
Optimizing Railway
Infrastructure to
Meet Future
Demand:

a Macroscopic Timetabling Model

Matéo Ménoury

Optimizing Railway
Infrastructure to
Meet Future
Demand:

a Macroscopic Timetabling Model
by

Matéo Ménoury
To obtain the degree of Master of Science

at the Delft University of Technology.

To be defended publicly on Friday October 4, 2024 at 14:00.

Project duration: March 2024 – September 2024
Student: M.E.N. Ménoury 5839505
Thesis committee: Prof. Dr. R.M.P. Goverde CEG, chairman

Dr. J.A. Annema TPM, supervisor
Dr. P.S.A. Stokkink TPM, supervisor
Ir. K. Bediru Seid WSP, supervisor

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface
This report represents the culmination of my master’s thesis, marking the end of my master’s program
in Transport, Infrastructure, and Logistics at the Delft University of Technology. The project has been
carried out in the format of a 6-month full-time internship at WSP in Stockholm, within the railway de-
partment. The research’s primary goal is to assist planners in optimizing the construction of new tracks
to meet the increasing long-term demand. This has been done by developing an innovative and flexible
macroscopic timetabling model inspired by previous works found in the existing literature.

From a personal point of view, this research has been motivated by a strong interest in railway op-
erations and planning. This field captivates my attentiveness for the role it plays in shaping sustainable
and efficient transportation systems. I approached this project with the intention of gaining experience
and knowledge in this field in which I am willing to start my post-graduate life. Applying the knowledge
and methodology acquired during my studies has been stimulating and enriching.

I express my sincere gratitude to my TU Delft supervisors Prof. Dr. R.M.P. Goverde, Dr. J.A.
Annema, and Dr. P.S.A. Stokkink for their guidance throughout this research. Further, this project
could have not been conducted without the support of my company supervisor, Ir. K. Bediru Seid.
His recommendations and feedback were particularly appreciated and helpful. Having both academic
and professional perspectives permits me to understand the needs and requirements of the field. My
appreciation also goes out to every WSP employee who participated in my meetings or interviews and
offered me an external point of view. I would like to thank WSP and the railway department for their
trust and warm welcome, working at WSP has always been a pleasure. Lastly, I am thankful to my
friends and family for their insightful feedback, support, and encouragement all along the research.

This research has presented numerous obstacles. The initial challenge has been to define and
narrow down the topic. By going back and forth between my different supervisors, I had to make sure
it satisfied both the academic and company requirements. The formulation of the mathematical model
and its implementation have also been quite challenging. Every possible scenario had to be taken into
account and well-defined to make sure that the model was as flexible and realistic as possible. I have
learned to always take a step back and reflect on the existing literature, the methodology I apply, and
the results I obtain.

I am very grateful to have had the opportunity to conduct this research and for the amazing people
I have met during my stay in Stockholm. I hope you find this work both engaging and insightful. Enjoy
your reading.

Matéo Ménoury

Stockholm, August 2024

iii

Executive summary
Demand for both passenger and freight railway services is increasing in Sweden. However, railway
infrastructure is limited and many lines are still constituted of single tracks. Therefore, many projects
are conducted across the country to upgrade the existing infrastructure from single to double tracks or
from double to four tracks. These modifications require high investments but are constrained by lim-
ited financial resources. Therefore, a long-term investigation and strategic line planning are required
to maximize the satisfaction of the future demand, while minimizing the construction costs. Usually,
the line planning process focuses on identifying the bottleneck portions of a line and upgrading their
capacity by constructing additional tracks. In the short term, timetabling simulation usually adapts the
demand to the infrastructure by canceling trains if the infrastructure cannot satisfy the demand. How-
ever, in long-term planning and timetabling, it is reasonable to investigate all possible infrastructure
upgrades, and infrastructure should therefore be considered as flexible.

This research aims to develop a model optimizing the construction of new tracks on a given rail-
way network, to ensure the feasibility of the long-term demand while minimizing the construction costs.
Along the research, the demand is limited by a list of trains and their characteristics: the passenger
origin-destination demand is not considered. A solution is feasible if every train request can be sched-
uled according to the traffic regulations. The optimal solution minimizes the construction costs and
maximizes the benefits of the upgrade on the traffic. To evaluate the benefits of a given improvement
on the traffic, the operation costs are introduced. The total travel times of a train running on the net-
work are converted into monetary value. The smaller the travel time and the operation costs, the more
efficient the traffic. Therefore, the model aims to minimize both operation and construction costs.

The developed model gives a conflict-free timetable and any infrastructure upgrades required to
ensure the feasibility of future demand. The model is designed at the macroscopic level: the infras-
tructure is only depicted with nodes and edges and the signaling characteristics such as the different
block sections among the tracks are omitted. The model applies the Periodic Event Scheduling Prob-
lem (PESP) to railway operations, adds an objective function on top of it, and extends it by introducing
possible infrastructure upgrades. The model is formulated as a Mixed Integer Linear Programming
(MILP) problem.

A timetable is conflict-free if every train can run according to its planned schedule without meeting
another train running on the same track. A conflict can happen between two trains running in the same
or the opposite direction. These conflicts must be detected and restricted according to the number of
tracks on the infrastructure. There cannot be any conflicts on a single-track portion of a line. Train run-
ning in opposite directions can meet on a double or four-track portion of the line because in that case,
each track is reserved for one direction. Additionally, a four-track portion allows a train to overtake
another slower one running in the same direction. Finally, to avoid any conflict, the model considers
that, at any time, there cannot be more trains occupying a station than the number of tracks that same
station has. The conflicts are detected by applying the flexible overtaking constraints developed by
Zhang and Nie (2016), but this approach is extended by restricting the different types of conflict ac-
cording to the number of tracks on each portion of the line.

The model is implemented in Python and solved with Gurobi. The model is applied to a small portion
of the Mälarbanan. This line is located northwest of Stockholm and has a strategic position. Several
studies suggest that the high-speed trains connecting Stockholm and Oslo should run on this line, in-
stead of running south of Stockholm. However, an important portion of the line is still constituted of
single tracks. This portion of the line is tested with the designed model to assess whether it could
accommodate the demand. Three different scenarios are formulated: 2022 demand, 2040 demand,
and 2040 demand with additional high-speed trains.

v

vi 0. Executive summary

Simulation of the 2022 demand shows that the optimal state of the infrastructure is the current one:
there is no need to build additional tracks. Nevertheless, results show that infrastructure upgrades are
required to meet long-term demand. In the scenario where no high-speed trains run on the line in 2040,
only one small portion of the line should be upgraded to 2040. In the scenario where high-speed trains
are relocated on the Mälarbanan, the majority of the line should be upgraded to double tracks. These
results demonstrate the model’s strengths: if current studies suggest upgrading the entire portion of
the line to double tracks, the solution suggested by the model decreases by 67% the construction costs
while increasing the operation costs by only 11%. The optimal solutions are simulated at the micro-
scopic level within RailSys. At this level, all the network characteristics and signaling are known. These
simulations confirm the validity of the model, as all generated timetables are conflict-free, except the
section requiring double-track upgrades, which aligns with expectations.

While the model demonstrates promising results, further testing is required under more complex
operating conditions such as interactions between the different train lines (transfers, turnarounds) or
higher frequencies. The practicality of the solution proposed by the model could also be tested to check
whether the suggested infrastructure improvements are technically feasible. Moreover, this model ap-
proximates the various operation and construction costs and does not fully capture the real-world com-
plexity of railway operation and planning costs. Further development of the model could investigate
the possibility of introducing flexible headway constraints that could vary according to the number of
tracks of the different portions of the network. The potential for building additional meeting stations on
a line could also be investigated and should improve the model’s solutions by reducing the construction
costs. Moreover, further research should investigate the robustness of the timetable produced by the
model.

In conclusion, this research goes beyond the current line planning methods and does not simply
suggest the construction of new tracks on the bottleneck portion of a line. Instead, the model explores
all possible infrastructure improvements and minimizes the overall construction and operation costs.
This research contributes to an extension of the current timetabling and line-planning approach by for-
mulating a flexible optimization model. The model provides a solution to the challenging increasing
railway demand.

Contents

Preface iii

Executive summary v

1 Introduction 1
1.1 Background information . 1
1.2 Problem description . 1
1.3 Scope of study . 2
1.4 Research questions . 3

2 Literature review 5
2.1 Methodology . 5
2.2 Railway market and governance in Sweden . 5
2.3 Railway traffic management . 6
2.4 Railway timetabling. 7

2.4.1 Timetabling objectives and requirements . 7
2.4.2 Assessing timetable performances . 8
2.4.3 Microscopic, mesoscopic and macroscopic timetabling 8
2.4.4 Macroscopic timetabling models. 10

2.5 Railway line planning . 11
2.6 Conclusion: research gap . 11

3 Model 13
3.1 Methodology . 13
3.2 Model architecture . 15
3.3 Model formulation . 16

3.3.1 Graphs, sets and indices . 16
3.3.2 Parameters . 18
3.3.3 Decision variables . 20
3.3.4 Objective function . 21
3.3.5 Constraints . 22
3.3.6 Linearization and implementation . 29

3.4 Demonstration of the model on simple examples . 31
3.5 Data processing . 32

3.5.1 Raw data . 32
3.5.2 Processed data . 33
3.5.3 Output data . 36

3.6 Hypotheses . 37

4 Case study 39
4.1 Context . 39
4.2 Scenarios . 40
4.3 Data collection . 41
4.4 Results . 43

4.4.1 Macroscopic timetables . 43
4.4.2 Microscopic assessment of the results . 45
4.4.3 Sensitivity analysis . 46

vii

viii Contents

5 Discussion 49
5.1 Analysis of the case study’s results . 49
5.2 Microscopic feasibility . 50
5.3 Sensitivity analysis . 51
5.4 Computational efficiency . 52
5.5 Scalability and flexibility . 52
5.6 Innovations of the model . 52
5.7 Limitations of the model . 53
5.8 Data collection of the cast study . 54
5.9 Future works . 54

6 Conclusion 55

A Research paper 57

B Code 67
B.1 Functions . 67

B.1.1 Processing functions . 67
B.1.2 Optimization function . 73
B.1.3 Visualization function . 78

C Data used for the case study 81
C.1 Traffic 2022 and forecast 2040. 81

D Results of the case study 83
D.1 Scenario 1 . 83
D.2 Scenario 2 . 84
D.3 Scenario 3 . 86

1
Introduction

1.1. Background information
Rail travel is seen as a sustainable alternative for road and air travel on a domestic and European
scale. Indeed, even when considering the long-term vehicle and infrastructure life cycle emissions,
traveling with high-speed rail emits about 5.6 times less CO2 than flying and 2.8 times less than driv-
ing a diesel private car (de Bortoli and Féraille (2024)). The demand for both passenger and freight
rail is increasing in Europe, particularly in Sweden. The country has seen an increase of passenger-
kilometers transported of 24% and an increase of tonnes of goods transported of 4% from 2012 to
2019 (Eurostat (2024a) and Eurostat (2024b)) and the railway sector is recovering from the COVID
crisis. However, the increasing demand puts pressure on the limited existing rail infrastructure, which
is often already used at full capacity. To tackle this issue, several projects have been launched across
the country. However, such projects are very costly and require high investments on a long-term scale.
For instance, the 12km line between Malmö and Lund was upgraded from two to four tracks in 2023
for a cost of about SEK 5.4 billion (€ 470 million) (Trafikverket (2024b)). Thus, satisfying the demand
on a limited infrastructure and with a restricted budget is one of the main challenges faced by railway
planners. For this reason, it is fundamental to rigorously plan, design, and evaluate lines and their
consequences on capacity utilization.

1.2. Problem description
WSP is one of the world’s leading consulting companies specializing in various fields, including Trans-
port & Infrastructure. The Swedish branch of the company has broad experience in traffic, capacity
studies, and line planning within the railway sector and works in close collaboration with the Transport
Administration. They intensively use the microscopic simulation software RailSys, which is increasingly
being used in Sweden. However, this microscopic tool presents many disadvantages. First, it requires
many input parameters (rolling stock characteristics, detailed infrastructure characteristics, signaling,
interlocking systems, etc.), and those data are not always available or accurate when the company
investigates long-term projects. Thus, incomplete data can lead to unrealistic simulation outcomes.
Therefore, this software is not adapted for long-term strategic planning: the user, willing to evaluate
different network scenarios (such as building new tracks in a station) has to design the detailed level of
infrastructure and signaling in RailSys. Secondly, it requires long computer running times on complex
networks, and it is therefore time-consuming and not user-friendly for conducting capacity analysis on
large networks.

For those reasons, the interest in macroscopic simulation models is growing in Sweden, and the
Transport Agency conducts many projects aiming to modernize the interface between railway oper-
ators and the Transport Administration by developing new capacity allocation processes (Palmqvist
et al. (2018)). Market-adapted Planning of Capacity (MPK) has therefore been implemented in 2022
and is used in tactical and operational planning, but not for long-term strategic planning (Trafikverket
(n.d.-c)). In this context, WSP is also seeking to develop its own macroscopic timetabling model, with

1

2 1. Introduction

which the consultants would be able to quickly assess large network infrastructure scenarios, to focus
on long-term strategic planning (2050, 2060, ...).

1.3. Scope of study
The railway planning process, as described by Lusby et al. (2011) in Figure 1.1, follows three steps:
strategic, tactical, and operational. The strategic level relates to the development of new infrastructures
over several years. Based on the demand forecasting and analysis, a capacity analysis is conducted to
find the bottleneck lines of the network and to identify the improvements that should be made to satisfy
the long-term demand. The tactical level refers to the production of timetables, usually on a one-year
scale. Finally, the operational level focuses on real-time management and aims to adapt unforeseen
disturbances at the tactical level to real-time operations (Palmqvist et al. (2018)). These levels are
interdependent, and a poorly designed upper level can have significant consequences on the lower
levels.

Figure 1.1: The railway planning process (Lusby et al. (2011))

This research is at the crossroads of strategic and tactical levels. A timetable simulation model is
developed at the macroscopic level. Among the various performance indicators, the research consid-
ers the timetable feasibility. Indeed, the stability, robustness, resilience, infrastructure occupation, and
energy efficiency of a timetable need further investigations at the microscopic level or real-time traffic
information and are usually investigated at a later stage of the line planning process. The feasibility
of the long-term demand is tested on the current infrastructure, and the construction of new tracks is
proposed in case the current infrastructure does not fit the demand. Thus, this research focuses on the
trade-off between construction costs and feasibility of the long-term demand. Along the research, the
term ”demand” only refers to the number and characteristics of trains requesting access to a railway
infrastructure. No passengers’ origin-destination matrices are investigated in this study. In the same
way, when mentioning ”infrastructure improvement”, or ”infrastructure upgrade”, this research refers to
the construction of new tracks on an already existing line or station. Hence, the possibility of improving
a line by upgrading its signaling or the possibility of building a line between two unconnected stations
is not considered.

1.4. Research questions 3

1.4. Research questions
This research aims to develop a macroscopic timetabling model optimizing the construction of new
tracks on a given railway network, to ensure the feasibility of the long-term demand. To do so, the in-
frastructure constraint is considered as flexible and can be relaxed to find the optimal trade-off between
the construction costs required for the infrastructure upgrades and their benefits on the operation costs.
This is achieved by answering the following main research question:

How can the construction costs of new tracks be minimized while ensuring the feasibility of the
long-term demand?

The following sub-questions jointly answer the main research question:

1. What are the requirements and constraints to ensure the feasibility of a given timetable?

2. How to evaluate the minimum number of tracks required on a line based on the number and types
of conflicts detected in the timetable?

3. How to identify and implement necessary infrastructure upgrades?

2
Literature review

2.1. Methodology
To formulate the research questions and define the scope of study, the research topic is narrowed down
by reviewing the literature. The current state of the art in Sweden in matters of signalling, timetabling
simulation, and line panning are analyzed and discussed, and knowledge gaps are identified. The lit-
erature is reviewed by following the methodology developed by Van Wee and Banister (2016): papers
are searched using SCOPUS and ResearchGate, focusing on publications from 2015 onward, even
though some articles published before this date are also reviewed. The snowballing methodology, es-
pecially backward snowballing is used. It consists of looking at the reference list of a relevant paper and
tracking down those cited studies. Moreover, this research also referencesmany reports from Trafikver-
ket, the Swedish infrastructure manager (IM). Finally, concepts studied during the courses TIL4030-20
Research and Design Methods, CIEQ6233 Railway Operations and Control and CIEM6301 Railway
Traffic Management are used.

2.2. Railway market and governance in Sweden
In Sweden, railway operations are categorized into five different services: high-speed trains, long-
distance intercity trains, commuter trains, regional trains, and finally, freight trains (Trafikverket (2024a)).
Freight services hold an important share of total railway operations. In 2023, freight operations con-
stituted 22% of the total train-kilometers (sum of the distances traveled by all trains). When measured
in millions of passenger-kilometers and tonne-kilometers, freight reaches about 62% of total railway
operations (Analys (2024)). The government aims to increase the share of rail in total transport and
therefore invests in many projects aiming to increase the reliability, capacity, and efficiency of rail trans-
port. Even though both types of service share the same infrastructure and compete to get access,
freight and passenger operations do not have the same constraints and requirements. Thus, the IM
and railway planners must consider both services when designing new lines and timetables.

Following the EU policy, the Swedish railway passenger market has been open to competition since
2010. As of 2021, fifty railway undertakings (RU) operate on the tracks, making the country the most
open railway market in Europe (Trafikverket (n.d.-a)). However, the Swedish State Railways (SJ) is
still the most important RU in the country. The Swedish Transport Administration (Trafikverket) is the
infrastructure manager. Once a year, the Transport Administration receives requests for the capacity
for the next year and is responsible for scheduling the timetables. In case of conflicting requests from
different RUs, a discussion is engaged. If the discussion turns out to be unsuccessful, the Transport
Administration prioritizes the trains according to different criteria (Vigren (2017)). The Transport Ad-
ministration charges the different RUs operating on their network. The costs are about 0.0152 SEK
per gross tone kilometer added to approximately 3.33 SEK per train kilometer (Trafikverket (2023b)).
Additional fees might apply in case of delays, train cancellation, or use of specific infrastructure such as
bridges or tunnels. Moreover, based on the Swedish Government’s transport policy goals, the Trans-
port Administration is responsible for long-term planning. Every four years, they propose a National

5

6 2. Literature review

Plan for Transport which draws the national strategy on maintenance, modernization, and construc-
tion planning for the upcoming 12 years (Trafikverket (2022)). Finally, the Swedish Transport Agency
(Transportstyrelsen) is in charge of regulating, examining, and granting access to the Swedish infras-
tructure.

2.3. Railway traffic management
Railway operations must comply with the signalling principles, which rely on train separation. Tracks
are divided into block sections, which can be occupied by one and one train only at the same time.
In a fixed block operation, the block sections are limited by signals that provide movement authority
to enter the block section. This movement authority must be given before the train has reached the
braking distance in its approach to the section, and once the train ahead cleared the block. Thus, the
blocking time refers to the total time the block section is allocated to a train movement, and therefore
blocked for other trains. Once the train has cleared the section and all signals have been reset to
normal position, the blocking time ends and the process repeats so that movement authority can be
given to the next train to enter the section. Hansen and Pachl (2008) define the different components
of the blocking time as follows:

• Setup/clearing time: time to clear the signal.

• Sight and reaction time: time for the driver to view the clear aspect at the signal that gives the
approach indication to the main signal at the entrance of the block section.

• Approach time: time for the train to run between the approach signal and the first block signal.

• Running time: time for the train to run between the block signals.

• Clearing time: time to clear the block section and the overlap with the full length of the train.

• Release time: time to unlock the block system.

Figure 2.1: Blocking time components (Goverde and Scheepmaker (2023))

2.4. Railway timetabling 7

To control the train movements and ensure safety, instructions are given through signals, lights, and
sign systems. Most of the Swedish railway network uses the ATC-2/ATC-S signalling system, which
was introduced in the 1980s. This system is similar to ETCS Level 1: an onboard ATC (Automatic
Train Control) system ensures that the train reduces its speed to the release speed before the target
point after which the driver is responsible for braking the train to stop ahead of the signal. Furthermore,
ATC-2 is generally incompatible with the ERTMS, although trains must be able to operate on both
ERTMS-equipped infrastructure and existing ATC lines. Thus, a Specific Transmission Module (STM)
has been developed to interface ATC-2 with ETCS. The STM unit reads data from the existing trackside
equipment and converts it into a format that is readable by the new onboard system. This allows the
ERTMS system to be introduced into the Swedish network in a phased manner, until its full implemen-
tation, which is expected by 2030 ERTMS (2021)). The ERTMS (European Rail Traffic Management
System) is a signalling and speed control system being implemented by the European Union to create
an efficient, safe, and interoperable railway system within European countries. It is composed of the
European Train Control System (ETCS) and the Global System for Mobile Communications-Railway
(GSM-R) (ERTMS (n.d.)).

2.4. Railway timetabling
2.4.1. Timetabling objectives and requirements
Hansen and Pachl (2008) describes the methods of railway timetabling and optimization. A timetable
consists of basic train processes (running, dwelling, turning, etc.) and their interactions (passing, cross-
ing, overtaking, etc.). A timetable aims to optimize the use of infrastructure by coordinating the train
paths, to ensure the safety, predictability, and control of rail traffic, as well as to inform the passengers
and schedule the rolling stocks and crew.

The type of operations has to be considered during the timetabling process. Indeed, freight and
passenger operations do not have the same constraints and requirements. On one hand, passenger
trains have to satisfy the demand and passengers’ expectations: small travel and transfer times, high
frequencies, but also easily memorable timetables. Thus, a preference is given to periodic timetables,
i.e. timetables that repeat every given time, usually one hour. Moreover, priority is given to minimizing
the travel time while ensuring stops are minor stations. Finally, the timetabling process has to con-
sider peak and non-peak hours flows to ensure demand satisfaction. On the other hand, freight trains
don’t need to stop at minor stations, and minimizing their travel time is not a priority. Since periodic
timetables require higher operation costs and are more difficult to plan in a competitive market where
different RUs request access to the same infrastructure, the freight train timetables are aperiodic (each
train is scheduled individually). Finally, they are usually scheduled during non-peak hours to not disturb
passenger operations (Polinder et al. (2020)).

Solinen (2022) introduces the various traffic regulations currently in use in Sweden. The dwell times
depend on the number of passengers getting in and out of the train, on the size of the train, and on the
time of the day (peak or off-peak hours). Passenger trains over 300 meters or passenger trains with
manual door closing must have a planned dwell time of at least two minutes. Passenger trains over
400 meters must have a planned dwell time of at least three minutes. The minimum running supple-
ment, also called standard allowance in Sweden, is set to 8% of the minimal technical running time. It
is currently being replaced on some lines by a kilometer-based supplement that depends on the type
of train, added to a supplement depending on whether it is running on single-track or multi-tracks. For
instance, the X2 passenger train has a supplement of 1 minute/100 km. Other passenger trains have a
supplement of 40 seconds/100 km. Trains running on single track have a supplement of 3 minutes/100
km and trains running on multi-track have a supplement of 2 minutes/100 km. Additional running time
supplements may be applied for specific infrastructure such as bridges or tunnels, or if the train is run-
ning on a track currently having work construction. Headway times depend on the infrastructure but are
usually set to 3 minutes. Finally, the buffer time is recommended to be set to 60 seconds: two trains
must be allowed to be up to 60 seconds late without disturbing the other when departing or arriving at
a station.

8 2. Literature review

2.4.2. Assessing timetable performances
From the passenger’s point of view, a good timetable is a timetable with low running times, dwell times,
transfer times, and high frequencies. However, IMs can have additional objectives. For example,
Trafikverket aims for a more efficient and better timetabling process with a punctuality target of 95% of
trains being less than 5 minutes late. To do so, additional performance indicators are needed. Goverde
and Hansen (2013) give an overview of these performance indicators to evaluate a timetable’s perfor-
mance, as well as their interrelations. The infrastructure occupation is the share of time required to
operate trains on a given railway infrastructure given a timetable pattern. It can be computed by the
UIC 406 compression method provided by Landex et al. (2008). The timetable feasibility is defined
as the ability of all trains to adhere to their scheduled train paths. It requires that all processes are
realizable within their scheduled process times and that the scheduled train paths are conflict-free.
Feasibility is achieved by following the green wave policy, as investigated by Corman et al. (2009).
The green wave policy claims that if trains only face green signals during their run, their delays and
energy consumption are reduced. However, it requires high coordination of train paths. The timetable
stability is defined as the ability of the timetable to absorb initial delays (departure delays) and primary
delays (variant in real-life operations that results in a longer process time than the scheduled time)
so that delayed trains return to their scheduled train paths without rescheduling trains. The timetable
robustness is defined as its ability to withstand design errors, parameter and operational variations.
Hence, timetable robustness aims to minimize the occurrence of primary and secondary delays (de-
lays propagation between trains). The timetable resilience is defined as its flexibility to prevent or
reduce secondary delays using dispatching (re-timing, re-ordering, re-routing). Thus, it considers the
interactions between the timetable and real-time traffic management. Finally, the energy efficiency of
a timetable refers to the energy consumption of the trains, modeled based on the train’s speed profiles.
Usually, energy efficiency is seen as an optional performance and is investigated only when the first
performances meet their requirements (Goverde and Scheepmaker (2023)). Keeping the same perfor-
mance indicators, Warg (2016) assesses the quality of a railway timetable considering both capacity
and socio-economic performances from a consumer point of view. However, this research is based
on University of Birmingham (2013) which does not consider the timetable feasibility as a performance
indicator. Instead, the timetable feasibility is considered as a fundamental condition: a timetable has
to be feasible.

2.4.3. Microscopic, mesoscopic and macroscopic timetabling
The same railway corridor can be modeled at different levels: microscopic, mesoscopic, and macro-
scopic. Figure 2.2 shows those different levels. The macroscopic level considers the railway network
at an abstract level, neglecting most of the infrastructure details. Tracks are depicted with edges and
stations and junctions with nodes. The mesoscopic approach introduces a more detailed representa-
tion of nodes, the number of tracks per section, and an approximated model of signalling. Finally, the
microscopic approach considers the railway network at a detailed level. Tracks are detailed with every
signalling and interlocking system.

2.4. Railway timetabling 9

Figure 2.2: Different levels of infrastructure modeling (ProRail (2023))

Trains movement on a selected corridor are depicted on a time-distance diagram, as shown in
Figure 2.3. A macroscopic diagram only represents the scheduled running times between different
stations, whereas a microscopic diagram also depicts the blocking times of the different block sections.

Figure 2.3: Time-distance diagrams

10 2. Literature review

2.4.4. Macroscopic timetabling models
The Periodic Event Scheduling Problem (PESP) as introduced by Serafini and Ukovich (1989) consti-
tutes a systematic approach used as the basis of most periodic activities scheduling problems. This
model can be solved by means of a branch-and-bound algorithm. The PESP is based on a periodic
event-activity directed graph 𝐺 = (𝐸, 𝐴) in which the nodes 𝑥 ∈ 𝐸 depict the arrival and departure events
and the arcs 𝑎 = (𝑥, 𝑦) ∈ 𝐴 represent the activities between those events with interval constraints.
Applied to railway operations, those activities can be running, dwelling, turnaround, passing-through,
transfer, headways, or regularity. Figure 3.3 shows an example of an event-activity graph. One of the
main strengths of this model is that the orders of the trains on the tracks do not need to be known a
priori. However, this also makes the problem extremely complex in the case of a large network with
many train requests. This model assumes that the lines and passenger connections are given, and the
stations are considered with simple nodes. PESP is a feasibility problem: if a feasible solution does
not exist, the user can relax one of the constraints and run the model again. However, it is possible to
add an objective function (minimizing total running times for example). Then, the algorithm aims to find
the optimal solution according to the objective function. If no feasible timetable is found, a possibility
is to keep the timetable that satisfies the largest number of constraints. This method can easily be
extended with different objective functions: minimization of passenger total travel time, maximization
of robustness, etc.

The basis of the PESP model is the time window constraint, written as follows:

𝐿𝑥,𝑦 ≤ (𝑣𝑦 − 𝑣𝑥) ≤ 𝑈𝑥,𝑦 ∀𝑎 = (𝑥, 𝑦) ∈ 𝐴

With 𝐴 the set of all activities 𝑎 = (𝑥, 𝑦) that have to be scheduled. 𝐿𝑥,𝑦, and 𝑈𝑥,𝑦 express the minimum
and maximum duration of each activity. In a Π-periodic timetable, each activity has to be scheduled in
such a way that it can be repeated. Thus, the equation becomes:

𝐿𝑥,𝑦 ≤ (𝑣𝑦 − 𝑣𝑥) mod Π ≤ 𝑈𝑥,𝑦 ∀𝑎 = (𝑥, 𝑦) ∈ 𝐴

Once linearized, this equation becomes:

𝐿𝑥,𝑦 ≤ (𝑣𝑦 − 𝑣𝑥) + 𝑝𝑥,𝑦 ⋅ Π ≤ 𝑈𝑥,𝑦 ∀𝑎 = (𝑥, 𝑦) ∈ 𝐴

With 𝑝𝑥,𝑦 an integer decision variable that can be limited to a binary variable if 𝑈𝑥,𝑦 < Π ∀𝑎 = (𝑥, 𝑦) ∈
𝐴.

The literature shows that the PESP approach is broadly used for railway timetabling problems. Odijk
(1996) applies the PESP model to construct periodic railway timetables and develops a new algorithm
using a constraint generation approach. However, it took more than 10 years to see the first application
of the PESP to real-life railway operations. Indeed, decision support by operations research methods in
railway companies was usually limited to operations planning. Liebchen and Möhring (2008) apply the
PESP to the Berlin subway. The results have shown that the new timetables lead to shorter passenger
waiting times and turnaround times, resulting in a reduction in the number of rolling stocks required. To
increase their number of passengers and the robustness of their timetable, the Dutch Railways started
to apply the PESP to model their timetables, resulting in an increase in the number of passengers,
profits, reliability, and intermodality, as proven by Kroon et al. (2008).

The literature shows that the PESP approach has many extensions. Liebchen (2004) introduces
symmetry to the PESP. It has been shown that symmetry leads to sub-optimality when minimizing pas-
senger waiting times: the feasible solution is usually worse than the feasible solution without symmetry.
However, introducing symmetry decreases the computer running times. To speed up the running time,
Herrigel et al. (2018) formulates the PESP as a MILP (Mixed-Integer Linear Programming) with a se-
quence of smaller sub-problems that can be parameterized to reach a trade-off between simultaneous
or sequential planning. This considerably accelerates solving times compared to PESP using the stan-
dard MILP formulation. Polinder et al. (2020) formulates the PESP as a MIQP (Mixed-Integer Quadratic
Programming) for strategic Passenger-Oriented Timetabling to an approach aiming at decision-making
in the strategic phase of planning, and to determine an outline of a timetable that is good from the
passengers’ perspective. Bešinović et al. (2016) suggests that macroscopic models cannot be used

2.5. Railway line planning 11

as such and therefore need to be integrated with microscopic models to ensure feasibility on a micro-
scopic level. Indeed, a timetable can be feasible on a macroscopic level but, to comply with the train
separation principle, the feasibility of the designed timetable must be tested at the microscopic level.

2.5. Railway line planning
From the expected long-term passenger flows, line planners identify bottleneck sections of the corri-
dor and investigate possible solutions. Such solutions could consist in increasing the rolling stock’s
capacity (more seats, more cars), increasing the capacity of a corridor by upgrading its signalling, or
building additional tracks. The construction costs of a new track are difficult to estimate. The cost of a
new line depends on the geography of the landscape it crosses and the need to build or not specific
infrastructures such as bridges or tunnels. Trafikverket and Jacobs (2021) carries out an estimation of
the overall costs of the New Main Lines railways. This project proposes the construction of new high-
speed railways between Stockholm-Gothenburg and Stockholm-Malmö (Trafikverket (2023a)). The
estimations are made by collecting, analyzing and comparing the construction costs of several Euro-
pean high-speed rail projects. A construction cost per kilometer benchmark is presented for high-speed
rail, which excludes the planning and design costs. The report reveals that the average and median
construction costs across the benchmark range are respectively SEK 415 and SEK 373 million per
km. This study also estimates the costs of different infrastructures such as bridges, tunnels, or sta-
tions. The stations are categorized into three categories reflecting on the complexity of the station.
The construction costs are estimated to SEK 206,500 per platform meter for minimal stations. These
cost estimations are used for the rest of the research.

2.6. Conclusion: research gap
The literature review shows that in long-term strategic planning, the focus is usually given to upgrading
the infrastructure by identifying the congested infrastructure using timetabling tools. At the short-term
tactical level, timetabling tools are fundamental to optimize the use of existing infrastructure. However,
the simulation models cannot always find a timetable satisfying every constraint (demand, infrastruc-
ture, norms), which requires relaxing some constraints. Usually, in case of insufficient capacity, the
demand constraint is relaxed by canceling, re-ordering, re-routing trains, or reducing their frequency.
This approach is suitable for short-term tactical and operational levels, where changes in the infras-
tructure are not possible. However, this is not appropriate for the long-term strategic phase, where the
planners can modify the infrastructure and evaluate different scenarios. Thus, instead of only focus-
ing on minimizing passenger travel time and maximizing demand satisfaction with strict respect for the
infrastructure constraint, this research investigates the opposite approach. It examines the potential
for adapting infrastructure to meet long-term demand, suggesting optimal infrastructure improvements
if the predicted demand exceeds the current capacity of the infrastructure. Timetables are first sim-
ulated at the macroscopic level, before being tested at the microscopic level to detect the possible
overlap of different blocking times. The application of the PESP to railway operations has already
demonstrated its strength and now serves as a foundational model for macroscopic timetabling, inte-
grating various constraints like train running times, dwell times, and minimum headway times. This
model can be extended and formulated as a MILP, by including an objective function and additional
constraints. If current MILP formulations of the PESP model can already include conflict detection to
ensure a conflict-free timetable, no model including flexible numbers of tracks and a minimization of
the construction costs has been formulated yet. This research gap is fundamental for our approach:
since the model aims to investigate every possible infrastructure upgrade to minimize the construction
costs, the infrastructure should be considered as flexible and the possible conflicts should be adapted
to the number of tracks.

3
Model

3.1. Methodology
A model is designed to answer the research question. Firstly, the objectives and requirements of the
model are clearly defined in compliance with the scope of study and research question previously in-
troduced. The model aims to minimize the new infrastructure costs while ensuring the feasibility of
the long-term demand. The requirements of the model are defined by reviewing the literature, brain-
storming, and interviewing different project members. These requirements are regrouped in Table 3.1.
A non-functional constraint or objective only affects the quality or usability of the model, but does not
directly influence the core functional performance.

Functional Non-functional
Constraints Must do Must be

Give a feasible timetable at macro level Adapted to the Swedish regulations
Adapted to the Swedish market

Satisfy the demand
Satisfy the traffic regulations

Objectives Should do Should be
Check if the demand can be satisfied Fast to solve
If not, upgrade the infrastructure Flexible
Minimize the construction costs User-friendly
Minimize the passenger times

Table 3.1: Requirements of the model

Based on the constraints and objectives it has to follow, a PESP model is formulated as a MILP, by
reviewing existing models from the literature and their limits. Each constraint of the PESP-MILP model
is first written in a non-mathematical way, with a simple and clear formulation. Some of those con-
straints are divided into multiple sub-constraints if they are too broad, or grouped in a bigger constraint
if they are too precise. Once the constraints of the PESP-MILP are formulated in a non-mathematical
way, the list of sets, parameters, and decision variables needed for the mathematical formulation is
defined. Each constraint is then written mathematically. They are first written as basic equations and
then elaborated as more complex equations. The mathematical formulation has to ensure that the
constraint is satisfied in every different scenario that might occur. Most of the time, a help variable is
needed. A help variable is a decision variable that is used when the constraint cannot be written using
only the main decision variables. Those decision variables are often binary variables depending on the
main decision variables.

Before being able to implement the optimization model, processing functions have to be developed,
to convert the raw input data into data usable by the optimization model. Moreover, a visualization

13

14 3. Model

function is also developed so that the timetable given as the output of the PESP-MILP model can be
visualized in a time-distance diagram so that the constraints satisfaction can be quickly checked.

The implementation of the mathematical formulation is a complex part. The PESP-MILP model is
implemented with the Gurobi Optimizer, a solver broadly used by railway companies such as DB or
SNCF (Gurobi (n.d.-a)). It permits solving complex optimization problems and quickly testing and mod-
ifying them (Gurobi (n.d.-b)). The verification aims to test the model to ensure that it works the way
it is intended to. To do so, the constraints are implemented one by one, starting with the basic con-
straints. Every time a new constraint is implemented, the model is tested with different basic networks
and for different train requests, for which the results are known in advance. If the output of the model
is not what was expected, i.e. if some constraints or the objective function are not satisfied, then the
code is modified until each constraint is respected. Logical reasoning, visualization of the inconsis-
tent timetable, or expert consultation are different means to find the code error. When and only when
every implemented constraint is perfectly satisfied, a new constraint can be implemented. Every con-
straint has to be written as a MILP, using tips such as the big-M or epsilon constraints (Williams (2013)).

The following example shows the process used to obtain the linear formulation.

𝑥 > 𝑘 ⟹ 𝑏 = 1
𝑥 ≤ 𝑘 ⟹ 𝑏 = 0

Where
𝑥 ∈ ℕ an integer decision variable
𝑘 ∈ ℝ a constant
𝑏 ∈ {0, 1} a binary decision variable indicating whether 𝑥
is greater than or equal to 𝑘

The equations above are not linear and can therefore not be implemented as such. Thus, two new
constraints and two new parameters are introduced as follows:

𝑘 ≤ 𝑥 − 𝜖 +𝑀(1 − 𝑏)
𝑘 ≥ 𝑥 −𝑀𝑏

Where
𝑀 ∈ ℝ a sufficiently large constant
𝜖 ∈ ℝ+∗ a sufficiently small positive value

If the values of 𝑀 and 𝜖 are properly calibrated, then the model forces 𝑏 to take either the value 0
or 1, depending on the condition on 𝑘 that 𝑥 has to satisfy.

if 𝑏 = 1 then the equations become: if 𝑏 = 0 then the equations become:

𝑘 ≤ 𝑥 − 𝜖
𝑘 ≥ 𝑥 −𝑀

𝑘 ≤ 𝑥 − 𝜖 +𝑀
𝑘 ≥ 𝑥

Since𝑀 is a very large value, the second con-
straint is always satisfied, which means that
only the first constraint needs to be satisfied
by the model

Since 𝑀 is a very large value, the first con-
straint is always satisfied, which means that
only the second constraint needs to be satis-
fied by the model

Many hypotheses are made all along the design process, to simplify the model by omitting possible
situations that are not relevant to the research. However, each assumption has to be justified and their
expected consequence on the results carefully considered. The hypotheses made during this research
are presented in Section 3.6 and discussed in Section 5.7.

3.2. Model architecture 15

3.2. Model architecture

Figure 3.1: Architecture of the model

The developed model aims to schedule a list of train requests and their characteristics while minimizing
the costs of the tracks required to meet the demand. Figure 3.1 presents the inputs and outputs of the
model. The total number of tracks allowed to be constructed 𝑡max is taken as a parameter and restricts
the tracks to be constructed, but the model is free to propose or not any infrastructure improvements.
An infrastructure upgrade is defined as the construction of one additional track at one interlocking or
one segment. For example, the construction of two tracks in the same station or on the same segment
is considered as two infrastructure improvements. Once the optimal solution (if it exists) is found, the
macroscopic timetable and associated infrastructure improvements are given as outputs of the PESP-
MILP model.

16 3. Model

3.3. Model formulation
3.3.1. Graphs, sets and indices

Graphs, sets and indices
𝒩 = (𝐼, 𝑆) Un-directed network graph 𝑁 with 𝐼

set of nodes and 𝑆 set of arcs
𝐼 Set of interlocking areas (station,

junction)
𝑖 ∈ 𝐼

𝑆 Set of segments between interlocking
areas

𝑠 ∈ 𝑆

𝒢 = (𝐸, 𝐴) Periodic event-activity graph 𝐺 with 𝐸
set of nodes and 𝐴 set of arcs

𝐸 Set of events (arrival, departure, arr-
pass, dep-pass)

𝑥 ∈ 𝐸

𝐴 = {(𝑥, 𝑦) ∶ 𝑥, 𝑦 ∈ 𝐸, 𝑥 ≠ 𝑦} Set of activities between events 𝑥 and
𝑦 (run, dwell, pass, transfer, head-
way, turnaround, reg)

𝑎 = (𝑥, 𝑦) ∈ 𝐴

𝐴𝑖 ⊂ 𝐴 Set of activities taking place at inter-
locking 𝑖

𝑎 = (𝑥, 𝑦) ∈ 𝐴𝑖

𝐴𝑠 ⊂ 𝐴 Set of activities taking place at seg-
ment 𝑠

𝑎 = (𝑥, 𝑦) ∈ 𝐴𝑠

𝐶𝑘𝑠 = {{𝑎, 𝑎′, ..., 𝑎𝑘} ∶ 𝑎′, 𝑎′, ..., 𝑎𝑘 ∈
𝐴𝑠 and 𝑎𝑖 ≠ 𝑎𝑗 for 𝑖 ≠ 𝑗}

Set of every possible combination of
𝑘 activities taking place at segment 𝑠

𝑐 = {𝑎, 𝑎′, ..., 𝑎𝑘} ∈
𝐶𝑘𝑠

𝐶𝑘𝑖 = {{𝑎, 𝑎′, ..., 𝑎𝑘} ∶ 𝑎′, 𝑎′, ..., 𝑎𝑘 ∈
𝐴𝑖 and 𝑎𝑖 ≠ 𝑎𝑗 for 𝑖 ≠ 𝑗}

Set of every possible combination of
𝑘 activities taking place at interlocking
𝑖

𝑐 = {𝑎, 𝑎′, ..., 𝑎𝑘} ∈
𝐶𝑘𝑖

Table 3.2: Graphs, sets and indices of the mathematical model

Table 3.2 shows the two graphs, their sets, and indices used for the mathematical formulation. The
first graph is the network graph, depicted at the macroscopic level as an un-directed network graph
𝒩 = (𝐼, 𝑆) with 𝐼 set of nodes and 𝑆 set of arcs. Each node 𝑖 represents an interlocking area (station
or junction), has a unique ID and a number of tracks. Each arc 𝑠 represents a segment between two
interlocking areas, and has a unique ID, a number of tracks, a length, and a minimum headway. Figure
3.2 gives an example of an un-directed network graph with four interlockings and three segments.

Figure 3.2: Un-directed railway network graph

The events and activities are represented as a second graph, called periodic-event activity graph
𝒢 = (𝐸, 𝐴), with 𝐸 set of nodes and 𝐴 set of arcs. Each node 𝑥 represents an event and each arc
𝑎 = (𝑥, 𝑦) represents an activity. The set of activities 𝐴 is the intersection of all subsets representing
each possible activity. In the same way, 𝐴 is also the intersection of all subsets representing each
possible location:

𝐴 = 𝐴run ∩ 𝐴dwell ∩ 𝐴pass ∩ 𝐴reg ∩ 𝐴headway ∩ 𝐴turnaround ∩ 𝐴transfer
𝐴 = (∩𝑖∈𝐼𝐴𝑖) ∩ (∩𝑠∈𝑆𝐴𝑠)

3.3. Model formulation 17

Figure 3.3 shows an example of an event-activity graph. Each arc has a periodic interval. For the
headway, the arcs represent both possible orders. Indeed, before the optimization of the model, neither
the time of each event nor the order of the train is known: one or the other train can be chosen to run
first. The regularity arcs indicate that the pointed event has to happen an exact time after the origin
event. The turnaround and transfer arcs can be interpreted in the same way: the pointed event has to
be scheduled after the origin event with a minimum time difference. The number X indicated after the
line name indicates the copy of the line. For instance, if the line HS1 runs three times an hour, then
three train lines are created: HS1-1, HS1-2 and HS1-3.

Figure 3.3: Periodic event-activity graph applied to railway operations

Unlike other PESP approaches, this model introduces a flexible conflict restriction. The conflicts
first need to be detected. To do so, different sets 𝐶𝑘𝑖 and 𝐶𝑘𝑠 of all combinations of 𝑘 activities taking
place at interlocking 𝑖 or segment 𝑠 are introduced. A combination refers to a selection of activities 𝑎,
from a larger set 𝐴𝑖 or 𝐴𝑠, where the order of the items does not matter. Indeed, if activity 𝑎 is conflicted
with activity 𝑎′, then activity 𝑎′ is also conflicted with activity 𝑎: the combination (𝑎, 𝑎′) is equivalent
to the combination (𝑎′, 𝑎). The combinations of only one activity are not considered since a conflict
involves by definition at least two different activities. Figure 3.4 shows an example of a set of activities
𝐴𝑖 and the corresponding set of combination 𝐶2𝑖 , 𝐶3𝑖 , 𝐶4𝑖 .

18 3. Model

Figure 3.4: Set of activities and associated sets of combinations

Given a set of activities 𝐴𝑖 such that |𝐴𝑖| = 𝑛, the number of possible combinations of 𝑘 activities
(where 𝑘 ≤ 𝑛) is given by the following formula:

|𝐶𝑘𝑖 | = (
𝑛
𝑘) =

𝑛!
𝑘!(𝑛 − 𝑘)! (3.1)

In the example given in Figure 3.4, we have

|𝐶2𝑖 | = (
4
2) =

4!
2!(4 − 2)! = 6

|𝐶3𝑖 | = (
4
3) =

4!
3!(4 − 3)! = 4

|𝐶4𝑖 | = (
4
4) =

4!
4!(4 − 4)! = 1

Figure 3.4 and Equation 3.1 demonstrate the computational burden of these different sets. For a
set of only four activities taking place at one given location 𝑖, eleven possible combinations of activi-
ties are possible in total. On a large network with multiple interlockings and segments, this number is
multiplied by the number of locations. Moreover, for every additional train that has to be scheduled,
one new activity 𝑎 is added and the size of 𝐴𝑖 is increased by one. Therefore, (𝑛

𝑘−1) new possible
combinations of conflicts are added, according to Pascal’s rule. Adding constraints for every subset of
nodes is computationally quite demanding, but needed to properly detect and restrict every possible
conflicts between different trains.

3.3.2. Parameters
The parameters taken as input of the model are grouped into different categories: the infrastructure
parameters, the demand parameters, and the optimization parameters, as presented in Table 3.3. The
infrastructure parameters describe the network and its characteristics before the optimization process.
The demand parameters aim to outline the different train lines the timetable has to satisfy and their
characteristics. The optimization parameters are the big-M constraint values, used for the linearization
of the model, the different operation and construction costs expressed in Swedish Crown (SEK), and
their coefficients. These values are fixed by the user and can be adjusted regarding the priority of the
experiment. By adjusting the values of the coefficients, the users can choose to focus on minimizing

3.3. Model formulation 19

the operation or construction costs. By adjusting the parameters 𝑐𝑎, the user can prioritize the mini-
mization of some activities (for example, it is more important to have small running times than small
turning-around times).

Infrastructure parameters

𝑡before𝑠 Number of tracks of segment 𝑠 [unit]
𝑡before𝑖 Number of tracks of interlocking 𝑖 [unit]
𝐿𝑥,𝑦 > 0 Minimum duration time of activity 𝑎 = (𝑥, 𝑦) [s]

Demand parameters
Π Periodicity of the timetable [s]
𝑓𝑟𝑒𝑥,𝑦 Frequency of the line in which activity 𝑎 = (𝑥, 𝑦) is part

of
[unit/period]

𝑑𝑖𝑟𝑥,𝑦 Direction of the train if activity 𝑎 = (𝑥, 𝑦) implies a train
running on a segment or passing through an interlocking

[dimension less]

Optimization parameters
𝑀 Sufficiently large value [dimension less]
𝜖 Sufficiently small positive value [dimension less]
𝛼 Coefficient for operation costs [dimension less]
𝛽 Coefficient for segment construction costs [dimension less]
𝛾 Coefficient for interlocking construction costs [dimension less]
𝑡max Maximal number of new tracks allowed to be constructed

on the entire network
[unit]

𝑐𝑥,𝑦 Cost for operating activity 𝑎 = (𝑥, 𝑦), based on the type
of activity and the weight of the line

[SEK/sec]

𝑐new track
𝑠 Cost for building an additional track on segment 𝑠 [million SEK]
𝑐new track
𝑖 Cost for building an additional track on interlocking 𝑖 [million SEK]

Table 3.3: Parameters of the mathematical model

20 3. Model

3.3.3. Decision variables

Decision variables
𝑣𝑥 ∈ {0, 1, … , Π − 1} Time at which event 𝑥 takes place [s]
𝑑𝑥,𝑦 ∈ {0, 1, … , Π} Duration of activity 𝑎 = (𝑥, 𝑦) [s]
𝑝𝑥,𝑦 ∈ {0, 1} Binary variable indicating whether activity 𝑎 = (𝑥, 𝑦) is

such that 𝑣𝑦 < 𝑣𝑥
[dimension less]

𝑞𝑐,𝑖 ∈ {0, 1} Binary variable indicating whether each activity of the
combination 𝑐 = (𝑎, 𝑎′, ...) is conflicted with every other
one at interlocking 𝑖

[dimension less]

𝑞𝑐,𝑠 ∈ {0, 1} Binary variable indicating whether each activity of the
combination 𝑐 = (𝑎, 𝑎′, ...) is conflicted with every other
one at segment 𝑠

[dimension less]

𝑘opp𝑠 ∈ {0, 1} Binary variable indicating whether at least one conflict
implying two trains running in opposite directions is de-
tected at segment 𝑠

[dimension less]

𝑘same𝑠 ∈ {0, 1} Binary variable indicating whether at least one conflict
implying two trains running in the same direction is de-
tected at segment 𝑠

[dimension less]

𝑡needed𝑖 ∈ ℕ Minimal number of tracks need on interlocking 𝑖 after op-
timization

[unit]

𝑡needed𝑠 ∈ {1, 2, 4} Minimal number of tracks needed on segment 𝑠 after op-
timization

[unit]

𝑡after𝑖 ∈ ℕ Number of tracks of interlocking 𝑖 after optimization [unit]
𝑡after𝑠 ∈ {1, 2, 4} Number of tracks of segment 𝑠 after optimization [unit]

Table 3.4: Decision variables of the mathematical model

Table 3.4 presents the decision variables that the model must optimize. 𝑣𝑥 and 𝑑𝑥,𝑦 are the main de-
cision variables, corresponding to the time at which each event 𝑥 takes place and the duration of the
activity 𝑎 = (𝑥, 𝑦). 𝑝𝑥,𝑦 is an help variable variable, as defined in Section 2.4.4. 𝑞𝑐,𝑠 and 𝑞𝑐,𝑖 are binary
variables indicating whether each activity 𝑎 from the combination 𝑐 = (𝑎, 𝑎′, ...) is conflicted with every
other ones. Based on these binary variables, the decision variables 𝑡needed𝑠 and 𝑡needed𝑖 represent the
minimum number of tracks required to resolve detected conflicts, ensuring that the demand fit within
the infrastructure without causing any collision. Finally, based on these decision variables and the ini-
tial state of the infrastructure, 𝑡after𝑠 and 𝑡after𝑖 return the number of tracks the network should have to
satisfy the demand. The formulation of these variables and the associated calculations are explained in
Section 3.3.5 and Figure 3.5 explains the use of each variable and their interactions. The interactions
between the different variables are depicted with double arrows since the dependencies between the
variables go both ways. The following Figure can be read both ways: the number of tracks of the net-
work restricts the possible conflicts happening (from the top to the bottom) and the conflicts detected
on the network define the required number of tracks on each portion of the network (from the bottom
to the top).

3.3. Model formulation 21

Figure 3.5: Interactions between the model’s variables (in black) and different parameters (in blue)

3.3.4. Objective function
The objective function of the PESP-MILP model aims to minimize the track construction costs while
maximizing their benefits on the traffic. It is expressed as follows:

minimize 𝛼 ⋅ 𝑐normalizedoperation + 𝛽 ⋅ 𝑐normalizedsegment + 𝛾 ⋅ 𝑐normalizedinterlocking (3.2)

With:

𝛼 + 𝛽 + 𝛾 = 1 (3.3)

𝑐normalized = 𝑐 − 𝑐min
𝑐max − 𝑐min (3.4)

The objective function 3.2 is written as a minimization of total costs by minimizing the sum of three
different components: operation costs, construction costs of segments, and construction costs of inter-
lockings. The construction cost of one track is approximately several billion SEK, while the operational
cost for one timetable is around hundreds of thousands of SEK. The overall costs can therefore not
be minimized as such, otherwise, the model would focus too much on reducing the construction costs.

22 3. Model

Therefore, the costs are normalized using the min-max normalization 3.4. Additionally, the different
coefficients 𝛼, 𝛽, and 𝛾 reflect on the priority to give to the optimization.

𝑐operation = ∑
𝑎=(𝑥,𝑦)∈𝐴

𝑐𝑥,𝑦 ⋅ 𝑑𝑥,𝑦 (3.5)

𝑐minoperation = ∑
𝑎=(𝑥,𝑦)∈𝐴

𝑐𝑥,𝑦 ⋅ 𝐿𝑥,𝑦 (3.6)

𝑐maxoperation = ∑
𝑎=(𝑥,𝑦)∈𝐴

𝑐𝑥,𝑦 ⋅ Π (3.7)

The total operation costs are computed as the sum of every activity duration multiplied by its cost.
The minimum possible operation costs correspond to the situation where every activity is scheduled
accordingly to their minimum duration time 𝐿𝑥,𝑦. The maximum possible operation costs correspond to
the situation where every activity duration is maximal, i.e. if every activity duration equals Π.

𝑐interlocking =∑
𝑖∈𝐼
𝑐new track
𝑖 ⋅ (𝑡after𝑖 − 𝑡before𝑖) (3.8)

𝑐maxinterlocking = 𝑡max ⋅max𝑖∈𝐼
(𝑐new track
𝑖) (3.9)

𝑐mininterlocking = 0 (3.10)

The total construction costs of interlocking are computed as the sum of all tracks that need to be
built on every interlocking. The minimum possible cost is zero and corresponds to the situation where
no interlocking is upgraded. The maximum possible cost corresponds to the situation where every new
track 𝑡max is constructed at the most expensive interlocking to upgrade.

𝑐segment =∑
𝑠∈𝑆
𝑐new track
𝑠 ⋅ (𝑡after𝑠 − 𝑡before𝑠) (3.11)

𝑐maxsegment = 𝑡max ⋅max𝑠∈𝑆
(𝑐new track
𝑠) (3.12)

𝑐minsegment = 0 (3.13)

The total construction costs of segments are computed as the sum of all tracks that need to be
built on every segment. The minimum possible cost is zero and corresponds to the situation where no
segment is upgraded. The maximum possible cost corresponds to the situation where every new track
𝑡max is constructed at the most expensive segment to upgrade. This maximal value is approximated
because, in reality, the segment can only have 1, 2 or 4 tracks. Thus, if 𝑡max is larger than the number
of tracks that can be constructed on a segment, the maximum possible segment construction cost is
slightly overestimated.

3.3.5. Constraints
The objective function 3.2 is subject to the following constraints.

𝑑𝑥,𝑦 = (𝑣𝑦 − 𝑣𝑥) + 𝑝𝑥,𝑦 ⋅ Π ∀𝑎 = (𝑥, 𝑦) ∈ 𝐴 (3.14)

3.3. Model formulation 23

Constraint 3.14 defines the duration of activity 𝑎 = (𝑥, 𝑦) as the time difference between the end
time 𝑣𝑦 and the start time 𝑣𝑥. If the activity is spread over two periods, i.e. if 𝑝𝑥,𝑦 = 1, then Π is added
to the time difference (𝑣𝑦 − 𝑣𝑥) to ensure that the duration is always a positive value, as presented in
Figure 3.6.

𝑝𝑥,𝑦 = {
1 if 𝑣𝑦 < 𝑣𝑥
0 otherwise

∀𝑎 = (𝑥, 𝑦) ∈ 𝐴 (3.15)

Constraints 3.15 defines the value of the modulo operator 𝑝𝑥,𝑦. In this model, it is restricted to a
binary variable since the upper bound of every activity is lower than the period Π. It takes the value 1
if event 𝑦 is scheduled before event 𝑥, and 0 otherwise. In other words, the modulo operator indicates
whether the activity is spread over two periods, i.e. it indicates whether the activity points at an event
in the same or next period than the origin event.

Figure 3.6: Definition of the modulo operator 𝑝𝑥,𝑦

𝐿𝑥,𝑦 ≤ 𝑑𝑥,𝑦 ≤ Π ∀𝑎 = (𝑥, 𝑦) ∈ 𝐴run ∪ 𝐴dwell ∪ 𝐴pass ∪ 𝐴turnaround ∪ 𝐴transfer (3.16)
𝐿𝑥,𝑦 ≤ 𝑑𝑥,𝑦 ≤ Π − 𝐿𝑥,𝑦 ∀𝑎 = (𝑥, 𝑦) ∈ 𝐴headway (3.17)

𝑑𝑥,𝑦 =
Π

𝑓𝑟𝑒𝑥,𝑦
, with Π

𝑓𝑟𝑒𝑥,𝑦
∈ ℕ∗ ∀𝑎 = (𝑥, 𝑦) ∈ 𝐴reg (3.18)

Constraints 3.16 ensure that the duration of all running, dwelling, passing-through, transferring
and turn-around activities is bunded by their minimum duration time 𝐿𝑥,𝑦 and the period Π, because
these activities do not have specific upper bounds needed. Constraint 3.17 ensure that the head-
way activities 𝑎 are also bounded with a maximal duration. In this macroscopic model, the head-
way times are assumed to be only depending on the segment, and not on the direction, which gives
𝐿𝑥,𝑦 = 𝐿𝑦,𝑥 ∀𝑎 = (𝑥, 𝑦) ∈ 𝐴headway. Finally, constraint 3.18 ensures that the duration of the regularity
activity 𝑎 = (𝑥, 𝑦) is fixed to the period of the corresponding line. This ensures that all events on the
line occur at consistent, evenly-spaced intervals.

24 3. Model

∑
𝑖∈𝐼
(𝑡after𝑖 − 𝑡before𝑖) +∑

𝑠∈𝑆
(𝑡after𝑠 − 𝑡before𝑠) ≤ 𝑡max (3.19)

Constraint 3.19 restricts the number of new tracks to be constructed on the entire network by ensur-
ing that there are no more upgrades than 𝑡max. At each location, the number of new tracks is calculated
as the difference between the number of tracks after and the number of tracks before the optimization
process.

𝑡after𝑠 =max{𝑡before𝑠 , 𝑡needed𝑠 } ∀𝑠 ∈ 𝑆 (3.20)

Constraint 3.20 ensures that if the initial number of tracks at a segment is lower than the minimal
required number of tracks, the infrastructure is updated.

𝑡needed𝑠 = {
1 if 𝑘opp𝑠 = 0 and 𝑘same𝑠 = 0
2 if 𝑘opp𝑠 = 1 and 𝑘same𝑠 = 0
4 if 𝑘same𝑠 = 1

∀𝑠 ∈ 𝑆 (3.21)

Constraint 3.21 defines the minimum number of tracks needed at segment 𝑠 to ensure that the
timetable is conflict-free, based on the number of conflicts detected. Each segment can have one, two,
or four tracks, as presented in Figure 3.7. On a single-track corridor, trains can run in both directions.
Therefore, a segment needs at minimum one track if no trains are running in opposite directions at
the same moment and no trains are overtaking each other. On a double-track corridor, each track is
reserved for one direction. Therefore, a segment needs at minimum two tracks if at least two trains are
running in opposite directions but no train is overtaking another one. Finally, on a four-track corridor,
we consider that two tracks are used for each direction, which allows overtaking. A segment needs at
minimum four tracks if at least one train is overtaking another one running in the same direction.

Figure 3.7: Relation between the type of conflicts allowed and the number of tracks needed per segment

3.3. Model formulation 25

𝑘opp𝑠 =
⎧⎪
⎨⎪⎩

1 if ∑
𝑐=(𝑎,𝑎′)∈𝑐2𝑠
𝑑𝑖𝑟𝑎≠𝑑𝑖𝑟𝑎′

𝑘𝑐,𝑠 ≥ 1

0 otherwise

∀𝑠 ∈ 𝑆 (3.22)

𝑘same𝑠 =
⎧⎪
⎨⎪⎩

1 if ∑
𝑐=(𝑎,𝑎′)∈𝑐2𝑠
𝑑𝑖𝑟𝑎=𝑑𝑖𝑟𝑎′

𝑘𝑐,𝑠 ≥ 1

0 otherwise

∀𝑠 ∈ 𝑆 (3.23)

Constraints 3.22 and 3.23 define the help binary variables 𝑘 which take the value 1 if there is re-
spectively at least one overtaking (i.e. conflict between two trains running in the same direction) and
at least one collision (i.e. conflict between two trains running in opposite directions) on the segment 𝑠.

𝑞𝑐,𝑠 = {
1 if (𝑝𝑥,𝑦 + 𝑝𝑥′ ,𝑦′

+𝑝𝑥,𝑥′ + 𝑝𝑦,𝑦′) ≡ 0 (mod 2)
0 otherwise

∀𝑐 = {(𝑥, 𝑦), (𝑥′, 𝑦′)} ∈ 𝐶2𝑠 , ∀𝑠 ∈ 𝑆 (3.24)

Constraints 3.24 defines the binary variable 𝑞 which takes the value 1 if the activities 𝑎 = (𝑥, 𝑦)
and 𝑎′ = (𝑥′, 𝑦′) from the combination 𝑐 = (𝑎, 𝑎′) are conflicted at interlocking 𝑠. Zhang and Nie
(2016) proposes linear constraints to avoid or allow overtaking based on the PESP problem. The
research describes all possible scenarios and analyses the behavior of the different modulo operators
𝑝𝑥,𝑦. When two trains 𝑎 = (𝑥, 𝑦) and 𝑎′ = (𝑥′, 𝑦′) run on the same segment, they are linked with
two headway activities at their origin and destination. Thus, four modulo operators can be obtained:
𝑝𝑥,𝑦, 𝑝𝑥′ ,𝑦′ , 𝑝𝑥,𝑥′ and 𝑝𝑦,𝑦′ . The authors show that the sum of those modulo operators equals zero,
two, or four when overtaking is prevented, and equals to one or three otherwise. In other words, if the
sum is even, no conflict is detected and if the sum is odd, a conflict is detected. Figures 3.9 and 3.8
depict all possible overtaking scenarios, and the associated Table 3.5 details the values of 𝑝 in each
scenario. However, the conflict detection developed for our research presents two differences from the
one proposed by Zhang and Nie (2016). Firstly, our research also detects the collision, i.e. the conflict
between two trains running in opposite directions. To do so, the model simply inverses the direction of
the train and applies the same constraint previously introduced. Secondly, in our model, the conflicts
are only detected and counted per segment, and the model is free to create or not conflict. Only the
total number of new tracks is restricted, as shown in Figure 3.5.

26 3. Model

Figure 3.8: All possible situations where an overtaking is avoided, based on Zhang and Nie (2016)

Figure 3.9: All possible situations where an overtaking is allowed, based on Zhang and Nie (2016)

3.3. Model formulation 27

Direction of headways Case 𝑝𝑥,𝑦 𝑝𝑥′ ,𝑦′ 𝑝𝑥,𝑥′ 𝑝𝑦,𝑦′ Sum
Overtaking is prevented, Forward direction 1 0 0 0 0 0
see Figure 3.8 2 0 1 0 1 2

3 1 1 0 0 2
4 0 0 1 1 2
5 1 0 1 0 2

Backward direction 6 0 0 1 1 2
7 0 1 1 0 2
8 1 1 1 1 4
9 0 0 0 0 0
10 1 0 0 1 2

Overtaking is allowed, Forward direction 1 0 0 0 1 1
see Figure 3.9 2 1 0 0 0 1

3 1 1 0 1 3
4 1 0 1 1 3

Backward direction 5 0 0 1 0 1
6 1 0 1 1 3
7 1 1 1 0 3
8 1 0 0 0 1

Table 3.5: Relation between the sum of the modulo operators 𝑝 and the detection of conflicts, based on Zhang and Nie (2016)

𝑘𝑐,𝑠 = 0 ∀𝑐 = (𝑎, 𝑎′, 𝑎″) ∈ 𝐶3𝑠 such that 𝑑𝑖𝑟𝑎 = 𝑑𝑖𝑟𝑎′ = 𝑑𝑖𝑟𝑎″ , ∀𝑠 ∈ 𝑆 (3.25)

Constraint 3.25 ensures that on each segment, there is no combination of three different activities
𝑎, 𝑎′ and 𝑎″ having the same direction such that each of them has a conflict with the two others. This
constraint is needed in this research, since the maximal number of tracks per segment is limited to four
tracks. Therefore it is not possible to have three trains running in the same direction overtaking each
other, this would require more than two tracks reserved for each direction. However, one train is still
allowed to overtake many slower trains on the same segment, and one train can be overtaken by many
faster trains.

𝑡after𝑖 =max{𝑡before𝑖 , 𝑡needed𝑖 } ∀𝑖 ∈ 𝐼 (3.26)

Constraint 3.26 ensures that if the initial number of tracks at an interlocking is lower than the minimal
required number of tracks, the infrastructure is updated.

𝑡needed𝑖 =max
𝑐∈𝒞𝒾

(𝑞𝑐,𝑖 ⋅ len(𝑐)) ∀𝑖 ∈ 𝐼 (3.27)

Constraint 3.27 defines the minimum number of tracks needed at interlocking 𝑖 to ensure that the
timetable is conflict free, based on the number of conflicts detected. Each interlocking can have as
many tracks as needed, computed as themaximal number of trains running, passing, dwelling or turning
around at an interlocking at the same time. To do so, each possible combination of activities taking
place at interlocking 𝑖 is checked. Among the combinations for which 𝑞𝑐,𝑖 = 1, the combination with the
larger number of activities is set to be the minimum number of tracks needed. As a reminder, 𝑞𝑐,𝑖 takes
the value 1 if and only if each activity of 𝑐 is conflicted with every other one. Figure 3.10 shows some
(non-exhaustive) examples of conflicts between four activities (𝑎, 𝑎′, 𝑎″, 𝑎‴). The number of tracks
needed for each case is calculated in Table 3.6. The first case of this Table shows a situation where
𝑡needed = 1, the number of track is here underestimated since at least one train is always needed

28 3. Model

in a segment to allow trains to run on it. However, in that case, constraint 3.26 will always result in
𝑡after = 𝑡before.

Figure 3.10: Relation between the number of conflicts detected and the number of tracks needed per interlocking

Case Conflict between 2 trains Conflict between + 2 trains Number of tracks needed
𝑞𝑐,𝑖∀𝑐 ∈ 𝐶2𝑖 𝑞𝑐,𝑖∀𝑐 ∈ 𝐶𝑘𝑖 with 𝑘 > 2 𝑡needed

1

𝑞𝑎,𝑎′ = 0
𝑞𝑎,𝑎″ = 0
𝑞𝑎,𝑎‴ = 0
𝑞𝑎′ ,𝑎″ = 0
𝑞𝑎′ ,𝑎‴ = 0
𝑞𝑎″ ,𝑎‴ = 0

𝑞𝑎,𝑎′ ,𝑎″ = 0
𝑞𝑎,𝑎′ ,𝑎‴ = 0
𝑞𝑎,𝑎″ ,𝑎‴ = 0
𝑞𝑎′ ,𝑎″ ,𝑎‴ = 0
𝑞𝑎,𝑎′ ,𝑎″ ,𝑎‴ = 0

0

2

𝑞𝑎,𝑎′ = 0
𝑞𝑎,𝑎″ = 1
𝑞𝑎,𝑎‴ = 0
𝑞𝑎′ ,𝑎″ = 0
𝑞𝑎′ ,𝑎‴ = 1
𝑞𝑎″ ,𝑎‴ = 0

𝑞𝑎,𝑎′ ,𝑎″ = 0
𝑞𝑎,𝑎′ ,𝑎‴ = 0
𝑞𝑎,𝑎″ ,𝑎‴ = 0
𝑞𝑎′ ,𝑎″ ,𝑎‴ = 0
𝑞𝑎,𝑎′ ,𝑎″ ,𝑎‴ = 0

2

3

𝑞𝑎,𝑎′ = 1
𝑞𝑎,𝑎″ = 1
𝑞𝑎,𝑎‴ = 1
𝑞𝑎′ ,𝑎″ = 1
𝑞𝑎′ ,𝑎‴ = 0
𝑞𝑎″ ,𝑎‴ = 1

𝑞𝑎,𝑎′ ,𝑎″ = 1
𝑞𝑎,𝑎′ ,𝑎‴ = 0
𝑞𝑎,𝑎″ ,𝑎‴ = 1
𝑞𝑎′ ,𝑎″ ,𝑎‴ = 0
𝑞𝑎,𝑎′ ,𝑎″ ,𝑎‴ = 0

3

4

𝑞𝑎,𝑎′ = 1
𝑞𝑎,𝑎″ = 1
𝑞𝑎,𝑎‴ = 1
𝑞𝑎′ ,𝑎″ = 1
𝑞𝑎′ ,𝑎‴ = 1
𝑞𝑎″ ,𝑎‴ = 1

𝑞𝑎,𝑎′ ,𝑎″ = 1
𝑞𝑎,𝑎′ ,𝑎‴ = 1
𝑞𝑎,𝑎″ ,𝑎‴ = 1
𝑞𝑎′ ,𝑎″ ,𝑎‴ = 1
𝑞𝑎,𝑎′ ,𝑎″ ,𝑎‴ = 1

4

Table 3.6: Calculation of 𝑡needed in the different cases presented in Figure 3.10

𝑞𝑐,𝑖 = {
1 if (𝑝𝑥,𝑦 + 𝑝𝑥′ ,𝑦′

+𝑝𝑥,𝑥′ + 𝑝𝑦,𝑦′) ≡ 0 (mod 2)
0 otherwise

∀𝑐 = {(𝑥, 𝑦), (𝑥′, 𝑦′)} ∈ 𝐶2𝑖 , ∀𝑖 ∈ 𝐼 (3.28)

Constraints 3.28 defines the binary help variable 𝑞 which takes the value 1 if the activities 𝑎 and
𝑎′ are conflicted at interlocking 𝑖. This is done following the same methodology as the one used for
defining constraint 3.24.

3.3. Model formulation 29

𝑞𝑐,𝑖 = {
1 if ∑𝑐∗=(𝑎,𝑎′)∈𝐶2𝑖 such that 𝑎,𝑎′∈𝑐 𝑞𝑐∗ ,𝑖 =

𝑘(𝑘−1)
2

0 otherwise
∀𝑐 ∈ 𝐶𝑘𝑖 with 𝑘 > 2, ∀𝑖 ∈ 𝐼 (3.29)

Constraint 3.29 defines the binary variable 𝑞𝑐,𝑖. It takes the value 1 if every activity of the combina-
tion 𝑐 is conflicted with every other. To do so, every possible pair of conflicts among the combination 𝑐
is checked. If the sum of their binary variables 𝑞𝑐∗ ,𝑖, computed in constraint 3.28 equals the number of
possible pairs, then every activity is conflicted with each other. The number of possible pairs among a
combination 𝑐 of 𝑘 activities equals (𝑘2) =

𝑘!
2!(𝑘−2)! =

𝑘(𝑘−1)
2 , as showed in equation 3.1.

3.3.6. Linearization and implementation
The model previously formulated is not linear. Thus, constraints 3.15, 3.20, 3.21, 3.22, 3.23, 3.24,
3.26, 3.27, 3.28 and 3.29 need to be linearized. The linear mathematical formulation for the model is
presented as follows. The non linear formulations are written on the left and their associated linear
formulation are written on the right. The linear model is implemented in Gurobi and the code can be
found in Appendix B.1.2.

Constraint 3.15

𝑝𝑥,𝑦 = {
1 if 𝑣𝑦 < 𝑣𝑥
0 otherwise

∀𝑎 = (𝑥, 𝑦) ∈ 𝐴
𝑣𝑦 − 𝑣𝑥 ≤ −𝜖 +𝑀 ⋅ (1 − 𝑝𝑥,𝑦)

Constraint 3.22

𝑘opp𝑠 =
⎧⎪
⎨⎪⎩

1 if ∑
𝑐=(𝑎,𝑎′)∈𝑐2𝑠
𝑑𝑖𝑟𝑎≠𝑑𝑖𝑟𝑎′

𝑘𝑐,𝑠 ≥ 1

0 otherwise
∀𝑠 ∈ 𝑆

∑
𝑐=(𝑎,𝑎′)∈𝑐2𝑠
𝑑𝑖𝑟𝑎≠𝑑𝑖𝑟𝑎′

𝑘𝑐,𝑠 ≤ 𝑀 ⋅ 𝑘opp𝑠

∑
𝑐=(𝑎,𝑎′)∈𝑐2𝑠
𝑑𝑖𝑟𝑎≠𝑑𝑖𝑟𝑎′

𝑘𝑐,𝑠 ≥ 𝑘opp𝑠

Constraint 3.23

𝑘same𝑠 =
⎧⎪
⎨⎪⎩

1 if ∑
𝑐=(𝑎,𝑎′)∈𝑐2𝑠
𝑑𝑖𝑟𝑎=𝑑𝑖𝑟𝑎′

𝑘𝑐,𝑠 ≥ 1

0 otherwise
∀𝑠 ∈ 𝑆

∑
𝑐=(𝑎,𝑎′)∈𝑐2𝑠
𝑑𝑖𝑟𝑎=𝑑𝑖𝑟𝑎′

𝑘𝑐,𝑠 ≤ 𝑀 ⋅ 𝑘same𝑠

∑
𝑐=(𝑎,𝑎′)∈𝑐2𝑠
𝑑𝑖𝑟𝑎=𝑑𝑖𝑟𝑎′

𝑘𝑐,𝑠 ≥ 𝑘same𝑠

Constraint 3.29

𝑞𝑐,𝑖 =
⎧⎪
⎨⎪⎩

1 if ∑
𝑐∗=(𝑎,𝑎′)∈𝐶2𝑖

𝑎,𝑎′∈𝑐

𝑞𝑐∗ ,𝑖 =
𝑘(𝑘 − 1)

2

0 otherwise
∀𝑐 ∈ 𝐶𝑘𝑖 with 𝑘 > 2, ∀𝑖 ∈ 𝐼

∑
𝑐∗=(𝑎,𝑎′)∈𝐶2𝑖

𝑎,𝑎′∈𝑐

𝑞𝑐∗ ,𝑖 ≤
𝑘(𝑘 − 1)

2 + 𝜖 +𝑀 ⋅ 𝑞𝑐,𝑖

∑
𝑐∗=(𝑎,𝑎′)∈𝐶2𝑖

𝑎,𝑎′∈𝑐

𝑞𝑐∗ ,𝑖 ≥
𝑘(𝑘 − 1)

2 −𝑀 ⋅ (1 − 𝑞𝑐,𝑖)

The linear formulations of 3.15, 3.22, 3.23 and 3.29 use the big-Mmethodology developed in Section
3.1.

30 3. Model

Constraint 3.20

𝑡after𝑠 =max(𝑡before𝑠 , 𝑡needed𝑠)
∀𝑠 ∈ 𝑆

𝑡after𝑠 ≥ 𝑡before𝑠
𝑡after𝑠 ≥ 𝑡needed𝑠

Constraint 3.26

𝑡after𝑖 =max(𝑡before𝑖 , 𝑡needed𝑖)
∀𝑖 ∈ 𝐼

𝑡after𝑖 ≥ 𝑡before𝑖
𝑡after𝑖 ≥ 𝑡needed𝑖

The linearization of the two constraints 3.20 and 3.26 is possible as such because, even though
𝑡after𝑠 and 𝑡after𝑖 are not directly minimized, the construction costs are, and therefore the optimal solution
will always be the one with the lowest number of tracks to be constructed.

Constraint 3.21

𝑡needed𝑠 = {
1 if 𝑘opp𝑠 = 0 and 𝑘same𝑠 = 0
2 if 𝑘opp𝑠 = 1 and 𝑘same𝑠 = 0
4 if 𝑘same𝑠 = 1

∀𝑠 ∈ 𝑆

𝑧1 ≤ 𝑘opp𝑠
𝑧1 ≤ 𝑘same𝑠
𝑧1 ≥ 𝑘opp𝑠 + 𝑘same𝑠 − 1
𝑧2 = 1 − 𝑘same𝑠 − 𝑘opp𝑠 + 𝑧1
𝑧3 = 𝑘opp𝑠 − 𝑧1
𝑡needed𝑠 = 𝑧2 ⋅ 1 + 𝑧3 ⋅ 2 + 𝑘same𝑠 ⋅ 4
With 𝑧1, 𝑧2, 𝑧3 binary variables

This linearization is not straightforward and needs further explanations. Firstly, the formulation on
the left can be written as follows:

𝑡needed𝑠 = 𝑧2 ⋅ 1 + 𝑧3 ⋅ 2 + 𝑘same𝑠 ⋅ 4 (3.30)

With

𝑧2 = (1 − 𝑘opp𝑠) ⋅ (1 − 𝑘same𝑠) (3.31)
𝑧3 = (𝑘opp𝑠) ⋅ (1 − 𝑘same𝑠) (3.32)

By definition, the condition 𝑧2 + 𝑧3 + 𝑘same𝑠 = 1 is always satisfied and is therefore not needed. By
developing the two equations 3.31 and 3.32, we obtain the two following notations:

𝑧2 = 1 + (𝑘opp𝑠 ⋅ 𝑘same𝑠) − 𝑘opp𝑠 − 𝑘same𝑠 (3.33)
𝑧3 = 𝑘opp𝑠 − (𝑘opp𝑠 ⋅ 𝑘same𝑠) (3.34)

The formulations 3.33 and 3.34 are not linear. Thus, a new binary variable 𝑧1 = 𝑘opp𝑠 ⋅ 𝑘same𝑠 is
introduced as follows:

𝑧1 ≤ 𝑘opp𝑠 (3.35)
𝑧1 ≤ 𝑘same𝑠 (3.36)
𝑧1 ≥ 𝑘opp𝑠 + 𝑘same𝑠 − 1 (3.37)

Constraints 3.35, 3.36, and 3.37 ensure that 𝑧3 = 1 if and only if 𝑘opp𝑠 = 1 and 𝑘same𝑠 = 1. Finally,
we obtain the six linear constraints presented on the right.

3.4. Demonstration of the model on simple examples 31

Constraint 3.24

𝑞𝑐,𝑠 = {
1 if (𝑝𝑥,𝑦 + 𝑝𝑥′ ,𝑦′ + 𝑝𝑥,𝑥′ + 𝑝𝑦,𝑦′)

≡ 0 (mod 2)
0 otherwise

∀((𝑥, 𝑦), (𝑥′, 𝑦′)) ∈ 𝐶2𝑠 , ∀𝑠 ∈ 𝑆

𝑘𝑎,𝑎′ ,𝑠,𝑑 = (𝑝𝑥,𝑦 + 𝑝𝑥′ ,𝑦′ + 𝑝𝑥,𝑥′ + 𝑝𝑦,𝑦′) − 2 ⋅ 𝑧4
With 𝑧4 an integer variable

Constraint 3.28

𝑞𝑐,𝑖 = {
1 if (𝑝𝑥,𝑦 + 𝑝𝑥′ ,𝑦′ + 𝑝𝑥,𝑥′ + 𝑝𝑦,𝑦′)

≡ 0 (mod 2)
0 otherwise

∀((𝑥, 𝑦), (𝑥′, 𝑦′)) ∈ 𝐶2𝑖 , ∀𝑖 ∈ 𝐼

𝑞𝑐,𝑖 = (𝑝𝑥,𝑦 + 𝑝𝑥′ ,𝑦′ + 𝑝𝑥,𝑥′ + 𝑝𝑦,𝑦′) − 2 ⋅ 𝑧5
With 𝑧5 an integer variable

Constraints 3.24 and 3.28 are linearized using integer variables. The binary variables 𝑞𝑐,𝑖 and 𝑞𝑐,𝑠.
The only way these variables can be equal to 0 is if the sum 𝑝𝑥,𝑦 + 𝑝𝑥′ ,𝑦′ + 𝑝𝑥,𝑥′ + 𝑝𝑦,𝑦′ is even. In the
same way, these variables can only be equal to 1 is if the sum 𝑝𝑥,𝑦 + 𝑝𝑥′ ,𝑦′ + 𝑝𝑥,𝑥′ + 𝑝𝑦,𝑦′ is odd.

Constraint 3.27

𝑡needed𝑖 =max𝑐∈𝒞𝒾(𝑞𝑐,𝑖 ⋅ len(𝑐))
∀𝑖 ∈ 𝐼 𝑡needed𝑖 ≥ 𝑞𝑐,𝑖 ⋅ len(𝑐) ∀𝑐 ∈ 𝒞𝒾

3.4. Demonstration of the model on simple examples

(a) Single tracks (b) Double tracks

(c) Bottleneck without possible upgrade (d) Bottleneck with possible upgrades

Table 3.7: Model’s application to four simple examples.

32 3. Model

To demonstrate the model and illustrate the way it intends to work, it is applied to four simple exam-
ples presented in Table 3.7: (a) single track corridor, (b) double tracks corridor, (c) and (d) bottleneck
corridor (double - single - double tracks) with high demand. In example (c), 𝑡max = 0 which forces the
model to fit every train request without suggesting any infrastructure upgrade. In example (d), 𝑡max = 1
which allows the model to suggest an infrastructure upgrade.

These four examples show that the conflict restriction works as intended: there is no conflict on a
single track. On a double track, the trains can meet each others. When the infrastructure is strained by
high demand, the model can reduce the trains’ speed and force opposite trains to meet on the double-
track portions of the corridor, to ensure a conflict free timetable (c). If allowed to, the model can also
suggest infrastructure improvement (d). Here, the bottleneck portion is upgraded to double tracks and
the timetable therefore present conflicts between train running in opposite direction.

3.5. Data processing
As it has been shown in the previous Section 3.3.2, the PESP-MILP model takes many input parame-
ters and sets of data. However, the data usually available are not usable as such by the PESP-MILP
model and therefore need to be processed. This section outlines the various processes involved in
transforming raw data into output data. Figure 3.11 presents the flow of data between the different
functions of the model.

Figure 3.11: Flow of data between the different processing functions involved in the model

3.5.1. Raw data
Firstly, the network parameters are collected and stored in two different DataFrames. The first DataFrame
interlocking contains all the interlockings of the network and their characteristics (unique identifier,
code name, number of tracks, average cost to built a new track). The second DataFrame segment
contains all the segments connecting two different interlockings along the network and their charac-
teristics (unique identifier, the two connected interlocking, length, number of tracks, maximal speed).
Tables 4.4 and 4.5 present the DataFrames interlocking and segment used for the case study.

The first DataFrame train_request contains every line requested to be scheduled by the PESP
model. Each line has a unique identifier, a service, a path (list of every interlocking covered by the
line), a list of stop stations (list of every station served by the line), a frequency, a rolling stock, cost of
operation, and a list of interactions. Each line can interact with other lines. An interaction can be either
a turnaround or a transfer. A turnaround implies that the two lines uses the same rolling stock. Thus,
the interacted line has to depart after the considered origin line at its first station. In the same way, a

3.5. Data processing 33

transfer implies that the passenger should be able to transfer from the origin line to the interacted line
at a given station. Thus, the train of second line has to depart from the station after the arrival of the
train of the first line.

3.5.2. Processed data
The raw data cannot be used as such by the PESP-MILP model. As indicated in Figure 3.11, the
input data are first processed to create an event-activity graph. Firstly, the DataFrame event gives all
the events the timetable has to satisfy, generated by the function create_event. The steps below
summarize the logic and process implemented in the code, with the full version provided in Appendix
B.1.1.

INPUT: train_request (DataFrame), interlocking (DataFrame), period (integer).

1. Initialization:

• Create an empty DataFrame event with columns [’eventID’, ’lineID’,
’event_type’, ’event_location’, ’event_frequency’].

2. Fill the empty DataFrame event by appending rows one by one:

• For each row of train_request:
– The list path stores every interlocking in which the train goes (dwell or pass). The
list stop_stations stores every station in which the train dwells.

– Create multiple copies of each line depending on the line_frequency and cal-
culate event_frequency

– For each copy of the line:
⋄ lineID is modified by appending the copy number.
⋄ For each interlocking along the path:

∙ If interlocking is the first in the path: an event of type ’dep’ is created
for the first departure.

∙ If interlocking is the last in the path: an event of type ’arr’ is created
for the last arrival.

∙ Else interlocking is an intermediate: two events are created: one for ar-
rival (’arr’ if interlocking is in stop_stations or ’arr-pass’ other-
wise) and one for departure (’dep’ if interlocking is in stop_stations
or ’dep-pass’ otherwise).

⋄ Each event is stored in the event DataFrame with the relevant details.

3. Finalization:

• The ’eventID’ column is set as the index of the event DataFrame to uniquely identify
each event.

OUTPUT: event (DataFrame).

34 3. Model

Secondly, the DataFrame activity gives all the activities between each event. Each activity is
identified by a unique identifiers and has different characteristics: a type (running, dwelling, transfer,
headway, turnaround, passing through, regularity), a location (segment or interlocking in which the
activity takes place), a minimum duration (the min duration of the activity) and a cost. The cost of the
activity 𝑎 = (𝑥, 𝑦) is set as the cost of operation of the line weighted by the type of activity. This allows
to choose to minimize specific types of activity. In this research, the focus is given to minimizing the
travel times, i.e. the running, dwell and passing-through times.

𝑐𝑥,𝑦 = 𝑐𝑙 ⋅ 𝑐𝑡𝑦𝑝𝑥,𝑦
With:

𝑐𝑡𝑦𝑝𝑥,𝑦 =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

1 if 𝑡𝑦𝑝𝑥,𝑦 = ”run”
1 if 𝑡𝑦𝑝𝑥,𝑦 = ”dwell”
1 if 𝑡𝑦𝑝𝑥,𝑦 = ”pass”
0 if 𝑡𝑦𝑝𝑥,𝑦 = ”headway”
0 if 𝑡𝑦𝑝𝑥,𝑦 = ”turnaround”
0 if 𝑡𝑦𝑝𝑥,𝑦 = ”transfer”
0 if 𝑡𝑦𝑝𝑥,𝑦 = ”regularity”

The function create_activity generates the DataFrame activity. The steps below summa-
rize the logic and process implemented in the code, with the full version provided in Appendix B.1.1

3.5. Data processing 35

INPUT: train_request (DataFrame), interlocking (DataFrame), segment (DataFrame),
event (DataFrame), rolling_stock (DataFrame), regulation (DataFrame).

1. Initialization:

• Create an empty DataFrame activity with columns [’activityID’,
’from_eventID’, ’to_eventID’, ’activity_type’, ’activ-
ity_location’, ’min_activity_duration’, ”activity_cost’,
’train_direction’].

2. Create run, dwell, and pass activities:

• For each row of train_request:
– For each pair of consecutive events within the lineID

⋄ Check the direction of the train by comparing the firt and last interlocking
⋄ If the train moves forward, the direction is set to 1.
⋄ If the train moves backward, the direction is set to -1.
⋄ Classify the activities
⋄ If the events are arr-pass followed by dep-pass activity is pass with the
location set to the from_interlockingID.

⋄ If the events are arr followed by dep activity is dwell with the location set to
the from_interlockingID.

⋄ Else the activity is run with the location determined based on the segment
that connects the from_interlockingID and to_interlockingID. The
minimum duration is calculated.

⋄ Add activity to activity with unique ID and corresponding information.

3. Create transfer and turnaround activities:
– For each interaction: calculates the corresponding event pairs between the inter-
acting lines.
⋄ If the interaction is turnaround, its duration and cost are determined based
on the regulation.

⋄ If the interaction is transfer, its duration and cost are determined based on
the regulation.

⋄ Add activity to activity with unique ID and corresponding information.

4. Create headway activities

• Identify pairs of arrival events occurring at the same location but from different lines.
• For each pair:

– Add activity to activity with unique ID and corresponding information.

5. Create regularity activities
– For each copy of the same event

⋄ If if the two events are consecutive events
∙ Add activity to activity with unique ID and corresponding information.

6. Finalization:

• The ’activityID’ columns is set as the index of activity to uniquely identify each
activity.

OUTPUT: activity (DataFrame)

The create_conflict function generates conflicts between train activities based on the location

36 3. Model

and types of activities. The function returns four DataFrames, K, K_multiple, Q, and Q_multiple,
representing different types of conflicts and their combinations. The steps below summarize the logic
and process implemented in the code, with the full version provided in Appendix B.1.1.

INPUT: activity (DataFrame), event (DataFrame).

1. Initialization:

• Create an empty DataFrame K with columns [’conflictID’, ’pair’, ’d’,
’conflict_location’]

• Create an empty DataFrame K_multiple with columns [’combinationID’,
’combination’, ’conflict_location’]

2. Fill Q with pair of activities:

• Filter activity to only keep rows where activity_type is ’dwell’ or ’pass’ or
’run’. Group activity by activity_location.

• For each location:
– Generates all possible pairs of activities using itertools.combinations.

3. Fill Q_multiple with combination of more than 2 activities

• Filter activity to only keep rows where activity_type is ’dwell’ or ’pass’ or
’dwell’. Group activity by activity_location.

• For each location:
– Generates all possible combination of at least 3 activities using iter-
tools.combinations

– Generates all possible pair of activities among the combination using iter-
tools.combinations

– If every pair of activity has been created and is present in K, the combination is
added to Q_multiple with the corresponding combination of activity, combination
of conflict, d and conflict_location.

4. Finalization:

• The ’conflictID’ columns are set as the indexes of the four DataFrame to uniquely
identify each combination.

OUTPUT: K (DataFrame), K_multiple (DataFrame).

3.5.3. Output data
The proceed data are then taken as input parameters of the PESP-MILP optimization function, pre-
sented in Appendix B.1.2. The PESP model gives back the optimized time 𝑣𝑥 at which each event 𝑥
takes place. Then, as presented in Figure 3.12, the obtained timetable is visualised as the form of a
time-distance diagram, thanks to a function that has been developed for the this study. The function
code is presented in Appendix B.1.3. This allows the user to quickly analyse the output of the model
and to detect eventual errors. This visualisation is also flexible since the user can choose the time
window to be plotted and to customize the tick spacing.

3.6. Hypotheses 37

Figure 3.12: Flow of data between the optimization and visualization functions

3.6. Hypotheses
The model focuses on the macroscopic level and therefore uses a simplified network and data. Thus,
several hypotheses have been made. These hypotheses and their consequences on the results are
discussed in Section 5.7.

Firstly, any train can dwell on any track of any station. The number of tracks in a station is consid-
ered equal to the number of platforms, which is not always the case. Some tracks do not have any
platform and are only used to allow a train to pass the station without having to stop. Moreover, the
length of the trains and the platforms are not considered, but in real life, some trains may be too long
to be able to dwell on a small platform. This might lead to an underestimation of the number of tracks
needed per interlocking. However, the consequences of this hypothesis are limited if the user carefully
chooses the trains that are running in their experiments, and makes sure no train is requested to stop
in stations with too small platforms.

Secondly, a line can only have one, two or four tracks. This hypothesis results in an over-restriction
of the possible conflicts per track but reflects the state of the infrastructure in Sweden, where lines are
usually single, double or four tracks (only two lines have four tracks). Additional overtaking tracks (i.e.
meeting stations) can be found, but they should be considered as interlocking in this model.

4
Case study

4.1. Context
TheMälarbanan (Figure 4.1) is one of the busiest railways in Sweden, connecting Stockholm to Öbebro
via Västerås. The railway runs for 200 km, going through the north of the Mälaren lake. The corridor
is, as the large majority of the Swedish network, managed by the Swedish Transport Administration
(Trafikverket (2023b)). The line is fully electrified and has been upgraded in 2005 to be able to run high-
speed trains with a maximal speed up to 200km/h. Nowadays, the line is mainly used for passenger
trains (intercity, regional, and commuter trains) operated by Statens Järnvägar (SJ, the state-owned
operator) and Mälardalstrafik (a regional operator). However, freight companies also operate on the
line (Trafikverket (n.d.-b)). The line mainly consists of double tracks, but a part of the line still consists
of single tracks, challenging the increasing demand.

Figure 4.1: The Mälarbanan (in green) and a part of the Swedish network (in black) (Trafikverket (n.d.-b))

The Mälarbanan is strategic for the long-term planning of the Swedish network. Several studies
have recently been conducted to assess potential upgrades, such as the Oslo-Sthlm 2.55 project which
aims to shorten the travel time between Oslo and Stockholm. Currently, trains connecting the two
Scandinavian capitals pass through the south of the Mälaren lake: they do not run on the Mälarbanan.
However, Berner et al. (2021) shows that a deviation of the trains to the Mälarbanan, supported by the
construction of new tracks and the upgrade of the existing lines would reduce the travel time to 2 hours

39

40 4. Case study

55 minutes instead of the 5 hours and 8 minutes currently operated by the SJ 3000 high-speed train.
Figure 4.2 depicts the current route of the train connection Oslo and Stockholm, and the construction
planned by the Oslo-Sthlm 2.55 project. Thus, the Mälarbanan has a strategic interest and this case
study is set within the context of the project of upgrading the capacity of the line. However, as of 2024,
the Oslo-Sthlm 2.55 project is only at the study stage and no project has been officially approved by
the Swedish Transport Administration.

Figure 4.2: Project Oslo-Sthlm 2.55. Green lines: existing lines. Red lines: Existing lines to be upgraded to double tracks.
Orange area: New portion of the line to be constructed. Grey arrows: Current path of the trains connecting Stockholm and
Oslo. Black rectangle: Corridor between Jädersbruk and Kolbäck investigated in this case study. (“Varför är Oslo-Sthlm

viktigt?” (n.d.))

The model is applied to a portion of the Mälarbanan, between Jädersbruk and Kolbäck (see black
rectangle above). Figure 4.3 shows the microscopic infrastructure of the line modeled in RailSys. The
line mainly consists of single tracks and the Oslo-Sthlm 2.55 project proposes to upgrade the line to
double tracks. The line consists of three passenger stations (Arboga, Köping, and Kolbäck) and three
meeting stations (Jädersbruk, Valskog, and Munktorp). Meeting stations are stations without platforms
that are only used to allow trains to stop and overtake each other, but also to connect two converging
or diverging lines. Therefore there is no possible entering or exit of passengers at those stations. The
stations are officially abbreviated by the Transport Administration as follows: Jädersbruk (Jbk), Arboga
(Arb), Valskog (Vsg), Köping (Kp), Munktorp (Morp) and Kolbäck (Kbä).

4.2. Scenarios
This case study aims to check whether the current infrastructure of the Jkb-Kbä corridor could absorb
the long-term demand, and if not, to find the optimal infrastructure improvements. To do so, different
scenarios are formulated. The traffic data of 2022 and traffic forecast data of 2040 are tested, to check
whether the projected long-term demand could fit the current infrastructure. In addition, the 2040 sce-
nario is also tested with additional high-speed trains, to evaluate the feasibility of the Oslo-Sthlm 2.55
project. All of those scenarios are applied to the current state of the infrastructure, as presented in
Figure 4.3.

Situation Traffic (per hour, per direction) Coefficients Buffer times
F R IC HS 𝛼 𝛽 𝛾 (in s)

Scenario 1 2022 1 1 1 0 0.5 0.25 60
Scenario 2 2040 1 2 1 0 0.5 0.25 60
Scenario 3 2040 + HS trains 1 2 1 1 0.9 0.05 0

Table 4.1: Different scenarios of the case study. F: Freight, R: Regional, IC: Intercity, HS: High-speed

These three scenarios are applied with the same conditions, according to the Swedish regulations
introduced in Section 2.4.1.

4.3. Data collection 41

Figure 4.3: Case study line, modeled at the microscopic level

Parameter Value
Running time supplement 8% of the minimum technical running time

Dwell times 2 min
Headway times 3 min

Period Π 60 min

Table 4.2: Regulation parameters used for the case study

In every scenario, the coefficients 𝛽 and 𝛾 are such that 𝛽 = 𝛾 = (1 − 𝛼)/2, so that the model
equally minimizes the segment construction costs and the interlocking construction costs. However,
the demand is high for the third scenario, resulting in long computer running times. To speed up the
optimization process of this scenario, the coefficient 𝛼 is then increased to 0.9. Therefore, the model
focuses more on minimizing the operation costs, and the minimization of the construction costs is re-
laxed, compared to scenarios 1 and 2 where 𝛼 = 0.5. The buffer times are set to 1 minute and are
added to the headway constraints, resulting in headway times equal to 4 minutes (3 minutes headways
+ 1 minute buffer), making the problem more complex to solve. These buffer times are reduced to 0 for
the third scenario, to relax the headway constraints and speed up the optimization process. This sim-
plification will likely result in an underestimation of the construction costs and is discussed in Section 5.1.

4.3. Data collection
The train requests presented in Table 4.1 are extracted from the 2022 railway traffic data and noise fore-
cast 2040 (Trafikverket (2021)). This database centralizes the number of trains and their type running
in 2022 and expected to run in 2040 on every corridor of the Swedish network. Appendix C presents the
data of the Jkb-Kbä corridor, the values are rounded since the model is restricted to integer frequencies.
The high-speed trains running between Oslo-Stockholm are extracted from the Arvika-Charlottenberg
corridor, located close to the Norwegian border and currently used by the fast train connecting Stock-
holm and Oslo. These data are used for the third scenario, assuming that the diminution of the travel

42 4. Case study

times due to the new path of the HS trains will not have any effect on the expected demand. No possible
transfers have been added to simplify the optimization process and reduce the computer running times.
Since the corridor is only a small portion of the line, trains do not turn over at any of the investigated
stations. Regional trains dwell in Kolbäck and Arboga, intercity trains dwell in Köping and Arboga, and
freight and high-speed trains are not required to dwell at any station. However, since the operation
costs of freight trains are lower (see Table 4.3), the simulation model might prioritize other trains and
therefore schedule dwell times to let passenger trains overtake freight trains.

Type of service Operation costs (SEK/s)
Freight trains 4.31
Regional trains 4.53
Intercity trains 9.17

High-speed trains 13.98

Table 4.3: Operation costs of the different trains (Trafikverket (2024a))

The infrastructure data modeled in RailSys have been simplified to be used at the macroscopic
level. The number of tracks per station is easily observable in RailSys, but not every track is taken into
account at the macroscopic level. For example, the additional tracks used for turning over at stations
Arb, Vsg, and Kp are not kept. Indeed, the macroscopic model only considers tracks on which the
train can run and dwell. Moreover, the convergent track of station Kbä is also not taken into account
since it is part of another corridor. Finally, the minimum technical running times of the different trains
requested to run in the different scenarios of the case study are simulated in RailSys. The segment
and interlocking DataFrames taken as inputs of the model are presented in Tables 4.4 and 4.5.

Interlocking Station code Tracks Cost (M SEK)
i1 Jbk 2 25
i2 Arb 2 51
i3 Vsg 2 25
i4 Kp 3 64
i5 Morp 2 25
i6 Kbå 2 30

Table 4.4: Interlockings of Jkb-Kbä corridor

Segment From To Length Tracks Min running time (s) Cost
(m) F R IC HS (M SEK)

s1 i1 i2 2264 1 124 106 75 78 844
s2 i2 i3 4355 2 392 227 207 212 1624
s3 i3 i4 6920 1 408 274 276 258 2581
s4 i4 i5 6799 1 408 258 267 255 2536
s5 i5 i6 5072 1 307 172 175 179 1892

Table 4.5: Segments of Jkb-Kbä corridor

Following the discussion in Section 2.5, the construction costs of one track for each segment or
interlocking are calculated based on the cost per unit of distance, under the assumption that the con-
struction costs are proportional to the length of the track that has to be built. The cost to build one track
at a station is set to 0.2 million SEK/platform-meter, and the cost for building one track on a segment
is set to 373 million SEK/track-km. This value is extracted from a study estimating the construction
costs of a high speed track being built from scratch (Trafikverket and Jacobs (2021)). The case study
investigated in this research only consists of conventional tracks. Thus the construction costs would
likely be lower in real life. Nevertheless, this overestimation should not have any consequences on the
optimal infrastructure modifications suggested by the model, since the costs are normalized using the

4.4. Results 43

min-max normalization reported in Equation 3.4.

4.4. Results
4.4.1. Macroscopic timetables
The optimal timetables and infrastructure upgrades obtained when simulating the three scenarios, and
their optimization statistics are given as follows. The initial number of tracks per segment is indicated
on the distance axis of the diagrams, and the new tracks suggested to be built are depicted in purple.
Appendix D.1, D.2 and D.3 present the DataFrames event given as output of scenarios 1, 2 and 3.

Figure 4.4: Optimal timetable of scenario 1

Infrastructure to upgrade: None
Total operation costs: 54,712 SEK
Total construction costs: 0 SEK
Objective value: 0.150466
Number of variables: 953 (incl. 532 binary)
Number of constraints: 1691
Number of iterations: 82,969,255
CPU: 743 s
Optimally gap: 4.9%

Figure 4.4 shows that the optimal solution does not require any infrastructure upgrade, therefore
the construction costs are null. Since the portion Arb-Vsg has double tracks, conflicts between two
trains running in opposite directions are allowed. No other conflicts are detected anywhere else and
the headway constraints are satisfied. The model forces one freight train to dwell for 20 minutes in
station Kp.

44 4. Case study

Figure 4.5: Optimal timetable of scenario 2

Infrastructure to upgrade: Kp-Morp to double tracks
Total operation costs: 72,022 SEK
Total construction costs: 2,536 million SEK
Objective value: 0.242126
Number of variables: 1,770 (incl. 1,062 binary)
Number of constraints: 3,384
Number of iterations: 522,390,696
CPU: 5,810 s
Optimally gap: 4.9%

Figure 4.5 shows that the optimal solution requires an infrastructure upgrade. The model suggests
upgrading the portion Kp-Morp to double tracks, which allows conflicts between two trains running in
opposite directions. The proposed infrastructure upgrade results in a succession of portions with single
and double tracks. The two freight trains have short additional stops in stations Arb and Kp. The regu-
larity constraints between the different regional trains are satisfied, as well as the headways between
the different trains.

4.4. Results 45

Figure 4.6: Optimal timetable of scenario 3

Infrastructure to upgrade: Kp-Morp to double tracks
Total operation costs: 77,728 SEK
Total construction costs: 7,009 million SEK
Objective value: 0.089249
Number of variables: 4,129 (incl. 3,060 binary)
Number of constraints: 9,639
Number of iterations: 312,712,226
CPU: 3,598 s
Optimally gap: 4.9%

Figure 4.6 shows that the optimal solution requires upgrading four portions to double tracks: Vsg-
Kp, Kp-Morp and Morp-Kba. Trains all run at their maximal possible speed and only the freight trains
have additional stops at station Arb. The headway and regularity constraints are still satisfied.

4.4.2. Microscopic assessment of the results
Previous results show conflict-free timetables at the macroscopic level. However, their feasibility at
the microscopic level is not guaranteed since several hypotheses have been made and the detailed
signalling of the infrastructure has not been considered. Thus, the produced timetables are simulated
in RailSys to assess their feasibility at the microscopic level. Modeling new tracks is complex and
time-consuming: it requires further investigations on the exact signalling and block sections the tracks
should have. Therefore, the infrastructure modifications suggested by the macroscopic model have
not been modeled in RailSys, and timetables are simulated on the initial state of the infrastructure (see
Figure 4.3) and are presented in Table 4.6.

46 4. Case study

Scenario 1 Scenario 2

Scenario 3

Table 4.6: Microscopic simulation of the different timetables obtained at the macroscopic level

4.4.3. Sensitivity analysis
To assess the sensitivity of the optimal solution to the coefficient 𝛼, scenario 2 has been tested with
different values of 𝛼, keeping all the other parameters identical. Figure 4.7 shows the various costs of
the optimal solutions.

4.4. Results 47

Figure 4.7: Costs of the optimal solution of scenario 2 under different values of 𝛼

To assess the sensitivity of the computer running times to the value parameter 𝛼, the CPU of the
optimal solutions presented in Figure 4.7 are listed in the table bellow.

𝛼 0 0.25 5 0.75 1
CPU (s) 0.31 12971 5809 23157 1208

Table 4.7: Computer running times of scenario 2 under different values of 𝛼

The timetable of the extreme case where 𝛼 = 1 is presented in Figures 4.8.

Figure 4.8: Optimal timetable of scenario 2, with 𝛼 = 1

5
Discussion

5.1. Analysis of the case study’s results
Results show that the model can handle the key constraints: the headway times, minimum running
times, dwell times, and regularity constraints are all satisfied and no conflict is allowed where the in-
frastructure is only constituted of a single track. Since the buffer times have been introduced within
the headway times, the model has to schedule a timetable with high headway times, and deleting the
buffer times strongly decreases the CPU. No optimal solution presents high travel times (with trains
running extremely slow or trains dwelling for a long time) or high infrastructure upgrades (none of the
solutions suggest upgrading a portion to four tracks). This demonstrates that the model suggests real-
istic solutions.

The result of the first scenario shows that the current state of the infrastructure can absorb current
demand. This result is expected since this scenario is the current real-life scenario, and obtaining an
infeasible demand would have suggested that the model is over-constrained. The result of the second
scenario shows that the model can suggest infrastructure upgrades, as intended. The current state of
the infrastructure would not be able to meet the 2040 projected demand. Finally, the result of the third
scenario shows that the suggestion of the Oslo-Sthlm 2.55 project of re-routing high-speed trains to
the Mälarbanan line would require upgrading the Vsg-Kba portion to double tracks. This result aligns
with several studies also proposing to construct a double track all along the Mälarbanan line (Sweco
(2017)). However, studies estimate that the reduction of the travel time between Oslo and Stockholm
would lead to an increase in the passenger demand of 116% and in the number of trains running of 70%
(Jernbanedirektoratet and Trafikverket (2022)). The high-speed demand taken as input in scenario 3
does not consider the expected increased demand, and the demand is therefore underestimated.

The optimal solution can present a timetable with unsolicited stops, mostly concerning freight and
regional trains. These two services have the lowest operation costs and therefore have low priority.
This illustrates the trade-off the model has to optimize: upgrading the infrastructure to avoid these addi-
tional stops and to lower as much as possible operations costs is not necessarily optimal. The optimal
timetable of the second scenario shows seven different conflicts taking place on the Kp-Morp portion
of the line, which is upgraded to double tracks. This portion is the most expensive one to upgrade, but
also the longest one and therefore the one having the most benefits on traffic. Therefore, if the model
suggests an infrastructure upgrade, the optimal timetable takes as much as possible advantages of
the new construction. The optimal infrastructure of the second scenario is a corridor of single - double
- single - double - single tracks. Thus, this result also suggests that it is more efficient to spread the
double tracks all along the corridor rather than having a long portion of double tracks. Indeed, this
allows to have two distinct areas where opposite trains can meet each other.

None of the optimal solutions suggests the construction of new tracks at an interlocking, even though
their construction costs are low. This could be explained in different ways. Firstly, every station in the
case study already has two tracks, which allow trains to overtake and to meet each other. Thus, the

49

50 5. Discussion

benefits of building a new track in one of these stations are quite low. Upgrading a segment from single
to double has more benefits on traffic and leads to a stronger reduction of operation costs. Secondly,
the costs are normalized using a min-max normalization, and the coefficients 𝛽 and 𝛾 are equal: the
model equally minimizes the construction costs of new tracks on the segments and the interlockings.
The cost-benefit ratio therefore favors constructing a new track along one segment.

A periodic symmetric timetable is defined as a timetable where opposite trains always meet each
other at times summing up to either 0 or the period Π (Liebchen (2004)). The formulation of the model
does not require symmetric timetables, and none of the optimal timetables given as outputs of the case
study are symmetric. This suggests that a symmetric timetable would not be optimal in the investi-
gated cases. This result aligns with the findings of Liebchen (2004) showing that symmetry leads to
sub-optimality when minimizing passenger travel times. However, the three timetables can show axes
where the train’s schedules mirror across these. For scenario 1, this axe takes place around 8:35. For
scenario 2, two axes can be noticed around 8:20 and 8:35 Finally, scenario 3 shows two axes around
8:18 and 8:47. Results also give an idea on the way the model handles the heterogeneity of the de-
mand. The third scenario has a heterogeneous demand: fast trains do not dwell at any station and
slower trains are requested to dwell at two different stations. The optimal timetable groups the trains
that do not stop together: in each direction, the freight and high-speed trains follow each other. These
results align with the current knowledge of traffic optimization claiming that homogenization results in
higher capacity utilisation.

5.2. Microscopic feasibility
The microscopic simulation of the timetables shows the different blocking times. Conflicts are detected
between trains running in opposite directions. This aligns with our expectations since the infrastruc-
ture has not been upgraded in RailSys, and is therefore still composed of single tracks, even on the
portions suggested to be upgraded to double tracks. Therefore, these conflicts can be omitted in this
research. Timetables 1 and 3 show that the blocking times between two following trains do not over-
lap: the headway times are sufficient. However, scenario 2 presents, on the corridor Morp-Kp, many
conflicts between 8:00 and 8:30, but it is not clear whether these conflicts take place between trains
running in the same or opposite direction. Figure 5.1 gives a better view of these conflicts by zooming
on the conflicted area and by dividing trains per direction. Blocking times of the regional and intercity
trains overlap for a minute on two block sections of the corridor. The same goes for the regional and
intercity trains whose blocking times overlap for a few seconds in one block section. This can be ex-
plained by the length of these two blocks which are longer than the other blocks of the corridor. The
longer the block length, the longer the blocking time. Nevertheless, these three conflicts are minimal
and could be easily resolved at the microscopic level by slightly re-scheduling one or the other train to
an earlier or later departure, to ensure their blocking times do not overlap. At the macroscopic level,
these conflicts could be avoided by reinforcing the headway constraint on the Kp-Morp portion of the
corridor, by increasing its value to four minutes (instead of three on the other block sections).

5.3. Sensitivity analysis 51

Figure 5.1: Zoom of the second scenario, between 8:00 and 8:00 on the Morp-Kp segment.
On the left: trains running to Morp. On the right: trains running to Kp.

The third scenario has been simulated without any buffer times added to the headway constraints.
However, the microscopic timetable does not present any conflict and the blocking times do not over-
lap (except where the model suggests infrastructure upgrades). However, the timetable is quite com-
pressed, and it can be argued that including enforcing the headway times with the buffer times could
have led to a different optimal solution suggesting more infrastructure upgrades, such as upgrading the
portion Jbk-Arb to double tracks.

5.3. Sensitivity analysis
Parameter 𝛼 reflects the priority given to minimizing the operation costs. The higher 𝛼 is, the more
the model focuses on reducing operation costs. The sensitivity analysis presented in Figure 4.7 shows
that, as expected, the construction costs increase with 𝛼. With 𝛼 = 0, the model only minimizes the
construction costs without considering the operation costs, thus the model tries as much as possible
to fit the train request without changing the infrastructure. This results in high operation costs and an
unrealistic timetable where trains can dwell for 1 hour at the same station. On the other hand, with
𝛼 = 1, the model only minimizes the operation costs without considering the construction costs, thus,
the construction costs are high. This case is presented in Figure 4.8 and the model suggests upgrading
every segment to double tracks. From the scenario where 𝛼 = 1 (the most expensive scenario) to the
scenario where 𝛼 = 0.5, the construction costs are decreased by 67% while the operation costs only
increase by 11%. Moreover, Figure 4.7 shows that from approximately 𝛼 = 0.25, the operation costs
of the optimal solution are slowly diminishing, but quite stable. These results highlight the need to find
the proper value of alpha to assess different scenarios. In other words, the parameter 𝛼 reflects the
time scale: if one wishes to investigate a long-term scenario with high demand, priority should be given
to minimizing the operation costs. If one wishes to investigate short or middle-term scenarios with a
reduced budget and time to build new tracks, the minimization of operation costs should be relaxed.
These results demonstrate the flexibility and the strength of the model.

52 5. Discussion

5.4. Computational efficiency
The first scenario is obtained in 12 minutes, while the second and the third are obtained in at least one
hour. These CPU are high but align with other PESP models’ running times found in the literature. The
long-computer running and the large number of iterations reflect on the complexity of the problems.
From scenario 1 to scenario 2, only the frequency of the two intercity trains is doubled. This results
in an increase of 4% in the number of variables, of 255% in the number of constraints, of 529% in
the number of iterations and in an increase of 682% of the CPU times. The computer running times
increase exponentially with the complexity of the problem (number of variables and constraints), which
depends on the number of trains to be scheduled and their interactions.

However, the third scenario has been obtained in shorter running times than the second one. This
can be explained by the relaxation of the buffer times. Even though it does not reduce the number
of variables or constraints, it makes it easier to find a feasible solution. Moreover, the parameter 𝛼
changes between these two scenarios. Table 4.7 shows the different computer running times obtained
for every simulation of the sensitivity analysis presented in 4.7. There is no linear relation between the
CPU and 𝛼. Instead, the results suggest the presence of two local maximal values around 𝛼 = 0.25
and 𝛼 = 0.75, indicating that a tight trade-off increases the CPU. The optimal solution in the case where
𝛼 = 0 is fast to find because the model only minimizes the construction costs. Therefore the optimal
solution is the one without any infrastructure upgrade (for the second scenario, at least) and the model
does not need to minimize the operation costs.

5.5. Scalability and flexibility
The case study previously investigated considers a simple corridor only. However, a major strength of
the PESPmodels applied to railways is that they can be used in nodded infrastructure networks without
specific adjustments. In that case, the user has to specify the exact path of each line and choose the
corridor that has to be plotted in the time-distance diagram. In the same way, it can be applied to more
complex train requests: increased frequencies, and more dependencies between different lines with
turnarounds or transfers. Nevertheless, the main limit to these extensions is the CPU. As discussed in
Section 5.4, the larger the network and the more complex the demand, the more events and activities
are created. Thus, complex networks might lead to long computer running time. This issue could be
tackled by adjusting the different parameters such as 𝛼, 𝛽, and 𝛾: if the demand is expected to be
hardly feasible in the current state of the infrastructure, 𝛼 should be increased to relax the construction
cost minimization.

Moreover, the model is flexible: the infrastructure and the demand can be easily modified and do
not require a lot of data. Users could also use that model to assess the effect of additional stations or
lines that do not exist in the current state of the infrastructure. This can be extremely useful, especially
in creating meeting stations: interlocking areas with additional tracks to allow trains to overtake each
other, without passengers being able to enter or exit the train. The model can handle mixed traffic: slow
and fast trains, and direct or stopping trains. Additionally, the model is not restricted to the Swedish
market and it could be easily used on other railway networks with different regulations: running time
supplements, headway times, or buffer times.

5.6. Innovations of the model
By extending the PESP model to a MILP formulation allowing infrastructure modification, this model
goes beyond beyond the current line planning methods. The demand is not considered as flexible
and cannot be relaxed by canceling trains. On the contrary, it modifies the infrastructure to ensure
every train request can be scheduled without any conflict. The model does not simply suggest the
construction of new tracks on the bottleneck portion of a line. Instead, the model explores all pos-
sible infrastructure improvements (station and segment) and minimizes the overall construction and
operations costs. Thus, the optimal infrastructure improvement is not necessarily the cheapest one: it
is the one with the best trade-off between its costs and its benefits on the traffic (on the operation costs).

5.7. Limitations of the model 53

The model extends the conflict detection approach developed by Zhang and Nie (2016) and instead
of restricting or forbidding these conflicts, allows a limited number and type of conflicts on a given lo-
cation, according to the number of tracks of this location. Therefore, the model does not only take a
periodic event-activity graph as input: it also takes the sets of every possible combination of conflicts.

With this model, the assessment of different infrastructure scenarios is automatized and optimized,
significantly enhancing the efficiency of planning processes. Line planners no longer need to manually
evaluate each potential configuration. For instance, the simple Jbk-Kba corridor investigated in the case
study can be upgraded in many ways. The segment Arb-Vsg can be upgraded to four tracks, and the
remaining four portions can upgraded to double or four tracks. Thus, there are 21 × 34 = 162 possible
arrangement of segment. If we limit the stations to amaximum of four tracks, station Kp has three tracks
and can be upgraded to three or four tracks, the five other stations with two tracks can each be upgraded
to 3, or 4 tracks. Thus, there are 21×35 = 486 possible configurations. By combining these two different
results, the total number of configurations possible is 162 (railway corridor)× 486 (stations) = 78, 792.
The model ensures that all 78,792 potential infrastructure arrangements are assessed, facilitating thor-
ough and efficient decision-making for infrastructure upgrades.

This innovative approach to the line planning process could be decisive in infrastructure investment
decision-making, especially in a restricted budget context. Instead of allocating an entire budget to
upgrading a full line, line planners could optimize the track construction and minimize the construc-
tion costs while maximizing the benefits on operation costs. Therefore, money could be saved and
more lines could be upgraded. Applying this model to large networks, such as national networks to
identify the lines that would require investment to meet long-term demand. For instance, it could be
applied to the Swedish network (simplified to the main cities and lines) to help achieve rail traffic targets.

5.7. Limitations of the model
The case study and the different scenarios revealed that under specific situations, the model may be
extremely long to solve. The activities between different train lines (transfer, headways, and regularity)
make the model more complex, which could lead the model to suggest interlocking improvement, or
segment improvement to four tracks.

The mathematical formulation of the model is based on several hypotheses. Firstly, platform routing
at station is committed: every train can run on any platform of a station, without considering their length.
In real life, some platforms are not long enough to allow some trains to dwell, and the interlockings need
to be such that any train can access any platform, which is not always the case. In real life, trains turn-
ing around might use a specific track and dwell implying passenger movement can only be done if the
tracks is equipped with platforms. Secondly, this model only investigates the possibility of building new
tracks on existing lines. However, in line planning processes, a line can be upgraded without building
a new track on its entire length: the signalling can be upgraded, usually resulting in higher speed and
denser traffic. Additional tracks can be built on a small portion of the line only (meeting station), to allow
trains to overtake or meet each other without upgrading an entire portion of the line to double tracks.
Finally, when upgrading a segment from single to double tracks, only the benefits on conflict restriction
are considered. However, because each track is reserved for one direction, the headway constraint
between trains running in opposite directions should also be relaxed.

In this research, the construction costs for building a new track are limited to pure construction costs.
Additional direct or indirect costs should also be considered. Direct costs could considered planning
and designing costs, possible costs overruns, land acquisition costs or construction costs of new spe-
cific infrastructure such as bridges or tunnels. Nevertheless, since the model only consider upgrading
line by adding one or more tracks next to a track already existing, those costs should be limited (for
example, there is no need to buy new land). Secondly, the indirect effects, also called external effects,
are the benefits related to the socio-economic impact of the new infrastructure on society. Since the
focus of this research is given on the long term, these impacts might have consequences on the im-
provement of a line. For example, the long term modal shift and its consequences on carbon emission,

54 5. Discussion

noise pollution or environmental impacts due to the perturbation of the local flora and fauna could have
been investigated. However, to put things into perspective, given that our case study only considers a
small section of railway, global socio-economic impact on the model shift is likely negligible. Moreover,
indirect construction costs could also consider the duration of the work construction and the perturbation
costs resulting from it. Indeed, work constructions on a line usually limit the use of the infrastructure and
therefore increase the operations costs of the train running on it. Finally, additional maintenance costs
of the new tracks should be taken into account. Operation costs only consider the running costs, without
considering additional costs such as delays or train cancellation costs. However, these costs are quite
high. Thus, further studies could also consider possible delays resulting from the produced timetable
and their costs. However, this would require further investigation of the timetable at a microscopic level.

Finally, the research has been limited to train scheduling problem, but other aspects of the railways
operations might have an effect on the results. For example, passenger flow impacts the operations
costs: the more the train is full, the more benefits for the railway operator. The capacity of the different
trains could also be considered.

5.8. Data collection of the cast study
The traffic data and traffic forecast made by the Transport Administration are quite limited. Indeed, only
the number of trains running between 06:00-18:00, 18:00-22:00 and 22:00-06:00 are given, thus, this
research considered the traffic to be evenly spread over the day. But in real life, the passenger demand
is higher during morning and evening peak-hours, thus the number of train running these peak-hours
is also higher. Since the model aims to check whether the current infrastructure could fit the long-term
demand, the focus should be given in testing the highest demand possible, i.e. during peak-hours.
Finally, the construction costs have been overestimated since they have been computed in the case of
double-track new high speed line. However, the line of the investigated case study is a conventional
line and is only an improvement: tracks are built next to already existing tracks and therefore do not
require land acquisition or construction of new bridges or tunnels.

5.9. Future works
Future works could investigate the possibility of allowing the model to create additional meeting sta-
tions. A meeting station is a small area with additional tracks that allow trains to wait to allow other
trains to overtake another one. This has the advantage of having similar benefits to upgrading the
entire line but with a lower budget. However, this required symmetric timetables to ensure trains meet
at the same area, usually in the middle of the segment.

Moreover, future improvements could relax headway constraints depending on the number of tracks
on the segment. On a single track, headway constraints must concern both trains running in the same
and opposite directions. However, if opposite trains are running on (at least) double tracks, then each
track has a reserved direction and trains cannot meet each other. In that case, one train can leave
a station at the same time as the other arrives at that station, because they do not run on the same
tracks. Since the infrastructure can be updated, the headway constraints between trains running in
opposite directions should be satisfied or not, depending on the number of tracks. This relaxation has
not been investigated in this research and would require additional binary variables indicating whether
or not the headway constraints have to be satisfied. This improvement could lead to longer CPU, but
would lead to the possibility of allocating more trains on double tracks and could therefore increase the
benefits of upgrading a single track to double tracks.

Finally, future works could also investigate the possibility of introducing symmetry in the formulation.
Liebchen (2004) shows that introducing symmetry in the PESP formulation results in lower CPU but in
poorer objective values. By reducing the CPU, the model could be implemented in larger networks.

6
Conclusion

This research aimed to develop a macroscopic timetabling model optimizing the construction of new
tracks on a given railway network to ensure the feasibility of the long-term demand. When investigat-
ing short-term scenarios, the demand is usually adapted to the infrastructure. If the demand exceeds
the capacity of the infrastructure, it is reduced by canceling and re-routing conflicting trains. However,
when investigating long-term scenarios, the problem should be considered from another perspective:
the infrastructure should be modified to ensure it will meet predicted demand. To do so, this research
applies the PESP model to railway activities and formulates it as a MILP. Formulations currently used
in the field do not consider the possibility of having a flexible number of tracks on the different seg-
ments and stations of a corridor. This research therefore extends the conflicts restriction formulation
proposed by Zhang and Nie (2016) by introducing flexible numbers of tracks and optimizing the cost-
benefit trade-off of these upgrades by minimizing both the total construction costs and the operation
costs of the timetable.

The model’s strengths are demonstrated by investigating different demand scenarios on a portion
of the Mälarbanan line, located northwest of Stockholm. When simulating the predicted 2040 demand,
results show that upgrading only one small portion of the corridor to double tracks would ensure a feasi-
ble timetable, leading to 67% cut in construction costs while increasing the operation costs by only 11%
(compared to the case where the entire corridor is upgraded to double tracks). Therefore, the model
goes beyond the current line planning methods and does not simply suggest new tracks’ construction
on the bottleneck portion of a line. Instead, the model explores all possible infrastructure improvements
and minimizes the overall construction and operations costs. When an infrastructure upgrade is sug-
gested, the model maximizes the benefits of these modifications by presenting the greatest number
of conflicts on the upgraded line portion. This extension of the PESP model offers a new approach to
construction cost minimization in railway line planning.

While the model demonstrates promising results, further testing is required under more complex
operating conditions such as interactions between the different train lines (transfers, turnarounds) or
higher frequencies. The practicality of the solution proposed by the model could also be tested to check
whether the suggested infrastructure improvements are technically feasible. Moreover, this model ap-
proximates the various operation and construction costs and does not fully capture the real-world com-
plexity of railway operation and planning costs. Further development of the model could investigate the
possibility of introducing flexible headway constraints according to the number of tracks of the different
portions of the network. The potential for building additional meeting stations on a line could also be
investigated and should improve the model’s solutions by reducing the construction costs. Moreover,
further research should investigate the robustness of the timetable produced by the model.

In conclusion, this research advances strategic and efficient line planning to meet the increasing
demand for railway services. The model developed for this research offers an innovative approach to
both conflict management and infrastructure improvements, while considering the economic viability of
the solution proposed. It contributes to the ongoing efforts to move forward decarbonized mobility.

55

A
Research paper

57

Optimizing Railway Infrastructure to Meet Future Demand:
a Macroscopic Timetabling Model

Matéo Ménoury
Supervised by R.M.P. Goverde, J.A. Annema, P.S.A. Stokkink and K. Bediru Seid

Abstract— This paper proposes an innovative macroscopic
timetabling model aiming to optimize railway infrastructure
to accommodate the future increasing demand. The model
applies the PESP formulation to railway operations and
formulates it as a MILP model. The number of tracks on
each portion of the infrastructure is flexible, and so are
the conflicts between different trains. The model minimizes
the overall construction and operation costs while ensuring
a conflict-free timetable for the long-term demand. A case
study on the Swedish Mälarbanan line demonstrates the
model’s application and validates the microscopic feasibility
of the produced timetables. Model shows promising results
by suggesting low infrastructure upgrades while offering total
travel times almost equivalent to the case where the entire
line is upgraded.

Keywords: Railway timetabling, Periodic Event
Scheduling Problem (PESP), Mixed Integer Linear
Programming (MILP), Line planning, Swedish rail-
ways.

I. INTRODUCTION

Demand for railway services is increasing in Swe-
den. However, the infrastructure is limited, and nu-
merous lines are still constituted of single tracks only,
limiting the capacity of the network. Concerns are
rising on whether the current state of the infrastructure
will be able to meet future demand. Long-term line
planning is fundamental to investigating the bottleneck
portions of a line that should be upgraded. However,
upgrading an entire portion of the line requires high in-
vestments. Railway timetables organize different train
movements to ensure safe and predictable traffic. Usu-
ally, timetables are simulated on a short-term scale
and the demand is therefore adapted to ensure it
does not exceed the current infrastructure’s capacity.
In long-term investigation, infrastructure should be
adapted to meet the demand. Nevertheless, limited
research has addressed timetabling models allowing
infrastructure modifications, leaving a critical gap in
our understanding of macroscopic timetabling. This
research aims to develop a macroscopic timetabling
model optimizing the construction of new tracks on
a given railway network, to ensure the feasibility

of the long-term demand. To do so, the number of
tracks is considered flexible and can be increased to
find the optimal trade-off between the construction
costs required for the infrastructure upgrades and their
benefits on the operation costs.

II. CURRENT TIMETABLING MODELS

A. PESP applied to railway operations

The Periodic Event Scheduling Problem (PESP)
[1] constitutes a systematic approach used as the
basis of most periodic activities scheduling problems.
The PESP is based on a periodic event-activity
directed graph G = (E,A) in which the nodes x ∈ E
depict the arrival and departure events and the arcs
a = (x, y) ∈ A represent the activities between those
events with interval constraints. Those activities can
be running, dwelling, turnaround, passing-through,
transfer, headways, or regularity.

FIG 1. Event-activity graph. A, B and C are three
different stations.

dx,y = (vy − vx) + px,y ·Π ∀a = (x, y) ∈ A (1)

Constraint (1) defines the duration of activity a =
(x, y) as the time difference between the end time vy
and the start time vx [sec]. If the activity is spread over
two periods, i.e. if px,y = 1, then the period Π [sec] is

added to the time difference (vy − vx) to ensure that
the duration is always a positive value.

px,y =

{
1 if vy < vx

0 otherwise
∀a = (x, y) ∈ A (2)

Linear formulation of (2):

vy − vx ≤ −ϵ+M · (1− px,y) ∀a = (x, y) ∈ A (3)

With M a sufficiently large value

Constraints (2) defines the value of the binary
variable px,y. In this model, it is restricted to a binary
variable since the upper bound of every activity is
lower than the period Π. It takes the value 1 if event
y is scheduled before event x, and 0 otherwise. In
other words, the modulo operator indicates whether
the activity points at an event in the same or next
period than the origin event.

Lx,y ≤ dx,y ≤ Π
∀a = (x, y) ∈ A\
(Aheadway ∪Areg)

(4)

Lx,y ≤ dx,y ≤ Π− Lx,y ∀a = (x, y) ∈ Aheadway (5)

dx,y =
Π

frex,y
∀a = (x, y) ∈ Areg (6)

Constraints (4) and (5) ensure that the duration of
all run, dwell, pass-through, transfer, turnaround, and
headway activities a are bonded between a maximal
and minimal duration Lx,y > 0 [sec]. Constraint (6)
ensures that the duration of the regularity activity is
fixed to the period of the corresponding line, based on
its frequency frex,y [unit/period]. This ensures that
every event of the different copies of the same line
occurs at consistent, evenly-spaced intervals.

The PESP is a feasibility problem: if a feasible
solution does not exist, the user can then relax one of
the constraints and run the model again. An objective
function can be added on top of it. Then, the algorithm
aims to find the optimal solution according to the
objective function.

B. Flexible overtaking constraint
A feasible timetable must be conflict-free: two trains

running on the same track can neither overtake each
other nor meet each other. [2] extends the PESP
problem and proposes linear constraints to avoid or
allow overtaking. The research describes all possible
scenarios and analyses the behavior of the different
modulo operators px,y. When two activities a = (x, y)
and a′ = (x′, y′) imply two trains running on the
same segment, their departure and arrival events are
constrained by headway constraint (see FIG 1). Thus,

four modulo operators can be obtained: px,y, px′,y′ ,
px,x′ and py,y′ . The authors show that the sum of
those modulo operators equals zero, two, or four when
overtaking is prevented, and equals to one or three
otherwise. In other words, if the sum is even, no
conflict is detected and if the sum is odd, a conflict
is detected. This paper extends this approach and
formulates the following constraint that detects the
presence or not of a conflict between two activities
a = (x, y) and a′ = (x′, y′) on a given track.

q(a,a′) =

1 if (px,y + px′,y′

+px,x′ + py,y′)

≡ 0 (mod 2)

0 otherwise

∀(a, a′) (7)

Constraint (7) defines the binary variable q which
takes the value 1 if the activities a = (x, y) and
a′ = (x′, y′) are conflicted, and zero otherwise. The
conflict detection developed for our research presents
two differences from the one proposed by [2]. Firstly,
our research also detects the collision, i.e. the conflict
between two trains running in opposite directions. To
do so, the model simply inverses the direction of
the train and applies the same constraint previously
introduced. Secondly, in our model, the conflicts are
only detected and counted per segment, and the model
is free to create or not conflict.

III. COST-MINIMIZATION MODEL

A. New sets and decision variables
Unlike other PESP approaches, this model

introduces a flexible conflict restriction and
infrastructure optimization. The network is depicted
in a graph H = (I, S) in which the nodes i ∈ I
are the interlockings (stations or meeting stations)
and the arcs s ∈ S represents the segments (lines)
between the different interlockings. Each segment s
and interlocking i has an initial number of tracks
tbefore
s and tbefore

i . The location index l ∈ (I ∪ S) is
also introduced to simplify the notation.

FIG 2: Macroscopic representation of a railway
network.

B. Objective function
The objective function (8) is written as a minimiza-

tion of total costs by minimizing the sum of three
different components: operation costs, construction

costs of segments, and construction costs of inter-
lockings. These different costs have different orders
of magnitude. Thus, the sum cannot be minimized
as such, otherwise, the model would focus too much
on reducing the construction costs. The costs are
normalized using the min-max normalization (9). Ad-
ditionally, the different coefficients α, β, and γ such
that α + β + γ = 1 reflect on the priority to give to
the optimization.

min α · cnormalized
operation + β · cnormalized

segment + γ · cnormalized
interlocking (8)

With:

cnormalized =
c− cmin

cmax − cmin
(9)

coperation =
∑

a=(x,y)∈A

cx,y · dx,y (10)

cinterlocking =
∑
i∈I

cnew track
i · (tafter

i − tbefore
i) (11)

csegment =
∑
s∈S

cnew track
s · (tafter

s − tbefore
s) (12)

The total operation costs (10) are computed as the
sum of every activity duration dx,y [sec] multiplied
by its cost cx,y [SEK/sec]. The minimum possible
operation costs correspond to the situation where ev-
ery activity is scheduled according to their minimum
duration time Lx,y. The maximum possible operation
costs correspond to the situation where every activity
duration is maximal, i.e. if every activity duration
equals Π.

The total construction costs of interlocking (11) and
segments (12) are computed as the sum of the costs of
every track that needs to be built on every interlocking
or segment. cnew track

i and cnew track
s [SEK/track] are the

costs for building one new track in a specific segment
s or i. The difference (tafter

s - tbefore
s) gives the number of

tracks to be constructed at segment s. The same goes
for interlocking i. The minimum possible construction
costs are zero and corresponds to the situation where
no interlocking is upgraded. The maximum possible
construction costs correspond to the situation where
every new track tmax is constructed at the most ex-
pensive interlocking to upgrade.

The objective function (8) is subject to the basic
PESP constraints (1), (2), (4), (5), and (6) previously
introduced, and to new constraints that are defined in
the following sections.

C. Conflict detection

The conflicts must first be detected. To do so,
different sets Ck

l of all combinations of k activities
taking place at location l: these activities are sus-
ceptible to be conflicted. A combination refers to a
selection of activities a where the order of the different
activities does not matter: the combination (a, a′) is
equivalent to the combination (a′, a) (see FIG 3). A
conflict between two activities is detected using the
formulation defined in constraint (7). Each set of two
activities C2

l is associated with a binary variable qc,l
indicating whether the two activities a = (x, y) and
a′ = (x′, y′) are conflicted.

qc,l =

1 if (px,y + px′,y′

+px,x′ + py,y′)

≡ 0 (mod 2)

0 otherwise

∀c = (a, a′)

∀l ∈ (S ∪ I)
(13)

Linear formulation of (13):

qc,l = (px,y + px′,y′+

px,x′ + py,y′)− 2 · z1
∀c = (a, a′)

∀l ∈ (S ∪ I)
(14)

With z1 an integer variable

Nevertheless, detecting conflicts between two
different trains is not enough. Indeed, depending on
the number of tracks of a given location l, it can
be acceptable to have more than two trains sharing
the same infrastructure at the same time. Therefore,
conflicts between more than two trains also have to
be detected. To do so, each combination of more than
two activities c = (a, a′, a′′, ...) is associated with a
binary variable qc,l indicating whether each activity
a from the combination c is conflicted with every
other one. The two examples above show the conflict
detection among a set of activities A: one applied to
an interlocking i (left diagram) and one applied to a
segment s (right diagram).

FIG 3: Possible sets of conflicts given a set of
activities A. Each combination is associated with a
binary variable.

The binary variables associated with the differ-
ent sets C3 and C4 are calculated based the binary
variables associated with the set C2, as defined by
constraint (13). In the example above, every activity
a, a′, and a′′ is conflicted with the two others. There-
fore, the some of the 3 binary variables q(a,a′)(a,a′′) +
q(a,a′)(a′,a′′)+q(a,a′′)(a′,a′′) = 3, thus, the binary variables
q(a,a′,a′′) takes the value 1. The example is generalized
with the formulation as follows.

qc,i =

1 if

∑
c∗∈C2

i

c∗∈c

qc∗,i =

(
k

2

)

0 otherwise

∀c ∈ Ck
i

k > 2

∀i ∈ I

(15)

Linear formulation of (15):∑
c∗=(a,a′)∈C2

i

a,a′∈c

qc∗,i ≤
(
k

2

)
+ ϵ+M · qc,i

∑
c∗=(a,a′)∈C2

i

a,a′∈c

qc∗,i ≥
(
k

2

)
−M · (1− qc,i)

∀c ∈ Ck
i

k > 2

∀i ∈ I

(16)

Constraint 15 defines the binary variable qc,i. It
takes the value 1 if every activity of the combination c
is conflicted with every other. To do so, every possible
pair of conflicts among the combination c is checked.
If the sum of their binary variables qc∗,i, computed
in constraint 13 equals the number of possible pairs,
then every activity is conflicted with each other. The
number of possible pairs among a combination c of
k activities equals

(
k
2

)
= k!

2!(k−2)!
= k(k−1)

2
.

D. Minimum number of tracks required

The conflicts and the number of tracks required
on the network are interdependent. tneeded

s and tneeded
i

are integer variables indicating the minimum number

of tracks required to resolve detected conflicts, en-
suring that the demand fit within the infrastructure
without causing any collision. The formulation differs
depending on the type of infrastructure: segment or
interlocking.

On a segment s, the rule is: at any moment time,
there cannot be conflicts on the same track. There-
fore, constraint (17) defines the minimum number
of tracks needed at segment s to ensure that the
timetable is conflict-free, based on the number of
conflicts detected. Each segment can have one, two,
or four tracks. On a single-track corridor, trains can
run in both directions. Therefore, a segment needs
at minimum one track if no trains are running in
opposite directions at the same moment and no trains
are overtaking each other. On a double-track corridor,
each track is reserved for one direction. Therefore,
a segment needs at minimum two tracks if at least
two trains are running in opposite directions but no
train is overtaking another one. Finally, on a four-
track corridor, we consider that two tracks are used
for each direction, which allows overtaking. A segment
needs at minimum four tracks if at least one train is
overtaking another one running in the same direction.
For example, the situation presented on the right
diagram of Figure 3 requires four tracks because one
train running in the blue direction overtakes another
one running in the same direction.

tneeded
s =

1 if kopp

s = 0 and ksame
s = 0

2 if kopp
s = 1 and ksame

s = 0

4 if ksame
s = 1

∀s ∈ S (17)

kopp
s =

1 if

∑
c=(a,a′)∈c2s
dira ̸=dira′

kc,s ≥ 1

0 otherwise

∀s ∈ S (18)

ksame
s =

1 if

∑
c=(a,a′)∈c2s
dira=dira′

kc,s ≥ 1

0 otherwise

∀s ∈ S (19)

Linear formulation of (17):

z2 ≤ kopp
s

z2 ≤ ksame
s

z2 ≥ kopp
s + ksame

s − 1

z3 = 1− ksame
s − kopp

s + z2

z4 = kopp
s − z2

tneeded
s = z3 · 1 + z4 · 2 + ksame

s · 4

∀s ∈ S (20)

With z2, z3, z4 binary variables

Constraints (18) and (19) define the help binary
variables k which take the value 1 if there is respec-
tively at least one overtaking (i.e. conflict between two

trains running in the same direction) and at least one
collision (i.e. conflict between two trains running in
opposite directions) on the segment s. The parameter
dira ∈ {−1, 1} identifies the direction of the train
corresponding to the activity a = (x, y).

kc,s = 0

∀c = (a, a′, a′′) ∈ C3
s

such that dira = dira′ = dira′′

∀s ∈ S

(21)

In any case - one, two, or four tracks - there cannot
be three different trains running in the same direction
overtaking each other (one slow train, one fast train,
and one high-speed train for example). Indeed, that
would require at least three tracks reserved for that
direction. Therefore, constraint (21) ensures that on
each segment, there is no combination of three differ-
ent activities a, a′ and a′′ having the same direction
such that each of them has a conflict with the two
others. However, one train is still allowed to overtake
multiple slower trains on the same segment, and one
train can be overtaken by multiple faster trains.

On an interlocking i, the rule is: at any moment
time, there cannot be more train than tracks. Here, the
direction of the train does not matter and any train can
dwell or pass on any track of a station.

tneeded
i = max

c∈Ci

(qc,i · len(c)) ∀i ∈ I (22)

Linear formulation of (22):

tneeded
i ≥ qc,i · len(c) ∀c ∈ Ci, ∀i ∈ I (23)

Constraint (22) defines the minimum number of
tracks needed at interlocking i to ensure that the
timetable is conflict free, based on the number of
conflicts detected. Each interlocking can have as many
tracks as needed, computed as the maximal number
of trains running, passing, dwelling or turning around
at an interlocking at the same time. To do so, each
possible combination of activities c taking place at
interlocking i is checked. Among the combinations
for which qc,i = 1, the combination with the larger
number of activities, given by its length len(c), is set
to be the minimum number of tracks needed. As a
reminder, qc,i takes the value 1 if and only if each
activity of c is conflicted with every other one. For
example, the situation presented on the left diagram
of Figure 3 requires three tracks on the station.

E. Optimal number of tracks

Based on these decision variables and the initial
state of the infrastructure, tafter

s and tafter
i return the

number of tracks the network should have to satisfy
the demand.

tafter
l = max{tbefore

l , tneeded
l } ∀l ∈ (S ∪ I) (24)

Linear formulation of (24):

tafter
l ≥ tbefore

l

tafter
l ≥ tneeded

l

∀l ∈ (S ∪ I) (25)

Constraint (24) ensures that if the initial number of
tracks at a segment is lower than the minimal required
number of tracks, the infrastructure is updated.

∑
l∈S∪I

(tafter
l − tbefore

l) ≤ tmax (26)

Constraint (26) restricts the number of new tracks to
be constructed on the entire network using the integer
parameter tmax

IV. RESULTS

FIG 4: Jbk-Kbä corridor of the Mälarbanan.
The model is applied to a small portion of the

Mälarbanan. This line is located northwest of Stock-
holm and demand is expected to increase. However,
an important portion of the line is still constituted of
single tracks. This portion of the line is tested with
the designed model to assess whether it could ac-
commodate the 2040 predicted demand. The minimum
technical running times are directly simulated within
RailSys.

TABLE I

VARIOUS INPUT DATA

PARAMETERS APPLIED [3]
Min running time supp 8% of the min technical running time

Headway time 3 min
Buffer time 1 min, added to the headway times

Min dwell time 2 min
α 0.5
β α/2
γ α/2

DEMAND 2040 [4] AND OPERATION COSTS [5]
Freight 1/h-direction

no mandatory stop
4.31 SEK/sec

Intercity 1/h-direction
1 stop at Kp
4.53 SEK/sec

Regional 2/h-direction
2 stops at Kp and Vsg
9.17 SEK/sec

CONSTRUCTION COSTS (IN MILLION SEK) [6]
Cost per segment 373 / track km

Jbk-Arb 844
Arb-Vsg 1,624
Vsg-Kp 2,581

Kp-Morp 2,536
Morp-Kba 1,892

Cost per interlocking 0.2 / platform metre
Jbk 25
Arb 51
Vsg 25
Kp 64

Morp 25
Kba 30

FIG 5: Optimal time-distance diagram obtained.

TABLE II

RESULTS OF THE MODEL

Infrastructure to upgrade Kp-Morp to double tracks
Total operation costs 72,022 SEK

Total construction costs 2,536 million SEK
Objective value 0.242126

Number of variables 1,770 (incl. 1,062 binary)
Number of constraints 3,384

Number of iterations 522,390,696
CPU 1h 37min

Optimally gap 4.9%

The simulation model produces timetables feasible
at the macroscopic level. However, their feasibility at
the microscopic level is not guaranteed since several
hypotheses have been made and the detailed signalling
of the infrastructure has not been considered. Thus the
timetables produced are simulated in RailSys to assess
their feasibility at the microscopic level.

FIG 6: Microscopic simulation of the time-distance
diagram given in Figure 5.

To assess the sensitivity of the optimal solution to
that parameter, the same scenario has been tested with
different values of α, keeping all the other parameters
identical.

FIG 7: Operation and construction costs of the
optimal solution, given various values of α.

FIG 8: Optimal time-distance diagram obtained with
α = 1

V. DISCUSSION

The results show that the model can handle the
key constraints: the headway times, minimum running
times, dwell times, and regularity constraints are all
satisfied and no conflict is allowed where the infras-
tructure is only constituted of a single track. Since the
buffer times have been introduced within the headway
times, the model has to schedule a timetable with high
headway times. The timetables are all Π-periodic. The
current state of the infrastructure would not be able to
meet the 2040 projected demand.

Freight trains have unsolicited stops at stations Arb
and Vsg. This demonstrates that the model manages
to prioritize train operations regarding their costs. This
demonstrates the trade-off the model has to optimize:
upgrading the infrastructure to avoid these additional
stops and to lower as much as possible operations costs
is not necessarily optimal. Seven different conflicts
take place on the Kp-Morp portion of the line, which
is upgraded to double tracks. This portion is the most
expensive one to upgrade, but also the longest one and
therefore the one having the most benefits on traffic.
Therefore, if the model suggests an infrastructure
upgrade, the optimal timetable takes as much as pos-
sible advantages of the new construction. The optimal
infrastructure of the second scenario is a corridor of
single - double - single - double - single tracks. Thus,
this result also suggests that it is more efficient to
spread the double tracks all along the corridor rather
than having a long portion of double tracks. Indeed,
this allows to have two distinct areas where opposite
trains can meet each other.

Figure 8 shows that at the microscopic level, con-
flicts are detected between trains running in opposite
directions. This aligns with our expectations since
the infrastructure has not been upgraded in RailSys,
and is therefore still composed of single tracks, even
on the portions suggested to be upgraded to double

tracks. Therefore, these conflicts can be omitted in this
research. On the corridor Morp-Kp, blocking times of
the regional and intercity trains overlap for a minute on
two block sections of the corridor. The same goes for
the regional and intercity trains whose blocking times
overlap for a few seconds in one block section. This
can be explained by the length of these two blocks
which are longer than the other blocks of the corridor.
The longer the block length, the longer the blocking
time. Nevertheless, these three conflicts are minimal
and could be easily resolved at the microscopic level
by slightly re-dispatching one or the other train, to
ensure their blocking times do not overlap. At the
macroscopic level, these conflicts could be avoided by
reinforcing the headway constraint on the Kp-Morp
portion of the corridor, by increasing its value to four
minutes (instead of three on the other block sections).

Figure 7 shows that, as expected, the construction
costs increase with α. The higher α is, the more
the model focuses on reducing operation costs. With
α = 0, the model only minimizes the construction
costs without considering the operation costs, thus the
model tries as much as possible to fit the train request
without changing the infrastructure. This results in
high operation costs and an unrealistic timetable. On
the other hand, with α = 1, the model only minimizes
the operation costs without considering the construc-
tion costs, thus, the construction costs are high. This
case is presented in Figure 8 and the model suggests
upgrading every segment to double tracks. Compared
to the scenario where the entire corridor is upgraded
to double track (Figure 8, α = 1), upgrading only one
small portion of the corridor to double tracks (Figure
5, α = 0.5) would ensure a feasible timetable, leading
to 67% cut in construction costs while increasing the
operation costs by only 11%. These results highlight
the need to find the proper value of alpha to assess
different scenarios. In other words, the parameter
α reflects the time scale: if one wishes to investi-
gate a long-term scenario with high demand, priority
should be given to minimizing the operation costs. If
one wishes to investigate short-middle term scenarios
where with a reduced budget and time to build new
tracks, the minimization of operation costs should be
relaxed. These results demonstrate the flexibility and
the strength of the model.

VI. CONCLUSION

This research introduces the possibility of building
new tracks on a railway network and optimizing
the cost-benefit trade-off of these upgrades by
minimizing both the total construction costs and the

operation costs of the timetable. The model extends
the flexible conflicts restriction to a flexible state of
the infrastructure: when an infrastructure upgrade
is suggested, the model maximizes the benefits of
these modifications by presenting the greatest number
of conflicts on the upgraded line portion. Results
demonstrated the model’s strengths: the model
strongly reduces construction costs while maintaining
almost minimal operation costs. Therefore, the model
goes beyond the current line planning methods and
does not simply suggest the construction of new tracks
on the bottleneck portion of a line. Instead, the model
explores all possible infrastructure improvements and
minimizes the overall construction and operations
costs. Thus, this extension of the PESP model offers
a new approach to construction cost minimization in
railway line planning.

REFERENCES

[1] P. Serafini and W. Ukovich, ”A Mathematical Model for Periodic
Scheduling Problems,” SIAM J. Discret. Math., vol. 2, pp. 550-581,
1989.

[2] X. Zhang and L. Nie, ”Integrating capacity analysis with high-
speed railway timetabling: A minimum cycle time calculation
model with flexible overtaking constraints and intelligent enumer-
ation,” Transportation Research Part C: Emerging Technologies,
vol. 68, pp. 509-531, 2016.

[3] E. Solinen, Generella konstruktionsregler för tågplanekonstruktion,
version 1.0, Trafikverket, Röda vägen 1, 781 70 Borlänge, 2022,
ISBN: 978-91-7725-920-6, no. 2021:163.

[4] Trafikverket, ”Trafikuppgifter jarnvag T22 och bullerprognos
2040,” 2021.

[5] Trafikverket, ”Network Statement 2024,” Edition 2023-12-15. For
deliveries from 2023-12-10 to 2024-12-14, December 2023.

[6] Trafikverket and Jacobs, ”New Main Lines: Cost Benchmarking
Study,” Trafikverket and Jacobs, Tech. Rep., March 2021.

B
Code

B.1. Functions
B.1.1. Processing functions

Create event
def create_event (t ra in_ reques t , i n t e r l o c k i n g , per iod) :

event = pd . DataFrame (columns =[’ eventID ’ , ’ l i n e ID ’ , ’ event_type ’ , ’ even t_ loca t i on ’ , ’
event_frequency ’]) # create empty tab l e

for idx , row in t r a i n_ reques t . i t e r r ows () : # i t e r a t e f o r each l i n e requested
base l ine ID = idx # the l i n e ID w i thou t cons ider ing the d i f f e r e n t copy
path = row [’ path ’] # l i s t
s top_s ta t i ons = row [’ s t op_s ta t i ons ’] # l i s t
event_frequency = math . c e i l (row [’ f requency ’] * (per iod /60)) # number o f copy o f the

l i n e ID events per per iod

for copy in range ((event_frequency)) : # i t e r a t e f o r each copy o f the l i n e ID
l i n e ID = idx + ’− ’ + st r (copy+1) # the new l i ne ID cons ider ing the number o f copy

of each l i n e

for i , i n t e r l o c k i n g ID in enumerate (path) : # i t e r a t e f o r each i n t e r l o c k i n g i n the
path o f the l i n e
s t a t i o n = i n t e r l o c k i n g . l oc [i n t e r l o c k i ng ID , ’ s ta t ion_code ’] # s t a t i o n code of

the i n t e r l o c k i n g ID

i f i == 0 : # create on ly one row f o r the depar ture s t a t i o n
event_type = ’ dep ’
event . l oc [len (event)] = [’ e ’ + st r (len (event) + 1) , l i ne ID , event_type ,

i n t e r l o c k i ng ID , event_frequency]

e l i f i == len (path) − 1 : # create on ly one row f o r the a r r i v a l s t a t i o n

event_type = ’ a r r ’
event . l oc [len (event)] = [’ e ’ + st r (len (event) + 1) , l i ne ID , event_type ,

i n t e r l o c k i ng ID , event_frequency]

else : # create two rows f o r i n te rmed ia te s t a t i o n s
event_ type_arr = ’ a r r ’ i f s t a t i o n in s top_s ta t i ons else ’ a r r −pass ’
event_type_dep = ’ dep ’ i f s t a t i o n in s top_s ta t i ons else ’ dep−pass ’
event . l oc [len (event)] = [’ e ’ + st r (len (event) + 1) , l i ne ID ,

event_type_arr , i n t e r l o c k i ng ID , event_frequency]
event . l oc [len (event)] = [’ e ’ + st r (len (event) + 1) , l i ne ID ,

event_type_dep , i n t e r l o c k i ng ID , event_frequency]

event . set_ index (’ eventID ’ , i np lace=True) # set the ’ eventID ’ as index

return (event)

67

68 B. Code

Create activity
def c r e a t e _ a c t i v i t y (t ra in_ reques t , i n t e r l o c k i n g , segment , event , r o l l i n g_s t o c k , regu la t i on ,

min_techn ica l_runn ing_t imes) :

a c t i v i t y = pd . DataFrame (columns =[” a c t i v i t y I D ” , ” from_eventID ” , ” to_event ID ” , ”
a c t i v i t y _ t y p e ” , ” a c t i v i t y _ l o c a t i o n ” , ” m i n_ac t i v i t y _du ra t i on ” , ” a c t i v i t y _ c o s t ” , ”
t r a i n _ d i r e c t i o n ”]) # create empty tab l e

for idx , row in t r a i n_ reques t . i t e r r ows () :
base l ine ID = idx
ro l l i n g_s t ock_va l ue = row [’ r o l l i n g _ s t o c k ’]
i n t e r a c t i o n = row [’ i n t e r a c t i o n ’]
w i t h_ l i ne ID = row [’ w i t h_ l i ne ID ’]
a t _ s t a t i o n = row [’ a t _ s t a t i o n ’]
cost = row [’ cost ’]
even ts_ in_ l i ne ID = event [event [’ l i n e ID ’] . st r . s t a r t sw i t h (base l ine ID + ’− ’)] # events

from the same l i n e

−−−− Run , dwel l , pass −−−−

for l i ne ID , events_ in_ l ine ID_group in even ts_ in_ l i ne ID . groupby (’ l i n e ID ’) : # i t e r a t e
f o r each event o f the same l i n e

for i in range (len (events_ in_ l ine ID_group) − 1) : # i t e r a t e f o r each pa i r o f
consecut ive events
f rom_eventID = events_ in_ l ine ID_group . index [i] # f i r s t event o f the a c t i v i t y
to_event ID = events_ in_ l ine ID_group . index [i +1] # second event o f the a c t i v i t y
f r om_ in te r l ock i ng ID = event . l oc [from_eventID , ’ even t_ loca t i on ’] # l o ca t i o n o f

the f i r s t event
t o _ i n t e r l o c k i n g ID = event . l oc [to_eventID , ’ even t_ loca t i on ’] # l o ca t i o n o f the

second event

i f i n t (f r om_ in te r l ock i ng ID [1]) < i n t (t o _ i n t e r l o c k i n g ID [1]) : # i f the t r a i n
goes i n d i r e c t i o n 1

t r a i n _ d i r e c t i o n = 1

i f i n t (f r om_ in te r l ock i ng ID [1]) > i n t (t o _ i n t e r l o c k i n g ID [1]) : # i f the t r a i n
goes i n d i r e c t i o n −1
t r a i n _ d i r e c t i o n = −1

i f i n t (f r om_ in te r l ock i ng ID [1]) == i n t (t o _ i n t e r l o c k i n g ID [1]) : # i f the t r a i n
i s dwe l l i ng a t i n t e r l o c k i n g , we look a t the next event
i f i == 0 : # i f f i r s t event

next_eventID = events_ in_ l ine ID_group . index [i +2]
nex t _ i n t e r l o c k i ng ID = event . l oc [next_eventID , ’ even t_ loca t i on ’]
i f i n t (t o _ i n t e r l o c k i n g ID [1]) < i n t (nex t _ i n t e r l o c k i ng ID [1]) : # i f the

t r a i n goes i n d i r e c t i o n 1
t r a i n _ d i r e c t i o n = 1

else :
t r a i n _ d i r e c t i o n = −1

else :
prev ious_event ID = events_ in_ l ine ID_group . index [i −1]
p rev i ous_ i n t e r l o ck i ng ID = event . l oc [previous_eventID , ’ even t_ loca t i on

’]
i f i n t (p r ev i ous_ i n t e r l o ck i ng ID [1]) < i n t (t o _ i n t e r l o c k i n g ID [1]) : # i f

the t r a i n goes i n d i r e c t i o n −1
t r a i n _ d i r e c t i o n = 1

else :
t r a i n _ d i r e c t i o n = −1

−−−− Pass −−−−

i f event . l oc [from_eventID , ’ event_type ’] == ” ar r −pass ” and event . l oc [
to_eventID , ’ event_type ’] == ” dep−pass ” :
a c t i v i t y _ t y p e = ” pass ”
a c t i v i t y _ l o c a t i o n = f rom_ in te r l ock i ng ID
m in_ac t i v i t y _du ra t i on = regu l a t i on . l oc [’ pass ’ , ’ min_time ’]
a c t i v i t y _ c o s t = r egu l a t i on . l oc [’ pass ’ , ’ cost ’] * cost

B.1. Functions 69

−−−− Dwell −−−−

e l i f event . l oc [from_eventID , ’ event_type ’] == ” a r r ” and event . l oc [to_eventID ,
’ event_type ’] == ” dep ” :

a c t i v i t y _ t y p e = ” dwel l ”
a c t i v i t y _ l o c a t i o n = f rom_ in te r l ock i ng ID
m in_ac t i v i t y _du ra t i on = regu l a t i on . l oc [’ dwe l l ’ , ’ min_time ’]
a c t i v i t y _ c o s t = r egu l a t i on . l oc [’ dwe l l ’ , ’ cost ’] * cost

−−−− Run −−−−

else :
a c t i v i t y _ t y p e = ” run ”

i f t r a i n _ d i r e c t i o n == 1:
a c t i v i t y _ l o c a t i o n = segment . l oc [(segment [’ f r om_ in te r l ock i ng ID ’] ==

f r om_ in te r l ock i ng ID) & (segment [’ t o _ i n t e r l o c k i n g ID ’] ==
t o_ i n t e r l o c k i n g ID)] . index [0]

e l i f t r a i n _ d i r e c t i o n == −1:
a c t i v i t y _ l o c a t i o n = segment . l oc [(segment [’ f r om_ in te r l ock i ng ID ’] ==

t o_ i n t e r l o c k i n g ID) & (segment [’ t o _ i n t e r l o c k i n g ID ’] ==
f r om_ in te r l ock i ng ID)] . index [0]

m i n_ac t i v i t y _du ra t i on = (1 . 08 / 1 . 03) * min_techn ica l_runn ing_t imes . loc [
r o l l i n g_s t ock_va l ue] [a c t i v i t y _ l o c a t i o n]

a c t i v i t y _ c o s t = r egu l a t i on . l oc [’ run ’ , ’ cost ’] * cost

a c t i v i t y . l oc [len (a c t i v i t y)] = [’ a ’ + st r (len (a c t i v i t y) + 1) , from_eventID ,
to_eventID , a c t i v i t y _ t y pe , a c t i v i t y _ l o c a t i o n , m in_ac t i v i t y_du ra t i on ,
a c t i v i t y _ c o s t , t r a i n _ d i r e c t i o n]

−−−− Transfer , turnaround −−−−

i f isinstance (i n t e r a c t i o n , l i s t) : # i f there i s a t l e as t one i n t e r a c t i o n

for i , a c t i v i t y _ t y p e in enumerate (i n t e r a c t i o n) : # i t e r a t e f o r each i n t e r a t i o n o f
the base l ine ID
l i ne_ f requency = t r a i n_ reques t . l oc [basel ineID , ’ f requency ’] # number o f t ime

the l i n e i s repeated

for copy in range (i n t (l i ne_ f requency)) :
l i n e ID = base l ine ID + ’− ’ + st r (copy+1) # the l i n e ID cons ider ing the

d i f f e r e n t copy
i n t e r a c t i o n _ s t a t i o n = a t _ s t a t i o n [i]
a c t i v i t y _ l o c a t i o n = i n t e r l o c k i n g [i n t e r l o c k i n g [’ s ta t ion_code ’] ==

i n t e r a c t i o n _ s t a t i o n] . index [0]
i n te rac ted_base l i ne ID = w i t h_ l i ne ID [i]
i n t e r a c t ed_ l i n e ID = in te rac ted_base l i ne ID + ’− ’ + st r (copy+1) # the

l i n e ID of the i n t e r ac t ed l i n e cons ider ing the d i f f e r e n t copy
cos t _ i n t e r ac t ed_ l i ne ID = t ra i n_ reques t . l oc [in te rac ted_base l ine ID , ’ cost ’]
from_eventID = event [(event [’ l i n e ID ’] == l i n e ID) & (event [’ even t_ loca t i on

’] == a c t i v i t y _ l o c a t i o n) & (event [’ event_type ’] == ’ a r r ’)] . index [0]
to_event ID = event [(event [’ l i n e ID ’] == i n t e r a c t ed_ l i n e ID) & (event [’

even t_ loca t i on ’] == a c t i v i t y _ l o c a t i o n) & (event [’ event_type ’] == ’ dep
’)] . index [0]

−−−− Turnaround −−−−

i f a c t i v i t y _ t y p e == ’ turnaround ’ : # i f the i n t e r a c t i o n i s a turnaround
min_ac t i v i t y _du ra t i on = regu l a t i on . l oc [’ turnaround ’ , ’ min_time ’]
a c t i v i t y _ c o s t = r egu l a t i on . l oc [’ turnaround ’ , ’ cost ’] * s t a t i s t i c s .

mean ([cost , cos t _ i n t e r ac t ed_ l i ne ID]) # mean weight o f the two
l i n e s

−−−− Transfer −−−−

i f a c t i v i t y _ t y p e == ’ t r a n s f e r ’ :
m i n_ac t i v i t y _du ra t i on = regu l a t i on . l oc [’ t r a n s f e r ’ , ’ min_time ’] # i f

70 B. Code

the i n t e r a c t i o n i s a t r a s n f e r
a c t i v i t y _ c o s t = r egu l a t i on . l oc [’ t r a n s f e r ’ , ’ cost ’] * s t a t i s t i c s .mean

([cost , cos t _ i n t e r ac t ed_ l i ne ID]) # mean weight o f the two l i n e s

a c t i v i t y . l oc [len (a c t i v i t y)] = [’ a ’ + st r (len (a c t i v i t y) + 1) , from_eventID
, to_eventID , a c t i v i t y _ t y pe , a c t i v i t y _ l o c a t i o n , m in_ac t i v i t y_du ra t i on
, a c t i v i t y _ c o s t , 0]

−−−− Headway −−−−

a c t i v i t y _ c o s t = r egu l a t i on . l oc [’ headway ’ , ’ cost ’] # cost o f headway a c t i v i t y

−−−− A r r i v a l headway −−−−

arr_rows = event [event [’ event_type ’] . i s i n ([” a r r ” , ” a r r −pass ”])] # f i l t e r a r r i v a l events
arr_rows = arr_rows . copy ()
arr_rows . reset_ index (inp lace=True)
arr_rows . rename (columns={ ’ index ’ : ’ eventID ’ } , i np lace=True) # conver t the index to a

column named ’ eventID ’
a r r _pa i r s = arr_rows . merge (arr_rows , on= ’ even t_ loca t i on ’) # merge a r r i v a l events

happening i n the same l o ca t i o n
a r r _pa i r s = a r r _pa i r s [a r r _pa i r s [’ l i ne ID_x ’] != a r r _pa i r s [’ l i ne ID_y ’]] # drop pa i r o f

events having the same eventID
a r r _pa i r s = a r r _pa i r s [a r r _pa i r s [’ eventID_x ’] < a r r _pa i r s [’ eventID_y ’]] . rese t_ index (drop=

True) # drop dup l i ca tes to remove pa i r s t ha t have been merged in both d i r e c t i o n s

for idx , row in a r r _pa i r s . i t e r r ows () : # i t e r a t e f o r each a r r i v a l event
to_event_x = row [’ eventID_x ’] # a r r i v a l event o f the f i r s t l i n e
from_event_x = a c t i v i t y . l oc [a c t i v i t y [’ to_event ID ’] == to_event_x , ’ from_eventID ’] .

values [0] # prev ious depar ture event o f the f i r s t l i n e
a c t i v i t y _ l o c a t i o n _ x = a c t i v i t y . l oc [(a c t i v i t y [’ to_event ID ’] == to_event_x) & (a c t i v i t y

[’ f rom_eventID ’] == from_event_x) , ’ a c t i v i t y _ l o c a t i o n ’] . values [0] # prev ious
segment o f the f i r s t l i n e

to_event_y = row [’ eventID_y ’] # a r r i v a l event o f the second l i n e
from_event_y = a c t i v i t y . l oc [a c t i v i t y [’ to_event ID ’] == to_event_y , ’ from_eventID ’] .

values [0] # prev ious depar ture event o f the second l i n e
a c t i v i t y _ l o c a t i o n _ y = a c t i v i t y . l oc [(a c t i v i t y [’ to_event ID ’] == to_event_y) & (a c t i v i t y

[’ f rom_eventID ’] == from_event_y) , ’ a c t i v i t y _ l o c a t i o n ’] . values [0] # prev ious
segment o f the second l i n e

i f a c t i v i t y _ l o c a t i o n _ x == a c t i v i t y _ l o c a t i o n _ y : # i f the two t r a i n s are coming from
the same segment
min_headway = segment . l oc [a c t i v i t y _ l o c a t i o n_ x , ’min_headway ’] + 60 # min headway

of t ha t segment
i f i n t (to_event_x [1 :]) < i n t (to_event_y [1 :]) :

a c t i v i t y . l oc [len (a c t i v i t y)] = [’ a ’ + st r (len (a c t i v i t y) + 1) , to_event_x ,
to_event_y , ’ headway ’ , row . loc [’ even t_ loca t i on ’] , min_headway ,
a c t i v i t y _ c o s t , 0]

else :
a c t i v i t y . l oc [len (a c t i v i t y)] = [’ a ’ + st r (len (a c t i v i t y) + 1) , to_event_y ,

to_event_x , ’ headway ’ , row . loc [’ even t_ loca t i on ’] , min_headway ,
a c t i v i t y _ c o s t , 0]

−−−− Departure headway −−−−

dep_rows = event [event [’ event_type ’] . i s i n ([” dep ” , ” dep−pass ”])] # f i l t e r depar ture events
dep_rows = dep_rows . copy ()
dep_rows . reset_ index (inp lace=True)
dep_rows . rename (columns={ ’ index ’ : ’ eventID ’ } , i np lace=True) # conver t the index to a

column named ’ eventID ’
dep_pairs = dep_rows . merge (dep_rows , on= ’ even t_ loca t i on ’) # merge depar ture events

happening i n the same l o ca t i o n
dep_pairs = dep_pairs [dep_pairs [’ l i ne ID_x ’] != dep_pairs [’ l i ne ID_y ’]] # drop pa i r o f

events having the same eventID
dep_pairs = dep_pairs [dep_pairs [’ eventID_x ’] < dep_pairs [’ eventID_y ’]] . rese t_ index (drop=

True) # drop dup l i ca tes to remove pa i r s t ha t have been merged in both d i r e c t i o n s

for idx , row in dep_pairs . i t e r r ows () : # i t e r a t e f o r each depar ture event
from_event_x = row [’ eventID_x ’] # depar ture event o f the f i r s t l i n e
to_event_x = a c t i v i t y . l oc [a c t i v i t y [’ f rom_eventID ’] == from_event_x , ’ to_event ID ’] .

values [0] # next a r r i v a l event o f the f i r s t l i n e

B.1. Functions 71

a c t i v i t y _ l o c a t i o n _ x = a c t i v i t y . l oc [(a c t i v i t y [’ to_event ID ’] == to_event_x) & (a c t i v i t y
[’ f rom_eventID ’] == from_event_x) , ’ a c t i v i t y _ l o c a t i o n ’] . values [0] # next segment
o f the f i r s t l i n e

from_event_y = row [’ eventID_y ’] # depar ture event o f the second l i n e
to_event_y = a c t i v i t y . l oc [a c t i v i t y [’ f rom_eventID ’] == from_event_y , ’ to_event ID ’] .

values [0] # next a r r i v a l event o f the second l i n e
a c t i v i t y _ l o c a t i o n _ y = a c t i v i t y . l oc [(a c t i v i t y [’ to_event ID ’] == to_event_y) & (a c t i v i t y

[’ f rom_eventID ’] == from_event_y) , ’ a c t i v i t y _ l o c a t i o n ’] . values [0] # next segment
o f the second l i n e

i f a c t i v i t y _ l o c a t i o n _ x == a c t i v i t y _ l o c a t i o n _ y : # i f the two t r a i n s are going to the
same segment
min_headway = segment . l oc [a c t i v i t y _ l o c a t i o n_ x , ’min_headway ’] + 60 # min headway

of t ha t segment
i f i n t (from_event_x [1 :]) < i n t (from_event_y [1 :]) :

a c t i v i t y . l oc [len (a c t i v i t y)] = [’ a ’ + st r (len (a c t i v i t y) + 1) , from_event_x ,
from_event_y , ’ headway ’ , row . loc [’ even t_ loca t i on ’] , min_headway ,
a c t i v i t y _ c o s t , 0]

else :
a c t i v i t y . l oc [len (a c t i v i t y)] = [’ a ’ + st r (len (a c t i v i t y) + 1) , from_event_y ,

from_event_x , ’ headway ’ , row . loc [’ even t_ loca t i on ’] , min_headway ,
a c t i v i t y _ c o s t , 0]

−−−− Mixed headways −−−−

dep_rows = event [event [’ event_type ’] . i s i n ([” dep ” , ” dep−pass ”])]
dep_rows . reset_ index (inp lace=True)
dep_rows . rename (columns={ ’ index ’ : ’ eventID ’ } , i np lace=True)
arr_rows = event [event [’ event_type ’] . i s i n ([” a r r ” , ” a r r −pass ”])]
arr_rows . reset_ index (inp lace=True)
arr_rows . rename (columns={ ’ index ’ : ’ eventID ’ } , i np lace=True)
mix_pai rs = dep_rows . merge (arr_rows , on= ’ even t_ loca t i on ’) # merge depar ture w i th a r r i v a l

events happening i n the same l o ca t i o n

for idx , row in mix_pai rs . i t e r r ows () : # i t e r a t e f o r each pa i r o f mixed headways
from_event_x = row [’ eventID_x ’] # depar ture event o f the f i r s t l i n e
to_event_x = a c t i v i t y . l oc [(a c t i v i t y [’ f rom_eventID ’] == from_event_x) & (a c t i v i t y [’

a c t i v i t y _ t y p e ’] == ’ run ’) , ’ to_event ID ’] . values [0]
a c t i v i t y _ l o c a t i o n _ x = a c t i v i t y . l oc [(a c t i v i t y [’ to_event ID ’] == to_event_x) & (a c t i v i t y

[’ f rom_eventID ’] == from_event_x) , ’ a c t i v i t y _ l o c a t i o n ’] . values [0] # next segment
o f the f i r s t l i n e

to_event_y = row [’ eventID_y ’] # a r r i v a l event o f the second l i n e
from_event_y = a c t i v i t y . l oc [(a c t i v i t y [’ to_event ID ’] == to_event_y) & (a c t i v i t y [’

a c t i v i t y _ t y p e ’] == ’ run ’) , ’ f rom_eventID ’] . values [0] # prev ious depar ture event
o f the second l i n e

a c t i v i t y _ l o c a t i o n _ y = a c t i v i t y . l oc [(a c t i v i t y [’ to_event ID ’] == to_event_y) & (a c t i v i t y
[’ f rom_eventID ’] == from_event_y) , ’ a c t i v i t y _ l o c a t i o n ’] . values [0] # prev ious
segment o f the second l i n e

i f a c t i v i t y _ l o c a t i o n _ x == a c t i v i t y _ l o c a t i o n _ y : # i f the two t r a i n s are going to /
coming from the same segment
i f a c t i v i t y _ l o c a t i o n _ x == ’ s2 ’ :

min_headway = 0
else :

min_headway = segment . l oc [a c t i v i t y _ l o c a t i o n_ x , ’min_headway ’] + 60 # min
headway of t ha t segment

i f i n t (from_event_x [1 :]) < i n t (to_event_y [1 :]) :
a c t i v i t y . l oc [len (a c t i v i t y)] = [’ a ’ + st r (len (a c t i v i t y) + 1) , from_event_x ,

to_event_y , ’ headway ’ , row . loc [’ even t_ loca t i on ’] , min_headway ,
a c t i v i t y _ c o s t , 0]

else :
a c t i v i t y . l oc [len (a c t i v i t y)] = [’ a ’ + st r (len (a c t i v i t y) + 1) , to_event_y ,

from_event_x , ’ headway ’ , row . loc [’ even t_ loca t i on ’] , min_headway ,
a c t i v i t y _ c o s t , 0]

−−−− Regu la r i t y −−−−

a c t i v i t y _ c o s t = r egu l a t i on . l oc [’ reg ’ , ’ cost ’]
m i n_ac t i v i t y _du ra t i on = regu l a t i on . l oc [’ reg ’ , ’ min_time ’]

72 B. Code

for idx , row in t r a i n_ reques t . i t e r r ows () : # i t e r a t e f o r each l i n e requested
base l ine ID = idx # the l i n e ID w i thou t cons ider ing the d i f f e r e n t copy
even ts_ in_ l i ne ID = event [event [’ l i n e ID ’] . st r . s t a r t sw i t h (base l ine ID + ’− ’)] # events

from the same base l ine ID
copy_of_same_event = even ts_ in_ l i ne ID . groupby ([’ even t_ loca t i on ’ , ’ event_type ’]) #

f i n d every copy of the same event

for _ , group in copy_of_same_event : # i t e r a t e f o r each copy of the same event
group [’ copy_number ’] = group [’ l i n e ID ’] . apply (lambda x : i n t (x . s p l i t (’ − ’) [−1])) #

ex t r a c t the copy number X of the l i ne ID −X
group = group . sor t_va lues (by= ’ copy_number ’) # so r t the events by ch rono log i ca l

order

for i in range (len (group) − 1) : # i t e r a t e f o r each l i n e requested
f rom_eventID = group . i l o c [i] . name
to_event ID = group . i l o c [i + 1] . name
from_line_num = group . i l o c [i] [’ copy_number ’]
to_l ine_num = group . i l o c [i + 1] [’ copy_number ’]

i f to_l ine_num == from_line_num + 1: # we create reg a c t i v i t y on ly i f the two
l i n e s are consecut ives

a c t i v i t y _ t y p e = group . i l o c [i] [’ event_type ’]
a c t i v i t y _ l o c a t i o n = group . i l o c [i] [’ even t_ loca t i on ’]

a c t i v i t y . l oc [len (a c t i v i t y)] = [’ a ’ + st r (len (a c t i v i t y) + 1) , from_eventID
, to_eventID , ’ reg ’ , a c t i v i t y _ l o c a t i o n , m in_ac t i v i t y_du ra t i on ,
a c t i v i t y _ c o s t , 0]

a c t i v i t y . set_ index (’ a c t i v i t y I D ’ , i np lace=True) # set the ’ a c t i v i t y I D ’ as index

return a c t i v i t y

Create conflict
def c r e a t e _ c on f l i c t (event , a c t i v i t y) :

K = pd . DataFrame (columns =[’ c o n f l i c t I D ’ , ’ p a i r ’ , ’ d ’ , ’ c o n f l i c t _ l o c a t i o n ’]) # create
empty K dataframe

g rouped_ac t i v i t y = a c t i v i t y [a c t i v i t y [’ a c t i v i t y _ t y p e ’] . i s i n ([’ run ’])] . groupby (’
a c t i v i t y _ l o c a t i o n ’)

for a c t i v i t y _ l o c a t i o n , group in g rouped_ac t i v i t y :
for pa i r in i t e r t o o l s . combinat ions (group . index , 2) : # Generate a l l poss ib le pa i r s

(combinat ions) w i t h i n the group
L = []
for k in range (2) :

L = L + [event . l oc [a c t i v i t y . l oc [pa i r [k] , ’ f rom_eventID ’] , ’ l i n e ID ’] . s p l i t
(’ − ’) [0]]

i f len (L) == len (set (L)) : # i f the two events are from two d i f f e r e n t l i n e s
K. loc [len (K)] = [’ k ’ + st r (len (K) + 1) , pa i r , a c t i v i t y . l oc [pa i r [0] , ’

t r a i n _ d i r e c t i o n ’] * a c t i v i t y . l oc [pa i r [1] , ’ t r a i n _ d i r e c t i o n ’] ,
a c t i v i t y _ l o c a t i o n]

K . set_ index (’ c o n f l i c t I D ’ , i np lace=True)

Q = pd . DataFrame (columns =[’ c o n f l i c t I D ’ , ’ c omb ina t i on_ac t i v i t y ’ , ’ d ’ , ’
c o n f l i c t _ l o c a t i o n ’]) # create empty Q dataframe

g rouped_ac t i v i t y = a c t i v i t y [a c t i v i t y [’ a c t i v i t y _ t y p e ’] . i s i n ([’ dwe l l ’ , ’ pass ’ , ’
turnaround ’])] . groupby (’ a c t i v i t y _ l o c a t i o n ’)

for a c t i v i t y _ l o c a t i o n , group in g rouped_ac t i v i t y :
for pa i r in i t e r t o o l s . combinat ions (group . index , 2) : # Generate a l l poss ib le pa i r s

(combinat ions) w i t h i n the group
L = []
for k in range (2) :

L = L + [event . l oc [a c t i v i t y . l oc [pa i r [k] , ’ f rom_eventID ’] , ’ l i n e ID ’] . s p l i t
(’ − ’) [0]]

i f len (L) == len (set (L)) : # i f the two events are from two d i f f e r e n t l i n e s
Q. loc [len (Q)] = [’ q ’ + st r (len (Q) + 1) , pa i r , a c t i v i t y . l oc [pa i r [0] , ’

t r a i n _ d i r e c t i o n ’] * a c t i v i t y . l oc [pa i r [1] , ’ t r a i n _ d i r e c t i o n ’] ,
a c t i v i t y _ l o c a t i o n]

Q. set_ index (’ c o n f l i c t I D ’ , i np lace=True)

B.1. Functions 73

K_mul t ip le = pd . DataFrame (columns =[’ combinat ionID ’ , ’ c omb ina t i on_ac t i v i t y ’ , ’
comb ina t i on_con f l i c t ’ , ’ c o n f l i c t _ l o c a t i o n ’]) # create empty K_mul t ip le dataframe

g rouped_ac t i v i t y = a c t i v i t y [a c t i v i t y [’ a c t i v i t y _ t y p e ’] . i s i n ([’ run ’])] . groupby (’
a c t i v i t y _ l o c a t i o n ’)

for a c t i v i t y _ l o c a t i o n , group in g rouped_ac t i v i t y :
for comb ina t i on_ac t i v i t y in i t e r t o o l s . combinat ions (group . index , 3) : # Generate

a l l poss ib le combinat ion o f 3 w i t h i n the group
L = []
for k in range (3) :

L = L + [event . l oc [a c t i v i t y . l oc [comb ina t i on_ac t i v i t y [k] , ’ f rom_eventID ’] ,
’ l i n e ID ’] . s p l i t (’ − ’) [0]]

i f len (L) == len (set (L)) : # i f the three events are a l l from d i f f e r e n t l i n e s
comb ina t i on_con f l i c t = []
for pa i r in i t e r t o o l s . combinat ions (comb ina t i on_ac t i v i t y , 2) :

c o n f l i c t I D = K. index [K [’ pa i r ’] == pa i r] # we f i n d the corredonding
combinat ion o f c o n f l i c t I D from the dataframe K

i f c o n f l i c t I D . empty :
raise ValueError (f ”No␣matching␣ index␣ found␣ f o r ␣ pa i r ␣ { pa i r } ␣ i n ␣

DataFrame␣K. ”)
comb ina t i on_con f l i c t = comb ina t i on_con f l i c t + [c o n f l i c t I D [0]]

K_mul t ip le . l oc [len (K_mul t ip le)] = [’ kk ’ + st r (len (K_mul t ip le) + 1) , l i s t (
comb ina t i on_ac t i v i t y) , comb ina t i on_con f l i c t , a c t i v i t y _ l o c a t i o n]

K_mul t ip le . set_ index (’ combinat ionID ’ , i np lace=True)

Q_mul t ip le = pd . DataFrame (columns =[’ combinat ionID ’ , ’ c omb ina t i on_ac t i v i t y ’ , ’
comb ina t i on_con f l i c t ’ , ’ c o n f l i c t _ l o c a t i o n ’]) # create empty Q_mul t ip le dataframe

g rouped_ac t i v i t y = a c t i v i t y [a c t i v i t y [’ a c t i v i t y _ t y p e ’] . i s i n ([’ dwe l l ’ , ’ pass ’ , ’
turnaround ’])] . groupby (’ a c t i v i t y _ l o c a t i o n ’)

for a c t i v i t y _ l o c a t i o n , group in g rouped_ac t i v i t y :
for i in range (3 , len (group) + 1) :

for comb ina t i on_ac t i v i t y in i t e r t o o l s . combinat ions (group . index , i) : #
Generate a l l poss ib le pa i r s (combinat ions) w i t h i n the group
L = []
for k in range (i) :

L = L + [event . l oc [a c t i v i t y . l oc [comb ina t i on_ac t i v i t y [k] , ’
f rom_eventID ’] , ’ l i n e ID ’] . s p l i t (’ − ’) [0]]

i f len (L) == len (set (L)) : # i f a l l the events are from d i f f e r e n t l i n e s
comb ina t i on_con f l i c t = []
for pa i r in i t e r t o o l s . combinat ions (comb ina t i on_ac t i v i t y , 2) : # we

f i n d the corredonding combinat ion o f c o n f l i c t I D from the
dataframe Q
c o n f l i c t I D = Q. index [Q[’ comb ina t i on_ac t i v i t y ’] == pa i r]
i f c o n f l i c t I D . empty :

raise ValueError (f ”No␣matching␣ index␣ found␣ f o r ␣ pa i r ␣ { pa i r } ␣ i n
␣DataFrame␣Q”)

comb ina t i on_con f l i c t = comb ina t i on_con f l i c t + [c o n f l i c t I D [0]]
Q_mul t ip le . l oc [len (Q_mul t ip le)] = [’ qq ’ + st r (len (Q_mul t ip le) + 1) ,

l i s t (comb ina t i on_ac t i v i t y) , comb ina t i on_con f l i c t ,
a c t i v i t y _ l o c a t i o n]

Q_mul t ip le . set_ index (’ combinat ionID ’ , i np lace=True)

Q_combined = pd . concat ([Q, Q_mul t ip le] , ax is =0 , ignore_ index=False)

return (K, K_mul t ip le , Q_combined)

B.1.2. Optimization function
def op t im ize_ t ime tab le (event , a c t i v i t y , K, K_mul t ip le , Q, segment , i n t e r l o c k i n g ,

t ra in_ reques t , min_technica l_running_t imes , s ta r t _ t ime , per iod , tmax , alpha) :

−−−− Processing the inpu ts −−−−

event = event . copy ()
a c t i v i t y = a c t i v i t y . copy ()

−−−− Creat ing the model −−−−

model = Model (’ Macroscopic␣Timetab l ing ’) # c rea t i on o f the model

−−−− Parameters −−−−

74 B. Code

M = per iod * 60 * 4 # very b ig value
eps i l on = 0.001 # very smal l value

−−−− Var iab les −−−−

event = event . gppd . add_vars (model , name= ” event_t ime ” , l b =0 , ub=per iod * 60 − 1 , vtype=GRB
. INTEGER)

a c t i v i t y = a c t i v i t y . gppd . add_vars (model , name= ” a c t i v i t y _ d u r a t i o n ” , l b =0 , ub=per iod * 60 −
1 , vtype=GRB. INTEGER)

a c t i v i t y = a c t i v i t y . gppd . add_vars (model , name= ” modulo_operator ” , vtype=GRB.BINARY)
K = K. gppd . add_vars (model , name= ” k ” , vtype=GRB.BINARY)
Q = Q. gppd . add_vars (model , name= ” q ” , vtype=GRB.BINARY)
segment = segment . gppd . add_vars (model , name= ” t_needed ” , l b =1 , ub=4 , vtype=GRB. INTEGER)
segment = segment . gppd . add_vars (model , name= ” t _ a f t e r ” , l b =1 , ub=4 , vtype=GRB. INTEGER)
segment = segment . gppd . add_vars (model , name= ” k_same_direct ion ” , vtype=GRB.BINARY)
segment = segment . gppd . add_vars (model , name= ” k_oppos i t e_d i rec t i on ” , vtype=GRB.BINARY)
i n t e r l o c k i n g = i n t e r l o c k i n g . gppd . add_vars (model , name= ” t_needed ” , l b =1 , vtype=GRB. INTEGER

)
i n t e r l o c k i n g = i n t e r l o c k i n g . gppd . add_vars (model , name= ” t _ a f t e r ” , l b =1 , vtype=GRB. INTEGER)
model . update ()

−−−− Objec t i ve Funct ion −−−−

min_techn ica l_runn ing_t imes [’sum ’] = min_techn ica l_runn ing_t imes [[’ s1 ’ , ’ s2 ’ , ’ s3 ’]] . sum(
ax is =1)

to t_min_runn ing_cost= 0
tot_max_running_cost= 0
for idx , row in t r a i n_ reques t . i t e r r ows () :

to t_min_runn ing_cost += (min_techn ica l_runn ing_t imes . l oc [row [’ r o l l i n g _ s t o c k ’] , ’sum ’]
* row [’ cost ’] * row [’ f requency ’])

tot_max_running_cost += 3600 * row [’ cost ’] * row [’ f requency ’]

Maximal value poss ib le
max_operat ion_cost = tot_max_running_cost / 1000000 # in m i l l i o n SEK
max_construct ion_cost_segment = tmax * 100 # in m i l l i o n SEK
max_cons t ruc t i on_cos t_ in te r l ock ing = tmax * 10 # in m i l l i o n SEK

Minimal value poss ib le
min_operat ion_cost = to t_min_runn ing_cost / 1000000 # in m i l l i o n SEK
min_construct ion_cost_segment = 0 # in m i l l i o n SEK
min_cons t ruc t i on_cos t_ i n te r l ock i ng = 0 # in m i l l i o n SEK

To ta l costs
t o t a l _ope ra t i on_cos t = (a c t i v i t y [’ a c t i v i t y _ d u r a t i o n ’] * a c t i v i t y [’ a c t i v i t y _ c o s t ’]) .sum ()

/ 1000000 # in m i l l i o n SEK
to ta l_cons t ruc t ion_cos t_segment = (segment [’ cost ’] * (segment [’ t _ a f t e r ’] − segment [’

t_be fo re ’])) .sum () # in m i l l i o n SEK
t o t a l _ c on s t r u c t i o n_ co s t _ i n t e r l o c k i n g = (i n t e r l o c k i n g [’ cost ’] * (i n t e r l o c k i n g [’ t _ a f t e r ’] −

i n t e r l o c k i n g [’ t_be fo re ’])) .sum () # in m i l l i o n SEK

Costs no rma l i za t i on
operat ion_cost_normal ized = (t o t a l _ope ra t i on_cos t − min_operat ion_cost) / (

max_operat ion_cost − min_operat ion_cost)
construct ion_cost_normal ized_segment = (to ta l_cons t ruc t ion_cos t_segment −

min_construct ion_cost_segment) / (max_construct ion_cost_segment −
min_construct ion_cost_segment)

cons t ruc t i on_cos t_no rma l i zed_ in te r l ock i ng = (t o t a l _ c on s t r u c t i o n_ cos t _ i n t e r l o c k i n g −
m in_cons t ruc t i on_cos t_ i n te r l ock i ng) / (max_cons t ruc t i on_cos t_ in te r l ock ing −
m in_cons t ruc t i on_cos t_ i n te r l ock i ng)

Set the ob j ec t i v e f unc t i on using normal ized t o t a l costs , alpha a c o e f f i c i e n t r e f l e c t i o n
on the p r i o r i t y

model . se tOb jec t i ve (((alpha) * operat ion_cost_normal ized) + ((1 − alpha) /2 *
construct ion_cost_normal ized_segment) + ((1 − alpha) /2 *
cons t ruc t i on_cos t_no rma l i zed_ in te r l ock i ng) , GRB.MINIMIZE)

model . update ()

−−−− Cons t ra in ts −−−−

−−−− Cons t ra in t 1 : D e f i n i t i o n o f the a c t i v i t y du ra t i on −−−−

B.1. Functions 75

for index , a c t i v i t y _ r ow in a c t i v i t y . i t e r r ows () :
model . addConstr (a c t i v i t y _ r ow [’ a c t i v i t y _ d u r a t i o n ’] == (event . l oc [a c t i v i t y _ r ow [’

to_event ID ’] , ’ event_t ime ’]) − (event . l oc [a c t i v i t y _ r ow [’ from_eventID ’] , ’
event_t ime ’]) + a c t i v i t y _ r ow [’ modulo_operator ’] * per iod * 60 , name= f ” con1_ { index
} ”)

model . update ()

−−−− Cons t ra in ts 2 : A c t i v i t y du ra t i on between min and max or set to per iod i f reg −−−−

for index , a c t i v i t y _ r ow in a c t i v i t y . i t e r r ows () :
i f ac t i v i t y _ r ow [’ a c t i v i t y _ t y p e ’] == ’ reg ’ :

l i ne_pe r i od = per iod * 60 / event . l oc [a c t i v i t y _ r ow [’ from_eventID ’] , ’
event_frequency ’]

model . addConstr (a c t i v i t y _ r ow [’ a c t i v i t y _ d u r a t i o n ’] == l i ne_per iod , name= f ” con2a_ {
index } ”)

else :
model . addConstr (a c t i v i t y _ r ow [’ a c t i v i t y _ d u r a t i o n ’] >= ac t i v i t y _ r ow [’

m i n_ac t i v i t y _du ra t i on ’] , name= f ” con2b_ { index } ”)
model . addConstr (a c t i v i t y _ r ow [’ a c t i v i t y _ d u r a t i o n ’] <= per iod * 60 − ac t i v i t y _ r ow [’

m i n_ac t i v i t y _du ra t i on ’] , name= f ” con2c_ { index } ”)
model . update ()

−−−− Cons t ra in t 3 : D e f i n i t i o n o f the modulo opera tor −−−−

for index , a c t i v i t y _ r ow in a c t i v i t y . i t e r r ows () :
model . addConstr (event . l oc [a c t i v i t y _ r ow [’ to_event ID ’] , ’ event_t ime ’] <= event . l oc [

a c t i v i t y _ r ow [’ from_eventID ’] , ’ event_t ime ’] − eps i l on + M * (1 − ac t i v i t y _ r ow
[’ modulo_operator ’]) , name= f ” con3_ { index } ”)

model . update ()

−−−− Cons t ra in t 4 : To ta l number o f new t racks −−−−

model . addConstr ((i n t e r l o c k i n g [’ t _ a f t e r ’] − i n t e r l o c k i n g [’ t_be fo re ’]) .sum () + (segment [’
t _ a f t e r ’] − segment [’ t _be fo re ’]) .sum () <= 1 , name= f ” con4_ { index } ”)

model . update ()

−−−− Cons t ra in t 5 : De f i t i o n o f the number o f t r acks a f t e r −−−−

for index , segment_row in segment . i t e r r ows () :
model . addConstr (segment_row [’ t _ a f t e r ’] >= segment_row [’ t_needed ’] , name= f ” con5a_ {

index } ”)
model . addConstr (segment_row [’ t _ a f t e r ’] >= segment_row [’ t_be fo re ’] , name= f ” con5b_ {

index } ”)
model . update ()

for index , i n t e r l ock i ng_ row in i n t e r l o c k i n g . i t e r r ows () :
model . addConstr (i n t e r l o ck i ng_ row [’ t _ a f t e r ’] >= i n t e r l ock i ng_ row [’ t_needed ’] , name= f ”

con5c_ { index } ”)
model . addConstr (i n t e r l o ck i ng_ row [’ t _ a f t e r ’] >= i n t e r l ock i ng_ row [’ t_be fo re ’] , name= f ”

con5d_ { index } ”)
model . update ()

−−−− Cons t ra in t 6 : D e f i n i t i o n number o f t racks needed at segment −−−−

for index , segment_row in segment . i t e r r ows () :
z1 = model . addVar (vtype=GRB.BINARY, name= f ” z1_ { index } ”) # help va r i ab l e
z2 = model . addVar (vtype=GRB.BINARY, name= f ” z2_ { index } ”) # help va r i ab l e
z3 = model . addVar (vtype=GRB.BINARY, name= f ” z3_ { index } ”) # help va r i ab l e

Add the cons t r a i n t s f o r y = kopp * ksame (both are b inary va r i ab l es)
model . addConstr (z1 <= segment_row [’ k_oppos i t e_d i rec t i on ’] , name= f ” con6a_ { index } ”)
model . addConstr (z1 <= segment_row [’ k_same_direct ion ’] , name= f ” con6b_ { index } ”)
model . addConstr (z1 >= segment_row [’ k_oppos i t e_d i rec t i on ’] + segment_row [’

k_same_direct ion ’] − 1 , name= f ” con6c_ { index } ”)
model . addConstr (z2 == 1 − segment_row [’ k_same_direct ion ’] − segment_row [’

k_oppos i t e_d i rec t i on ’] + z1 , name= f ” con6d_ { index } ”)
model . addConstr (z3 == segment_row [’ k_oppos i t e_d i rec t i on ’] − z1 , name= f ” con6e_ { index } ”

)
model . addConstr (segment_row [’ t_needed ’] == (z2 * 1) + (z3 * 2) + (segment_row [’

k_same_direct ion ’] * 4) , name= f ” con6f_ { index } ”)
model . update ()

76 B. Code

−−−− Cons t ra in t 7 : D e f i n i t i o n K_same and K_opp −−−−

for index , segment_row in segment . i t e r r ows () :
sum_same_direction = quicksum (K. loc [(K [’ d ’] == 1) & (K [’ c o n f l i c t _ l o c a t i o n ’] == index)

, ’ k ’])
model . addConstr (sum_same_direction <= M * segment_row [’ k_same_direct ion ’] , name= f ”

con7a_ { index } ”)
model . addConstr (sum_same_direction >= segment_row [’ k_same_direct ion ’] , name= f ” con7b_ {

index } ”)
sum_oppos i te_d i rec t ion = quicksum (K. loc [(K [’ d ’] == −1) & (K [’ c o n f l i c t _ l o c a t i o n ’] ==

index) , ’ k ’])
model . addConstr (sum_oppos i te_d i rec t ion <= M * segment_row [’ k_oppos i t e_d i rec t i on ’] ,

name= f ” con7c_ { index } ”)
model . addConstr (sum_oppos i te_d i rec t ion >= segment_row [’ k_oppos i t e_d i rec t i on ’] , name= f

” con7d_ { index } ”)
model . update ()

−−−− Cons t ra in t 8 : D e f i n i t i o n number o f t racks needed at i n t e r l o c k i n g −−−−

for index , i n t e r l ock i ng_ row in i n t e r l o c k i n g . i t e r r ows () :
Q_ in te r l ock ing = Q[Q[’ c o n f l i c t _ l o c a t i o n ’] == index]
i f not Q_ in te r l ock ing . empty :

for i , Q_ in ter lock ing_row in Q_ in te r l ock ing . i t e r r ows () :
model . addConstr (i n t e r l o ck i ng_ row [’ t_needed ’] >= Q_in ter lock ing_row [’ q ’] * len

(Q_ in ter lock ing_row [’ comb ina t i on_ac t i v i t y ’]) , name= f ” con8a_ { index } ”)
else :

model . addConstr (i n t e r l o ck i ng_ row [’ t_needed ’] == 1 , name= f ” con8b_ { index } ”)

−−−− Cons t ra in t 9 : De f i n t i on o f a c o n f l i c t a t i n t e r l o c k i n g : t ab l e Q −−−

for index , Q_row in Q. dropna (subset =[’ d ’]) . i t e r r ows () :

z4 = model . addVar (vtype=GRB. INTEGER, name= f ” z4_ { index } ”) # help va r i ab l e

a , a_prime = Q_row [’ comb ina t i on_ac t i v i t y ’] [0] , Q_row [’ comb ina t i on_ac t i v i t y ’] [1] # Get
the a c t i v i t y I D ’ a ’ from the index .

from_eventID_a = a c t i v i t y . l oc [a , ’ from_eventID ’]
to_eventID_a = a c t i v i t y . l oc [a , ’ to_event ID ’]
from_eventID_a_prime = a c t i v i t y . l oc [a_prime , ’ from_eventID ’]
to_eventID_a_prime = a c t i v i t y . l oc [a_prime , ’ to_event ID ’]

i f Q_row [’ d ’] == 1 :
cond i t i on1 = (a c t i v i t y [’ f rom_eventID ’] == from_eventID_a) & (a c t i v i t y [’ to_event ID

’] == from_eventID_a_prime) & (a c t i v i t y [’ a c t i v i t y _ t y p e ’] == ’ headway ’)
cond i t i on2 = (a c t i v i t y [’ f rom_eventID ’] == from_eventID_a_prime) & (a c t i v i t y [’

to_event ID ’] == from_eventID_a) & (a c t i v i t y [’ a c t i v i t y _ t y p e ’] == ’ headway ’)
ma tch ing_ac t i v i t y ID = a c t i v i t y . index [cond i t i on1 | cond i t i on2] [0]
cond i t ion1_pr ime = (a c t i v i t y [’ f rom_eventID ’] == to_eventID_a) & (a c t i v i t y [’

to_event ID ’] == to_eventID_a_prime) & (a c t i v i t y [’ a c t i v i t y _ t y p e ’] == ’ headway ’
)

cond i t ion2_pr ime = (a c t i v i t y [’ f rom_eventID ’] == to_eventID_a_prime) & (a c t i v i t y [’
to_event ID ’] == to_eventID_a) & (a c t i v i t y [’ a c t i v i t y _ t y p e ’] == ’ headway ’)

match ing_ac t i v i t y ID_pr ime = a c t i v i t y . index [cond i t ion1_pr ime | cond i t ion2_pr ime
] [0]

e l i f Q_row [’ d ’] == −1:
cond i t i on3 = (a c t i v i t y [’ f rom_eventID ’] == from_eventID_a) & (a c t i v i t y [’ to_event ID

’] == to_eventID_a_prime) & (a c t i v i t y [’ a c t i v i t y _ t y p e ’] == ’ headway ’)
cond i t i on4 = (a c t i v i t y [’ f rom_eventID ’] == to_eventID_a_prime) & (a c t i v i t y [’

to_event ID ’] == from_eventID_a) & (a c t i v i t y [’ a c t i v i t y _ t y p e ’] == ’ headway ’)
ma tch ing_ac t i v i t y ID = a c t i v i t y . index [cond i t i on3 | cond i t i on4] [0]
cond i t ion3_pr ime = (a c t i v i t y [’ f rom_eventID ’] == to_eventID_a) & (a c t i v i t y [’

to_event ID ’] == from_eventID_a_prime) & (a c t i v i t y [’ a c t i v i t y _ t y p e ’] == ’
headway ’)

cond i t ion4_pr ime = (a c t i v i t y [’ f rom_eventID ’] == from_eventID_a_prime) & (a c t i v i t y
[’ to_event ID ’] == to_eventID_a) & (a c t i v i t y [’ a c t i v i t y _ t y p e ’] == ’ headway ’)

match ing_ac t i v i t y ID_pr ime = a c t i v i t y . index [cond i t ion3_pr ime | cond i t ion4_pr ime
] [0]

B.1. Functions 77

modulo_sum = a c t i v i t y . l oc [a , ’ modulo_operator ’] + a c t i v i t y . l oc [a_prime , ’
modulo_operator ’] + a c t i v i t y . l oc [ma tch ing_ac t i v i t y ID , ’ modulo_operator ’] +
a c t i v i t y . l oc [match ing_ac t iv i t y ID_pr ime , ’ modulo_operator ’]

model . addConstr (modulo_sum − 2 * z4 == Q_row . loc [’ q ’] , name= f ” con9_ { index } ”)
model . update ()

−−−− Cons t ra in t 10: De f i n t i on o f a c o n f l i c t a t segment : t ab l e K −−−−

for index , K_row in K. i t e r r ows () :

z5 = model . addVar (vtype=GRB. INTEGER, name= f ” z5_ { index } ”) # help va r i ab l e

a , a_prime = K_row [’ pa i r ’] [0] , K_row [’ pa i r ’] [1] # Get the a c t i v i t y I D ’ a ’ from the
index .

from_eventID_a = a c t i v i t y . l oc [a , ’ from_eventID ’]
to_eventID_a = a c t i v i t y . l oc [a , ’ to_event ID ’]
from_eventID_a_prime = a c t i v i t y . l oc [a_prime , ’ from_eventID ’]
to_eventID_a_prime = a c t i v i t y . l oc [a_prime , ’ to_event ID ’]

i f K_row [’ d ’] == 1 :
cond i t i on1 = (a c t i v i t y [’ f rom_eventID ’] == from_eventID_a) & (a c t i v i t y [’ to_event ID

’] == from_eventID_a_prime) & (a c t i v i t y [’ a c t i v i t y _ t y p e ’] == ’ headway ’)
cond i t i on2 = (a c t i v i t y [’ f rom_eventID ’] == from_eventID_a_prime) & (a c t i v i t y [’

to_event ID ’] == from_eventID_a) & (a c t i v i t y [’ a c t i v i t y _ t y p e ’] == ’ headway ’)
ma tch ing_ac t i v i t y ID = a c t i v i t y . index [cond i t i on1 | cond i t i on2] [0]
cond i t ion1_pr ime = (a c t i v i t y [’ f rom_eventID ’] == to_eventID_a) & (a c t i v i t y [’

to_event ID ’] == to_eventID_a_prime) & (a c t i v i t y [’ a c t i v i t y _ t y p e ’] == ’ headway ’
)

cond i t ion2_pr ime = (a c t i v i t y [’ f rom_eventID ’] == to_eventID_a_prime) & (a c t i v i t y [’
to_event ID ’] == to_eventID_a) & (a c t i v i t y [’ a c t i v i t y _ t y p e ’] == ’ headway ’)

match ing_ac t i v i t y ID_pr ime = a c t i v i t y . index [cond i t ion1_pr ime | cond i t ion2_pr ime
] [0]

e l i f K_row [’ d ’] == −1:
cond i t i on3 = (a c t i v i t y [’ f rom_eventID ’] == from_eventID_a) & (a c t i v i t y [’ to_event ID

’] == to_eventID_a_prime) & (a c t i v i t y [’ a c t i v i t y _ t y p e ’] == ’ headway ’)
cond i t i on4 = (a c t i v i t y [’ f rom_eventID ’] == to_eventID_a_prime) & (a c t i v i t y [’

to_event ID ’] == from_eventID_a) & (a c t i v i t y [’ a c t i v i t y _ t y p e ’] == ’ headway ’)
ma tch ing_ac t i v i t y ID = a c t i v i t y . index [cond i t i on3 | cond i t i on4] [0]
cond i t ion3_pr ime = (a c t i v i t y [’ f rom_eventID ’] == to_eventID_a) & (a c t i v i t y [’

to_event ID ’] == from_eventID_a_prime) & (a c t i v i t y [’ a c t i v i t y _ t y p e ’] == ’
headway ’)

cond i t ion4_pr ime = (a c t i v i t y [’ f rom_eventID ’] == from_eventID_a_prime) & (a c t i v i t y
[’ to_event ID ’] == to_eventID_a) & (a c t i v i t y [’ a c t i v i t y _ t y p e ’] == ’ headway ’)

match ing_ac t i v i t y ID_pr ime = a c t i v i t y . index [cond i t ion3_pr ime | cond i t ion4_pr ime
] [0]

modulo_sum = a c t i v i t y . l oc [a , ’ modulo_operator ’] + a c t i v i t y . l oc [a_prime , ’
modulo_operator ’] + a c t i v i t y . l oc [ma tch ing_ac t i v i t y ID , ’ modulo_operator ’] +
a c t i v i t y . l oc [match ing_ac t iv i t y ID_pr ime , ’ modulo_operator ’]

model . addConstr (modulo_sum − 2 * z5 == K_row . loc [’ k ’] , name= f ” con10_ { index } ”)
model . update ()

−−−− Cons t ra in t 11: Mu l t i p l e c o n f l i c t s a t i n t e r l o c k i n g : t ab l e Q_mul t ip le −−−−

for index , Q_row in Q. dropna (subset =[’ comb ina t i on_con f l i c t ’]) . i t e r r ows () :
quick_sum = LinExpr ()
for c o n f l i c t I D in Q_row [’ comb ina t i on_con f l i c t ’] :

quick_sum += Q. a t [c o n f l i c t I D , ’ q ’]
model . addConstr (quick_sum − len (Q_row [’ comb ina t i on_con f l i c t ’]) <= M * Q_row . loc [’ q ’] ,

name= f ” con11a_ { index } ”)
model . addConstr (quick_sum − len (Q_row [’ comb ina t i on_con f l i c t ’]) >= eps i l on − M * (1 −

Q_row . loc [’ q ’]) , name= f ” con11b_ { index } ”)
model . update ()

−−−− Cons t ra in t 12: Mu l t i p l e c o n f l i c t s a t segment not al lowed : t ab l e K_mul t ip le −−−−

for index , K_mult ip le_row in K_mul t ip le . i t e r r ows () :
quick_sum = LinExpr ()
for c o n f l i c t I D in K_mult ip le_row [’ comb ina t i on_con f l i c t ’] :

quick_sum += K. a t [c o n f l i c t I D , ’ k ’]

78 B. Code

model . addConstr (quick_sum <= 2 , name= f ” con12_ { index } ”)
model . update ()

−−−− Solve −−−−

model . setParam (’MIPGap ’ , 0 .05) # Al low a 5% op t ima l i t y gap
model . setParam (’ Node f i l eS ta r t ’ , 0 .25) # S ta r t w r i t i n g nodes to d isk a t 0.5 GB memory

usage
model . op t im ize ()

−−−− P r i n t r e s u l t s −−−−

pr in t (’ \ n−−−\n ’)

i f model . s ta tus == GRB.OPTIMAL : # i f op t ima l s o l u t i o n i s found
f e a s i b l e = True
read the opt imized values i n t o the DataFrame
for index , a c t i v i t y _ r ow in a c t i v i t y . i t e r r ows () :

a c t i v i t y . l oc [index , ’ a c t i v i t y _ d u r a t i o n ’] = a c t i v i t y _ r ow [’ a c t i v i t y _ d u r a t i o n ’] . x
a c t i v i t y . l oc [index , ’ modulo_operator ’] = a c t i v i t y _ r ow [’ modulo_operator ’] . x

for index , event_row in event . i t e r r ows () :
event . l oc [index , ’ event_t ime ’] = event_row [’ event_t ime ’] . x

for index , K_row in K. i t e r r ows () :
K . l oc [index , ’ k ’] = K_row [’ k ’] . x

for index , segment_row in segment . i t e r r ows () :
segment . l oc [index , ’ t_needed ’] = segment_row [’ t_needed ’] . x
segment . l oc [index , ’ t _ a f t e r ’] = segment_row [’ t _ a f t e r ’] . x
segment . l oc [index , ’ k_same_direct ion ’] = segment_row [’ k_same_direct ion ’] . x
segment . l oc [index , ’ k_oppos i t e_d i rec t i on ’] = segment_row [’ k_oppos i t e_d i rec t i on ’] .

x
for index , Q_row in Q. i t e r r ows () :

Q. loc [index , ’ q ’] = Q_row [’ q ’] . x
for index , i n t e r l ock i ng_ row in i n t e r l o c k i n g . i t e r r ows () :

i n t e r l o c k i n g . l oc [index , ’ t_needed ’] = i n t e r l o ck i ng_ row [’ t_needed ’] . x
i n t e r l o c k i n g . l oc [index , ’ t _ a f t e r ’] = i n t e r l o ck i ng_ row [’ t _ a f t e r ’] . x

event [’ event_t ime ’] = event [’ event_t ime ’] . apply (lambda x : s t a r t _ t ime + pd . Timedel ta (
seconds=x))

r esu l t _da ta = { ”model_name ” : model .ModelName ,
” op t im i za t i on_s ta t us ” : model . Status ,
” ob jec t i ve_va lue ” : model . ObjVal ,
” opera t ion_cos t_op t ima l ” : operat ion_cost_normal ized . getValue () ,
” const ruct ion_cost_segment_opt imal ” :

construct ion_cost_normal ized_segment . getValue () ,
” cons t r u c t i on_cos t _ i n t e r l o ck i ng_op t ima l ” :

cons t ruc t i on_cos t_no rma l i zed_ in te r l ock i ng . getValue () ,
” cons t ruc t i on_cos ts ” : (i n t e r l o c k i n g [’ cost ’] * (i n t e r l o c k i n g [’ t _ a f t e r ’]

− i n t e r l o c k i n g [’ t_be fo re ’])) .sum () + (segment [’ cost ’] * (segment [
’ t _ a f t e r ’] − segment [’ t_be fo re ’])) .sum () ,

” opera t ion_cos ts ” : ((a c t i v i t y [’ a c t i v i t y _ d u r a t i o n ’] * a c t i v i t y [’
a c t i v i t y _ c o s t ’]) .sum ()) ,

” number_of_var iables ” : model . NumVars ,
” number_of_binary_var iab les ” : sum(1 for v in model . getVars () i f v .

VType == GRB.BINARY) ,
” number_of_const ra in ts ” : model . NumConstrs ,
” number_of_nonzeros ” : model .NumNZs,
” number_o f_ i te ra t ions ” : model . I te rCount ,
” opt imizat ion_runt ime_seconds ” : model . Runtime ,
”mip_gap ” : model .MIPGap i f model . IsMIP else None}

r e s u l t _ d f = pd . DataFrame (resu l t _da ta . i tems () , columns =[” Met r i c ” , ” Value ”])

else : # i f no opt ima l so l u t i o n i s found
pr in t (”No␣ f e a s i b l e ␣ so l u t i o n ␣ found ”)
f e a s i b l e = False

return (f eas ib l e , event , a c t i v i t y , K, K_mul t ip le , Q, segment , i n t e r l o c k i n g , r e s u l t _ d f)

B.1.3. Visualization function

B.1. Functions 79

def p l o t _ t ime tab l e (event , i n t e r l o c k i n g , p l o t _s t a r t _ t ime , plot_end_t ime , t i c k _ i n t e r v a l , per iod
, co r r i do r , t ra in_ reques t , f i l e _ p a t h) :

d is tance = [0] # i n i t i a l i z e an empty l i s t to s to re the cumulat ive d is tances

for i in range (1 , len (c o r r i d o r)) : # i t e r a t e through the co r r i d o r and ca l cu l a t e the
cumulat ive d is tances
i f i n t (c o r r i d o r [i − 1] [1 :]) < i n t (c o r r i d o r [i] [1 :]) : # f i n d the segment leng th

between the cu r ren t and prev ious i n t e r l o c k i n g
segment_length = segment . l oc [(segment [’ f r om_ in te r l ock i ng ID ’] == co r r i d o r [i − 1])

& (segment [’ t o _ i n t e r l o c k i n g ID ’] == co r r i d o r [i]) , ’ l eng th ’] . values [0]
else :

segment_length = segment . l oc [(segment [’ f r om_ in te r l ock i ng ID ’] == co r r i d o r [i]) & (
segment [’ t o _ i n t e r l o c k i n g ID ’] == co r r i d o r [i −1]) , ’ l eng th ’] . values [0]

cumula t ive_d is tance = d is tance [i − 1] + segment_length # add the segment leng th to
the prev ious cumulat ive d is tance

d is tance . append (cumula t ive_d is tance) # append the new cumulat ive d is tance to the
l i s t

d f _p l o t = pd . DataFrame ({ ’ i n t e r l o c k i n g ID ’ : co r r i do r , ’ cumulated_distance ’ : d is tance }) #
create a DataFrame wi th i n t e r l o c k i n g ID and cumulated_distance columns

e ven t _ f i l t e r e d = event [event [’ even t_ loca t i on ’] . i s i n (c o r r i d o r)] # only the event
happening i n the co r r i d o r have to be p l o t t e d

event_grouped = e ven t _ f i l t e r e d . groupby (’ l i n e ID ’)

f i g , ax = p l t . subp lo ts () # create graph
ax . xax is . se t_majo r_ fo rmat te r (DateFormatter (’%H:%M:%S ’)) # set major f o rma t t e r f o r x−ax is

to d i sp lay t ime as hh :mm: ss
p l o t t e d_ l i n e s = set ()

for copy in [− per iod , 0] :

for l i ne ID , group in event_grouped :

l o c a t i o n _ l i n e = group [’ even t_ loca t i on ’]
t ime_ l i ne = group [’ event_t ime ’] + pd . DateOf fset (minutes=copy)

check f o r decreasing values i n t ime_ l i ne and ad jus t them
for i in range (len (t ime_ l i ne) − 1) :

i f t ime_ l i ne . i l o c [i] > t ime_ l i ne . i l o c [i + 1] :
t ime_ l i ne . i l o c [i + 1] += t imede l t a (minutes=per iod)

base_l ineID = l i n e ID . s p l i t (’ − ’) [0]

for per iod_ idx in range (0 , (p lo t_end_t ime − p l o t _ s t a r t _ t ime) . seconds , i n t ((per iod
* 60))) : # i t e r a t e over each per iod , i f s t i l l w i t h i n the t ime window

X = [t + t imede l t a (minutes=per iod_ idx / 60) for t in t ime_ l i ne]
serv ice_ type = t r a i n_ reques t . l oc [base_l ineID , ’ serv ice_ type ’] # def ine the

co lo r o f the l i n e regard ing the type of a c t i v i t y
i f serv ice_ type == ’ IC ’ :

c = ’ blue ’
e l i f serv ice_ type == ’R ’ :

c = ’ green ’
e l i f serv ice_ type == ’F ’ :

c = ’ b lack ’
e l i f serv ice_ type == ’HS ’ :

c = ’ red ’
else :

c = ’ gray ’

Y = [] # l i s t o f cumulated d is tance of each i n t e r l o c k i n g o f the co r r i d o r
Y_labels = [] # l i s t o f corresponding i n t e r l o c k i n g l abe l

for i n t e r l o c k i n g ID in l o c a t i o n _ l i n e :
cumula t ive_d is tance = d f _p l o t [d f _p l o t [’ i n t e r l o c k i n g ID ’] == i n t e r l o c k i n g ID

] [’ cumulated_distance ’] . values [0]
Y . append (cumula t ive_d is tance)
s ta t ion_code = i n t e r l o c k i n g . l oc [i n t e r l o c k i ng ID , ’ s ta t ion_code ’]
i f not pd . i s n u l l (s ta t ion_code) :

Y_labels . append (f ” { s ta t ion_code } ␣−␣ { i n t e r l o c k i n g ID } ”)
else :

80 B. Code

Y_labels . append (i n t e r l o c k i n g ID)

ax . p l o t (X, Y, l i n ew i d t h =1 , co l o r=c , l a be l = l i n e ID i f l i n e ID not in
p l o t t e d_ l i n e s else None)

i f l i n e ID not in p l o t t e d_ l i n e s :
p l o t t e d_ l i n e s . add (l i n e ID)

set y−ax is l abe l s to i n t e r l o c k i n g names
ax . se t _y t i c k s (Y)
ax . s e t _ y t i c k l a be l s (Y_labels)
ax . se t_y l im (Y [0] , Y[−1])

set x−ax is
p l t . x t i c k s (r o t a t i o n =67.5) # ro t a t e
ax . se t_x l im (p l o t _s t a r t _ t ime , p lot_end_t ime) # t ime window
t i c k = mdates . drange (p l o t _s t a r t _ t ime , p lot_end_t ime + t imede l t a (seconds =0.1) , t imede l t a (

seconds= t i c k _ i n t e r v a l)) # ca l cu l a t e t i c k l o ca t i ons s t a r t i n g from s ta r t _ t ime
ax . xax is . se t_ma jo r_ loca to r (t i c k e r . F ixedLocator (t i c k))

add legend based on the chosen co lo rs and l i ne IDs
handles , l abe l s = ax . get_ legend_handles_labels ()
un ique_ labe ls = [l abe l for l a be l in l abe l s i f l a be l]
ax . legend (handles , labe ls , l oc= ’ center␣ l e f t ’ , bbox_to_anchor =(1 , 0 .5))

ax . g r i d (True)
p l t . show ()
p l t . save f ig (f i l e _pa t h , bbox_inches= ’ t i g h t ’)
p l t . c lose ()

C
Data used for the case study

C.1. Traffic 2022 and forecast 2040

Figure C.1: Database used for the case study

Data highlighted in blue are not directly available and have been calculated assuming that the propor-
tion of the trains running on the different time slots in 2040 is the same than in 2022. Moreover, it is
assumed that 50% of the trains run from Jbk to Kbä, and 50% run in the opposite direction.

81

D
Results of the case study

D.1. Scenario 1
eventID lineID event_type event_location event_frequency event_time
e1 FR1-1 dep i1 1 08:26:38
e2 FR1-1 arr-pass i2 1 08:28:49
e3 FR1-1 dep-pass i2 1 08:28:49
e4 FR1-1 arr-pass i3 1 08:35:41
e5 FR1-1 dep-pass i3 1 08:35:41
e6 FR1-1 arr-pass i4 1 08:42:49
e7 FR1-1 dep-pass i4 1 08:06:09
e8 FR1-1 arr-pass i5 1 08:13:17
e9 FR1-1 dep-pass i5 1 08:13:17
e10 FR1-1 arr i6 1 08:18:39
e11 FR2-1 dep i6 1 08:49:39
e12 FR2-1 arr-pass i5 1 08:55:01
e13 FR2-1 dep-pass i5 1 08:55:01
e14 FR2-1 arr-pass i4 1 08:02:09
e15 FR2-1 dep-pass i4 1 08:02:09
e16 FR2-1 arr-pass i3 1 08:09:17
e17 FR2-1 dep-pass i3 1 08:09:17
e18 FR2-1 arr-pass i2 1 08:17:39
e19 FR2-1 dep-pass i2 1 08:17:39
e20 FR2-1 arr i1 1 08:19:50
e21 R1-1 dep i1 1 08:00:36
e22 R1-1 arr i2 1 08:02:28
e23 R1-1 dep i2 1 08:04:28
e24 R1-1 arr-pass i3 1 08:09:17
e25 R1-1 dep-pass i3 1 08:13:17
e26 R1-1 arr i4 1 08:18:05
e27 R1-1 dep i4 1 08:20:05
e28 R1-1 arr-pass i5 1 08:24:36
e29 R1-1 dep-pass i5 1 08:24:36
e30 R1-1 arr i6 1 08:27:37
e31 R2-1 dep i6 1 08:45:39
e32 R2-1 arr-pass i5 1 08:48:40
e33 R2-1 dep-pass i5 1 08:48:40
e34 R2-1 arr i4 1 08:53:11
e35 R2-1 dep i4 1 08:55:11
e36 R2-1 arr-pass i3 1 08:59:59
e37 R2-1 dep-pass i3 1 08:59:59
e38 R2-1 arr i2 1 08:04:28
e39 R2-1 dep i2 1 08:06:28

83

84 D. Results of the case study

eventID lineID event_type event_location event_frequency event_time
e40 R2-1 arr i1 1 08:08:20
e41 IC1-1 dep i1 1 08:12:20
e42 IC1-1 arr-pass i2 1 08:13:39
e43 IC1-1 dep-pass i2 1 08:13:39
e44 IC1-1 arr-pass i3 1 08:17:17
e45 IC1-1 dep-pass i3 1 08:17:17
e46 IC1-1 arr i4 1 08:22:07
e47 IC1-1 dep i4 1 08:24:07
e48 IC1-1 arr-pass i5 1 08:28:47
e49 IC1-1 dep-pass i5 1 08:28:47
e50 IC1-1 arr i6 1 08:31:51
e51 IC2-1 dep i6 1 08:37:05
e52 IC2-1 arr-pass i5 1 08:40:09
e53 IC2-1 dep-pass i5 1 08:40:09
e54 IC2-1 arr i4 1 08:44:49
e55 IC2-1 dep i4 1 08:46:49
e56 IC2-1 arr-pass i3 1 08:51:39
e57 IC2-1 dep-pass i3 1 08:51:39
e58 IC2-1 arr-pass i2 1 08:55:17
e59 IC2-1 dep-pass i2 1 08:55:17
e60 IC2-1 arr i1 1 08:56:36

Table D.1: Output event DataFrame of scenario 1

segmentID t_before length cost t_needed t_after k_same_direction k_opp_direction
s1 1 2264 844 1 1 0 0
s2 2 4355 1624 2 2 0 1
s3 1 6920 2581 1 1 0 0
s4 1 6799 2536 1 1 0 0
s5 1 5072 1892 1 1 0 0

Table D.2: Output segment DataFrame of scenario 1

interlockingID station_code t_before cost t_needed t_after
i1 Jbk 2 25 1 2
i2 Arb 2 51 2 2
i3 Vsg 2 25 2 2
i4 Kp 3 64 3 3
i5 Morp 2 25 2 2
i6 Kba 2 30 1 2

Table D.3: Output interlocking DataFrame of scenario 1

D.2. Scenario 2
eventID lineID event_type event_location event_frequency event_time
e1 FR1-1 dep i1 1 08:00:41
e2 FR1-1 arr-pass i2 1 08:02:52
e3 FR1-1 dep-pass i2 1 08:03:59
e4 FR1-1 arr-pass i3 1 08:10:51
e5 FR1-1 dep-pass i3 1 08:10:51
e6 FR1-1 arr-pass i4 1 08:17:59
e7 FR1-1 dep-pass i4 1 08:17:59
e8 FR1-1 arr-pass i5 1 08:26:11
e9 FR1-1 dep-pass i5 1 08:26:11

D.2. Scenario 2 85

eventID lineID event_type event_location event_frequency event_time
e10 FR1-1 arr i6 1 08:31:33
e11 FR2-1 dep i6 1 08:35:33
e12 FR2-1 arr-pass i5 1 08:40:55
e13 FR2-1 dep-pass i5 1 08:40:55
e14 FR2-1 arr-pass i4 1 08:48:03
e15 FR2-1 dep-pass i4 1 08:51:43
e16 FR2-1 arr-pass i3 1 08:58:51
e17 FR2-1 dep-pass i3 1 08:00:00
e18 FR2-1 arr-pass i2 1 08:06:52
e19 FR2-1 dep-pass i2 1 08:06:52
e20 FR2-1 arr i1 1 08:09:03
e21 R1-1 dep i1 2 08:56:07
e22 R1-1 arr i2 2 08:57:59
e23 R1-1 dep i2 2 08:59:59
e24 R1-1 arr-pass i3 2 08:03:58
e25 R1-1 dep-pass i3 2 08:06:51
e26 R1-1 arr i4 2 08:11:39
e27 R1-1 dep i4 2 08:13:39
e28 R1-1 arr-pass i5 2 08:22:11
e29 R1-1 dep-pass i5 2 08:22:11
e30 R1-1 arr i6 2 08:25:12
e31 R1-2 dep i1 2 08:26:07
e32 R1-2 arr i2 2 08:27:59
e33 R1-2 dep i2 2 08:29:59
e34 R1-2 arr-pass i3 2 08:33:58
e35 R1-2 dep-pass i3 2 08:36:51
e36 R1-2 arr i4 2 08:41:39
e37 R1-2 dep i4 2 08:43:39
e38 R1-2 arr-pass i5 2 08:52:11
e39 R1-2 dep-pass i5 2 08:52:11
e40 R1-2 arr i6 2 08:55:12
e41 R2-1 dep i6 2 08:45:10
e42 R2-1 arr-pass i5 2 08:48:11
e43 R2-1 dep-pass i5 2 08:48:11
e44 R2-1 arr i4 2 08:56:03
e45 R2-1 dep i4 2 08:58:03
e46 R2-1 arr-pass i3 2 08:02:51
e47 R2-1 dep-pass i3 2 08:07:16
e48 R2-1 arr i2 2 08:11:15
e49 R2-1 dep i2 2 08:13:15
e50 R2-1 arr i1 2 08:15:07
e51 R2-2 dep i6 2 08:15:10
e52 R2-2 arr-pass i5 2 08:18:11
e53 R2-2 dep-pass i5 2 08:18:11
e54 R2-2 arr i4 2 08:26:03
e55 R2-2 dep i4 2 08:28:03
e56 R2-2 arr-pass i3 2 08:32:51
e57 R2-2 dep-pass i3 2 08:37:16
e58 R2-2 arr i2 2 08:41:15
e59 R2-2 dep i2 2 08:43:15
e60 R2-2 arr i1 2 08:45:07
e61 IC1-1 dep i1 1 08:37:56
e62 IC1-1 arr-pass i2 1 08:39:15
e63 IC1-1 dep-pass i2 1 08:39:15
e64 IC1-1 arr-pass i3 1 08:42:53
e65 IC1-1 dep-pass i3 1 08:42:53
e66 IC1-1 arr i4 1 08:47:43
e67 IC1-1 dep i4 1 08:52:03
e68 IC1-1 arr-pass i5 1 08:56:43
e69 IC1-1 dep-pass i5 1 08:56:43

86 D. Results of the case study

eventID lineID event_type event_location event_frequency event_time
e70 IC1-1 arr i6 1 08:59:47
e71 IC2-1 dep i6 1 08:11:07
e72 IC2-1 arr-pass i5 1 08:14:11
e73 IC2-1 dep-pass i5 1 08:14:11
e74 IC2-1 arr i4 1 08:21:59
e75 IC2-1 dep i4 1 08:23:59
e76 IC2-1 arr-pass i3 1 08:28:49
e77 IC2-1 dep-pass i3 1 08:28:49
e78 IC2-1 arr-pass i2 1 08:32:27
e79 IC2-1 dep-pass i2 1 08:32:27
e80 IC2-1 arr i1 1 08:33:46

Table D.4: Output event DataFrame of scenario 2

segmentID t_before length cost t_needed t_after k_same_direction k_opp_direction
s1 1 2264 844 1 1 0 0
s2 2 4355 1624 2 2 0 1
s3 1 6920 2581 1 1 0 0
s4 1 6799 2536 2 2 0 1
s5 1 5072 1892 1 1 0 0

Table D.5: Output segment DataFrame of scenario 2

interlockingID station_code t_before cost t_needed t_after
i1 Jbk 2 25 1 2
i2 Arb 2 51 2 2
i3 Vsg 2 25 2 2
i4 Kp 3 64 3 3
i5 Morp 2 25 2 2
i6 Kba 2 30 1 2

Table D.6: Output interlocking DataFrame of scenario 2

D.3. Scenario 3
eventID lineID event_type event_location event_frequency event_time
e1 FR1-1 dep i1 1 08:30:47
e2 FR1-1 arr-pass i2 1 08:32:58
e3 FR1-1 dep-pass i2 1 08:35:19
e4 FR1-1 arr-pass i3 1 08:42:11
e5 FR1-1 dep-pass i3 1 08:42:11
e6 FR1-1 arr-pass i4 1 08:49:19
e7 FR1-1 dep-pass i4 1 08:49:19
e8 FR1-1 arr-pass i5 1 08:56:27
e9 FR1-1 dep-pass i5 1 08:56:27
e10 FR1-1 arr i6 1 08:01:49
e11 FR2-1 dep i6 1 08:33:49
e12 FR2-1 arr-pass i5 1 08:39:11
e13 FR2-1 dep-pass i5 1 08:39:11
e14 FR2-1 arr-pass i4 1 08:46:19
e15 FR2-1 dep-pass i4 1 08:46:19
e16 FR2-1 arr-pass i3 1 08:53:27
e17 FR2-1 dep-pass i3 1 08:53:29
e18 FR2-1 arr-pass i2 1 08:00:21
e19 FR2-1 dep-pass i2 1 08:01:20

D.3. Scenario 3 87

eventID lineID event_type event_location event_frequency event_time
e20 FR2-1 arr i1 1 08:03:31
e21 R1-1 dep i1 2 08:56:28
e22 R1-1 arr i2 2 08:58:20
e23 R1-1 dep i2 2 08:00:20
e24 R1-1 arr-pass i3 2 08:04:19
e25 R1-1 dep-pass i3 2 08:04:19
e26 R1-1 arr i4 2 08:09:07
e27 R1-1 dep i4 2 08:11:07
e28 R1-1 arr-pass i5 2 08:15:38
e29 R1-1 dep-pass i5 2 08:15:38
e30 R1-1 arr i6 2 08:18:39
e31 R1-2 dep i1 2 08:26:28
e32 R1-2 arr i2 2 08:28:20
e33 R1-2 dep i2 2 08:30:20
e34 R1-2 arr-pass i3 2 08:34:19
e35 R1-2 dep-pass i3 2 08:34:19
e36 R1-2 arr i4 2 08:39:07
e37 R1-2 dep i4 2 08:41:07
e38 R1-2 arr-pass i5 2 08:45:38
e39 R1-2 dep-pass i5 2 08:45:38
e40 R1-2 arr i6 2 08:48:39
e41 R2-1 dep i6 2 08:45:39
e42 R2-1 arr-pass i5 2 08:48:40
e43 R2-1 dep-pass i5 2 08:48:40
e44 R2-1 arr i4 2 08:53:11
e45 R2-1 dep i4 2 08:55:11
e46 R2-1 arr-pass i3 2 08:59:59
e47 R2-1 dep-pass i3 2 08:59:59
e48 R2-1 arr i2 2 08:03:58
e49 R2-1 dep i2 2 08:05:58
e50 R2-1 arr i1 2 08:07:50
e51 R2-2 dep i6 2 08:15:39
e52 R2-2 arr-pass i5 2 08:18:40
e53 R2-2 dep-pass i5 2 08:18:40
e54 R2-2 arr i4 2 08:23:11
e55 R2-2 dep i4 2 08:25:11
e56 R2-2 arr-pass i3 2 08:29:59
e57 R2-2 dep-pass i3 2 08:29:59
e58 R2-2 arr i2 2 08:33:58
e59 R2-2 dep i2 2 08:35:58
e60 R2-2 arr i1 2 08:37:50
e61 IC1-1 dep i1 1 08:19:44
e62 IC1-1 arr-pass i2 1 08:21:03
e63 IC1-1 dep-pass i2 1 08:21:03
e64 IC1-1 arr-pass i3 1 08:24:41
e65 IC1-1 dep-pass i3 1 08:24:41
e66 IC1-1 arr i4 1 08:29:31
e67 IC1-1 dep i4 1 08:31:31
e68 IC1-1 arr-pass i5 1 08:36:11
e69 IC1-1 dep-pass i5 1 08:36:11
e70 IC1-1 arr i6 1 08:39:15
e71 IC2-1 dep i6 1 08:56:23
e72 IC2-1 arr-pass i5 1 08:59:27
e73 IC2-1 dep-pass i5 1 08:59:27
e74 IC2-1 arr i4 1 08:04:07
e75 IC2-1 dep i4 1 08:06:07
e76 IC2-1 arr-pass i3 1 08:10:57
e77 IC2-1 dep-pass i3 1 08:10:57
e78 IC2-1 arr-pass i2 1 08:14:35
e79 IC2-1 dep-pass i2 1 08:14:35

88 D. Results of the case study

eventID lineID event_type event_location event_frequency event_time
e80 IC2-1 arr i1 1 08:15:54
e81 HS1-1 dep i1 1 08:51:22
e82 HS1-1 arr-pass i2 1 08:52:44
e83 HS1-1 dep-pass i2 1 08:52:44
e84 HS1-1 arr-pass i3 1 08:56:27
e85 HS1-1 dep-pass i3 1 08:56:27
e86 HS1-1 arr-pass i4 1 08:00:58
e87 HS1-1 dep-pass i4 1 08:00:58
e88 HS1-1 arr-pass i5 1 08:05:26
e89 HS1-1 dep-pass i5 1 08:05:26
e90 HS1-1 arr i6 1 08:08:34
e91 HS2-1 dep i6 1 08:27:04
e92 HS2-1 arr-pass i5 1 08:30:12
e93 HS2-1 dep-pass i5 1 08:30:12
e94 HS2-1 arr-pass i4 1 08:34:40
e95 HS2-1 dep-pass i4 1 08:34:40
e96 HS2-1 arr-pass i3 1 08:39:11
e97 HS2-1 dep-pass i3 1 08:39:11
e98 HS2-1 arr-pass i2 1 08:42:54
e99 HS2-1 dep-pass i2 1 08:42:54
e100 HS2-1 arr i1 1 08:44:16

Table D.7: Output event DataFrame of scenario 3

segmentID t_before length cost t_needed t_after k_same_direction k_opp_direction
s1 1 2264 844 1 1 0 0
s2 2 4355 1624 2 2 0 1
s3 1 6920 2581 2 2 0 1
s4 1 6799 2536 2 2 0 1
s5 1 5072 1892 2 2 0 1

Table D.8: Output segment DataFrame of scenario 3

interlockingID station_code t_before cost t_needed t_after
i1 Jbk 2 25 1 2
i2 Arb 2 51 2 2
i3 Vsg 2 25 2 2
i4 Kp 3 64 3 3
i5 Morp 2 25 2 2
i6 Kba 2 30 1 2

Table D.9: Output interlocking DataFrame of scenario 3

Bibliography
Analys, T. (2024). Railway transport 2023 quarter 4. %5Curl%7Bhttps://www.trafa.se/globalassets/

statistik/bantrafik/jarnvagstransporter/2024/jarnvagstransporter-2023-kvartal-4.pdf%7D
Berner, A., Johansson, J., & Andersson, H. (2021).Mälarbanan, nyttor av dubbelspår (Report). Sweco.

https://www.oslo-sthlm.se/wp-content/uploads/2022/03/kpgqbr1ha9zr0hbivumk.pdf
Bešinović, N., Goverde, R. M., Quaglietta, E., & Roberti, R. (2016). An integrated micro–macro ap-

proach to robust railway timetabling. Transportation Research Part B: Methodological, 87, 14–
32. https://doi.org/https://doi.org/10.1016/j.trb.2016.02.004

Corman, F., D’Ariano, A., Pacciarelli, D., & Pranzo, M. (2009). Evaluation of green wave policy in real-
time railway traffic management. Transportation Research Part C: Emerging Technologies,
17(6), 607–616. https://doi.org/https://doi.org/10.1016/j.trc.2009.04.001

de Bortoli, A., & Féraille, A. (2024). Banning short-haul flights and investing in high-speed railways for a
sustainable future? Transportation Research Part D: Transport and Environment, 128, 103987.
https://doi.org/https://doi.org/10.1016/j.trd.2023.103987

ERTMS. (n.d.). Ertms in brief.
ERTMS. (2021). Ertms deployment in sweden.
Eurostat. (2024a). Goods transport by rail.
Eurostat. (2024b). Rail transport of passengers.
Goverde, R., & Hansen, I. (2013). Performance indicators for railway timetables. IEEE ICIRT 2013 -

Proceedings: IEEE International Conference on Intelligent Rail Transportation, 301–306. https:
//doi.org/10.1109/ICIRT.2013.6696312

Goverde, R., & Scheepmaker, G. (2023). Energy-efficient train timetabling. In Energy-efficient train
operation: A system approach for railway networks (pp. 69–101). Springer International Pub-
lishing. https://doi.org/10.1007/978-3-031-34656-9_4

Gurobi. (n.d.-a). French rail transport giant sncf teams up with gurobi optimization to transform its end-
to-end rail freight operations [Accessed on February 2024].

Gurobi. (n.d.-b). Optimization for the transportation industry [Accessed on February 2024].
Hansen, I., & Pachl, J. (Eds.). (2008). Railway timetabling & operations. Eurail press.
Herrigel, S., Laumanns, M., Szabo, J., & Weidmann, U. (2018). Periodic railway timetabling with se-

quential decomposition in the pesp model. Journal of Rail Transport Planning Management,
8(3), 167–183. https://doi.org/https://doi.org/10.1016/j.jrtpm.2018.09.003

Jernbanedirektoratet & Trafikverket. (2022, February). Feasibility study oslo–stockholm. %5Curl%7Bhttps:
//www.oslo-sthlm.se/wp-content/uploads/2022/11/255_Mulighetsstudie_221003_summary_
eng.pdf%7D

Kroon, L., Huisman, D., Abbink, E., Fioole, P.-J., Fischetti, M., Maroti, G., Schrijver, A., Steenbeek, A., &
Ybema, R. (2008). The new dutch timetable: The or revolution. Erasmus University Rotterdam,
Econometric Institute, Econometric Institute Report.

Landex, A., Schittenhelm, B., Kaas, A., & Schneider-Tilli, J. (2008). Capacity measurement with the uic
406 capacity method, 55–64. https://doi.org/10.2495/CR080061

Liebchen, C. (2004). Symmetry for periodic railway timetables. Electronic Notes in Theoretical Com-
puter Science, 92, 34–51. https://doi.org/10.1016/j.entcs.2003.12.021

Liebchen, C., & Möhring, R. (2008, January). The modeling power of the periodic event scheduling
problem: Railway timetables — and beyond. https://doi.org/10.1007/978-3-540-73312-6_7

Lusby, R., Larsen, J., Ehrgott, M., & Ryan, D. (2011). Railway track allocation: Models and methods.
OR Spectrum, 33, 843–883. https://doi.org/10.1007/s00291-009-0189-0

Odijk, M. A. (1996). A constraint generation algorithm for the construction of periodic railway timetables.
Transportation Research Part B: Methodological, 30(6), 455–464. https://doi.org/https://doi.
org/10.1016/0191-2615(96)00005-7

Palmqvist, C.-W., Olsson, N. O. E., & Hiselius, L.W. (2018). The planners’ perspective on train timetable
errors in sweden. Journal of Advanced Transportation, 2018. https://doi.org/https://doi.org/10.
1155/2018/8502819

89

%5Curl%7Bhttps://www.trafa.se/globalassets/statistik/bantrafik/jarnvagstransporter/2024/jarnvagstransporter-2023-kvartal-4.pdf%7D
%5Curl%7Bhttps://www.trafa.se/globalassets/statistik/bantrafik/jarnvagstransporter/2024/jarnvagstransporter-2023-kvartal-4.pdf%7D
https://www.oslo-sthlm.se/wp-content/uploads/2022/03/kpgqbr1ha9zr0hbivumk.pdf
https://doi.org/https://doi.org/10.1016/j.trb.2016.02.004
https://doi.org/https://doi.org/10.1016/j.trc.2009.04.001
https://doi.org/https://doi.org/10.1016/j.trd.2023.103987
https://doi.org/10.1109/ICIRT.2013.6696312
https://doi.org/10.1109/ICIRT.2013.6696312
https://doi.org/10.1007/978-3-031-34656-9_4
https://doi.org/https://doi.org/10.1016/j.jrtpm.2018.09.003
%5Curl%7Bhttps://www.oslo-sthlm.se/wp-content/uploads/2022/11/255_Mulighetsstudie_221003_summary_eng.pdf%7D
%5Curl%7Bhttps://www.oslo-sthlm.se/wp-content/uploads/2022/11/255_Mulighetsstudie_221003_summary_eng.pdf%7D
%5Curl%7Bhttps://www.oslo-sthlm.se/wp-content/uploads/2022/11/255_Mulighetsstudie_221003_summary_eng.pdf%7D
https://doi.org/10.2495/CR080061
https://doi.org/10.1016/j.entcs.2003.12.021
https://doi.org/10.1007/978-3-540-73312-6_7
https://doi.org/10.1007/s00291-009-0189-0
https://doi.org/https://doi.org/10.1016/0191-2615(96)00005-7
https://doi.org/https://doi.org/10.1016/0191-2615(96)00005-7
https://doi.org/https://doi.org/10.1155/2018/8502819
https://doi.org/https://doi.org/10.1155/2018/8502819

90 Bibliography

Polinder, G.-J., Schmidt, M., & Huisman, D. (2020). Timetabling for strategic passenger railway plan-
ning. ERIM Report Series Reference Forthcoming. https://doi.org/http://dx.doi.org/10.2139/
ssrn.3526757

ProRail. (2023, September). Lecture 1.3: Rail traffic simulation in practice [Class lecture given in CIEM6301:
Railway Traffic Management, Delft University of Technology, Delft, the Netherlands, September
2023.].

Serafini, P., & Ukovich, W. (1989). A mathematical model for periodic scheduling problems. SIAM J.
Discret. Math., 2, 550–581. https://api.semanticscholar.org/CorpusID:19409360

Solinen, E. (2022). Generella konstruktionsregler för tågplanekonstruktion. Trafikverket.
Sweco. (2017). Oslo-stockholmwider socioeconomic benefit analysis 2040 [Project number: 7002339000].

%5Curl%7Bhttps://www.oslo-sthlm.se/wp-content/uploads/2024/02/lhkuxtegsmbdv8rht7lw#:
~:text=Sweco%20can%20conclude%20that%20the,2016%C2%B4s%20price%20level.%7D

Trafikverket. (n.d.-a). Improved capacity [Accessed on March 2024].
Trafikverket. (n.d.-b). Mälarbanan [Accessed on July 2024].
Trafikverket. (n.d.-c). Marknadsanpassad planering av kapacitet (mpk) – arbetssätt och verktyg för

framtiden [Accessed on March 2024].
Trafikverket. (2021). Trafikuppgifter jarnvag t22 och bullerprognos 2040.
Trafikverket. (2022). Proposal national plan for transport infrastructure 2022-2023 [Accessed on March

2024].
Trafikverket. (2023a, February). Newmain lines - a new generation railway. %5Curl%7Bhttps://bransch.

trafikverket . se /en /startpage /planning /new-main - lines --- a - new- generation - railway /# :~ :
text=The%20Swedish%20Transport%20Administration%20has,Bor%C3%A5s%20and%
20H%C3%A4ssleholm%E2%80%93Lund%20projects.%7D

Trafikverket. (2023b, December). Network statement 2024 [Edition 2023-12-15. For deliveries from
2023-12-10 to 2024-12-14 made by Trafikverket.].

Trafikverket. (2024a). Network statement 2024 (2024-06-26). %5Curl%7Bhttps://bransch.trafikverket.
se/contentassets/7476ee2129b2457da7163d77e0963edb/ns_2024_2024-06-26.pdf%7D

Trafikverket. (2024b, May). Fyrspåret malmö–lund.
Trafikverket & Jacobs. (2021, March). New main lines: Cost benchmarking study (tech. rep.). Trafikver-

ket and Jacobs. https://bransch.trafikverket.se/contentassets/60ecb96cb94a4cac994aae8bea032992/
18-maj-2021/new-main-lines---ru205---cost-benchmarking-study.pdf

University of Birmingham. (2013). On time. a framework for developing an objective function for eval-
uating work package solutions (cost function).

Van Wee, B., & Banister, D. (2016). How to write a literature review paper? Transport Reviews, 36(2),
278–288. https://doi.org/https://doi.org/10.1080/01441647.2015.1065456

Varför är oslo-sthlm viktigt? [Accessed on July 2024]. (n.d.). Oslo-Sthlm 2.55.
Vigren, A. (2017). Competition in swedish passenger railway: Entry in an open access market and its

effect on prices. Economics of Transportation, 11-12, 49–59. https://doi.org/https://doi.org/10.
1016/j.ecotra.2017.10.005

Warg, J. (2016). Timetable evaluation with focus on quality for travellers [QC 20160902].
Williams, H. P. (2013). Model building in mathematical programming (5th ed.). John Wiley & Sons.
Zhang, X., & Nie, L. (2016). Integrating capacity analysis with high-speed railway timetabling: A mini-

mum cycle time calculation model with flexible overtaking constraints and intelligent enumer-
ation. Transportation Research Part C: Emerging Technologies, 68, 509–531. https://doi.org/
https://doi.org/10.1016/j.trc.2016.05.005

https://doi.org/http://dx.doi.org/10.2139/ssrn.3526757
https://doi.org/http://dx.doi.org/10.2139/ssrn.3526757
https://api.semanticscholar.org/CorpusID:19409360
%5Curl%7Bhttps://www.oslo-sthlm.se/wp-content/uploads/2024/02/lhkuxtegsmbdv8rht7lw#:~:text=Sweco%20can%20conclude%20that%20the,2016%C2%B4s%20price%20level.%7D
%5Curl%7Bhttps://www.oslo-sthlm.se/wp-content/uploads/2024/02/lhkuxtegsmbdv8rht7lw#:~:text=Sweco%20can%20conclude%20that%20the,2016%C2%B4s%20price%20level.%7D
%5Curl%7Bhttps://bransch.trafikverket.se/en/startpage/planning/new-main-lines---a-new-generation-railway/#:~:text=The%20Swedish%20Transport%20Administration%20has,Bor%C3%A5s%20and%20H%C3%A4ssleholm%E2%80%93Lund%20projects.%7D
%5Curl%7Bhttps://bransch.trafikverket.se/en/startpage/planning/new-main-lines---a-new-generation-railway/#:~:text=The%20Swedish%20Transport%20Administration%20has,Bor%C3%A5s%20and%20H%C3%A4ssleholm%E2%80%93Lund%20projects.%7D
%5Curl%7Bhttps://bransch.trafikverket.se/en/startpage/planning/new-main-lines---a-new-generation-railway/#:~:text=The%20Swedish%20Transport%20Administration%20has,Bor%C3%A5s%20and%20H%C3%A4ssleholm%E2%80%93Lund%20projects.%7D
%5Curl%7Bhttps://bransch.trafikverket.se/en/startpage/planning/new-main-lines---a-new-generation-railway/#:~:text=The%20Swedish%20Transport%20Administration%20has,Bor%C3%A5s%20and%20H%C3%A4ssleholm%E2%80%93Lund%20projects.%7D
%5Curl%7Bhttps://bransch.trafikverket.se/contentassets/7476ee2129b2457da7163d77e0963edb/ns_2024_2024-06-26.pdf%7D
%5Curl%7Bhttps://bransch.trafikverket.se/contentassets/7476ee2129b2457da7163d77e0963edb/ns_2024_2024-06-26.pdf%7D
https://bransch.trafikverket.se/contentassets/60ecb96cb94a4cac994aae8bea032992/18-maj-2021/new-main-lines---ru205---cost-benchmarking-study.pdf
https://bransch.trafikverket.se/contentassets/60ecb96cb94a4cac994aae8bea032992/18-maj-2021/new-main-lines---ru205---cost-benchmarking-study.pdf
https://doi.org/https://doi.org/10.1080/01441647.2015.1065456
https://doi.org/https://doi.org/10.1016/j.ecotra.2017.10.005
https://doi.org/https://doi.org/10.1016/j.ecotra.2017.10.005
https://doi.org/https://doi.org/10.1016/j.trc.2016.05.005
https://doi.org/https://doi.org/10.1016/j.trc.2016.05.005

	Preface
	Executive summary
	Introduction
	Background information
	Problem description
	Scope of study
	Research questions

	Literature review
	Methodology
	Railway market and governance in Sweden
	Railway traffic management
	Railway timetabling
	Timetabling objectives and requirements
	Assessing timetable performances
	Microscopic, mesoscopic and macroscopic timetabling
	Macroscopic timetabling models

	Railway line planning
	Conclusion: research gap

	Model
	Methodology
	Model architecture
	Model formulation
	Graphs, sets and indices
	Parameters
	Decision variables
	Objective function
	Constraints
	Linearization and implementation

	Demonstration of the model on simple examples
	Data processing
	Raw data
	Processed data
	Output data

	Hypotheses

	Case study
	Context
	Scenarios
	Data collection
	Results
	Macroscopic timetables
	Microscopic assessment of the results
	Sensitivity analysis

	Discussion
	Analysis of the case study's results
	Microscopic feasibility
	Sensitivity analysis
	Computational efficiency
	Scalability and flexibility
	Innovations of the model
	Limitations of the model
	Data collection of the cast study
	Future works

	Conclusion
	Research paper
	Code
	Functions
	Processing functions
	Optimization function
	Visualization function

	Data used for the case study
	Traffic 2022 and forecast 2040

	Results of the case study
	Scenario 1
	Scenario 2
	Scenario 3

