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A B S T R A C T   

The option of varying the molecular mass in multicomponent lattice Boltzmann simulations is being explored. 
First, results are presented for droplet formation at an aperture in a second immiscible liquid medium in which 
the difference in density between the two media is achieved by introducing asymmetry in the EOS, via adding 
particularly intra-component interaction forces in a pseudo-potential LB model. The second application for 
models with variable molecular masses is a single-phase heterogeneous laminar-flow tubular chemical reactor, 
where the molecular masses of reactants and products differ. In this application, tuning the molecular mass 
requires modification of the standard equilibrium distribution function as well as the use of an extended velocity 
set, in our case D2Q13. The method is validated against analytical solutions for canonical 1-D diffusion-reaction 
cases. In both the droplet formation study and the chemical reactors, the results of the exploratory 2-D simu-
lations look qualitatively correct.   

1. Introduction 

In lattice Boltzmann (LB) simulations [1], fluids are represented by a 
finite number of parcels of molecules. These parcels travel across the 
simulation domain, each in a particular discrete direction from node to 
node of a specific lattice (grid); they assemble and interact at nodes, and 
then move on to the next node. The assembly of LB parcels (also called 
populations) at a node represents a (discretized) velocity distribution. 
The number of molecules in each parcel, i.e. its density fi, may change at 
a node only, due to collisions (during which mass and momentum 
remain conserved) and/or forces. After such a rearrangement, the LB 
parcels take off, each departing in its own direction thereby transporting 
a modified part of the velocity distribution. More elaborate descriptions 
of this meso-scale type of simulation technqiue can be found elsewhere 
[1,2]. The standard LB technique solves a simplified and discretized 
Boltzmann equation that describes the spatio-temporal evolution of 
these densities fi. 

Thanks to the use of a proper lattice and proper collision rules – in 
this work, we use the conventional BGK approach to modelling collisions 
– this discretized Boltzmann equation quantitatively reproduces flow 
fields obeying the Navier-Stokes equation in the limit of long wave 
lengths (long with respect to the lattice scale). This restriction is usually 

formulated in terms of a Mach number Ma = u/cs which should be 
(much) smaller than unity, where u denotes the fluid velocity and cs is 
the speed of sound. 

The above populations fi as well as pressure perturbations propagate 
across the LB lattice, mutually connected by the velocity of sound cs. As a 
matter of fact, this cs plays a key role in LB models, since pressure, 
temperature and kinematic viscosity are all proportional to it. In addi-
tion, it sets a constraint in the Chapman-Enskog expansion towards the 
Navier-Stokes equation [1]. On several of the most commonly used 
lattice types, among which D2Q9 used in this study, cs can be found [3] 
to be given by c/√3, in which the lattice velocity c = Δx /Δt with Δx and 
Δt denoting the lattice spacing and the time step, respectively. The usual 
choice is to take Δx and Δt equal to unity (in l.u., lattice units) turning 
the numerical value of cs equal to 1/√3. In many LB simulations, cs is 
treated as a constant. 

From a physics standpoint, there are systems where this is not good 
because cs is related to the (isothermal) compressibility of the fluid at 
hand. When using LB for simulating the flow of incompressible fluids, a 
velocity of sound cs is not a physically meaningful or relevant variable, 
as strictly speaking sound propagation is impossible in an incompress-
ible fluid. Yet, incompressible flow is being simulated by means of LB, by 
ensuring that the above Mach number is sufficiently low, with sound 
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propagation also being considered as just a weakly compressible phe-
nomenon (see e.g., [1], p.111). Note however that sound propagation is 
not our topic of interest – we focus on the role of the numerical 
parameter ‘speed of sound’ cs in any LB simulation due to its connection 
to the fluid’s equation of state. 

The speed of sound cs, or the fluid’s compressibility, is a physical 
property varying with temperature and – particularly relevant in this 
paper – with reciprocal molecular mass m, for an ideal component ac-
cording to 

c2
s =

∂p
∂ρ

⃒
⃒
⃒
⃒

T
=

RT
m

(1) 

To simulate the flow behaviour of multiple fluid components with 
different compressibility, Eq. (1) teaches us that we should be capable of 
varying, or tuning, the speed of sound for each individual component. 

Buick and Cosgrove [4] were among the first or recognize that to 
model fluids with different compressibility changing the speed of sound 
is really required. Earlier, Alexander et al. [5] had altered the equilib-
rium distribution function in LB (see further on) while Yu and Zhao [6] 
had introduced an attractive force with the view of varying the speed of 
sound. Buick and Cosgrove [4] also added a body force to the Boltzmann 
equation. They all were capable of successfully applying cs values be-
tween zero and, in the case of Buick and Cosgrove [4], even 1.125. While 
Alexander et al. [5] found also viscosity was affected by his method of 
varying the speed of sound, the forcing methods of Yu and Zhao [6] and 
Buick and Cosgrove [4] produced a variable cs without affecting vis-
cosity. All these authors were investigating non-linear aspects of 
sound-wave propagation. These papers, however, are of limited rele-
vance for the current cases of interest, viz. incompressible multiphase 
and reactive flows where the multiple components exhibit varying 
compressibility due to varying molecular masses. 

In (isothermal) multi-component systems such as emulsions, in 
diffusion processes inside binary mixtures, and in chemically reactive 
systems, the various miscible or immiscible components and reactants 
vary in molecular mass and therefore, given Eq. (1) for compressibility, 
may require the use of individual speeds of sound when being simulated 
by means of LB techniques. McCracken and Abraham [7] adjusted the 
speed of sound when simulating the behaviour of multiple components 
in diffusive mass transfer, while Arcidiacono et al. [8] and Bardow et al. 
[9] adopted multi-speed models for LB simulations of chemical re-
actions. All these authors explored, for systems without flow, the use of 
off-lattice schemes which allow components to travel just fractions of 
the lattice spacing during a lattice time step, depending on their relative 
molecular masses. For simulating flows, Chai and Zhao [10] and Looije 
et al. [11] investigated a variable speed of sound model involving a 
modified equilibrium distribution function on a D2Q13 lattice and by 
doing so recovered correct hydrodynamics. 

Immiscible multi-component systems are very often simulated by the 
Pseudo-Potential (PP) LB model originally proposed by Shan & Chen 
[12,13]. In studies on PP LB methods, much attention is paid to the roles 
of the inter-component interaction strength G between the components 
that accounts for the degree of (im)miscibility of the components and 
spontaneous phase separation (if applicable), the Equation of State 
(EOS) for intra-component phase behaviour, and the choice between 
multiple relaxation times and a single relaxation time. In addition, the 
(isothermal) speed of sound, cs, is a fourth essential but less often varied 
parameter. 

The scope of this paper is then to explore various ways of varying this 
cs in PP LB simulations of isothermal multi-component flow systems 
where the various components have a different molecular mass and 
therefore a different compressibility. We restricted ourselves to rather 
simple modifications of the multi-component PP LB model enabling 
simulations of multiphase flows with a phase interface and unequal 
phase densities as well as improved simulations of reactive single-phase 
systems. This paper now presents first exploratory results of varying the 

speed of sound for two cases, viz.  

(A) droplet formation at an aperture in an immiscible second liquid, 
and  

(B) simple chemically reactive single-phase flow systems. 

These two approaches are novel to the best of our knowledge. They 
are rather different but both show viable options for dealing with cases 
where we really require deviations from the standard c2

s = 1
3. In both 

cases, we stick to a single relaxation time LB model for the time being. 
Before reporting about our explorations of varying molecular masses, 

and therefore also different speeds of sound, we will first summarise the 
basic equations of the PP LB model. 

2. Summary of the PP LB model 

The standard LBM solves a simplified and discretized Boltzmann 
equation that describes the spatio-temporal evolution of a parcel: 

fi( x→ + e→i Δt, t + Δt) − fi( x→, t)
Δt

= −
1
τ [fi( x→, t) − f eq

i ( x→, t) ] + Si (2)  

where fi is the parcel density associated with the discrete velocity e→i and 
Δt is the time interval taken equal to 1 l.u. (as usual). The LHS stands for 
the streaming step during which fi travels to an adjacent node, while τ at 
the RHS denotes the relaxation time of the process in which fi adapts to 
the local equilibrium distribution function fi eq upon arrival at the new 
node. This discretized fi eq is given by 

f eq
i = wiρ

[

1 +
e→i⋅ u→eq

c2
s

+
( e→i⋅ u→eq

)
2

2c4
s

−
u→eq⋅ u→eq

2c2
s

]

(3)  

where u→eq is the equilibrium velocity and wi are the weighting factors 
accounting for the spacing between the adjacent nodes in the D2Q9 
lattice: 4/9 for i = 0, 1/9 for i = 1–4 and 1/36 for i = 5–8. The source 
term Si in the RHS of Eq. (2) comprises all thermodynamic and hydro-
dynamic forces acting on the parcels at a lattice node. The spatial dis-
tributions of the continuum density and velocity are calculated from the 
LB variables via 

ρ =
∑

i
fi and ρ u→ =

∑

i
e→ifi (4) 

A particular aspect of LB simulations is that the LB parameters must 
be chosen such that the computations simulate what is happening in the 
real, continuum world. The similarity rule is due to non-dimensional 
numbers in LB and in continuum space, such as the Reynolds number, 
which must bridge the gap between the two worlds by keeping them the 
same. Part of this procedure is that the above relaxation time τ is related 
to the kinematic viscosity ν of the fluid of interest according to 

τ =
ν
c2

s
+

1
2

Δt (5) 

Eq. (5) sets bounds to the permissible values of τ ; τ cannot be lower 
than 0.5 (for Δt = 1 ts). 

In the Pseudo-Potential (PP) LB model description of multi- 
component multi-phase flows, next to e.g., a body force F→b such as 
gravity, the mean-field inter-component force F→int plays an essential 
role in controlling (im)miscibility and spontaneous phase separation. In 
the original PP model [13], this interaction force is represented in terms 
of pseudo-potential functions Ψα and Ψβ for the respective components α 
and β, the distribution functions of which are calculated each on its own 
lattice. In addition, the interaction force comprises an additional model 
parameter, viz. the interaction strength Gαβ: 
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F→int = − Gαβ Ψα( x→, t) c2
s

∑

i
wiΨβ( x→+ eiΔt) (6) 

For positive values of Gαβ, the interaction force F→int is repulsive, 
while it is attractive for negative values of Gαβ. All relevant forces, e.g. F 
= F→int + F→b, are used to calculate u→eq for use in Eq. (3) according to 

u→eq
= u→+

Δt
2ρ F→ (7) 

Given this PP LB model described above in a nutshell, we now can 
report on our exploratory studies on varying the speed of sound. 

3. Case A - Drop formation at an aperture 

3.1. Introducing the case 

Berghout and Van den Akker [14] simulated drop formation at an 
aperture by means of a two-component PP LB model, with the simplest 
assumption that the two pseudopotential functions equal the respective 
fluid densities and with a mutual interaction strength Gαβ taken equal to 
1.25. While the two components had equal densities and equal viscos-
ities, gravity was allowed to work on the fluid (liquid) of the droplet only 
and to force this fluid out of the aperture, i.e. mimicking a liquid droplet 
in a gas. This was accomplished by putting specific weight γ = ρg equal 
to zero for the gas. As a result, the two components behave as two 
different phases. 

Their 2-D results were in convincing qualitative agreement with 
literature data and demonstrated the effects of varying the non- 
dimensional numbers Ohnesorge Oh = μ/ 

̅̅̅̅̅̅̅̅
ρDγ

√
and Archimedes Ar =

ρgΔρD3/μ2, where γ denotes interfacial tension, μ stands for viscosity, ρ 
for density, Δρ for the density difference, g for gravity and D for droplet 
diameter. A plot of Capillary number Ca = μv/γ versus Bond number Bo 
= gΔρD2/γ from the simulations coincided with the prediction on the 
basis of a simple dimensional analysis. 

Now, we let gravity more realistically work on both components, 
though at a rather low density ratio simulating droplet formation in an 
ambient immiscible liquid. Mukherjee et al. [15] reported results for a 
density ratio between the components of 1.4, also in the presence of a 
surfactant as a third component. Our proposition in the current 
exploratory study is to obtain such a (low) density ratio by means of a 
variable speed of sound for (at least) one of the components and to find 
the maximum attainable density ratio. We keep the viscosity of the two 
components equal. 

3.2. A standard EOS 

In the single-component PP LB approach [12–14,16], the EOS for the 
bulk of a fluid is given by 

p = c2
s ρ + ½ c2

s Δt2G ψ2(ρ) (8)  

showing the ideal gas term is augmented with an additional contribu-
tion, due to non-ideal molecular attractions, which allows for coexisting 
liquid and vapour ([1], p. 373). This EOS can be rewritten into 

ψ(ρ) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2

c2
s Δt2G

[

p(ρ) − c2
s ρ
]√

(9) 

Substituting into Eq. (9) an arbitrary EOS for p(ρ), such as the 
Redlich-Kwong, the Carnahan-Starling or the Peng-Robinson EOSs, re-
sults in non-ideal fluid behaviour including phase separation with liquid 
to vapour density ratios up to as high as 103. 

For a two-component system consisting of components α and β, the 
EOS runs as (see e.g. [1], p. 385, or [16]): 

p = c2
s ρα + c2

s ρβ + c2
s Δt2Gαβψαψβ (10)  

still with c2
s = 1

3. Again, the last term of the RHS of Eq. (10) is responsible 
for the (automatic) phase separation between the two components. We 
still can choose different expressions for the potential function, such as ψ 
= ρ or, as in our case, the commonly used exponential relation 

ψ(ρ) = ρ0

[

1 − exp(−
ρ
ρ0
)

]

(11)  

for each of the two components. The left panel of Fig. 1 illustrates the 
typical symmetric behaviour of the set of Eqs. (10) and (11) by plotting 
how (bulk) pressure symmetrically depends on the component densities 
ρα and ρβ for Gαβ = 2.50. 

3.3. An asymmetric EOS 

To induce a density ratio between the two phases at a specific (total) 
pressure, an EOS asymmetric in the components α and β is required. 
Simply introducing in Eq. (10) different values for c2

s , or RT, for the two 
components would not only affect pressures of individual components, 
but also viscosity and the stability limits of the model: so, this first option 
is not very useful. 

A second option would be to take different pseudo-potential func-
tions for the two components, e.g. by choosing in Eq. (11) different 
values ρ0 for the components denoted as ρ0

α and ρ0
β, and by substituting 

the two resulting different potential functions α and β, into Eq. (10). By 
running exploratory simulations, we explored the maximum attainable 
density ratio as a function of Gαβ, ρ0

α and ρ0
β. The initial state in these 2- 

D simulations was a domain rich in α immersed in an ambient fluid rich 
in β at an initial density of unity in both phases, after which the system 
was allowed to evolve towards the pertinent equilibrium state. In a se-
ries of these simulations, the values of Gαβ, ρ0

α and ρ0
β were varied to 

investigate their effect on the eventual density ratio of the two phases. A 
maximum phase density ratio of 1.25 between such a droplet and the 
surrounding liquid was found with Gαβ = 3, ρ0

α = 1000 and ρ0
β = 0.3. 

These latter three values were then used in Eqs. (10) and (11) to 
construct the right panel of Fig. 1 which illustrates how in this option #2 
pressure varies with ρα and ρβ in a (slightly) asymmetric way, although 
the density ratio of 1.25 is not found (in the absence of an interfacial 
tension effect in Eq. (10)). Our conclusion was that this option was too 
restrictive to accomplish sufficiently high phase density ratios, even 
when it did not have an effect on viscosity and the stability limits of the 
model. 

A third option for getting an asymmetric EOS in the components α 
and β would be adding one or two intra-component interaction terms to 
the EOS of Eq. (10) – see also Chen et al. [16] and Mukherjee et al. [15] – 
resulting in 

p = c2
s ρα + c2

s ρβ + c2
s Δt2Gαβψα

1ψβ
1 +

c2
s Δt2

2
Gαα (ψα

2)
2
+

c2
s Δt2

2
Gββ (ψβ

2)
2

(12)  

in which the subscripts 1 and 2 denote different pseudo-potential 
functions to be used to calculate the inter-component and intra- 
component forces, respectively. Using different pseudo-potential func-
tions for the two components again modifies only pressure and inter-
action. A droplet with a higher density than the outer liquid is achieved 
by using G < 0 for the self-interaction of the component dominant in the 
droplet phase and/or G > 0 for the component dominant in the outer 
phase. 

An asymmetric effect of components in a mixture has also been 
considered by Ridl and Wagner [17] in a comprehensive investigation 
on mixtures of multiple Van der Waals fluids. Their work is based on a 
free-energy LB method in which the forcing stems from a gradient in the 
chemical potential rather than from pseudo-potential functions. Ridl 
and Wagner [17] described the energetic interaction between (two) 
components with the help of a geometric mixing rule in terms of the 
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product of the respective Van der Waals attraction parameters rather 
than by an interaction strength Gαβ. The focus of their paper is on phase 
compositions and phase diagrams which is beyond our interest, as we 
are looking for a simple extension of the multi-component PP LB method 
allowing for a density difference between components. 

Again, we ran simulations (now with a flat interface between two 
domains) to explore the effect of the various G values for the simple 
pseudo-potential function ψ = ρ. Now, we found higher phase density 
ratios such as 1.42 for Gαβ = 1.25, Gαα = − 0.3, Gββ = 0 – illustrated in 
the left panel of Fig. 2 – and 1.92 for Gαβ = 1.25, Gαα = − 0.3, Gββ = 0.3 
– illustrated in the right panel of Fig. 2. Now, the degree of asymmetry is 
larger than in the right panel of Fig. 1. Furthermore, we found the inter- 
component interaction force not being affected in this option, the ideal 
terms in Eq. (12) being less dominant, and higher density ratios being 
attainable without simulations becoming unstable due to excessively 
strong forces. 

3.4. Adjusting the speed of sound 

Therefore we decided to use option 3 – i.e., Eq. (12) – when simu-
lating drop formation at an aperture with a modest density difference 
between a liquid drop and ambient fluid. This option renders either or 
both components non-ideal resulting in intracomponent phase separa-
tion. To avoid this, rather than using ψ = ρ or Eq. (11), we substitute R ρ 
for p (ρ) in Eq. (9) for either or both components. The approach is 

illustrated by the following example: we substitute 

ψα
1 = ρα; ψβ

1 = ρβ; ψα
2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2

c2
s Δt2Gαα

(Rαρα − c2
s ρα

)

√

; ψβ
2 = 0 (13)  

into Eq. (12) to arrive at 

p = Rαρα + ρβ + c2
s Δt2Gαβρα ρβ (14) 

Then, Eq. (14) may be denoted as an adjusted speed of sound model 
comprising two ideal gas terms plus an inter-component interaction 
contribution. Due to the ideal gas behaviour of the two components, the 
model is kept simple with intra-component phase separation being 
prevented. This approach only modifies the EOS for the mixture. The 
ideal behaviour of component β can be modified in a similar way, on its 
own or in combination – see Eq. (12) – with that of component α. The 
EOS of the adjusted speed of sound model of Eq. (14) is visualised in 
Fig. 3 for two values of Rα lower than c2

s = 1
3. The asymmetry is quali-

tatively rather similar to that in Fig. 2, implying that similar phase 
density ratios can be attained. 

The values for the density ratio and the surface tension, which can be 
obtained by using the above adjusted speed of sound model, depend on 
the values of Gαβ and Rα. Again, we carried out 2-D simulations for two 
phases separated by a flat interface, each with an initial density of unity. 
The maximum density ratio (see Fig. 4) amounted to 2.55 for Rα = 0.13 

Fig. 1. Pressure as a function of component densities ρα and ρβ according to the EOS of Eq. (10) along with Eq. (11): left panel: a symmetric EOS with Gαβ = 2.50 with 
the same ρ0 for the two components; right panel: a (slightly) asymmetric EOS with Gαβ = 3, ρ0

α = 1000 and ρ0
β = 0.3. The colour bar at the right-hand side of each 

panel refers to total pressure. The figures do not specify phase separation other than that the phases would be somewhere on the same isobar. 

Fig. 2. Pressure as a function of ρα and ρβ in option #3 according to the EOS of Eq. (12): left panel: with Gαβ = 1.25, Gαα = − 0.3, Gββ = 0 ; right panel: with Gαβ =

1.25, Gαα = − 0.3, Gββ = 0.3. 
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with Gαβ in the range 1.5–2.5; such Gαβ values in this plateau are suffi-
ciently high to induce almost complete phase separation as a result of 
which in the bulk of either phase either ρα or ρβ is about zero rendering 
the last term of Eq. (14) more or less zero such that ρα/ρβ = c2

s /Rα =

2.56 indeed. The minimum value of the density ratio was about 0.60 for 
Rα = 0.73 and Gαβ = 2.5; then, phase separation is not complete (no 
plateau in the curve yet) and the above simplification of Eq. (14) does 
not apply. 

Fig. 4 also illustrates that Rα = 0.33 = c2
s reproduces the ratio (with a 

flat interface) of unity. Reducing the value of Rα decreases the contri-
bution of ρα to the pressure such that an equal pressure across the two 
phases requires the total density of the α rich phase to be higher than 
that of the β rich phase. Decreasing Rα further down than 0.13 and 
increasing it above 0.73 resulted in unstable simulations. Higher values 
of the density ratio may be attained when alongside Rα also an Rβ is 
varied. This route has not yet been explored. 

3.5. Running the simulations of drop formation 

We then applied the adjusted speed of sound model of Eq. (14) to the 
topic of drop formation at an aperture as simulated before by Berghout 
and Van den Akker [14], the essential difference (and major step for-
ward) being that gravity now acts on both components. As before, we 
restricted ourselves to a 2-D simulation for the sake of computational 
time and memory, while invoking the same justification as before, and 
used a D2Q9 velocity set. The relaxation time was taken equal to unity 

for both components, while neutral wetting conditions were set, again as 
before. While the earlier simulations were run within Palabos with an 
interface written in C++, the current model was implemented in Python 
without parallelisation. Initially, the heavier liquid 1 rich in component 
α was in the aperture and in the rather shallow domain above the plate 
with the aperture, while the β rich phase 2 was below. Gravity then pulls 
liquid 1 out of the aperture (of diameter D) downwards, pushing away 
the lighter liquid 2, to eventually form a droplet. 

The rectangular computational domain had periodic conditions 
implemented on the vertical sides allowing outflow of fluid, while 
bounce-back rules imposed on the walls of the plate with the aperture. 
At the top of the computational domain, which was at some distance 
above the aperture plate, an open boundary condition was used with the 
densities of the top nodes copied to the fictive nodes above the domain. 
At the bottom of the lower domain (z = 0) a bounce-back rule was 
imposed to avoid outflow of both fluids through the domain bottom. To 
prevent compressibility effects, due to this bounce-back bottom, from 
creating pressure and density gradients along the height h of the domain 
(up to the aperture) and the pertinent additional unphysical flows, we 
imposed an initial density gradient very close to the equilibrium density 
gradient by applying 

ρ(z) = ρ0 exp (−
gz
c2

s
) (15)  

with ρ0 =
ρav

gh
RT

1 − exp
(

− gh
RT

) and ρav =
1
h

∫ h

0
ρ(z)dz (16)  

to both components except that for α the adjusted speed of sound Rα is 
used rather than c2

s . In addition, we kept LB gravity as low as possible, 
although the Bond number should remain of the order of unity. This 
requires a subtle search for the proper LB values for the physical prop-
erties and the geometrical parameters to arrive at non-dimensional Bond 
(Bo), Archimedes (Ar) and Ohnesorge (Oh) numbers allowing droplet 
pinch-off. 

The other question is which value of Rα would be optimal given our 
Fig. 4. After all, we ended up with Rα = 0.15, g = 0.000374, an aperture 
44 nodes in width and 50 nodes in height, with a 50 nodes thick layer of 
liquid 1 above the aperture, and a domain height of 1000 lattice nodes 
below the aperture. Table 1 presents the conditions of the three simu-
lations A1–A3 accomplished. Just like in the earlier work [14], the fluid 
velocity in the aperture and hence also the Reynolds number are the 
result of the simulation. Given the lattice density and numbers of time 
steps in excess of 105, each simulation took 3–5 days. 

Fig. 3. Pressure as a function of ρα and ρβ in the adjusted speed of sound model of Eq. (14): left: with Gαβ = 1.25 and Rα = 0.27; right: with Gαβ = 1.25 and Rα = 0.20.  

Fig. 4. The density ratio for the two phases (α rich over β rich), according to 
the adjusted speed of sound model of Eq. (14), as a function of Gαβ and Rα. 
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3.6. Some simulation results 

A typical result of a simulation on the basis of an adjusted speed of 
sound (Rα = 0.15) is presented in Fig. 5, viz. case A1. As the non- 
dimensional numbers Bo, Ar and Oh of the three cases of Table 1 are 
rather different from those presented in our earlier paper [14], the time 
series is not one-to-one comparable with the earlier results. Yet, the 
results look qualitatively correct as far as e.g., neck elongation, pinch-off, 
transient droplet shape and retracting neck filament are concerned. 

Fig. 6(a)-(c) exhibit the non-dimensional wetted diameter Di/D, the 
non-dimensional apex distance L/D, and the non-dimensional minimum 
neck thickness hmin/D as a function of time for the three cases A1–A3. 
Again, compared to the earlier data [14], these curves show slightly 
different dynamics of droplet formation at different operating condi-
tions, but overall the curves are rather similar. Of course, one may 
wonder whether the results, particularly the thinning of the neck and the 
eventual pinch-off time may suffer from inaccuracies due to issues such 

as lattice spacing and the diffuse phase interface typical of LB (see e.g. 
Mukherjee et al. [18]). Most provisos already made by Berghout and Van 
den Akker [14] apply here as well. These aspects need further study by 
means of 3-D simulations (although the resolution issue will remain 
anyhow). 

3.7. Conclusions for Case A 

We showed the potential of obtaining a density ratio between the two 
phases in a MC PP LB model by means of adjusting the speed of sound in 
(at least) one of the two phases, i.e., by replacing the square of the speed 
of sound c2

s in the ideal gas part of the EOS of one component by a 
variable Rα. One may argue that this approach is similar to adding a 
body force that cancels out − ∇(c2

s ρ), replacing it with − ∇(Rρ). Given 
Eq. (14), we may describe the approach as an adjustable speed of sound 
model. 

We found that the density ratio increased by increasing the differ-
ence between c2

s and Rα along with increasing the interaction strength 
Gαβ.The maximum density ratio that can be realised is limited to about 
2.5 as large intracomponent forces arise for larger differences between 
c2

s and Rα resulting in unstable simulations. For the time being, we did 
not explore whether (how much) higher density ratios could be obtained 
by invoking adjusted speeds of sound for both components. 

Simulations exploiting an adjusted speed of sound, viz. Rα = 0.15, 
were run for three cases of droplet formation at an aperture with varying 

Table 1 
The three simulations carried out with the adjusted speed of sound model of Eq. 
(14).  

Case Gαβ ρ1/ρ2  Δρ/γ  Bo Ar Oh 

A1 0.40 1.69 11.6 0.83 46 0.13 
A2 0.30 1.53 14.6 1.05 39 0.16 
A3 0.25 1.45 16.7 1.20 35 0.18  

Fig. 5. Case A1: Droplet formation at an aperture as found by means of the adjusted speed of sound model of Eq. (14), tb denoting the pinch-off of the droplet after (in 
this case) 146,500 time steps. 

H.E.A. Van den Akker et al.                                                                                                                                                                                                                  



Journal of Computational Science 54 (2021) 101432

7

Bo, Ar and Oh numbers. The results were encouraging as they showed 
qualitatively correct physics of droplet formation. A quantitative com-
parison of these exploratory findings with earlier results such as those 
reported by Berghout and Van den Akker [14] and other authors such as 
Pozrikidis [19] is not doable due to (a) deviating operating conditions in 
terms of non-dimensional Bo, Ar and Oh numbers, and (b) the restriction 
to 2-D of the current exploratory simulations. 

4. Case B - Tubular chemical reactors 

4.1. Introducing the case 

In chemical reactors, the reacting chemical species usually have 
different molecular masses and produce product species again with 
different molecular masses. As expressed by Eq. (1), each species, 
therefore, has a different speed of sound and the populations of each 
species may move at a different velocity across the lattice. Previously, 
several authors [7,8,10,11,20] have also appreciated this. In this Case B, 
the approach is essentially different from that in Case A, since now the 
actual lattice speed of sound is being modified. In addition, for these 
single-phase cases, we do not make use of the pseudo-potential model. 

We now report about using such a variable speed of sound multi-
component single-phase single-relaxation-time on-lattice LB model as 
proposed by Looije et al. [11] for simulating various heterogeneous 
reactive cases. For isothermal non-reactive flows, the latter authors 
showed that such a tunable speed of sound not only requires modifica-
tion of the standard equilibrium distribution function (just like reported 
by e.g., Alexander et al. [5] and Viggen [21]) but also the use of an 
extended velocity set: to avoid unphysical error terms in the 

Navier-Stokes equation. Although this was reported earlier by Qian [22] 
and by Chai and Zhao [10], Looije et al. [11] presented a full derivation 
of the pertinent relations for single-component cases. They also 
demonstrated, still for isothermal single-component fluids, that tuning 
the speed of sound along with using a modified equilibrium distribution 
and an extended velocity set (D2Q13) results in reproducing the proper 
flow characteristics of both a damped standing pressure wave and a 
decaying viscous Taylor-Green vortex. The advantages shown relate to 
an improved convergence rate and strongly reduced errors. 

For each component, we therefore use a D2Q13 lattice with a com-
mon mixture velocity. The partial pressure of each component is 
calculated by using 

p = c2
s,eρ = χc2

s ρ (17)  

since, just like in Looije et al. [11], we introduce the tuning parameter χ 
for reducing or increasing the squared standard lattice speed of sound cs 
with the view of reflecting the differences in molecular mass of reactants 
and products. Similarly, we redefine viscosity for each component as 

ve = χ ν = c2
s,e Δt

(
τ

Δt
−

1
2

)

(18) 

For the derivation of the coefficients in the modified equibrium 
distribution function we refer to the Appendix of Looije et al. [11]. 

For the LB simulation of the reaction A → mB at a catalytically active 
surface, we use the reactive bounce-back method introduced by Kamali 
et al. [23], also used by e.g., Ashorynejad et al. [24] for the cathode 
processes in a fuel cell. In this method, the fraction ks

LB of A arriving at 
the surface is converted into B while the remaining fraction 1- ks

LB still 
returns as A. Due to the use of the D2Q13 lattice, the LB surface reaction 

Fig. 6. (a) non-dimensional wetted diameter Di /D, (b) the non-dimensional apex distance L/D and (c) the non-dimensional minimum neck thickness hmin /D, all as a 
function of time for the three cases A1–A3, as found by means of the adjusted speed of sound model of Eq. (14). 
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rate constant had to be modified and is now given by 

kLB
s =

96 ks⋅ δt
21 δz

/(

1 +
ks⋅δz
2D

)

(19)  

where the usual continuum variables ks and D denote the surface reac-
tion rate constant and the diffusion coefficient, respectively. 

We applied the above Looije approach to three reactive single-phase 
reactions and reactors as described in the Sections 4.2 through 4.4. 

4.2. Between two flat plates skip indentation 

A multicomponent 1-D diffusion-reaction case between two flat 
plates, one of which (x = 0) imposes a constant concentration of species 
A while at the other wall (x=L) a heterogeneous chemical reaction A → 
mB takes place, m being varied. When m ∕= 1, the problem is to be 
described in terms of Stefan’s law rather than as simple Fickian diffu-
sion. We varied the Damköhler numer Da, defined as ksL/D and repre-
senting the ratio of surface reaction rate to diffusion rate. The analytical 
solution for the molar concentration c of component A for this case [25] 
runs as 

m = 1 :
c
c0

= 1 −
Da

Da + 1
η (20a)  

m > 1 :
c
c0

=
m exp { − [W (m Da exp Da) − Da] η }- 1

m − 1
(20b)  

in which η = x
L and W is the Lambert W-function. For the purpose of 

validating our approach, we selected m = 1 and m = 2. In the latter case, 
the number of moles changes as a result of the reaction, while at the 
same time the molecular masses of A and B differ by a factor of 2. This is 
taken care of by adapting the tuning parameter χ : for m = 2, we took χ =
0.665 for component A and χ = 1.33 for B. In the simulations, we used 40 
l.u. for the spacing between the two flat plates. 

By plotting the non-dimensional concentration of A as a function of 
the spatial coordinate in l.u. for two reactions m = 1 and m = 2 with 
varying Da, Fig. 7 illustrates that our simulation results agree with the 
analytical solutions provided that for the m = 2 case the multi-speed 
approach is applied. 

4.3. Laminar-flow tubular reactor skip indentation 

A tubular reactor operated under laminar flow conditions with the 
reaction 2A → 3B taking place at the tube wall. We use χ = 0.8 for 

reactant A and χ = 1.2 for product B with the view of arriving at the 
stoechiometric ratio 3/2, while avoiding computational stability issues 
for χ values beyond 1.2. For the inlet of the tubular reactor, we extended 
the local Zhou-He boundary condition to D2Q13 lattices for both the 
velocity and the mass fractions of the components, while at the outlet we 
imposed a parabolic velocity profile by using a bounce back boundary 
condition. The corners of the flow domain need special treatment as they 
are at the intersection of the inlet (or outlet) plane and the tube wall 
where the reaction takes place. 

Fig. 8 demonstrates a typical result for pressure field, x-velocity field 
and the concentration fields for the two components A and B from 
simulations for this case. Qualitatively, the results look acceptable, with 
the density at the outlet 0.7 as predicted from a pressure balance for 
complete conversion of A when using the above χ values and the inlet 
mass fractions 0.9 and 0.1 for A and B, respectively. The velocity in-
creases in downstream direction due to the decrease in density as a result 
of the chemical reaction. Pressure is more or less constant, with still a 
few numerical artefacts close the wall in the first half of the reactor. 

This case served the only purpose to explore whether the method 
works in a flow reactor, which boundary conditions are needed, whether 
the code is numerically stable, and whether meaningful results are ob-
tained. We are not aware of experimental or computational literature 
data for this reaction and for these operating conditions which we could 
have used for validation. 

4.4. Catalytic combustion of methane skip indentation 

The catalytic combustion of methane CH4 + 2 O2 → 2 H2O + CO2 in a 
tubular laminar-flow reactor with an L/D ratio of 10, as described in the 
paper by Arcidiacono et al. [8], with our simulation approach being 
essentially different in terms of type of lattice scheme (on-lattice vs 
off-lattice), boundary conditions, and the treatment of the heteroge-
neous reaction. 

We used the same inlet and outlet boundary conditions as in the 
above case (b). Further, we selected the tuning parameters χ– see Eqs. 
(17) and (18) – for the various components as 1.6775, 0.8387, 0.61 and 
1.4911 for methane, oxygen, CO2 and water, respectively, by taking χ for 
the largest molecule equal to the lower stability limit (i.e., 0.61) and 
then considering the ratio of the molecular masses – see Eq. (1) – for the 
χ values of the other components. 

In addition, some of our simulation conditions differed from Arci-
diacono’s: we used Re = Pe = 1, while our reaction started not earlier 
than x = L/4. Due to these differences, our results are not comparable 

Fig. 7. Plot of non-dimensional concentration of component A versus the non-dimensional coordinate η for case A → B (m = 1) and A → 2B (m = 2): the different 
symbols represent the LB results, while the different lines are the analytical solutions of Eqs. (20). In the case m = 2, the speed of sound is tuned to reflect the 
difference in molecular mass of components A and B. In both plots, Da is an important parameter, as expected. The LB results match the analytical solutions. 
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with Arcidiacono’s. We did use the same kinetic data to arrive at ks = 28 
cm/s which then was used to calculate ks

LB by means of Eq. (19). We also 
used the same inlet mole fractions of methane and oxygen, but note that 
for our LB simulation we converted the mole based stoichiometry to 
mass based. 

Fig. 9 presents the simulation results for the catalytic combustion of 
methane: pressure field, velocity field and the concentration fields of 
reactants and reaction products. The results look qualitatively correct. 

The velocity does not change in the downstream direction: this is 
different than in Fig. 8, as now the number of moles does not change as 
result of the reaction, while the molecular masses do vary. Fig. 10 shows 
the velocity profiles halfway the reactor which are qualitatively in 
agreement with the velocity profiles presented by Arcidiacono et al. [8] 
in their Fig. 6. 

Fig. 8. 2-D simulation of a laminar flow reactor with surface reaction 2A→3B at the pipe wall for Re = Pe = 1 and Da = 1 in a domain of 20 × 200 l.u. Inlet mass 
fractions of components A and B were 0.9 and 0.1, respectively. Reaction starts at x = L/4. 

Fig. 9. 2-D simulation of the catalytic combustion of methane at the pipe wall for Re = Pe = 1 on a domain of 50 × 500 l.u. Inlet mole fractions of oxygen and 
methane were 0.9 and 0.1, respectively. Reaction starts at x = L/4. 
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4.5. Conclusions for Case B 

The three above cases show that the concept of varying the speed of 
sound after the molecular mass of the multiple components in a chem-
ical reaction is not only physically necessary but also computationally 
feasible. The concept does require the use of an extended lattice, or 
extended velocity set, i.e., D2Q13 instead of D2Q9, and a modified 
equilibrium distribution, as specified and validated for non-reactive 
cases by Looije et al. [11]. The method has the obvious drawback of 
an increased computational burden due to the extended lattice. While 
the method for reactive systems was properly assessed for the canonical 
1-D case (a) by comparing with analytical solutions for varying Dam-
köhler numbers, the 2-D results for the tubular reactors of cases (b) and 
(c) look qualitatively correct but need further quantitative validation by 
means of (literature) data from either experiments or different types of 
simulations. 

5. Overall conclusions and outlook 

The submission that varying the speed of sound is an underexposed 
but viable option in LB simulations of isothermal multicomponent sys-
tems was explored for both two-phase flow, viz. droplet formation at an 
aperture, and single-phase catalyst assisted chemical flow reactors. In 
the former case (A), adjusting the speed of sound for either or both 
components along with the use of pseudo potential functions turns out to 
be instrumental for obtaining phase separation with a modest phase 
density difference. In the latter case (B), tuning the speed of sound by 
taking differences in molecular mass into account is a more drastic 
modification as it interferes with core LB aspects as lattice size and 
equilibrium distribution functions. 

By comparing with the analytical solutions for a simple 1-D 
diffusion-reaction case we demonstrated that tuning the speed of 
sound is really required when molecular mass is different for reactant 
and reaction product. Our 2-D simulations with varying speeds of sound 
produced qualitatively satisfactory results for droplet formation at an 
aperture, for a simple test reaction in a tubular reator and for catalytic 
combustion of methane in a tubular reactor. 

The applicability of the two methods of varying the speed of sound 
should further be investigated, also in 3-D, and assessed for varying 
conditions for which literature dara are available. The two methods 
should also be extended by incorporating multiple relaxation times to 
reflect differences in Peclet numbers as a result of differences in mo-
lecular mass and size. Last but not least, a more detailed assessment of 
the effects of a variable speed of sound on the numerical stability of the 
pertinent LB codes is highly needed and strongly recommended. 
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