

• What kind of approach is best suited for creating a vario-scale representation of point cloud data?

• What processing steps are needed to transform different point cloud data sets into one integrated
vario-scale point cloud?

• How does the proposed implementation perform compared to current solutions?

1.2. Methods
Over the course of 10 weeks this project aimed to create an implementation that integrates point clouds
with multiple point densities with a vario-scale approach. Despite the limited project duration, multiple
aspects of point cloud operations are worked on. Because of this, the first step in this project was to
set up a project plan. This plan defines among other things the project phases, the organisation and
the main work packages. In order to frame the project, a direction in the form of a specific use case is
specified.

To gain information on the topic and to ultimately answer the research question, an initial literature
study had to be performed. This study involves an exploration of the scientific body of knowledge
pertaining all four main work packages: storage, indexing, processing and visualisation. As a result
from this initial study, a data model is generated and implemented. This implementation is created in
the phase following the mid-term presentation, marking the end of the exploratory phase.

Throughout the whole project, the project team members kept in touch with the experts and stake-
holders. Weekly meetings were scheduled with the team mentors to discuss the progress. Also meet-
ings with our stakeholder Fugro were made, to keep them informed and to exchange information and
data. The GRIND implementation is accessible on https://github.com/openpointcloudmap/
GRIND.

1.3. Boundaries
Multiple aspects bound this project. As mentioned above, the full project covers only 10 weeks. It is
part of the Geomatics Synthesis Project, which ran from April 21 till June 23. Work on the project is
carried out in the faculty of Architecture of TU Delft.

During this period, there was no time available for data acquisition. We depended on the point cloud
data that was already acquired and provided to us by AHN and our stakeholder Fugro.

Due to the project being short-term, we made use of the knowledge gained throughout our studies.
There was not sufficient time to learn a new programming language or software.

Legal restrictions could not be overlooked throughout this project. To implement new algorithms to
integrate the point clouds, related research and previous work is needed. It is essential to pay attention
to whom the work that is used belongs, which type of license the work is under, and to what extent we
can use the work.

1.4. Reading Guide
For a quick read it is advised to read the executive summary, the content of this summary is intended
to function as a scientific paper. The report consists of two parts, the first part (see Chapter 1 to 5)
comprises the scientific works and the second part (see Chapter 6 to 9) comprises the organisational
works.

https://github.com/openpointcloudmap/GRIND
https://github.com/openpointcloudmap/GRIND

2
Related work

This section elaborates on key theoretical aspects and other research relevant to the creation of an
OpenPointcloudMap.

2.1. Point cloud server
Because of the storage size and simplicity most point cloud systems still rely on file based storage. In
a benchmark van Oosterom et al. [12] shows not only the feasibility, but also the benefits regarding
functionality of storing point clouds in a Database Management System (DBMS). It has the advantage
over file-based processing is that it combines files from different sources in order to perform processing
on them. Another distinct advantage is that it enables spatial queries for point cloud analysis. Cura
et al. [3] also emphasises the added value of a flexible point cloud server. To realise such a system they
use the point cloud extension for PostgreSQL. This extension, dubbed pgPointCloud [9], proposes an
approach of managing groups of points. Instead of managing individual points, this approach allows to
profit more of the advantages a (Relational-)DBMS offers. Dealing with individual points would cause
for great numbers of entries in the tables, which in turn would result in slow query results. Cura et al. [2]
proposes in their paper a point cloud management system fully based on pgPointCloud [9] and other
open source tools.

2.2. Vario-scale
A vario-scale data structure uses scale as an additional dimension. Oosterom et al. [7] introduce the
so-called Smooth tGAP data structure for smooth zoom in vector maps which is depicted in Figure 2.1.
Adding scale dimension to 2D maps results in the concept of a Space Scale Cube (SSC) [6].

Figure 2.1: Classic and Smooth tGAP data structure resulting in Space Scale Cube

To make vario-scale point clouds, an additional attribute besides XYZ-coordinates is needed. This
additional attribute could be scale or importance as Oosterom et al. [7] characterise this dimension. The

17

18 2. Related work

importance dimension enables specific resolution queries and even mixed scale queries (more on use
cases in Section 8.2). This additional dimension can be discrete or continuous. Recent efforts focus
on discrete Levels of Detail (LOD). Simply because these levels are inherent with the implementation
of an octree, kd-tree or other common spatial indexing methods. However, discrete levels will result in
non-smooth zooming, and when mixing scales in resolution bumps (see Figure 1.1 on page 1.1 and
Figure 2.1 a) [5].

Computing a continuous importance dimension is similar to generalising point clouds. However,
during the process we wish to save the order in which points are generalised. Many techniques exist
for generalising point clouds; point based, mesh decimation, grid based subsampling, Poisson sub-
sampling and random generalisation.

Pauly et al. [8] list three point based generalisation techniques; Clustering methods, Iterative simpli-
fication and Particle simulation. Clustering methods are often used as they simply pick a representative
point for each node of the often already present hierarchy structure. Iterative simplification techniques
are considered computationally expensive as they iterate through the entire point set at least once.
Lastly, particle simulation uses the reconstruction of the implicit underlying surface for generalisation.
This technique could also be used for interpolation, however these simulations are rather complex.

In their framework for mesh decimation Kobbelt et al. [4] list the following methods to generalise
a point cloud data set; Vertex-removal, Edge-collapse, and Half-Edge-Collapse. Of these they state
Half-edge-collapse is most suitable for mesh decimation because it constraints the decision for the next
iteration.

Grid based generalisation of point clouds, even though these techniques are discrete, are often
used for efficient rendering. This is illustrated in the implementation created by Schuetz [10] of octree
based sub-sampling for the Potree.js point cloud viewer.

Cook [1] analysis of sampling techniques and human vision suggest preference for a non-uniform
distribution of points. When the original point set is random this can be achieved using Poisson disk
sampling. By sub-sampling based on distance to other points a consistent density is assured, but the
representation remains non-uniform.

Alternatively, Wouda [13] introduces the concept of adding a random importance value to each
point. This is a value between 0 and 2 that signifies the importance of the point to the human vision.
To ensure an even representation of points through all Levels of detail (LOD), the importance value is
in this case assigned by a weighted random shuffle. This is parameterised by Wouda [13] heuristically
found mean value of 0.7, with a standard deviation of 0.2.

Figure 2.2: The weighed random shuffle as proposed by Wouda [13]

Scientific Part 19

In the proposal by Wouda [13], there are still actual levels of detail in the data structure, and the
importance value is used to leap the gaps in detail between the consecutive patches of points. When in
an interactive environment (the viewer) the retrieval of these points will be controlled by an Proportional,
Integral and Differential (𝑃𝐼𝐷) controller.

2.3. Point cloud viewers
The biggest challenge for this project lies in creating the vario-scale approach. However, it is also
important to verify this structure through visualisation. There should be a way to show the results since
this is an essential application of vario-scale representation for point clouds. For this reason, a web
application will be made. This application will allow the user to upload, download and view point cloud
data. Since the project is very short-term and we’re limited by our (basic) programming knowledge,
we’ll look into existing frameworks and libraries that already have an implementation to view point
cloud data. Potree.js and threeGeoJSON.js are examples of point cloud viewers. Both using a WebGL
based viewer and the three.js library. Both viewers are open source and free of use as well. The
drawing function that threeGeoJSON provides is suitable for drawing larger geometries such as lines,
polygons and points with lower density. This functionality is less suitable for point cloud visualisation.
Therefore our research focuses on Potree.js, which we will elaborate on bellow.

2.3.1. Three.js library
Three.js is a library written in JavaScript, used for creating and animating 3D computer graphics in a
web browser. Three.js uses WebGL (Web Graphics Library) for this. WebGL does the rendering of the
3D graphics on a web browser. For the viewing of an object or data set, a scene has to be created.
This can be done using three.js. Besides the scene, a camera is needed to define the viewpoint of the
scene. With these basic elements and the objects that the web developers define for themselves, such
as lights, geometries, textures, etc., three.js is useful for the development of different web applications.
Good examples include animation of movements and panorama.

2.3.2. Potree
Potree is a web-based viewer that allows the user to display large point clouds. The viewer is constantly
being improved by the Harvest4D project. Potree consists of a Potree script and a PotreeConverter
script. Potree stores the point cloud data in an octree structure, which is done by the PotreeConverter.
The converter takes any LAS, LAZ, PLY or PTX file as input. It converts the data to a BINARY, LAS or
LAZ file format, which has the octree structure and different levels of detail. This data can be shown in
the Potree viewer.

Schütz [11] describes in this paper the working of the PotreeConverter. The Potree viewer loads only
the nodes (with its points) that are visible from the viewpoint. The former converter, written in Java,
created an octree by randomly picking points for each node. This random point selection resulted
in a non-uniform subset. In some areas holes can be found and in other areas clusters of points.
The current converter is written in C++ and chooses points uniformly. new approach first specifies a
minimum distance, then iterates through all the distances. All the points with a bigger distance than
the minDistance will be stored in that node. Depending on their position, the remaining points will be
split into nodes 0 to 7, which represent the 8 child nodes. This process is done until the desired level of
detail is reached. This improves both visual and performance qualities, since fewer points are needed
to achieve a better quality. This can be seen in Figure 2.3.

2.4. Server framework
The programming languages applied to the visualisation framework can be categorised into front-end
languages and back-end languages. For front-end development, HTML (Hypertext Markup Language),
CSS (Cascading Style Sheets) and JavaScript are all mandatory and irreplaceable languages, for which
there is no substitute.

For back-end development, however, multiple alternatives exist, and each one of them is widely
used nowadays. JavaScript, an object-oriented programming language for web application develop-
ment, has gained popularity also in software development due to the success of Node.js. In this entails
that JavaScript not only has access to the server-side database, but also ensures the consistency of

20 2. Related work

programming language throughout the project.
PHP (Hypertext Preprocessor) is another programming language to be considered. In comparison

to JavaScript, PHP is a popular server-side web development which enables the interaction between
the front-end and the back-end. Various PHP frameworks such as Symfony, Laravel and CakePHP can
be used to create web applications. The advantages of PHP include the possibility to be embedded in
HTML to help generating a dynamic web page and an efficient management of the database.

The third programming language assessed is Python. As a popular back-end language, Python is
powerful in numerous aspects including scientific computation, data visualisation and being embedded
in applications. Web frameworks for Python, such as Django, Flask and Tornado have also been
developed to enable the connection to front-end. It has a distinct advantage of being simple, clean
and explicit. Its broad range of use together with the web frameworks makes it a credible tool for web
application development. A detailed description of the Python web frameworks is provided in Appendix
B.

2.5. Data transfer
The data transfer from database to web client and vice-versa is accommodated by Django. An imple-
mentation of PDAL has been attempted because of its integration of multiple functions, the ability to
record operations performed on the data and the ability to construct operators by modifying JSON in
Python. Difficulties in the implementation have led to the use of Python for the data transfer.

A bulk loader is used which loads 10,000 points and inserts them into the PostgreSQL database,
this significantly speeds up the uploading process compared to the single query uploading. Recom-
mendations for the implementation of PDAL are made in Section 5.2.

Retrieval of data can also be done with PDAL. The current implementation uses an SQL Query
directly implemented from python to retrieve the selected data. Variables are defined by filling in a
form on client side; then they are sent to the Python script via Django framework; and with GeoDjango
statements, they can be used in the query to retrieve data from the database.

Scientific Part 21

Figure 2.3: Different sampling strategies by Schütz [11]

3
Materials & Methods

The goal of this project is to create a vario-scale approach that improves the integration of multiple
point clouds with varying point densities. Therefore, this project evolves around and is dependent on
point cloud data. In this chapter the tools and data used for this research will be specified.

3.1. Data Analysis
3.1.1. Point Cloud Data
A point cloud is often described as a set of points in a three-dimensional coordinate system (usually
defined by XYZ-coordinates), obtained by 3D scanners. The technology that provides this scanning
nowadays is becoming more precise, cost effective and available. As a result point cloud data sets are
increasing in size and availability. As (Cura et al. [3]) say in their paper, one of the downsides of this
growth of massive point clouds, is their unorganised nature. A data hierarchy and index are needed to
store these data sets. A good data structure also provides fast loading and easy access and retrieval
of data. For integration of point clouds with different densities, providing a good data structure is even
more challenging.

3.1.2. AHN data
The structure we propose for this integration, will be applied on four different data sets. One of these
data sets is AHN (Actueel Hoogtebestand Nederland). AHN provides a digital height map that covers
the Netherlands. The point clouds are obtained by airborne laser technologies. Because of the sub-
stantial datasize of almost 1 Terabyte the country is divided into units and sub units. This can be seen
in Figure 3.1. The two units we need for this project are clipped and are shown in Figure 3.2. This
pre-processing makes downloading and implementing the data faster.

Figure 3.1:
AHN Tiles

Figure 3.2:
AHN Clipped

tiles

23

24 3. Materials & Methods

There are three different AHN versions: AHN1, AHN2 and AHN3. For this project we have obtained
the latest two. The AHN2 is collected and published between the years 2007 and 2012. Collection
of AHN3 commenced in 2014 and is still in progress, full coverage of the Netherlands is planned to
be completed in 2019. The average number of points per unit (square meter) is about 8. Further
specifications on this data can be found in Figure A.1 in Appendix A.

3.1.3. Fugro data
The third and fourth data sets contain point clouds acquired by mobile laser scanning. This data is
collected by Fugro and covers a part of Delft near the faculty of Architecture (see Figure 3.3). The first
data set is collected in 2013 and second data set is collected in 2016. Further specifications on this
data can be found in Figure A.2 in Appendix A.

Figure 3.3: Location Fugro drive map 2013

3.1.4. Data sets used
In this project a selection of four data sets is used for the performance analysis. These are shown in
Table 3.1. A visual comparison of these data sets is made in Figure 3.4. All four data sets are visualised
using the FugroViewer. Both the Drivemap and Integrated data set have been decimated because of
the FugroViewer’s limitation in loading massive point clouds. For reference, the AHN3, Drivemap and
Integrated data sets are visualised from the south, meaning the images are facing north.

The first data set is a randomly generated set of points, the small size makes it suitable to run pre-
liminary tests allowing for on-the-fly adjustments. The second data set is the AHN3, as described in
Section 3.1.2. The third data set is the drivemap data from Fugro collected in 2016, which is described
in Section 3.1.3. The fourth data set is a data set of the AHN3 and Drivemap 2016 point clouds com-
bined. Combining these data sets is done using FME. In Section 5.2 uploading of multiple data sets is
discussed, eliminating the need to integrate the data set with 3rd party software before processing.

data set Name Points Format Data size (GB) Description
Random Patch 10,653 las 0.0003 Custom generated data set
AHN3 11,417,422 las 0.38 AHN3 tiles clipped to fit the Fugro Drivemap
Drivemap 49,737,433 las 1.65 Fugro Drivemap 2016 data set
Integrated 61,154,855 las 2.03 AHN3 and Fugro Drivemap 2016 combined

Table 3.1: data set description

Scientific Part 25

Figure 3.4: Raw point cloud data. Top left: Random Patch, Top right: AHN3, Bottom left:
Drivemap, Bottom right: Integrated.

3.2. Data model
For true vario-scale representation an additional dimension is added. This enables the ordering of
every point for smooth zooming and progressive data transfer.

Figure 3.5: Multi-resolution and vario-scale point cloud

This point ordering is shown in Figure 3.5. It shows the difference between discrete levels and a
continuous dimension. By computing an importance value based on distance or point density the value
can be used to order points and maintain global point density when integrating point clouds of different
densities.

3.2.1. Computation of importance value
Our research implements four methods for the computation of importance value. The 𝐹𝑢𝑙𝑙𝑅𝑎𝑛𝑑𝑜𝑚,
𝐿𝑜𝑐𝑎𝑙𝑅𝑎𝑛𝑑𝑜𝑚 and two types of 𝐸𝑥𝑎𝑐𝑡 method. These methods are explained below.

FullRandom Create an array with as many random float values as there are points in the data set.
Then assign those values to the importance dimension of the points.

26 3. Materials & Methods

LocalRandom This method assigns random values similar to the 𝐹𝑢𝑙𝑙𝑅𝑎𝑛𝑑𝑜𝑚. However, for this
method the random values are generated per neighbourhood. The Poisson disk sampling as de-
scribed by Kobbelt et al. [4] iteratively discards points within a certain radius. In the 𝐿𝑜𝑐𝑎𝑙𝑅𝑎𝑛𝑑𝑜𝑚
method points are assigned a random importance value within a certain radius. The assignment of a
distribution of random values per neighbourhood intents to ensure greater consistency in point density.

Exact Algorithm 1 and 2 assign an importance value to each point in the data set. This value is
computed based on the distance to its nearest neighbour. The distances from every point to its nearest
neighbour are sorted and the shortest is assigned as importance value to the point. When a point has
an importance value it is removed from the queue and distances in this area are recomputed. Finally,
when all points have an importance value the queue is empty.

The implementation of the importance value algorithm into Python code is done using two ap-
proaches. This is because the KD-Tree index that is used to speed up the calculations needs regular
updating. The removal of a point creates a level of uncertainty as to what point is nearest to the other,
the remaining source data set will be indexed again.

The first approach is based on an incremented number of neighbours search when the returned
distance belongs to a point that is already appended with an importance value:

Algorithm 1 ExactSlow: Computation of importance value
1: make 𝐾𝐷𝑡𝑟𝑒𝑒 index of 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
2: for all 𝑝𝑜𝑖𝑛𝑡 in 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 do
3: 𝑛 = 1
4: calculate distance to n 𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔_𝑝𝑜𝑖𝑛𝑡𝑠
5: while 𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔_𝑝𝑜𝑖𝑛𝑡 has importance value do
6: 𝑛 = 𝑛 + 1
7: Calculate distance to n 𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔_𝑝𝑜𝑖𝑛𝑡
8: if 𝑛 is above 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
9: Remove processed points from 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
10: Make 𝐾𝐷𝑡𝑟𝑒𝑒 index of 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
11: end if
12: end while
13: add distance as 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 value to point
14: add 𝑝𝑜𝑖𝑛𝑡 to processed points
15: end for=0

This approach is dubbed 𝐸𝑥𝑎𝑐𝑡𝑆𝑙𝑜𝑤. This approach ensures the same sequence of points in the
output as there is in the input. The incremented number of neighbours searched per point is a costly
operation. When the number 𝑛 gets bigger than the threshold, the data set will be updated and the
KD-tree rebuilt. The threshold is calculated with a heuristically found equation using the number points
(𝑛𝑝) left in the data set:

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = (𝑛𝑝/9000) + 40

The second approach is based on the principle that when for a given point 𝑖 the nearest neighbouring
point is already processed, point 𝑖 will be skipped. Subsequently the next point in the data-set will be
queried:

As illustrated in the pseudo-code above, the KD-tree will only be rebuilt after the algorithm has
scanned through all points. It will proceed with the updated data set until all points from the initial data
set are removed as they are processed. This approach is named 𝐸𝑥𝑎𝑐𝑡𝐹𝑎𝑠𝑡. The performance of the
second approach is much faster in terms of processing time (-60%) for files containing more than 50k
points, hence the name.

3.2.2. Indexing
For some of the importance value computations a nearest neighbour search is needed. To optimise
searching for neighbours an index is constructed, specifically the scipy.spatial.cKDTree. This is a C

Scientific Part 27

Algorithm 2 ExactFast: Computation of importance value
1 make 𝐾𝐷𝑡𝑟𝑒𝑒 index of 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
2 while 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 not empty do
3 for all 𝑝𝑜𝑖𝑛𝑡 in 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 do
4 Calculate distance to 𝑝𝑜𝑖𝑛𝑡፧፞ፚ፫፞፬፭
5 if 𝑝𝑜𝑖𝑛𝑡፧፞ፚ፫፞፬፭ has importance value then
6 continue
7 end if
8 Add 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 as importance value to 𝑝𝑜𝑖𝑛𝑡
9 Add 𝑝𝑜𝑖𝑛𝑡𝑠 to 𝑝𝑜𝑖𝑛𝑡𝑠፩፫፨፞፬፬፞፝
10 if 𝑝𝑜𝑖𝑛𝑡 is last 𝑝𝑜𝑖𝑛𝑡 in 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 then
11 Remove processed 𝑝𝑜𝑖𝑛𝑡𝑠 from 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
12 make 𝐾𝐷𝑡𝑟𝑒𝑒 index of 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
13 break the for-loop
14 end if
15 end for
16 end while=0

implementation of the KD Tree for Python.
The implementation does not allow for updating. Therefore a list of remaining points is kept and the

KD tree is regularly recomputed.

3.3. Client/Server framework
The client/server framework serves as the communication platform between the front-end, where a user
can send requests, and the back-end, where data management happens after receiving the requests,
and various responses are generated. The framework, in essence, passes the request from the front-
end to the back-end, and returns the responses from the back-end to the front-end.

Because of the detailed documentation, simple connection with PostgreSQL, and support of point
geometry and PostGIS, Django is used as the framework for client/server interaction in this project.

This section explains how the web application works. The application includes three functional
modules: uploading, downloading and viewing; an extra button for transforming is also on the page
(see Figure 3.7). The complete structure of the web application developed for this project is shown in
Figure 3.6.

3.3.1. Uploading
The upload module consists of an HTML input of files, where a button on the website enables the user
to select a file from the local directories, and another HTML input to ensure submission (Figure 3.8).
Multiple data sets can be uploaded. However, only .LAS format will be recognised and processed. After
this the files are stored in the Django framework and ready for transformation. This transformation will
calculate the importance values, add them to the point cloud and store it in a database. This will be
further explained in Section 4.2.

3.3.2. Downloading
After the transformation and storing, the data is ready to be downloaded (Figure 3.9). After clicking the
download button, the requested data will be queried from the database. This querying is implemented
in two different ways:

1. The first query is based on so called envelope, a rectangular surface, with a specified total amount
of points. The client has to specify the rectangle by defining the two corner points. This will create
a rectangle geometry and all the points within this area (with the selected point density) will be
added to the requested download.

1 DROP VIEW thisgeom;
2
3 CREATE VIEW thisgeom AS SELECT ST_MakePolygon(ST_GeomFromText(’LINESTRING(point0,

point1, point2, point3, point0)’));

28 3. Materials & Methods

Figure 3.6: Django web application

4
5 SELECT ST_M(pointcloud.the_geom), pointcloud.the_geom, thisgeom.st_makepolygon
6 FROM pointcloud, thisgeom
7 WHERE ST_Within(pointcloud.the_geom, thisgeom.st_makepolygon)
8 ORDER BY ST_M(the_geom) DESC
9 LIMIT 10;

2. The second query is based on a radius from a viewpoint with decreasing point density relative to
the distance from the viewpoint. The client is able to select this viewpoint as a location based on
x and y values. Also a value for the radius has to be specified. A geometry is made by getting a
buffer around the point. All point within this region will be selected. The density around the point
will be high and decreases as the distance grows. A function determines whether or not a point
is taken, depending on the distance to the viewpoint and its importance value. This function is
made so that it has a fairly even distribution of points.

1 DROP VIEW circle_geom;
2
3 CREATE VIEW circle_geom AS SELECT ST_Buffer(ST_GeomFromText(’POINT(location)’, SRID)

, radius);
4
5 SELECT p_id, ST_AsText(point), imp
6 FROM pointcloud, circle_geom
7 WHERE ST_Within(pointcloud.point, circle_geom.st_buffer)
8 AND imp > ST_Distance(ST_GeomFromText(’POINT(location)’, SRID), pointcloud.point)/

radius;

The data query will be carried out using GeoDjango, a Django module of PostGIS queries in Python
language. With this module, the input parameters defined on the front-end can be sent to the Post-
greSQL database where data can be retrieved, and the data can be processed with a Python script
where the output file is written in a .LAS format. Finally, a response will be sent back to the front-end
informing the user that the download is completed.

Scientific Part 29

Figure 3.7: Functions of the web application Figure 3.8: Upload module

Figure 3.9: Download module

The second button on this page is to send the query to the online viewer. The data retrieval is the
same as above, the difference being that instead of writing a .LAS file, this function writes the data into
a JavaScript variable for the viewer to call and use. This will be introduced in Section 3.3.3.

3.3.3. Viewing
The online viewing is realised by using three.js (https://threejs.org) functions. Within the func-
tion, three important components are defined: the scene, the camera and the controller.

The scene acts as the canvas where the point cloud is drawn. The controller is a three.js class
named TrackballControls. With this, the user can drag the mouse to control the rotation in all directions
of pitch, roll and yaw, and can zoom in and out with mouse controls as well.

The initial viewing point is defined by the camera. This is a Perspective Camera which simulates
the vision of the human eye. The mandatory parameters to define the camera are introduced in Figure
3.10.

Three parameters are defined when creating a perspective view; field of view (fov), aspect and near
and far planes. The first parameter, fov, is defined as twice the angle of BAC, i.e. the angle between
the horizontal plane and the upper plane of vision. Aspect is the canvas width divided by height and
projects . Its tangent value is symbolised by angle CAD. Near and far planes are the boundaries within
which the object can be shown. These are defined via distances.

This idea of visualising the vario-scale point cloud requires the camera to see from the central point
defined by the user. To set the position of the camera, the concept provided by Figure 3.11 is applied

https://threejs.org

30 3. Materials & Methods

Figure 3.10: Perspective camera

(https://www.udacity.com/course/cs291).

Figure 3.11: The position of the camera

Camera A is a camera set in the random position of a 3D Cartesian space. The position is defined
with vector (𝑥, 𝑦, 𝑧), and the camera looks towards (0, 0, 0). However, the camera is still free to rotate
within the plane perpendicular to the vector, which may make the view upside-down or pointing to a
random direction instead of upwards. In this case, the upper direction of the camera is also defined,
in order to fix the position of the camera. Our viewer sets the camera on the x-axis, and the upper
direction is the z-axis. This position functions as the position of camera B. The point cloud is moved
towards the negative direction of the z-axis for a partial bird-view, as is defined by the plane 𝑥፩−𝑂፩−𝑦፩.
The result within the viewer is shown in Figure 3.12.

This is ideal when the observing point is located within the central zone of the point cloud. However,
if the user selects a point near the border from which only one direction is populated with retrieved
points, it is likely that the camera by default faces a direction where there are no points. Theoretically,
the direction can still be defined by finding the nearest point to the observing point, and setting the
displacement vector between the two points as target direction, and the points in this direction will be
shown. But this target setting is violated by the Trackball controller, and no documentation is found to
fix this. In this case, the user can choose to ’Switch aspect’ and locate the point cloud from the above.
The position of the camera is shown as camera C in Figure 3.11, and the resulting view is visualised in
Figure 3.13.

https://www.udacity.com/course/cs291

Scientific Part 31

Figure 3.12: The point cloud viewed from the centre

Figure 3.13: View from the above

3.4. Performance analysis
In the set up of the performance test is discussed. The performance analysis step of this methodology
compares our implementation with an existing benchmark. For this, Potree is used (www.potree.
org). Potree is an existing web viewer for point clouds which performs and octree indexing on the data
set when converted.

In the performance analysis four data sets will be used:

1. A generated patch of uniformly dispersed points

2. A clipped AHN3 patch

3. The Drivemap 2016 data set as provided by Fugro

4. The combined Drivemap 2016 and clipped AHN3 data set

More information on the AHN and Fugro data sets can be found in respectively Subsection 3.1.2
and Subsection 3.1.3. The performance will be tested on the following quantitative indicators:

• total time, the complete time the process takes including reading the data and converting it.

www.potree.org
www.potree.org

32 3. Materials & Methods

• build-up time, the time it takes to build up the data structure and index.

• data size, how much disk-space does the resulting structure take.

3.4.1. Hardware
For the performance analysis a laptop is used with the following hardware specifications:

• OS, Windows 10 Home

• Processor , Intel Core i7-6700HQ CPU @ 2.60GHz

• RAM, 16GB

• System, 64 bit, x64 processor

4
Results

The previous chapter explains the methodology for this research. This methodology resulted in a point
cloud application that handles uploading, downloading and viewing of vario-scale point clouds. In this
chapter the functionality of this application and its results are shown.

4.1. Importance value
For computing the new dimension for each point, the importance value, multiple methods have been
implemented. The distributions of these values determine the amount of points that are retrieved for
specific spatial queries. To analyse these distributions the following histograms are plotted.

When we compare the implementations of the algorithm, as explained in Subsection 3.2.1, in Fig-
ure 4.1, we see there is not much difference in the distribution of importance values it returns. The
𝐿𝑜𝑐𝑎𝑙𝑅𝑎𝑛𝑑𝑜𝑚 as well as both the 𝐸𝑥𝑎𝑐𝑡𝑆𝑙𝑜𝑤 and 𝐸𝑥𝑎𝑐𝑡𝐹𝑎𝑠𝑡 implementations result in an exponen-
tial decay distribution of point distribution. For the random assignment this is logical as the random
samples are drawn from an exponential distribution.

The 𝐸𝑥𝑎𝑐𝑡𝑆𝑙𝑜𝑤 and 𝐸𝑥𝑎𝑐𝑡𝐹𝑎𝑠𝑡 computation algorithms result in an importance value based on the
distance. These values range from 20 to 450 for the AHN2 data set and 0 to 15.000 for the random
patch. This means the nearest points are circa 20 centimetres apart, which is therefore the maximum
resolution. For the 𝐿𝑜𝑐𝑎𝑙𝑅𝑎𝑛𝑑𝑜𝑚 computation algorithm the value ranges from 0 to 5. The random
values can not directly be related to a specific point density.

The comparison of the distance based computations, 𝐸𝑥𝑎𝑐𝑡𝑆𝑙𝑜𝑤 and 𝐸𝑥𝑎𝑐𝑡𝐹𝑎𝑠𝑡, shows differ-
ences on both large and small scale. The overview of the entire data set in Figures 4.2 shows that
𝐸𝑥𝑎𝑐𝑡𝐹𝑎𝑠𝑡 compared to 𝐸𝑥𝑎𝑐𝑡𝑆𝑙𝑜𝑤 contains more points in the higher value ranges. The points with
an importance value of over 300 are clearly higher in number in the 𝐸𝑥𝑎𝑐𝑡𝐹𝑎𝑠𝑡 visualisation compared
to the 𝐸𝑥𝑎𝑐𝑡𝑆𝑙𝑜𝑤. This is because 𝐸𝑥𝑎𝑐𝑡𝐹𝑎𝑠𝑡 skips points as soon as no new near neighbours are
found, whereas 𝐸𝑥𝑎𝑐𝑡𝑆𝑙𝑜𝑤 increases the number of neighbours to look for. This means distances in
𝐸𝑥𝑎𝑐𝑡𝐹𝑎𝑠𝑡 increase more rapidly. In the detailed view, Figure 4.3 the 𝐸𝑥𝑎𝑐𝑡𝑆𝑙𝑜𝑤 seems to preserve
edges and other details better compared to 𝐸𝑥𝑎𝑐𝑡𝐹𝑎𝑠𝑡.

The 𝐹𝑢𝑙𝑙𝑅𝑎𝑛𝑑𝑜𝑚 and 𝐿𝑜𝑐𝑎𝑙𝑅𝑎𝑛𝑑𝑜𝑚 approaches on large scale data sets are visualised in Fig-
ure 4.4. This figure shows that the 𝐿𝑜𝑐𝑎𝑙𝑅𝑎𝑛𝑑𝑜𝑚method overall improves consistency in point density.
The small scale in Figure 4.5, however, shows that both methods result in holes and as expected do
not guarantee qualitative coverage. It is hard to visually determine whether the 𝐿𝑜𝑐𝑎𝑙𝑅𝑎𝑛𝑑𝑜𝑚 method
actually has an impact or that it is just as random as the 𝐹𝑢𝑙𝑙𝑅𝑎𝑛𝑑𝑜𝑚 method.

33

34 4. Results

Figure 4.1: Histograms of importance values with at the top AHN2_BK data set (1.2M points), and the bottom two represent the
random patch (10.6k points). The columns represent the 3 different approaches of algorithmic importance calculation:

ፋ፨ፚ፥ፑፚ፧፝፨፦, ፄ፱ፚ፭ፒ፥፨፰ and ፄ፱ፚ፭ፅፚ፬፭.

Scientific Part 35

Figure 4.2: Visual representation of AHN2_BK data set split up in different ranges of importance value calculated by the
IncrementSearch and SkipFirst algorithms.

36 4. Results

Figure 4.3: Detail view of AHN2_BK data set split up in points having the highest percentages of importance value calculated
by the two approaches of the exact importance algorithm.

Scientific Part 37

Figure 4.4: Visual representation of AHN2_BK data set split up in percentiles on importance value calculated by the two
approaches of the random importance calculation.

38 4. Results

Figure 4.5: Detail view of AHN2_BK data set split up in points having the highest percentages of importance value calculated
by the two approaches of the random importance calculation.

Scientific Part 39

4.2. Performance analysis
The point cloud table inside PostgreSQL contains the columns and value types as can be seen in
Table 4.1;

id (integer) x (double) y (double) z (double) imp (double) xypoint (geometry)
0 84897.55 446362.99 3.86 0.291204 ...
1 84896.98 446363.43 3.84 0.063986 ...
2 84896.79 446363.63 3.87 0.826300 ...
3 84897.09 446363.67 3.84 1.082571 ...
4 84897.16 446363.95 3.8 0.988383 ...
...

Table 4.1: PostgreSQL table

Initially, the locations of each point are retrieved from the .LAS file, the importance value is re-
trieved from the implementation result, and the geometry is defined as 2-dimensional point geometry
under coordinate reference system EPSG:28992. Next the table is filled in row by row, one at a time.
This whole process takes approximately 100 minutes for 1.2M points, with randomly generated im-
portance values. This is a costly process for the storage of a point cloud, therefore an optimisation
where multiple records can be saved at one time. However, thanks to the experiment by Stefano
Dissegna (http://stefano.dissegna.me/django-pg-bulk-insert.html) and the method
provided by Project Pointless (http://projectpointless.bitballoon.com), the data is stored
after every 0.1M points. This reduced the storage time to 10 minutes for 1.2M points. This method first
writes every 0.1M records to a CSV file-like object, and then imports the records to the database. This
method first ensures that the records are in batches, and CSV format is used for storing tabular data,
which can be directly input to the database without processing overhead.

During retrieval, the geometry column is used to perform spatial query during data retrieval, thus
saving the downloading time, and only the x, y, z and importance values are written to the output file.
The process from defining the geometry to carrying out the spatial query can be realised byGeoDjango
functions. A generic index structure (GiST) is also created on the geometry column to simplify thus
speed up the querying process.

Interesting to note is the difficulty of installing the Potree converter. On both the Linux with GCC
4.9 and the Windows with Microsoft Visual Studio 2015 build problems arose. The hardware of the
machine that the Potree converter is built on can be found in Subsection 3.4.1. When built, the Potree
converter is easy to use and did not require any adjustments to run the performance analysis. The
difficulty with building the Potree converter pleads for the development of an easy to use web platform
like OpenPointcloudMap.

http://stefano.dissegna.me/django-pg-bulk-insert.html
http://projectpointless.bitballoon.com

40 4. Results

4.2.1. Data insertion
In Table 4.2 the results from the benchmark are shown. When comparing to Potree, the most notable
difference is the time it takes to run the .LAS files. Contrary to our data model, Potree transforms the
input point cloud data set to a file based octree representation. The points are distributed over levels
and not just stored in the leaf nodes. The GRIND implementation uses a temporary KD-tree and has
a more expensive computation. This results in higher calculation times compared to Potree. For the
integrated data set the computation using the 𝐸𝑥𝑎𝑐𝑡𝐹𝑎𝑠𝑡 method takes about 3906 seconds, while
Potree’s converter takes only 129 seconds.

The Build-up time for 𝐹𝑢𝑙𝑙𝑅𝑎𝑛𝑑𝑜𝑚, 𝐿𝑜𝑐𝑎𝑙𝑅𝑎𝑛𝑑𝑜𝑚, 𝐸𝑥𝑎𝑐𝑡𝐹𝑎𝑠𝑡 and 𝐸𝑥𝑎𝑐𝑡𝑆𝑙𝑜𝑤 is the time spent
on calculating and appointing the importance value itself. So without the time it takes reading and
writing the LAS-file, and loading the initial data in the memory. For 𝐹𝑢𝑙𝑙𝑅𝑎𝑛𝑑𝑜𝑚 this simply consist of
generating the random values for the number of points. For 𝐿𝑜𝑐𝑎𝑙𝑅𝑎𝑛𝑑𝑜𝑚 this is building the KD-tree,
querying the points for other points within range. Finally for 𝐸𝑥𝑎𝑐𝑡𝐹𝑎𝑠𝑡 and 𝐸𝑥𝑎𝑐𝑡𝑆𝑙𝑜𝑤 this is multiple
calculations of the KD-tree, querying for the nearest neighbours and calculating the distance.

The ExactSlow code is not optimised for Windows and works only on MacOS for data-sets over
1GB. Therefore Table 4.2 shows no answer for this algorithm for the Drivemap and Integrated data.

Test Potree FullRandom LocalRandom ExactFast ExactSlow
Random Patch
Total time 0.957 s 0.05 s 0.20 s 0.70 s 0.64 s
Build-up time 0.957 s 0.008 s 0.16 s 0.65 s 0.54 s
Data size (GB) 0.00027 0.00034 0.00034 0.00034 0.00034
AHN3
Total time 21.614 s 7.5 s 208 s 703 s 1,428 s
Build-up time 19.258 s 1.5 s 208 s 688 s 1,399 s
Data size (GB) 0.286 0.433 0.433 0.433 0.433
Drivemap
Total time 88.811 s 28.8 s 363 s 3,364 s n/a
Build-up time 77.9 s 8.0 s 434 s 3,289 s n/a
Data size (GB) 1.21 1.89 1.89 1.89 n/a
Integrated
Total time 129.603 s 42.5 s 1,358 s 3,906 s n/a
Build-up time 124.402 s 8.4 s 1,275 s 3,818 s n/a
Data size (GB) 1.49 2.32 2.32 2.32 n/a

Table 4.2: Benchmark results

Scientific Part 41

4.2.2. Visual inspection
If we visualise the AHN and the Integrated data set that are processed with both PotreeConverter and
our 𝐸𝑥𝑎𝑐𝑡𝐹𝑎𝑠𝑡 algorithm, it results in the following images (see respectively Figure 4.6 and Figure 4.7).
On the Potree image, different Levels of Details are visible through colouring. The further away from
the centre view, the less dense the point cloud gets. The biggest difference between both is seen in far
of this centre. The Potree points here get all clustered up, which blocks the sight. This is not the case
for our result, due to the continuity of the model.

Figure 4.6: AHN processed with PotreeConverter from a center view

Figure 4.7: Integrated data set processed by distance based algorithm from a centre view

42 4. Results

The following images show the same data set from a bird’s eye view. In Figure 4.8 the blocks with
different LOD’s generated by Potree are visible. Figure 4.9 visualised the vario-scale model.

Figure 4.8: AHN processed with PotreeConverter from a bird’s eye view

Figure 4.9: Integrated data set processed by distance based algorithm from a bird’s eye view

Scientific Part 43

If we zoom in a little more, Figure 4.10 shows the differences in detail between the Potree converted
file and the results of the 𝐸𝑥𝑎𝑐𝑡𝐹𝑎𝑠𝑡 computation. The quality of the visualisation has improved using
this implementation. Edges are even more preserved, which makes the tower visibly better.

Figure 4.10: Difference in detail between Potree (left) and our implementation (right)

5
Discussion

This chapter discusses the results from the previous chapter. Based on the conclusions, recommen-
dations for future work will be suggested.

5.1. Conclusion
Integration of point clouds can be challenging. These challenges can lie within the locational aspect,
the temporal aspect or the Level of Detail the point clouds are presented in. This research focuses
on the last one; the integration of point clouds with different scales and granularity. To examine this
topic, the following research question is stated: ’To what extend can a vario-scale approach improve
integration of point clouds with different point densities?’. Three main subtopics within this research
were specified. Firstly the best suited approach is to be examined. Secondly the processing steps
which are needed to transform different point cloud data sets into one point cloud with vario-scale
implementation are identified. The third subtopic consists of a performance comparison, to test the
proposed implementation with current solutions. To do this performance analyses and to visualise
the results of our data model, a web application has been build. This application can be found on
https://github.com/openpointcloudmap/GRIND.

Research has shown the value of having the points stored in a Database Management System
(DBMS), instead of file based storage. This is emphasised in the works of van Oosterom et al. [12] and
Cura et al. [3]. There is a point cloud extension for PostgreSQL which handles groups of point, which
results in faster query results.

The vario-scale structure with a non-discrete LoD (or importance) is proposed in the works of [12]
and Oosterom et al. [7]. Oosterom et al. [7] introduces a new dimension in his paper in order to create a
vario-scale point cloud. This dimension could either be scale or importance. These levels are inherent
with the implementation of an octree, kd-tree or other common spatial indexing method. However,
discrete levels will result in non-smooth zooming and when mixing scales in resolution bumps.

Pauly et al. [8] listed three methods to compute a continuous dimension, instead of a discrete dimen-
sion. These methods involve clustering, iterative simplification and particle simulation. These methods
are often computationally expensive and rather complex. Another way to add a continuous scale di-
mension is introduced by Wouda [13]. This method adds a random importance value between 0 and
1.

To create the vario-scale approach a fourth dimension (importance) is added to each point in the
point cloud. The use case the project focuses on is a continuous LoD output that depends on the dis-
tance to the point-of-view (PoV). This implies more detail close-by, and less further away. The added
fourth dimension allows for a true vario-scale representation. This enables the ordering of every point
for smooth zooming and progressive data transfer. Our research lists four methods for the computa-
tion of the importance value. The first method is based on random assignment of importance values;
𝐹𝑢𝑙𝑙𝑅𝑎𝑛𝑑𝑜𝑚. The second method is based on 𝐹𝑢𝑙𝑙𝑅𝑎𝑛𝑑𝑜𝑚, and modified to cluster the random as-
signment; 𝐿𝑜𝑐𝑎𝑙𝑅𝑎𝑛𝑑𝑜𝑚. There is no visible difference in the vario-scale representation of point clouds
when using the 𝐹𝑢𝑙𝑙𝑅𝑎𝑛𝑑𝑜𝑚 method or the 𝐿𝑜𝑐𝑎𝑙𝑅𝑎𝑛𝑑𝑜𝑚 method. The main differnce between both
methods is the total time for which both methods run. The 𝐹𝑢𝑙𝑙𝑅𝑎𝑛𝑑𝑜𝑚 is consistently faster compared

45

https://github.com/openpointcloudmap/GRIND

46 5. Discussion

to the 𝐿𝑜𝑐𝑎𝑙𝑅𝑎𝑛𝑑𝑜𝑚method and therefore is the preferredmethod when randomly assigning the impor-
tance values. The third and fourth method are exact computations, named 𝐸𝑥𝑎𝑐𝑡𝐹𝑎𝑠𝑡 and 𝐸𝑥𝑎𝑐𝑡𝑆𝑙𝑜𝑤.
These exact algorithms take for every point the smallest distance to a neighbour. This distance is added
as importance value. After this the specific point is deleted and the calculation to nearest neighbours
is repeated. This iteration is done until all the point are assigned an importance value. To optimise
searching for neighbours a temporary index is constructed, specifically the scipy.spatial.cKDTree. This
is a C implementation of the KD Tree for Python.

The proposed datamodel is implemented on four different data sets. The first data set is the Random
Patch consisting of 10.653 points. The second data set is derived from AHN3, consisting of 11 million
points. The third data set is a Drivemap provided by Fugro, consisting of almost 50 million point. For
the last data set, the AHN3 and the Drivemap are combined into one, consisting of about 61 million
points. We refer to this data set as the Integrated data set.

When looking at the results of the created importance values, both the local random computations
and the exact computations lead to an exponential distribution of points. The random assigned values
vary from 0 to 5. The exact importance values are different for each data set, depending on their point
densities. For the AHN2 the values range from 20 to 450 cm. This means the nearest points are circa
20 cm apart, which is therefore the maximum resolution. The exponential distribution for the random
algorithm is expected because the distribution of random values is chosen to be exponential. The
distribution for the exact algorithms is due to the relatively consistent point density within the dataset. In
case of a perfect equally dense dataset the first range of importance value in the varioscale distribution
would contain about half of the points. The second range would contain half of that, and so.

Edges of buildings are noticeably better preserved using the exact methods rather than of the ran-
dom methods. This is shown in Figure 4.5.

When comparing the GRIND implementation to Potree, the most noticable differences is the time it
takes to run the .LAS files. Contrary to the GRIND implementation, Potree transforms the input point
cloud data set to a file based octree representation. The points are distributed over levels and not just
stored in the leaf nodes. Both the 𝐸𝑥𝑎𝑐𝑡𝑆𝑙𝑜𝑤 and 𝐸𝑥𝑎𝑐𝑡𝐹𝑎𝑠𝑡 methods use a temporary KD-tree which
results in amore expensive computation. This results in longer calculation times for our implementation.
The longer duration in computation times is to be expected because a fourth dimension is added to the
data set, something which Potree does not do. Recommendations on how to speed up the GRIND
implementation can be found in Section 5.2.

5.2. Future work
5.2.1. Curvature
In the results chapter the detail views (see Figure 4.3) of both the 𝐸𝑥𝑎𝑐𝑡𝐹𝑎𝑠𝑡 and 𝐸𝑥𝑎𝑐𝑡𝑆𝑙𝑜𝑤 methods
are shown. The 𝐸𝑥𝑎𝑐𝑡𝑆𝑙𝑜𝑤 method best preserves the edges of the building. However, this edge
preserving property can be improved. In the project plan it is suggested that curvature could be added
to the importance value computation. By computing curvature a factor could be added to the importance
of certain points. This would reduce consistency in point density, however for many applications the
detection of edges is more important.

Scientific Part 47

5.2.2. pgpointcloud integration
Points from a point cloud data set can be stored as PcPoint objects which can be stored in PcPatch
objects (the equivalent of blocks in Oracle). While the current method of storing the points in PostGIS
Point objects allows for four attributes (x,y,z,imp), storing points in this format allows for the creation of
additional attributes. PcPoint objects are defined in an XML schema, this means they are customisable.
An XML schema defining a PcPoint with four attributes (X, Y, Z, Imp) is shown below.

1 <?xml version=”1.0” encoding=”UTF-8”?>
2 <pc:PointCloudSchema xmlns:pc=”http://pointcloud.org/schemas/PC/1.1”
3 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>
4 <pc:dimension>
5 <pc:position>1</pc:position>
6 <pc:size>4</pc:size>
7 <pc:description>X coordinate as a long integer. You must use the
8 scale and offset information of the header to
9 determine the double value.</pc:description>
10 <pc:name>X</pc:name>
11 <pc:interpretation>int32_t</pc:interpretation>
12 <pc:scale>0.01</pc:scale>
13 </pc:dimension>
14 <pc:dimension>
15 <pc:position>2</pc:position>
16 <pc:size>4</pc:size>
17 <pc:description>Y coordinate as a long integer. You must use the
18 scale and offset information of the header to
19 determine the double value.</pc:description>
20 <pc:name>Y</pc:name>
21 <pc:interpretation>int32_t</pc:interpretation>
22 <pc:scale>0.01</pc:scale>
23 </pc:dimension>
24 <pc:dimension>
25 <pc:position>3</pc:position>
26 <pc:size>4</pc:size>
27 <pc:description>Z coordinate as a long integer. You must use the
28 scale and offset information of the header to
29 determine the double value.</pc:description>
30 <pc:name>Z</pc:name>
31 <pc:interpretation>int32_t</pc:interpretation>
32 <pc:scale>0.01</pc:scale>
33 </pc:dimension>
34 <pc:dimension>
35 <pc:position>4</pc:position>
36 <pc:size>8</pc:size>
37 <pc:description>The importance value is the integer representation
38 of the varioscale indexing. This value is computed
39 to allow for varioscale representation of the
40 point cloud data.</pc:description>
41 <pc:name>Imp</pc:name>
42 <pc:interpretation>uint16_t</pc:interpretation>
43 <pc:scale>1</pc:scale>
44 </pc:dimension>
45 <pc:metadata>
46 <Metadata name=”compression”>dimensional</Metadata>
47 </pc:metadata>
48 </pc:PointCloudSchema>

The points can be loaded into the database in one of two ways. By makingWKB objects that adhere
to the XML schema that defines the points or by using a PDAL pipeline. The XML schema is referred to
with a pcid. The XML schemes are stored in the pointcloud_formats table that holds all the pcid entries
and schema documents. Because of this seamless integration with PDAL it is advised to used PDAL
for both the storage and retrieval of points from the PostgreSQL database.

48 5. Discussion

5.2.3. PDAL pipeline
Using PDAL for the loading and retrieval of points in PostgreSQL hasmultiple advantages. The compat-
ibility with pgpointcloud allows for the use of PcPoint and PcPatch objects for the storage and indexing
of the point cloud. A PDAL pipeline has multiple advantages in the way it handles complex requests
and the fact it is easily to customise. Using the PDAL pipeline creates a record of the applied operation
by creating a skeleton which can be created and modified through the json library available for python.

PDAL allows for seamless integration of pgpointcloud in PostgreSQL. pgpointcloud comes with a
PDAL writer and reader; writers.pgpointcloud and readers.pgpointcloud. The PDAL pipelines allow
modelling of the data from reading to processing and writing. Using a PDAL has multiple advantages

1. Access to the record of operation(s) applied to the data

2. Construct the pipeline skeleton with operations and substitue specific options such as file name,
EPSG or boundary.

3. Construction of the PDAL pipeline can be done within any language with JSON manipulation
facilities.

An example reader pipeline that reads an uploaded file, assigns each point an importance value
and stores them in the database as well as an example writer pipeline which retrieves these points and
outputs a .LAS file are shown below.

PDAL reader pipeline
1 {
2 ”pipeline”:[
3 {
4 ”type”:”readers.las”,
5 ”filename”:”\ f̃ile.laz”,
6 ”spatialreference”:”EPSG:28992”
7 },
8 {
9 ”type”:”filters.programmable”,
10 ”function”:”importance”,
11 ”module”:”anything”,
12 ”script”:”\ ĩmportance_pdal.py”
13 },
14 {
15 ”type”:”writers.pgpointcloud”,
16 ”connection”:”host=’localhost’ dbname=’database’ user=’user’ password=’

password’ port=’5432’”,
17 ”table”:”table”,
18 ”column”:”column”,
19 ”compression”:”none”,
20 ”overwrite”:”true”,
21 ”srid”:”28992”,
22 ”pcid”:”XML Schema id”
23 }
24]
25 }

PDAL writer pipeline
1 {
2 ”pipeline”:[
3 {
4 ”type”:”readers.pgpointcloud”,
5 ”connection”:”host=’localhost’ dbname=’database’ user=’user’ password=’

password’ port=’5432’”,
6 ”table”:”table”,
7 ”column”:”column”,
8 ”spatialreference”:”EPSG:28992”,
9 ”where”:”SQL statement”
10 },
11 {
12 ”type”:”writers.las”,
13 ”filename”:”\ f̃ile_out.las”,

Scientific Part 49

14 ”a_srs”:”EPSG:28892”
15 }
16]
17 }

Using a PDAL pipeline has clear advantages in terms of ease-of-use. As future work researching the
use of the PDAL pipeline for (possibly) optimising both the reading and writing operations is essential.
This research would show whether PDAL as a pipeline is beneficial in terms other than ease-of-use
such as implementation time and pgpointcloud compatibility.

5.2.4. Clustering of points
The database in its current structure stores individual points. Storage can be improved by storing these
individual points in block objects. To improve the query response time pgPointcloud uses 𝑃𝑐𝑃𝑎𝑡𝑐ℎ ob-
jects. Since point cloud data typically contains millions of points, collecting these points into a PcPatch
object will reduce processing times of, for example, linear scans.

Generally assigning points to patches is dependent on what choices are to be made in terms of
indexing and data structure. Index libraries and extensions that support indexing on 4 dimensions of
spatial data are limited. Regarding the available research a promising follow-up would be any of the
space filling curves in 4D.

These space filling curves will result in a sequence of points that relates to the spatial ordering of all
points. This sequence of points can then be split up in patches of each 400 points, the recommended
amount of points in a PcPatch. This is a lossy way of splitting up the data into chunks and resulted in
our preliminary explorations in overlapping bounding boxes.

Research has been done on collecting points into one patch based on 𝑋𝑌𝑍 − 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 and
𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 attributes. The most feasible approach in the near future of this project is collecting the
points in a manner based on the 𝐵𝑙𝑜𝑐𝑘𝑅𝑎𝑛𝑔𝑒𝐼𝑛𝑑𝑒𝑥 further explained in Subsection 5.2.5. So instead
of building the index, each block is represented by a minimum and maximum value for each of the 4
dimensions. Especially when we consider scaling up the project to billions of points, patches will then
still result in millions of rows. Then on top of these millions of patches an index can be built.

An 𝑂𝑝𝑒𝑛𝑃𝑜𝑖𝑛𝑡𝐶𝑙𝑜𝑢𝑑𝑀𝑎𝑝 will be updated and data will be added multiple times. In order to minimise
the time of restructuring and recalculating the data, a clear bounding hyper-box is preferable. To make
this approach workable, the data-structure has to be modified. Each entry will have at least have a key
value, and a PcPatch geometry written as WKB (Well Known Binary) or Extended-WKB. To eliminate
redundancy no individual points will be stored in the database. An added advantage of this approach
is that spatial queries in PostGIS are still possible with these geometry types, the query response time
will be much quicker, and lastly the disk space used for the data will be reduced.

5.2.5. BRIN index
BRIN stands for ”Block Range Index” and is a generic form of indexing that has been introduced by
Alvaro Herrera in 2013, then dubbed Minmax index 1. It is first implemented in PostgreSQL version 9.5.
BRIN is a lossy index and is mainly used to handle large tables for which some of the columns have
some natural correlation with their physical location within the table. This means that it is especially
suited for time stamps, but also geographical data. Since an integrated point cloud table will most
likely exceed millions of rows, building an index to speed up spatial requests of the data is essential.
Compared to the alternative of GiST indexes, BRIN indexes are a less optimal solution but require less
RAM, and use less disk-space. This makes BRIN a suitable indexing solution for the current GRIND
implementation, which runs on a laptop. An added advantage is that BRIN in the spatial extension
PostGIS already supports indexing in 4 dimensions. As the 4th dimension the importance value is
used, which will be stored as M in the point geometry object POINT(XYZM). 2 The 4D BRIN index
stores the minimum and maximum values of the hyperblock bounding the geometries. In the database
these are the rows in a set of table blocks. When applied to millions of rows, a BRIN index increase
the query response time by up to 5 times. 3 The use of a BRIN index has no consequences for the
logic of the query itself, although it does have consequences for the storage of the geometry type. The

1https://www.postgresql.org/message-id/20130614222805.GZ5491@eldon.alvh.no-ip.org
2https://postgis.net/docs/using_postgis_dbmanagement.html#brin_indexes
3https://wiki.postgresql.org/wiki/What’s_new_in_PostgreSQL_9.5#BRIN_Indexes

https://www.postgresql.org/message-id/20130614222805.GZ5491@eldon.alvh.no-ip.org
https://postgis.net/docs/using_postgis_dbmanagement.html##brin_indexes
https://wiki.postgresql.org/wiki/What's_new_in_PostgreSQL_9.5##BRIN_Indexes

50 5. Discussion

PostGIS application demands a specific 4d point object in the table. This is an pointXYZM object as
demonstrated in the query hereunder: a proposal of how a BRIN index can be made from our table.

1 CREATE INDEX 4d_brin ON points_table USING BRIN (point_XYZM brin_geometry_inclusion_ops_4d);

5.2.6. Interactive viewer
The functions provided by the GRIND web application include the viewing and downloading modules
separately. This is mainly because using three.js, the online visualisation of a complete point cloud
containing 1.2M points is not well-supported by the browser on a laptop with an average performance,
where not only the browser, but also other programmes are slowed down. This limits further operations
including zooming, selecting, querying and downloading. For further improvement, it is essential to
have the download functions integrated into the viewer, where the user can zoom, rotate, select points,
put these in queries and download from a single page.

On the other hand, as is described in Section 3.3.3, the vector from the camera to the target point
is limited to one direction due to the controller. Online documentations regarding this is absent, and
StackOverflow discussions are also limited. Our solution to find a view point is to switch to a view from
the above and locate the observation point manually, whenever the default view is not ideal. However,
it would be better to have a more flexible camera thus a better view using three.js.

Organisational Part

51

6
Introduction

The second part of this report contains the organisational aspects of the project. This organisational
aspect is defined in the early stages of the project to frame the project and define the parameters that
are crucial for the success or failure of the project. Using this document as a foundation, the research
question ’To what extent can a vario-scale approach improve integration of point clouds with varying
point densities?’ has been answered. The organisational part is organised as follows; Chapter 7
contains the project plan. The project plan consists of an organisational breakdown structure in which
the actors and their roles are defined, a work breakdown structure and a work package descriptions and
the project schedule in which the different phases and timeline are presented. In conclusion a project
logic diagram and rich picture visualise the project, its phases and actors. Chapter 8 identifies the
project experts and stakeholders during the Synthesis Project. Furthermore it defines multiple possible
uses cases and defines the project use case. Chapter 8 conlcudes with an analysis of the project
goals using the MoSCoW framework as well as the functional, non-functional requirements and killer
requirements. Chapter 9 elaborates on the critical path. Both the resource allocation as well as the risk
map are defined which will allow the project to stay on schedule and prioritise critical tasks.

53

7
Project Plan

This chapter provides an overview of the project. It will define the organisational structure of the project
as well as frame the work structure and the planning aspect.

7.1. Organisational Breakdown Structure
Organisationally two groups can be identified; the project team and the project supervisors. The project
team consists of the five team members with their assigned roles and the project mentors. Overseeing
the entire project are the project supervisors; the project coordinator, the stakeholder and the master
coordinator. The project team works towards delivering a successful product in the form of research
supporting the creation of an OpenPointcloudMap. The project supervisors aim to create a successful
project for all the actors involved. If successful the overall project will contribute to the OpenPoint-
cloudMap. This organisational structure is visualised in Figure 7.2.

Project Supervisors

Project. Team

Synthesis Project

Stakeholder Master CoordinatorProject Coordinator

OpenPointcloudMap

Scale and Granularity
Project Mentor

Project MentorChairman

Secretary Software Quality Communications Document Quality

Figure 7.1: The breakdown of the organisational structure

55

56 7. Project Plan

7.1.1. Role definition
Chairman Tom Hemmes
The chairman has responsibility and overview of the entire project. To ensure this overview at all times
the following responsibilities come with this role. The responsibility for planning and running of team
meetings. Managing the distribution of workload among the team members and their involvement in
the project. The setup of collaboration tools and encourage usage by the team. Representation of the
team and project at events or presentations.

Secretary Marc-Julien Veenendaal
The secretary assists the chairman with its organisational tasks, and presides when the chairman is
not available. The secretary tracks the progress, the planning, agenda and the schedule. He takes
meeting minutes and books rooms if necessary.

Software Quality Weiran Li
The team member responsible for software quality integrates the codes and ensures that the codes
work properly and function on all the computers. The member is not responsible for writing all the
codes, but will mainly help with debugging and making sure that the codes are coherent and compre-
hensible to the team members and the others.

Communications Jippe van der Maaden
The responsibilities of Communications is to communicate with the different actors involved in the Syn-
thesis Project. This includes setting up meetings with the project mentors and communicate with the
client. Because three groups are simultaneously working on a complex project involving point clouds
he will also keep up communication with the other two groups. Communications will also arrange work-
shops from third parties and maintain communication with other third parties involved.

Documentation Quality Brenda Olsen
This team member is responsible for the quality of all the written documentation. This includes creating
a set up for all documents and making sure everyone is able to participate in writing these documents.
During the project and before submitting, the member will check whether the documents are con-
formable and make changes if needed, after consultation with the team. Fixing content related errors
is not included in this members responsibility.

Project mentors Martijn Meijers, Theo Tijssen
The project mentors will supervise the progress and attend weekly meetings. The project team expects
the mentors to assist the team with question regarding handling large data sets, management of mas-
sive point cloud data, geo-database management systems and other fields of expertise that apply to
the project scope.

Client Fugro
The client, Fugro, provides the teamwith data sets and expert knowledge to support the team. If needed
the project team will discuss with Fugro the use of their resources such as the Amazon Web Service
(AWS). Supervisor Stella Psomodaki will occasionally attend group meetings allowing the group to
inform Fugro of their progress.

Organisational Part 57

7.2. Work Breakdown Structure
All tasks for the project team are determined and organised in theWork Breakdown Structure, as shown
in Figure 7.2. The project work is divided in six main tasks: research, reporting, storage, indexing,
processing and visualisation.

Synthesis

Storage

Data Collection

Data Preparation

Set up DBMS

Indexing

Data Structure

Processing Visualisation

Set up OPCM

Research

Literature

Existing OPCM

Reporting

Figure 7.2: The breakdown of the work structure

Research will be done throughout the project as it is needed in all phases as shown in Figure 7.3. It
will be donemostly in Phase 2, Research, since this phase researches the possible research directions.

Throughout the project Reporting will be an important aspect since research is meaningless without
proper documentation. The document quality will be protected by Brenda Olsen during the whole of
the project.

The four remaining tasks, storage, indexing, processing and visualisation are what make up the
main focus of our research. These tasks and their sub-tasks will be explained in more detail in the
Work Package Description.

58 7. Project Plan

7.3. Work Package Descriptions
This section elaborates on the work packages as presented in Figure 7.2 and their corresponding tasks.
The explicit specification of these tasks is necessary in order to perform efficient work distribution and
a continuous work flow.

Storage When storing data sets from multiple sources multiple operations are needed to efficiently
store the cumulative data set. The data should be collected, prepared and stored. The work package
therefore includes the data acquisition. Because the scans are acquired already, this is a simple matter
of requesting the correct data sets (which has already happened at the moment of writing). Next is the
decision for what type of database to use and running the setup. Setting up the database should be
done in a location with future processing in mind. This means, possible growth in storage size after
processing and connection to the server that will perform processing. Besides determining the optimal
data structure (see Index) the data also may need some additional processing.

Index A structure for the data sets would be beneficial for future processing. The vario-scale data
structure should enable the integration of multiple data sets. This work package contains work on the
implementation of a data model for vario-scale representation. Such a model would incorporate a hi-
erarchy based on importance for points in the data set; A spatial index for fast retrieving of data. The
current implementation will remove all attributes that are stored, apart from the x,y,z coordinates and
the importance value. Future work should include compatibility for multiple and varying attributes since
most Lidar data contains much more attributes than just x,y,z coordinates.

Processing The processing work package consists of tasks that implement the created approach of
creating an integrated vario-scale point cloud. Most data sets will either be raw point clouds or, like
the AHN, already have a data structure. To cover both aspects, a server and software environment is
needed, where functions for adding or removing attributes that are specified in the data model should
be implemented, and the hierarchy and spatial index are computed. A script that handles all the func-
tionality and executes the whole process is generated.

Visualisation Visual inspection is one of the aspects for final evaluation of the methodology. To im-
plement the option for visualisation, a download option will be added to the web client. This means it
should have the functionality to select a region and define a resolution parameter in a web client. This
enables the user to view the integrated data set in any viewer. The implementation of a viewer within
the web client is beyond the scope of this research and a possible future improvement.

Organisational Part 59

7.4. Project Schedule
7.4.1. Meetings
Weekly team meetings are on Monday, Wednesday and Friday. The stand-up meeting on Wednesday
is attended by mentors Martijn Meijers and Theo Tijssen. The team meets with Stella Psomodaki
(supervisor from Fugro) on a bi-weekly basis. During these meetings the daily tasks will be discussed
and the team will be informed on the progress made by other team members.

7.4.2. Phases
The project is divided in three phases. These phases are defined in the Project Guide for the synthesis
project and illustrated in Figure 7.3.

Synthesis Project

2. Research1. Initialisation 3. Production

Figure 7.3: Project phases

The Initiation phase entails the creation of a project plan, this plan can be seen as a contract for all
actors. Other deliverables for the first phase include the requirement specification and the rich picture.
Both of these deliverables provide the team with more insight in the process of working towards the
project goal.

After these deliverables are created and discussed with the mentors the Research phase will start.
This phase will focus on determining the possible direction based on existing research and the stated
research goals. To do this the team will identify multiple methods to work towards these research goals.
This process will lead to trade-offs and prioritisation. The result of this phase will be presented at the
Mid-term Review.

Finally, the team will work on implementation of the theory and create a proof of concept in the
Production phase. This extent of the implementation will be determined during the review of the deliv-
erables and a discussion with the mentors.

These phase are within the time frame of the study project. However, in the past it has occurred
that projects continued due to high interest of involved actors. If so, a new time line will be created.

7.4.3. Time line
The following chart (Figure C.1) contains a time line for this project. The overview includes the larger
tasks that are to be done.

7.4.4. Planning
The sequential order of the time line indicates dependence of successive tasks on previous work.
Whenever a task shows not feasible, the research tree provides an alternative.

60 7. Project Plan

Current Week

Project timeline

17 18 19 20 21 22 23 24 25

Plan Midterm Final

Administrative

Request data

Rich picture

Project plan

Scope

Objectives

Timeline

Organisation Breakdown

Work Breakdown

Requirements

Determine use cases

Specification

Review research topics

Research

Options for vario-scale approach

Options for server side

Experiment with vario-scale approach

Options for integration pipeline

Options for client side

Decide branch

Implementation

Develop vario-scale approach

Setup server side

Develop integration pipeline

Develop web client

Benchmark

Test implementation

Performance improvements

Compare insertion to Potree

Compare visual to Potree

Figure 7.4: Gantt chart of project timeline (Week 17 - 25)

Organisational Part 61

7.5. Project Logic Diagram
In this section the Project Logic Diagram is shown in Figure 7.5. The diagram gives an overview of the
activity flow, phases, milestones and schedule. It is shown what data comes in in what phase during
the project.

Figure 7.5: Project Logic Diagram

7.6. Rich Picture
The rich picture that is created for this project can be seen in Appendix D. The picture gives an overview
of all actors and stakeholders involved in the project.

8
Requirements

The requirements are documented to give a clear picture of the aim of this project. This aim is focused
on the wishes of the project team, the specified stakeholders and other potential users. In the end a
mutual vision will be created, which meets both our expectations and those of the stakeholders.

To be able to do this, first the stakeholders and experts will have to be identified. Then possible
use cases are described. After this the goals of this project are projected in a MoSCoW table, which
divides them into must, should, could and will not. From thereon the requirements can be specified
and divided into functional and non-functional requirements. These requirements, together with the
killer requirements, can be found in the third section. The project, as a part of the Geomatics Synthesis
Project, is bounded by multiple aspects, like time or place related issues. Those boundary conditions
are defined in the last section.

8.1. Identify Experts & Stakeholders
8.1.1. Experts
The complete synthesis project is managed by the course coordinator. The synthesis project is divided
into two subjects: Internet of Things and Point Clouds. This last one is subdivided over three project
groups. Those three groups, including us, are supervised by the project coordinator. Every group has
two project coaches linked to them, who will guide the team throughout the whole project.

Course coordinator: Stefan van der Spek
Project coordinator: Peter van Oosterom
Project coaches: Martijn Meijers $ Theo Tijssen

8.1.2. Stakeholders
The main stakeholder of this project is Fugro. They provide the team with datasets and expert knowl-
edge. Meetings will be scheduled if needed to achieve an agreeable vision on the purpose of this
project.

Stakeholder: Fugro
Contacts: Stella Psomadaki & Martin Kodde

63

64 8. Requirements

8.2. Use Cases
During this project research will be done on a vario-scale implementation that improves the integration
of point clouds with varying point densities. A true vario-scale structure should provide a continuous
and smooth way of zooming through all wanted scales. However, a vario-scale point cloud platform
can have different use cases. First some possible use cases will be briefly described in section 8.2.1.
In section 8.2.2 our chosen use case will be described. Following, section 8.2.3 will elaborate on the
usability.

8.2.1. Possible Use Cases
• Consistent point density cloud
The approach for integration of point clouds will strive for a consistent point density. To achieve
this a vario-scale structure is needed. After implementing this structure it is possible to generate a
view of the combined data sets in any point density. In this way, the point cloud will be vario-scale
and is able to provide an equal density on every scaling level. This will enable users to download
the point cloud in any file size suiting their computational resources. Creating an equal density
throughout the point cloud, can also ensure faster rendering, which will be good for visualisation
purposes.

• Multiple point densities cloud (depending on data set)
A downside of the above mentioned use case is the loss of data. Keeping an equal density means
a lot of points from for instance terrestrial or indoor point clouds will have to be removed. This
can be prevented by applying the vario-scale approach on every data set separately and then
merging the data. In this way, all the data is vario-scalable and still has its own density (and thus
level of detail). This method most probably ensures faster uploading and integration of new data
sets.

• Multiple point densities cloud (depending on region)
When downloading point cloud data for a specific region the selected area might not be equally
important. In this case the user should be able to highlight specific areas for higher point density
and other areas for only sparse coverage. Supporting multiple point densities in one point cloud
would mean the server should have an interpretation to select multiple regions.

8.2.2. Our Use Case
• Variable density cloud projection
For viewing point clouds it is hard to create a visually appealing representation. The ability to
derive data with variable point density from the database enables atmospheric perspective. This
means more points close to the point of view and gradually less points for increasing distance.

8.2.3. Usability
Having a variable point density cloud, means the user of the platform has to specify a location (view-
point). The input for this location is a point, consisting of X,Y,Z coordinates. From this point, the viewer
looks over the point cloud. The density of this point cloud decreases as the distance to the viewpoint
increases.

Organisational Part 65

8.3. Requirements
8.3.1. MoSCoW
A project can consist of a long list of goals. In able to specify the most and the least important ones,
they will have to be prioritized using the MoSCoW method. This method distinguishes the things that
must, should, could and will not be done during the project. The MoSCoW table is shown in Figure 8.1
.

Must
• One vario-scale approach
• Injection of data
• Input data transformation module
• Consistent point density
• Variable granularity support
• User Interface
• Performance comparison to Potree
• Download button

Should
• Web visualization through a platform
• Granularity slider

Could
• Distributed storage
• Distributed processing
• Integration of indoor point clouds
• Improve processing time
• Improve GPU load
• Improve storage size
• File size indication for download

Will not
• Specific structure for every type of dataset
• Support for multiple region selection
• Remote integration of multiple point cloud
datasets

Figure 8.1: MoSCoW method

66 8. Requirements

8.3.2. Functional Requirements
This section consists of the requirements that will make up this project. These requirements are subdi-
vided in functional and non-functional. Functional requirements include calculations, technical details,
data manipulation and processing. A functional requirement specifies what a system should do. A non-
functional requirement on the other hand, specifies how a system should perform a certain function.
These requirements include for example performance, security, reliability, availability and accessibility.
(Eriksson, 2015)

1. Access to multiple point clouds with different scale and granularity.

2. Creation of a DBMS.

3. Determination of importance value per point for varioscale classification.

4. The efficient storage and indexing of point clouds in a varioscale storage structure.

5. Ability to specify the density of the desired point cloud.

6. Download functionality through efficient querying.

7. Connection between the DBMS and the user interface through which the desired point cloud can
be downloaded.

8.3.3. Non-Functional Requirements
1. The goals as created in collaboration with the stakeholders shall be met.

2. The data-structure shall be populated with data in a specified data-format from different sources
with a limited amount of errors and correct error handling.

3. The environment shall provide a retrieval time of point cloud data that is comparable with current
benchmarks.

4. The environment shall run in a stable manner when performing queries.

5. Point clouds of different scales shall be integrated into a uniform point cloud.

6. The product and its functionalities can be implemented and integrated with current products/tools
of Fugro and TU Delft.

7. The resulting product can be combined with the products of both of the other two teams. Prefer-
ably in one framework, resulting in a platform with functionalities resembling an OpenPoint-
CloudMap.

Organisational Part 67

8.3.4. Killer Requirements
Some of the above listed requirements are essential for a sufficient outcome of this project and could
be a risk for the completion of the project. These are defined as ’killer requirements’ and are listed
below.

• Data source
To successfully implement the data structure and indexing, the point cloud should contain basic
properties such as coordinates and metadata. Therefore, the data source is essential for the
completion of this project. For this project, the data is acquired from Fugro because of a time
limit.

• Research
In the phase of research, it is important that sufficient studies are found and the methods are
understood. The fulfillment of this requirement will lead the project to a correct direction.

• Performance comparison
To assess the performance of the outcome of this project, parameters such as time of insertion
and time of retraction are needed. A self-defined criterion is hardly objective or reliable, so a
comparison with the existing platform, Potree, is needed.

68 8. Requirements

8.3.5. Boundary Conditions
The project GRIND is within the generic topic Smart(er) Environments of GEO1011. It runs from April
21 to June 23, when the final outcome will be presented. Working activities will be mainly carried out
in the faculty of architecture of TU Delft. In addition, a workshop will be organised in the Fugro branch
in Leidschendam.

The data used for this project includes point clouds collected by airborne laser scanning and terrestrial
laser scanning, and an optional indoor point cloud. Fugro, as the sponsor of this project, will provide
the data. They will also offer this project technical support.

The goal of GRIND is to research on the possibility to establish an Open Point Cloud Map in the aspect
of vario-scale point cloud integration. Together with other projects covering the aspects of different
time-series and multiple locations, this project will in return help Fugro create their product in the fu-
ture. The project will be conducted with the help of the project coordinator and coaches fromGeomatics
programm of TU Delft.

The legal aspect cannot be overlooked throughout this project. To implement an anticipated new algo-
rithm to integrate the point clouds, related research and previous work will be needed. It is essential
to pay attention to whose work is used, which type of license the work is under, and to what extent we
can use the work.

9
Critical path

This chapter will elaborate on the critical path to follow.

9.1. Timeline
In the appendix the Gantt chart (Appendix C.1) contains a timeline for this project. The overview in-
cludes tasks that have been done (strikethrough) and tasks that are still to be done.

9.2. Resource allocation
The sequential order of the timeline indicates dependence of successive tasks on previous work. Cur-
rently the project is in its research phase, which is projected to be finished by the start of week 22.
This leaves four weeks to finish the production phase of the project. In this phase three tasks will be
performed simultaneously, in the Gantt chart (Appendix C.1) referred to as Data model, Client server
and Data insertion. The fourth task is the Benchmark, this task relies heavily on the previous three.

In this section the resource allocation for each task will be explained. This means the dependencies
will be elaborated on as well as the designated executor and its responsibilities.

9.2.1. Research
In the Gantt chart (Appendix C.1) the research tasks that have been performed are filled in with gray.
This leaves just the experimenting with the vario-scale approach to be done. Options for the vario-scale
approach, server side development, client side development as well as the integration pipeline have
been elaborated upon in this report. Finishing the Research phase will require two team members.
This leaves three team members to start working on the production phase of the project.

9.2.2. Data model
Implementation of the data model is the main focus of the project and should be treated as such. This
means this task will require constant evaluation by the team and should be monitored closely for any
problems that might cause delays or otherwise impede the project. Progress has been made during
the research phase in defining the data model, from week 22 onwards this data model definition will be
translated into a working data model.

Because this task is critical for the project it is split up in two phases. The first phase is to create an
algorithm that randomly assigns importance values to the individual points. This algorithm will give the
project a working data model and allows other tasks to advance regardless of the other developments
or complications in the data model task.

The second phase is to create an algorithm that assigns importance values not randomly, but based
on the neighbours. This takes into account the scale & granularity of the dataset. The final data model
which will be worked towards is shown in section 3.2.

69

70 9. Critical path

9.2.3. Client server
Significant progress on the development of the client server has been made by moving his task forward,
this is indicated by the Gantt chart (Appendix C.1). In week 19 the development has commenced by
assigning the task to one team member. The progress that has been made indicates that this task
does not require extra attention and has a low risk factor of being critical for the projected progress.
Development of the client server is explained in section 3.3.

9.2.4. Data insertion
Research into the data insertion has been done during the Research phase and is documented in
subsection 5.2.3. The progress that has beenmade on the creation of this pipeline suggest that this task
has a low risk factor of being critical for the projected progress. When this task is at risk the designated
team member will reach out to either a mentor or the project coordinator who have experience with
PDAL and will thus be able to assist in the creation of the pipeline. Contact information is listed in
section 8.1.

9.2.5. Benchmark
The benchmark will take place in week 23 since it is highly dependant of all previously mentioned
tasks. This means these tasks will have to have working product by week 24. This gives all tasks two
weeks, with additional adjustments to be made during week 24 since it is reserved for Performance
Improvements. Week 25 is set up for the benchmark testing, at this time all other tasks are done and
comparison to the current standard is the only task left. All teammembers will assist in the performance
benchmark since errors that may arise will require specialty knowledge. Extra time will be allocated to
documentation and presentation of the results

Organisational Part 71

9.3. Risk map
The following risks were identified during the project plan phase.

1. No data is provided by Fugro in time.
Making the request for data first priority we assured to have the data at the start of the project.
Alternatively, we would have used an academic dataset such as the Paris RueMadame database
http://cmm.ensmp.fr/~serna/rueMadameDataset.html

2. Upload and download speeds of the point clouds are extremely slow.
This risk is inevitable and optimization is of low priority. However, this could be solved by using
either chunk uploading or to thin the point cloud at the moment of uploading. A simple file size
limitation would also suffice for this experimental implementation.

3. The visual impact of the variable density is high, the point cloud becomes unrecognizable.
In this case we can scale the points according to their distance to the viewpoint. This will improve
visual appearance but not the data load.

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦

1. Data available

2. Upload/download

3. Visual appearance

Figure 9.1: Risk map of project tasks

http://cmm.ensmp.fr/~serna/rueMadameDataset.html

A
Data Specifications

name AHN2 Clipped AHN3 Clipped
file format .las .las
file size 30,7 MB 38 MB
points 1.239.907 1.141.742
min xyz 84896.13 446362.67 -7.89 84896.133 446362.666 -10.671
max xyz 85433.72 447079.95 104.08 85433.719 447079.950 109.192
covered area (km) 62,5 62,5
Attributes X,Y,Z + +
intensity - +
number_of_returns - +
return_number - +
classification - +
scan_angle_rank - +
point_source_ID - +
gps_time - +
R,G,B - +
density p/m2 8 8
file creation d/y 167/2015 63/2014
scale factor xyz 0.01 0.01 0.01 0.001 0.001 0.001

Figure A.1: Data Specifications AHN

73

74 A. Data Specifications

name 2013_TUDelft 2016_TUDelft
file format .las .las
file size 1,68 GB 1,57 GB
points 53.273.939 49.737.433
min xyz 84942.304 446394.125 -17.298 85186.740 446855.489 -0.768
max xyz 85433.718 446985.093 47.687 85432.128 447062.925 57.353
covered area (km) 9 9
Attributes X,Y,Z + +
intensity + +
number_of_returns - -
return_number - -
classification - +
scan_angle_rank - -
point_source_ID - -
gps_time + +
R,G,B + +
density p/m2 ? ?
file creation d/y 200/2015 120/2016
scale factor xyz 0.00000049 0.00000059

0.000000065
0.001 0.001 0.001

Figure A.2: Data Specifications FUGRO

B
Python web frameworks

Name Latest up-
date

Documentation Community
(questions on
StackOver-
flow)

Database Configuration

Django 04-04-2017 Very detailed and clear doc-
umentation; a step-by-step
tutorial is provided and fur-
ther documentations are in-
troduced.

143,211 SQLite 3,
PostgreSQL,
MySQL, Ora-
cle and other
databases.

The configuration on Win-
dows can be a little compli-
cated; the settings in general
are very simple.

web2py 10-05-2016 The documentation is too
simple; insufficient tutorial
provided.

4,708 SQLite The type of supported
databases depends on op-
erating systems, otherwise
extra configuration accord-
ing to the specific database
is needed.

TurboGears 04-12-2016 Relatively complete docu-
mentation; example tutorials
can be more clear.

726 SQLAlchemy
and MongoDB

To keep the original Python
packages in order, a virtual
environment needs to be in-
stalled specially for Turbo-
Gears.

Tornado 16-04-2017 Focuses on functions and
integration with other ser-
vices; the navigation within
the website is not clear.

8,745 N/A To connect to databases, ex-
ternal libraries always need
to be configured.

Flask 31-03-2017 Neat documentation includ-
ing a tutorial, templates, de-
bugging instructions etc. Ev-
ery section is simple. Switch
between sections is not triv-
ial, with only previous section
and next section on the cor-
ner of the sidebar.

42,779 SQLite 3 and
SQLAlchemy

The configuration of Flask
is simple; external libraries
Jinja2 and Werkzeug can be
required, but the configura-
tion is simple as well; instruc-
tions of configuring Post-
greSQL on Windows are in-
sufficient.

Bottle 09-01-2017 A very simple documenta-
tion introducing only the ba-
sic contexts of the frame-
work.

8,373 SQLite 3 and
SQLAlchemy

An virtual environment may
be needed.

Figure B.1: Comparison of Python web framework

75

C
GANTT

Current Week

Project timeline

17 18 19 20 21 22 23 24 25

Plan Midterm Final

Administrative

Request data

Rich picture

Project plan

Scope

Objectives

Timeline

Organisation Breakdown

Work Breakdown

Requirements

Determine use cases

Specification

Review research topics

Research

Options for vario-scale approach

Options for server side

Experiment with vario-scale approach

Options for integration pipeline

Options for client side

Decide branch

Implementation

Develop vario-scale approach

Setup server side

Develop integration pipeline

Develop web client

Benchmark

Test implementation

Performance improvements

Compare insertion to Potree

Compare visual to Potree

Figure C.1: Gannt chart of project timeline (Week 17-25)

77

D
Rich Picture

79

Granularity
& Scale
Interface

Synthesis
project

Tom Brenda JippeWeiran MJ

AHN2
PointCloud
Viewer

Martijn
Wisse

Theo
Thijssen

Coaches
We have experience in
the field and from our
own research.
We can advise you.

Peter
van Oosterom

Project
Coordinator

I have a vision of creating
one portal for all open point
cloud data.

Chronos
Team

GeoLoc
Team

We can exchange information
about our progress and approach.
But we hopefully get a better grade
than your group.

We are the sponsor of this
project. We like to get
something worthy
of our money and resources!

I am speaking for all of
the group when I say that
I want to create a powerful
and groundbreaking product.

Maybe in the near future
one open pointcloud portal
will also be interesting for us

We as a university have a
good name to uphold. And
please keep our sponsors happy

im
plem

ented into

produces

co
ac

hi
ng

se
ss

io
ns

exchange in the GeoLab

injected into

in
je

cte
d

 in
to

integration of

im
p

le
m

e
n

ta
ti

o
n

 in
to

im
p

le
m

e
n

ta
ti

o
n

 in
to

e
m

p
lo

y
s

su
pplie

s

Database

AHN
2&3

DRIVE-MAP

FugroViewer™

Structure
& Schema

DBMS

We are not directly involved.
But we supply data via our portals.

Martin
Kodde

In the future we want to create one
(PointCloud) portal for all our clients .

Stella
Psomadaki

I did my thesis on PointCloud data structures
and indexing and have a direct advisory role.

Other
Countries

Our
Product

Our Team

DID - B3: Rich Picture

GEO1101 - Synthesis Project 2016/2017

Tom Hemmes, Weiran Li, Jippe van der Maaden, Brenda Olsen, Marc-Julien Veenendaal

Bibliography
[1] Robert L. Cook. Stochastic sampling in computer graphics. ACM Transactions on Graphics, 5(1):

51–72, 1986. ISSN 07300301. doi: 10.1145/7529.8927.

[2] R. Cura, J. Perret, and N. Paparoditis. Point Cloud Server (Pcs) : Point Clouds
in-Base Management and Processing. ISPRS Annals of Photogrammetry, Re-
mote Sensing and Spatial Information Sciences, II-3/W5:531–539, 2015. ISSN
2194-9050. doi: 10.5194/isprsannals-II-3-W5-531-2015. URL http://www.
isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/II-3-W5/531/
2015/.

[3] Rémi Cura, Julien Perret, and Nicolas Paparoditis. A scalable and multi-purpose point cloud
server (PCS) for easier and faster point cloud data management and processing. {ISPRS} Jour-
nal of Photogrammetry and Remote Sensing, 127:–, 2016. ISSN 0924-2716. doi: http://
dx.doi.org/10.1016/j.isprsjprs.2016.06.012. URL http://www.sciencedirect.com/
science/article/pii/S092427161630123X.

[4] L Kobbelt, L Kobbelt, S Campagna, S Campagna, H.-P. Seidel, and H.-P. Seidel. A General
Framework for Mesh Decimation. Graphics Interface, pages 43–50, 1998. ISSN 07135424. URL
http://visinfo.zib.de/EVlib/Show?EVL-1998-250.

[5] Oscar Martinez-rubi, Stefan Verhoeven, Maarten Van Meersbergen, and Markus Sch. Taming the
beast : Free and open-source massive point cloud web visualization Taming the beast : Free and
open-source massive point cloud web visualization. Capturing Reality Forum 2015, (March 2016):
23–25, 2015. doi: 10.13140/RG.2.1.1731.4326.

[6] B. M. Meijers and P. J. M. van Oosterom. the Space-Scale Cube: an Integrated Model for 2D
Polygonal Areas and Scale. ISPRS - International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, XXXVIII-4/(Udms):95–102, 2011. ISSN 16821750.
doi: 10.5194/isprsarchives-XXXVIII-4-C21-95-2011.

[7] Peter Van Oosterom, Martijn Meijers, and Jantien Stoter. Abstracting Geographic Information in
a Data Rich World. 2014. ISBN 978-3-319-00202-6. doi: 10.1007/978-3-319-00203-3. URL
http://link.springer.com/10.1007/978-3-319-00203-3.

[8] M. Pauly, M. Gross, and L.P. Kobbelt. Efficient simplification of point-sampled surfaces. 13th IEEE
Visualization conference., (Section 4):163–170, 2002. ISSN 10702385. doi: 10.1109/VISUAL.
2002.1183771.

[9] pgPointCloud. pgPointCloud, 2014. URL https://github.com/pgpointcloud/
pointcloud.

[10] Markus Schuetz. Potree : Rendering Large Point Clouds in Web Browsers by. 2016.

[11] Markus Schütz. PotreeConverter -Uniform Partitioning of Point Cloud Data into an Octree. URL
http://potree.org/downloads/converter_documentation.pdf.

[12] Peter van Oosterom, Oscar Martinez-Rubi, Milena Ivanova, Mike Horhammer, Daniel Geringer,
Siva Ravada, Theo Tijssen, Martin Kodde, and Romulo Gonçalves. Massive point cloud data
management: Design, implementation and execution of a point cloud benchmark. Computers &
Graphics, 49:92–125, 2015. ISSN 00978493. doi: 10.1016/j.cag.2015.01.007. URL http:
//dx.doi.org/10.1016/j.cag.2015.01.007.

[13] Berend Wouda. Visualization on a Budget for Massive LiDAR Point Clouds. 2011.

81

http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/II-3-W5/531/2015/
http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/II-3-W5/531/2015/
http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/II-3-W5/531/2015/
http://www.sciencedirect.com/science/article/pii/S092427161630123X
http://www.sciencedirect.com/science/article/pii/S092427161630123X
http://visinfo.zib.de/EVlib/Show?EVL-1998-250
http://link.springer.com/10.1007/978-3-319-00203-3
https://github.com/pgpointcloud/pointcloud
https://github.com/pgpointcloud/pointcloud
http://potree.org/downloads/converter_documentation.pdf
http://dx.doi.org/10.1016/j.cag.2015.01.007
http://dx.doi.org/10.1016/j.cag.2015.01.007

	List of Tables
	List of Abbreviations
	Executive Summary
	Scientific Part
	Introduction
	Purpose
	Methods
	Boundaries
	Reading Guide

	Related work
	Point cloud server
	Vario-scale
	Point cloud viewers
	Three.js library
	Potree

	Server framework
	Data transfer

	Materials & Methods
	Data Analysis
	Point Cloud Data
	AHN data
	Fugro data
	Data sets used

	Data model
	Computation of importance value
	Indexing

	Client/Server framework
	Uploading
	Downloading
	Viewing

	Performance analysis
	Hardware

	Results
	Importance value
	Performance analysis
	Data insertion
	Visual inspection

	Discussion
	Conclusion
	Future work
	Curvature
	pgpointcloud integration
	PDAL pipeline
	Clustering of points
	BRIN index
	Interactive viewer

	Organisational Part
	Introduction
	Project Plan
	Organisational Breakdown Structure
	Role definition

	Work Breakdown Structure
	Work Package Descriptions
	Project Schedule
	Meetings
	Phases
	Time line
	Planning

	Project Logic Diagram
	Rich Picture

	Requirements
	Identify Experts & Stakeholders
	Experts
	Stakeholders

	Use Cases
	Possible Use Cases
	Our Use Case
	Usability

	Requirements
	MoSCoW
	Functional Requirements
	Non-Functional Requirements
	Killer Requirements
	Boundary Conditions

	Critical path
	Timeline
	Resource allocation
	Research
	Data model
	Client server
	Data insertion
	Benchmark

	Risk map

	Data Specifications
	Python web frameworks
	GANTT
	Rich Picture
	Bibliography

