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Abstract
When solving the wave equation with finite elements, mass lumping allows for explicit time
stepping, avoiding the cost of a lower-upper decomposition of the large sparse mass matrix.
Mass lumping on the reference element amounts to numerical quadrature. Theweights should
be positive for stable time stepping and preserve numerical accuracy. The standard triangular
polynomial elements, except for the linear element, do not have these properties. Accuracy
can be preserved by augmenting them with higher-degree polynomials in the interior. This
leaves the search for elements with positive weights, which were found up to degree 9 by
various authors. The classic accuracy condition, however, is too restrictive. A sharper, less
restrictive condition recently led to new mass-lumped tetrahedral elements up to degree 4.
Compared to the known ones up to degree 3, they have less nodes and are computationally
more efficient. The same criterion is applied here to the construction of triangular elements.
For degrees 2 to 4, these turn out to be identical to the known ones. For degree 5, the number
of nodes is the same as for the known element, but now there are infinitely many solutions.
Some of these have a considerably larger stability limit for time stepping. For degree 6, two
elements are found with less nodes than the known ones. For degree 7, one element with
less nodes was found but with a negative weight, making it useless for time stepping with
the wave equation. If the number of nodes is the same as for the classic element, there are
now infinitelymany solutions.Numerical tests for a homogeneouswave-propagation problem
with a point source confirm the expected accuracy of the new elements. Some of them require
less compute time than those obtained with the more restrictive accuracy criterion.
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1 Introduction

The numerical solution of the wave equation in time involves a large sparse mass matrix.
Mass lumping avoids the cost of its lower-upper decomposition, leaving a diagonalmatrix that
can be readily inverted. On the reference element, its entries are proportional to numerical
quadrature weights. If applied to the regular higher-order polynomial elements, there is a
zero weight for degree 2, or a negative one for degree 3. For higher degrees, the resulting
spatial accuracy is too low for a second-order partial differential equation. The linear degree-1
element is the exception. For higher degrees, positive weights and sufficient spatial accuracy
can be obtained by choosing the degree of the polynomials in the interior higher than on the
element boundary. In this way, elements of degree 2 [1–3], 3 [4, 5], 4 [6], 5 [7], 6 [8], 7 and
8 [9, 10], and 9 [9] were found. The results for degrees 7 and 8 in [9] and [10] are identical,
but for degree 9, the one in [10] has more nodes and degree 10 on the edges.

The generalization of this approach to tetrahedra led to an element of degree 2 [6] and two
elements of degree 3 [6]. The number of additional nodes in 3D is rather large, compared to
the standard tetrahedral element.

Recently, it was found that a sharper, less restrictive condition can be imposed to preserve
spatial accuracy after mass lumping [11]. The resulting tetrahedral elements for degree 2 and
3 have less nodes and are more efficient than the older ones. A number of degree-4 elements
were found as well.

Here, the same accuracy condition is used in 2D for the construction of triangular mass-
lumped elements. In addition, the moment equations for exact quadrature are based on
symmetric polynomials instead of bi-variate monomials modulo symmetry to ensure that
the number of independent equations is the same as the number of polynomials. With the old
accuracy criterion, this could be accomplished by choosing a suitable subset [7, 12]. This
enables quicker scanning through potential nodes patterns and elements that result in a num-
ber equations that does not exceed the number of unknowns. Though not strictly necessary,
the last condition increases the chance of finding a solution.

The approach comprises the following steps. Given the polynomial degree of the element
and a higher interior degree, one or more symmetric node patterns have to be found to
support the polynomials. Next, a set of moment equations is formed by requiring numerical
quadrature to be exact for elements of the Cartesian product of the basis polynomials and
polynomials of the element degree minus two. This condition is less restrictive than the
classic one that requires exactness for the element degree plus interior degree minus two.
The resulting system is linear in the quadrature weights with coefficients that are symmetric
polynomials in the node parameters. To increase the chance of finding a solution, the number
of unknowns, consisting inweights and node parameters, is required to not exceed the number
of independent equations. Among the solutions of the system, if any, only the real ones with
strictly positive weights and node parameters that do not move nodes outside their symmetry
class or the triangle are acceptable. Frommultiple solutions that correspond to the same set of
nodes and weights modulo symmetry, only one is selected. Because the number of solutions
grows quickly with the degree and system size, numerical root finding is required for the
higher degrees.

Whenmultiple acceptable solutions are found, which one is the best? The answer depends
on the problem.When the wave equation is solved, the performance is affected by the number
of nodes, the maximum allowable size of the time step and the resulting error. For elements
of a given degree, on a rectangular domain with a decent mesh and material properties
piecewise constant per element, the error behaves as element size to a power that is one
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higher than the degree, but the error constant varies among the multiple solutions, as does
the Courant-Friedrichs-Lewy (CFL) number [13] that determines the maximum size of the
time step.

To assess the performance of the various element, the numerical errors for a homogeneous
problem with a point source were measured as a function of element size as well as run
time. A comparison in terms of efficiency to other higher-order discretisation schemes on
triangles, such as discontinuous Galerkin methods [14–16], the spectral difference method
[17] and summation-by-parts operators [18], has not been considered. The last method avoids
problems with the unisolvency condition, which will be encountered here for some choices
of nodes patterns.

2 ConstructionMethod

2.1 Node Sets and Basis Functions

Apoint on the triangle with vertices xA, xB and xC is represented by x = x0xA+x1xB+x2xC
with x0 = 1 − x1 − x2 and xk ∈ [0, 1] for k = 0, 1, 2. Given a single node with natural
coordinates (x1, x2), its symmetric counterparts on the triangle and itself are elements of the
set �(x1, x2), which can be obtained by taking the first two of each of the 6 permutations of
(x0, x1, x2) and removing duplicates. Table 1 lists the 6 equivalence classes for symmetric
sets of nodes on the triangle. The second column contains the symmetry class, following
definition 2.3 of [19], which will be referred to by the index j of the first column in what
follows. The third column describes the node position on the triangle in natural coordinates
modulo symmetry, and the fourth column their number v j based on symmetry.

A node pattern or rule set is given by K = {K1, K2, . . . , K6}. The total number of nodes
per triangle is np = ∑6

j=1 K jv j . The number of node parameters is nxpar = K3+K5+2K6.

Together with the quadrature weights, of which there are nweight = ∑6
j=1 K j , the total

number of parameters becomes npar = nxpar + nweight.

The polynomial set of basis function of degree p is Pp = {xi1x j
2 | i ≥ 0, j ≥ 0, i + j ≤

p; i, j ∈ Z}. Since this choice leads to non-positive quadrature weights already for degree
2, it can be augmented by higher-degree polynomials in the interior that vanish on the edges:
P p′ = {η} ⊗ Pp′−3 = {η xi1x

j
2 | i ≥ 0, j ≥ 0, i + j ≤ p′ − 3; i, j ∈ Z} with a bubble

function η = x0x1x2 = (1 − x1 − x2)x1x2 that vanishes on the edges. Here, p′ ≥ 3 and
p′ ≥ p.

Instead of P p′ = {η}⊗ Pp′−3, the product of the bubble function η and some subset P̃p′−3

of Pp′−3 can be chosen, with Pp−3 ⊆ P̃p′−3 ⊆ Pp′−3, similar to the tetrahedral elements of

Table 1 Classes for the triangle j Class Node v j Remark

1 [1] (0, 0) 3 vertices

2 [2] ( 12 , 0) 3 edge midpoints

3 [1,1] (a, 0) 6 interior edge points

4 [3] ( 13 , 1
3 ) 1 centre

5 [2,1] (a, a) 3 interior points on bisector

6 [1,1,1] (a, b) 6 interior points

The number of nodes per class is v j
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degree 4 in [11]. This option will not be considered here, because it is less obvious how to
automate the search for new elements, and is left for further research.

Conformity between elements is obtained if the restriction to the edges has degree p.
A necessary condition for unisolvence is that there are as many nodes as polynomial basis
functions npol. Together, they define the node pattern for given degrees p and p′, as described
by Theorem 1 in Appendix C.

Conjecture 3.1 in [10] states another requirement for unisolvence: the node pattern in the
interior should be the same as that of the regular element of degree p′ with equidistant nodes
in the natural coordinates. Lemma 1 in Appendix C proves its consistency with Theorem 1.

2.2 Quadrature

Lumping of the mass matrix amounts to numerical quadrature. The usual requirement is
that polynomials up to degree q = p + p′ − 2 should be integrated exactly for accuracy
to be preserved [5, 20, e.g.]. The elements up to degree 9 mentioned in the introduction are
all based on this criterion. A less restrictive condition was introduced in [11] and enabled
the construction of tetrahedral elements with less nodes. Quadrature should be exact for
polynomials in Qp,p′ = Pp−2 ⊗ U , where U = Pp ⊕ P p′ contains the basis functions. If
ψ(x1, x2) is an element of Qp,p′ , the condition becomes

∫ 1

x1=0
dx1

∫ 1−x1

x2=0
dx2 ψ(x1, x2) =

nweight∑

k=1

wk�k, �k =
∑

(x̃1,x̃2)∈�(x̃k,1, x̃k,2)

ψ(x̃1, x̃2). (1)

Here k runs over the nodes (x̃k,1, x̃k,2) modulo symmetry. Since U is a subset of Pp′ , this
potentially leads to elements with less nodes.

The requirement of exact quadrature results in a polynomial system of equations, linear
in the weights wk , with coefficients that are rational numbers for the polynomials used here.
It has a subsystem that corresponds to polynomials of P p′ and the interior nodes.

To avoid inconsistent systems, it is natural to require the number of equations neq not to
exceed the number of parameters npar, although it may still happen that the overdetermined
system has one or more solutions. Among the solutions, only the real ones with strictly
positive weights wk and nodes not outside the triangle are useful. In addition, degeneracies
where a node moves out of its class into another should be avoided. A class 3 node should
therefore have 0 < a < 1

2 , a class 5 node 0 < a < 1
2 and a 	= 1

3 , and a class 6 node a 	= b,
a > 0, b > 0, 1 − a − b > 0.

The number of equations neq tends to be less than the number of bivariate monomials
modulo symmetry in Qp,p′ = Pp−2 ⊗U , because some of them are integrated to zero. In the
earlier approach, which required exactness up to degree q = p+ p′ −2, only the monomials
xi00 xi11 xi22 with i2 = i1 ≥ i0 ≥ 0 and

∑2
j=0 i j = i0 + 2i1 ≤ q had to be considered [7, 12].

In the current setting, it is more convenient to work with symmetric polynomials, c.f. [21].
A polynomial �k in equation (1) can be expressed in the elementary symmetric polyno-

mials {1, x0 + x1 + x2, ξ, η}, with ξ(x1, x2) = x0x1 + x0x2 + x1x2 and bubble function
η(x1, x2) = x0x1x2. Because x0 + x1 + x2 = 1, the second polynomial drops out. The set
of symmetric polynomials up to degree p is Psym

p = {ξ iη j | i ≥ 0, j ≥ 0, 2i + 3 j ≤ p;
i, j ∈ Z}. For quadrature, the set Qp,p′ can be replaced by

Qp,p′ = Psym
2p−2 ∪

[
{η} ⊗

(
Psym
p+p′−5 \ Psym

2p−5

)]
. (2)
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Equation (1) for an element ψ of Qp,p′ can be replaced by

∫ 1

x1=0
dx1

∫ 1−x1

x2=0
dx2 ψ(x1, x2) =

nweight∑

k=1

wkv j(k)ψ(x̃k,1, x̃k,2), (3)

where j(k) is the class of node number k modulo symmetry, i.e., for each symmetric set
of nodes, only one is included. The number of independent polynomials in Psym

p is nsymp =
1+ floor (p(p + 6)/12) [21]. Their number in Qp,p′ is the same as the resulting number of
equations: neq = nsym2p−2 + nsymp+p′−5 − nsym2p−5, assuming p′ > p ≥ 2.

The use of symmetric polynomials suggests that (a, 0) be better replaced by a = 1
2 (1 −√

1 − α) and 0 ≤ α ≤ 1, as in [8]. A similar substitution for a class 6 node (a, b) is
α = 3ξ(a, b) = 3[a(1 − a) + b(1 − b) − ab], β = 27η(a, b) = 27ab(1 − a − b).
Appendix D describes this parametrization and its inverse, which proved to be useful for the
element of degree 5. It lowers the degrees in the system of polynomial equations but may be
less attractive for numerical root finding with bounds.

2.3 Polynomial System

Given a polynomial degree p, the values of K1,2,3 of the node pattern are prescribed by
Theorem 1 in Appendix C. Because the vertices are always included, K1 = 1. Then, a loop
over the interior degree p′ is started, defining the remaining K4,5,6 by Theorem 1, to find
combinationswith a number of free parameters npar not exceeding the number of independent
equations neq. The search is limited to values of the total number of nodes np not much larger
than that for the known elements, constructed with the more restrictive accuracy criterion.

For each candidate node pattern and degrees p, p′, equation (3) provides a system of
equations of the form

f(a,w) = A(a)
(
w
1

)

= 0, (4)

where the vector w contains the nweight integration weights and the vector a the nxpar node
parameters. The matrix A(a) with neq rows and nweight + 1 columns contains polynomials
in the node parameters up to degree p + p′ − 2 and rational coefficients. A subsystem
corresponding to the product of the bubble function and polynomials only contains the interior
weights and node parameters.

The system may have no solution, which typically but not necessarily happens for neq >

nxpar. It may be underdetermined and then either has no solution, if inconsistent, or infinitely
many. This happens typically but not necessarily if neq < nxpar. If the number of complex
solutions is finite, the system is called zero-dimensional. In that case, the number of solutions
does not exceed the Bézout bound [22, e.g.], which grows rapidly with the degree and size
of the system. Among those solutions, only the real ones with positive weights and node
parameters within the given bounds are useful, if they exist at all.

There are several packages for solving polynomial systems of equations but their
unfavourable computational complexity limits their usefulness to small systems. For the
results presented later on, the function Gröbnerbasis inMathematica [23], an implemen-
tation of the Buchberger’s algorithm [24], was nevertheless used with a time limit because
it returns relatively quickly if the system is inconsistent. For small systems, the function
Reduce provided solution sets, fromwhich the real-valued oneswithin the parameter bounds
were selected, if present, and only one for each set of symmetric solutions was retained. For
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larger systems with p ≥ 5, an empirical approach was adopted with a hand-coded damped
Newton-type algorithm using extended numerical precision in Mathematica, starting from
randomly chosen initial values. Better results were obtained with starting values obtained
with lsqnonlin in Matlab [25], a nonlinear least-squares algorithm with bounds using a
trust-region method [26], and refining themwith the Newton-type algorithm inMathematica.
The authors of [27, 28] take a similar approach with additional refinements. In some cases,
this provided convergence with an extended precision of 64 or even 128 digits. In other cases,
the Matlab solution proved to be false, due to its insufficient precision.

3 New Elements

Table 2 lists candidate node patterns for a small number of nodes np and a number of
parameters npar not too much larger than the number of equations neq.

For degrees 2 to 4, the elements obtained with the less restrictive accuracy criterion are
the same as the known ones. New elements are found for degree 5 to 7.

The degree-5 element has the same node pattern and number of nodes as the known
element but, with the less restrictive accuracy criterion, the number of equations is now one
less than the number of parameters and infinitely many solutions exist. Some of the elements
listed in Table 3 have a much better CFL number than the old element.

The value the CFL number in the table is a crude estimate computed on a single reference
elementwith natural boundary conditions, as in [8]. Note that for the performance comparison
later on, the power method is used.

Figure 1 depicts the node distributions. Versions ‘A’ to ‘E’ were found by numerical
root finding. As it turns out, the node parameters and weights could actually be obtained as
functions of a single parameter related to the class-6 node. The other parameter for that node
is given by a root of a quartic equation. Two of the four roots provide acceptable solutions,
each for a certain range of the one parameter. From the two parameters, the other unknowns
follow. Appendix E describes the details. With this approach, the elements ‘F’ and ‘G’ in
Table 3 were found.

Table 2 Node patterns for the less restrictive accuracy criterion

p p′ K np neq npar Remarks

2 3 1,1,0,1,0,0 7 3 3 [1–3]

3 3 1,0,1,1,0,0 10 4 4 negative weight [29]

4 1,0,1,0,1,0 12 5 5 [4, 5]

4 5 1,1,1,0,2,0 18 8 8 [6]

5 7 1,0,2,0,3,1 30 13 14 Table 3, cf. [7]

6 8 1,1,2,0,3,2 39 18 18 Table 4

7 9 1,0,3,1,3,3 49 23 23 Table 5, negative weight

10 1,0,3,0,4,4 57 26 27 Table 6, cf. [9, 10]

The first columns contains the element’s polynomial degree p on the edges, the second the degree p′ in the
interior. Acceptable node patterns K are listed in the third column. The following three columns contain the
number of nodes per element, np, the number of equations neq and the number of parameter npar including
integration weights. The last column contains references if the element is known
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Table 3 Elements of degree p = 5 and p′ = 7 for node pattern K = {1, 0, 2, 0, 3, 1} and 30 nodes
Version Class Weight Node parameter(s) CFL

Old 1 0.000709423970679245979296011 0.0512

3 0.00348057864048921065844268 0.132264581632713985353888

0.00619056500367662911411813 0.363298074153686045705506

5 0.0116261354596175711394984 0.0575276844114101056608177

0.0459012376307628573770191 0.256859107261959076063891

0.0345304303772827935283885 0.457836838079161101938503

6 0.0272785759699962595486715 0.0781925836255170219988860,

0.221001218759890007978128

A 1 0.000879009624995284106814695 0.0747

3 0.00411585769830158474926264 0.110835006171437767881329

0.00650361072500062668681246 0.356539699925505278560472

5 0.0147383752003039406964541 0.0770234112726137075760509

0.0456050154522867870456603 0.257259238324750751429166

0.0323214295254329914635841 0.457766596627709864587206

6 0.0259419500085216202410016 0.0794767308261382494261150,

0.236143817395327055335588

B 1 0.00112850834939800185653705 0.0660

3 0.00553785744061237736805107 0.118934563692576585504231

0.00527426292598622579665451 0.364569431872566485997855

5 0.0226509274051637849994858 0.396780053949676580260780

0.0279597621111092150837526 0.103152646644251217601164

0.0317808195214495409414580 0.239000855752895116132219

6 0.0307612042731744587280110 0.0707945818807994555408320,

0.327149603111719551384559

C 1 0.00115549287989088414765805 0.0635

3 0.00550037098517350411574206 0.120816441859592526730759

0.00485449809361910636924343 0.367892967034217012652045

5 0.0294440065885892211573510 0.396564927836069208211080

0.0270725476884981410120471 0.101260978361218992804392

0.0287145195842415319136400 0.226521899196111738704120

6 0.0297851808839308337329998 0.0671090632766397067507366,

0.327498244608440854493627

D 1 0.00103547195633848098761006 0.0503

3 0.00535568771353670766429958 0.113902720216713443261565

0.00595721024556694329598651 0.364685211575831368860674

5 0.0267072773429893970158744 0.102336734278152319435978

0.0458955948648327853781976 0.256161564724997401429669

0.0171690105980072950059304 0.450186643853355695605244

6 0.0266167579931457031792410 0.304175494849857950618785,

0.622401177710861792347510

E 1 0.000428271472889533307271917 0.0336

3 0.00347927224404671272436065 0.158793927041023120431962
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Table 3 continued

Version Class Weight Node parameter(s) CFL

0.00569583310492416653572075 0.374811591286926352343805

5 0.0114660286339889696243865 0.0493240009523452266669060

0.0460919139427154644259527 0.256600739838914455128038

0.0350675925681805049089337 0.457843916790554557933041

6 0.0276313246754752179399795 0.217106800525973077643076,

0.705447472686627478796053

F 1 0.000908862732241760920884208 0.0779

3 0.00455069726502002186202031 0.108500761983956956986957

0.00648558787300096567165460 0.356838335100222772163888

5 0.0184552935338467615631458 0.0878357472125351289490833

0.0456710185330337707389964 0.257158270118404901216557

0.0296982282854181890037966 0.457460935843203032433785

6 0.0249303466530421046862469 0.0790534993274347637636730,

0.252184619207854638148373

G 1 0.00112307264320170955685487 0.0661

3 0.00554473631682528410346161 0.118588802122927310312249

0.00535487474343640783268468 0.364029227191181150799938

5 0.0281167083480493927775561 0.103490655194047056507360

0.0329180124145596604849594 0.241913261512908537018319

0.0207761018987874650949518 0.397444311995660300908775

6 0.0309667746207725274400260 0.0715379303811415858779336,

0.327044841209629596933994

The first column provide a version name and the second the class index of the nodes, as defined in Table 1.
The third column gives the integration weight for that node and the fourth the node parameters, if any. The
last column provides the CFL number, computed on the reference element. The old element with a CFL of
0.0512 is included. Versions ‘F’ and ‘G’ are the result of maximizing the estimated CFL number for each of
two roots

(e) (f) (g) (h)

(a) (b) (c) (d)

Fig. 1 Elements of degree 5 with 30 nodes
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Table 4 As Table 3 but for elements of degree p = 6 and p′ = 8, node pattern K = {1, 1, 2, 0, 3, 2} and 39
nodes.

Version Class Weight Node parameter(s) CFL

A 1 0.000535113520281665722530572 0.0404

2 0.00429435346026293306665947

3 0.00302990950926060544290299 0.0829411811106452819184084

0.00316396316646563171286403 0.268649695592714349480742

5 0.0243035184285235576570195 0.468059729056814751780658

0.0166312091329395024891160 0.0793088545089875461560173

0.0342178857644876540882108 0.392931636618867333850738

6 0.0173480160090330087919888 0.248172758709406807134069,

0.699812197147049754157975

0.0198004044953264308738093 0.156582066033687531622229,

0.243089592364562988710841

B 1 0.000257460020828652354089920 0.0215

2 0.00460482730878197142093218

3 0.00244188756079478636362709 0.0632544287421580511980444

0.00400557050069822855172685 0.255997673129642064055618

5 0.0219027506417797366183630 0.467547594648373495683441

0.0295992885273560634093748 0.199307761371646096988952

0.0364994700229848840521634 0.395621452807875242855901

6 0.0107791719247371423872233 0.0547758895389658446278361,

0.112346551485206220468404

0.0196748050862375221032944 0.0647743481122715726602174,

0.269047748210559724783072

For degree 6, Table 4 lists two new elements for p′ = 8 and K = {1, 1, 2, 0, 3, 2}, one
with a much larger estimated CFL than the other. Figure 2 displays their node patterns. They
have 39 nodes, significantly less than the 46 for the elements found in [8]. Note that the
related polynomial system of equations may have more acceptable solutions than the two
found so far.

Table 5 contains a new degree-7 element with less nodes than the known element, but
with a negative weight, making it unsuited for explicit time stepping with the wave equation.
Figure 3 shows the distribution of nodes. Table 6 lists a new element for degree 7 with version
name ‘old,2’, obtained with the old accuracy criterion. It has an unfavourable estimated CFL
number compared to the 0.0288 for the degree-7 element in [9, 10], not included in the table.

For the same node pattern, the new accuracy criterion provided the elements ‘new,A’,
‘new,B’ and ‘new,C’, among others. Note that the elements obtained with the old accuracy
criterion also obey the new criterion if the same node pattern is used, but with the latter
the number of equations is less than the number of parameters. There are infinitely many
solutions, similar to the elements of degree 5. Figure 4 displays the node distributions for
various degree-7 elements.

The node pattern for these elements results in a polynomial system that has one equation
less than the number of unknowns. Once an element is found with a Newton-typemethod, the
Jacobian of the polynomial system has a nullspace characterized by a single vector. A small
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(a) (b)

Fig. 2 Two new elements of degree 6 with 39 nodes.

Table 5 As Table 3 but for elements of degree p = 7 and p′ = 9, node pattern K = {1, 0, 3, 1, 3, 3}, 49
nodes, but one negative weight at the centroid

Version Class Weight Node parameter(s) CFL

A 1 0.000313710366909516531067160 –

3 0.00175882419588574885288479 0.0636519598530178208784016

0.00238728013635391307110839 0.202910515459671205471317

0.00242815390056405901349381 0.393576598320204099250543

4 −0.0293141912259235259023043

5 0.0209903174343404072316089 0.169009011455169867298455

0.00991226378444828069978509 0.0605233176000343234822879

0.0332735735644986232970097 0.291538485884273937734477

6 0.0138537165772471617567291 0.0511997256935429561349092,

0.194286718951876326904460

0.0137927979203864615231154 0.0422537317760747817803707,

0.379536013488622654916812

0.0217533265654514962199837 0.138561826674902759499861,

0.339328125837246975570942

perturbation in its direction followed by a few Newton iterations will provide a new element.
With this continuation approach, one can, for instance, minimize or maximize a parameter.
Note that a larger value of the smallest weight, typically the first one that corresponds to the
vertices, as suggested by [10], does not necessarily imply a larger CFL number, as can be
seen in Table 3 when comparing versions ‘A’ and ‘B’, for instance.

4 Numerical Tests

Accuracy and performance tests were carried out for the wave equation

1

ρc2
∂2 p

∂t2
+ ∇ ·

(
1

ρ
∇ p

)

= f , (5)

with solution p(t, x),wave speed c(x), densityρ(x) and forcing function f (t, x) = w(t)δ(x−
xs), representing a point source located at xs with signature w(t). The same homogeneous
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Table 6 As Table 3 but for elements of degree p = 7 and p′ = 10, node pattern K = {1, 0, 3, 0, 4, 4} and 57
nodes.

Version Class Weight Node parameter(s) CFL

2 1 0.000275140368716188648050096 0.00614

3 0.00118412729997334268246557 0.0696872741892091178390622

0.00207496411177870317235672 0.202544522272002776666442

0.00223540525531838475881994 0.382911248488916619154216

5 0.00479886626145825708906285 0.0390604664547067851765064

0.0140922554447075041323104 0.144998754254911971941167

0.0171535298743046708772137 0.443955721488037365272784

0.0107138806597268822942520 0.483618261879216267917893

6 0.0128002517535361372147998 0.0446163280940075964636833,

0.294235663554528425089070

0.00980076423926674455796326 0.0459024183105266895470678,

0.140014287438111841106343

0.0171358309653549219660029 0.143158520552182275518550,

0.276444104451719686017270

0.0145851534036483474604806 0.321753438717174568760301,

0.437989996733084570600448

A 1 0.000238695252846553689847331 0.0253

3 0.00126374965946033477377442 0.0867429630902184471292244

0.00198905702582367801347184 0.217127360430656628004509

0.00236136433548852631027316 0.401232561424336759181003

5 0.00425862305546623722102750 0.0330011869355970571594049

0.0142202111887029389393799 0.147886138476350215116974

0.0243511251616649597723365 0.279028750949523916447880

0.0189683979045181702958467 0.428635964185250514362592

6 0.00972263345316337858877553 0.0467865452700391461813470,

0.132459205491789565254905

0.0113649510188389931511596 0.0429023373568979926356202,

0.279130005785256996308628

0.00856862365639040184592217 0.0438898209370138668384116,

0.427962095109837675005854

0.0170444279025685906907376 0.138268540083726047154283,

0.278555751053416511969240

B 1 0.0000836674747231023966108617 0.00954

3 0.00179106630670407372477693 0.121233656041238959852015

0.00217854181059739516809228 0.281105404727711214915507

0.00153601672585330270062047 0.450520201179285561088891

5 0.00426701765173408971609881 0.0274157011431944933410341

0.0241308890533453968915847 0.279395130450223296937036

0.0163163201453197908920322 0.428525032019964401846667

0.0141193659444639677866213 0.478009468510004456439063
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Table 6 continued

Version Class Weight Node parameter(s) CFL

6 0.0127868484810768011694433 0.0433959844896483460554480,

0.289337752113516619724036

0.0104246497947306293266932 0.0479198573483405680443920,

0.130904116197006739359642

0.00926736526796708880199240 0.138184805524275453889801,

0.176961850977228700389032

0.0158902148116108686002409 0.139688730689699423706641,

0.295867873544572297817889

C 1 0.000306478806536586264492831 0.0333

3 0.00130717879467774426019152 0.0680171816971005753228705

0.00192926751639472403091908 0.212441572265834062852168

0.00242507934885904094946397 0.398431186099600267936255

5 0.00575573098754814412014632 0.0442126304610351507416911

0.0110697749778186605953705 0.123999558223074026764437

0.0242854304772271720822419 0.279142528538418919250677

0.0128933558827891676286041 0.478025863239417667298239

6 0.00877450503331828031212470 0.0397836929113564009364483,

0.153472862056118269356942

0.0118904396207820335886188 0.0433015417478262478638329,

0.304605240371887620639343

0.0161536647419034937572373 0.137876683936139395280839,

0.614614434887259655555431

0.0136978127114381510893501 0.141977934632021995993546,

0.377531111317529536841190

The element of [9, 10], not listed, has a CFL of 0.0288. Element version ‘2’ obeys the old accuracy criterion,
‘A’ to ’C’ the new

test problem as in [8] is used, on the unit square for constant c(x) = 1 and ρ(x) = 1 and
with zero Dirichlet boundary conditions (not Neumann as erroneously mentioned in [8]).
The source is located at the centre and has a signature w(t) = [4(t/T ){1 − (t/T )}]16 for
0 ≤ t ≤ T and zero otherwise, with a duration T = 0.2.

The spatial discretisation is reviewed in Appendix A. Geompack [30] was used to con-
struct unstructured meshes. Assembly is performed on the fly in each time step, as in [6, 11,
31–33], although on modern hardware, a pre-assembled matrix might be more efficient in
2D, in particular for lower orders.

Higher-order time stepping [34–37] is applied instead of Stork’s dispersion correction
[38–41], which would be more efficient in practice. The time-stepping order is taken to be
Mt = 2 ceil((p + 1)/2). Details, such as the increase of the CFL number for higher orders,
can be found in [8, e.g.]. If the signature is not smooth enough at the endpoints, at time 0 or
T , the numerical error for high-order time stepping may become too large because a higher
derivative of the source signature ceases to exist. A higher power will avoid that problem and
is chosen here as 16 instead of the power 8 used [8].

123



Journal of Scientific Computing            (2022) 92:38 Page 13 of 22    38 

Fig. 3 New element of degree 7
with 49 nodes but a negative
weight

7A neg

(e)

(a) (b) (c)

(d)

Fig. 4 Three new and two old elements of degree 7 with 57 nodes. Version ‘7,1 old’ (c) was found earlier [9,
10]. The newly found ‘7,2 old’ has an unfavourable CFL number

For second-order times stepping, the time step is limited by �tmax = √
2/σmax, where

σmax is the largest eigenvalue of the spatial operator, the product of the inverse lumped mass
matrix and the stiffness operator. The power method [42] was used to find an estimate for
each run. The results turned out be slightly larger than the crude estimates listed in the tables.

The numerical solution at time t = 1.25 is compared to the exact solution on all the nodes.
Their number equals the number of degrees of freedom N , which includes the zero Dirichlet
boundary values. The relative L2 error is defined as ‖u − uexact‖2/‖uexact‖2, with a norm
given by

‖u‖22 =
ntri∑

j=1

a j

np∑

k=1

wku
2
j,k, (6)

where j runs over all triangle and k over all nodes in each triangle with area a j , quadra-
ture weights wk and solution values u j,k . With a number of degrees of freedom N , the
expected convergence behaviour is N−(p+1)/2 for the current problem. Note that the use of
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(a) (b)

(c) (d)

Fig. 5 Convergence under mesh refinement for degree p = 5. The legend contains the degree and the order for
time stepping, the number of nodes, 30 in this case, and the version name. The left panel a shows the relative
L2 error as a function of the square root of the number of degrees of freedom N . The grey line indicates the
expected trend. The panel on the right b depicts errors as a function of the elapsed time for time stepping.
Similar results for the maximum error, relative to the maximum of the solution, are shown in c and d

these weights in equation (6) results in an additional error, which should be neglegible for
p + p′ − 2 > p or p′ > 2.

The computational efficiency of an element is not only determined by the number of nodes,
but also by its CFL number and the error constant. A crude indication of the efficiency is
obtained by performing tests on the given problem and recording its run time. The single-
threaded code was written in C and dates back to 1995. The wall clock time for the time
stepping part of the code is by no means representative for what can be obtained on modern
architectures, but is nevertheless used as a measure for the performance comparison.

Figure 5a shows the measured relative L2 error on a sequence of unstructured grids for
three versions of the scheme, including the old one, as a function of the square root of number
of degrees of freedom. The trend follows the expected behaviour, N−(p+1)/2, indicated by the
grey line. Of the three version in this comparison, ‘B’ has the smallest error. Figure 5b plots
the error against the elapsed time and provides a rough indication of the relative performance.
Versions ‘B’ and ‘G’ appear to be slightly more efficient than the other, and both do better
than the old scheme. Although version ‘G’ has a smaller CFL number than ‘F’, its better
accuracy make its more efficient. Figure 5(c) and (d) show similar results measured for the
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(a) (b)

(c) (d)

Fig. 6 As Fig. 5, but for degree 6

maximum error, relative to the maximum absolute value of the solution. The maximum error
tends to be less smooth than the L2 norm [43, e.g.]. The performance for the new elements
is similar, whereas the gain over the old element is small.

Figure 6a confirms the expected convergence behaviour for degree 6. Both new elements
‘A’ and ‘B’ have a smaller error than the known scheme with 46 nodes, version ‘D’, in [8]. In
terms of efficiency, Fig. 6b shows that version ‘A’ outperforms the others. Version ‘B’ is less
efficient than the old one. Although it has less nodes per element, its smaller CFL number
make it less attractive. The results in the relative maximum norm, displayed in Fig. 6(c) and
(d), show a similar behaviour.

Figure 7 display errors for two degree-7 elements, version ‘1’ of [9, 10] and ‘2’ obtained
with the old, more restrictive accuracy criterion. Elements ‘A’,‘B’ and ‘C’ were found with
the new criterion. Their errors are similar, but ‘C’ is more efficient.
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(a) (b)

(c) (d)

Fig. 7 As Fig. 5, but for degree 7. Versions ‘1’ from [9, 10] and ‘2’ were obtained with the old, more restrictive
accuracy criterion, whereas ‘A’ to ’C’ were found with the new criterion

5 Conclusions

The search for continuous mass-lumped triangular finite elements with a less restrictive
accuracy criterion than the classic one has led to a number of new elements of degree 5, 6
and 7. These elements are enriched with polynomials of a higher degree in their interior to
preserve accuracy after mass lumping. Given the polynomial degrees on the boundary of the
triangle and in its interior, it is proven that the requirements of conformity and unisolvence
define a unique node pattern.

The elements for lower degrees turned out to be same as the known ones. For degree 5 and
7, there are infinitely many elements with the same number of nodes as the known element.
For degree 6, two new elements with less nodes were found.

Numerical tests on a homogeneous wave-equation problem with a point source at the
centre show that some of the degree-5 elements have a somewhat better accuracy at a given
cost than the classic element. The same is true for one of the new elements of degree 7. The
gain is most pronounced for one of the two degree-6 elements.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10915-022-01890-z.
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Appendix A Finite-Element Discretisation on the Triangle

The sound speed c and density ρ are assumed to be piecewise constant per element. Given
a triangle with vertices xA, xB and xC , define xBA = xB − xA and xCA = xC − xA.
Its area is a = 1

2 (xBAyCA − yBAxCA). The contribution to the mass matrix is Aa/(ρc2),

with Ai j = ∫ 1
x1=0

∫ 1−x1
x2=0 φiφ j dx1 dx2, where φi (x1, x2) denotes the basis functions on the

reference triangle and the material properties are assumed to be constant per element. The
stiffness matrix contributes

ρ−1
(
J1B11 + J2B22 − J3[B12 + (B21)T]

)
, (A1)

where bk�i j = ∫ 1
x1=0

∫ 1−x1
x2=0 (∂xkφi )(∂x�

φ j ) dx1 dx2. The geometric factors are

J1 = (x2CA + y2CA)/(4a), J2 = (x2BA + y2BA)/(4a),

J3 = (xBAxCA + yBAyCA)/(4a).
(A2)

Appendix B Exact Solution

The exact solution of the homogeneous problem, apart from a factor ρ, is given by

p(t, r) = 1

2π

∫ τmax

τmin

w(t − τ)
√

τ 2 − (r/c)2
dτ

= 1

2π

∫ smax

smin

w(t − (r/c) cosh(s)) ds,

(B3)

with r = √
(x − xs)2 + (y − ys)2, s = arccosh(τc/r) and time t > Tmax, assuming that the

source signature is only nonzero between times Tmin and Tmax. Here, τmin = max(r/c, t −
Tmax), τmax = t − Tmin, smin = arccosh(max(1, (t − Tmax)c/r)) and smax = arccosh((t −
Tmin)c/r).
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If r = 0 and t > Tmax, let τ = exp(s). Then,

p(t, 0) =
∫ t−Tmin

t−Tmax

w(t − τ)

τ
dτ =

∫ log(t−Tmin)

log(t−Tmax)

w(t − es)ds. (B4)

The integrals can be evaluated by numerical quadrature. Alternatively, the solution in the
Fourier domain with a Hankel function can be convolved with the source signature.

Appendix C Node Pattern for Given Degrees

For a degree p ≥ 1 on the edges of the triangle and a degree p′ ≥ p in its interior, a node
pattern K = {K1, K2, . . . , K6} should be chosen that uniquely determines the associated
polynomials.

Theorem 1 Given a degree p ≥ 1on the edges of a triangle and adegree p′ ≥ p in its interior.
Assume that the vertices are always involved: K1 = 1. A necessary condition for conformity
and unisolvence is a node pattern with K2 = 1 and K3 = (p − 2)/2 if p is even, or K2 = 0
and K3 = (p − 1)/2 if p is odd. The centroid is involved, i.e., K4 = 1, if mod3 p′ = 0;
otherwise, K4 = 0. The remaining two classes have K5 = floor((p′ − 1)/2) − K4 and
K6 = (nint − K4 − 3K5)/6, where nint = (p′ − 2)(p′ − 1)/2.

Proof Conformity is obtained if the restriction to the edges has degree p. This implies that
K1 = 1, K2 = 1 and K3 = (p − 2)/2 if p is even, or K1 = 1, K2 = 0 and K3 = (p − 1)/2
if p is odd. The number of points on the boundary thereby becomes nedge = 3p. The number
of remaining interior points is 1

2 (p + 1)(p + 2) − 3p = 1
2 (p − 2)(p − 1), constituting a

subset of the nint points for the degree p′ ≥ p.
A necessary condition for unisolvence is that the number of polynomial basis functions

npol equals the number of nodes np = nedge + nint. The first three entries of the node pattern
have already been discussed. For the interior, the remaining three should obey

6∑

j=4

v j K j = K4 + 3K5 + 6K6 = nint = 1
2 (p

′ − 2)(p′ − 1), (C5)

where K4 is 0 or 1.
The Lagrange basis functions are 1 on one node and 0 on all the other. For a reference node

in an equivalence class j with barycentric coordinates (x0, x1, x2), where x0 = 1− x1 − x2,
its symmetric counterparts can be obtained by taking the unique permutations of the three
coordinates, providing a total of v j nodes. The corresponding Lagrange basis functions
φ(x0, x1, x2) for these nodes follow the same permutation pattern, that is, if the one for the
reference nodes is know, the other can be obtained by the permuting its arguments, discarding
duplicates that occur if the same permutation on the reference node produces a duplicate.

For the interior nodes, Lemma3.1.10 of [44] implies that they canbewritten asφ(x1, x2) =
ηψ(x1, x2)withψ(x1, x2) of degree p′ − 3 and bubble function η. Consider the class-5 nodes
on the line x2 = x1, with x0 = 1 − 2x1. A Lagrange basis function φ[5](x0, x1, x2) that is 1
on a node on this line and 0 on all the other nodes should be invariant under the permutation
that interchanges x1 and x2. With the transformation ξ1 = (x1+ x2)/2 and ξ2 = (x2 − x1)/2,
it therefore should be of the form

φ[5](ξ1, ξ2) = η

kmax∑

k=0

p′−3−2k∑

j=0

a j,kξ
j
1 ξ2k2 , η = x0x1x2 = (1 − 2ξ1)(ξ

2
1 − ξ22 ), (C6)
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where kmax = floor((p′ − 3)/2). Because of the mirror symmetry with respect to the line
x2 = x1 or ξ2 = 0, odd powers of ξ2 do not appear. The number of coefficients a j,k is

n[5]
coef = (kmax + 1)[p′ − 1 − (kmax + 1)].
The number of nodes that can uniquely define φ[5](ξ1, ξ2) is n[5]

p = K4 + 2K5 + 3K6,
less than the number of interior points nint because of symmetry. Here, only half the triangle
is involved, with interior nodes that either have ξ2 ≥ 0 or ξ2 ≤ 0. Therefore, a necessary
condition for unisolvence is n[5]

coef = n[5]
p or

K4 + 2K5 + 3K6 = (kmax + 1)[p′ − 1 − (kmax + 1)]. (C7)

This condition and the one in equation (C5) are satisfied if K5 = (2n[5]
coef − nint) − K4 and

K6 = (2nint+K4)/3−n[5]
coef = (nint−K4−3K5)/6. The expression for K5 can be simplified

by noting that

2n[5]
coef − nint = kmax + 1 = floor((p′ − 1)/2), (C8)

which can be readily verified by substituting p′ = m0 + 2m1 and evaluating the result for
m0 = 0 or m0 = 1.

To obtain an integer value of K6, 2nint+K4 should be amultiple of 3.With p′ = m0+3m1,
the requirement becomes mod3(2nint + K4) = mod3(2 + m2

0 + K4) = 0. Recall that K4 =
0 or K4 = 1. For m0 = 0, this implies K4 = 1, whereas K4 = 0 for m0 = 1 or m0 = 2. In
short, if mod3 p′ = 0, then K4 = 1, otherwise K4 = 0.

In this way, the degrees p and p′ define a unique node pattern K . ��
According to Conjecture 3.1 in [10], unisolvence requires the node pattern in the interior to

be the same as that of the regular element of degree p′, having equidistant nodes in the natural
coordinates. The authors employ orbit patterns of the form (K4) :(K1+K2+K5) :(K3+K6).

Lemma 1 Theorem 1 is consistent with Conjecture 3.1 in [10].

Proof The interior points for a regular element of degree p′ are given by (k1/p′, k2/p′) with
k2 = 1, . . . , p′ − 1 and k1 = 1, . . . , p′ − k2. The centroid is involved if (k1/p′, k2/p′) =
(1/3, 1/3) or k2 = k1 = p′/3, which is an integer for mod3 p′ = 0.

The number of interior nodes on the bisector line x2 = x1 is K4 + K5. These nodes are
given by (k1, k1)/p′ with 1 ≤ k1 < p′/2. Therefore, K4 + K5 = floor((p′ − 1)/2), leading
to K5. The other equation, nint = K4 + 3K5 + 6K6, produces K6.

The resulting node pattern is the same as in Theorem 1. ��

Appendix D Another Parametrization

For the two-parameter nodes of class 6, a representation in terms of symmetric polynomials
will simplify the system of polynomial equations. Define the scaled symmetric polynomials

α(x1, x2) = 3(x0x1 + x0x2 + x1x2), β(x1, x2) = 27x0x1x2 = 27η, (D9)

with x0 = 1 − x1 − x2 and bubble function η. The inverse modulo symmetry is given by

α̃ = 1 − α, β̃ = 1 − β, φ = 1
3 arccos

(
3α̃ − β̃

2α̃
√

α̃

)

,

τ1 = 1
3

(
1 − √

α̃ cosφ
)

, τ2 = 1√
3

√
α̃ sin φ,

x1 = τ1 + τ2, x2 = τ1 − τ2,
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in the subset 0 < x1 < 1
2 , 0 < x2 < min(x1, 1−2x1) < 1

3 . For the transformed coordinates,
we have (3α̃ − β̃)2 < 4α̃3, 0 < α̃ < 1, 0 < β̃ < 1. Note that (α̃, β̃) = (1, 1) corresponds to
the centroid and must be excluded from class 6.

For the one-parameter nodes of class 3, one choice is 0 < x1 < 1
2 and x2 = 0 and the

other nodes follow by symmetry. Instead of equation (D9), let α = 4(x0x1 + x0x2 + x1x2) =
4x1(1 − x1) with inverse x1 = 1

2 (1 − √
1 − α) for 0 < α < 1, as used in [8].

Appendix E Degree 5

The infinitely many solutions for the elements of degree p = 5 and p′ = 7 with node pattern
K = {1, 0, 2, 0, 3, 1} can be expressed as functions of one parameter, for which one of the
coordinates of the single class-6 node was chosen, α in equation (D9). Then, β is one of the
roots of

113135β4 + 1210β3(5639 + 11α(−1229 + 715α))

+ 11β2(2448927 + 55α(−201114 + 11α(28491 + α(−17344 + 3025α))))

− 66β(−419661 + α(2854683 + 55α(−134190

+ α(163629 + 11α(−8418 + 1705α)))))

+ 81(104976 + 11α(−87156 + α(320571

+ 11α(−55062 + 5α(11223 + 11α(−528 + 107α)))))) = 0.

(E10)

Of the 4 roots, 2 provide useful parameters, root numbers 2 and 3 of the Root object
in Mathematica or the root function in symbolic Matlab. Acceptable solutions for
root number 2 require 0.751946843893807993541066 < α < 0.791815901607413159560138 and
0.669363998400015622998648 < α for root number 3 with the same upper bound as root number
2.

The other node parameters and weights follow from explicit but lengthy expressions,
except for

w7 = 27

61600 β[α(α(3 − 4α) + 6β) − β(β + 4)] .

From the resulting mass and stiffness matrices, the CFL number can be estimated by con-
sidering a single reference element with natural boundary conditions. For root number 3, the
maximum of 0.0779 is found for α = 0.789331970591268894545679 and other parameters listed
in Table 3 as version F. Version G corresponds to the largest CFL estimate of 0.0661 for root
number 2, based on α = 0.789331970591268894545679.

A supplemental file degree5.m for Mathematica is provided with a function that gener-
ates the node parameters and weights for a given value of α and a root number. The solutions
listed in Table 3 are included. In the script, the 3 node parameters for class 5 were replaced
by a symmetric polynomials to further simplify the system of polynomial equations.
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