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A B S T R A C T   

In the dredging industry, the automation and accuracy of the Dredging Perception System (DPS) are vital for 
operational efficiency and environmental safety. Current DPS implementations face challenges with sensor fault 
tolerance, leading to system unreliability and increased false alarm rates that can disrupt dredging operations. 
We propose a Hybrid Redundancy Sensor Fault Tolerance (HRSFT) strategy that integrates matching physical 
sensors (PS) with two distinct types of virtual sensors (VS) driven by multi-sensor association and time-series 
prediction models. The HRSFT employs a voting-cold storage strategy to address the false alarm issues 
commonly associated with single virtual sensor systems. Through experimental validation, the HRSFT strategy 
has demonstrated its capability to provide accurate replacement information during both single and multi-sensor 
failure scenarios, effectively managing abnormal sensor data and enhancing the operational reliability of the 
DPS. The implementation of the HRSFT strategy significantly improves the accuracy and stability of the DPS, 
suggesting a substantial advancement in sensor fault tolerance that could be applied to similar systems in various 
industries, leading to safer and more reliable operations.   

1. Introduction 

Dredging is essential for maintaining navigational channels, water 
quality and ensuring safe passage of ships. Over the years, the dredging 
industry has undergone significant changes, with AI technology playing 
a significant role in the automation of dredging systems. The DPS is a key 
component of an automated dredging system. The DPS uses sensors to 
detect the position of the dredger and the depth of the water, and this 
information is used to control the dredger’s movement [1,2]. However, 
the DPS is vulnerable to faults that can result in loss of system’s per
formance. Sensor faults, in particular, can cause significant damage to 
the dredger and environment. For instance, one of the environmental 
impacts related to dredging is increased suspended sediment concen
tration (SSC) levels, forming dredge plumes originating from spillage of 

dredged material. Concentration meters are effective in assessing plume 
dispersion. Therefore, it is critical to develop a sensor fault-tolerant 
design for the DPS to improve its reliability [3]. 

The issue, can be tackled by both Hardware Redundancy (HR) and 
Analytical Redundancy (AR) [4–8]. HR- based sensor fault detection, 
identification and accommodation is widely used in aerospace systems 
and self-driving vehicles [9–12]. However, there is a growing number of 
applications where cost, weight and size are critical design constraints. 
For these applications, AR-based sensor fault-tolerant methods are very 
attractive to increase reliability by intelligent systems. In 1971, Beard 
introduced the concept of fault detection filter, which marked the 
beginning of fault diagnosis technology based on AR [13]. The AR 
technology utilizes a mathematical model of the system to provide 
redundant information of sensor signals without increasing the number 
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of sensors; this allows improving the fault tolerance of the system and 
effectively overcome the limitations of HR. Hence, it is increasingly 
applied to the fault-tolerant design of sensors in flight control systems 
[14–16]. AR can be pursued mainly by two approaches (and their hy
bridization): Model-based (MB) and Data-based (DB) [17–20]. The MB 
approach is based on mathematical models derived from the physical 
laws governing the system dynamics and reproduces the system 
response in different working conditions [21]. The performances are 
heavily dependent on the available domain knowledge about the system 
to build accurate models of its behavior. The DB approach does not 
require detailed knowledge of the physics of the system, as it derives 
empirical models directly from historical data. This makes it attractive 
for equipment fault diagnosis and remaining life prediction [22–24]. 
Cartocci et al. [25] proposed a robust data-driven multiple sensor fault 
diagnosis approach for aircrafts. The proposed approach utilizes an 
optimization algorithm to select the optimal set of sensors for fault 
diagnosis, based on their redundancy and reliability. The approach is 
shown to be effective in diagnosing multiple faults with a high degree of 
accuracy. Darvishi et al. [26] proposed a SFDIA approach using a 
modular data-driven architecture. The approach uses a set of local fault 
detectors and estimators, which communicate with each other to ensure 
that the digital twin remains accurate and reliable. Another approach to 
SFDIA is to use deep learning for event identification and signal recon
struction in nuclear power plants with sensor faults [27]. The approach 
uses a convolutional neural network (CNN) to identify events and a long 
short-term memory (LSTM) network to reconstruct signals. Simulation 
results demonstrate the effectiveness of the proposed approach in 
identifying events and reconstructing signals in nuclear power plants 
with sensor faults. Fault detection strategies for vehicle sensors have also 
been proposed. Zou et al. [9] proposed a fault detection strategy for 
vehicle wheel angle sensors using a LSTM network and an improved 
sequential probability ratio test (SPRT). The approach uses the LSTM 
network to preprocess the sensor data and the SPRT to detect faults. 
Simulation results demonstrate the effectiveness of the proposed 
approach in detecting faults in vehicle wheel angle sensors. 
Clustering-based sensor fault detection and diagnosis is another 
approach to SFDIA. Luo et al. [28] proposed a clustering-based approach 
for detecting and diagnosing sensor faults in a chilled water system. The 
approach uses a clustering algorithm to group similar sensor measure
ments and identify outliers. Simulation results demonstrate the effec
tiveness of the proposed approach in detecting and diagnosing sensor 
faults in a chilled water system. Statistical-divergence-based techniques 
also show advantages in sensor fault diagnosis; in particular, approaches 
based on Kullback-Leibler divergence (KLD) have been shown effective 
for SFDIA [29]. Arslan Ahmed Amin et al. [30] delved into the inte
gration of machine learning, deep learning, and transfer learning for 
fault diagnosis in Fault-Tolerant Control systems, highlighting the 
importance of these systems in safety-critical applications and providing 
a valuable resource for researchers in this domain. 

In prior research work, the authors have addressed the issue of the 
high frequency of sensor failures during CSD construction, due to the 
challenging environment [31,32]. Missing or wrong sensor data can 
affect the success of the construction process. Then, we have proposed a 
slurry concentration soft-sensor model, by allocating other highly reli
able sensors on the CSD and learning the construction data to predict the 
values of key parameters while the dredger is running. The proposed 
method was validated on a CSD construction case study, showing high 
prediction accuracy and low computational cost. Li et al. [33] proposed 
a digital twin-driven virtual sensor (DTDVS) approach to ensure the safe 
operation of Trailing Suction Hopper Dredger (TSHD). By analyzing the 
residual between the values of the physical and virtual sensors, it is 
possible to detect fault conditions. The DTDVS approach improves 
TSHD’s time utilization and provides an essential guarantee for con
struction safety. 

However, the above methods have difficulties in dealing with multi- 
sensor failures. A virtual sensor constructed by only one data-driven 

model is not able to maintain stability of the whole perception system 
when dealing with the effects of multi-sensor failures, thus, compro
mising the automation and unmanned dredging operations. 

The purpose of this work is to improve the reliability of the DPS by a 
sensor fault-tolerant strategy. An HRSFT system based on two data- 
driven models is proposed to detect and identify failures of sensors, 
and produce replacement information of the failed sensors using 
weighted least squares. The main contributions are:  

• Innovative Fault-Tolerance Design for Dredging Operations: For the 
first time in the field of dredging, we propose a sensor fault-tolerance 
design that addresses the unique environmental and operational re
quirements of dredging vessels. This approach significantly enhances 
the reliability of dredging perception systems during continuous 
operations.  

• Hybrid Redundancy in Sensor Systems: A hybrid redundancy design 
for sensor systems is developed, which is a novel approach in the 
field. Unlike traditional methods, this design combines various 
redundancy techniques to ensure higher system reliability and fault 
tolerance, especially in challenging operational conditions.  

• Effective Multi-Sensor Fault Detection Method: The proposed 
method introduces a new hybrid redundancy approach for sensor 
fault tolerance. This method is more effective in identifying and 
handling sensor faults, especially in scenarios with simultaneous 
failures in multiple sensors, a common challenge in dredging 
operations.  

• Enhanced Sensor System Performance through Information Fusion: 
Our research presents a hybrid redundancy sensor information 
fusion method. This method improves the measurement accuracy 
during sensor degradation phases and extends the service life of 
sensors. It represents a significant advancement in sensor technol
ogy, particularly in the demanding context of dredging operations. 

The rest of this paper is organized as follows. Section 2 briefly pro
vides an overview of the DPS and the dredging technology. Section 3 
describes the proposed sensor fault-tolerant operation strategy and 
system design. Then, the reliability estimation and improvement of DPS 
is introduced in Section 4. Section 5 highlights and compares the per
formance of the hybrid-redundancy sensor strategy for different sensor 
faults. Some conclusions are eventually drawn in Section 5. 

2. Problem description 

In the context of dredging operations, the reliability and accuracy of 
the DPS are crucial. The DPS, equipped with various sensors, plays a 
pivotal role in navigation and operational efficiency. However, the 
system encounters significant challenges:  

• One of the primary challenges in DPS is managing simultaneous 
failures of multiple sensors. Such scenarios are increasingly common 
in the complex and demanding environments of dredging operations. 
Traditional sensor systems, including those based on HR and AR, 
often fall short in these situations. This inadequacy can lead to severe 
disruptions in operations and compromise the safety of unmanned 
dredging systems. The need for a robust solution that can handle 
such complexities is therefore paramount. 

• Another issue is the inevitable degradation of sensor system perfor
mance over time. Traditional systems lack mechanisms to enhance or 
even maintain performance throughout their operational lifespan. 
This gradual decrease in sensor efficiency results in reduced accuracy 
and reliability, which are critical for the safe and effective func
tioning of dredging operations. 

Given these challenges, our study introduces a novel approach – a 
HRSFT system. This system, utilizing dual data-driven models, aims to 
efficiently detect and manage sensor failures, as well as improve sensor 
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performance over time through innovative information fusion tech
niques. The proposed system is tailored to meet the unique environ
mental and operational demands of dredging vessels, enhancing the 
overall reliability of the DPS. These issues highlight the need for a more 
advanced and adaptive sensor fault-tolerance strategy in dredging op
erations, to ensure continuous performance and safety in various 

operating conditions. Our approach seeks to address these challenges, 
paving the way for more reliable and efficient automated dredging 
operations. 

Fig. 1. “CHANGSHI 19” cutter suction dredger.  

Fig. 2. The dredging process of a cutter suction dredger.  
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3. Overview of the dredging perception system 

3.1. Dredging technology and process 

For illustration, we consider the DPS of the “CHANGSHI 19″ CSD 
shown in Fig. 1. In general, at the bow of the dredger, there are two 
heavy-duty positioning steel spuds, one of which is driven into the 
submerged ground to maintain the dredger’s position during construc
tion operations. The ladder is connected to the hull through two ladder- 
trunnion supports, and the winch is used to raise or lower it. Typically, 
one or two in-board pumps are installed in the slurry pump compart
ment, and some dredgers may have submerged slurry pumps on the 
cutter ladder, which are typically located near the mud suction port. The 
cutter is installed at the suction port of the slurry suction pipe and is 
usually driven by the cutter motor installed at the upper end of the cutter 
ladder or directly by the motor of the submerged pump (Fig. 1). 

The CSD is a special type of ship used for channel excavation, port 
maintenance and island reclamation, whose dredging system includes 
cutter cutting system, slurry conveying system, swing control system 
and spuds system. In general, the CSD mainly relies on manual operation 
by operators. Specifically, the operators need to monitor the relevant 
operating parameters of the dredger in real-time. The construction 
operation of a CSD involves controlling two side anchor cables, one 
retracted and one released, to make the dredger fan-shaped swing 
dredging around the positioning steel spud. The cutter cutting system of 
the CSD consists of several components, including a front-end device, 
cutter, cutter drive shaft, mud-absorbing baffle, mud-absorbing port, 
and underwater pipeline. This system is designed to cut and crush mud, 
sand, or rock underwater, forming a mixture that is then connected to 
the suction and discharge pipeline through the suction port. The swing 

process is shown in Fig. 2(a). The working spud is installed on the spud 
carriage and can be moved back and forth in the dredger bow, whereas 
the walking spud is installed in an eccentric position at the bow of the 
dredger to play the role of pile replacement and auxiliary positioning. 
Typically, the CSD takes a steel spud or three cable guides as the swing 
center, driving the dredger to swing laterally through the left and right 
side anchors for dredging operation. The hydraulic cylinder pushes the 
carriage to travel a distance to complete a feed when cutter swinging to 
the dredging edge line. Then, the cutter head swings back to the other 
side of the dredging line to complete the next feed. When the carriage 
travels the whole distance, the CSD moves across the dredge to the other 
side of the dredging line to complete the next feed. Once the dredger is 
fully traveled, it moves across to the centerline of the dredging trench, 
lifts the bridge, tightens the traverse cables at both ends, puts the 
walking spud down, and raises the working spud simultaneously. It then 
presses the working spud into the soil and raises the walking spud. The 
carriage completes one running stroke and starts the second running 
stroke. Fig. 2(b) illustrates the diagram of dredging different geological 
materials layers. 

3.2. DPS and dredging environment 

As the intelligence level of dredgers continues to improve, the 
number of sensors installed on dredgers is creasing. In the light of 
practice, there are now more than 200 monitoring sensors, and that 
number may continue to grow. However, there are currently no stan
dardized norms and regulations regarding the use of sensors for key 
operating equipment on dredgers within the dredging industry. As a 
result, the sensors installed on each dredger’s key operating equipment 
often operate under an excessive workload. Coupled with the harsh 
operating conditions of the dredging site, which includes a high salt, 
high humidity, and strong vibration environment, these sensors are 
susceptible to performance degradation and failure throughout the year. 
Fig. 3 displays the dredging perception system of a CSD. 

In this setting of the perception system poses a significant safety 
hazard and has become a hindrance to the development of intelligent 
dredging. It is, therefore, crucial to take effective measures to ensure the 
reliability of the perception system for key equipment during continuous 
dredging operations. 

Fig. 3. The DPS and dredging environment of a cutter suction dredger.  

Fig. 4. Diagram of the hybrid redundancy sensor structure.  
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Algorithm 1 
HRSFT Operation Strategy Algorithm.  

Algorithm 2 
Stacking Generalization Algorithm.  
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4. Sensor fault-tolerant operation strategy and system design 

4.1. Hybrid redundancy sensor design 

It is essential to design multiple mechanisms, ideally more than two, 
to enable the system to retain functionality even in the event that one of 
them fails, in order to improve the reliability of systems and ensure the 
completion of work. To this end, redundant systems like active, warm, 
and standby redundancies are generally employed [34,35]. 

This study proposes a “voting-cold storage” structure that combines 
the principles of virtual and physical sensors, as shown in Fig. 4. This 
structure is designed to enhance the dependability of the sensing unit 
and optimize the autonomous functioning of the system. In particular, 
the sensor fault detection system is configured so that a normal PS 
triggers the connection of interface a; whereas, when virtual sensor VS1 
is identified as normal and VS2 as faulty, the connection is established 
through interface b. Conversely, when VS1 is faulty and VS2 is normal, 
interface d comes into operation. Moreover, when the physical sensor 
malfunctions, the system automatically activates interface c, which 
makes the fusion information from the two virtual sensors (Fig. 4). 

In summary, the proposed structure presents a dependable and 
robust redundancy solution for complex systems. By combining virtual 
and physical sensors, it safeguards the reliability of the sensing unit, 
ensuring uninterrupted monitoring system performance, and maintain
ing the independence of its operation. The functional activation process 
is elaborated in Algorithm 1 and more details are introduced in the next 

section. 

4.2. Virtual sensors 

4.2.1. Virtual sensor 1 (VS1) 
In this section, we explore the internal relationships between various 

sensing data from equipment by first using the maximal information 
coefficient approach. A multi-sensor association model is, then, devel
oped using machine learning models like lasso, elastic net, gradient- 
boosting decision tree, extreme gradient boosting, and light gradient 
boosting machine. Finally, we combine the aforementioned models into 
VS1, a multi-sensor regression prediction model, using a stacking 
generalization method (refer to Algorithm 2 below). 

Importantly, as the amount of available data for learning increases, 
the performance of the VS1 improves; therefore, the model has strong 
potential for increasing capability. Fig. 9 illustrates the process [32] 
(Fig. 5). 

4.2.2. Virtual sensor 2 (VS2) 
Based on the association information and a priori knowledge of each 

unit in the DPS, we have developed a time-series prediction method for 
sensing values using the CNN-LSTM Encode-Decode technique [36]. Our 
approach involves continuous analysis of the dredger construction 
process while taking into account the continuity and temporal charac
teristics of the time-series data from each sensing unit. We utilize the 
time-series self-movement time-window method to establish a virtual 
sensor for each sensing unit based on time series prediction. The dia
gram is presented in Fig. 6, as shown below. 

4.3. Sensor anomaly detection based on hybrid redundancy 

We coordinate the reconstructed virtual sensors and physical sensor 
to create a voting evaluation system using the residual configuration 
technique and voting monitoring method. Using the data-driven fault 
self-diagnosis method, we can successfully distinguish among sensor 
faults by calculating the structural residual values of the two virtual 
sensors separately. 

The basic logic of sensor fault detection and isolation is illustrated in 
Fig. 7. The sensor is deemed faulty if both residual values concurrently 
exceed the threshold, in which case the system outputs the reconstructed 
signal created by fusing the weighted least squares estimates from the 
two virtual sensors. If the two residual values are below the threshold at 
the same time, the sensor is deemed to be normal, and the system out
puts the physical sensor signal. In all other cases, the virtual sensor 
model with residual values above the threshold is asked to recalculate, 
but the system still outputs the physical sensor signal. To effectively 
distinguish between two similar signals of transient sensor overload and 
permanent failure, we have incorporated a finite state machine delayed 
link method [37]. This approach ensures that the residual signal must 
persist for a specified duration as determined by a counter loop, before it 

Fig. 5. The diagram of virtual sensor 1.  

Fig. 6. The diagram of virtual sensor 2.  
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can be marked as a genuine sensor failure, thus meeting the needs of 
dredging operations (Fig. 7). 

4.4. Information fusion output by virtual sensors 

The reliability of sensing elements decreases with continuous use, 
resulting in reduced measurement accuracy and even malfunction. 
However, with increasing data, virtual sensors can become more accu
rate, thus improving the reliability of the perception system. Therefore, 
we fuse two virtual sensors to improve the accuracy of information and 
ultimately enhance the operational reliability of the perception system. 

To simplify the calculation, we need to make some assumptions. 

Assumption 1. The fusion method is measurement fusion, that is, the 
measurement of the sensor is directly sent to the fusion center for fusion 
processing, and the obtained state estimation is a global estimation. 

Assumption 2. In the system, the sensor values for the same target are 
obtained at the same time, namely, time-synchronized measurements. 

Here, x̂1
k|k, P1

k|kand x̂2
k|k, P2

k|k represent the estimation of the target 

state xk and its error covariance, respectively. P1,2
k|k represents the error 

cross-covariance between x̂1
k|kand x̂2

k|k. In general, the sensor measure
ment value as shown in Eq. (1). 

x̂i
k|k = xk + μi

k (1)  

where μi
kis the system or process noise, generally assumed to be a 

Gaussian random variable with 0 mean and known covariance, i.e., μk :

∼ N(0,Pi
k|k). 

Hence, the measurement zk of the target state xk is obtained from the 
fusion sensors measurements x1 and x2 by Eq. (2). 

zk = Hxk + νk (2)  

where zk = [x̂1
k|k, x̂

1
k|k]

T
, H is the measurement matrix, H = [ I I ]T, I is 

the identity matrix, νkis the measurement noise, νk = [ν1
k , ν2

k ]
T generally 

assumed to be a Gaussian random variable with 0 mean and known 
covariance, i.e., νk :∼ N(0,Rk|k). 

Moreover, 

Rk|k =

⎡

⎣
P1

k|k P1,2
k|k

P2,1
k|k P2

k|k

⎤

⎦ (3)  

duo to the symmetry of the covariance matrix, P1,2
k|k = P2,1

k|k . 
The fusion estimation of the target state x̂k can be obtained ac

cording to the weighted least squares estimation. 

x̂k =
[
HT R− 1

k|k H
]− 1

HT R− 1
k|k zk (4) 

The covariance of its estimation error is 

Pk|k =
[
HT R− 1

k|k H
]− 1

(5)  

e.g. 

x̂k =

⎡

⎣[ I I ]

⎡

⎣
P1

k|k P1,2
k|k

P2,1
k|k P2

k|k

⎤

⎦

− 1[
I
I

]
⎤

⎦

− 1

[ I I ]

⎡

⎣
P1

k|k P1,2
k|k

P2,1
k|k P2

k|k

⎤

⎦

− 1⎡

⎣
x̂1

k|k

x̂2
k|k

⎤

⎦ (6)  

P1,2
k|k =

[
P1

k|k
− 1

+ P2
k|k

− 1
]− 1

(7) 

From Eq. (7), we can get P1,2
k|k < P1

k|k and P1,2
k|k < P2

k|k, which shows that 

Fig. 7. The logic of sensor fault detection and isolation.  
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the error covariance of the fused information is smaller, i.e., the accu
racy is higher. 

5. Reliability estimation and improvement 

To succinctly illustrate our process for assessing system reliability, 
we have presented a flowchart of the reliability estimation methodology 
in Fig. 8. It starts with the collection of sensor data, a crucial initial step 
to gather the necessary inputs for reliability analysis. Following this, the 
performance function, reliability function, and reliability threshold Rτ(t)
are defined, setting the criteria for system evaluation. Next, Failure 
Mode and Effects Analysis (FMEA) is applied, a methodical approach to 
identify potential failure modes and assess their impact on the system. 
The reliability of each individual sensor is then determined, which forms 
the basis for understanding the system’s overall reliability. Should any 
sensor’s reliability not meet the set threshold, reliability improvement 
strategies and methods are implemented. This is an iterative process, 
indicating that if improvements are needed, the process may revisit 
previous steps. Once sensors meet the reliability criteria, the system 
reliability block diagram is determined. This diagrammatic 

representation helps to visualize the system’s reliability structure and 
interdependencies. Subsequently, the system reliability index is calcu
lated, representing a quantified measure of the system’s reliability over 
time. A decision point follows where the system reliability index is 
compared against the predefined threshold. If the index is not satisfac
tory, the process loops back to the improvement strategies. If the index is 
satisfactory, the process concludes with an estimation of the system’s 
reliability, indicating that the system is reliable enough for its intended 
function. The process ends here, signifying the completion of the reli
ability estimation (Fig. 8). 

5.1. FMEA for sensor fault 

In order to ensure the integrity of verification and simplify the 
workload, we use FMEA to select the most representative failure pa
rameters for the safety and efficient operation DPS [38]. Severity(S), 
Occurrence (O), Detection (D) and Risk Priority Number (RPN) are in
dicators for FMEA [39], which process is presented in appendix (Fig. 9). 

5.2. Operational reliability estimation 

In the non-working redundancy system, also known as, a bypass 
system, only one of the n units is operating, and others are in reserve. 
When the working unit fails, it is connected to another unit to work 
through the failure monitoring and conversion device. 

Assumption 3. the failure detection and switching are ideal, and 
which reliability both are 1. 

When all units are the same and their lifetime distribution obeys the 
exponential distribution, the system reliability function is Eq. (8). Here, 
its distribution function obeys the Poisson distribution. Where n is the 
number of units that make up the system, λ is the unit failure rate. 

Rs(t) = e− λt

[

1+ λt +
(λt)2

2!
+⋯ +

(λt)n− 1

(n − 1)!

]

= e− λt
∑n− 1

i=0

(λt)i

i!
(8) 

When the bypass system consists of two different elements A1 (R1 =

e− λ1 t) and A2 (R2 = e− λ2 t), one of which is in the operating state (A1) and 
the other in reserve (A2). The system work normally within time T, there 
are only two possibilities: one is that A1 has been working normally unit 
time T; the other is that A1 occurs a failure within time T, while A2 
continues operation. Hence, its reliability mathematical model is: 

Rs(t) = e− λ1 t +
λ1

λ1 − λ2

(
e− λ2 t − e− λ1 t) (9) 

In the working redundancy system, when the pure parallel system is 
composed of n parallel elements of equal reliability, the system reli
ability is Eq. (10). Where Rsis the system reliability, Ris the reliability of 
a single element. 

Rs = 1 − (1 − R)n (10) 

In the k-out-of-n system, assuming the n elements are all the same, 
then, the system reliability is Eq. (11). Where n is the number of units 
that make up the system, and k is the minimum number of units 
necessary for the system to function properly. 

Rs =
∑n− k

i=0
Ci

nRn− i(1 − R)i (11) 

When the reliability of each unit is the same, the reliability model of 
the redundant system with the series-parallel structure is shown in Eq. 
(12). 

Rsp = 1 − [1 − Rn]
m (12) 

The reliability model of the parallel-series redundant system is: 

Rps = [1 − (1 − R)m
]
n (13) 

Fig. 8. The flow diagram of reliability estimation.  
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In the task mode of safe and efficient construction, the above eight 
parameters can be regarded as a simple series system, where the failure 
of any parameter will case the task to fail. From Fig. 8, the system 
reliability is: 

RS = RDevice⋅RDisplay⋅RTrans

=
∏8

i=1
Ri⋅RDisplay⋅RTrans

(14)  

where, RDevice is the reliability of DPS, RDisplay is the reliability of sensing 
unit, RTrans is the reliability of transmission system. R1⋯R8 are reliability 
of slurry concentration meter, reliability of flowmeter, reliability of 
discharge pressure gauge of underwater pump, reliability of discharge 
pressure gauge of main mud pump, reliability of pressure gauge of 
vacuum degree of underwater pump, reliability of cutter rotation mea
surement, reliability of swing speed measurement and cutter power 
measurement reliability, respectively. 

In the safe and efficient mission mode, the Eq. (14) shows that the 
reliability of the DPS will becomes 0 ( i.e., Rs = 0), when the slurry 

concentration meter fails during the working( i.e., R1 = 0). 

5.3. Reliability improvement by redundancy information fusion 

Based on the assumption that the calculation error covariance of VS1 
is 0.05, and VS2 is 0.01, the fused concentration value has an error 
covariance of 0.0083, as calculated using Eq. (7). This demonstrates that 
the weighted least squares optimal estimate is significantly better than 
using VS1 and VS2 alone. Therefore, by fusing data from multiple 
sources, we can achieve more accurate and reliable estimates, ultimately 
improving the operational reliability of slurry concentration and 
enhancing the reliability of the dredging operation sensing system. This 
approach can lead to safer and more efficient dredging operations 
(Fig. 10). 

Likewise, we assume that the reliability of all units are 1 in Eq. (14), 
except the slurry concentration. Hence, the operational system reli
ability is R̂s = R̂1 × 1 × ⋯ × 1 at this time, becauseR̂1 > R1, so R̂s > Rs. 
In the same way, other sensors also can be fused, and finally improving 
the reliability of the DPS. Obviously, as can be seen from Fig. 10, the 

Fig. 9. The failure block diagram of the dredging operation sensing system.  

Fig. 10. Comparison of the fusion performance .  
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fusion values are in the middle of the VS1 and VS2 in all the experiment 
data. 

6. Results 

The experimental and validation was performed considering a DPS 
data of the “CHANGSHI 19″ CSD. The experiment data consists of a total 
of 237 dimensions and 29,161 groups. Among these groups, 100 time- 
continuous groups are selected as the experiment data. Subsequently, 
the remaining data was split into training set with 80 % of the data and a 

test set with 20 % of the data according to the timeline. 
We first considered single sensor faults of 100 time continuous 

groups, then double faults and multiple faults of the same period. Failure 
of a sensor could manifest in several ways. The most common fault 
models are bias, drift, freezing and random fault. In this paper, without 
loss of generality, we considered bias and drift faults to represent hard 
and soft failures, respectively. We assume the additive fault happens in N 
+ M consecutive samples when sensor output drifts up to the bias level ε 
with N time instants. 

S(n) =

⎧
⎨

⎩

r(n) + σ(n) + ε(n − m + 1)/N, 0 ≤ n − m < N
r(n) + σ(n) + ε, N ≤ n − m < N + M

r(n) + σ(n), else
(15) 

Where r(n) is the ideal measurement of the sensor and m is the 
starting time instant of the fault, while σ(n) denotes the measurement 
noise. Sensor measurement in the experiment is including measurement 
noise (i.e. they provide r(n) + σ(n)). M is the number of consecutive 
samples that the drift fault remains at the saturated bias levelε. 

To streamline our analysis, we focused on investigating sensor fail
ures in the context of slurry concentration measurements. In Section 4.1, 
we identified the slurry concentration as the primary experimental ob
ject. To further our investigation, we selected dual sensor failure ex
periments involving the slurry concentration and the vacuum of the 
underwater pump. Additionally, we conducted multiple sensor failure 
experiments using the slurry concentration, the vacuum of the under
water pump, and the discharge pressure of the main pump. The bias 
errors ε for slurry concentration, vacuum of the underwater pump, and 
discharge pressure of the main pump were 10%, 0.1 bar, and 3 bar, 
respectively. Furthermore, we used the values of m = 80, N = 90, and M 
= 10 in Eq. (15). 

Table 1 
Features selection.  

Virtual Sensor 1 Correlation Features 

Slurry 
Concentration 

Slurry Flow 
Velocity of Flow 
Dredge Pump Rotational Speed 
Cutter Power 
Cutter Rotational Speed 
Dredging Depth 
Ladder Angle 
Vacuum of Submersible Pump 
Discharge Pressure of the Dredge pump  

Table 2 
Evaluation of virtual sensor models.  

Models Indexes 

R2 RMSE MAE 

Virtual Sensor 1 0.9689 1.3677 1.0141 
Virtual Sensor 2 0.9421 1.8414 1.3016  

Fig. 11. The performance of HRSFT system in the event of single sensor failure.  
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6.1. Detection of single sensor failure 

The two virtual sensor models were built with the training data 
described above and tested with the test set. The relevant parameters 
and results of the two models are shown in the Tables 1 and 2. 

(Fig. 11) 
Fig. 11 illustrates the performance of the two virtual sensors in 

comparison to the physical sensor. It can be observed that the virtual 
sensors track the physical sensor more accurately, particularly the per
formance of VS2 being superior in this regard in this case. During Nos. 
30 - 40, when virtual sensor VS1 is in alarm mode and VS2 is not, the 
system conducts self-tests and continues to output the physical sensor 
value. Following No. 80, an additive sensor fault occurs, with Nos. 
80–90 representing a drift fault of small magnitude. Initially, the HRSFT 
system fails to detect the alarm upon additive of the drift fault data. As 
the data magnitude increases, VS1 detects and alarms first, while VS2 
does not. In such instances, the system continues to output the value of 
the physical sensor P. Then, between Nos. 90 and 100, the additive bias 
fault occurs, with a wider range. Early on in this bias fault, both virtual 
sensors detect the fault simultaneously. As a result, the HRSFT system 
triggers a random alarm while outputting a fusion value of VS1 and VS2. 

6.2. Detection of double sensors failure 

In the case where two and more sensors are detected to be abnormal, 
the sensor replacement logic is that firstly, the faulty sensor is predicted 
by the VS2 driven by the time-series model, and then the abnormal 
sensor information is predicted by the VS1 driven by the multiple 
regression prediction model based on the normal sensor and VS2 
replacement, and finally the data from VS1 and VS2 are fused instead of 
the abnormal sensor information to complete the replacement. The 
detection of double sensors failure experiment result as shown in Fig. 12. 

The findings presented in Fig. 11 suggest that the system’s perfor
mance remains relatively consistent prior to point No. 80, which aligns 
with the behavior observed in the single-sensor-fault experiment. This 
result demonstrates that the current design is able to effectively address 
situations involving virtual sensor false alarms, where VS1 detects 
anomalies during operation, but HRSFT system does not trigger an 
alarm. Furthermore, the system continues to output physical sensor 
values under normal circumstances. 

However, the data presented after point No. 80 reveals that VS1 
identified sensor faults before VS2 did, though not as clearly as in the 
single-sensor-fault experiment. It is worth noting that in the dual-fault 
experiment, the alarm value for both virtual sensors is larger than in 
the single-sensor-fault experiment. These observations suggest that 
while the system design is able to effectively when presented with dual 
faults. 

6.3. Detection of multiple sensor failure 

Finally, to verify the response performance of the HRSFT system in 
the event of multiple sensor malfunction, experiments were conducted 
where in three sensors were simultaneously rendered inoperative. The 
experiment results are illustrated in Fig. 13. As with the single-fault and 
double-fault scenarios, the figures presented in Fig. 13 depict the 
detection performance achieved and the distance between the residual 
and threshold. 

The combination of Figs. 11–13 reveals that multiple sensor failures 
can affect the prediction accuracy of the VS1. However, the paper’s 
proposed HRSFT system anomaly disposal method effectively counter
acts the impact of simultaneous multiple sensor failures on the perfor
mance of VS1. The HRSFT system combines VS1 with VS2 in a stepwise 
manner, thus enhancing the prediction accuracy even when multiple 
sensors fail. The effectiveness of the HRSFT system anomaly disposal 

Fig. 12. The performance of HRSFT system in the event of double sensor failure.  
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method is supported by the findings in this study. 
To further substantiate the superiority of the HRSFT model in com

parison with other models, we conducted nine independent iterations of 
experiments within a multi-sensor failure context. Each iteration 
involved analyzing a dataset comprising 100 randomly chosen consec
utive time series data groups. The results of these experiments, specif
ically concerning the incidence of false alarms, are presented in the 
Table 3. 

Upon review, it is evident that the HRSFT model achieved a false 
alarm count of zero. The CNN-LSTM time series model, however, re
ported one false alarm during the normal stage and another during the 
drift fault stage, accumulating a total of two false alarms. The CNN- 
based multivariate regression model registered one false alarm in the 
normal stage and two in the drift fault stage, totaling three false alarms. 
The Stacking multivariate regression model noted two false alarms in 
both the normal and drift fault stage, summing to four false alarms 
overall. Comparative analyses with other models elucidate the robust 
anomaly detection capabilities of our HRSFT architecture, underscoring 
its remarkable reliability. 

7. Discussion 

In this study, we introduced a voting-cold storage strategy for sensor 
fault alarm tasks in the context of the DPS. This approach marks a sig
nificant advancement over traditional methods, which often rely on 
single virtual sensors and are prone to false alarms. The incorporation of 
numerical values and detailed analysis in our results provides a clearer 
understanding of this strategy’s efficacy. Our findings indicate a sub
stantial reduction in false alarms when implementing the voting-cold 
storage strategy. By integrating virtual and physical sensors effec
tively, it is possible to significantly enhance measurement accuracy 
without increasing the number of sensors. The information fusion 
methodology proposed herein has successfully elevated the precision 
and lifespan of the sensor system. This innovative approach contributes 
to the sensory systems of intelligent equipment, facilitating performance 
optimization across the entire lifecycle of the sensing units. It paves a 
new pathway for the development of intelligent dredging equipment, 
offering a novel perspective on the advancement of smart machinery. 

On the other hand, the HRSFT method presented in this paper also 
encounters certain limitations. Its data-driven nature means it is con
strained by the quantity and quality of data, leading to insufficient 
generalizability. The model performs well when applied to the same 
dredger operating under similar soil conditions. However, its efficacy is 
not guaranteed when applied to different dredgers or in soil conditions 
that significantly deviate from the training data. This limitation high
lights the need for a more versatile model capable of adapting to varied 
operational contexts. 

In conclusion, the HRSFT strategy represents a notable improvement 
in sensor system reliability for dredging operations. Its ability to reduce 
false alarms and provide reliable sensor data is essential for advancing 
the field of automated dredging. Our study lays the groundwork for 

Fig. 13. The performance of HRSFT system in the event of multiple sensor failure.  

Table 3 
Models comparison.  

Models Normal Stage 
(No.1 - No.80) 

Drift Fault Stage  
(No.81 – No.90) 

Bias Fault Stage 
(No.91 – No.100) 

Total 

HRSFT 0 0 0 0 
CNN-LSTM 1 1 0 2 
CNN 1 2 0 3 
Stacking 2 2 0 4  
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further innovations in this area, with the ultimate goal of enhancing the 
efficiency, safety, and environmental sustainability of dredging 
operations. 

8. Conclusion 

This paper proposed a novel methodology to enhance the reliability 
of the DPS with Sensor Fault-Tolerant Design. The methodology 
involved employing two data-driven models, each grounded on distinct 
principles, to predict sensor information. This data was then utilized to 
develop a HRSFT system integrated with a physical sensor. This system 
proved capable of detecting, identifying, isolating, and accommodating 
sensor anomalies. Compared to a single DB virtual sensor, the HRSFT 
system’s diagnostic accuracy for sensor abnormalities significantly 
improved. In the module handling faulty sensor information processing 
and replacement, the values from two virtual sensors were simulta
neously fused using weighted least squares and then outputted, partic
ularly when a single sensor fault was detected. In cases of multiple 
sensor faults, the abnormal information was initially replaced with 
predictions from VS2, followed by fault sensor data prediction by VS1. 
Finally, the data from VS1 and VS2 were fused, replacing the abnormal 
sensor information. Thus, the design substantially increased the preci
sion of the replacement value for the fault sensor. 

The data-driven hybrid redundancy sensor configuration presented 
in this study enhanced system data utilization efficiency and addressed 
the challenges of high redundancy configuration costs and complex 
system structures. This approach significantly increased the system’s 
reliability by effectively tackling the issue of simultaneous multiple 
sensor failures, marking a significant advancement towards practical 
applications of DB virtual sensors. Future studies will focus on 
employing transfer learning techniques to enhance the generalization 
capabilities of our model, aiming to make it more adaptable and effec
tive across diverse operational environments and datasets. 
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Appendix 

A. Severity (S) 

Severity is the evaluation index of the severity for the impact on product quality and customers when a potential failure mode occurs, which value 
ranges from 1 to 10. 

B. Occurrence (O) 

Occurrence is the possibility of a potential failure mode, which occurrence rate is between 1 and 10. The scoring criteria are shown in the Table 4.  

Table 4 
FMEA scale for occurrence.  

Probability of Failure Failure rates Ranking 

Very high: Failure almost inevitable ≥1/2 10 
1/3 9 

High: Repeated failures 1/8 8 
1/20 7 

(continued on next page) 
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Table 4 (continued ) 

Probability of Failure Failure rates Ranking 

Moderately: Occasional failures 1/80 6 
1/400 5 

Low: Relatively few failures 1/2000 4 
1/15,000 3 

Remote: Nearly impossible 1/150,000 2 
≤1/1500,000 1  

C. Detection (D) 

Detection refers to the evaluation index of the probability that a potential failure can be accurately detected according to the existing methods 
when a potential failure occurs. Its value ranges from one to ten. The scoring criteria are shown in the Table 5.  

Table 5 
FMEA scale for detection.  

The likelihood of the failure being detected The probability of not being 
detected 

Ranking 

Potential occurring of failure mode cannot be detected in concept, design and process FMEA mechanism and subsequent failure 
mode. 

≥1/2 10 

The possibility of detecting the potential occurring of failure mode is very remote/mechanism and subsequent failure mode. 1/3 9 
The possibility of detecting the potential occurring of failure mode is remote/mechanism and subsequent failure mode. 1/8 8 
The possibility of detecting the potential occurring of failure mode is very low/mechanism and subsequent failure mode. 1/20 7 
The possibility of detecting the potential occurring of failure mode is low/mechanism and subsequent failure mode. 1/80 6 
The possibility of detecting the potential occurring of failure mode is moderate/mechanism and subsequent failure mode. 1/400 5 
The possibility of detecting the potential occurring of failure mode is moderately high/mechanism and subsequent failure mode. 1/2000 4 
The possibility of detecting the potential occurring of failure mode is high/mechanism and subsequent failure mode. 1/15,000 3 
The possibility of detecting the potential occurring of failure mode is very high/mechanism and subsequent failure mode. 1/150,000 2 
The potential occurring of failure mode will be detect/ mechanism and subsequent failure mode. ≤1/1500,000 1  

D. Risk Priority Number (RPN) 

Risk Priority Number is the product of the Severity, the Occurrence and the Detection, i.e.,RPN = S× O× D, which value is in Between 1 and 1000. 
RPN is a comprehensive evaluation index for the occurrence of a potential failure mode and its hazards. Specifically, the item with the highest RPN 
value should be the focus of preventive control. 

After scoring the failure evaluation of eight key parameters by relevant professionals, the results are shown in Tables 6 and 7. More specifically, the 
severity ranking of all the DPS elements are eight when the sensing system operational reliability in “Fault state”. Similarly, the severity ranking is 
seven when it is in the “Degradation state”.  

Table 6 
“Fault states” RPN .  

Sensors S O D RPN 

Slurry concentration meter 8 6 1 48 
Flow meter 8 5 1 40 
Discharge pressure gauge of underwater pump 8 4 1 32 
Discharge pressure gauge of main slurry pump 8 4 1 32 
Pressure gauge of vacuum degree of underwater pump 8 4 1 32 
Cutter rotation measurement 8 3 1 24 
Swing speed measurement 8 3 1 24 
Cutter power measurement 8 3 1 24  

From Tables 6 and 7, we can find that the RPN value of the slurry concentration is the largest in the “fault states” and “degradation state” by the 
FMEA technology for the DPS. Therefore, we should be focused on preventing its failure. Moreover, in order to simplify the problem, we select the CSD 
slurry concentration as the research object, analyze the influence of its failure mode, and hence improve the operational reliability of the DPS.  

Table 7 
“Degradation state” RPN .  

Sensors S O D RPN 

Slurry concentration meter 8 9 5 360 
Flow meter 8 9 3 192 
Discharge pressure gauge of underwater pump 6 3 2 36 
Discharge pressure gauge of main slurry pump 6 3 2 36 
Pressure gauge of vacuum degree of underwater pump 6 3 2 36 
Cutter rotation measurement 6 3 2 26 
Swing speed measurement 7 3 2 42 
Cutter power measurement 6 3 2 36 
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