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FOR CLIQUES VERSUS CYCLES*

ANURAG BISHNOI\dagger , SIMONA BOYADZHIYSKA\ddagger , DENNIS CLEMENS\S ,
PRANSHU GUPTA\S , THOMAS LESGOURGUES\P , AND ANITA LIEBENAU\P 

Abstract. A graph G is said to be q-Ramsey for a q-tuple of graphs (H1, . . . ,Hq), denoted by
G\rightarrow q (H1, . . . ,Hq), if every q-edge-coloring of G contains a monochromatic copy of Hi in color i for
some i\in [q]. Let sq(H1, . . . ,Hq) denote the smallest minimum degree of G over all graphs G that are
minimal q-Ramsey for (H1, . . . ,Hq) (with respect to subgraph inclusion). The study of this parameter
was initiated in 1976 by Burr, Erd\H os, and Lov\'asz, who determined its value precisely for a pair of
cliques. Over the past two decades the parameter sq has been studied by several groups of authors,
their main focus being on the symmetric case, where Hi

\sim =H for all i\in [q]. The asymmetric case, in
contrast, has received much less attention. In this paper, we make progress in this direction, studying
asymmetric tuples consisting of cliques, cycles, and trees. We determine s2(H1,H2) when (H1,H2) is
a pair of one clique and one tree, a pair of one clique and one cycle, and a pair of two different cycles.
We also generalize our results to multiple colors and obtain bounds on sq(C\ell , . . . ,C\ell ,Kt, . . . ,Kt) in
terms of the size of the cliques t, the number of cycles, and the number of cliques. Our bounds are
tight up to logarithmic factors when two of the three parameters are fixed.
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1. Introduction. A graph G is said to be q-Ramsey for a q-tuple of graphs
(H1, . . . ,Hq), denoted by G\rightarrow q (H1, . . . ,Hq), if, for every q-coloring of the edges of G,
there exists a monochromatic copy of Hi in color i for some i\in [q]. In the symmetric
case, when Hi

\sim = H for all i \in [q], we simply say that the graph G is q-Ramsey
for H. It follows from Ramsey's theorem [34] that such a graph G exists for any
choice of (H1, . . . ,Hq). The most well-known object of study in this area is arguably
the Ramsey number of a q-tuple of graphs (H1, . . . ,Hq), denoted by rq(H1, . . . ,Hq)
and defined as the smallest number of vertices in any graph that is q-Ramsey for
(H1, . . . ,Hq). Despite being studied intensively for many families of graphs, it has
been determined for very few of them. The case where each Hi is isomorphic to a
complete graph Kt is of particular interest. Early results by Erd\H os [13] and Erd\H os
and Szekeres [15] establish that 2t/2 \leqslant r2(Kt,Kt) \leqslant 4t. Despite being over seventy
years old, these bounds have only been improved by subexponential factors: the best

*
Received by the editors September 7, 2021; accepted for publication (in revised form) September

23, 2022; published electronically January 20, 2023.
https://doi.org/10.1137/21M1444953
Funding: The second author was supported by the Deutsche Forschungsgemeinschaft (DFG)

Graduiertenkolleg ``Facets of Complexity"" (GRK 2434). The fifth author was supported by the
Commonwealth through an Australian Government Research Training Program Scholarship. The
sixth author was partially supported by the Australian Research Council.

\dagger 
Delft University of Technology, Delft, Netherlands (a.bishnoi@tudelft.nl).

\ddagger 
Institut f\"ur Mathematik, Freie Universit\"at Berlin, Berlin, Germany (s.boyadzhiyska@fu-

berlin.de).
\S 
Institute of Mathematics, Hamburg University of Technology, Hamburg, Germany (dennis.

clemens@tuhh.de, pranshu.gupta@tuhh.de).
\P 
School of Mathematics and Statistics, UNSW Sydney, 2052 Kensington, NSW, Australia

(t.lesgourgues@unsw.edu.au, a.liebenau@unsw.edu.au).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

25

D
ow

nl
oa

de
d 

02
/2

7/
23

 to
 1

54
.5

9.
12

4.
11

3 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/21M1444953
mailto:a.bishnoi@tudelft.nl
mailto:s.boyadzhiyska@fu-berlin.de
mailto:s.boyadzhiyska@fu-berlin.de
mailto:dennis.clemens@tuhh.de
mailto:dennis.clemens@tuhh.de
mailto:pranshu.gupta@tuhh.de
mailto:t.lesgourgues@unsw.edu.au
mailto:a.liebenau@unsw.edu.au


26 BISHNOI ET AL.

known lower bound is due to Spencer [42], while the best known upper bound was
established very recently by Sah [37], improving on a previous result due to Conlon
[12].

A natural generalization is to investigate other graph parameters. In their seminal
paper [8], Burr, Erd\H os, and Lov\'asz initiated the study of minimum degrees of Ramsey
graphs. Observe that, given any graph G that is q-Ramsey for H, we can add an
isolated vertex to G to obtain another graph G\prime that is also q-Ramsey for H, with
minimum degree zero. To avoid such trivialities, we restrict our attention to graphs G
that are minimal in the following sense. A graph G is said to be q-Ramsey-minimal for
(H1, . . . ,Hq) if G is q-Ramsey for (H1, . . . ,Hq) but no proper subgraph of G is. We de-
note the family of all q-Ramsey-minimal graphs for (H1, . . . ,Hq) by \scrM q(H1, . . . ,Hq).
We are interested in studying the parameter sq(H1, . . . ,Hq), defined as the small-
est minimum degree among all q-Ramsey-minimal graphs for (H1, . . . ,Hq), that is,
sq(H1, . . . ,Hq) = min\{ \delta (G) :G\in \scrM q(H1, . . . ,Hq)\} , where \delta (G) denotes the minimum
degree of G. In the symmetric case, when Hi

\sim = H for all i \in [q], we simply write
sq(H) instead of sq(H, . . . ,H) (and use similar notation for rq(H) and \scrM q(H)). It is
not difficult to show that, for any tuple of graphs without isolated vertices, we have

q\sum 
i=1

(\delta (Hi)  - 1)< sq(H1, . . . ,Hq) \leqslant rq(H1, . . . ,Hq)  - 1.(1.1)

The proof for the symmetric case and when q = 2 can be found in Fox and Lin [20,
Theorem 3], and the argument easily extends to the more general inequalities.

Burr, Erd\H os, and Lov\'asz [8] considered pairs of complete graphs and established
that s2(Kt,Kk) = (t  - 1)(k  - 1). We want to remark that, in the symmetric case,
there is a large gap between s2(Kt) and the exponential upper bound in (1.1). This
surprising phenomenon tells us that, while every graph that is 2-Ramsey for Kt must
have at least exponentially many vertices, there is such a graph G that contains a
vertex of degree quadratic in t, and this vertex is essential for the Ramsey property
of G.

Since the seminal article of Burr, Erd\H os, and Lov\'asz [8], the parameter s2(H)
has been studied for various graphs H. For example, Fox and Lin [20] showed that
the lower bound in (1.1) is tight for complete bipartite graphs. Szab\'o, Zumstein, and
Z\"urcher [43] extended this result to several other classes of bipartite graphs, including
trees and even cycles, while Grinshpun [24] proved it for 3-connected bipartite graphs.
Some nonbipartite cases were addressed as well, such as cliques with pendant edges
[18], cliques with the edge set of a star removed [23], and odd cycles [6].

All these results address the symmetric case and, to the best of our knowledge, the
result of Burr, Erd\H os, and Lov\'asz concerning pairs of cliques is the only asymmetric
case to date. It is then natural to consider pairs of graphs (Kt,H), where H is a very
sparse graph such as a tree T\ell or a cycle C\ell (where \ell is the number of vertices). These
pairs have already been studied in Ramsey theory in the context of Ramsey numbers.
A classical result by Chv\'atal [11] states that r2(Kt, T\ell ) = (t - 1)(\ell  - 1) + 1. In fact,
any red/blue-coloring witnessing the inequality r2(Kt, T\ell )> (t - 1)(\ell  - 1) is so special
that we can easily deduce the following.

Proposition 1.1. For all integers t\geqslant 3 and \ell \geqslant 2, we have s2(Kt, T\ell ) = t - 1.

The Ramsey number r2(Kt,C\ell ) has received considerably more attention, as it
shows different behavior depending on the magnitude of \ell ; after decades of effort by
researchers, the study of these Ramsey numbers has culminated in several very recent
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MINIMUM DEGREE OF ASYMMETRIC RAMSEY-MINIMAL GRAPHS 27

breakthroughs. The case when \ell = 3 defaults to the notoriously difficult case of the
asymmetric Ramsey number r2(Kt,K3), which has been determined up to a factor
of 4 + o(1) by Bohman and Keevash [4], Fiz Pontiveros, Griffiths, and Morris [17],
and Shearer [39], following the earlier results by Ajtai, Koml\'os, and Szemer\'edi [1]
and Kim [29] establishing that r2(Kt,K3) = \Theta (t2/ log t). At the other end of the
spectrum, Keevash, Long, and Skokan [28] showed that r2(Kt,C\ell ) = (t - 1)(\ell  - 1) + 1
for \ell = \Omega (log t/ log log t) and that this bound on \ell is best possible for the equality to
hold. For a more detailed discussion on the history of r2(Kt,C\ell ) we refer the reader to
[28]. We determine the value of s2(Kt,C\ell ) precisely, showing that, unlike the Ramsey
number, our parameter of interest is independent of \ell .

We also complete the study s2 for pairs of graphs, each of which is a complete
graph or a cycle, by determining s2(Ck,C\ell ). The study of the Ramsey number in this
case was completed already in the 1970s by Rosta [36] and Faudree and Schelp [16],
and also depends on the values of k and \ell . The minimum degree s2, however, is again
independent of either cycle length.

Theorem 1.2. For all integers t\geqslant 3 and k, \ell \geqslant 4,

(i) s2(Ck,C\ell ) = 3.
(ii) s2(Kt,C\ell ) = 2(t - 1).

Next, we venture into the multicolor setting. Boyadzhiyska, Clemens, and Gupta
[6] showed that sq(C\ell ) = q+1 for all q\geqslant 2 and \ell \geqslant 4. The only other case that has been
studied deals with symmetric tuples of cliques, and no precise values are known for
sq(Kt) for q > 2. Fox, Grinshpun et al. [19] showed that sq(Kt) is quadratic in q, up
to a polylogarithmic factor, when the size of the clique is fixed. The polylogarithmic
factor was settled to be \Theta (log q) when t= 3 by Guo and Warnke [25], following earlier
work in [19]. In the other regime, when the number of colors is fixed, H\`an, R\"odl, and
Szab\'o [26] showed that sq(Kt) is quadratic in the clique size t up to a polylogarithmic
factor. Bounds that are polynomial in both q and t are also known; see [19] and
Bamberg, Bishnoi, and Lesgourgues [3].

In this paper, we investigate the parameter sq in the case of multiple cliques and
multiple cycles. For given integers q, q1, q2 \geqslant 0 with q = q1 + q2, t \geqslant 3, and \ell \geqslant 4, we
define \scrT = \scrT (q1, q2, \ell , t) to be the q-tuple consisting of q1 cycles on \ell vertices and q2
cliques on t vertices, that is,

\scrT (q1, q2, \ell , t) = (C\ell , . . . ,C\ell \underbrace{}  \underbrace{}  
q1 times

,Kt, . . . ,Kt\underbrace{}  \underbrace{}  
q2 times

),(1.2)

and let sq(\scrT (q1, q2, \ell , t)) be the smallest minimum degree of a q-Ramsey-minimal
graph for \scrT (q1, q2, \ell , t). When the parameters are clear from the context, we will
suppress them from the notation. Our main result in the multicolor setting is the
following.

Theorem 1.3. For all \ell \geqslant 4, t\geqslant 3, and all q, q1, q2 \geqslant 1 such that q1 + q2 = q, we
have

sq2(Kt) + q1 \leqslant sq(\scrT (q1, q2, \ell , t)) \leqslant sq(Kt).(1.3)

Note that these upper and lower bounds are independent from the cycles' length
\ell . In fact, we prove a stronger statement in Lemma 4.2 from which it follows that
sq(\scrT ) itself does not depend on \ell . Using the known bounds for sq(Kt), we can deduce
the following corollary.
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28 BISHNOI ET AL.

Corollary 1.4.

(i) For all t\geqslant 4 and q1 \geqslant 1, there exist constants c,C > 0 such that, for all \ell \geqslant 4
and q2 \geqslant 1, we have

c q22
log q2

log log q2
\leqslant sq1+q2(\scrT (q1, q2, \ell , t)) \leqslant Cq22(log q2)8(t - 1)2 .

(ii) For all q1 \geqslant 1 there exist constants c,C > 0 such that, for all \ell \geqslant 4 and q2 \geqslant 1,
we have

c q22 log q2 \leqslant sq1+q2(\scrT (q1, q2, \ell ,3)) \leqslant Cq22 log q2.

(iii) For all q1, q2 \geqslant 1, there exists a constant C > 0 such that, for all \ell \geqslant 4 and
t\geqslant 3, we have

(t - 1)2 \leqslant sq1+q2(\scrT (q1, q2, \ell , t)) \leqslant Ct2 log2 t.

Thus, Theorem 1.3 is sufficient to determine sq(\scrT (q1, q2, \ell , t)) in terms of q2 and
in terms of t when the other parameters are fixed. Similarly, the bounds in [3, 19]
yield bounds on sq1+q2(\scrT (q1, q2, \ell , t)) that are polynomial in both t and q.

When q1 is large compared to the other parameters, the lower bound of (1.3)
is linear in q1, while the upper bound is essentially quadratic in q1. In this case,
using the already mentioned stronger statement of Lemma 4.2, we prove the following
asymptotically optimal result.

Theorem 1.5. For all \ell \geqslant 4, t \geqslant 3, q2 \geqslant 1, and \varepsilon > 0, there exists q0 such that
for all q1 \geqslant q0, we have

sq1+q2(\scrT (q1, q2, \ell , t)) \leqslant (1 + \varepsilon )q1.

Organization of the paper. In section 2, we introduce some of the key def-
initions and known results that will be necessary in the rest of the paper, and we
state our main technical results, Theorems 2.8 and 2.9. Section 3 is dedicated to the
proofs of the 2-color cases (Proposition 1.1 and Theorem 1.2). In section 4 we prove
Theorems 1.3 and 1.5, assuming the existence of certain gadget graphs as guaranteed
by Theorems 2.8 and 2.9. Finally, section 5 contains the proof of Theorems 2.8 and
2.9.

2. Preliminaries. In this section, we introduce notation and key ideas that will
be used throughout the article and state our main technical results, the existence of
gadget graphs for a q-tuple of cycles and cliques (Theorems 2.8 and 2.9).

We use standard graph theoretic notation throughout the article. Given a hy-
pergraph G, we write v(G) for the size of its vertex set and e(G) for the size of its
edge set. We often identify a graph with its edge set. In particular, for two graphs
G and H, we use G - H to denote the graph on V (G) with edge set E(G) \setminus E(H).
We say that a graph is H-free if it does not contain H as a (not necessarily induced)
subgraph. The distance between two sets of vertices A and B in a graph is the length
of a shortest path with one endpoint in A and one endpoint in B.

Unless otherwise specified, we use the term coloring to refer to an edge-coloring.
If a coloring of a graph uses at most q colors, then we say that it is a q-coloring;
unless otherwise specified, the color palette in a q-coloring is taken to be the set
[q] = \{ 1, . . . , q\} . When q = 2, we call the first color red and the second color blue.
Given a q-coloring \varphi of a graph G and a subgraph F \subseteq G, we will write \varphi | F for the
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MINIMUM DEGREE OF ASYMMETRIC RAMSEY-MINIMAL GRAPHS 29

q-coloring induced by \varphi on the edges of F . Given a q-tuple of graphs (H1, . . . ,Hq),
we say that a q-coloring \varphi of a graph G is (H1, . . . ,Hq)-free if, for all i\in [q], the graph
\varphi  - 1(\{ i\} ) is Hi-free. When Hi

\sim =H for all i \in [q], we will simply say that \varphi is H-free
when \varphi is (H, . . . ,H)-free.

Given colorings \varphi 1 and \varphi 2 of G1 and G2, respectively, such that \varphi 1(e) = \varphi 2(e)
for all e\in E(G1) \cap E(G2), we define the coloring \varphi 1 \cup \varphi 2 on G1 \cup G2 by setting

\varphi (e) =

\Biggl\{ 
\varphi 1(e) if e\in E(G1),

\varphi 2(e) if e\in E(G2).

Let t \geqslant 3, \ell \geqslant 4, and q, q1, q2 \geqslant 0 be integers such that q = q1 + q2. Recall that
\scrT = \scrT (q1, q2, \ell , t) denotes the q-tuple of cycles and cliques as defined in (1.2). For
convenience, we will sometimes write \scrS (C\ell ) for the color palette \{ 1, . . . , q1\} and refer
to it as the cycle-colors; similarly, \scrS (Kt) will denote the color palette \{ q1 + 1, . . . , q\} ,
referred to as the clique-colors.

2.1. Signal senders and determiners. For our constructions, we need gadget
graphs similar to those introduced by Burr, Erd\H os, and Lov\'asz [8] and Burr, Faudree,
and Schelp [9]. Let q\geqslant 2 and (H1, . . . ,Hq) be a q-tuple of graphs. We begin with the
simpler of the two gadget graphs.

Definition 2.1 (Set-determiner). Let X \subseteq [q] be any subset of colors. An X-
determiner for (H1, . . . ,Hq) is a graph D with a distinguished edge d satisfying the
following properties:

(D1) D\nrightarrow q (H1, . . . ,Hq).
(D2) For any (H1, . . . ,Hq)-free coloring \varphi of D, we have \varphi (d) \in X.
(D3) For any color c \in X, there exists an (H1, . . . ,Hq)-free coloring \varphi of D such

that \varphi (d) = c.
The edge d is referred to as the signal edge of D.

In the special case where X = \{ c\} , these gadgets are defined by Burr, Faudree,
and Schelp in [9] and simply called determiners. It is not difficult to see that a \{ c\} -
determiner can only exist for a q-tuple (H1, . . . ,Hq) if Hc \not \sim = Hi for all i \in [q] \setminus \{ c\} .
Determiners are known to exist for all pairs (G,H) such that G \not \sim = H and G and H
are 3-connected (see Burr, Ne\v set\v ril, and R\"odl [10]). More recently, they were shown
to exist for pairs of the form (C\ell ,H) by Siggers [40], where H is a 2-connected graph
satisfying some additional properties.

While set-determiners allow us to pick which set the color of a certain edge should
come from, in order to have control over the specific color pattern we see on a group
of edges (e.g., which edges should have the same color), we also define the following
more sophisticated gadgets.

Definition 2.2 (set-sender). Let X \subseteq [q] be any subset of colors. A negative
(respectively, positive) X-sender for (H1, . . . ,Hq) is a graph S with distinguished edges
e and f , satisfying the following properties:

(S1) S\nrightarrow q (H1, . . . ,Hq).
(S2) For any (H1, . . . ,Hq)-free coloring \varphi of S, there exist colors c1, c2 \in X with

c1 \not = c2 (respectively, c1 = c2) such that \varphi (e) = c1 and \varphi (f) = c2.
(S3) For any colors c1, c2 \in X with c1 \not = c2 (respectively, c1 = c2), there exists an

(H1, . . . ,Hq)-free coloring \varphi of S with \varphi (e) = c1 and \varphi (f) = c2.
The edges e and f are referred to as the signal edges of S.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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30 BISHNOI ET AL.

In the special case where X = [q], these gadgets are introduced by Burr, Erd\H os,
and Lov\'asz [8] and called signal senders. In [8, 9], it was shown that positive and
negative signal senders exist for pairs of complete graphs. Subsequently, it was proved
that they exist for other graphs as well as for more colors; in particular, R\"odl and
Siggers [35] and Siggers [41] established their existence for any number of colors when
Hi

\sim =H for all i\in [q] and H is either 3-connected or a cycle. In a later paper, Siggers
[40] showed the existence of signal senders for some pairs of the form (C\ell ,H).

In the symmetric case, when Hi
\sim =H for all i\in [q], we write set-senders for H to

denote set-senders for (H, . . . ,H) and use similar notation for signal senders. Addi-
tionally, when q= 2 we simplify the notation and write red-determiners (respectively
blue-determiners) for \{ red\} -determiners (respectively, \{ blue\} -determiners).

Intuitively speaking, the utility of set-senders and set-determiners comes from the
fact that these gadgets allow us to force specific color patterns on particular sets of
edges. In our constructions, we usually start with a base graph G and add set-senders
and set-determiners so that, in any (H1, . . . ,Hq)-free coloring of the resulting graph,
we obtain a particular color pattern on the edges of G. More precisely, we will say
that we attach a set-determiner D to an edge e of G to mean that we create a new
copy \widehat D of D such that e is the signal edge of \widehat D, and \widehat D is otherwise vertex-disjoint
from G. Similarly, we will say that we connect or join two edges e1 and e2 of G by a
set-sender S to mean that we create a new copy \widehat S of S such that e1 and e2 are the
signal edges of \widehat S (in an arbitrary fashion), and \widehat S is otherwise vertex-disjoint from G.

In order for these constructions to be useful, we need to be able to control the
new copies of H1, . . . ,Hq that might be created in the process. In particular, since we
usually use set-senders and set-determiners as black boxes, we would like to be able
to obtain an (H1, . . . ,Hq)-free coloring of the entire graph by simply giving each of
the building blocks an (H1, . . . ,Hq)-free coloring. This motivates the definition of a
safe coloring given by Siggers in [40].

Definition 2.3 (safe coloring). Let F be a graph, A \subseteq F be a subgraph, and \varphi 
be an (H1, . . . ,Hq)-free q-coloring of F . We say that \varphi is safe at A if, for any graph
G with V (F )\cap V (G) = V (A) and E(F )\cap E(G) =E(A), a q-coloring \psi of F \cup G with
\psi | F =\varphi is (H1, . . . ,Hq)-free if and only if \psi | G is (H1, . . . ,Hq)-free.

We will call a set-sender (respectively, set-determiner) safe if the coloring guar-
anteed by property (S3) (respectively, (D3)) can be chosen to be safe at the signal
edge(s).

As explained above, in the asymmetric setting, the work of [8, 9, 10] established
the existence of signal senders and determiners for pairs of the form (H1,H2), where
H1 and H2 are either 3-connected or isomorphic to K3. These determiners can be
shown to be safe following an argument similar to Remark 2.7. The only other result
in this direction that we are aware of is due to Siggers [40], who used the ideas of
Bollob\'as et al. [5] to prove the existence of safe signal senders and safe determiners
for many pairs of the form (H,C\ell ), where H is a 2-connected graph satisfying certain
technical properties. The special cases that are relevant to our 2-color study in section
3 are given in the following lemma. While Lemma 2.4(ii) also follows from our more
general Theorem 2.8, we briefly sketch Siggers's proof for both cases below, combining
a few arguments from his paper.

Lemma 2.4 ([40]).

(i) Let k, \ell \geqslant 4 be integers with k < \ell . Then there exist safe red-determiners and
safe blue-determiners for (Ck,C\ell ).
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(ii) Let \ell \geqslant 4 and t \geqslant 3. Then there exist safe red-determiners and safe blue-
determiners for (Kt,C\ell ).

Proof. We know that Ck and Kt are 2-connected, and, since \ell > k, these graphs
contain no induced cycle of length at least \ell + 1. Therefore, by [40, Corollary 3.12],
there exist safe red-determiners for (Ck,C\ell ) and (Kt,C\ell ).

Let C be a copy of Ck, and let e be any edge of C. Attach a copy of the safe
red-determiner for (Ck,C\ell ) from the previous paragraph to each edge of C except e,
and let D be the resulting graph. Clearly, in any (Ck,C\ell )-free coloring of D, the edge
e is blue. Furthermore, giving each copy of the red-determiner a safe (Ck,C\ell )-free
coloring, as guaranteed by property (D3) and the safeness of that determiner, results
in a (Ck,C\ell )-free coloring of D. The safeness of the red-determiner further ensures
that this coloring is safe at the edge e. Therefore D is a safe blue-determiner for
(Ck,C\ell ), with signal edge e. A similar argument yields a safe blue-determiner for
(Kt,C\ell ).

As explained in the introduction, in this paper we investigate the parameter sq
in the case of multiple cliques and multiple cycles. Our main technical result stated
below proves the existence of some set-determiners for such tuples of graphs. In its
proof, we need the following results concerning the existence of signal senders in the
symmetric setting due to Siggers [41] and R\"odl and Siggers [35], respectively.

Lemma 2.5 ([41, Lemma 2.2]). For any \ell \geqslant 4 and any number of colors q \geqslant 2,
there exist positive and negative signal senders for the cycle C\ell that have girth \ell and
distance at least \ell + 1 between their signal edges.

Lemma 2.6 ([35, Lemma 2.2]). For any graph H that is either 3-connected or
isomorphic to K3, any number of colors q \geqslant 2, and any integer d \geqslant 1, there exist
positive and negative signal senders for H in which the signal edges are at distance at
least d.

Remark 2.7. We claim that the signal senders given by Lemmas 2.5 and 2.6 are
safe. First, let S be a signal sender for C\ell with signal edges e, and let f and F be
any graph such that V (F )\cap V (S) = V (e)\cup V (f) and E(F )\cap E(S) = \{ e, f\} . Let \varphi be
a C\ell -free coloring of S, and let \psi be a coloring of S \cup F extending \varphi . Suppose that
\psi | F is also C\ell -free but \psi itself is not. This means that there exists a monochromatic
copy C of C\ell containing an edge vw \in E(S) \setminus E(F ) and an edge xy \in E(F ) \setminus E(S).
Since the signal edges of S are at distance at least \ell + 1 \geqslant 2, at least one vertex of
vw, say v, is in V (S) \setminus V (F ). There are two internally vertex-disjoint paths between
v and x in C, and since the edge xy is not in S, at least one of these paths leaves
S. Let z1 and z2 be the first vertices of F appearing on each of these paths as we
traverse them from v to x; note that, since V (S) \cap V (F ) = V (e) \cup V (f), we know
that z1, z2 \in V (e) \cup V (f). The path connecting z1 and z2 through v in C is entirely
contained in S and has length at most \ell  - 1. If z1 and z2 are contained in different
signal edges, then there is a path of length at most \ell between the two signal edges of
S, which is a contradiction. Then z1 and z2 are contained in the same signal edge,
say e. Since C is not fully contained in S, we know that C contains a vertex not
contained in V (S) \setminus V (f). Then the path connecting z1 and z2 in C, together with
the edge e, forms a cycle of length less than \ell that is fully contained in S, which is a
contradiction. Hence, \psi must be a C\ell -free coloring. A similar argument shows that
if H is 3-connected or isomorphic to K3 and S is a signal sender as given by Lemma
2.6 with d> v(H), then S is safe.
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32 BISHNOI ET AL.

We are now ready to state our main technical result, proving the existence of safe
\scrS (C\ell )-determiners and safe \scrS (Kt)-determiners for q-tuples consisting of cycles and
cliques, where we recall that \scrS (C\ell ) and \scrS (Kt) denote the cycle-colors \{ 1, . . . , q1\} and
the clique-colors \{ q1 + 1, . . . , q\} , respectively.

Theorem 2.8. Let \ell \geqslant 4, t\geqslant 3, and q1, q2 \geqslant 1 be integers. Then there exist safe
\scrS (C\ell )-determiners and safe \scrS (Kt)-determiners for \scrT (q1, q2, \ell , t).

Most of section 5 is devoted to the proof of Theorem 2.8. In the same section, we
also prove Theorem 2.9, showing that both safe \scrS (C\ell )-senders and safe \scrS (Kt)-senders
exist.

Theorem 2.9. Let \ell \geqslant 4, t \geqslant 3, and q1, q2 \geqslant 1 be integers. If q1 > 1, then there
exist safe positive and negative \scrS (C\ell )-senders for \scrT (q1, q2, \ell , t). If q2 > 1, then there
exist safe positive and negative \scrS (Kt)-senders for \scrT (q1, q2, \ell , t).

3. Two-color cases. Throughout this section the number of colors q is fixed to
be 2, and we drop the color index q in the notation. In this section we determine
s(Kt, T\ell ), s(Ck,C\ell ), and s(Kt,C\ell ). We prove that the lower bound in (1.1) is tight
for s(Kt, T\ell ) and s(Ck,C\ell ) but not for s(Kt,C\ell ). In the latter two cases, we exemplify
the power of the gadget graphs introduced in section 2. We begin with the case of
one clique and one tree.

Proof of Proposition 1.1. Let \ell \geqslant 2 and t \geqslant 3. First, note that the inequality
s(Kt, T\ell ) > t  - 2 follows directly from (1.1). For the upper bound, we construct a
graph G of minimum degree t - 1 as follows. Let H \sim = K(t - 1)(\ell  - 1), let F \sim = Kt, and
let v be a vertex of F . For each vertex u of F  - v, create a copy Hu of H on a new
set of vertices and identify u with an arbitrary vertex of Hu. Note that dG(v) = t - 1.
We claim that G \rightarrow (Kt, T\ell ) while G  - v \nrightarrow (Kt, T\ell ). For the former, suppose for a
contradiction that \varphi is a (Kt, T\ell )-free red/blue-coloring of G. Then \varphi is (Kt, T\ell )-free
on Hu

\sim =K(t - 1)(\ell  - 1) for every vertex u in F  - v. By [7, Lemma 9], there is a unique
(Kt, T\ell )-free red/blue-coloring \widetilde \varphi of Hu, in which the subgraph of blue edges of H is
a collection of (t  - 1) vertex-disjoint cliques, each of size (\ell  - 1). In particular, in
the coloring \varphi , every vertex u of F  - v is incident to a blue copy of K\ell  - 1 in Hu.
Therefore, every edge of F must be red, creating a monochromatic red copy of Kt,
which is a contradiction. For the second claim, color the edges of F  - v red and use
the (Kt, T\ell )-free coloring \widetilde \varphi for every Hu. It is easy to see that this red/blue-coloring
of G  - v is (Kt, T\ell )-free. Thus, any subgraph G\prime of G that is Ramsey-minimal for
(Kt, T\ell ) must contain v. This proves s(Kt, T\ell ) \leqslant dG(v) = t - 1.

We now turn our attention to pairs of graphs involving cycles. It follows from
(1.1) that s(Ck,C\ell )> 2. For k < \ell , we now use the existence of safe determiners given
by Lemma 2.4(i) to exhibit a Ramsey-minimal graph for (Ck,C\ell ), with minimum
degree three. Theorem 1.2(i) then follows by symmetry, since s(Ck,C\ell ) = s(C\ell ,Ck).

Proposition 3.1. For any 4 \leqslant k < \ell , we have

s(Ck,C\ell ) \leqslant 3.

Proof. We construct an appropriate Ramsey-minimal graph. Start with an empty
graph on three vertices \{ x, y, z\} and between any pair of these vertices add two paths,
one of length k - 2 and one of length \ell  - 2, so that all six paths are internally vertex-
disjoint. Let Dr and Db be safe red- and blue-determiners for (Ck,C\ell ), respectively,
as guaranteed by Lemma 2.4(i). Attach a copy of Dr to every edge contained in one
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MINIMUM DEGREE OF ASYMMETRIC RAMSEY-MINIMAL GRAPHS 33

Fig. 1. The graph F in the proof of Proposition 3.1.

of the paths of length k - 2 between x, y, and z and attach a copy of Db to every edge
contained in one of the paths of length \ell  - 2. Finally, add a new vertex v adjacent
to x, y, and z, and call the resulting graph F . The construction is illustrated in
Figure 1 for the case when k = 4 and \ell = 5, showing only the signal edges for each
determiner and the edges incident to v. We will now show that F \rightarrow (Ck,C\ell ) but
F  - v \nrightarrow (Ck,C\ell ), implying that any subgraph G of F that is Ramsey-minimal for
(Ck,C\ell ) has to contain v, which in turn proves the proposition.

Consider an arbitrary red/blue-coloring of F . If any copy of Dr or Db contains a
red copy of Ck or a blue copy of C\ell , we are done. Otherwise, by property (D2) of Dr

and Db, the paths of length k - 2 between the vertices x, y, and z must be all red, and
the paths of length \ell  - 2 between those vertices must be all blue. By the pigeonhole
principle, two of the edges incident to v must have the same color; these two edges,
together with the corresponding red (k - 2)-path or blue (\ell  - 2)-path, then form a red
copy of Ck or a blue copy of C\ell .

For the second claim, consider F  - v, and color each path of length k - 2 between
the vertices x, y, and z red and each path of length \ell  - 2 between those vertices blue.
Since k, \ell > 3, it is easy to see that this partial coloring of F  - v is (Ck,C\ell )-free. By
property (D3) of the copies of Dr and Db, we can extend this coloring to the copies of
Dr and Db so that each determiner has a safe (Ck,C\ell )-free coloring. By the definition
of safeness, this is a (Ck,C\ell )-free coloring of F  - v.

Note that the construction requires k > 3. The case k = 3 is covered by our next
construction, dealing with cliques. To that end, we turn our attention to s(Kt,C\ell ),
proving Theorem 2(ii). The idea behind the upper bound construction is very similar
to the previous one.

Proposition 3.2. For any integers t\geqslant 3 and \ell \geqslant 4, we have

s(Kt,C\ell ) \leqslant 2(t - 1).

Proof. Let t \geqslant 3 and \ell \geqslant 4. Using the safe determiners from Lemma 2.4(ii), we
construct a graph G that is Ramsey-minimal for (Kt,C\ell ) and satisfies \delta (G) \leqslant 2(t - 1).
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34 BISHNOI ET AL.

Fig. 2. The graph F in the proof of Proposition 3.2.

We start with the graph T = K2,2,...,2, the complete (t - 1)-partite graph where
each independent set contains two vertices. For any pair of vertices in the same class,
add a path of length \ell  - 2; as before, all these paths are vertex-disjoint. Let Dr and
Db be safe red- and blue-determiners, respectively, as guaranteed by Lemma 2.4(ii).
Attach a copy of Dr to each edge of T and a copy of Db to each edge belonging to
one of the t  - 1 paths of length \ell  - 2. Add a new vertex v adjacent to all vertices
of T and call the resulting graph F . This construction is illustrated in Figure 2 for
t = 5 and \ell = 5, showing only the signal edges for each determiner and the edges
incident to v. As in the proof of Proposition 3.1, we will show that F \rightarrow (Kt,C\ell ) but
F  - v\nrightarrow (Kt,C\ell ).

To see the first claim, consider an arbitrary red/blue-coloring of F . If any copy
of Dr or Db contains a red copy of Kt or a blue copy of C\ell , then we are done. Hence,
all determiners have (Kt,C\ell )-free colorings, forcing the edges of T to be all red and
the edges in the (\ell  - 2)-paths connecting pairs of vertices from the same partite set
of T to be blue. Now, if both edges between v and one of the vertex classes of T are
blue, there is a blue copy of C\ell . Otherwise, there is a red edge from v to each of the
t - 1 partite sets of T , resulting in an all-red copy of Kt.

For the second claim, color the edges of T red and the edges of the (\ell  - 2)-paths
connecting vertices from the same vertex class of T blue. Then, using property (D3)
of the copies of Dr and Db, extend this coloring to all determiners so that each one
receives a safe (Kt,C\ell )-free coloring. It is easy to see that this gives a (Kt,C\ell )-free
coloring of the entire graph F .

Note that this upper bound for s(Kt,C\ell ) does not match the lower bound from
(1.1), as the latter only implies s(Kt,C\ell ) \geqslant t. However, Proposition 3.4 will prove
that our construction does yield the best possible upper bound. We will need an
auxiliary lemma, which shows that if G is a graph on fewer than 2(t - 1) vertices with
no t-clique, then there must be at least one vertex common to all (t - 1)-cliques.
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Lemma 3.3. Let t\geqslant 3 be any integer, and let G be a graph on n< 2(t - 1) vertices
with Kt - 1 \subseteq G .If \bigcap 

H\subseteq G
H\sim =Kt - 1

V (H) = \emptyset ,

then Kt \subseteq G.

Proof. We proceed by strong induction on t. It is easy to check that the statement
is true for t = 3. Assume now that t \geqslant 3, and suppose the statement to be true up
to t.

Let G be a graph on n < 2t vertices, and let \scrF = \{ H0, . . . ,Hm\} be a family of
distinct t-cliques contained in G whose joint intersection is empty. Suppose, addi-
tionally, that this family is minimal, meaning that every subfamily has a nonempty
intersection. Note that we may assume that m\geqslant 1.

Let S = V (H1)\cap \cdot \cdot \cdot \cap V (Hm) be the vertex set in the intersection of the t-cliques
H1, . . . ,Hm (without considering H0). By the minimality of the family \scrF , we know
that | S| > 0. Further, since G has fewer than 2t vertices, it cannot contain two disjoint
t-cliques. Therefore, as H0 is a t-clique and S is another clique disjoint from H0 in
G, it follows that | S| \leqslant t - 1. Write | S| = t - j for some 0< j < t.

For i\in [m], let Si = V (Hi) \setminus S. Note that each Si induces a j-clique. Each vertex
in Si is adjacent to all vertices in S. Therefore, since | S| = t  - j, if we can find a
(j+ 1)-clique in G[

\bigcup m
i=1 Si], we will have found a (t+ 1)-clique in G. We consider two

possible cases.
Case 1: Suppose that

\bigcup m
i=1 Si has at least 2j elements. By definition, both V (H0)

and
\bigcup m

i=1 Si have an empty intersection with S, and therefore both are contained in
the set V (G)\setminus S whose size is less than t+j. Since | V (H0)| = t and | 

\bigcup m
i=1 Si| \geqslant 2j, they

must have at least j + 1 vertices in common, forming a (j + 1)-clique in G[
\bigcup m

i=1 Si].
Case 2: Assume next that

\bigcup m
i=1 Si has fewer than 2j elements. Then G[

\bigcup m
i=1 Si]

is a graph on fewer than 2j vertices containing a j-clique, namely G[S1]. Since j < t
and

\bigcap m
i=1 Si = \emptyset , by the induction hypothesis, it follows that G[

\bigcup m
i=1 Si] contains a

(j + 1)-clique.

We are now ready to prove a lower bound on s(Kt,C\ell ) using Lemma 3.3. Theorem
1.2(i) then follows immediately from Proposition 3.2.

Proposition 3.4. For any integers t\geqslant 3 and \ell \geqslant 4, we have

s(Kt,C\ell ) \geqslant 2(t - 1).

Proof. Suppose that G is a Ramsey-minimal graph for (Kt,C\ell ), and let v be a
vertex of degree at most 2(t - 1)  - 1 in G, i.e., | N(v)| < 2(t - 1). By the minimality
of G, there exists a red/blue-coloring \varphi of the edges of G - v with no red copy of Kt

and no blue copy of C\ell . If G[N(v)] contains no red copy of Kt - 1, then we can extend
the coloring \varphi to G by coloring all edges incident to v red to obtain a (Kt,C\ell )-free
coloring of G, which is a contradiction.

Therefore assume that we have at least one red copy of Kt - 1 in G[N(v)]. By
Lemma 3.3, because G[N(v)] has no red copy of Kt and | N(v)| < 2(t - 1), there exists
at least one vertex u in the intersection of all red copies of Kt - 1 in G[N(v)]. Extend
\varphi to G by coloring the edge uv blue and all other edges from v to N(v) \setminus \{ u\} red.
This coloring does not create a red copy of Kt, and the unique blue edge incident to
v cannot create a blue copy of C\ell , again contradicting the fact that G is Ramsey for
(Kt,C\ell ).
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Note that a straightforward generalization of Proposition 3.4 to the multicolor
setting implies the following improvement on the lower bound in (1.1) for any tuple
of the form (Kt,H2, . . . ,Hq), where \delta (Hi) \geqslant 1 for all i \in \{ 2, . . . , q\} and \delta (Hi) > 1 for
at least one index i\in \{ 2, . . . , q\} :

sq(Kt,H2, . . . ,Hq)> 2(t - 2) +

q\sum 
i=2

(\delta (Hi)  - 1).

4. Proofs of Theorems 1.3 and 1.5. As noted earlier, we defer the proofs of
Theorems 2.8 and 2.9 to section 5. In this section, we assume their statements to
be true and use them to prove our main results, Theorems 1.3 and 1.5. Recall that
\scrT = \scrT (q1, q2, \ell , t) denotes the q-tuple of cycles and cliques as defined in (1.2) and that
\scrS (C\ell ) and \scrS (Kt) denote the cycle-colors \{ 1, . . . , q1\} and clique-colors \{ q1 + 1, . . . , q\} ,
respectively, while \scrS denotes the full-color palette \{ 1, . . . , q\} . The idea is to express
our function sq(\scrT ) in a different way through a certain packing parameter. This idea
was first formalized in [19] in their study of sq(Kt) in the multicolor setting, but, as
the authors of [19] note, this idea is already implicit in [8].

4.1. Packing parameters. In this section we generalize the packing parameter
defined in [19]. A color pattern on vertex set V is a collection of edge disjoint graphs
G1, . . . ,Gm on the same vertex set V . A color pattern is H-free if every graph in it is
H-free.

Definition 4.1. Given positive integers t\geqslant 2 and q1, q2 \geqslant 0, let Pq1,q2(t) be the
smallest integer n such that there exists a color pattern Gq1+1, . . . ,Gq1+q2 on vertex
set [n] such that

(P1) the graph Gj is Kt+1-free for every j \in \scrS (Kt); and
(P2) for every vertex-coloring \lambda : [n] \rightarrow \scrS , we have that (a) two distinct vertices u

and w receive the same cycle-color; or (b) there exists a clique-color j \in \scrS (Kt)
such that Gj contains a copy of Kt on the vertices of color j.

For q1 = 0, this parameter was introduced in [19], and for all q2 \geqslant 2 and t \geqslant 3,
Theorem 1.5 in [19] establishes that sq2(Kt) = P0,q2(t  - 1). The following lemma
generalizes this theorem and proves that sq(\scrT ) does not depend on \ell .

Lemma 4.2. For all integers \ell \geqslant 4, t\geqslant 3, and q1, q2 \geqslant 0, we have

sq1+q2(\scrT (q1, q2, \ell , t)) = Pq1,q2(t - 1).

Proof. Set q= q1 +q2 and \scrT = \scrT (q1, q2, \ell , t). We divide the proof into two claims.

Claim 4.3. sq(\scrT ) \leqslant Pq1,q2(t - 1).

Proof. As explained previously, in this proof we assume the existence of gadget
graphs as guaranteed by Theorems 2.8 and 2.9. Let n= Pq1,q2(t - 1) and Gq1+1, . . . ,Gq

be a color pattern on [n] that satisfies (P1) and (P2). For every pair of distinct vertices
u,w \in [n] and every cycle-color i\in \scrS (C\ell ), add a path Pi(u,w) of length \ell  - 2 between
u and w such that the internal vertices of these paths are pairwise disjoint. Finally,
add a new vertex v and connect it to each vertex in [n]. Call the resulting graph H.

Assume first that q1, q2 > 1. Now, let S+
c and S - 

c be safe positive and negative
\scrS (C\ell )-senders for \scrT , respectively, and let S+

k and S - 
k be safe positive and negative

\scrS (Kt)-senders for \scrT ; all of these gadgets exist by Theorem 2.9. Let E = \{ e1, . . . , eq\} 
be a matching of size q. For each pair i, j \in \scrS (C\ell ) of distinct cycle-colors, join the
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MINIMUM DEGREE OF ASYMMETRIC RAMSEY-MINIMAL GRAPHS 37

edges ei and ej by a copy of S - 
c . Similarly, for each pair i, j \in \scrS (Kt) of distinct clique-

colors, join the edges ei and ej by a copy of S - 
k . For every clique-color i \in \scrS (Kt)

and every edge f \in E(Gi), join the edges ei and f by a copy of S+
k . Then for each

i \in \scrS (C\ell ) and for each edge f \in Pi(u,w), join the edges ei and f by a copy of S+
c .

Call the resulting graph G.
We will show that G\rightarrow q \scrT but G - v\nrightarrow q \scrT . We begin with the latter. For this

we define a \scrT -free coloring. For all i \in \scrS (Kt), give all edges of Gi color i. For all
i\in \scrS (C\ell ) and every pair of distinct vertices u,w \in [n], color the edges of Pi(u,w) with
color i. Finally, for all i\in [q], give ei color i. This coloring can now be extended to the
set-senders so that each set-sender receives a safe \scrT -free coloring. Suppose there exists
a monochromatic cycle in a cycle-color or monochromatic clique in a clique-color. By
the safeness of the coloring of each set-sender, we know that such a monochromatic
subgraph has to be contained in H  - v. But H  - v contains no monochromatic copy
Kt in a clique-color by property (P1) of the color pattern. By construction, it is not
difficult to see that it also contains no monochromatic copy of C\ell in a cycle-color.
Hence, this is a \scrT -free coloring of G - v, as claimed.

We now prove that G\rightarrow q \scrT . For the sake of contradiction, let \varphi :E(G) \rightarrow \scrS be a
\scrT -free q-coloring of the edges of G. In any such coloring, property (S2) of the copies
of S - 

c and S - 
k ensures that \{ \varphi (e1), . . . ,\varphi (eq1)\} = \scrS (C\ell ), while \{ \varphi (eq1+1), . . . ,\varphi (eq)\} =

\scrS (Kt). Without loss of generality, we may assume that for any i \in \scrS , we have
\varphi (ei) = i. Property (S2) of the copies of S+

k and S+
c further ensures that for any

i\in \scrS (Kt), each edge in Gi has color i, and for each pair of vertices u,w \in [n] and each
j \in \scrS (C\ell ), the edges of Pj(u, v) receive color j.

Consider now the edges from v to N(v) = [n]. These induce a natural vertex-
coloring \lambda : [n] \rightarrow \scrS defined by \lambda (u) = \varphi (vu) for each u\in [n]. Then by property (P2),
it follows that either there are two distinct vertices u,w \in [n] such that \lambda (u) = \lambda (w) = j
for some j \in \scrS (C\ell ), or there exists a clique-color j \in \scrS (Kt) such that Gj [\lambda 

 - 1(\{ j\} )]
contains a copy of Kt - 1. In the former case, Pj(u,w) forms a monochromatic copy of
C\ell in color j together with v. In the latter case, the copy of Kt - 1 forms a monochro-
matic copy of Kt in color j together with v.

It follows that G is q-Ramsey for \scrT , while G  - v is not. So any q-Ramsey-
minimal subgraph of G must contain the vertex v, and therefore sq(\scrT ) \leqslant dG(v) = n=
Pq1,q2(t - 1).

If q1 = 1 and/or q2 = 1, we use a safe \scrS (C\ell )-determiner Dc instead of \scrS (C\ell )-
senders, and/or a safe \scrS (Kt)-determiner Dk instead of \scrS (Kt)-senders. These gadgets
exist by Theorem 2.8. If q1 = 1, for each i \in \scrS (C\ell ) and for each edge f \in Pi(u,w),
we attach a copy of Dc to f . If q2 = 1, for each i \in \scrS (Kt) and every edge f \in E(Gi),
we attach a copy of Dk to f . The rest of the proof is identical to the case q1, q2 > 1,
using corresponding properties of set-determiners.

Claim 4.4. sq(\scrT ) \geqslant Pq1,q2(t - 1).

Proof. Towards a contradiction, assume that there exists a graph G with a vertex
v of degree n<Pq1,q2(t - 1), such that G is q-Ramsey-minimal for \scrT . By minimality,
there exists a \scrT -free q-coloring \varphi of the edges of G - v. This coloring induces a color
pattern Gq1+1, . . . ,Gq on N(v), corresponding to the colors q1 + 1, . . . , q, respectively,
such that every Gj is Kt-free. Since | N(v)| < Pq1,q2(t  - 1) and each Gj is Kt-free,
by property (P2) there must exist a vertex-coloring \lambda : N(v) \rightarrow \scrS such that no two
vertices in N(v) receive the same cycle-color, and there is no clique-color j such that
Gj [\lambda 

 - 1(\{ j\} )] contains a copy of Kt - 1. Now, we extend \varphi to all of G by setting
\varphi (uv) = \lambda (u) for each u\in N(v).
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By the properties of \lambda , this extended coloring has no monochromatic copy of C\ell 

in any color j \in \scrS (C\ell ) and no monochromatic copy of Kt in any color j \in \scrS (Kt),
contradicting the fact that G is q-Ramsey for \scrT .

4.2. Proof of Theorem 1.3. We are now ready to prove our first main result
in the multicolor setting. We begin with the lower bound.

Lemma 4.5. For all q1, q2 \geqslant 1, t\geqslant 3, and \ell \geqslant 4, we have

sq1+q2(\scrT (q1, q2, \ell , t)) \geqslant sq2(Kt) + sq1(C\ell )  - 1 = sq2(Kt) + q1.(4.1)

Proof. Set q = q1 + q2 and \scrT = \scrT (q1, q2, \ell , t), and suppose that G is a q-Ramsey-
minimal graph for \scrT containing a vertex v of degree at most sq2(Kt)+sq1(C\ell ) - 2. Let
\varphi :E(G - v) \rightarrow [q] be a \scrT -free q-coloring of G - v. Let G\prime be the subgraph of G contain-
ing all edges of G - v with colors q1+1, . . . , q and any set of min\{ sq2(Kt)  - 1, degG(v)\} 
edges of G incident to v. We know that G\prime  - v is not q2-Ramsey for Kt, and since
deg

G
\prime (v) < sq2(Kt), it follows that G\prime itself cannot be q2-Ramsey for Kt. Thus, we

can recolor the edges of G\prime using colors q1+1, . . . , q so that there is no monochromatic
copy of Kt inside. Now, we can apply the same argument to G - G\prime to obtain a C\ell -free
coloring of it with the colors 1, . . . , q1. These two colorings together yield a \scrT -free
coloring of G, which is a contradiction. The last equality follows from the fact that
sq(C\ell ) = q+ 1 [6].

From the proof of this lower bound it becomes clear that this is actually a gen-
eralization of the trivial lower bound given in (1.1). We now proceed with the upper
bound. For this we take a slightly indirect approach: instead of working directly with
the parameter sq, we show a relation between the two packing parameters.

Lemma 4.6. For all q1, q2 \geqslant 1, t\geqslant 3, and \ell \geqslant 4, we have

sq1+q2(\scrT (q1, q2, \ell , t)) = Pq1,q2(t - 1) \leqslant P0,q1+q2(t - 1) = sq1+q2(Kt).(4.2)

Proof. Again set q = q1 + q2 and let n = P0,q(t  - 1). Let G1, . . . ,Gq be a color
pattern on [n], as guaranteed by Definition 4.1 of P0,q(t  - 1). Consider only the
last q2 graphs; we claim that this color pattern satisfies properties (P1) and (P2)
from Definition 4.1 of Pq1,q2(t - 1). The first property is clear. Now let \lambda : [n] \rightarrow \scrS 
be any coloring. Then we know that there is some j \in \scrS such that Gj contains a
monochromatic copy of Kt - 1 on the vertices of color j. Now, if j > q1, then case (b)
from property (P2) occurs. Otherwise, we have j \leqslant q1, and thus there must be at
least t - 1 \geqslant 2 vertices of color j, implying that case (a) from property (P2) happens.
Hence, Pq1,q2(t - 1) \leqslant P0,q(t - 1), and the two equalities follow from Lemma 4.2 and
the discussion that precedes it.

4.3. Proof of Theorem 1.5. We now prove our second main result for multiple
colors. In [19], it was shown that, for all q \geqslant 2 and t\geqslant 3, there exists a color pattern
G1, . . . ,Gq on the vertex set [n], for some n, such that

(i) Gi is Kt-free for every i\in [n], and
(ii) any subset of [n] of size n/q contains a copy of Kt - 1 in each color.

The results in [19] include bounds on n in terms of q, which are unnecessary for our
purpose. Theorem 1.5 follows from the next lemma and Lemma 4.2.

Lemma 4.7. Given 0< \varepsilon < 1 and integers q2 \geqslant 1 and t\geqslant 3, there exists an integer
q0 \geqslant 1 such that for all q1 \geqslant q0, we have

Pq1,q2(t - 1) \leqslant (1 + \varepsilon )q1.
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MINIMUM DEGREE OF ASYMMETRIC RAMSEY-MINIMAL GRAPHS 39

Proof. Let 0< \varepsilon < 1, q2 \geqslant 1, and t\geqslant 3 be fixed. For q1 large enough, there exists
a color pattern G1, . . . ,Gq\ast on n\in [(1 + \varepsilon /2)q1, (1 + \varepsilon )q1] vertices, given by the result
in [19], with q\ast large enough compared to q2.

Keeping only the first q2 graphs in the color pattern, which we denote for con-
venience by Gq1+1, . . . ,Gq1+q2 , we claim that they satisfy properties (P1) and (P2).
The first one is clear. For the second, consider a vertex coloring \lambda : [n] \rightarrow [q], where
q= q1 +q2. Let \scrC be its largest color class in \scrS (Kt), with color c. If (a) does not hold,
then by the pigeonhole principle the color class \scrC has size at least n - q1

q2
. Since q\ast is

large enough compared to q2, and by choice of n, we have n - q1
q2

\geqslant n
q\ast . By property

(ii) above, we know that there exists a copy of Kt - 1 in Gc[\scrC ]. Therefore if (a) of (P2)
does not hold, then (b) does, and Pq1,q2(t - 1) \leqslant n\leqslant (1 + \varepsilon )q1.

5. Existence of set-determiners and set-senders. In this section we con-
struct set-determiners and set-senders for tuples of the form (C\ell , . . . ,C\ell ,Kt, . . . ,Kt),
that is, we prove Theorems 2.8 and 2.9. Our set-senders will be constructed in several
stages. Before diving into the proofs, we give a brief overview.

Throughout the rest of the section, assume that \ell \geqslant 4, t \geqslant 3, and q, q1, q2 \geqslant 1
are fixed integers such that q1 + q2 = q and recall that \scrT = \scrT (q1, q2, \ell , t) denotes the
q-tuple of cycles and cliques as defined in (1.2). First, we construct a graph \Gamma that
is q-Ramsey for the tuple \scrT and has certain special properties; for this, we generalize
the ideas of Bollob\'as et al. [5] used to construct 2-Ramsey graphs for certain pairs
of graphs, including (C\ell ,Kt), to multiple colors. This graph \Gamma is built by sampling a
random hypergraph, applying alterations to remove all short cycles from it, and then
replacing every hyperedge by a large (depending only on t) clique. In order to prove
the claimed properties of \Gamma , we use a number of results, all of which are fairly standard
by now. Second, we modify \Gamma slightly and construct set-determiners for each of the
color palettes \scrS (C\ell ) and \scrS (Kt). This is a generalization of a construction given by
Siggers in [40] which was valid for certain pairs of the form (C\ell ,H). Finally, since we
need finer control over the color patterns that we force on given set of edges when
q1 > 1 or q2 > 1, we build set-senders from our set-determiners. This final step is the
main novelty in this section.

5.1. Preliminary results. We begin by collecting the different results that will
be needed for the construction and proof of the claimed properties of the graph \Gamma .

Hypergraphs with few short cycles. First, we need to construct a uniform hy-
pergraph with no short cycles that is, nevertheless, not too sparse. This is done using
a standard construction due to Erd\H os and Hajnal [14], starting from a random hyper-
graph. We state the necessary results about random hypergraphs without proof, as
these are standard applications of the probabilistic method. A cycle of length s in a
hypergraph \scrH is a sequence e1, v1, e2, v2 . . . , es, vs of distinct hyperedges and vertices
of \scrH such that vi \in ei \cap ei+1 for all 1 \leqslant i < s and vs \in es \cap e1. Note in particular that
two edges intersecting in more than one vertex form a cycle of length two in \scrH . The
girth of a hypergraph \scrH is the length of the shortest cycle in \scrH (if no cycle exists,
then by convention we say that the girth of \scrH is infinity).

Lemma 5.1. Let \ell , h\geqslant 2 be fixed integers and let ph =An - (h - 1)+1/(\ell  - 1), where A
is a constant. For an integer n\geqslant 1, let \scrH n,ph

be a random h-uniform hypergraph on
[n] in which each h-subset of [n] is added as an edge with probability ph, independently
of all other h-subsets. Then, as n\rightarrow \infty , the following hold with high probability:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/2

7/
23

 to
 1

54
.5

9.
12

4.
11

3 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



40 BISHNOI ET AL.

(i) e(\scrH n,ph
) = (1 + o(1))

\bigl( 
n
h

\bigr) 
ph.

(ii) The number of cycles in \scrH n,ph
of length less than \ell is o(e(\scrH n,ph

)).

Part (i) follows from an application of the Chernoff bound (see, for example, [32]),
while part (ii) is shown using a first-moment argument.

Quantitative version of Ramsey's theorem. The following lemma is a simple
consequence of Ramsey's theorem and is obtained by a straightforward averaging
argument. Informally, it says that for any r-tuple of graphs (H1, . . . ,Hr), if we r-color
a sufficiently large complete graph, then we can find not just one monochromatic Hi

in the correct color but many of them. The proof is a simple generalization of the one
given, for example, in [33, Theorem 2].

Lemma 5.2 (quantitative version of Ramsey's theorem). Let r \geqslant 1 and H1, . . . ,
Hr be graphs. Then there exist a real number c = c(H1, . . . ,Hr) > 0 and an integer
k0 = k0(H1, . . . ,Hr) \geqslant 1 such that if k \geqslant k0 and the edges of Kk are colored with r
colors, then there exists an i \in [r] such that there are at least ckv(Hi) monochromatic
copies of Hi in color i.

Colorful sparse regularity lemma. One of the tools required for showing that \Gamma 
is q-Ramsey for the tuple \scrT is a version of Szemer\'edi's celebrated regularity lemma
[44]. More specifically, we will need the colorful sparse version of the lemma as given,
for example, in [31] (see also [27, Lemma 3.1]). Before giving the precise statement
in Lemma 5.4, we again need several definitions.

Definition 5.3. Let G be a graph on n vertices, and let 0< \eta \leqslant 1 and 0< p\leqslant 1.
Also let U and W be disjoint subsets of V (G). The p-density of the pair (U,W ) is
defined to be

dG,p(U,W ) =
eG(U,W )

p| U | | W | 
,

where eG(U,W ) denotes the number of edges in G with one endpoint in U and one
endpoint in W .

The pair (U,W ) is said to be (\varepsilon , p)-regular if for all U \prime \subseteq U and W \prime \subseteq W with
| U \prime | \geqslant \varepsilon | U | and | W \prime | \geqslant \varepsilon | W | , we have

| dG,p(U \prime ,W \prime )  - dG,p(U,W )| \leqslant \varepsilon .

If (U,W ) is (\varepsilon , p)-regular with p= eG(U,W )
| U | | W | , then we say that (U,W ) is (\varepsilon )-regular for

short. A partition P = (V1, . . . , Vk) of V (G) is an equipartition if | Vi| \in \{ \lfloor v(G)
k \rfloor , \lceil v(G)

k \rceil \} 
for all i \in [k]. An equipartition is said to be an (\varepsilon , p)-regular partition if all but at
most \varepsilon 

\bigl( 
k
2

\bigr) 
pairs (Vi, Vj) are (\varepsilon , p)-regular.

A graph G is said to be (\eta ,D,p)-upper uniform if for all disjoint U,W \subseteq V (G)
with | U | , | W | \geqslant \eta v(G), we have dG,p(U,W ) \leqslant D.

We are now ready to state the version of the regularity lemma that we are going
to use.

Lemma 5.4 (colorful sparse regularity lemma). Let \varepsilon > 0 and D > 1 be fixed
reals, and let k0 \geqslant 1 and r\geqslant 1 be integers. Then there exist constants \eta = \eta (\varepsilon , k0,D, r)
and K0 = K0(\varepsilon , k0,D, r) for which the following holds: If 0 \leqslant p \leqslant 1 and G1, . . . ,Gr

are (\eta ,D,p)-upper uniform graphs on vertex set [n], then there is an equipartition
(V1, . . . , Vk) of [n] for some k0 \leqslant k \leqslant K0 such that all but at most \varepsilon 

\bigl( 
k
2

\bigr) 
of the pairs

(Vi, Vj) are (\varepsilon , p)-regular in Gs for all s\in [r].
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We will also need the following additional technical lemma, which can be found,
for example, in [22, Lemma 4.3].

Lemma 5.5. Given 0 < \varepsilon < 1/6, there exists a constant \beta > 0 such that the
following holds. For any graph F = (V1 \cup V2,E), where the pair (V1, V2) is (\varepsilon )-regular
in F , and for all M satisfying \beta v(F ) \leqslant M \leqslant e(F ), there exists a subgraph F \prime =
(V1 \cup V2,E\prime ) with | E\prime | =M and such that (V1, V2) is (2\varepsilon )-regular in F \prime .

Enumeration lemma for \bfitC \ell -free graphs. Let m,M \geqslant 1 and \ell \geqslant 4 be integers,
and let \varepsilon > 0 be a real number. Let V1, . . . , V\ell be disjoint sets, each of size m. Let
\scrG (\ell ,m, (Vi)

\ell 
i=1,M, \varepsilon ) denote the collection of graphs G such that

-- V (G) = V1 \cup \cdot \cdot \cdot \cup V\ell , where | Vi| =m for each i\in [\ell ];
-- each Vi is an independent set in G;
-- the pair (Vi, Vi+1) is (\varepsilon , M

m2 )-regular in G with eG(Vi, Vi+1) =M for all i\in [\ell ]1 ;
and

-- there are no edges between any other pair (Vi, Vj).
In other words, the graphs in \scrG (\ell ,m, (Vi)

\ell 
i=1,M, \varepsilon ) are blowups of the cycle C\ell in

which each vertex vi of C\ell is blown up to an independent set Vi of size m and such
that each edge vivi+1 of C\ell corresponds to an (\varepsilon , M

m2 )-regular pair (Vi, Vi+1). Let
\scrF (\ell ,m, (Vi)

\ell 
i=1,M, \varepsilon ) denote the set of graphs in \scrG (\ell ,m, (Vi)

\ell 
i=1,M, \varepsilon ) that do not

contain C\ell as a subgraph.
The following enumeration lemma was shown by Gerke et al. [21, Theorem 5.2];

it is a special case of a well-known conjecture by Kohayakawa, \Luczak, and R\"odl [30]
(the so-called K\LR conjecture), which was famously resolved in the general case using
the container method [2, 38].

Lemma 5.6 (counting lemma). For any real number \alpha > 0 and integer \ell \geqslant 4,
there are constants \varepsilon 0 = \varepsilon 0(\ell ,\alpha ) > 0,C0 = C0(\ell ,\alpha ) > 0, and m0 = m0(\ell ,\alpha ) \geqslant 1 such
that for all m\geqslant m0, 0< \varepsilon \leqslant \varepsilon 0, and M \geqslant C0m

1+1/(\ell  - 1), we have

| \scrF (\ell ,m, (Vi)
\ell 
i=1,M, \varepsilon )| \leqslant \alpha M

\biggl( 
m2

M

\biggr) \ell 

.

5.2. Construction of a special graph \Gamma . For the rest of the section, assume
that n is a sufficiently large integer with respect to \ell , t, q, q1, and q2; in all asymptotic
estimates in this section, we assume that n tends to infinity. We begin by fixing some
constants. Let h= rq2(Kt); it is not difficult to check that Kh is minimal q2-Ramsey
for Kt. Let

k0 = k0(C\ell , . . . ,C\ell \underbrace{}  \underbrace{}  
q1 times

,Kh,K2), c= c(C\ell , . . . ,C\ell \underbrace{}  \underbrace{}  
q1 times

,Kh,K2)

be the constants given by Lemma 5.2. We next set

\rho =
c

2q1
, \alpha =

\rho \ell 

e\ell +1
, D= 3h2.

Let \varepsilon 0 = \varepsilon 0(\ell ,\alpha ),m0 =m0(\ell ,\alpha ), and C0 =C0(\ell ,\alpha ) be the constants given by Lemma
5.6, and set

\varepsilon = min\{ \rho \varepsilon 0/2, \rho /10\} , C = max\{ C0,1\} .

1For convenience, we define V\ell +1 = V1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/2

7/
23

 to
 1

54
.5

9.
12

4.
11

3 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



42 BISHNOI ET AL.

Further, let

\eta = \eta (\varepsilon , k0,D, q1), K0 =K0(\varepsilon , k0,D, q1), \beta = \beta (\varepsilon /\rho )

be the constants from Lemmas 5.4 and 5.5. Finally, define

A= max\{ (h+ 1)e - h, \rho  - 1K
1 - 1/(\ell  - 1)
0 C\} , ph =An - (h - 1)+1/(\ell  - 1), pe =An - 1+1/(\ell  - 1).

Let \scrH be a hypergraph on [n] sampled from \scrH n,ph
as in Lemma 5.1. Let \scrG be

the hypergraph obtained from \scrH after the removal of one hyperedge from each cycle
of length less than \ell . Then \scrG contains no cycles of length less than \ell ; by Lemma 5.1
(i) and (ii), we also know that e(\scrG ) = (1 + o(1))

\bigl( 
n
h

\bigr) 
ph.

Let \Gamma be the graph on [n] obtained by embedding a copy of Kh into every hyper-
edge of \scrG ; i.e., \Gamma is the graph on [n] in which two vertices are adjacent if and only if
they are contained in a common hyperedge of the hypergraph \scrG . The main difference
between this construction and the one given in [5] is that in order to deal with multi-
ple colors, instead of placing just a copy of our target graph Kt in each hyperedge of
\scrG , we place a Ramsey graph for it. For a given graph F and a subgraph \Gamma \prime \subseteq \Gamma , we
call a copy F \prime of F in \Gamma \prime a hyperedge copy if the vertex set of F \prime is contained within a
single hyperedge of \scrG . All remaining copies of F in \Gamma \prime are referred to as nonhyperedge
copies. In addition, we call a subgraph \Gamma \prime \subseteq \Gamma transversal if there exists a bijection
f : E(\Gamma \prime ) \rightarrow E(\scrG ) such that e \subseteq f(e) for all e \in E(\Gamma \prime ); that is, \Gamma \prime is transversal if it
contains exactly one edge from each hyperedge copy of Kh in \Gamma .

Before showing that with high probability \Gamma \rightarrow q \scrT (q1, q2, \ell , t) in Theorem 5.8,
we discuss some properties of the graph \Gamma in Lemma 5.7. The proofs of parts (a),
(b), and (d) are essentially the same as those given in [5]. The proof of (c) is now
also standard in light of the recently resolved K\LR conjecture; as we believe that our
version (using more modern results) can be generalized more easily to other tuples of
graphs, we include the details in Appendix A.

Lemma 5.7. The graph \Gamma satisfies each of the following properties with high prob-
ability:

(a) If F is a 2-connected graph with no induced cycles of length \ell or longer, then
every copy of F in \Gamma is a hyperedge copy; in particular, every copy of Kh,Kt,
and C

\ell 
\prime for any \ell \prime < \ell in \Gamma is a hyperedge copy.

(b) \Gamma is (\eta ,D,pe)-upper uniform.
(c) Let m be an integer satisfying n

K0
\leqslant m\leqslant n

k0
, let (V1, . . . , V\ell ) be any \ell -tuple of

disjoint subsets of V (\Gamma ) such that | Vi| = m for all i \in [\ell ], and let \Gamma \prime \subseteq \Gamma be
transversal. If the pairs (Vi, Vi+1) are (\varepsilon , pe)-regular in \Gamma \prime with pe-density at
least \rho for all i\in [\ell ], then \Gamma \prime [V1 \cup \cdot \cdot \cdot \cup V\ell ] contains a copy of C\ell .

(d) Let m be an integer satisfying n
logn \leqslant m \leqslant n

h , and let (W1, . . . ,Wh) be an h-
tuple of pairwise disjoint subsets of V (\Gamma ) with | Wi| =m for all i \in [h]. Then
there are at least 1

4m
hph distinct copies of Kh contained in the multipartite

subgraph of \Gamma spanned by W1 \cup \cdot \cdot \cdot \cup Wh.

We are now ready to show the main result of this section.

Theorem 5.8. With high probability, \Gamma \rightarrow q \scrT .

Proof. We condition on \Gamma having all of the properties given in Lemma 5.7. For
convenience, we may assume also that n

k is an integer for all k0 \leqslant k\leqslant K0. Consider an
arbitrary q-coloring \varphi of the graph \Gamma . If any copy of Kh receives only colors in \scrS (Kt),
then we are done since h= rq2(Kt). So suppose that each such copy has at least one
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MINIMUM DEGREE OF ASYMMETRIC RAMSEY-MINIMAL GRAPHS 43

edge whose color comes from \scrS (C\ell ). Let \Gamma \prime be a graph on V (\Gamma ) = [n] obtained by
taking exactly one edge that has a cycle-color from each hyperedge copy of Kh in \Gamma ;
note that \Gamma \prime is a transversal subgraph. We claim that \Gamma \prime contains a copy of C\ell in
some cycle-color.

For each s\in \scrS (C\ell ), let Gs be the subgraph of \Gamma \prime on vertex set [n] consisting of all
edges that have color s under \varphi . By Lemma 5.7 (b), we know that \Gamma is (\eta ,D,pe)-upper
uniform, and hence Gs is (\eta ,D,pe)-upper uniform for all s \in \scrS (C\ell ). So by Lemma
5.4, there exists an equipartition (V1, . . . , Vk) of [n] in which all but at most \varepsilon 

\bigl( 
k
2

\bigr) 
pairs

(Vi, Vj) are (\varepsilon , pe)-regular in every Gs for s \in \scrS (C\ell ). Let m = n
k ; by our choice of

k0,K0, and n, we know that m is an integer and that n
K0

\leqslant n
k =m\leqslant n

k0
.

Let Kk be the complete graph on vertex set \{ V1, . . . , Vk\} . Consider the following
(q1 + 2)-coloring of the edges of Kk with the color palette \{ c1, . . . , cq1+2\} . If the pair
(Vi, Vj) is (\varepsilon , pe)-regular in all Gs for s\in \scrS (C\ell ) and has pe-density at least \rho in some
Gs, give the edge between Vi and Vj in Kk color cs (breaking ties arbitrarily). If the
pair (Vi, Vj) is (\varepsilon , pe)-regular in Gs for all s\in \scrS (C\ell ) but its pe-density is less than \rho in
every such Gs, then color the edge between Vi and Vj in Kk with color cq1+1. Finally,
if (Vi, Vj) is not (\varepsilon , pe)-regular in Gs for some s\in \scrS (C\ell ), let the edge between Vi and
Vj in Kk have color cq1+2.

By the fact that k\geqslant k0 and our choice of k0 (from Lemma 5.2), we know that at
least one of the following must occur:

(a) For some s\in [q1], there are at least ck\ell copies of C\ell in color cs.
(b) There are at least ckh copies of Kh that are monochromatic in color cq1+1.
(c) There are at least ck2 edges of color cq1+2.

If (a) occurs for some color cs \in [q1], the fact that ck\ell \geqslant ck\ell 0 > 0, together with
property (c) in Lemma 5.7, implies that there is a copy of C\ell in \Gamma \prime in color s. It
remains to show that neither of the other cases can occur.

First, consider option (c). We know that there are at most \varepsilon 
\bigl( 
k
2

\bigr) 
pairs (Vi, Vj) that

are not (\varepsilon , pe)-regular in Gs for some s\in \scrS (C\ell ), and we have

\varepsilon 

\biggl( 
k

2

\biggr) 
\leqslant 

1

10
\rho 

\biggl( 
k

2

\biggr) 
\leqslant 

1

10
c

\biggl( 
k

2

\biggr) 
< ck2,

where the first two inequalities follow by the definitions of \varepsilon and \rho . Hence, option (c)
is indeed impossible.

We now prove that option (b) cannot occur. Suppose it does. We estimate the
number of edges of \Gamma \prime corresponding to pairs of color cq1+1 in two different ways.
First, note that if there is an edge of color cq1+1 between vertices Vi and Vj , then the
(\varepsilon , pe)-regular pair (Vi, Vj) has pe-density at most \rho in Gs for each s\in \scrS (C\ell ). Hence,
in total, the pair (Vi, Vj) has pe-density at most q1\rho in \Gamma \prime . Hence, the number of edges
in \Gamma \prime between pairs (Vi, Vj) corresponding to color cq1+1 is at most\biggl( 

k

2

\biggr) 
q1\rho pem

2 =

\biggl( 
k

2

\biggr) 
q1\rho pe

\Bigl( n
k

\Bigr) 2
<

1

2
q1\rho An

1+1/(\ell  - 1) =
c

4
An1+1/(\ell  - 1).(5.1)

Now, since option (b) occurs, we have at least ckh copies of Kh that are monochro-
matic in color cq1+1 in Kk. Denote these by K1

h,K
2
h, . . . ,K

x
h , where x = \lceil ckh\rceil . The

vertex set V (Ki
h) of each such copy gives an h-partite subgraph Ji \subseteq \Gamma induced by

the sets Vj corresponding to the vertices of Ki
h. As each partite set of Ji has size

m \geqslant n
K0

\geqslant n
logn , Lemma 5.7(d) guarantees that Ji contains a family \scrH i of at least

1
4m

hph distinct hyperedge copies of Kh for every i \in [x]. As each hyperedge copy in
\scrH i intersects each partite set of Ki

h, it is immediate that \scrH i\cap \scrH j \not = \emptyset for i \not = j. Hence,
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44 BISHNOI ET AL.

there exist | 
\bigcup 

i\in [x]\scrH i| \geqslant 1
4ck

hmhph copies of Kh in \Gamma . Since every copy of Kh in \Gamma is
a hyperedge copy and no two hyperedge copies share an edge, we find that \Gamma \prime has at
least

1

4
ckhmhph \geqslant ckh

1

4

\Bigl( n
k

\Bigr) h
An - h+1+1/(\ell  - 1) =

c

4
An1+1/(\ell  - 1)(5.2)

edges corresponding to pairs (Vi, Vj) in color cq1+1, contradicting (5.1).

5.3. Construction of set-determiners. This section uses ideas from [40] to
prove Theorem 2.8. Recall that \scrS (C\ell ) and \scrS (Kt) denote the cycle-colors \{ 1, . . . , q1\} 
and clique-colors \{ q1 + 1, . . . , q\} , respectively. By construction and by Lemma 5.7, we
know that \Gamma satisfies the following properties:

(i) Every copy of Kt in \Gamma is a hyperedge copy.
(ii) Every copy of C

\ell 
\prime for \ell \prime < \ell is a hyperedge copy.

(iii) Each edge of \Gamma belongs to a unique copy of Kh.
Now, let G \subseteq \Gamma be a minimal q-Ramsey graph for the q-tuple \scrT (q1, q2, \ell , t); it is not
difficult to see that G satisfies properties (i) and (ii) given above. In fact, we have
a good understanding of what G needs to look like, as given in the following lemma.
Naturally, the lemma also establishes that G satisfies property (iii) above.

Lemma 5.9. The graph G is the union of hyperedge copies of Kh, that is, every
edge of G belongs to a hyperedge copy of Kh in G.

Proof. Suppose there is an edge e that does not belong to a copy of Kh in G. We
know that e does belong to a copy of Kh in \Gamma \supseteq G; let H denote this copy of Kh in
\Gamma , and let F denote the set of edges on V (H) that are in \Gamma but not in G. Notice that
\emptyset \subsetneq F \subsetneq E(H) by our assumption.

By the minimality of G, we know that G - H has a \scrT -free q-coloring \varphi . Addition-
ally, since Kh is minimal q2-Ramsey for Kt, the graph H - F has a Kt-free q2-coloring
\varphi \prime :E(H  - F ) \rightarrow \scrS (Kt). We now define a q-coloring \widetilde \varphi of G by setting \widetilde \varphi =\varphi \cup \varphi \prime .

We claim that \widetilde \varphi is a \scrT -free q-coloring of G. Indeed, since \varphi is a \scrT -free coloring
of G  - H, there are no monochromatic cycles in any cycle-color, and since in the
coloring of H  - F we add no further edges in these colors, we know that there are no
monochromatic copies of C\ell in any cycle-color in all of G. Furthermore, since there are
no nonhyperedge copies of Kt in G and neither \varphi nor \varphi \prime contains a monochromatic
copy of Kt in any color in \scrS (Kt), we know that there are also no monochromatic
copies of Kt in any clique-color in all of G. Hence, \widetilde \varphi is a \scrT -free q-coloring of G,
contradicting the fact that G\rightarrow q \scrT .

Now, let e be a fixed edge of G, and let H be the copy of Kh in G containing e.
Let D be the graph obtained from G by removing all edges of H except for e, that
is, D = G - (H  - e). We now claim that D is an \scrS (Kt)-determiner for the tuple \scrT .
This construction generalizes the one presented by Siggers [40].

Lemma 5.10. The graph D is a safe \scrS (Kt)-determiner for the tuple \scrT with signal
edge e.

Proof. We first show property (D2). For a contradiction, suppose \psi is a \scrT -free
coloring of D in which \psi (e) \in \scrS (C\ell ). Then, by an argument similar to the one used
in Lemma 5.9, by putting together this \scrT -free coloring of D and a Kt-free q2-coloring
of H  - e (with colors in \scrS (Kt)) we obtain a \scrT -free coloring of G, which contradicts
the fact that G\rightarrow q \scrT .
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MINIMUM DEGREE OF ASYMMETRIC RAMSEY-MINIMAL GRAPHS 45

To see properties (D1) and (D3), note that D is a proper subgraph of G, so D
has a \scrT -free q-coloring \varphi . Further, by permuting the clique-colors in \varphi appropriately,
we can obtain a \scrT -free coloring of D in which the edge e has any color in \scrS (Kt).

It remains to show that \varphi is safe at \{ e\} . Let F be any graph such that V (D) \cap 
V (F ) = V (e) and E(D)\cap E(F ) = \{ e\} . Let \varphi \prime be a \scrT -free q-coloring of F that agrees
with \varphi on the edge e. We claim that the coloring \widetilde \varphi , given by \widetilde \varphi = \varphi \cup \varphi \prime , is a \scrT -free
q-coloring of D\cup F . We know that the restrictions of \widetilde \varphi to both D and F are \scrT -free; it
remains to show that there are no monochromatic cliques or cycles in the appropriate
colors intersecting both V (D)  - e and V (F )  - e.

First, it is not difficult to see that there can be no such copy of Kt. For t= 3, this
is clear. If t\geqslant 4 and there is a t-clique K intersecting both D - e and F  - e, then we
can disconnect K by removing the vertices of e, which is impossible. Suppose there
is such a copy C of C\ell . Note first that C must contain both vertices of e because C\ell 

is 2-connected. Now, let v be a vertex of C contained in V (D)  - e, and let w be a
vertex of C contained in V (F )  - e. Now, there are no nonhyperedge cycles of length
less than \ell in D, so every cycle containing e in D has length at least \ell . Hence, the
vertices v and w cannot be contained in a cycle of length \ell with both endpoints of e,
and therefore C cannot exist. Thus the coloring \widetilde \varphi is \scrT -free, implying that \varphi is safe.
This completes the verification of the safeness property.

Now we construct a safe \scrS (C\ell )-determiner D\prime by taking a copy H of Kh, fixing
one edge f and attaching copies of the \scrS (Kt)-determiner D constructed above to all
remaining edges of H. This again generalizes a construction of Siggers [40].

Lemma 5.11. The graph D\prime is a safe \scrS (C\ell )-determiner for the tuple \scrT with signal
edge f .

Proof. We again begin with property (D2). Take an arbitrary \scrT -free coloring of
D\prime . This coloring induces a \scrT -free coloring on each copy of D, so, by property (D2)
of D, all edges of H  - f have colors in \scrS (Kt). If f has one of these colors too, then
H is fully colored with colors in \scrS (Kt). Since H is q2-Ramsey for Kt, there exists a
monochromatic copy of Kt in H, contradicting the fact that the coloring \varphi is \scrT -free.
So the color of f must be in the set \scrS (C\ell ).

We show properties (D1) and (D3) next. By minimality, we know that H  - f is
not q2-Ramsey for Kt, and hence it has a Kt-free coloring \psi from the palette \scrS (Kt).
Let \varphi be a q-coloring extending \psi in which each copy of the determiner D has a safe
\scrT -free coloring and the edge f has an arbitrary color from \scrS (C\ell ); this coloring \widetilde \varphi 
exists by property (D3) of D. Since the coloring of each copy of D is safe, and since
H has a \scrT -free q-coloring, the coloring \varphi of D\prime is also \scrT -free.

Finally, to see the safeness of \varphi , let F be a graph such that V (D\prime )\cap V (F ) = V (f)
and E(D\prime ) \cap E(F ) = \{ f\} . If F is given a \scrT -free q-coloring \varphi \prime that agrees with \varphi on
f , then the coloring \widetilde \varphi = \varphi \cup \varphi \prime is a \scrT -free q-coloring of D\prime \cup F . Indeed, since each
copy of D is safe, and since the only edge of H that has color in \scrS (C\ell ) is f , we know
that there can be no monochromatic copy of C\ell in D\prime \cup F using a cycle-color in \widetilde \varphi .
Similarly, since we cannot disconnect Kt by removing at most two vertices, we know
that there can be no copy of Kt intersecting both V (D\prime ) - f and V (F ) - f , and hence
there can be no monochromatic copy of Kt in a clique-color in \widetilde \varphi . Hence, \widetilde \varphi is a \scrT -free
q-coloring, and thus \varphi is a safe coloring of D\prime .

5.4. Construction of set-senders. So far, we have constructed an \scrS (Kt)-
determiner D and an \scrS (C\ell )-determiner D\prime , generalizing ideas from [5, 40]. We now
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46 BISHNOI ET AL.

take the constructions a step further and use our set-determiners to build set-senders
for these sets of colors when q1 > 1 or q2 > 1, proving Theorem 2.9.

If q1 > 1, let S be a safe negative (respectively, positive) signal sender for C\ell with
q1 colors, as guaranteed by Lemma 2.5 and Remark 2.7; let e and f denote its signal
edges. Let R be a graph obtained from S by attaching a copy of D\prime to every edge
of S.

Lemma 5.12. If S is a negative (respectively, positive) signal sender for C\ell with
signal edges e and f as above, then R is a safe negative (respectively, positive) \scrS (C\ell )-
sender for \scrT with signal edges e and f .

Proof. Assume S is a negative signal sender for C\ell in q1 colors; the other case
is similar. We first show properties (S1) and (S3). Let c1, c2 \in \scrS (C\ell ) be distinct.
We know that S\nrightarrow q1 C\ell , so S has a safe C\ell -free coloring from the set \scrS (C\ell ), and by
property (S3) of S, we can ensure that e and f receive colors c1 and c2, respectively.
Now, since the signal edge of each copy of D\prime has color in \scrS (C\ell ), by property (S3)
of D\prime , this coloring of S can be extended to each copy of D\prime so that each copy of D\prime 

has a safe \scrT -free q-coloring. The coloring of each copy of D\prime is safe, so the q-coloring
defined on R is \scrT -free. To see the safeness of this coloring, notice that the coloring
of each copy D\prime is safe at its signal edge and that the coloring of S, containing only
colors from \scrS (C\ell ), is safe at \{ e, f\} . Property (S2) of R follows immediately from
properties (S2) and (D2) of S and D\prime .

Finally, if q2 > 1, we build \scrS (Kt)-senders for \scrT . Let S\prime be a safe negative (re-
spectively, positive) signal sender for Kt with q2 colors taken as \scrS (Kt), as guaranteed
by Lemma 2.6 and Remark 2.7; let e and f denote its signal edges. Let R\prime be a graph
obtained from S\prime by attaching a copy of D to every edge of S\prime . We omit the proof
that R\prime is a set-sender for Kt, as it is essentially the same as that of Lemma 5.12.

Lemma 5.13. If S\prime is a negative (respectively, positive) signal sender for Kt with
signal edges e and f , then R\prime is a safe negative (respectively, positive) \scrS (Kt)-sender
R\prime for \scrT with signal edges e and f .

6. Concluding remarks. In this paper, we initiated the study of the parameter
sq in the asymmetric setting for tuples consisting of cliques and cycles. The upper
and lower bounds we obtain are strongly dependent on the existing bounds for the
symmetric parameter sq(Kt). As noted by the authors of [19], the study of sq(Kt)
appears to be tightly connected to the Erd\H os--Rogers function, implying that any
improvements on our current results would probably be nontrivial. We refer the
reader to [19, section 5] for a more detailed discussion on the relationship between
sq(Kt) and the Erd\H os--Rogers function.

It would be desirable to study other asymmetric cases of the problem, and a
natural place to start is to consider pairs of graphs for which safe determiners are
known to exist (including all pairs of 3-connected graphs and the pairs considered by
Siggers in [40]).

The multicolor asymmetric setting offers even more room for study, as the ex-
istence of gadget graphs is an open problem even in some very natural cases. Our
method allows us to construct set-determiners and set-senders for tuples of the form
(C\ell , . . . ,C\ell ,Ks,Kt). However, we are not aware of a way to build gadget graphs for
asymmetric q-tuples of cliques with q > 2. Since studying Ramsey graphs for cliques
is a central theme in Ramsey theory, we believe that resolving the following problem
would be of interest.
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Problem 6.1. Construct signal senders for asymmetric q-tuples (Kt1 , . . . ,Ktq ).

The natural first instances to attack, which might also shed some light on the
general case, are tuples of the form (Kt, . . . ,Kt,Kk) or (Kt,Ks,Kk). Once we have
the necessary tools, it would be very interesting to investigate the parameter sq for
such tuples.

It would also be desirable to determine whether the upper bound in Theorem
1.3 holds in other cases. In particular, it was conjectured by Fox et al. [19] that
sq(Kt - 1) \leqslant sq(Kt) for q > 3. Perhaps the following asymmetric version would be
more approachable.

Problem 6.2. Show that

sq(Kt - 1, . . . ,Kt - 1\underbrace{}  \underbrace{}  
q1+1 times

,Kt, . . . ,Kt\underbrace{}  \underbrace{}  
q2 - 1 times

) \leqslant sq(Kt - 1, . . . ,Kt - 1\underbrace{}  \underbrace{}  
q1 times

,Kt, . . . ,Kt\underbrace{}  \underbrace{}  
q2 times

).

Appendix A. Proof of Lemma 5.7 (c). We now give the proof of Lemma
5.7 (c). The proof is similar to the proof of Proposition 9 in [5], but we use modern
results related to the K\LR conjecture.

Proof of Lemma 5.7 (c). Let m satisfy n
K0

\leqslant m \leqslant n
k0

; we can write pe =

Bm - 1+1/(\ell  - 1), where B =A
\bigl( 
n
m

\bigr)  - 1+1/(\ell  - 1)
. Notice that B satisfies AK

 - 1+1/(\ell  - 1)
0 \leqslant 

B \leqslant Ak
 - 1+1/(\ell  - 1)
0 .

Let (V1, . . . , V\ell ) and \Gamma \prime be as given. Suppose that the pairs (Vi, Vi+1) for i\in [\ell ] are
(\varepsilon , pe)-regular with pe-density at least \rho in \Gamma \prime . Then we have e

\Gamma 
\prime (Vi, Vi+1) \geqslant \rho pem

2

for all i\in [\ell ]. Let M be an integer satisfying

\rho pem
2 \leqslant M \leqslant min

i\in [\ell ]
e
\Gamma 
\prime (Vi, Vi+1).

Notice that this integer M satisfies

M \geqslant \rho pem
2 = \rho Bm1+1/(\ell  - 1) \geqslant \rho AK

 - 1+1/(\ell  - 1)
0 m1+1/(\ell  - 1)

\geqslant Cm1+1/(\ell  - 1) \geqslant 2\beta m= \beta | Vi \cup Vi+1| ,

since A\geqslant K
1 - 1/(\ell  - 1)
0 C/\rho , and since n, and hence m, is taken to be sufficiently large.

Consider the pair (V1, V2), and let d=
e
\Gamma 
\prime (V1,V2)

m2 ; then we have d\geqslant \rho pe, and thus
pe \leqslant d

\rho . By definition, it then follows that the pair (V1, V2) is ( \varepsilon 
\rho , d)-regular or simply

( \varepsilon 
\rho )-regular. By Lemma 5.5, there is a subset E1,2 \subseteq E

\Gamma 
\prime (V1, V2) such that | E1,2| =M

and that the pair (V1, V2) is ( 2\varepsilon 
\rho )-regular in (V1 \cup V2,E1,2). Repeating this argument

for all pairs of the form (Vi, Vi+1), we find that \Gamma \prime [V1 \cup \cdot \cdot \cdot \cup V\ell ] contains at least one
graph in \scrG (\ell ,m, (Vi)

\ell 
i=1,M, 2\varepsilon \rho ).

Our goal now is to show that with high probability, there is no collection of
subsets (Vi)

\ell 
i=1, and subgraph \Gamma \prime \subseteq \Gamma as given in the statement such that \Gamma \prime [V1 \cup 

\cdot \cdot \cdot \cup V\ell ] contains a subgraph belonging to \scrF (\ell ,m, (Vi)
\ell 
i=1,M, 2\varepsilon \rho ). Again, let the \ell -

tuple (V1, . . . , V\ell ) be fixed. If F \in \scrF (\ell ,m, (Vi)
\ell 
i=1,M, 2\varepsilon \rho ) has edges e1, . . . , eM\ell and

there exists a transversal \Gamma \prime such that F \subseteq \Gamma \prime [V1 \cup \cdot \cdot \cdot \cup V\ell ], there must exist distinct
hyperedges \scrE 1, . . . ,\scrE M\ell \in E(\scrH n,ph

) such that ei \subseteq \scrE i for all i\in [M\ell ]. Therefore
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\BbbP [\exists transversal \Gamma \prime : F \subseteq \Gamma \prime [V1 \cup \cdot \cdot \cdot \cup V\ell ]] \leqslant 
\biggl( \biggl( 

n - 2

h - 2

\biggr) 
ph

\biggr) M\ell 

\leqslant 
\Bigl( 

(n - 2)h - 2An - (h - 1)+1/(\ell  - 1)
\Bigr) M\ell 

\leqslant 
\Bigl( 
An - 1+1/(\ell  - 1)

\Bigr) M\ell 

= pM\ell 
e .(A.1)

Note that when n is sufficiently large, we have m \geqslant m0. By choice of \varepsilon \leqslant \rho \varepsilon 0/2,
applying Lemma 5.6 and the union bound, we obtain

\BbbP 
\biggl[ 
\exists transversal \Gamma \prime , F \in \scrF 

\biggl( 
\ell ,m, (Vi)

\ell 
i=1,M,

2\varepsilon 

\rho 

\biggr) 
: F \subseteq \Gamma \prime [V1 \cup \cdot \cdot \cdot \cup V\ell ]

\biggr] 
\leqslant \alpha M

\biggl( 
m2

M

\biggr) \ell 

p\ell Me \leqslant \alpha M

\biggl( 
m2e

M

\biggr) \ell M

p\ell Me \leqslant \alpha M

\biggl( 
e

\rho 

\biggr) \ell M

= e - M ,

where the last inequality follows from the fact that M \geqslant \rho pem
2, and the final step

follows by the choice of \alpha .
This implies that for any fixed integers m and M and any collection of disjoint

subsets V1, . . . , V\ell of [n], each of size m, the probability that there exists a transversal
\Gamma \prime such that \Gamma \prime [V1 \cup \cdot \cdot \cdot \cup V\ell ] contains some graph in \scrF (\ell ,m, (Vi)

\ell 
i=1,M, 2\varepsilon \rho ) is at most

e - M .
Now, for any choice of n

K0
\leqslant m\leqslant n

k0
and Cm1+1/(\ell  - 1) \leqslant M \leqslant m2 \leqslant n2, there are

at most nm\ell choices for the sets V1, . . . , V\ell . Summing over the possible choices for the
sets V1, . . . , V\ell and the possible choices for m and M , we find that the probability that
(c) fails is bounded from above by the probability that there exist m, M , (Vi)

\ell 
i=1, and

\Gamma \prime such that \Gamma \prime [V1 \cup \cdot \cdot \cdot \cup V\ell ] contains a member of \scrF (\ell ,m, (Vi)
\ell 
i=1,M, 2\varepsilon \rho ), which is at

most \sum 
m

\sum 
M

nm\ell e - M \leqslant 
\sum 
m

\sum 
M

exp( - Cm1+1/(\ell  - 1) +m\ell logn)

\leqslant 
\sum 
m

\sum 
M

exp

\Biggl( 
 - C

\biggl( 
n

K0

\biggr) 1+1/(\ell  - 1)

+
n

k0
\ell logn

\Biggr) 

\leqslant n3 exp

\Biggl( 
 - C

\biggl( 
n

K0

\biggr) 1+1/(\ell  - 1)

+
n

k0
\ell logn

\Biggr) 
= o(1).
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