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ABSTRACT
Lightning, the prevailing solution to Bitcoin’s scalability issue, uses
onion routing to hide senders and recipients of payments. Yet, the
path between the sender and the recipient along which payments
are routed is selected such that it is short, cost efficient, and fast.
The low degree of randomness in the path selection entails that
anonymity sets are small. However, quantifying the anonymity
provided by Lightning is challenging due to the existence of multi-
ple implementations that differ with regard to the path selection
algorithm and exist in parallel within the network.
In this paper, we propose a general method allowing a local internal
attacker to determine sender and recipient anonymity sets. Based
on an in-depth code review of three Lightning implementations, we
analyze how an adversary can predict the sender and the recipient
of a multi-hop transaction. Our simulations indicate that only one
adversarial node on a payment path uniquely identifies at least one
of sender and recipient for around 70% of the transactions observed
by the adversary. Moreover, multiple colluding attackers can almost
always identify sender and receiver uniquely.

CCS CONCEPTS
• Security and privacy→Distributed systems security; •Net-
works→ Network simulations.
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1 INTRODUCTION
Payment channel networks like Lightning [22] promise high scala-
bility, low latency, and low fees. In this manner, they constitute one
of the most auspicious approaches to overcoming the limitations of
Proof-of-Work blockchains such as Bitcoin [19] and Ethereum [31].
In addition to the performance advantages, payment channel net-
works supposedly also improve user privacy as transactions are
executed locally and not recorded in the blockchain. Yet, the claim
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of improved privacy comes with a lack of in-depth evaluation of
novel privacy risks [10].

Two blockchain users open a payment channel by locking col-
lateral on the blockchain. Afterwards, they can locally conduct
transactions with each other arbitrarily often as long as the transac-
tion values do not exceed the locked collateral. These transactions
change the balance of the channel, i.e., the distribution of the col-
lateral between the two parties. Each of the two parties can decide
to close the channel unilaterally and then both parties obtain the
funds corresponding to the current balance of the channel. Hence,
direct interaction with the blockchain, which corresponds to global
dissemination and consequentially often low privacy [3, 18], is only
necessary for opening and closing channels as well as for resolving
disputes about the channel balance [10]. Thus, direct transactions
in payment channels indeed preserve privacy.

However, rather than opening a channel for every transaction
partner to conduct a direct transaction, a source or sender can also
route a payment via multiple intermediaries to a destination or
recipient. In such a payment, intermediaries are involved in the
payment and achieving privacy properties such as anonymity for
the sender and the recipient becomes more challenging. Bitcoin’s
Lightning [22] and Ethereum’s Raiden [1] both apply onion encryp-
tion to hide the sender and the recipient from intermediaries. They
both apply source routing. The sender determines the payment path
and obtains the public keys of all the nodes along the path. The
sender then uses layered encryption such that each intermediary
only learns the identity of its predecessor and successor on the
path1. Despite Lightning’s onion encryption being called Tor-style
by its developers 2, the two protocols are extremely different with
regard to their privacy guarantees. Whereas Tor selects random
routers, Lightning chooses one of the least costly paths in terms of
a cost metric related to fees, path length, and other globally known
path properties. Intuitively, using such a strategic3 routing protocol
results in much smaller anonymity sets than random path selection.

It has been shown that the anonymity of the sender and recipient
can be compromised if the nodes right after the sender and right
before the recipient in a payment path are controlled by an adver-
sary [27]. However, the evaluation was limited in the sense that
only paths of up to length 5 was allowed between any pair of nodes.
Other works evaluating the anonymity in Bitcoin’s Lightning net-
work studied the effectiveness of inferring the receiver through
timing attacks [20], linkability of payments at different locations
in the network [17], and an attack that determines whether the
predecessor is indeed the source [13]. The only attack that explicitly
makes use of Lightning’s predictable routing targets availability
rather than anonymity [29].

1github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md
2https://coinjournal.net/bitcoin-developers-explain-tor-style-onion-routing/
3we use the term strategic rather than deterministic as there is a low degree of ran-
domness in some of the applied routing strategies
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(a) Shortest Path Routing (b) Shortest Path Routing with Timelocks
Figure 1: Example of inferring the sender and recipient anonymity sets for routes corresponding to shortest paths. The attacker
observes the payment forwarded according to the red arrows. As the transaction follows a shortest path, the attacker can
determine the potential senders and recipients as all nodes for which a shortest path contains the two edges on which the
attacker observes the payment. This attack is possible for any source routing protocol using shortest paths or similar selection
strategies. However, Lightning provides additional information in the form of timelock values chosen by nodes, as indicated
by the numbers in b). The attacker node knows the sum of the timelocks (TTL=9 before reaching the attacker and TTL’=7
after being forwarded by the attacker) of the subsequent nodes on the path and can hence reduce the sender and recipient
anonymity sets accordingly. The recipient node has to be a node such that all timelocks along a path from the attacker to the
recipient add up to 9 (including the attacker’s timelock)

In this work, we design an attack that predicts the sender and
recipient of a transaction in the Lightning Network by leveraging
our knowledge of the routing algorithms. It is important to note that
there are multiple Lightning clients with different routing protocols.
All of these routing protocols exist in parallel in the network. Our
attack is designed such that it does not only consider all the existing
clients, it can furthermore easily be extended to include novel client
implementations.

In a nutshell, our attack places one or multiple attackers in the
Lightning Network who observe transactions going through them.
The key concept required for the attack is the timelock. If there is a
dispute about a channel’s state, nodes have to raise a dispute within
a certain timelock. Nodes can individually set that timelock in
terms of number of Bitcoin blocks added to the blockchain. During
a multi-hop payment, the sender computes the sum of all timelocks
of channels on the path excluding itself. It then uses this sum as
the timelock for the payment to its successor on the path. When an
intermediary forwards a payment, it decreases the total timelock
value by its local timelock and then forms a commitment to make a
payment to its successor during this reduced time. In this manner,
an intermediary node with dispute timelock x still has time x to
raise a dispute even if the remaining hop-by-hop payments on
the path take maximal time [22]. For intermediaries to be able to
ensure that they indeed have sufficient time to raise disputes, the
sum of subsequent timelocks is hence included with the transaction
they forward. In addition, the timelocks of individual channels and
the network topology are publicly known. The attacker combines
this public information with the timelocks associated with the
transaction to infer potential recipients. For each such recipient,
the attacker then finds all the possible senders that could choose a
path through the attacker to reach the recipient.

Figure 1 presents an example on how the available information
can be used to narrow down potential senders and recipients. In
contrast to the multifaceted cost functions utilized by Lightning’s
clients to select paths, we illustrate the principle by choosing short-
est paths. As for source routing for anonymous communication on
the network layer [4], an attacker can determine potential senders

and recipients as those nodes that have shortest paths containing
the two edges adjacent to the attacker over which the payment
traverses. However, the timelock information in Lightning allows
to further narrow down the anonymity sets. Thus, our attack on
Lightning goes beyond attacks on source routing in other contexts
as payment channel networks reveal very application-specific infor-
mation. In addition to timelocks, fees and payment amounts assist
in decreasing the anonymity set size.

Our simulations using a real-world Lightning snapshot indicate
that the size of the anonymity sets determined by the attacker is in-
deed low. We chose 21 adversaries using various criteria. Together,
these adversaries observed slightly more than 50% of the transac-
tions. In 70% of cases a node observed a transaction, they were able
to uniquely identify the sender or recipient. Additionally, both the
sender and the recipient could be uniquely identified in about 8% of
the attacks. For transactions passing more than one adversary, the
recipient was always uniquely identified when all adversaries share
their respective anonymity sets and sender was uniquely identified
in excess of 40% such cases.

In summary, we show that anonymity in multi-hop Lightning
payments is low, as previously suspected but never quantified. How-
ever, as we discuss for multiple protection mechanisms, defenses
come at a high cost in terms of effectiveness and efficiency.

2 LIGHTNING
We introduce Lightning, Bitcoin’s payment channel network. Light-
ning was launched in 2016 and has nearly 10000 active nodes
and 40,000 channels, as of March 25 20214. There are three active
clients: Lightning Labs’ LND5, ACINQ’s Eclair6, and Blockstream’s
c − Liдhtninд7. Clients differ slightly with regard to their imple-
mentation of routing, though they all share the same key idea of
routing a payment along a short and cheap path.

4https://1ml.com/statistics
5https://lightning.engineering/
6https://acinq.co/
7https://blockstream.com/lightning/
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While our evaluation is specifically targeted towards Lightning,
the key idea of the attack is equally applicable to other payment
channel networks that use source routing with a strategic selection
of routes. Indeed, it is possible to extend our attack to include new
clients with different routing strategies as long as they follow the
general Lightning specifications with regard to the choice of fees
and timeouts.

2.1 Lightning Payment Channels
We model the Lightning network using graph-theoretical notions.
Concretely, we identify the participants in Lightning as nodes. The
channels then correspond to edges in a graph. Two nodes open a
payment channel through a transaction by individually locking a
certain amount of coins on the blockchain to be used for future
transactions on the channel. The total capacity of the channel is the
sum of the coins that each end-point of the channel locks during
the opening transaction and the capacity remains fixed throughout
the lifetime of the channel. The initial balance of each node is the
amount that the node locked for the opening transaction. However,
the balance of each node in the channel changes with payments.

In case of a dispute about the current channel balance or a failure
to fulfill a previously made commitment, both parties post what
they consider to be the latest state on the blockchain. The current
mechanism to determine the correct latest state follows a Replace-
by-Revocation approach. When the two parties agree upon new
balances, they sign the new state as well as the revocation of the
old state. Hence, parties posting a revoked state as the most recent
state can be caught and penalized by losing all their coins in the
channel [22]. At the moment, Lightning is also considering a new
dispute resolution, named Eltoo, which should require less storage,
easier verification, and the possibility to extend payment channels
to more than two people [8]. Our attack is independent of the
dispute protocol, meaning it will remain applicable even after the
change to Eltoo.

2.2 Lightning Multi-Hop Payments
2.2.1 HTLC and Payment Execution. In a multi-hop payment,
the sender sends a payment to a recipient via a path of channels.
The sender chooses the path based on its local knowledge of the net-
work topology using one of the three path-finding protocols LND,
c-Lightning, or Eclair as we will discuss in detail in Section 2.2.2.
Each party along the path commits to make a payment to its suc-
cessor, which consists of the payment value and all the fees for the
succeeding nodes on the path. Lightning enforces the commitment
of each party to execute the payment through the protocol hash
time-locked contract (HTLC) [30].

In a HTLC between only two nodes rather than a path, the
receiving party of a payment first chooses a random number. It
then sends the hash of the random value to the sending party. The
two parties then form a contract that if the sending party receives
the preimage of the hash within time timelock, the sending party
will pay the agreed-upon value. The sending party locks the agreed-
upon value, i.e., it does not use it for any other payments. If it does
not receive the preimage within time timelock, the sending party
gets the locked amount back. Disagreements on whether a payment
should be made lead to disputes on the blockchain. Each channel

sets its timelock during its funding transaction and the timelocks
are publicly known.

In a multi-hop transaction, a separate HTLC is set up on each
channel of the path. The recipient of the payment chooses the
random value and the hash is distributed to all parties on the path,
so that they can set up the HTLCs. Note that knowing the hash is
sufficient to set up a HTLC. Once all the contracts are set up, the
recipient gives the preimage to its predecessor on the path who
then forwards it along the path towards the sender to resolve the
HTLCs. The choice of timelocks for the contracts is critical as each
party requires sufficient time to receive the preimage from their
successor and forward it to their predecessor.

Concretely, the sender is the first to set up a HTLC with its
successor v on the path. They choose the timelock to be the sum of
the timelocks of all the channels on the path. We call this value the
total timelock of the channel between the sender and v with regard
to the specific HTLC. Each channel along the path computes its
total timelock by subtracting the timelock of its preceding channel
from the total timelock of the preceding channel.

Now, a node can only claim the funds from its predecessor if it has
the preimage from its successor and hence paid said successor. After
receiving the preimage, the time to forward the preimage is exactly
the timelock value of preceding channel, giving the intermediary
sufficient time to claim its own funds. Thus, Lightning ensures
that no honest party loses funds. For our privacy evaluation, it is
important to note that all payments use the same hash value, which
allows two nodes on the path to determine that they are part of the
same payment.

Any intermediary in a payment path can use the total timelock
for its outgoing channel to estimate its position with respect to the
recipient of the payment, as we will see in Section 4.1. As a counter-
measure, the BOLT specification of Lightning already has the option
shadow routing8, where the source adds an additional value to its
total timelock. The additional timelock value is computed by initiat-
ing a random walk from the sender and adding up the timelocks of
each channel on the walk. Adding the extra timelock to the last hop
creates a large degree of randomness that hampers the adversary’s
ability to predict the recipient of a transaction.

However, shadow routing is undesired for security reasons: Grief-
ing attacks [23] are severe denial-of-service attacks in which an
attacker intentionally causes payment failures at the last possible
moment. In this manner, all parties along the payment path have
to reserve funds for the maximal amount of time, potentially block-
ing concurrent payments. The considerable higher timelocks in
shadow routing facilitate longer fund reservation and hence in-
crease the severity of the attack. Furthermore, timing attacks still
allow inferring the hop distance to the receiver in practice [20].

When initiating the payment after determining the total timelock,
the sender creates the actual payment message using an onion
or layered encryption. The encryption uses the Sphinx package
format [7]. The format hides the length of the path as well as the
identity of any node on the path excluding the predecessor and
successor. Intermediaries remove a layer of encryption to obtain
the identity of the next node on the path.

8https://github.com/lightningnetwork/lnd/issues/1222
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2.2.2 Route Selection. The most important aspect exploited by
our attack is the selection of the route by the sender. The description
of the three route-selection protocols is based upon an extensive
code analysis of the Lightning clients LND9, c − Liдhtninд10 and
Eclair11. The crux of the three implementations is that the sender
determines the best path using Dijkstra starting from recipient
based on a cost function depending on the capacity, charged fees,
the locktime, and past experiences with the channel and specified
by each implementation for choosing a channel to be added to the
path. The reason for starting from the recipient lies in the fact that
the charged fees depend on the forwarded value, which includes
the fees for the subsequent nodes on the paths.

Before discussing the route selection algorithms in detail, it is
necessary to specify the information the sender has available during
route selection. All channels are broadcast upon construction, hence
the sender has a topology snapshot including the initial balances
of each channel. As the balances change over time, the sender
only knows the total to and fro capacity cap[u,v] of the channel
[u,v] as well as its age aдe[u,v]. In addition, nodes’ public keys are
distributed. For the source to determine the path, it furthermore
requires knowledge of the values of fee and timelock tl[u,v]. In
Lightning, an intermediary charges two types of fees, a constant
base fee b f [u,v] for using the channel and a proportional fee, that
is the product of the fee rate f r [u,v] parameter and the amount
amt[u,v] to be transferred, where u and v are the channel end-
points. The fee charged by an intermediary u is

f ee[u,v] = b f [u,v] + f r [u,v] · amt[u,v]. (1)

The fee parameters can be different for each direction of the channel
and any changes to these values need to be broadcast via gossip
across the network.

We now discuss the cost functions of the three implementations:
LND: In addition to the fee and timelock parameters of a channel,

LND’s cost function also has a bias against channels with known
recent failures.

cost[u,v] = amt[u,v] ∗ tl[u,v] ∗ r f + f ee[u,v] + bias[u,v] (2)

Here r f is a risk factor set to 15 · 10−9 by default and bias[u,v]
accounts for previous payment failures caused by the channel [u,v].
The value of bias[u,v] is extremely large during the first hour after
failure and decreases exponentially with every hour elapsed after
the last failure. If the route fails, the sender is able to track at which
channel the failure occurred and marks the time of failure for future
reference and calculation of bias . A new path is tried until all paths
between the sender and recipient have been attempted.

c-Lightning: c − Liдhtninд introduces some randomness in the
path selection via a parameter f uzz (set to 0.05 by default) and
then computes a scaling factor, scale = 1 + random(−f uzz, f uzz).
Randomization is based on the computation of a one-way 64-bit
siphash.

cost[u,v] = (amt[u,v]+ scale ∗ f ee[u,v]) ∗ tl[u,v] ∗ r f +bias (3)

where r f and bias are set to 10 and 1 initially. If the path resulting
from the first search exceeds the maximal permissible path length
9https://github.com/lightningnetwork/lnd/blob/31de32686ea3b822dca8c8b84c6f5f3540298ff0/
routing/pathfind.go
10https://github.com/ElementsProject/lightning
11https://github.com/ACINQ/eclair

of 20, then r f is set to a value close to 0, which essentially turns
the search into a shortest path algorithm. A binary search with
parameter bias is executed that aims to find a bias that entails a
route of permissible length. As the diameter of Lightning is much
lower than the maximal permissible length, it is highly unlikely
that the adjustments of riskFactor and bias will ever be executed
in practice. Failed attempts do not entail automatic retries.

Eclair: Eclair first normalizes the timelock, capacity, and the
age by expressing them in relation to their minimal and maximal
values. Concretely, the algorithm computes nt l ,ncap ,naдe as the
corresponding normalized values12 between the maximum and
minimum admissible values for tl ,cap and aдe , respectively.

cost[u,v] = f ee[u,v] · (nt l [u,v] · tlr

+ (1 − ncap [u,v]) · capr + naдe [u,v] · aдer ).
(4)

where tlr = 0.15, capr = 0.5, and aдer = 0.35. Randomness is
introduced by not necessarily choosing the path of the lowest cost.
Rather, it chooses among the k-cheapest paths based on Yen’s k
shortest paths algorithm [32]. The default value of k is set to be 3.
Additionally, every payment is retried for default of 5 times until it
succeeds.

In each of the above three protocols, the sender ensures that
the total capacity of each channel in the path is sufficient for the
payment. For its own channels, it ensures that the balance is suffi-
cient but it does not know the balance distribution of channels that
it is not a part of. Thus, the payment may fail if one of the other
channels has an insufficient balance but a sufficient capacity. Nodes
on the path prior to the failure have to wait until their respective
total timelocks expire to use their committed collateral for other
payments.

3 ADVERSARY MODEL
In this section, we discuss the goals and capabilities of our attacker.
Before, we introduce our key anonymity notion, the anonymity set,
and argue why the anonymity set size is a sufficient metric.

3.1 Assumptions
As described in Section 2, Lightning publishes fees, timelocks, and
age of channels and nodes, and the clients used by each node. Con-
sequently, we assume such information to be public and uptodate.

Our main assumption is that the attacker does not have any
a-priori knowledge about likely sender-recipient pairs. In other
words, all sender-recipient pairs are equally likely.

We furthermore assume that the attacker does not account for
re-routing. Given that re-routing is only possible after timeouts of
at least 40 Bitcoin blocks or more than 6h13, it seems likely that
people resort to other means to pay.

3.2 Anonymity Metrics
The anonymity set is the set of parties who might cause or have
caused an action [21]. In our context, the attacker determines the
set of possible senders, recipients, or sender-recipient pairs of a

12The normalized value nD (v) of a real number v within range D is computed as
(v −minD)/(maxD −minD)
13https://github.com/lightningnetwork/lightning-rfc/blob/master/07-routing-
gossip.md

https://github.com/lightningnetwork/lnd/blob/31de32686ea3b822dca8c8b84c6f5f3540298ff0/routing/pathfind.go
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payment. If the size of the anonymity set is small, the anonymity
is low. However, the converse is not necessarily true [26]. If the
probability of parties to be the actual party causing the action varies
greatly between parties, the anonymity does not give us sufficient
information to claim that a system achieves good anonymity.

However, for our scenario, there is no reason for such an uneven
distribution. With the assumption that all sender-recipient pairs are
equally likely, each sender-recipient pair with a unique cheapest
path that fits the observations of the adversary is equally likely to be
the one conducting the payment, at least in the absence of multiple
cheapest paths. If there are multiple cheapest paths, the sender will
choose one of them. If only k of c cheapest paths fit the observations
of the attacker, the probability for that sender-recipient pair is k/c
times the probability of pair with only one cheapest path. However,
it seems unlikely that there are a high number of cheapest paths,
thus the differences in probability between sender-recipient pairs
should be small and hence the anonymity set is still a good metric.

3.3 Adversary Model
Given a transaction, the adversary A aims to identify the sender
and recipient. Identifying both sender and recipient reveals busi-
ness relations. Identifying only the sender or receiver still reveals
information about buying and selling habits to A. While A might
not know the exact transaction value as it only sees the transaction
with fees included, these fees are typically low so that the order of
magnitude of the transaction value is indeed revealed.

In concrete terms, the attack proceeds as follows: Given some
transaction information, A returns two sets:

(1) the set of potential senders S ⊂ V such that u < S is guaran-
teed not to be the sender of the transaction , and

(2) the set of potential recipients R ⊂ V such that v < R is
guaranteed not to be the sender of the transaction.

A aims to minimize the size of these sets on average for all possible
transactions that goes through A.

The information A has on a transaction depends on A’s knowl-
edge and capabilities. To emphasize the severity of the vulnerability,
we choose a relatively weak adversary. The attacker can choose
a low number of nodes in the network to compromise. Allowing
the adversary to freely choose the nodes makes sense as A can
likely establish channels with arbitrary nodes if it pays the cor-
responding fees, an assumption utilized in other state-of-the-art
work [2, 9]. A is a local internal attacker that can only utilize the
information the compromised node is aware of. Furthermore, A
acts an honest-but-curious attacker, i.e., they forward transactions
and other information as intended by the protocol but aim to derive
the above sets from the information. A is non-adaptive and static,
i.e., they do not change their attack strategy and do not include past
information in their attack. Last, A is a polynomial-time adversary,
meaning they are unable to break the applied onion encryption.

4 ATTACK DESIGN
In this section we discuss our attack design. An adversary begins
an attack when it observes a transaction as an intermediary. There
are two phases in the attack. The first phase involves finding nodes
that the adversary can reach with a simple loop-less path that has
the same total timelock as observed by the adversary in the actual

transaction. The second phase involves curating the list of nodes
found in the first phase to compile a list of potential recipients and
subsequently a list of potential senders for each potential recipient.

4.1 Phase I
Let us assume thatA is an adversary that observes a transactionT as
an intermediary. Let S andR be the sender and recipient respectively
of T , PRE and NEXT be the nodes preceding and succeeding A
during the execution ofT over path[T ], amt be the amount received
by A from PRE and TTL be the total timelock from A to R. Thus
we have,

TTLNEXT = TTL − tl[A,NEXT ]

and we also have from Equation 1

amtNEXT =
amt−bf [A,NEXT ]
1+f r [A,NEXT ]

as the total timelock from NEXT to R and the amount reaching
NEXT , respectively.

We now start a search for all possible loop-less paths starting
with NEXT , such that the total timelock from NEXT to the recipi-
ent of each path isTTLNEXT and the total capacity of each channel
in each path is sufficient to forward the transaction. Additionally,
we exclude PRE and A from the search. The search is conducted
by looking at nodes at all one-hop paths starting at NEXT , then
all two-hop paths and so on. Paths whose summed timelock of
channels exceedsTTLNEXT are excluded. Note that the same node
can be visited multiple times during the search via different paths
from NEXT . Let P = [P1, P2, . . . , Pn ] be the list of paths found in
the search and reci be the final node in Pi and amti be the amount
reaching reci over Pi after accounting for the fees of all nodes
preceding reci .

If shadow routing is applied, we modify this phase by looking
for all loop-less paths without the total timelock restriction. This
would essentially consider all paths from NEXT to every node in
the network other than A and PRE.

4.2 Phase II
Let Pi ∈ P be a path found in Phase I and Pi = {p1,p2, . . . ,pr } with
p1 = NEXT and pr = reci . We append PRE and A to each Pi to get
P ′i = {PRE,A,p1,p2, . . . ,pr }. We now determine if reci is indeed a
potential recipient of T and if so, then we determine all potential
senders that could have made a payment to reci .

Step 1: The algorithm computes paths from all nodes in the
network to reci using the cost functions of LND, c-Liдhtninд or
Eclair . We find the 3 best paths from all nodes to reci in case of
Eclair . The paths are computed such that the first node N of the
computed part is treated as an intermediary, i.e., it charges a fee. In
other words, we are determining potential second nodes one the
path. Focusing on the second nodes first makes sense as the decision
on the first channel includes information about the channel balance,
which is unknown to the attacker.

Step 2: Let P[N ] be the path computed from N to reci . Let pj be
a node in Pi and Pi [pj :] be the sub-path of Pi excluding the nodes
from p1 to pj−1. If P[pj ] is not equal to Pi [pj :], it means that the
path P ′i would not have been computed during a path computation
and hence reci cannot be a destination. Once we establish that the
sub-path of P ′i [A :] is the same as P[A], reci can be considered as a
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possible recipient ofT and we can proceed to find potential senders.
For Eclair , we dismiss reci as a potential recipient if none of the 3
best paths match the sub-path of Pi from pj to pr .

Step 3: If P[pre] is not equal to P ′i , then PRE cannot be an in-
termediary. However since we know that PRE did precede A, PRE
has to be the sender of the transaction. We can then say that PRE
is the only possible sender if reci is the recipient. If P[PRE] is in-
deed equal to P ′i , then we consider PRE as just one of the potential
senders if reci is the recipient and continue. In the case of Eclair ,
we claim that PRE is the only possible source if all 3 paths do not
match P ′i . If any one of them does, we add PRE as one potential
sender.

Step 4: If for any node N , we find that P[N ] has P ′i as a sub-path,
then we add all neighbors of N that are not in P[N ] as a potential
senders as we can now confidently claim thatN is a potential second
node in path[T ]. For Eclair , if any one of the best 3 paths has P ′i
as a sub-path, then we add N ’s neighbors as potential senders. For
enhanced performance of Eclair, we did not compute all three paths
if a match was found for the first or second path in Step 2–4.

Execute the above steps for all Pi in P for a list of potential
recipients as the recipient anonymity set R and potential senders
for each such recipient. The union of the potential senders for all
potential recipients is the sender anonymity set S.

4.3 Colluding Adversaries
There are ways to extend the attack to multiple adversaries. One
way is to have multiple adversaries independently execute the
attack. However, attackers can also combine their observations.
Concretely, two adversarial nodes determine if they observe the
same transaction based on the hash value used in the HTLC, as
pointed out in Section 2. After each adversary complete their re-
spective anonymity sets, we take the intersection of all destination
anonymity sets as the final recipient set. Analogously, we derive
the intersection of the sender anonymity sets.

We note that recent work by Malavolta et al. [17] would remove
this straight-forward linkability if it was implemented in Lightning.
Our results without collusion remain applicable though.

4.4 Attack Complexity
Phase I of the attack is essentially a problem of finding all the simple
paths between NEXT and every node in the network other than
PRE and A with a complexity of O(|V |!) in the worst case 14 and
cannot be run in polynomial time. To avoid this excessive run-time,
we optimize the attack to search for paths only up to a hop-count of
d fromNEXT , resulting in a worst case complexity ofO(|V |d ) as we
could end up having every node in the network at each hop in the
worst case with a complete graph. Since the graph of Lightning is
not a complete graph, a more realistic complexity isO((Deдmax )

d )

where Deдmax is the maximum degree of any node in the network.
If the search is incomplete at hop-countd , then recipient anonymity

set could be incomplete as well and there is a chance that we miss
the actual recipient if the recipient was indeed at a hop-count
greater than d from NEXT . In the case of colluding adversaries,
it maybe the case that one or more adversaries fail to include the
actual recipient in their anonymity sets. To account for this case,
14https://www.baeldung.com/cs/simple-paths-between-two-vertices

we also consider the intersection of the anonymity sets obtained by
only those adversaries whose search in Phase I reached a natural
conclusion before depth d .

During Phase II, we compute cheapest paths from all nodes to
each reci and is the same as running single-source Dijkstra with
priority queue with a run-time of O((V + E)loд(V )), when using
a priority queue using binary heaps. Thus, the total run-time for
all reci is O(V (V + E)loд(V )). The total complexity of the attack
is the product of the complexities of Phase I and Phase II, that is
O((Deдmax )

d )(V + E)Vloд(V )).

5 EVALUATION
In this section, we leverage the described attack to determine
anonymity sets.

5.1 Metrics
To evaluate our attack we use the following metrics:

• Size of the sender and recipient anonymity sets.
• The proportion of transactions attacked Ratt , and the av-
erage number of attacks per attacked transaction Avatt to
indicate the number of transactions attacked by two or more
adversaries.

• The correlation between the size of the sender anonymity
set and the distances CorrDS and CorrDR between the ad-
versary and the sender and receiver, respectively.

• The proportion of attacks that have a singular sender anonymity
set, SinдS , a singular recipient anonymity set, SinдR , both a
singular sender and recipient anonymity set, Sinдboth , and
at least one singular anonymity set,Sinдany .

• The proportion of attacks NatEnd for which Phase I of the
attack reached its natural conclusion before depth d .

• The proportion of transactions Compatt for which the cor-
rect recipient was included in the anonymity set.

Note that the correct recipient is always included if the attack
was not aborted. Otherwise, it might not have been included if it
was at a distance greater than d from NEXT .

5.2 Data-sets and Parameters
We use a snapshot of the Lightning Network obtained in June 2020
from https://ln.bigsun.xyz to evaluate our attack. The snapshot
had a total of 11197 nodes and 82989 channels. We do not include
inactive nodes and channels that have been closed. After elimi-
nating closed channels and inactive nodes, we ended up with a
network having 4791 nodes and 28997 channels. We randomly dis-
tributed the capacity between the endpoints of each channel. 51%
of the timelocks are 144 blocks, 25% are 40 blocks and 10% are 30
blocks. All channels publicly revealed the clients that they are using
for routing payments. Around 92% of these nodes use lnd, 6% use
c-lightning and 2% use eclair.

We evaluate our attack in three settings:

• LNDonly: All nodes only useLND as their client for routing.
This is a good baseline as nearly all nodes use LND as their
client.

https://ln.bigsun.xyz
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(a) Sender anonymity -
LND only

(b) Sender anonymity -
clients known

(c) Sender anonymity -
blind

(d) Recipient anonymity -
LND only

(e) Recipient anonymity -
clients known

(f) Recipient anonymity -
blind

Figure 2: Distribution of the sizes of the sender and recipient anonymity set sizes.

• clients known: All nodes use their assigned client as per
the snapshot and the adversary know the client that each
node is using as is seen in reality.

• blind: The three clients are distributed between the nodes
with the same distribution as seen in the snapshot. However,
the adversary is not aware of the clients used by any node.
We evaluate this scenario to account for a future scenario
where nodes do not publish their routing clients.

In each of the settings, the sender and recipient for each trans-
action are assigned randomly and the transaction amount is dis-
tributed exponentially between 1 and 100000 satoshis and 1000 such
transactions are simulated. The depth d is set to be 3 for the attack
so that recipients at a distance of upto 4 hops from the adversary
are included in the recipient anonymity set.

Choosing adversaries: Lightning has been observed to be a
small-world and scale-free graph [23]. Recent work furthermore
indicates an increasing trend to centralization, meaning that most
paths pass the same small set of central nodes [14].

Hence, the position of adversarial nodes has critical impact on the
proportion of transactions attacked and the size of the anonymity
sets. Central adversarial nodes observe many payments and hence
there is a high chance that the payment passes through them and
they have a chance to launch the attack. However, as a large num-
ber of sender-recipient pairs utilize the node, the anonymity sets
might be quite large. In contrast, adversarial nodes that have a
low centrality will observe only a very small fraction of payments.
Yet, as the set of senders who choose this node is so small, the
anonymity set sizes are also expected to be smaller. Introducing a
central adversary would also entail higher monetary collateral as
they have more channels. We found that the node with the highest
capacity has a total capacity of around 128 BTC and top 10 nodes
with the highest capacities in Lightning have an average capacity
of around 54 BTC15. So, we assume that the cost of introducing
a well-connected adversary to be around 54 BTC. In contrast, on
average, a node only has a capacity of 0.115 BTC, so introducing a
node without a high centrality is comparably cheap.

As a consequence, we experiment with choosing adversarial
nodes randomly, by highest centrality, or by lowest centrality. Cen-
trality metrics considered in our evaluation are betweenness, close-
ness, degree and eigen vector centrality metrics. Note that for the
betweenness centrality, we consider only the the shortest paths
without weights. A total of 21 nodes were assigned to be adver-
saries. We found that the top 6 nodes for each centrality metric to
be the same and we used them as adversaries. To ensure diversity, 5
nodes with low centralities and 10 random nodes were also used as
adversaries. Note that nodes with the lowest centralities were those
that had only one connection and hence were not used. Instead, we

15https://1ml.com/node?order=capacity

choose 5 nodes from a list of 20 nodes with lowest centralities (5
for each metric) among the nodes having more than one channels.

5.3 Simulation Model
To simulate our attack, we implemented the routing algorithms
of all three Lightning clients LND, c-Lightning, and Eclair. In the
case of Eclair, we use a generalized version of Dijkstra to compute
the 3 best paths instead of using Yen’s algorithm for simplicity as
Yen’s algorithm is slower than Dijkstra when we are not dealing
with negative weights. We do not include the cryptographic aspects
since we are not attacking the the cryptographic contracts between
channels and the blockchain here.

For each transaction, only a single attempt is made for routing
given that the total timelock is most likely in excess of 40 blocks
( 6 hours) and nodes are unlikely to continue trying after such a
delay. Thus, we disregard the notion of edge probability bias for
past failures that is used in cost function of LND. On receiving a
transaction to forward, the adversary first forwards the payment
if its balance permits and then computes the anonymity sets for
the sender and the recipient of the transaction. The adversary com-
putes the anonymity sets only on receiving a transaction. If the
transaction is delayed or a timeout failure occurs before reaching
the adversary, then the adversary simply does not compute the
anonymity sets. If the transaction is delayed or a timeout failure
occurs after reaching the adversary, the adversary still has the nec-
essary information to compute the anonymity sets. We execute
transactions sequentially as concurrency does not affect the route
selection or attack as such, only the probability that a transaction
fails before reaching the adversary is increased.

All simulations were executed using Python 3. We used the net-
workx module to handle graph related operations. The source code
can be found on GitHub 16 .

5.4 Results
We simulate the attack for the three settings discussed in Section 5.2
and plot the cumulative distribution function of the size of the
sender and recipient anonymity sets.

Figure 2 shows the sizes of the sender and recipient anonymity
sets as a cumulative distribution function, differentiating between
the cases when Phase I of the attack was completed naturally or
ended at depth d from NEXT .

From Figure 2d, 2e and 2f, we can see that the recipient anonymity
set is singular in excess of 90% cases when Phase I of the attack
is completely executed and in around 20% cases when Phase I of
the attack is incomplete for all three settings. Moreover, the size
of the recipient anonymity set is less than 100 in around 60% cases
regardless of whether Phase I was completed or not. In general,

16https://github.com/SatwikPrabhu/Attacking-Lightning-s-anonymity

https://github.com/SatwikPrabhu/Attacking-Lightning-s-anonymity
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(a) Sender anonymity -
LND only

(b) Sender anonymity -
clients known

(c) Sender anonymity -
blind

(d) Recipient anonymity -
LND only

(e) Recipient anonymity -
clients known

(f) Recipient anonymity -
blind

Figure 3: Distribution of the sizes of the sender and recipient anonymity set sizes only for colluded attacks.

the size of the recipient anonymity set is lower in the cases where
Phase I was completed. This is because TTLNEXT is lower when
Phase I is completed and only nodes close to the adversary need to
be considered.

From Figure 2a, 2b and 2c, we can see that the size of the sender
anonymity set is singular in nearly 40% cases when Phase I is
incomplete and in around 20% cases when Phase I is completed for
all three settings. This is because Phase I might not be completed
when the adversary is closer to the sender than it is to the recipient,
leading to the size of the sender anonymity set being generally
lower than when Phase I was completed.

Table 1: Attack metrics

Test case LND only clients known blind
Ratt 0.54 0.51 0.51
Avatt 1.19 1.19 1.19
CorrDS 0.78 0.73 0.79
CorrDR 0.46 0.47 0.47
SinдS 0.29 0.28 0.26
SinдR 0.49 0.50 0.50
Sinдany 0.67 0.70 0.69
Sinдall 0.08 0.08 0.07
NatEnd 0.47 0.51 0.51
Compatt 0.99 0.99 0.99

We summarize the remaining metrics from Section 5.1 in Table 1.
The results for all three settings are similar. The key results are as
follows:

• More than 50% of the transactions are observed by at least
one adversary.

• The size of the sender anonymity set is singular in around
30% of attacks, the size of the recipient anonymity set is
singular in around 50% of the attacks. One of the two sets is
singular in around 70% of the attacks and both are singular
in around 8% of the attacks.

• The adversary is successful in finding the recipient within 3
hops from NEXT in at least 99% of attacks and consequently
finds the sender as well in these cases.

• Phase I of the attack reaches its natural conclusion for around
50% of the attacks.

• There is a strong positive correlation between the size of the
sender/recipient anonymity sets and the hop-count between
the adversary and the sender/recipient.

Figure 3 shows the impact of the colluded attack. For trans-
actions that were attacked by multiple adversaries, we show the
sizes of the intersection of the sender anonymity sets returned by
each adversary and similarly for the recipient anonymity sets. We
also separately show the sizes of the intersections ignoring the

(a) Sender anonymity - LND
only

(b) Recipient anonymity -
LND only

Figure 4: Distribution of the sizes of the sender and recipient
anonymity sets obtained assuming shadow routing is used
anonymity sets returned by adversaries without completing Phase
I of the attack.

From Figure 3a, 3b and 3c, we can see that the size of the sender
anonymity set is 1 in around 50% cases and is less than 10 in excess
of 60% cases when we do not ignore all adversaries who may not
have completed Phase I. However, the size of the sender anonymity
sets are consistently higher when we ignore the adversaries that
have not completed Phase I since the adversaries that do complete
Phase I are likely to be very close to the recipient and away from
the sender in nearly all cases. From Figure 3d, 3e and 3f, we can see
that the size of the recipient anonymity set is consistently 1 when
we include all attacker nodes. We also see that the size is generally
less than 100 if we consider the sets returned by all adversaries,
showing that a colluded attack is very effective in predicting the
recipient of a transaction.

Additionally, we depict the sizes of the anonymity sets when
shadow routing is used in Figure 4. However, due to the high compu-
tational overhead of computing all paths without having a timelock
value as a stopping criteria, we set the depth d to be 2 and only
simulate 100 transactions in the LND only setting. From Figure 4a,
we see that the recipient anonymity sets are much larger compared
to the standard routing algorithm. This is expected as we do not
have the timelock restriction to narrow down the set of recipients.
In contrast,as shown in Figure 4b, the sizes of the sender anonymity
sets are similar to the case of standard routing. This similarity is
expected because shadow routing does not affect Phase II of the
attack when we find potential senders.

Our results show that well-connected nodes in the network un-
der adversarial control are capable of observing a sizeable portion
of transactions in the network. Using our de-anonymization at-
tack, a unique sender and/or recipient can be determined quite
regularly. Moreover, adversaries can collude in the current version
of Lightning to share their respective anonymity sets and reduce
the anonymity further. We also show that the attack performs
equally well when the adversary doesn’t know the client used by
the sender. Shadow routing can be used to mitigate the risks of
the attack. Although shadow routing is successful is increasing
the recipient anonymity, it does not seem to similarly increase the
sender anonymity.
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6 RELATEDWORK
There are two areas of related research for this topic: i) privacy in
payment channel networks, with the focus on work for Lightning,
and ii) anonymous source routing in other contexts.

6.1 Payment channel network anonymity
Recentwork presented three attacks on Lightning anonymity. Tikho-
morov et al. show that sender and recipient of a transaction can
be de-anonymized if the nodes succeeding the sender and pre-
ceding the recipient are compromised by an adversary. The two
compromised nodes can then determine that they are part of the
same transaction using the cryptographic challenge included in the
HTLC of the same payment and hence identify the sender and the
recipient. The authors evaluate the proportion of paths between
any pair of nodes that can be de-anonymized when well-connected
nodes are compromised. However, the attack requires at least two
compromised nodes on the path in contrast to our attack [27].

Nisslmueller et al. investigate timing attacks to get the identity
of the receiver by measuring the time between locking collateral
at an intermediary and the time when receiving the preimage to
unlock the collateral [20]. In contrast to our approach, they were
unable to determine the sender and their results are only applicable
when jitter is low. The attack could furthermore be prevented by
adding random delays at the receiver, at the cost of locking collateral
slightly longer. Given the extremely long periods collateral is locked
for failed payments, adding delays of less than a second to prevent
a timing attack seems like an appropriate solution. In general, their
attack is complementary to ours and can replace estimating the
receiver’s position if Shadow Routing is applied.

The third approach by Kappos et al. leverage the fact that paths
in Lightning currently tend to be short, i.e., a lot of paths only have
one intermediary. As a consequence, they evaluate the effectiveness
of an attacker that always assume its predecessor is the sender and
its successor is the recipient [13]. In contrast to our attack, the
attack hence merely assigns one node a probability to be the sender
or recipient rather than determining the complete anonymity set.
Furthermore, they are unable to be certain about the sender’s or
recipient’s identity while our approach allows in many cases to
narrow the possible senders and receivers down to one party.

Previous work on improving the anonymity of payment chan-
nel networks led to the development of anonymous multi-hop
locks [17]. When considering colluding attackers, we assumed that
the attackers can infer if they are on the same path due to the
shared hash value for the HTLC. Anonymous multi-hop locks re-
place the constant hash value with a randomized and unlinkable
value, meaning that the colluding attackers are unable to easily
tell if they are on the same path. However, side channels such as
transaction values and timing are still available alternatives. Note
that even without multiple adversaries on the path, we decrease
the anonymity considerably.

Multiple works suggest changing to an inherently different rout-
ing algorithm to preserve anonymity [15, 16, 24]. However, all of the
approaches still choose paths strategically rather than completely
randomly. They express their privacy guarantees in terms of shared
paths and topology features but it remains unclear how these guar-
antees relate to concrete anonymity metrics. Due to the importance
of choosing paths that have sufficient capacity and are preferably

both short and cheap, any routing algorithm is a trade-off between
privacy and these performance measures. A detailed quantitative
evaluation of the proposed algorithms in terms of these trade-offs is
necessary before deploying them as a replacement for Lightning’s
routing. Our attack can likely be adapted for such an evaluation.

In addition to anonymity, there exist attacks to infer the bal-
ance of channels. In contrast to our attacks, these are active attacks
that attempt to route payments of differing values through chan-
nels [11, 13, 20, 28]. Our attack could be improved by having knowl-
edge about the channel balances, e.g., we wouldn’t need to add all
neighbors of a potential first hop as potential senders. So, while
the attacks are fundamentally different both in goal and execution,
they can likely help to further increase the strength of our attack.

Further attacks on Lightning and payment channel networks
indicate that denial-of-service attacks are easily possible [11, 23].
In particular, Tochner et al. relate the susceptibility of Lightning to
denial-of-service attacks to the predictability of routing. They find
that a combination of adding noise to the fee and choosing one of
the top cheapest paths mitigates denial-of-service resistance [29].

6.2 Anonymous Source Routing
Anonymity in source routing has been discussed in the context of
network layer anonymity for alternative Internet architectures [4–
6, 12, 25]. These works face the same problem as Lightning’s routing
in the sense that the topology is restricted, i.e., it is not possible
to choose random nodes for the path, and performance is highly
important. However, routing packets for communication does not
require intermediaries to have information about transaction val-
ues, fees, and timelocks. Hence, these protocols should leak less
information and hence naturally achieve bigger anonymity sets.
Yet, while the protocols are not directly applicable for Lightning,
some of the concepts of anonymous source routing protocols could
be promising ideas for improving Lightning’s anonymity. The ex-
isting works on anonymous source routing can be grouped into
three classes: i) alternative packet formats, ii) timing attacks, and
iii) alternative path selections.

Phi [6] and Hornet [4] design alternative packet formats to hide
explicit information about the path chosen by the source such as
the length. Like Lightning, Hornet uses Sphinx [4] to achieve the
same goals. Hence, Lightning’s routing protocol already has the
protections proposed by Phi and Hornet.

Our attack remains applicable even in the presence of defenses
against timing attacks. However, work from that area might be
helpful in overcoming proposed timing attacks on Lightning [20].
Concretely, Taranet suggests re-ordering of traffic and the insertion
of dummy traffic [5].

The only class of protocols directly related to our attack are those
that propose path selection protocols that are less easily predictable.
The two key works in the area of source routing are LAP and
Dovetail. LAP only achieves anonymity if the first node on the path
is not compromised [12], which is not a suitable assumption for
Lightning. Nodes are likely to connect to business partners who
should not be trusted to know about other transactions of their
neighbors. Dovetail improves upon LAP through the use of two
additional nodes, a matchmaker and a dovetail node. In a nutshell,
the sender uses the matchmaker node as the recipient and the
recipient has the matchmaker as the sender. The algorithm then
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trims the path such that parts that are shared between the two
paths from sender to matchmaker and matchmaker and receiver
are removed. The dovetail node is the only node on the resulting
loop-free path that was contained in both paths [25]. Integrating
Dovetail in Lightning is an avenue for future work, which we will
discuss in more detail in Section 7.

7 CONCLUSION AND FUTURE RESEARCH
Our experiments indicate that the level of anonymity in Lightning
is low. Merely using the layered encryption of onion routing does
not guarantee substantial anonymity in the presence of an almost
deterministic path selection.

While shadow routing mitigates the risks of an intermediary
determining its position in a transaction by adding extra timeout
delay, it comes at an additional risk of payments being locked for
a longer time and hence increasing the existing scope for griefing
attacks. Hence, the question remains on how to design routing
protocols that achieve acceptable performance, fees, security and
privacy.

As discussed in Section 6.2, Dovetail [25] is a promising option for
increasing anonymity. However, in Dovetail, there are two partial
paths and messages on these paths are supposed to be unlinkable.
In Lightning, it might be possible to link payments due to metadata
such as payment values and timelocks. A thorough evaluation is
required to determine the degree of linkability and the impact of
Dovetail’s longer path on payment success and susceptibility to
griefing attacks. In the end, a more light-weight protocol could be
the best option for Lightning. Simple options like adding a random
short detour to a chosen path might not achieve perfect unlinka-
bility but improve the current level sufficiently without creating
severe performance or security issues. We plan to evaluate both
light-weight options and Dovetail in terms of anonymity, perfor-
mance, and security. Furthermore, we aim to apply ourmethodology
to quantify the anonymity of alternative routing protocols proposed
for Lightning.
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