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Abstract

In this modern age, data is being generated constantly and data is being saved for
analysis everywhere. In the maritime industry, interest in the analysis of ship data
has grown over the years. In this thesis, we will take a look at AIS data coupled with
sea state data.

AIS data is data generated from the ship, concerning the ship locations, speed, and
heading, among others. When coupled with data such as the wave height and wave
directions at these locations, we can analyse the ship operations in different sea con-
ditions. We analyzed 46 Damen ships of the same type, that operate in different
regions of the world. The aim was to make interpretable groups of ships that have
similar operation profiles, and to investigate the effect of different sea states on the
ship operations.

We first enrich the data with port labels, from which we can define trips as sequences
of points away from port. We also estimate path lengths between points using Bézier
curves. From this we get a relevant set of variables that can use for an unsupervised
learning task.
We clustered the ships using three methods: principal components analysis, K-
means, and hierarchical clustering. Principal components analysis showed variation
in the ships, but interpretation and definitive clusters were not clear. We then used
the K-means method to make 12 clusters of ships, of which six clusters proved to be
stable. Hierarchical clustering showed similar results. Interpretation of these clus-
ters was possible, mainly by looking at separate trips. We therefore also clustered
the trips, to get classes of trips. We used the K-means method and obtained six clus-
ters of trips, of which five were stable.

We also look at ship availability in different regions during different sea conditions.
We use an isotonic regression method to test whether ships ships stay in port more
often during heavy weather. We found regions where availability decreases during
high waves and regions where availability seemed independent from wave height.
This most likely has to do with the function of the ship. And finally we look at sailing
speeds during different sea states and find that sea state data alone is not sufficient
to adequately estimate sailing speeds of a ship.

The conclusion is that using the variables that we created, stable clusters can be
obtained. These clusters are interpretable and can lead to a better understanding of
customer needs. Coupling the AIS data with more data sources however would be
a recommendation, since that can lead to more informative clusters, and might lead
to more insight into sailing speeds.
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Chapter 1

Introduction

1.1 Damen Shipyards

Damen is a family owned shipbuilding company from the Netherlands. It started in
1927 on the River Merwede and today they are still located on the same location, but
with customers and service hubs all over the world. Damen builds custom ships, but
specializes in delivering ships from standardised designs. This makes for a robust
vessel design that is proven to work and by having ships in stock, delivery times are
very short.
Damen is active across the entire spectrum of maritime industries. From harbours
and terminals to offshore support, from dredging to renewable energy and from su-
peryachts to defence and security, all kinds of ships are being built at Damen Ship-
yards.

1.2 Motivation of the study

Market segmentation is the activity of dividing a consumer market in subgroups.
The consumer market may consist of existing customers, potential customers, or
both. The aim is to make subgroups, or segments, where customers share some
common characteristics. There is no one right way to make these groups, and the
features to base the groups on depend very much on the goal of the segmentation.
Goals can for example be marketing, product design, or market exploration.
Emerging technologies these days generate an immense stream of data, and much
of it is available for open use. The Automatic Identification System (AIS) is one of these
technologies. AIS is an automatic tracking system for maritime vessels and, similar
to GPS, it provides information about moving vessels such as location, speed, and
course. More about AIS can be found in section 2.2.
The business model of DAMEN is to sell ships that are ready from stock, as opposed
to taking orders for custom built ships. As a consequence, Damen has a high demand
for insight into what customers are really looking for. This is not to say that Damen
has absolutely no idea. By talking to buyers and by maintaining good customer
relationships, wishes can be heard. However, it remains hard to see how a ship is
being used after it is delivered to the customer destination. The availability of AIS
data however offers the possibility to analyse ship operations as carried out by the
customers.
These data can answer some questions that are important to operations within DAMEN.
These questions include:

• How do DAMEN ships compare to similar ships from competing companies?
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– Is there a difference in sailing speeds?

– Does the availability of ships differ between companies depending on
weather conditions?

• Do users of DAMEN vessels change sailing speeds depending on weather con-
ditions?

• Are operations dependent on weather conditions?

• Are the ships being used in the way the designers had in mind?

Answers to these questions can have impact on the way DAMEN currently design
their ships. Answers to the first question and subquestions can help the sales de-
partment if it can be shown that DAMEN vessels perform better than competitors
with a similar target market. Answers to the other three questions are important to
the engineers of DAMEN who design the ship. Ideally, sailors are able to navigate
the ship at any speed they desire, regardless of the weather conditions. Currently,
the ships discussed in this study are being designed in a way such that high waves
should have very limited on sailing speeds, but whether customers actually keep
constant sailing speeds independent of wave heights is yet unknown.
In this study, we will focus our analysis on a fleet of 46 DAMEN FCS 5009 vessels.
This type was chosen because of the comparatively large number of ships sold, and
the wide variety of geographical locations the ship is being deployed.

1.3 Problem description

As mentioned in the previous section, we would like to segment the clientele of the
DAMEN FCS5009 ships into subgroups with similar characteristics that are of inter-
est. The goal of this research can be stated as follows:
Use statistical techniques on the data to gain useful and interpretable insights in the be-
haviour of the customers.
This goal poses the challenge of giving meaning to "useful and interpretable". What
is useful to one department might be irrelevant to another. This is something we will
explore in the coming chapters.
The questions we try to answer in this study are inspired by DAMEN’s desire to
understand their customers, their behaviours, and their needs. The questions are
therefore as follows:

• How can we divide our fleet of DAMEN FCS 5009 ships in groups with similar
behaviour within the group?

• Are DAMEN FCS 5009 ship operations influenced by conditions at sea?

1.4 Thesis outline

In the following chapters, we will make an attempt to answer these questions. First,
we will have two chapters providing some background into the data, related re-
search, and some exploratory data analysis of the raw data. After that, chapter 4
describes methods with which we enriched our data with extra variables that we
believe will help us answer the research questions.
After that, we will address the first question in chapter 5, where we use different
methods to make groups of the ships in our data set using the enriched data.
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In 6 the second research question is addressed. We look at ship availability and sail-
ing speeds and use statistical methods to determine if these variables are affected by
the sea state.
In the final chapters we will conclude our research, and give recommendations for
further research.
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Chapter 2

Background

In this chapter we will explain the data collection process and review other research
projects with similar objectives and datasets.

2.1 Damen FCS 5009

The DAMEN FCS 5009 is a Fast Crew Supplier vessel made by Damen Shipyards,
based in Gorinchem in the Netherlands. With a length of 53 meters, a deck area of
240 m2 and space for 80 passengers, the vessel is well equipped for fast, safe and
comfortable transfer of crew and cargo. Additionally, the vessel is capable of emer-
gency towage and crane handling functionality. The DAMEN FCS 5009 is also sold
under the name YS 5009, the Yacht Support. While the two are technically the same,
the deck of the yacht support is customized for the purpose of supporting trips of
luxurious yachts. It offers room for a helicopter, small speedboats, jet skis and other
big machinery that might not fit on the yacht itself.

FIGURE 2.1: The DAMEN FCS 5009

2.2 Data collection

In this project, we will use data gathered from ships fitted with transponders for
the Automatic Identification System (AIS). AIS is an automated tracking system that
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logs a variety of information about the ship’s current state, for example: speed, lo-
cation (latitude/longitude), course over ground, heading, time, and a unique iden-
tification number. Ships with transponders on board can both see AIS data of ships
around them, and broadcast their own information simultaneously at regular inter-
vals.
AIS is intended primarily to allow ships to view maritime activity in their vicinity
and to be seen by other ships. This provides shippers and port authorities on shore
with valuable information for both navigation and collision prevention. It was first
widely adopted in 2002 when the International Maritime Organization (IMO), an
agency of the United Nations responsible for shipping regulation, agreed on the In-
ternational Convention for the Safety of Life at Sea (SOLAS) treaty. This agreement
included a mandate that required AIS for all ships of 300 gross tonnage and upwards
in international voyages, 500 and upwards for cargoes not in international waters
and passenger vessels (IMO, 2002). In addition, fishing vessels greater than 15 m
sailing in water under the jurisdiction of the European Union Member States shall
also be required to be fitted with AIS. In the years following that, AIS products kept
evolving and governments instigated projects to endow all types of vessels with AIS
technology for improved safety and security. As of 2014, all EU fishing boats over
15m will have to have AIS technology on board (IMO, 2014).
As AIS information is transmitted from the ship, any AIS receiver within range (or
satellite) can pick up the signal and save it. MarineTraffic is a company in the marine
industry that has many AIS receiver stations and satellites and as such can pick up
many AIS signals. They save this data and offer it for purchase for any party that is
interested in the data.
Secondly, where AIS data only pertains to the ship itself, we are also interested in
the conditions at sea when the ships are sailing. Our vessels are not able to mea-
sure weather conditions, so we have to rely on other sources for this data. We
use COPERNICUS for our sea state data. COPERNICUS, previously known as GMES
(Global Monitoring for Environment and Security), is the European Programme for
the establishment of a European capacity for earth observation and monitoring. Us-
ing satellites and marine measuring devices they are capable of measuring various
ocean variables. Using these measurements and models, they provide users with
marine data. The user can input an area, and get an output file with the values of
certain marine variables of points within that area.

2.3 Related research

The widespread deployment of AIS systems and the accompanying abundance of
data has led to interests from many different parties. Research has been done on
the use of AIS data to improve safety of vessels and decrease offshore collisions and
other undesirable events, in a field called maritime situational awareness. In Pallotta,
Vespe, and Bryan (2013), AIS data is being used to extract routes and for anomaly
detection in certain selected areas. Anomaly detection is seen as a deviation from
normality as learned using historical data and can be useful in the detection of colli-
sion avoidance maneuvers. In (Kowalska and Peel, 2012) anomaly detection is done
using Gaussian Process regression with active learning to indicate criminal activ-
ities, such as piracy, drug smuggling, arms trading, people trafficking and illegal
immigration. Guillarme and Lerouvreur (2013) describes a model where clustering
techniques are used to build a normalcy model to detect anomalies. In Bonham et
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al. (2018) AIS data is used to classify ship behaviour using K-means clustering. The
aim was to gain insights in ship behaviour to aid port traffic utilisation, port network
analysis, and port delays.
The analysis of AIS data is applicable in the marine sector since the data is inher-
ently connected to naval vessels, but the analysis of spatiotemporal data is being
done in other fields too. GPS data is similar to AIS data in the sense that both data
contain knowledge of the location and speeds of objects in time. In Alevizos, Ar-
tikis, and Paliouras (2017), Moosavi, Ramnath, and Nandi (2016) and Moosavi et al.
(2017) GPS data of cars is used to segment trajectories and discover driving patterns,
characterize driving behavior and forecast events using Markov chains. In Bijman
(2017) features such as mean speed, maximum speed, acceleration and braking were
used to classify driving behavior. Classes were found using clustering algorithms
and drivers could be classified as safe or unsafe as a result.
We also looked for research on AIS data coupled with COPERNICUS data, but there
appears to be very little research done on these subjects. The only one we were able
to find was Goerlandt (2017). In this research, AIS is coupled with sea state data to
model navigational accident scenarios in the Baltic Sea.

Author’s note: Confidential research was omitted from this section
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Chapter 3

Raw data

Author’s note: This chapter is confidential
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Chapter 4

Data enrichment

As discussed in the previous chapter, there are more variables we need. In this chap-
ter we will describe the process of data enrichment, i.e. the process of taking the raw
data and using that to find additional data that might prove useful in our project.
First, we will describe an enrichment based on the labeling of certain locations where
ships find themselves. While this method can potentially tell us a lot about the activ-
ities of the ships, it is a very tedious process and takes a lot of time as the labeling is
done by hand. Furthermore, as we can never be sure what is actually happening at
those locations, the labeling can be seen as a subjective and dependent on the person
doing the labeling.
Second, we will move on the a more objective way of enriching our data set that we
will move on with for the rest of the thesis.

4.1 Location-based profiles

One way to define a user profile is based on predefined location and activity labels.
First, we define all areas of interest and we assign to every area one of the following
labels:

• port

• platform

• yard

• drop

• open

These location-labels have been agreed upon to be realistic and relevant after dis-
cussions with experts at Damen. See section 4.1.1 for a more detailed description of
these locations.
From this, we get an overview of the activities of the ship. In the sections below, we
will describe finding the areas of interest and their labeling.

4.1.1 Areas of interest

Finding and classifying ship locations were done by visually and by hand. The first
step was to filter for data points with a speed higher than 1 knots. These points can
be considered points at areas of interest because of their lack of movement in these
locations. See figure 4.1 for an example of ship 2.
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(A) All datapoints for ship 2 (B) Points of ship 2 with speed lower than 1 kn

FIGURE 4.1: Points of ship 2

Although subjective, we can visually distinguish certain areas that indicate an area
of interest for this ship. The next step is to label these areas according to the pre-
viously mentioned labels. A mix of GOOGLE MAPS and NAVIONICS was used for
this. GOOGLE MAPS offers maps and satellite images of nearly all locations on earth
and NAVIONICS offers an extensive map with different maritime facilities on it. Let
us have a closer look at the labels to understand how we will label the areas.

Port

A port is a maritime facility with one or more wharves where ships can dock for a
longer time. They are mostly recognizable on a map because they are connected to
land, and there are wharves and docked ships visible.

(A) An area of interest of the coast in Mexico

(B) The same area in satellite view on GOOGLE
MAPS

FIGURE 4.2: An area of interest compared to satellite images
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Platform

The DAMEN FCS 5009 is being sold as a Fast Crew Supply for offshore operations,
so most ships make trips to offshore platforms in their daily operations. Offshore
platforms are typically not large enough to be seen by satellites, so determining their
position by using GOOGLE MAPS is not possible. As we were not able to find a
complete list of all platforms in the world, we chose to use the NAVIONICS webapp.
See figure 4.3b.

(A) Coast off of Mexico with hot spots of datapoints

(B) The same area as 4.3a but on the NAVIONINCS
webapp

FIGURE 4.3: A comparison of the plotted data and a screenshot off
NAVIONICS to find the positions of platforms

In figure 4.4 you can see a larger view of a part figure 4.3b where the individual
platforms are distinguishable. Note that the symbol stands for a platform.

FIGURE 4.4: Zoomed in view of figure 4.3b
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Yard

A yard is a maritime facility where ships are built or repaired. The easiest way
to recognize them is when you see data points situated on land or when GOOGLE

MAPS explicitly calls the location a yard. See figure 4.5.

(A) Datapoints off the coast of Abu Dhabi. Notice
the points on land.

(B) The same area as 4.5a but on GOOGLE MAPS

FIGURE 4.5: A comparison of the plotted data and a screenshot off
GOOGLE MAPS to find the positions of yards. Notice the ships on
land in the satellite picture that indicates ships being built or repaired.

Drop

A small portion of the sold FCS 5009 are being used as yacht supports as explained
earlier. These ships do not visit platforms, but rather islands where yacht owners
can enjoy leisure activities. See figure 4.6 to see an example of a drop area.

(A) Datapoints off the coast of Papua New Guinea

(B) The same area as 4.6a but on GOOGLE MAPS

FIGURE 4.6: A comparison of the plotted data and a screenshot of
GOOGLE MAPS to find the positions of drop areas
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A drop area is named as such because of the assumed activities: it follows a yacht
with passengers on board, and drops off any of the wanted vehicles and leisure
ware and then waits until the yacht is ready to proceed the journey again. The areas
a recognizable because of their locations close to land, but not at a port, and the
fact that we know the ship is being used as a yacht support ship. However, note
that ships being used as fast crew supply ships can still have drop areas, to drop off
workers who will transfer to smaller ships headed to land.

Open

Open is a category of areas where we are not sure what the ships are doing, but we
suspect there is something going on there. Basically whenever we see an area of in-
terest where one of the previously mentioned labels do not apply, we label it ’open’.

So for any hot spot that we find when plotting the data on a map, we compare it to
satellite images and NAVIONICS images to label the location.

4.1.2 Status labeling

When we have all the location labels of a given ship, we can start labeling the status
of every datapoint that we have. A status can be seen as a mixture of both the
location and the speed at a certain instant. From the previous subsection we have
certain locations labeled as:

• port

• platform

• yard

• drop

• open

From these we get the following status labels:

• port
When a ship is in the port

• platform
When a ship is an area labeled ’platform’ and has a speed lower than 3 knots

• stand-by
When a ship is an area labeled ’platform’ and has a speed between 3 and 7
knots. Mostly observed in areas with a high platform density. Ships will patrol
between platforms to provide quick assistance in case of emergency.

• yard
When a ship is in a yard.

• drop
When a ship is in a drop-area.

• open
When a ship is in an open-area.
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• sailing
When a ship is in a location without any of the previously mentioned location-
labels.

4.1.3 Critiques on labeling

As mentioned earlier, the above described way of labeling ship activities is very
prone to erroneous judgement of the actual activity. The only reliable labeling is
the labeling of ports and yards, since those are very easily distinguishable on satel-
lite images. The distinction between platform, drop and open however is not always
easy to be seen. One issue with this is that there was no way to pinpoint the exact lat-
itude/longitude coordinates of platforms on NAVIONICS, so matching locations was
mainly done by matching certain landmarks to orientate. Another problem is that
oil- and drilling rigs do not always stay in one place, but rather get moved around
from time to time. So when the location of an area of interest does not coincide with
a platform on NAVIONICS, it does not necessarily mean that there was no platform
there at the time when the ship was there. This was not considered at the beginning
of the process, but was discovered as the process went on.
But consequently, this lead to questioning of the labeling of locations thus far. We
felt the classifications that were done were not very accurate and continuing with
this would be going the down wrong path. After discussions with people within
Damen, it was decided to focus on profiles based on speed, rather than locations.
We managed to label the locations of 24 ships before coming to this decision.
Before we move on to our next section, we do want to propose a method of automat-
ically finding areas of interest. Finding areas of interest, or hot spots, is a big topic in
spatial statistics. Applications include industries as health care, nature observation,
transportation, and many more. In Harris et al. (2017), hot spots analysis is used to
identify hot spots of emerging forest loss. In Nandana, Mala, and Rawat (2019) hot
spots detection is used to analyse dengue fever outbreaks. In Sitanggang, Risal, and
Syaufina (2018) hot spots are identified to analyze fires in the country, and in Qin
et al. (2017) it is used to analyze taxi movements in the city. In the following section
we will describe a method called DBSCAN.

4.2 Finding areas of interest based on location density

To gain insight into the activities of ships and their behavior, one piece of information
that is of interest is where they go outside of the port. The place they go to are what
we call the areas of interest. We show again an image of all the points of a certain
ship in off the coast of Mexico from a 3-year period as in figure 4.1a, but this time
with the areas of interest circled as one might suspect by looking at the densities of
the data and the paths leading there. See figure 4.7.
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FIGURE 4.7: All datapoints from ship 2 with visually distinguishable
areas of interest circled

By only plotting the points where the speed was lower than 1 knot as in figure 4.1b,
we see that the data points fall mostly into the circles of figure 4.7. We would how-
ever want to find these areas automatically, and not by hand. That is what this sec-
tion is about. We use an algorithm called DBSCAN to achieve this. The algorithm
is first described in Ester et al. (1996) and in Yu et al. (2014) the effectiveness of the
algorithm in geospatial hot spot exploration is described.

DBSCAN stands for "Density-Based Spatial Clustering of Applications with Noise"
and as the name implies, is a density-based clustering algorithm.

In the following section we explain the DBSCAN algorithm as described in Ester et
al., 1996.

4.2.1 DBSCAN

Let D be a data set of points p ∈ Rn. To perform DBSCAN on the data D you need
to specify two parameters:

• ε: the radius for the ε-neighbourhood Nε of p.
Nε(p) = {q in D|dist(p, q) ≤ ε}
where dist() is a distance function (often Euclidian, but not necessarily)

• minPts: the minimum number of points needed in a neighborhood

We illustrate this with figure 4.8. In the figure we see four datapoints R2, in blue.
Around the points p and q are the circles that represent the ε-neighborhoods of those
points with radius ε.
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FIGURE 4.8: Illustration of Nε

With these notions, we can label all points as one of the following points:

• Core Point: Points of which their neighborhood contain at least minPts points

• Border Point: Points of which their neighborhood contain less than minPts
points, but they are in the neighborhood of another core point

• Noise Point: Points that are neither core nor border points

Looking back at figure 4.8, we can label points p and q. Let us say that minPts = 4.
Then Nε(p) contains 4 points and is therefore a core point. Nε(q) however only
contains 3 points and is therefore not a core point. It is however located in the neigh-
borhood of core point p, and is therefore a border point.
To form the clusters, we have some other notions to define.

Directly density-reachable
A point q is directly density-reachable from a point p if:

• p is a core point, and

• q ∈ Nε(p)

Density-reachable
A point q is density-reachable from point p if there is a sequence of points p1, p2, ..., pn
with p1 = p and pn = q such that pi is directly density-reachable from pi−1 for
i = 2, ..., n.
Density-connected
Two points p and q are density-connected if they are both density-reachable from a
core point k ∈ D.

Given the definitions above, we can define a cluster:
Cluster
A cluster C is a subset of D satisfying the following two criteria:

• Maximality

– ∀p, q if p ∈ C and q is density-reachable from p, then q ∈ C

• Connectivity

– ∀p, q ∈ C, p and q are density-connected
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In the DBSCAN algorithm, we start by finding a core point, and then find all points
in D that are density-reachable from p and assign all these points into a new cluster.
Then move on to a new core point that has not yet been labeled and repeat the
process. See algorithm 1 for the pseudocode.

Algorithm 1 Pseudocode DBSCAN
∀p ∈ D

1: if p is not classified then
2: if p is core point then
3: Find all points density-reachable from p and assign them to a new cluster
4: else
5: assign P as noise

Author’s note: This section is confidential.

In this section we have shown that the DBSCAN algorithm performs well at finding
hot spots, or areas where ships stand still. Finding these spots can be useful for
analysis, as they give insight in what the ships are being used for. However, simply
using this algorithm is not enough. Domain knowledge is still necessary to label
these hot spots (e.g. platform, mooring buoy, port, yard). Since we deemed it not
possible for us to adequately do this, we will not continue with these labelings in the
remainder of this study. However, we did report on this process in this report since
we think that the idea of labeling locations and activities, if done correctly, can be
very useful for Damen. With the DBSCAN algorithm that we explored here we have
shown that should Damen choose to find and label hot spots, the algorithm could
help them in the process.

4.3 Speed-based profiles

We described a way to enrich the data with location-based features in the previous
section, but it proved unreliable. We therefore move on to another, more reliable
way, which is speed-based. A big factor that plays into a ship’s life expectancy is the
speed the ships sail with and the duration. Therefore it would make sense to make
clusters based on speed. The first step in this however is still to label all ports and
yards like we did before. We need to do this because Damen is interested in the be-
haviour of the ship when it is sailing. It would therefore provide more information
to know both how often the ship is in or out of the port, and the behaviour when it
is not in port.

4.3.1 Division into trips

Like before, we identify all ports that a ship visits in the data set that we have. For
all 46 ships, we identified 141 ports. See figure 4.9.
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FIGURE 4.9: All identified ports in the dataset

We identified these ports by analyzing the hot spots found with DBSCAN. When a
port was found, we saved one longitude/latitude pair and a radius that captured
the port. Note that this includes ports from small (artificial) islands, for example one
that can be seen in figure 4.10.

FIGURE 4.10: Small artifical island in the Persian Gulf that we also
identified as a port.

From this, we can calculate the distance from this point to any location of the ship.
If the distance is smaller than the radius, we label the location of the ship as the
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port location. See figure 4.11. As one can see in the figure, it is not perfect. There are
points outside of the port that would still be labeled as the port in this instance, but it
would be take too much time to draw a perfect outline of all 141 ports. Furthermore,
it is not always clear where ships can dock at a port. From figure 4.11a one might
think all ships will be stored in the lanes in the middle of the circle, but figure 4.2
shows that ships can also get stalled just outside of what seems like the whole port.
So when a location of a ship gets labeled as in a port, we will keep in mind that it
can also mean that the ship is at least very close to a port. We do not expect this to
cause any issues further down the line.

(A) Port Pesqeuro in Mexico with the radius that
we saved. In our labeling, we consider every point

within the circle as "in Port Pesquero".

(B) Port of Spain in Trinidad and Tobago with the
radius that we saved. In our labeling, we consider
every point within the circle as "in Port of Spain".

FIGURE 4.11: Two examples of ports and how we label points as in
these ports.

With all the ports identified, we know of every data point whether it is in port or
not. From this we can define trips:

Trip

A consecutive sequence of points of which:

• The first point in the sequence is located at a port

• All points from the second until the second to last one are located outside a
port

• The last point in the sequence is located at a port

In this way the full sequence of data points per ship gets divided in sequences in
port and sequences away from port.
Furthermore, now that we know which points are located in a port and which are
not, we can again plot the figures that we looked at in the raw data analysis. This
time however we can take out all points located in a port. We do not think these
plots fit in well in this chapter however, so we refer the reader to appendix C for the
plots and comparison.
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4.3.2 Estimating average speeds

As mentioned in chapter 3, the resolution of our data is roughly one per hour. For
all these data points, we have a point estimate of the speed calculated by the GPS
system on board at the ship. We are however more interested in the average speed
in between two data points, and this section will describe a method to estimate this
average speed. More precisely, see figure 4.12.

FIGURE 4.12: Location of two data points and the sailed path that we
want to estimate.

The two red dots are locations of two data points that we have, and the black line
is the real path that the ship sailed in between these points. Note this is just an
example, we do not actually know the real path. To get the average speed sailed on
this path, we need to know the length of this path and the time elapsed during this
path. Let L(t) = (x(t), y(t)) denote the positions of our points in time. The average
speed between L(t1) and L(t2) can then be calculated as∫ t2

t1

√
ẋ(t)2 + ẏ(t)2dt

t2 − t1

However, we can not do this if we only know L(t1) and L(t2). In the following we
will describe a method to get an estimate of this path. We were able to attain a more
detailed data set of four of our ships, with a resolution of roughly 6 data points per
hour. We will use this data set to tune some parameters of our method and to see
how well our method performs.

Interpolation

This section describes an interpolation between points to get a (smooth) curve be-
tween the points and enrich the data with the distance traveled between points and
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get the average speed between two points. The first decision we need to make when
trying to obtain smooth curves from data, is whether we want to interpolate or
approximate. Interpolation means finding a line passing through all given points,
while an approximation does not necessarily do so. See figure 4.13 for an illustra-
tion.

FIGURE 4.13: Four points, with an interpolation on the left and an
approximation on the right

First we removed inconsistencies in the data. Inconsistencies are locations that are
physically unreachable from the previous location given the time in between two
data points, or points with impossible sailing speeds. After removing the inconsis-
tencies, we assume the data, e.g. the positions, to be accurate. Approximating a
curve between the data points, and thereby a path taken by the ships, would poten-
tially miss out on locations the ships visited. Especially since we only have the data
once per hour (at best), approximating the path does not seem suitable. We there-
fore will opt for interpolating methods. Our goal is to estimate a smooth path the
ship has taken between two consecutive points. Our estimation should satisfy two
properties:

• The estimation passes through all the points

• The tangent of the estimation is equal to the course of the ship at every data-
point with a significant speed.

Bézier curves are smooth curves that are defined by a set of control points. The curve
always passes through the first and last control point, but the intermediate control
points generally do not lie on the curve. They do however influence the curve. We
will show some examples and then make it more definitive.
In figure 4.14 you can see two Bézier curves with four control points. In both exam-
ples, the curve passes through the first and last points P0 and P3 but not the interme-
diate points P1 and P2. It is however clear that the path of the curve is guided by the
intermediate points.
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FIGURE 4.14: Two Bézier curves with four control points, in different
configurations

So by moving the control points, one can change the curve to fit many shapes.
The ease and seemingly intuitive way of shaping the curve makes it a widely used
method in computer graphics and computer-aided design. In the next section we
will describe the Bézier method in more detail.

4.3.3 Bézier

In this section we will explain the Bézier curve as can be found in Marsh and Mar-
shall (1999). Definition Bezier curves The Bézier curve in a plane is a parametric
curve of the form B(t) = (x(t), y(t)), where B is the curve, t is the parameter and
x(t), y(t) are the polynomial coordinate functions. The degree of the curve is the
highest order of the parameter in any coordinate function. Furthermore, given the
n+ 1 so-called control points b0, b1, ...bn ∈ R2, the Bézier curve of degree n is defined
to be

B(t) =
n

∑
i=0

biBi,n(t) (4.1)

where

Bi,n(t) =

{
n!

(n−i)!i! (1− t)n−iti if 0 ≤ i ≤ n

0 otherwise
(4.2)

are the so-called Bernstein polynomials or Bernstein basis functions of degree n.

So when we express the control points as bi = (xi, yi) for i = 0, ..., n, we have that

B(t) = (x(t), y(t)) =

(
n

∑
i=0

xiBi,n(t),
n

∑
i=0

yiBi,n(t)

)
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Properties of Bézier curves

A Bézier curve of degree n with control points b0, b1, ...bn for t ∈ [0, 1] has the fol-
lowing properties:

Endpoint Interpolation Property: B(0) = b0 and B(1) = bn

Endpoint Tangent Property: B′(0) = n(b1 − b0) and B′(1) = n(bn − bn−1)

Convex Hull Property : For all t ∈ [0, 1], the curve B(t) lies within the convex hull
of all the control points that define B(t).

Invariance under Affine Transformations: Let T be an affine transformation, then

T

(
n

∑
i=0

biBi,n(t)

)
=

n

∑
i=0

T(bi)Bi,n(t)

Variation Diminishing Property: For a Bézier curve B(t) in a plane this property
states that the number of intersections of a given line with B(t) is less than or equal
to the number of intersections of that line with the control polygon.

The endpoint tangent property states that the start and end of the curve coincide
with the first and last control point, as we have seen in the examples.
The second property states that the line from the first to the second control point lies
tangent to the Bézier curve in B(0) and the line from the second to last control point
to the last control point lies tangent to the Bézier curve in B(1).
See appendix D for proofs.

4.3.4 Low degree Bézier curves

Whilst the results we got above is a general result true for all n, it is common to have
no more than 4 control points, making the degree n = 3. The same is true for our
case, which will be showed later. First let us examine the Bézier curves of degree up
to 3.

Linear Bézier Curves

A Bézier curve defined by only 2 control points b0, b1 is just a line segment connect-
ing the two control points and is given by

B(t) = b0(1− t) + b1t for t ∈ [0, 1]

Quadratic Bézier Curves

Three control points b0, b1, b2 result in a Bézier curve of the second order with the
following quadratic Bernstein functions that can be seen in figure 4.15:

B0,2(t) = (1− t)2

B1,2(t) = 2(1− t)t

B2,2(t) = t2
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FIGURE 4.15: Parabolic Bernstein polynomials

and we get
B(t) = b0(1− t)2 + 2b1(1− t)t + b2t2 for t ∈ [0, 1]

Cubic Bézier Curves

A Bézier curve defined by four control points b0, b1, b2, b3 result in a curve of order
3 with the following cubic Berinstein polynomials that can be seen in figure 4.16 :

B0,3(t) = (1− t)3

B1,3(t) = 3(1− t)2t

B2,3(t) = 3(1− t)t2

B3,3(t) = t3

FIGURE 4.16: Cubic Bernstein polynomials

that lead to the Bézier curve:

B(t) = b0(1− t)3 + 3b1(1− t)2t + 3b2(1− t)t2 + b3t3 for t ∈ [0, 1]

4.3.5 Application Bézier

In this section we show the Bézier curves we get when applying the describe method
to our data. As described earlier, we want to interpolate our data to estimate a path
the ship has taken between two consecutive points. As said in the previous section,
we want the following satisfied:

• The estimation passes through all the points
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• The tangent of the estimation is equal to the course of the ship at every data-
point with a significant speed.

We can achieve this, by adding control points in the direction of the course of the
ship at every point. In this way, we are actually using the Bézier method, which is an
approximating method, to interpolate our data. First, we use the data to create a set
of pairs of the form {(d1, d2), (d2, d3), ..., (dn−1, dn)} where the vector di is one data
point with the values of the variables described earlier (latitude, longitude, speed,
et cetera) for i = 1, ..., n. Then we can interpolate between the points di and di+1 by
adding control points between di and di+1. Using the Bézier method as described
above on these four points will then result in a curve of degree 3. The location of the
two control points are determined by di and di+1.
See figure 4.17 for an illustration of the interpolation between two points. This is
done for the first point in the direction of the course of the ship at that point. Let
(lngi, lati), φi and vi be the coordinates, course and speed of di. Then the coordinates
of the of the first control point are calculated as

lngci = lngi +
vi · cos

(
φi

180 π
)

scale

latci = lati + vi ·
sin
(

φi
180 π

)
scale

The coordinates of the second control point are calculated in a similar way, except i
changes in i + 1 and the second term being subtracted instead of added. The scale
term is needed to get a plausible estimation of the path. After experimentation the
scale is set to 300. For the computation of the curve, discretization is needed. 30 steps
is chosen as it results in fast computation times while still giving smooth curves as
seen in figure 4.17c.
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(A) Two datapoints. The ship was at
the upper position before moving to the
lower position. Their respective courses
were 262 and 153 relative to true North,

as indicated by the arrows.

(B) Two control points are added in blue.
The points are added in the direction of
the course for the first point, and the ex-
act opposite of the course for the second

point.

(C)

FIGURE 4.17: The resulting Bézier curve using 30 discretization steps.

4.4 Results Interpolation

In this section we investigate the results of our Bézier curves and how close they are
to the real path. For this, we use a data set that was made available in the middle
stage of this research project. This data set was purchased due to interest from an-
other group within the research department of Damen, but it is also useful for our
research. This data set consists of AIS data of four of our ships, but the data fre-
quency is higher. Where our original data set contains one data point every hour,
this high frequency data set has one data point roughly every 10 minutes. Note that
the data from the same four ships that we started this research with, is a subset of
this high frequent data. In the rest of this section we use the term non-detailed data
to refer to data taken from our initial data set. The term detailed data refers to data
taken from this new high frequency data set.
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We use the detailed data to test the validity of our interpolation. First take a look at
figure 4.18.

FIGURE 4.18: An overlay of our data with a Bézier curve and the
detailed data.

In this figure we see data from both our non-detailed data set together with data
from the detailed data set. The bigger green points 1, 2, and 3 are points from the
non-detailed data set, and the curve that connects them is the Bézier interpolation,
calculated as described in the previous section. The coloured points in between are
points from the detailed data set, showing the locations of the ship at intervals from
5 to 17 minutes. So note that a greater distance between points does not necessarily
imply a higher speed, it could also be due to a larger time interval. The colour shifts
from blue to red, indicating the first to last point of the data. So in figure 4.18, the
ship sailed from the right hand side to the left hand side.
We started this section with the wish to estimate the average speed in between two
data points. We described the Bézier method, and we will compare it with two more
straightforward methods. See below the three methods:

• Calculating the distance over the Bézier curve and divide that by the time be-
tween points 1 and 2.

• Calculate the shortest distance between 1 and 2 and divide that by the time.

• Take the speed at position 1 as the average.

To get a sense of how well a certain method performs, we would like to compare it
to the real average speed. This is however obviously not possible. We do have the
detailed data however, from which we think we can get a good estimate of the real
average speed. We assume the intervals of roughy 10 minutes are short enough to
contain most path information. Then if we take the shortest distance in between the
detailed points and sum over those distances, we get again an estimate of the real
path. Dividing that by the time duration of the interval, we get an average speed
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estimate. From our assumption that the ship does not deviate much from the direct
paths in between the short interval, this average speed should be quite close to the
real average speed. We therefore take this average speed as reference, and compare
the three aforementioned speeds to this speed. We choose not to use the Bézier inter-
polation on the detailed data, since our method is tuned to the intervals of roughly
one hour. Therefore the method would not work on the detailed data. However, as
said before, we assume that the ship does not deviate much from the direct path as
calculated from the detailed data, so the estimate is assumed to be close to the real
average speed.
We will call our first method Bézier, the second method Haversine (named after the
Haversine formula for calculating the shortest great-circle-distance given two coor-
dinate locations), and the third method simple. We repeat this for the interval be-
tween points 2 and 3, and show the results in figure 4.19. In this figure we can see
that the Bézier and Haversine methods do not differ that much from each other, but
both are closer to the real data than the simple method.

FIGURE 4.19: A comparison of the average speed between the two
segments using the different methods and the detailed data. By seg-
ment 1 we mean the path between points 1 and 2 in figure 4.18, and

by segment 2 we mean the path between points 2 and 3.

If we use more points than 3, a figure like figure 4.19 would become messy. So
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we choose to look at the total squared error, which is cumulative sum of the squared
distance from the real data average to the calculated average using the three methods
described above. See figure 4.20 to see the total squared error in between the three
points that we looked at earlier.

FIGURE 4.20: The total squared error from the detailed data to the
estimating methods.

We do this for the whole non-detailed data set instead of just the three points and
get figure 4.21.
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FIGURE 4.21: The total squared error from the detailed data to the
estimating methods over the whole non-detailed set.

From this figure we can see that the Bézier methods leads to the lowest total squared
error. The differences however mainly seem to start appearing about a third way
through. In the beginning we can see that the simple method performs just as well,
and at times even better.
The differences are somewhat explainable by looking at different parts of ship’s jour-
ney. See the sailing pattern of the ship in a certain period in figure 4.22. The ship
does not seem to have a clear destination, it is rather sailing back and forth in this
area.
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FIGURE 4.22: A certain sailing pattern of ship 40 off the coast of
Brazil.

Let us again take 3 selected points out of this to see what the effects will be. See
figure 4.23.
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FIGURE 4.23: Three points from our non-detailed data set overlayed
with the detailed set in the area where the ship is sailing back and

forth.

The speeds are quite low, around 3 knots, and therefor the Bézier method does not
extend too far out. What we see here is a form of aliasing, where low frequency
sampling of patterns with high variation leads to erroneous results. See figures 4.24
and 4.25, where we see that in such cases, the simple method performs better.
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FIGURE 4.24: The average speed between the three points in figure
4.23 calculated using the three different methods and calculated from

the detailed data.
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FIGURE 4.25: The total squared error of the three methods compared
to the detailed data average.

This kind of behaviour however is mainly seen in the beginning period, which
would explain why the simple method performs well in the beginning. The Bézier
method performs well in other situations, and we therefore choose to use the Bézier
method to estimate speeds.

To end this section, we show some more examples.
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FIGURE 4.26: Two more examples of our Bézier interpolation of the
non-detailed data overlayed with the detailed data. The ship is sail-
ing with average speeds here with no high variation in sailing direc-

tions and performs reasonably well.

FIGURE 4.27: Another example of a case where our estimate is far
from the speed estimated from the detailed set due to the zig-zagging

sailing pattern of the ship at low speeds.

4.5 Final dataset

Author’s note: This section is confidential
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Chapter 5

Unsupervised learning

In this chapter we describe the principal component analysis and methods of cluster-
ing. All are methods of unsupervised learning. The difference between supervised and
unsupervised problems is the existence or lack of a response variable. In supervised
learning problems, a response variable is present and therefore we can for example
try to predict the response based on predictor variables. In unsupervised learning
problems, there is no associated response variable that we are interested in, so the
aim is not to predict. Rather, the aim is the find subgroups of similar objects in the
data. In this project, we are mostly interested in unsupervised learning techniques,
since the data set that is available for this project has no user labels. As a matter of
fact, within Damen there are no labels for customers at all. However, using cluster-
ing techniques we might be able to find groups within the data set from which we
can derive useful and interpretable classes. The idea is that the variation within the
groups is minimized, while simultaneously maximizing the variation between the
groups. In the following sections we will make this more concrete.

5.1 Principal Component Analysis

In this section we describe a method called Principal Component Analysis (PCA). See
James et al. (2013) and Wood (2009). PCA is a method that takes data of p (corre-
lated) variables and finds a representation in a lower dimension whilst keeping as
much of the variance as possible by converting the data into a set of uncorrelated
variables called principal components. Often the data in Rp is transformed to data in
R2, since two-dimensional data is easy to visualize. In the definition of this transfor-
mation, the first principal component has the highest variance. The second principal
component is the component that has the highest variance among the components
that are orthogonal on the previous component set, and so on.
More specifically, let X̃ = (X̃1, X̃2, ..., X̃p) be a random vector of p features. Then the
first principal component Z̃1 is the linear combination Z̃1 = φ11X̃1 +φ21X̃2 + ...+φp1X̃p
with the largest variance. The vector φ1 = (φ11, ..., φp1) is the principal component
loading vector and the elements in the vector are called the loadings of the first
principal component and constrained to satisfy ∑

p
j φ2

j1 = 1. Without this constraint,
arbitrarily large variances could be achieved.
Now assume we have a dataset X = (X1, X2, ..., Xp) of n p-dimensional observations,
leading to an n× p matrix. That is, X is a matrix of n realizations of the p random
variables in X̃ = (X̃1, X̃2, ..., X̃p). Then let Zi = φ11X1 + φ21X2 + ... + φp1Xp be the
first principal component of our data X, an estimate of the real Z̃1. We can assume
that all the variables are centered around 0 without loss of generality. For the matrix
X this means that all column-averages are 0. Let xij denote the realization of the j’th
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random variable of the i’th observation. When we try to find the first principal com-
ponent, it means we are trying to find a loading vector φ1 = (φ11, ..., φp1) so that for
all n observations, we can rewrite the observation using the linear combination

zi1 = φ11xi1 + φ21xi2 + ... + φp1xip

with i = 1, ..., n in such a way that the variance on the scores zi1 is maximized.
Once the first principal component is found, the second principal component can
then be found by finding the loading vector φ2 of the second principal component.
For this we look for a linear combination

zi2 = φ12xi1 + φ22xi2 + ... + φp2xip

such that the variance on the scores zi2 are maximized, but under the extra constraint
that Z2 is uncorrelated to Z1. All following principal components follow a similar
structure, with the constraint that the k’th principal component is uncorrelated to
the previous k − 1 principal components. See appendix A for a derivation of the
method.

5.2 K-Means

In this section we describe a clustering algorithm called K-means. See James et al.
(2013) for a more rigorous explanation. The K-means algorithm is a way to divide
the data into K distinct groups. Clusters achieved with this algorithm satisfy the
following: Let C1, C2, ..., CK be the K clusters formed using the n observations. Then

• C1 ∪ C2 ∪ ...∪ CK = {1, . . . , n}

• Ci ∩ Cj = ∅ ∀i 6= j

That is, all observations get assigned to a cluster and one cluster only. As said before,
a clustering is typically considered good when the variation within the clusters is
small and the variation between the clusters is large. Let Ck be cluster k and let
W(Ck) denote the variation of cluster Ck. Then define

W(Ck) =
1
|Ck| ∑

i∈CK

(xi − x̄k)
2

as the within-cluster variation of cluster Ck. In this definition, |Ck| is the number of ele-
ments in Ck and x̄k = . . . is the center of the cluster. The total within-cluster variation
is then given by the sum of within-cluster variations of all clusters:

TWSS =
K

∑
k

W(Ck)

Algorithm 2 Pseudocode K-means

1: Randomly choose K points in the Rp space
2: Assign every datapoint to the cluster centroid closest to the datapoint
3: Calculate the new centroid for all the clusters
4: Iterate steps 2 and 3 until no new assignments take place
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The iterations of the algorithm are visualized in figure 5.1 for p = 2. The green
dots are the initial datapoints without any clustering. The crosses are the random
initialization centroids from the first step. All datapoints are assigned to the center
of the cluster closest to the point. New centroids are computed and the process keeps
repeating until it reaches a final clustering.

FIGURE 5.1: Steps of the K-means algorithm. Illustration taken from
Pieg (2013)

Since there is only a finite number of clusterings possible and every iteration reduces
the total within-cluster variation, the algorithm is guaranteed to terminate in a finite
number of iterations. The final clustering however is often a local optimum. The
final clustering depends on the initial randomly chosen centroids. It is therefore
important to run the algorithm multiple times, and choose the clustering with the
lowest TWSS. See figure 5.2.

5.2.1 Selection of K

As stated earlier, in the K-means problem the user is required to specify the number
of desired clusters. However, in most problems the user is not aware of the number
of clusters that might be present in the data. This also applies to our problem. We
want to gain insight in the ways the ships are being used and possibly classify users.
We might be able to say that we want more than 3 classifications and less than 20,
but that is still far from concrete. We will explore two ways to select K.

Elbow method

We defined the total within-clusters sum of squares as

TWSS =
K

∑
k

W(Ck) =
K

∑ ∑
iinCk

(xi − x̄k)
2

This is a measure for the compactness of all the clusters and we want to minimize
this value. Minimize is hard to define in this context, because surely we can just
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FIGURE 5.2: Six different runs of K-means on the same data set. Dif-
ferent local optimums are reached and the TWSS is displayed above
the image. Red numbers indicate the best TWSS (James et al., 2013)
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FIGURE 5.3: Plot of the elbow to determine K for a generic random
dataset

take K = n and make every datapoint a cluster of his own. This would lead to
every cluster having W(Ck) = 0 and also TWSS = 0. However, this lead to very
little practical advantages and insight. A balance must be struck between compact
clusters and interpret-ability of the clusters. This is what the elbow method tries to
do.
Using the elbow method you vary K over a range of values, for example 1 to 15
and calculate the TWSS for every K and plot the TWSS against the K. Typically
the plot will look like figure 5.3. In this plot we can see that the nature of having
more clusters leading to a lower TWSS leads to a generally decreasing line. The
method got his name from the fact that we generally want to pick a K where the
line shows a bend, the elbow. The idea is that for this K, the TWSS is relatively low,
and choosing a higher K does not offer a significantly lower TWSS. Thus striking
a balance between low TWSS and still getting interpretable results. See figure 5.3
for an example to support our explanation. The TWSS is calculated for a dataset
unrelated to our research for different values of K. In this example, one could pick
K = 4 or K = 5 as one can argue that is where the elbow is located.

Average silhouette method

Another method to test the compactness of the clusters and to choose K is by calcu-
lating the average silhouette value. The silhouette value is a measure of how similar
an object is to object in his own cluster relative to objects in other clusters. It is de-
fined as follows: let xi be the i’th object out of the dataset of n observations. Let k be
the cluster xi belongs to, xi ∈ Ck. Then

a(xi) =
1

|Ck| − 1 ∑
j∈Ck ,j 6=i

d(xi, xj) (5.1)

where d(xi, xj) can be any distance metric, although commonly the Euclidean dis-
tance is taken. In words, a(i) is the average distance of xi to all other points in the
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cluster that xi belongs to. Similary, we define b(i):

b(xi) = min
m 6=k

1
|Cm| ∑

j∈Cm

d(xi, xj) (5.2)

In words, we calculate the average distance of xi to all points in the clusters different
from the cluster of xi, and take b(xi to be the smallest value of that. Then finally, the
silhouette value is calculated as

s(xi) =

{
b(xi)−a(xi)

max{a(xi),b(xi)} if |Ck| > 1

0 if |Ck| = 1
(5.3)

From this we can see that the silhouette value always ranges from −1 to 1, where
a value of 1 indicates a small average distance to observations in his own cluster
relative to the average distance to other clusters. A negative value indicates there
is another cluster with a smaller average distance to xi than the cluster it currently
belongs to. To determine the value of K, one can calculate the average silhouette
value of all the datapoints and take a value of K for which the average silhouette
value is maximized.

5.3 Hierarchical clustering

In this section we describe another method of clustering, called hierarchical clustering.
Hierarchical clustering is an agglomerating method, starting from n (number of ob-
servations) clusters and ending with 1 final cluster. Any desired number of clusters
can be obtained from the results in between the steps. We make this more clear in
the following.
Let the objective be to cluster n observations. In hierarchical clustering, we build the
clusters up. This means that in the first step, we say that we have n clusters. Then
we find the two observation that are closest to each other, and merge them into one
cluster, resulting in n − 1 clusters. For now, let the notion of "closest" be a general
thought of what it means. We will define closeness of observations and clusters later
once the general idea of hierarchical clustering is clear. Now again, with these n− 1
clusters, find the two clusters that are closest to each other and merge them again.
This leads to n− 2 clusters. Keep repeating this, until you get one big cluster of n
objects. An advantage of this method is that it is nicely presentable in what is called
a dendogram. The method is illustrated in 5.4.
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FIGURE 5.4: In this figure we show the clustering of an arbitrary two-
dimensional data set to illustrate the method. On the left we see the

dendogram, and on the right the plotted data.

A dendogram can be seen on the left in figure 5.4. We can read a dendogram from
the bottom up. In the beginning, all observations are separate clusters. Then 5 and 7
are clustered together. This is reflected in the figure on the right, as we can see that
those observations lie very close to each other. After that, 1 and 6 are clustered to-
gether for the same reason. After that, 8 gets clustered with the cluster that contains
5, 7. And similary, we work our way up until everything is grouped together. Then
to form clusters, we can choose a value along the vertical axis to draw a horizontal
line. Every branch stemming from the intersections would then be a cluster. So let
us say that we draw a horizontal line for example at a height of 2.5. From the inter-
sections with the dendogram, we get two branches. That means we get two clusters:
one with observations 1, 3, 4, 6, and another with the rest.
As the reader probably wondered during the steps described above, what does it
mean that a observation is closest to some cluster? As mentioned earlier, we now
need to define the notion of "closest". When all clusters are single obverservations,
we can simply define this as the smallest distance between two observations given
some distance metric (Euclidian for example). However, when clusters contain mul-
tiple observations there are multiple ways to define the distance.
The term for similarity between two groups of observations is called linkage, and for
hierarchical clustering we can use different kinds of linkage. Let C1 and C2 be two
clusters of observations, |Ci| the number of elements in the clusters for i = 1, 2 and
d(x, y) some distance function on the elements of these clusters. We describe four
ways to define the distance l(C1, C2) between the two clusters.

Complete linkage
All pairwise distances of observations in cluster C1 and C2 are calculated. The largest
distance is chosen as distance between the clusters. That is,

l(C1, C2) = max
p∈C1,q∈C2

d(p, q)
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Single linkage All pairwise distances of observations in cluster C1 and C2 are calcu-
lated. The smallest distance is chosen as the distance between the clusters:

l(C1, C2) = min
p∈C1,q∈C2

d(p, q)

Mean linkage All pairwise distances of observations in cluster C1 and C2 are calcu-
lated. The average of these distances is the the distance between the clusters:

l(C1, C2) =

∑
p∈C1,q∈C2

d(p, q)

|C1| · |C2|

Centroid linkage The center of each cluster is calculated. Then the distance between
the centers is taken as the cluster distance.

l(C1, C2) = d
(

∑p∈C1

|C1|
,

∑q∈C2

|C2|

)

Most often mean linkage is used, and that is what we will be using. We will use the
Euclidean distance metric on the standardized data.

5.4 Results clustering

Author’s note: this section is confidential
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Chapter 6

Sea state influence

In this chapter we will take a look at certain characteristics from the ship given cer-
tain conditions at sea, also called the sea state. Depending on applications and inter-
ests, the term sea state can refer to different statistics of the sea. In our research the
term is characterized by the mean wave height per day and the mean wave period.
First we will attempt to give meaning to the availability of a ship. After that we will
take a look at the influence of the sea state on sailing speeds. Information on both
subjects are of interest to Damen for various reasons. For example, the ships are
being used to transport crew from land to platforms and back. If the ships are in-
operable in certain sea states, operations are delayed and a significant amount of
money is lost. Knowing how the FCS 5009 performs can lead to a competitive ad-
vantage for sales if their availability is better. Or if the competitors perform better,
engineers at Damen know where improvements can be made.

6.1 Availability of the ship

One performance metric of ships is their availability. While not exactly defined, it
is interpreted as the extent to which a ship is available for sailing depending on
the sea state. One way to look at this, is to examine the average sea state on a day
together with whether a ship left the port that day or not. The idea behind this is
that ships can opt to not leave the port on day where the current or predicted sea
state is unfavourable. Note that this method is not suitable for ships that frequently
travel for multiple days in a row. For now we will focus on the regions of Mexico
and the Persian gulf, where ships typically make short trips that do not last longer
than a day.

6.1.1 Gulf of Mexico

In this section we look at the availability of the ships in the Gulf of Mexico. We have
13 ships in our dataset that operate in this region. In figure 6.1 we put a rectangle
around the area we are taking into consideration. This area contains almost all of
the activity of the fleet in Mexico. For this area we obtained data on the variables
vmh0, vtpk, and vmdr, which are the wave height, wave period, and the wave mean
direction. The data spans a period from 29-02-2016 until 31-08-2018. Over this whole
period, we have one data point every three hours. The data is then divided in days
of 24 hours (so 8 data points) and for every day we obtain the average wave height
in the highlighted area. See figure 6.2 As wave period and the wave direction are
not expected to influence the availability of a ship, we will take a look at the wave
height first.
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FIGURE 6.1: The area of which we get the sea state in the Gulf of
Mexico

.

FIGURE 6.2: Average wave heights on a per day basis in the Gulf of
Mexico

In the next step we mark all days on which the ship left the port. A plot showing the
port leaves and the average wave height on that day can be seen in figure 6.3. In this
plot, every point is a single day on which the average wave height can be seen on the
x-axis. On the y-axis it shows a value close to 1 if the ship left the port that day and
a value close to 0 if the ship stayed in port that day. Small perturbations have been
purposefully added in the y-direction for better readability of the plot. So note that



Chapter 6. Sea state influence 45

in the figure, all y-values greater than 0.4 are actually all 1’s and all y-values below
0.4 are all 0’s, and those are the actual values we are working with.

FIGURE 6.3: Port departures given wave heights for a single ship.
High values on the y-axis means the ship left the port, while low
value means the ship stayed in the port that day. Note that jitter is

added.

We can do this for all 13 ships in Mexico, and putting them all together leads to
figure 6.4. Since all the ships sail in the same region, they all have the same average
wave heights on any given day. This means that for every average wave height on
a day, there are multiple corresponding y-values (0 or 1) of whether the ship left the
port that day or not. We average over the y-values so that every day again has one
single corresponding value. The result can be seen in figure 6.5.
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FIGURE 6.4: Port departures given wave heights for all ships in Mex-
ico. Note here again that in reality all y-values are from the set {0, 1},
but small perturbations (jitter) have been added for better readability.

FIGURE 6.5: Port departues given wave heights for all ships in Mex-
ico, as in figure 6.4. However in this plot the y-values of a single day
are averaged out over all ships into a single value, thus representing

the percentage of ships leaving the port that day.

In our application, we are interested in the probability that a ship will leave the port
or will not leave the port given the wave height on any chosen day. We therefore
model this as a Bernoulli process with the possible outcomes stay and leave, which
stand for a ship staying in the port or the ship leaving the port respectively. We
assume the distribution is dependent on the wave height h and write

Pr{leave|h)} = p(h)
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Then Y is a Bernoulli distributed random variable and represents the availability of
a ship on a day with wave height h,

Y =

{
1 with probability p(h)leave port
0 with probability 1− p(h)stay in port

If we denote our data with Yi the availability of a ship on a certain day and hi the
wave height on that day, then we have n independent observations yi for i = 1, ..., n
where Yi ∼ Bern (p(hi)). We are interested in estimating p(h) using the data that we
have.

The idea behind availability is that it decreases as waves get higher. In this case, it
would mean that ships tend to leave the port less often as the waves get higher. We
therefore perform monotonic regression on the data of figure 6.5 to obtain p(h).

6.1.2 Monotonic regression

Monotonic regression is a technique of fitting a line to observations where similar to
other regression techniques, the line should fit the observations as closely as possi-
ble. In monotonic regression there is however also the extra constraint that the line
should be non-decreasing or non-increasing everywhere, also called isotonic or anti-
tonic respectively. We make this idea more explicit in the following.

Let (xi, yi) ∈ R2 be our n observations for i = 1, 2, ..., n and w ∈ Rn a weight vector.
Then z = (z1, ..., zn) is the vector that minimizes

n

∑
i

wi(yi − zi)
2 (6.1)

where z1, ..., zi are the maximum likelihood estimators under the inequality con-
straints z1 ≥ z2 ≥ ... ≥ zn for an anti-tonic fit See appendix G for a further discussion
of a monotonic fit.
In our case, the yi is the percentage of ships that left the port on a certain day and
the wi is the number of ships of which we have data on that day.

In figure 6.6 we can see the result of the isotonic fit on the ships in Mexico.
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FIGURE 6.6: An antitonic fit in red on the data as displayed in figure
6.5

In the following, the result of the monotonic fit, which is our estimate of the prob-
ability that a ship will leave the port given the wave height, is subjected to a test.
The red line shows a fairly rapid decent from wave heights higher than 1.5 meters,
and we would like to test whether this result is significant or likely just a result of
chance. For this we establish the following null-hypothesis:
H0: The availability of a ship is not dependent on the wave height, but constant.
and the alternative hypothesis
H1: The availability of a ship decreases as the wave height increases.

For the test, we take 2000 permutations of the original y-values in figure 6.4 without
the perturbations. We then again take the average y-value of all points that share the
same x-value and perform an isotonic regression.
Let n be the number of data points that we have. Then x and y are both vectors of
size n, where x is the vector of average wave heights per day, and y is the ratio of
ships leaving the port on a day. After performing an isotonic regression, we get a
vector p̂ of size n where p̂i is the predicted percentage of ships leaving given the
wave height xi, where i = 1, ..., n. If ȳ is the mean of y, then we can compute the test
statistic

T =
n

∑
i
(pi − ȳ)2

If in reality the ships stay in port more often during heavy weather, we expect T to
be big. If there is no relation between setting sail and the weather, then the predicted
value will stray not too far from the average value and we expect T to be small. This
is illustrated in figure 6.7, where we show a plot similar to figure 6.6 but calculated
for one of the permutations. From this figure we can calculate T, which gives us
the statistic on this one permutation. In this case we have n = 915 which gives 915!
possible permutations. We obtain 2000 random permutations out of all possibilities.
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FIGURE 6.7: Isotonic regression on a permutation of the original port
leaves of all ships. The red line is p̂ and the black line is ȳ

6.1.3 Persian Gulf

Author’s note: This section is confidential

6.1.4 The Caribbean

Author’s note: This section is confidential

6.1.5 Nigeria

Author’s note: This section is confidential

6.1.6 Conclusion availability of ships

Author’s note: This section is confidential

6.2 Speed on established routes

There are many variables that influence the speed of a ship, most of which we do
not have access too. These variables might be the weight of the load, captain on the
ship, sailing through protected areas and many more. In an effort to maintain a base
for comparison sake, we isolate an established path and analyse the speeds on that
path.

We will take a look at the path shown in figure 6.8.
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FIGURE 6.8: One path in Mexico shown for ship 2

From the 13 ships in our fleet that operate in the Mexican Gulf, 10 ships have sig-
nificant activity on the selected path. From those 10 ships together, we have 1983
data points in on this path. Do note that for this section, we are looking at the point
speeds as reported by the AIS system, and not the average speeds on hourly sections
calculated using a Bézier curve as used in earlier sections. The reason for this is that
when trying to cluster ships, we are trying to find general behaviour that we can use
to characterize a ship, which includes the speed in between measurement points. In
this section however, we are interested in the relationship between the speed and
the sea state, so we feel the precise speed at a single point is more suitable for this
analysis.

Author’s note: This section is confidential

In multiple regression, we try to find a linear relation between a dependent variable
and multiple independent variables. The regression model is as follows:

si = β0 + β1hi + β2θi + β3φi + εi

where for i = 1, ..., n (for n = 1983, the number of data points we have on this path)

• si is the speed of point i

• hi is the wave height at the location of the ship

• θi is the angle between the direction of movement from the ship and the wave
direction
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• φi is the period of the waves

• β0,1,2,3 are the regression parameters

• εi is a random error-term with mean zero

Using the lm() function in the R software we perform a multiple regression with the
model as described above.

Author’s note: This section is confidential
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Chapter 7

Conclusions

Now that we have done our analyses, we come back to our goal of the study and
the supporting questions we set up for ourselves at the beginning. DAMEN wants
to know how the ships they have sold are being used. Understanding their usage
can lead to both ideas for new products, but also shortcomings in the current prod-
ucts. So our goal was stated as: Use statistical techniques on the data to gain useful and
interpretable insights in the behaviour of the customers. To achieve this goal, we set out
to answer these two questions:

• How can we divide our fleet of ships in groups with similar behaviour within
the group?

• Are characteristics of ship use influenced by conditions at sea?

We first take a look at the first question.
After enriching our data, the K-Means clustering algorithm and a bootstrap method
with the Jaccard index as statistic lead to 6 stable clusters. These clusters very similar
to clusters found using a hierarchical clustering method.

These six clusters can be seen as classes that we can assign to current and possibly
future ships. Generally, these six clusters are combinations of how often the ships
are being used, and the duration of most trips for a ship.
Furthermore, to get a more detailed description of the ship operations in arbitrary
periods of time, we can classify the trips of a single ship instead of trying to classify
the ships themselves. Using the same methods as we did on the ship statistics, we
get trip clusters. This gives a more natural way of classes of ships, that provides
more insights in the opinion of the author.

For the second question, we had a look at both the availability of the ships, and the
sailing speeds. Author’s note: This section is confidential
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Chapter 8

Recommendations

This is one of the first data-driven research that is being done at Damen, with data
that has not been analyzed before. Being the first research of this kind, the inten-
tion was more exploratory than advisory. Results from this research is not primarily
meant to lead to big changes in the company, but rather to give people at Damen
ideas for research, understanding of certain activities, and direction of thoughts.

First, we can say that a higher resolution would lead to better results. Furthermore,
there are more questions we can answer with a higher resolution. Do ships sail faster
when they go to a platform further away? How long do ships stay at platforms? Is
it altered by the sea state? Depending on the question you try to answer, different
resolutions are minimally required. While a resolution of one data point per hour
is lacking, one per minute would be too detailed for most questions. We believe a
resolution of 1 per 10 minutes would already improve the analysis a lot.

Second, our research shows that by dividing the data into blocks of data that all rep-
resent a single trip, we can make clusters of distinct ship behaviour based on those
trip statistics. However, we believe that more data would lead to better clusters. We
can for example purchase a NAVIONICS map, and combine it with the AIS data. That
way, most of the locations can be labeled automatically. See for example figures 8.1
and 8.2. In these figures we can see areas that are labeled as anchorage areas and
wind parks. We are not sure how a paid map works, but if one can enter coordinates
and receive whether those coordinates are situated in a labeled area, then combining
these two data sets can be very straightforward.
Once that is done, we can for example divide all time over the different locations
and have variables showing what percentage of the time they spend at each location
in a certain period. Then we can use any of the methods we explored in this report
to show and cluster the activities of the ship based on the locations labels.
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FIGURE 8.1: Area on the NAVIONICS map that shows all anchorage
areas, which are mooring positions.

FIGURE 8.2: Area on the NAVIONICS map showing wind turbines on
a wind farm.

In the end, unsupervised problem results are not always easy to interpret. Clusters
can be useful or useless, and depend on what one is trying to achieve. With this
research we have shown that using clustering algorithms on the variables that we
defined lead to stable clusters, but might represent useful clusters because of the
many mooring points.
We believe this thesis gives a better idea of what is possible, and what kind of results
one might find using the clustering algorithms. However, the clusters one finds de-
pend very much on the variables used. We hope that after reading this thesis, re-
searchers at DAMEN have a good idea of the possibilities of clustering, and that it
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will lead to insightful discussions about what the context really is, and what kind of
clusters or patterns they want to find. By answering these questions, it will become
much clearer what kind of data is needed (e.g. higher-frequency, labeled, engine
data), and in extension what is needed to acquire that data. Then using the tech-
niques that we explored in this thesis, the results will likely be more useful.
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Appendix A

All data variables

Author’s note: This section is confidential

TABLE A.1: All provided variables and their explanation

Variable Explanation Unit

TIME AIS time
[UTC
time]

LAT AIS latitude [deg]
LON AIS longitude [deg]

SPEED AIS speed [kn]
COURSE AIS course [deg]

HEADING AIS heading [deg]

STATUS
AIS vessel
status

[-]

IMO AIS IMO number [-]

FRACTION
Fraction of
time available in AIS

[-]

wav_TIME WAVE data time [UTC time]

wav_LAT
WAVE data
latitude

[deg]

wav_LON WAVE data longitude [deg]

VHM0
Significant
wave height

[m]

VMDR Wave mean direction [deg]

VTPK
Peak period
wave spectrum

[s]

win_TIME WIND data time [UTC time]

win_LAT
WIND data
latitude

[deg]

win_LON WIND data longitude [deg]

eastward_wind
eastward wind
speed

[m/s]

northward_wind northward wind speed [m/s]

eastward_wind_rms
eastward wind
speed RMS

[m/s]

northward_wind_rms northward wind speed RMS [m/s]

phy_TIME
PHYSICS data
time

[UTC
time]
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TABLE A.1: All provided variables and their explanation

Variable Explanation Unit
phy_LAT PHYSICS data latitude [deg]

phy_LON
PHYSICS data
longitude

[deg]

thetao water temperature surface [C]

so
salinity
surface

[psu]

zos sea surface height above geo ID [m]

uo
eastward
current velocity

[m/s]

vo northward current velocity [m/s]

siconc
sea ice
concentration

[-]

sithick sea ice thickness [m]

usi
eastward sea
ice velocity

[m/s]

vsi northward sea ice velocity [m/s]

bio_TIME
BIOCHEMICAL
data time

[UTC
time]

bio_LAT BIOCHEMICAL data latitude [deg]

bio_LON
BIOCHEMICAL
data longitude

[deg]

O2 mole concentration of dissolved oxygen [mmol/m3]

DATA_FRACTION_DOWNLOADED
fraction of
downloaded data per environmental product

[-]
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Appendix B

Raw data analysis

Author’s note: This section is confidential
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Appendix C

Sea state plots without ports

Author’s note: This section is confidential
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Appendix D

Bézier curves

We prove the endpoint interpolation property and the endpoint tangent property
here. Proof endpoint interpolation property
Let b0, b1, ..., bn ∈ R2 be the control points for the Bézier curve B(t) of degree n.
Then we can write

B(t) =
n

∑
i=0

biBi,n(t) f or t ∈ [0, 1]

where

Bi,n(t) =

{
n!

(n−i)!i! (1− t)n−iti if 0 ≤ i ≤ n

0 otherwise

Note that by definition we have that 0! = 1 and 00 = 1. Evaluating the Bernstein
Polynomials for t = 0 we get for i = 0 and n > 0:

B0,n(0) =
n!

(n− 0)!0!
(1− t)n−0t0

=
n!
n!
(1− 0)n

= 1

For the other polynomials with 0 < i ≤ n, n > 0 we get:

Bi,n(0) =
n!

(n− i)!i!
(1− 0)n−00i

=
n!

(n− i)!i!
0i

= 0

Then we get for B(0):

B(0) =
n

∑
i=0

biBi,n(0)

= b0B0,n(0)
= b0
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For t = 1 we equally find that for 0 ≤ i < n, n > 0

Bi,n(1) =
n!

(n− i)!i!
(1− 1)n−i1i

=
n!

(n− i)!i!
0n−i

= 0

and for i = n, n > 0

Bn,n(1) =
n!

(n− n)!n!
(1− 1)n−n1n

=
n!
n!

00

= 1

leading to B(1):

B(1) =
n

∑
i=0

biBi,n(1)

= bnBn,n(1)
= bn

�

Proof Endpoint Tangent Property
We try to find the first derivative of B(t), which we recall is defined as

B(t) =
n

∑
i=0

biBi,n(t)

. Since the control points are constant and do not depend on t, we are hence con-
cerned with finding the derivatives of the Bernstein polynomials Bi,n(t), defined by

Bi,n(t) =
n!

(n− i)!i!
(1− t)n−iti

Taking the derivative w.r.t t yields:

d
dt

Bi,n(t) =
d
dt

n!
(n− i)!i!

(1− t)n−iti

= −(n− i)
n!

(n− i)!i!
(1− t)n−i−1ti + i

n!
(n− i)!i!

(1− t)n−iti−1

= − n!
(n− i− 1)!i!

(1− t)n−i−1ti +
n!

(n− i)!(i− 1)!
(1− t)n−iti−1

= n
(n− 1)!

(n− i− 1)!i!
(1− t)n−i−1ti + n

(n− 1)!
(n− i)!(i− 1)!

(1− t)n−iti−1

= −nBi,n−1(t) + nBi−1,n−1(t)
= n (Bi−1,n−1(t)− Bi,n−1(t))

(D.1)
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Now we state that the following:

B′(t) =
n−1

∑
i=1

b(1)
i Bi,n−1(t) (D.2)

where b(1)
i = n(bi+1 − bi.

Proof
From equation D.1 we know that B′i,n(t) = n (Bi−1,n−1(t)− Bi,n−1(t)). Then using
the fact that B−1,n−1(t) = Bn,n−1 = 0 (as defined in 4.2) we get:

B′(t) =
n

∑
i=0

biB′i,n(t)

=
n

∑
i=0

bin (Bi−1,n−1(t)− Bi,n−1(t))

=
n

∑
i=0

nbiBi−1,n−1(t)−
n

∑
i=0

nbiBi,n−1(t)

=
n

∑
i=1

nbiBi−1,n−1(t)−
n−1

∑
i=0

nbiBi,n−1(t)

=
n−1

∑
i=0

nbi+1Bi,n−1(t)−
n−1

∑
i=0

nbiBi,n−1(t)

=
n−1

∑
i=0

n(bi+1 − bi)Bi,n−1(t)

From the last result it follows that B′(0) = n(b1 − b0) and B′(1) = n(bn − bn−1).
�
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Appendix E

Principal Component Analysis

In this appendix we describe the procedure to find the principal components and a
derivation of our steps.

Let X̃ = (X̃1, X̃2, ..., X̃p) be a random vector of p features. Let X = (X1, X2, ..., Xp) be
a dataset of n observations on the p variables, leading to a n × p matrix. We can
not find the principal component loadings of X̃, but instead estimate the loadings
using sample X. Let xij denote the realization of the j’th random variable of the
i’th observation and let xi = (xi1, xi2, ..., xip. When we try to find the first principal
component, it means we are trying to find a loading vector φ1 = (φ11, ..., φp1) so that
for all n observations, we can rewrite the observation using the linear combination

zi1 = φ11x11 + φ21xi2 + ... + φp1xip

with i = 1, ..., n in such a way that the variance on the scores zi1 is maximized, under
the constraint ∑

p
j φ2

j1 = 1.
Let z1 = (z11, z21, ..., zn1), ie the scores of the data on the first principal component.
We then look for for a loadings vector that maximizes Var(z1):

Var(z1) =
1
n

n

∑
i=1

(zi1 − z̄1)
2 (E.1)

Writing out the mean z̄1 we get:

z̄1 =
1
n

n

∑
i=1

zi1

=
1
n

n

∑
i=1

p

∑
j=1

φj1xij

=
1
n

p

∑
j=1

n

∑
i=1

φj1xij

(E.2)

Without loss of generality, assume that the data has been normalized such that the
mean of every variable is zero. Then for every j = 1, ..., p we have that ∑n

i=1 φj1xij = 0
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which implies that z̄1 = 0. Using the result from E.2 we can rewrite E.1 as

Var(z1) =
1
n

n

∑
i=1

(zi1)
2

=
1
n

n

∑
i=1

p

∑
j=1

(
φj1xij

)2

=
1
n

n

∑
i=1

(φ1 · xi)
2

=
1
n
(Xφ1)

T (Xφ1)

=
1
n

φT
1 XTXφ1

= φT
1

XTX
n

φ1

= φT
1 Vφ1

(E.3)

where in the last line we rewrote XT X
n as V . The problem can thus be redefined as

finding φ1 that maximizes φT
1 Vφ1 under the constraint ∑

p
j φ2

j1 = φT
1 φ1 = 1.

We can solve this problem using the Lagrange multiplier λ if we rewrite the con-
straint as φT

1 φ1 − 1 = 0. Using the method of Lagrange we get

L = φT
1 Vφ1 − λ

(
φT

1 φ1 − 1
)

(E.4)

and
∂L
∂φ1

= 2Vφ1 − 2λφ1 (E.5)

Setting the derivative to zero yields:

2Vφ1 − 2λφ1 = 0
=⇒ 2Vφ1 = 2λφ1

=⇒ Vφ1 = λφ1

(E.6)

From this we can see that φ1 is an eigenvector of the matrix V . And since

Vφ1 = λφ1

=⇒ φT
1 Vφ1 = φT

1 λφ1

=⇒ φT
1 Vφ1 = λ

(E.7)

we can see that the loading vector of the first principal component φ1 is the eigen-
vector associated with the maximum eigenvalue.

To find the second principal component, we again try to maximize

Var(z2) = φT
2 Vφ2 (E.8)
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but this time under the extra constraint that Cov(z1, z2) = 0 besides the constraint
φT

2 φ2 = 1. Similar to equation E.3 we get that

Cov(z1, z2) =
1
n

n

∑
i=1

(φ1xi) (φ2xi)

=
1
n
(Xφ1)

T (Xφ2)

= φT
1 Vφ2

= φT
2 Vφ1

= φT
2 λφ1 Substitute E.6

= λφT
2 φ1

= λφT
1 φ2

(E.9)

So we can rewrite our constraint as λφT
1 φ2 − 1 = 0 set up the Lagrangian with the

two constraint as:

L = φT
2 Vφ2 − λ2(φ

T
2 φ2 − 1)− θ(φT

1 φ2) (E.10)

where we rewrite the product of the first Lagrangian multiplier λ and the new mul-
tiplier as θ. Like in E.5 we take the derivative and set it equal to zero:

∂L
∂φ2

= 2Vφ2 − 2λ2φ2 − θφ1 = 0

=⇒ 2φT
1 Vφ2 − 2λ2φT

1 φ2 − θφT
1 φ1 = 0

=⇒ 2φT
1 Vφ2 − 2λ2φT

1 φ2 − θ = 0
=⇒ 0− 0− θ = 0
=⇒ θ = 0

(E.11)

Note that in the third and fourth line we use the constraint and the result from E.9.
The Lagrangian equation then becomes

2Vφ2 − 2λ2φ2 = 0
=⇒ Vφ2 = λ2φ2

(E.12)

which shows again that φ2 is an eigenvector of V . However, we cannot choose the
eigenvector associated with the biggest eigenvalue, since we already did that for φ1.
So for φ2 we choose the eigenvector associated with the second biggest eigenvalue.
Following principal components can be found in a similar fashion.
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Appendix F

Results bootstrap of PCA on the
ships

Author’s note: This section is confidential
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Appendix G

Isotonic regression

In this chapter we describe the methods for an isotonic regression. See Groeneboom
and Jongbloed (2014) for reference. Let y ∈ Rn, and Cn the closed convex cone in Rn

defined by
C = {x = (x1, x2, ..., xn) ∈ Rn|x1 ≤ x2 ≤ ... ≤ xn}

If w = (w1, w2, ..., wn) ∈ (0, ∞)n is a weight vector, then in an isotonic regression the
solution r is

r = arg min
x∈Cn

n

∑
i
(yi − xi)

2wi (G.1)

If we define Q(x) as

Q(x) =
1
2

n

∑
i
(yi − xi)

2wi

then we can rewrite the solution r as

r = arg min
x∈Cn

Q(x) (G.2)

We state that for the solution r, the following must hold:

r minimizes Q(x) over the convex cone Cn

⇐⇒
i

∑
j=1

rjwj =

{
= ∑i

j=1 yjwj ∀i = 1, 2, ..., n
≤ ∑i

j=1 yjwj if ri+1 > ri or i = n

(G.3)

Proof
First, assume that r minimizes Q(x) over the convex cone Cn. Note that Q(x) is a
strictly convex function on Rn, so it has a unique unique minimizer on Cn. Define
for i = 1, 2, ..., n the vectors ν(i) by ν

(i)
j = 1{1,2,...,i}(j). To illustrate, if i = 3, then we

have that ν(i) = (1, 1, 1, 0, 0, ..., 0) ∈ Rn. Then we have that r − εν(i) ∈ Rn for all



Appendix G. Isotonic regression 68

ε > 0. Since Q(x) is convex and r is the minimizer over Cn, we get for every i:

0 ≤ lim
ε↓0

Q
(

r− εν(i)
)
−Q(r)

ε

= lim
ε↓0

Q (r− ε(1, ...1, 0, ..., 0))−Q(r)
ε

=
1
2

lim
ε↓0

∑i
j=1(rj − ε− yj)

2wj + ∑n
j=i+1(rj − yj)

2wj −∑n
j=1(rj − yj)

2wj

ε

=
1
2

lim
ε↓0

∑i
j=1(rj − ε− yj)

2wj −∑i
j=1(rj − yj)

2wj

ε

=
1
2

lim
ε↓0

∑i
j=1
(
(rj − ε− yj)

2wj − (rj − yj)
2wj
)

ε

=
1
2

lim
ε↓0

∑i
j=1−2ε(rj − yi)wj + ε2wj

ε

=
i

∑
j=1

(yj − rj)wj

(G.4)

For all i such that ri+1 > ri or i = n, it must also hold that r + εν(i) ∈ Rn for ε > 0
sufficiently small enough. Then we have for all such i that

0 ≤ lim
ε↓0

Q
(

r + εν(i)
)
−Q(r)

ε

=
i

∑
j=1

(yj − rj)wj

(G.5)

where all steps are similar as in G.4. Then taken together with the inequality in the
other direction, we have proven the⇒ part of the statement.
For the ⇐ part, we note that an r that satisfies these and (in)equalities can be con-
structed. We are looking for a vector r that satisfies

i

∑
j=1

rjwj =

{
= ∑i

j=1 yjwj ∀i = 1, 2, ..., n
≤ ∑i

j=1 yjwj if ri+1 > ri or i = n

Define the cumulative sum diagram P0 = (0, 0) and Pi =
(

∑i
j=1 wj, ∑i

j=1 yjwj

)
∈ R2

for i = 1, ..., n. Then create the greatest convex minorant of these points. Then ri is
given by the left derivative of this convex minorant evaluated at point Pi. Then by
this construction, we see that such an r exists and is unique, thereby proving the⇐
part.
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