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Combined time-domain optimization design for
task-flexible and high performance ILC

Kentaro Tsurumoto1, Wataru Ohnishi1, Takafumi Koseki1, Max van Haren2, and Tom Oomen2,3

Abstract— Iterative learning control (ILC) yields substantial
performance improvement for repetitive motion tasks. While
task-flexibility for non-repetitive motion tasks can be achieved
with the use of basis functions, this typically comes with a trade-
off in performance or design parameters. This study aims to
achieve both task-flexibility and high performance with a single
time-domain optimization framework. By defining a criterion
combining the cost for performance and task-flexibility, an
optimal feedforward with task-flexibility of basis function ILC
and high performance surpassing standard norm-optimal ILC
is obtained. Numerical validation on a two-mass motion system
confirm the capabilities of the developed framework.

I. INTRODUCTION

Feedforward (FF) control is fundamental for attaining
high-speed and superior performance in tracking control
systems. While feedback (FB) control is essential for system
stabilization and disturbance suppression, it alone cannot
concurrently achieve high tracking performance and sub-
stantial noise rejection within identical bandwidth. Hence, in
precision systems demanding high-speed and high-accurate
control, including lithography systems [1], [2] and machine
tools [3], the role of precise and highly reliable FF control
predicated on an accurate system model becomes pivotal.

Iterative learning control (ILC) [4], [5], [6] is a data-
based control method applied to improve the performance
of systems with batch-wise repetitive operations. Distin-
guishing characteristics of ILC involve enhanced tracking-
performance as well as analytical measurements for assuring
learning convergence. For ILC to be industrially applicable,
its framework is required to have:

R1 Task-flexibly against non-repetitive motion tasks.
R2 High tracking-performance.
R3 Few design parameters.

A recognized design constraint of ILC is the trade-off
between task-flexibility (R1) and tracking-performance (R2),
as illustrated in Fig. 1 [7]. For instance, ILC frameworks such
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Fig. 1: Trade-off between tracking-performance and task-
flexibility for ILC [7]. In this study, time-domain CO-
ILC combining standard norm-optimal design (NO-ILC) and
basis functions (BF-ILC) is investigated.

as frequency-domain ILC (FD-ILC) [8], [9] and norm opti-
mal ILC (NO-ILC) [10], [11] can achieve perfect-tracking
for systems only containing repetitive exogenous signals,
whereas basis function ILC (BF-ILC) [12], [13] can maintain
high tracking performance for operations with variations in
the motion profile.

To circumvent this hurdle, important developments have
been made to combine the task-flexibility of BF-ILC with
the performance of FD-ILC. In [14], combined ILC (C-ILC)
achieves task-flexibility as high as that of BF-ILC (R1) and
superior tracking-performance than that of FD-ILC (R2), by
combining basis functions with frequency-domain learning.

Although C-ILC attains both high task-flexibility (R1) and
high tracking-performance (R2), it requires the user to design
both frequency-domain learning filters and time-domain opti-
mization parameters, not satisfying requirement R3. The aim
of this study is to develop a single time-domain optimization
framework satisfying requirement R3, while also achieving
task-flexibility (R1) and high tracking-performance (R2).
This is achieved by combining the criterion based on the
optimization for BF-ILC and NO-ILC framework (Fig. 1).

The main contributions of this study are summarized as
follows:

C1 Combined optimal ILC (CO-ILC) is developed. The
framework consists of the optimization of basis function
FF input fBF and residual FF input fNO.

C2 The presented CO-ILC framework is numerically vali-
dated with a two-mass motion system.
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Fig. 2: Block diagram of closed-loop system. j denotes the
iteration number of the motion task.

A. Notation

Let H(z) denote a discrete-time linear time invariant
(LTI), single-input single-output (SISO) system. Ĥ(z) is a
model of H(z).

Signal length are assumed to be N ∈ N. Given input
and output vectors u, y ∈ RN×1. Let h(t) be the impulse
response vector of H(z). The finite-time convolution matrix
H ∈ RN×N corresponding to H(z) is expressed as follows:

y[0]
y[1]

...
y[N − 1]


︸ ︷︷ ︸

y

=


h(0) h(−1) · · · h(1 − N)
h(1) h(0) · · · h(2 − N)

...
...

. . .
...

h(N − 1) h(N − 2) · · · h(0)


︸ ︷︷ ︸

H


u[0]
u[1]

...
u[N − 1]


︸ ︷︷ ︸

u

assuming zero initial and final conditions.
Additionally, a weighted two norm for vector x is given

by ∥x∥2W = x⊤Wx, a positive definite matrix A is denoted
as A ≻ 0, and IN is an N ×N identity matrix.

II. PROBLEM FORMULATION

In this section the considered problem is defined by
describing the system and introducing norm optimal design,
basis function design of ILC, and combined ILC design.

A. System description

The control setup is shown in Fig. 2. Here system G
and FB controller K are SISO and trial-invariant. Subscript
j denotes the trial number of execution, with rj denoting
the references, fj the feedforward signal, yj the measured
output, vj an unknown zero-mean white Gaussian noise, and
ej the measured error given by:

ej = Srj − Jfj − Svj , (1)

with sensitivity S = (I + GK)−1 and process sensitivity
J = SG. To facilitate the presentation, for section II and III,
r = rj+1 = rj and vj = 0 are assumed.

B. ILC frameworks

In this section, the three pre-existing ILC frameworks, 1)
norm-optimal ILC, 2) basis function ILC and 3) combined
ILC, that are considered in this study, are presented.

1) Norm optimal ILC (NO-ILC): The aim of NO-ILC is to
determine the feedforward fj+1, achieving perfect tracking
control for trial-invariant reference, i.e., r = rj+1 = rj . In
NO-ILC, this is achieved by optimizing fj+1 based on the
following criterion.

Definition 1 (Criterion for NO-ILC). The performance cri-
terion for NO-ILC is given by:

V (fj+1) = ∥êj+1∥2We
+ ∥fj+1∥2Wf

+ ∥fj+1 − fj∥2W∆f
,

(2)

where We ≻ 0, Wf ⪰ 0, and W∆f ⪰ 0 are user-defined
weighting matrices. A common choice for the weighting
matrices are W = w IN , where w is a scalar.

Corresponding FF input update given by:

fj+1 = arg min
fj+1

V (fj+1), (3)

leads to the following optimal FF update for NO-ILC.

Lemma 1 (Optimal FF update for NO-ILC). Optimal FF
update for NO-ILC is formulated as:

fj+1 = QNOfj + LNOej , (4)

where

R = Ĵ ⊤WeĴ +Wf +W∆f ,

LNO = R−1Ĵ ⊤We ∈ RN×N , (5a)

QNO = R−1(Ĵ ⊤WeĴ +W∆f ) ∈ RN×N . (5b)

2) Basis function ILC (BF-ILC): The aim of BF-ILC is
to determine the feedforward fj+1, achieving high tracking
performance even for operations with varying references, i.e.,
rj+1 ̸= rj . While ILC methods like FD-ILC or NO-ILC
can achieve perfect tracking for trial-invariant references,
tracking performance can severely deteriorate for operations
with non-repetitive references [7]. Basis function design
overcome this problem by learning the parameters θj+1 for
the FF controller F (θj+1), designed as:

fj+1 = F (θj+1)rj+1, (6)

where FF controller F (θ) is defined as Definition 2 by user-
defined basis functions Ψ ∈ RN×N×n, where n denotes the
number of basis.

Definition 2 (Parameterized FF controller). Given θ, the
parameterized FF input is constructed by:

f = F (θ)r = Ψrθ, (7)

where

Ψr = [Ψ[:, :, 0]r,Ψ[:, :, 1]r, · · · ,Ψ[:, :, n− 1]r ] ∈ Rn×N .

Similarly to NO-ILC, FF parameters θj+1 are determined
by minimizing a criterion defined as follows.

Definition 3 (Criterion for BF-ILC). The performance cri-
terion for BF-ILC is given by:

V (θj+1) = ∥êj+1∥2We
, (8)

where We ≻ 0 is a user-defined weighting matrix.
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Fig. 3: Error norm per iteration for each ILC method. C-
ILC ( ) achieves performance exceeding FD-ILC ( ) for
repetitive tasks (j = 0-9, 11-19) while achieving same task-
flexibility as BF-ILC ( ) for non-repetitive tasks (j = 10).

3) Combined ILC (C-ILC): The aim of C-ILC is to
determine the feedforward fj+1 = fBF

j+1+fFD
j+1, achieving 1)

high task-flexibility as that of BF-ILC by fBF
j+1 and 2) high

tracking-performance as that of FD-ILC by fFD
j+1 [14]. This

is achieved by combining the use of basis functions with
frequency-domain design of ILC.

To avoid interaction caused by simultaneous learning,
performance criterion for basis function FF fBF

j+1 and residual
FF update for fFD

j+1 are modified as follows.

Definition 4 (Criterion for fBF
j+1). The performance criterion

for C-ILC is given by:

V (θj+1) = ∥êθj+1∥2We, (9)

where

eθj = ej + JfFD
j . (10)

and We ≻ 0.

Definition 5 (Update of fFD
j+1). Update of fFD

j+1 is given by:

fFD
j+1 = QFD(z)(fFD

j + LFD(z)ej) + fBF
j − fBF

j+1, (11)

where learning filter LFD(z) and robustness filter QFD(z)
are pre-designed by the user.

Fig. 3 demonstrates the result of modifications above. C-
ILC achieves as high task-flexibility as that of BF-ILC, while
potentially exceeding the tracking-performance than that of
FD-ILC. See [14] for further information.

C. Problem description

The aforementioned ILC frameworks have several perfor-
mance and design limitations summarized as follows.

• While NO-ILC achieves high tracking-performance for
trial-invariant reference (R2) and only require few de-
sign parameters (R3), it is highly susceptible to non-
repetitive variances between tasks.

• BF-ILC achieves task-flexibility against non-repetitive
references (R1) with few design parameters (R3), but
typically performs poor compared to NO-ILC or FD-
ILC due to parameterization of F (θ) not being rich
enough to represent the inverse system G−1.

GK
ejrj yj

fBF
j

vj

−

fNO
j

F (θj)

GK
ej+1rj+1 yj+1

fBF
j+1

vj+1

−

fNO
j+1

F (θj+1)

QBF

Ĵ

LBF LNO

QNO

−

θj

θj+1

Offline

Task j

Offline

Task j+1

Fig. 4: Updating procedure of CO-ILC.

• C-ILC achieves both task-flexibility (R1) and high
tracking-performance (R2), but requires the user to
design frequency-domain filters LFD(z) and QFD(z)
in addition to standard BF-ILC design.

The problem addressed in this study is to develop an ILC
framework that satisfies all of the requirements R1-R3 for
industrial applicability of ILC, combining the advantages of
pre-existing frameworks.

III. COMBINED OPTIMAL DESIGN

In this section, the proposed combined optimal ILC (CO-
ILC) framework (f = fNO + fBF) is presented in twofold.
First, the optimization criterion for deriving the residual
FF input fNO for R2 is discussed. Then, the optimization
criterion is combined with the criterion of basis functions
fBF for R1, resulting to a single time-domain optimization
problem (R3). The entire scheme is presented in Procedure
1 and illustrated as Fig. 4.

A. Norm optimal representation of residual FF update

In this study, optimizing the following criterion is pro-
posed for the residual FF input fNO.

Definition 6 (Criterion for fNO
j+1). The performance criterion

for fNO
j+1 is given as:

V (fNO
j+1) = ∥êj+1∥2WNO

e
+ ∥fNO

j+1 + fBF
j+1 − fBF

j ∥2WNO
f

,

(12)

where WNO
e ≻ 0, WNO

f ⪰ 0 are user-defined weighting
matrices.

Remark 1. As Wf is sufficient for assuring monotonic
convergence, W∆f is omitted from the criterion to facilitate
the presentation.

Corresponding FF input update given by:

fNO
j+1 = arg min

fNO
j+1

V (fNO
j+1), (13)

leads to the following optimal FF update.
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Procedure 1 (Update of proposed CO-ILC).
Design

• Convolution matrix Ĵ of process sensitivity model Ĵ(z)
• Basis function Ψr

• Initial fBF
0 based on initial FF parameter θ0

• Initial fNO
0 = 0

• Weight WNO
e , WNO

f , WBF
e

and start with j = 0.
1) Perform the jth experiment and measure ej .
2) Determine θj+1 based on (20).
3) Construct fBF

j+1 based on (7).
4) Construct fNO

j+1 based on (21).

a) Reset fNO
j+1 = 0 when rj+1 ̸= rj .

5) Increment j → j + 1 and return to 1).

Theorem 1 (Optimal FF update for (12)). Optimal FF
update for (12) is formulated as:

fNO
j+1 = QNOfNO

j + LNOej + fBF
j − fBF

j+1, (14)

where

LNO =
(
Ĵ ⊤WNO

e Ĵ +WNO
f

)−1

Ĵ ⊤WNO
e ∈ RN×N ,

(15a)

QNO = LNOĴ ∈ RN×N .
(15b)

Proof. The proof follows from [11], based on the optimal
condition

∂V (fNO
j+1)

∂fNO
j+1

= 0.

Comparing (11) and (14), optimizing (12) leads to an iden-
tical residual FF update. Additionally, assuming Ĵ invertible,
(14) can be rearranged as:

fNO
j+1 = QNO(fNO

j + Ĵ −1ej) + fBF
j − fBF

j+1. (16)

Learning filter LFD(z) is typically designed as an inverse
of J(z) [15]. Therefore, optimizing (12) meets the design
incentive of (11).

B. Combined optimal for task-flexibility and performance

For the developed CO-ILC framework, optimizing the
following criterion combining (9) and (12) is proposed.

Definition 7 (Combined criterion for CO-ILC). Combined
performance criterion for CO-ILC is given as:

V (fj+1) = ∥êj+1∥2WNO
e

+ ∥fNO
j+1 + fBF

j+1 − fBF
j ∥2WNO

f

+ ∥êθj+1∥2WBF
e

, (17)

where WNO
e ≻ 0, WNO

f ⪰ 0, WBF
e ≻ 0 are user-defined

weighting matrices.

-150
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10
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10
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10
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Fig. 5: Frequency response data G ( ) and model Ĝ ( )
of the two-mass motion system for numerical validation.

Corresponding residual FF fNO
j+1 and basis function FF

parameter θj+1 update given by:

θj+1 = arg min
θj+1

V (fj+1), (18)

fNO
j+1 = arg min

fNO
j+1

V (fj+1), (19)

lead to the following optimal updates.

Theorem 2 (Optimal update for CO-ILC). Optimal update
for (17) is formulated as:

θj+1 = QBFθj + LBF(ej + ĴfNO
j ), (20)

fNO
j+1 = QNOfNO

j + LNOej + fBF
j − fBF

j+1, (21)

where

LBF =
(
Ψ⊤

r Ĵ
⊤WBF

e ĴΨr

)−1

Ψ⊤
r Ĵ

⊤WBF
e ∈ Rn×N ,

(22a)

QBF = LBFĴΨr ∈ Rn×n.
(22b)

and QNO, LNO same as (15).

Proof. The proof follows from [11], based on the optimal
condition ∂V (fj+1)

∂θj+1
= 0 and ∂V (fj+1)

∂fNO
j+1

= 0.

Remark 2. Theorem 2 is implemented in a two step manner.
By first updating θj+1 based on (20) and constructing fBF

j+1,
update (21) for fNO

j+1 can be constructed.

The key contribution of CO-ILC is that the design param-
eters solely required for the update of residual FF update are
only weight WNO

e and WNO
f . Typically, these weights are

selected as WNO
e = IN and WNO

f = ϵ IN with ϵ being a
sufficiently tiny scalar value. Contrary to frequency-domain
design (11) requiring the preparation of filters LFD(z) and
QFD(z), this leads to less design effort for the user, satisfy-
ing requirement R3.
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Fig. 6: Trajectory rj used for validation. To validate both,
high tracking-performance against repetitive tasks and high
task-flexibility against non-repetitive tasks, ( ) and ( ) are
performed for the first and last 10 trials, respectively.

IV. NUMERICAL VALIDATION

A. System Description

In this study, the developed method is validated with
a two-mass motion system. The discrete-time system G
is controlled at a sampling time of Ts = 1ms. Transfer
functions of the true system, system model, FB controller
are given by:

G =
2.4244× 10−7(z + 5.095)(z + 0.4373)(z − 0.1571)

z(z − 1)2(z2 − 1.761z + 0.9157)
,

Ĝ =
2.4725× 10−7(z + 5.093)(z + 0.4372)(z − 0.157)

z(z − 1)2(z2 − 1.757z + 0.9141)
,

K =
108.61(z − 0.9606)(z + 1)

(z2 − 1.65z + 0.7035)
,

with the bode plot of G and Ĝ illustrated as Fig. 5.
To simulate noise, white noise with a variance of 10−13

is injected as vj .

B. Learning Setup

1) Design parameters: As stated in Procedure 1, design
parameters required for learning are: process sensitivity
model Ĵ , basis function Ψr, weight WNO

e , WNO
f , WBF

e , and
initial FF parameter θ0. In this study, these parameters are
accordingly defined as:

Ĵ = (I + ĜK)−1Ĝ, Ψr = [ r̈,
...
r ,

....
r ],

WNO
e = WBF

e = IN , WNO
f = 4× 10−13IN , θ0 = 0.

are
2) Learning Task: The objective of this validation is to

test both, tracking-performance against repetitive tasks and
task-flexibility against non-repetitive tasks. To achieve this
two reference trajectories shown in Fig. 6 are utilized. The
solid line is used as the reference for the first 10 trials, while
the dashed line is used as the reference for the last 10 trials.

0 5 10 15

10
-4

10
-2

10
0

Fig. 7: Error norm per iteration for each learning method.
The proposed CO-ILC ( ) achieves as high task-flexibility
as BF-ILC ( ), while exceeding the performance of NO-
ILC ( ) against repetitive tasks.
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Fig. 8: Comparison of the tracking error of the final iteration.
While CO-ILC ( ) approaches near noise-level tracking
error, BF-ILC ( ) and NO-ILC ( ) respectively suffer from
near resonance and high frequency error.

C. Simulation Results

Fig. 7 depicts the norm comparison of the NO-ILC, BF-
ILC, and CO-ILC. This result demonstrates that the presented
CO-ILC offers high tracking-performance, surpassing that of
NO-ILC, while retaining task-flexibility as that of BF-ILC.

Fig. 8 shows the tracking error comparison of the final
iterations. Similarly to C-ILC [14] in Fig. 3, results show
that CO-ILC exceeds the performance of NO-ILC owing to
the cooperative learning facilitated by basis functions.

Fig. 9 presents the FF parameter learning comparison
of BF-ILC and CO-ILC. Owing to the contribution of the
regularization of virtual error eθj in (17), CO-ILC is able
to perform FF parameter learning identical to BF-ILC. This
leads to a similar task flexibility capability, as illustrated in
the 10 th iteration shown in Fig. 7.
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Fig. 9: FF parameter θj learned by the basis functions. Learn-
ing of CO-ILC ( ) performs identical parameter learning
overlapping that of the BF-ILC ( ) framework.

Owing to CO-ILC learning identical FF parameter to that
of BF-ILC, basis function FF input fBF consists the main
component of C-ILC input, as shown in Fig. 10. However,
these selected basis functions are unable to learn system
zeros. This leads to an error signal containing the resonance
frequency displayed in Fig. 8. By the residual FF input fNO

compensating the residual dynamics uncaptured by the basis
functions, CO-ILC performs high tracking-performance far
exceeding that of BF-ILC, potentially higher than that of
NO-ILC.

V. CONCLUSION

In this study, a time-domain CO-ILC framework achieving
task-flexibly with high performance is introduced. By com-
bining criterions based on BF-ILC; to ensure task-flexibility,
and NO-ILC; to achieve high performance, the framework is
truncated to a single time-domain optimization problem. This
leads to the framework only requiring limited design param-
eters. Numerical validation with a two-mass motion system
verify the proposed CO-ILC framework inherits improved
task-flexibility as that of BF-ILC, while achieving higher
tracking-performance than that of NO-ILC against repetitive
tasks, with less design parameters than that of C-ILC.
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