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Abstract
Designing processors for implantable closed-loop neuromodulation systems presents a formidable
challenge owing to the constrained operational environment, which requires low latency and high
energy efficacy. Previous benchmarks have provided limited insights into power consumption and
latency. However, this study introduces algorithmic metrics that capture the potential and
limitations of neural decoders for closed-loop intra-cortical brain–computer interfaces in the
context of energy and hardware constraints. This study benchmarks common decoding methods
for predicting a primate’s finger kinematics from the motor cortex and explores their suitability for
low latency and high energy efficient neural decoding. The study found that ANN-based decoders
provide superior decoding accuracy, requiring high latency and many operations to effectively
decode neural signals. Spiking neural networks (SNNs) have emerged as a solution, bridging this
gap by achieving competitive decoding performance within sub-10 ms while utilizing a fraction of
computational resources. These distinctive advantages of neuromorphic SNNs make them highly
suitable for the challenging closed-loop neural modulation environment. Their capacity to balance
decoding accuracy and operational efficiency offers immense potential in reshaping the landscape
of neural decoders, fostering greater understanding, and opening new frontiers in closed-loop
intra-cortical human-machine interaction.

1. Introduction

Brain–computer interfaces (BCIs) have revolutionized the fields of neuroscience and medicine by enabling
individuals with disabilities to interact with external devices and restore lost sensory [1], motor [2], or
cognitive [3] functions. Intra-cortical BCIs (iBCIs), a type of invasive BCI that involves placing electrodes
directly into the cortex of the brain, have great potential for closed-loop neuromodulation (CLN). CLN alters
neural activity using personalized and responsive therapeutic electrical neural modulation based on the
subject’s neural activity. CLN has higher efficacy, [4] and lower risk of side effects [5] than fixed stimulation,
that is open-loop neuromodulation as shown in figure 1. CLN requires neural decoders that interpret neural
activity, such that BCI can provide real-time feedback stimulation or control external devices based on the
subject’s neural activity.

Designing iBCIs for CLN is challenging because of the highly resource-constrained environment of the
implants. Even a slight temperature increase of one degree can cause damage to neural cells [6]. Moreover, a
decoding time of a few milliseconds is required for CLN aimed at inter-areal interactions [7, 8]. This requires
the development of energy-efficient and low-latency neural decoders that can overcome the constraints of
low latency and energy consumption.

Benchmarking neural decoders for online in vivo iBCIs is crucial to ensure their optimal performance
within the resource-constrained environment of implantable systems. By evaluating various decoders based
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on their fidelity, latency, and power consumption, researchers can identify the most suitable options that
satisfy clinical safety requirements and ensure effective real-time operation, ultimately improving the efficacy
of CLN.

Traditional benchmarks [9–11] predominantly emphasize the accuracy and fidelity aspects of decoding
methods. A recent addition, NeuroBench [12], expanded this focus to assess algorithm-hardware
co-optimization, incorporating fidelity, efficiency, and performance metrics. While NeuroBench is
well-suited for evaluating the operational cost of neural decoders, its algorithmic benchmark provides
limited insights into power and latency, primarily relying on the effective operational cost as a proxy for
hardware metrics. This paper, presents methods to extrapolate algorithmic-to-hardware metrics, addressing
the gap encompassing all the essential constraints required to evaluate and compare the suitability of neural
decoders for iBCIs in the context of CLN. Any benchmark designed to compare neural decoders for iBCI
within the context of CLN must consider the co-optimization between hardware and software. Only then can
we benchmark effectively and accurately evaluate power consumption, latency, and the fidelity of neural
decoders, providing a holistic assessment of decoder suitability for real-time, low-energy applications.

This paper will introduce metrics that researchers can use to avoid the complex co-optimization process
by evaluating neural decoders algorithmically while incorporating hardware considerations. Section 3
presents metrics designed to suit the energy and hardware-constrained environment of iBCIs suitable for
CLN. Section 4 introduces six neural decoders benchmarks their ability to predict a primate’s finger
movements. Finally, future directions and implications of this research will be discussed.

2. Background

Intra-cortical neuronal recordings from the motor cortex have been pioneered by Delgado et al in 1952 [13]
and Evarts conducted further groundbreaking work capturing extracellular neural activity from single
recording units in conscious primates engaged in diverse motor tasks [14]. Today, almost 60 years later,
neural recording has undergone a revolutionary evolution owing to innovative technologies such as
high-density probes [15], high-density microelectrode array [16], and carbon nanotube yarn biosensors
[17]. These technologies have made it possible to record the activities of more neurons with a higher spatial
resolution and coverage and have paved the way for more clinically viable and high-performance iBCIs. BCIs
help subjects with disabilities to interact with external devices, such as neuroprosthetics [18, 19], or restore
lost sensory [1], motor [2], or cognitive [3] functions by translating neural activity from the brain into
control commands through neural decoding. In addition to therapeutic applications, iBCIs advance our
understanding of the complex neural processes that underlie behavior [20–23], cognition [24], and
perception [25].

Two types of BCIs can be distinguished: non-invasive and invasive [26]. Invasive BCIs involve implanting
electrodes into or on the cortex. iBCIs are a specific subtype of invasive BCIs, in which electrodes are inserted
into the cortex, which is the outermost layer of the brain. They provide the finest spatial and temporal
resolutions and excellent signal quality [27, 28]. Although iBCIs carry a higher risk owing to surgical
implantation, their superior spatiotemporal resolution is crucial for high-precision neural decoding.

2.1. CLN
One promising field for iBCI is neuromodulation. Traditionally, neuromodulation described the
physiological processes by which neurons use neurotransmitters to regulate neural activity [5]. More
recently, neuromodulation has been adapted to refer to the process of altering neural activity via electrical
stimulation to restore normal neurological functions or study intra-cortical interaction [5].
Neuromodulation can be classified into open and closed-loop systems, as shown in figure 1. Open-loop
neuromodulation involves delivering neural stimulation without real-time feedback from the targeted neural
system with predefined and fixed stimulation parameters, such as strength or timing. In contrast, CLN with
iBCI uses bi-directional communication between the brain and the computing devices, providing adaptive
feedback to adapt and adjust the parameters of interventions, enabling personalized and responsive
therapeutic neural modulation based on the subject’s neural activity [5, 29]. The adaptive and interactive
nature of CLN enhances efficacy [4], i.e. maximizing the therapeutic impact and leading to more successful
treatments, and reduces the side effects of neural stimulations [5] (e.g. discomfort, headache, or worst case
seizure). For the remainder of this paper, CLN refers exclusively to neuromodulation via iBCI.

2.2. Constraints of closed-loop neuromodulation
CLN typically requires a powerful external computer to decode complex neural activities [30]. More
sophisticated neural tasks (e.g. sensory and motor cortex interaction) require high channel counts of neural
recording with fine spatial and temporal resolutions [18, 19], generating vast amounts of recording data,
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Figure 1. Paradigm of a closed-loop and open-loop neuromodulations. (a) During open-loop neuromodulation, the subject
receives predefined stimulation. (b) During closed-loop neuromodulation (CLN), the subject receives adaptive stimulation based
on the recorded and decoded neural activities. CLN enables individualized, responsive therapeutic treatment improving the
effectiveness of the treatment and reducing side effects.

Figure 2. Advantages and disadvantages of external and local processing. (a) External processing requires transferring neural data
or extracted features to an external computing device. Wireless data transfer suffers from long latency, high transmission energy,
and privacy concerns. (b) Local neural processing has the potential to be significantly faster, with low transmission energy, at the
cost of little flexibility.

which impose significant limitations on the real-time applicability of neural decoders, see figure 2.
Transferring data from the intra-cortical neural sensors to an external system requires energy-intensive
wireless transmission [31, 32], and limited wireless transmission bandwidth can increase the system’s latency
[6, 33–35]. Moreover, the transfer of neural data for processing to an external computer raises privacy
concerns. Many neural decoders for iBCI and CLN have been implemented in application-specific integrated
circuit (ASICs), achieving low power consumption and miniature form factor, which demonstrates the
feasibility of in vivo neural decoding.

To address these concerns, data transmission can be avoided by eliminating the need for external
computing and decoding neural signals locally on the implant. This eliminates the necessity for intensive
data communication collectively except for programming the implant [30] or diagnostics [33]. Valencia and
Alimohammad [30] highlighted the need for local processing in a fully implantable iBCI for in vivo
closed-loop neural decoding, eliminating data transmission during inference and significantly reducing
energy consumption, latency [33], and privacy concerns.
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Designing iBCIs for CLN is challenging because of the highly resource-constrained environment of
implants. The implant volume should be minimized to reduce the invasiveness and risks of the surgery, and
low power consumption is required to prevent tissue damage due to even a one degree temperature increase
[36]. However, iBCIs are required to process an exponentially growing amount of neural data [37], which
adds to the complexity of the decoding task. Minimal heat diffusion is required to ensure safe local
processing, without causing tissue damage. While Wolf [38] initially cautiously recommended limiting the
temperature of implant electronics to below 40 available at: heat flux and 2 ◦C, a much lower bound of 1 ◦C
is vital to maintain long-term neural cell health [6]. This means that a 10 mm2 of implant electronics cannot
exceed a power dissipation of 400 µW [38], which is∼10× lower than that of smartphone processors (e.g.
the microprocessor in iPhone concerns 100’s mW of power with an ASIC area of approximately 100 mm2).
Given the conservative nature of these recommendations [38], minimizing power consumption beyond the
stated limits is paramount. However, traditional processors cannot satisfy this power requirement [6], and
low-power implants performing neural decoding algorithms is a major challenge to the successful clinical
adoption of real-time closed-loop iBCIs [36].

Real-time processing is another crucial requirement for closed-loop iBCIs, in which continuous neural
recording, decoding, and feedback occur in real time. This necessitates fast and efficient neural decoding
algorithms to ensure timely and seamless interaction between the nervous system and the iBCI. Controlling a
robotic prosthesis requires a latency of less than 150 ms between neural activity and arm movement for
smooth and natural control [39], which is close to the biological delay for signal propagation between the
brain and the arm [21]. However, immediate feedback is crucial for the neural decoder to adjust the control
system in real-time, allowing subjects to adapt and refine their actions in real-time. In this closed-loop iBCI,
much lower latency of less than 10 ms is necessary for decoding inter-areal interactions (e.g. sensory and
motor) in the brain [7, 8].

3. Metrics

Traditionally, neural decoders have been the primary evaluated on decoding performance. However, in
hardware-constrained iBCIs, other factors, such as latency and power consumption, are crucial to ensure the
tractability of neural decoders for applications such as CLN. Evaluating decoders solely on task performance
often fails to capture their true potential but also limitations. This chapter introduces the need for
comprehensive metrics for algorithmic evaluation that encompass fidelity (i.e. accuracy), latency, power
consumption, and memory size for neural decoders. Table 1 presents an overview of the proposed evaluation
metrics.

3.1. Model fidelity
The fidelity of a neural decoder in an iBCI is its ability to correctly classify or predict. In closed-loop iBCI,
making accurate predictions is crucial for effective and reliable control of external devices or neural
stimulations, which should closely reflect the subject’s intention or state.

Classification accuracy has traditionally been used to assess neural decoding performance by determining
the percentage of correct classifications of stimuli, such as odors [1], faces [40], or speech [2, 41]. However,
these metrics do not consider the temporal continuity of neural data, which is critical for many neural
decoding applications. Neural decoding tasks require metrics that incorporate the correction of the temporal
regression to evaluate decoding accuracy. In such cases, the coefficient of determination (R2) [3, 11, 20, 30,
42–44] and the coefficient of correlation (Pearson’s r) [42, 44–47] are widely used to assess the performance
of neural decoding algorithms.

The R2 measures the proportion of variance in the dependent variable explained by the model’s
prediction, while Pearson’s r evaluates the temporal alignment of the predictions and labels via a linear
relationship. Both metrics should be reported to assess the temporal regression performance of the neural
decoder comprehensively.

3.2. Latency
The latency of the neural decoder, defined as the time delay between the first input stimulus and the output
response [48], comprises two architecture-specific subcomponents: the binning latency and the processing
latency (see figure 3(c)). This allows for a platform- and architecture-agnostic evaluation of neural decoders.

The binning latency corresponds to the time span of the input data required for each prediction. This
equates to the binning time window or the history of binning windows in the case of multiple windows.
Minimizing binning window size is crucial for limiting total latency.

The processing latency is caused by the processing time for a neural decoder to produce a prediction. This
combines the operational delay of preprocessing, network inference, and postprocessing. The processing
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Table 1. Overview over the proposed closed-loop iBCI metrics.

Metric Explanation

Fidelity
R2 Proportion of explainable data variance
r Temporal alignment of label and prediction

Latency
Binning latency Timespan of input data needed per inference
Processing latency Operational delay optimized by the algorithm designer

Power consumption
Total eff. operations Number of effective operations needed per inference
Memory access Number of effective memory access needed per inference

Size Memory footprint Number of bits required to store the decoder

Figure 3. Experimental pipeline for evaluating closed-loop capability of neural decoders. (a) A primate consecutively reaches for
black boxes on a grid. Neural activity is recorded using one or two UTAH arrays placed at the primary motor and sensorimotor
cortices, while finger position is tracked through an electromagnetic position sensor. Finger velocity is computed and used as a
decoding target. (b) Neural activity is processed as a spike train, binned, and processed by the neural decoding system to predict
finger velocity. (c) The visualization illustrates the latency of the entire decoding system, composed of binning latency and
processing latency.

time is bound by a function of the system’s required effective operations per inference, which can be assessed
by computing the effective multiply-and-accumulate (MAC) operations of neural decoder algorithms. This
definition ignores a potential speed-up of parallel processing, which would require binding the algorithm to
hardware. Latency can be reported in wall time, such as absolute SI units [48], or relative system time, as the
total number of clock cycles per inference. This paper reports latency in milliseconds, providing a more
intuitive and user-centric perspective and allowing the reader to assess the system’s ability to deliver timely
and accurate responses. Converting the processing latency into seconds requires platform-specific
assumptions regarding the required clock cycles per operation, the clock frequency, and a system’s capability
for parallel processing. For the remainder of this paper, a clock frequency of 1 MHz and 3 MAC operations
per clock cycle were assumed [49], to provide a more intuitive comparison of the latency of the evaluated
decoders. For simplicity, one addition corresponding to the sparse synaptic operation of neurons in the SNN
is assumed to be equivalent to one MAC in terms of required clock cycles.
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3.3. Power consumption
Power consumption is vital to evaluating neural decoders, particularly in resource-constrained iBCIs suitable
for CLN. Local neural processing, which is implemented directly on an embedded device, is usually
preferable to external processing due to latency, communication bandwidth, and privacy issues. However,
local neural processing requires low energy consumption to minimize tissue heating.

To compare the energy efficiency of different neural decoders in a hardware- and
architecture-independent manner, one can benchmark with two hardware-agnostic metrics: total effective
operations and memory accesses. This considers only algorithmic optimizations, such as reducing effective
operational costs. Although algorithm-hardware co-optimizations can further improve latency, performance,
and energy efficacy, they require binding the neural decoder to specific hardware and, thus, are not
considered in this study.

The total effective operations are reported as the number of non-zero operations required per inference.
This combines two relevant operations that dominate neural network operations: multiplication and
addition. To estimate the energy consumption of a neural decoder, however, total operations should be
reported instead of MAC and ACC since these operations are assumed to be optimized by vector accelerators,
which is the bottleneck for latency but does not reflect well on the energy cost of a neural decoder. To reduce
energy consumption, neural decoders can exploit the sparsity of the spiking data by distinguishing between
effective and ineffective operations. This accounts for only non-zeros contributing to the products and,
consequently, the accumulation, which can be leveraged by specialized hardware. Reporting the effective
computational cost as the number of non-zero operations allows for hardware-agnostic comparison of
different networks, considering computational primitives in neuromorphic neural networks. In the
remainder of this paper, MAC denotes effective MAC operations.

Reporting memory access is crucial for comprehensively estimating the energy consumption of neural
decoders. Because a read-and-write operation to the memory requires one to two orders of magnitude more
energy than operations of arithmetic linear units [48, 50], it is insufficient to report only effective operations
without including the memory access. Furthermore, Liao et al [46] report∼10×more reads than effective
operations during inference, highlighting that most of the energy consumption of an architecture comes
from the memory read-and-write operations. Following their approach, the number of memory accesses in a
network is conservatively estimated by assuming that a MAC operation consists of three loads and one store.
By contrast, an ACC consists of two loads and one store, which both, similarly to before, need to be
combined with the sparseness of activity of the network [46].

3.4. Memory footprint
Due to space volume constraints of iBCIs, the memory size, which in comparison to other function blocks
consumes far more ASIC area, should be reported. If the memory requirements of the neural decoder are too
large, external memory is required, which can consume more than 100×more energy than on-chip memory
[51]. Estimating the memory footprint of a neural decoder involves calculating the sum of the network’s
parameters and variables, as well as the memory requirements of input data from binning windows. The
memory size should be reported in bits to provide credit to architectures that limit the precision of weights.

4. Methods

The methodology is structured into five subsections, addressing how this study evaluates and benchmarks
various neural decoders within the context of iBCI for CLN. The first subsection provides an overview of the
neural data utilized in this benchmark, which comprises neural activity recorded from non-human primates,
representing a relevant scenario for closed-loop iBCI applications. Decoders are categorized into three main
groups: traditional neural decoders, artificial neural networks (ANN)-based neural decoders, and
neuromorphic spiking neural network (SNN)-based decoders. The selection of traditional and ANN
decoders was based on existing literature, while the long short-term memory (LSTM) and SNN-based
decoders were optimized for this study. The presented decoders are non-exhaustive (the interested reader is
referred to recently proposed models [52–56]), yet the decoders aim to represent commonly used neural
decoding methods. The final subsection outlines the experimental setup and details the conditions and
parameters under which the benchmark was conducted. These methodological components provide a
detailed pipeline for evaluating neural decoding methods for closed-loop iBCI applications.

4.1. Neural recording dataset
The ANN and SNN neural decoders were trained and benchmarked on the ‘primate reaching task’ of the
neuromorphic benchmark NeuroBench [12], as visualized in figures 3(a) and (b). This benchmark employs
the same data as Makin et al [20], which previously were used to evaluate their traditional decoders. The R2
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value published by Makin et al [20] is reported here, and the metrics for power consumption and latency are
calculated conservatively based on the most time-consuming and energy-intensive matrix operations, as
defined in Chapters 4.2 and Chapter 4.3.

The dataset is a subset of 6 out of 33 recording sessions of 2 Rhesus primates during subsequent reaching
tasks [20] as shown in figure 3(a), which was released by Dyer et al [57]. These sessions encompassed two
non-human primates (NHPs) and the entire recording period. Three NHP ‘I’ sessions were recorded using a
96-channel Utah array from Blackrock Neurotech implanted in the primary motor cortex. The three NHP ‘L’
sessions had an additional Utah array in the sensorimotor cortex, enabling the simultaneous recording of 192
channels. Each recording session comprises 354–819 individual reaches, and those longer than 8 s were
discarded as they indicate the primate’s inattention.

Spikes were detected from the raw neural data using a threshold of 3.5–4 times the root-mean-square
(RMS) noise. The finger position was recorded using an electromagnetic position sensor at 250 Hz, and the
velocity was computed as the discrete gradient of the position. Predicting the translation invariant finger
velocity better aligns with the natural dynamics of limb movements and corresponds to how neural activity
encodes kinematics [58]. Makin et al [20], and Dyer et al [57] report the detailed experimental setup and the
data acquisition.

4.2. Traditional neural decoders
Classic neural decoding methods have been extensively used in brain-computer interfacing. Of the six
decoders Makin et al [20] presented, the three best-performing models were selected to represent traditional
neural decoders. Those decoders are the ‘unscented’ Kalman Filter (UKF), the static, and the dynamic
‘recurrent exponential-family harmonium’ (rEFH), and they are evaluated due to their established
performance and versatility in handling various neural data modalities. Makin et al also considered linear
regression, conventional KF, and Wiener filter. However, since these decoders had worse R2 performance and
scaled poorly with decreasing binning windows, they were not considered suitable for this neural decoding
benchmark for closed-loop iBCIs suitable for CLN.

The UKF approximates the state distribution by applying a full nonlinearity to a minimal set of carefully
selected representative points. It was designed as an extension of the KF to address the problem of its
exploding residuals on the true posterior mean and covariance. The UKF solves this by replacing the normal
sampled state distribution with a deterministic sampling of this distribution [59]. The UKF, as described by
Makin et al [20] and Wan et al [59], has a state space of deterministically sampled 40 variables, which
requires O

(
n3/6

)
operations due to Cholesky decomposition. As a conservative estimate of the processing

latency and the operational cost, only matrix multiplications required during inference and the
computationally intensive matrix inversion were considered. This large-scale matrix inversion was assumed
to require at least 200 ms. [60].

The rEFH, instead of assuming Gaussian state variables, models the state variables as a variant of a
restricted Boltzmann Machine (RBM) [61] and explicitly samples the spike count from a Poisson
distribution. The static variant converts the latent space of the RBM into kinematics via static mapping, that
is, a matrix multiplication, whereas the dynamic version uses a KF. For the static and the dynamic rEFH
models, only the forward pass of the RBM uses higher-dimensional matrix multiplications, and thus is
considered. There are four times as many hidden neurons in the RBM than there are input channels and
1800 output neurons mapped to the kinematic output via either a matrix multiplication or a KF [20]. All
traditional decoders were evaluated using binning windows of 16 ms, 32 ms, 64 ms, and 128 ms.

4.3. ANNs
This study used two ANN-based decoders as baselines owing to their established history of high-accuracy
predictions. Previous studies have demonstrated that ANN-based decoders perform on par or better than
traditional decoders [11, 46]. One fully connected ANN, published as a baseline for the NeuroBench
benchmark [12], and one LSTM network were evaluated.

The ANN is a conventional 3-layer feedforward network with 32 and 48 hidden and two output neurons,
respectively. This implementation uses a history of multiple non-overlapping binning windows that are
flattened and processed as input data. The default implementation, including the history of 7 binning
windows, is shown in figure 4(a). To explore the latency versus fidelity trade-off, a history of 4, 7, and 14
binning windows of 28 ms was considered, and the number of neurons in the hidden layers halved and
doubled.

The LSTM, as shown in figure 4(b), uses a fully connected layer to reduce the input dimensionality to 16,
followed by a single LSTM cell with 16 hidden neurons. A feedforward layer returns the predicted
kinematics. Similar to the ANN, binning windows of 4 ms, 8 ms, and 16 ms and wider networks, with 64 and
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Figure 4. Architecture of three neural network-based decoders. The data extraction and binning are visualized in red, and the
network architecture in blue. Each layer’s dimensions and type are stated above and below, respectively. (a) The ANN uses seven
binning windows spanning 28 ms as input. These extracted windows are flattened and processed by two hidden layers with 32 and
48 Neurons, respectively. (b) The LSTM extracts spikes with a temporal resolution of 4 milliseconds, effectively representing the
neural data as a spike train. Then, the data undergoes dimensionality reduction via a fully connected (FC) layer with 16 neurons,
after which a long short-term memory (LSTM) cell is employed. (c) Similarly, the SNN decoder extracts the spike train and
processes it through a network featuring 50 hidden Leaky Integrate-and-Fire (LIF) neurons. The final output of this network
comprises the membrane potential of two LIF neurons.

128 hidden neurons, were examined. The networks use batch normalization (BatchNorm) and layer
normalization (LayerNorm), respectively, and use Dropout.

4.4. SNN
SNNs are a variant of neural networks that attempt to mimic the properties, processes, and functions of
biological neurons. This makes them inherently recurrent and allows them to exploit sparsity to achieve
lower latency [22, 62–69] and power consumption [3, 46, 62–66]. SNNs, at their core consist of stateful
spiking neurons, a more bio-plausible variant of the Perceptron, with the leaky integrate-and-fire (LIF) being
the most widely used neuron model. As the Perceptron, the LIF weighs and accumulates the input, but
instead of returning this weighted accumulation, it is added to the neuron’s membrane potential. If the
membrane potential exceeds a threshold, the neuron produces a binary output, that is, a spike, and the
membrane potential is reset; otherwise, it decays per time step, as conceptually illustrated in figure 5. This
enables the neuron to combine information over multiple time steps, making it inherently recurrent. In
addition to their binary output, LIF neurons exploit binary input data, enabling sparsity in networks built
around these neurons. The binary input separates the operations into effective and ineffective because
multiplications by zero do not contribute to the accumulation. Therefore, the multiplication of weights times
input can be forgone by adding only non-zero weights.

The implemented neuromorphic SNN decoder is a simplified version of the model proposed by Liao et al
[46] with fewer learnable parameters. In a preliminary exploration, reducing the complexity of the network
only marginally impacted the accuracy while significantly improving the operational cost. Each hidden layer
is decreased to 50 LIF-neurons without a bias term and a fixed decay (τ = 0.96). The BatchNorm layer is
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Figure 5. A scheme of the LIF neuron. In this neuron model, incoming neural signals are integrated into the membrane potential,
and if the accumulated value surpasses a specified threshold, the neuron generates a binary output signal. The ‘leaky’ property
allows for the gradual decay of the accumulated charge, further contributing to the model’s simplicity. The intrinsic recurrent
nature of the LIF neuron originates in the updated membrane potential.

removed because combining BatchNorm and Dropout leads to models with different feature variances inside
the network during training and testing [70]. The threshold of the LIF neurons is set to one. To further push
for lower latency and power consumption and explore the various tradeoffs against accuracy, the number of
hidden layers is decreased from three to two and one (SNN3, SNN2, and SNN1, respectively). SNN1 is a
baseline model for the ‘primate reaching task’ of NeuroBench [12] and is depicted in figure 4(c).

4.5. Experimental setup
The spike train was binned according to the window requirements of the respective network, and a sliding
window with a stride of 4 ms extracted the spiking data. The RNNs and the SNNs used a sliding window of
50 bins to extract temporal information from the data and the non-recurrent ANNs extracted the bins
individually. The neural decoders were trained to predict the finger velocity as visualized in figure 3.

RNNs and SNNs notoriously suffer from difficulties when learning long-term dependencies from data
[71, 72]. To improve the gradient flow, the SNN was trained to predict the time window of the primate’s
finger kinematics and, for consistency, was tested to predict individual finger velocities as the ANNs. The
Loss for this setup was a linearly weighted mean squared error (MSE) from zero to one to account for
warm-up steps. The ANN and LSTM were trained using the conventional MSE Loss.

Each session was divided into the first 75% of the reaches shuffled and, in contrast to the
Neurobench-proposed evaluation pipeline, was used for model selection using 10-fold group
cross-validation with early stopping and the last 25% for testing. This allows for finding the optimal
hyperparameters and the number of training epochs while reporting more robust performance.

5. Results

We considered six decoders trained on reconstructing a primate’s finger velocity given binned neural activity
with metrics that allow assessing a decoder’s latency and power consumption. The results in table 2 offer a
complete overview of the performance of all decoders. The performance of the decoders is in line with
previous literature given the reduced dataset, different training paradigms and different metrics [12, 20].

5.1. Latency vs. fidelity
A higher R2 performance can typically be achieved using deeper and more complex architectures or by better
estimating the neural firing rate with a longer binning window. Both approaches negatively impact the
latency and, thus, the capability of the neural decoder to facilitate real-time closed-loop feedback. The
performance tradeoff of the six decoders is visualized in figure 6.

The UKF requires computationally intense matrix operations and a matrix inverse, making it
significantly slower than the other decoders and achieving lower fidelity. Contrary to the rEFH filters, the R2

score improved with decreasing binning windows. The best-performing rEFH filter had an R2 of 63.19%
(std= 0.17) with a latency of 129 ms, significantly outperforming the UKF with an R2 of 45.10%
(std= 0.12) and a latency of 270 ms both in terms of fidelity and latency.

The rEFH filters can achieve comparable R2 scores to NN-based decoders. However, they require long
binning windows to approximate the state distribution and experience a stark drop in the R2 scores with
smaller binning windows. Nevertheless, the trendlines of the rEFH and ANN models indicate that the rEFH
can achieve a better latency versus fidelity tradeoff than the ANN. This stems from the ANN requiring a
considerable history of binning windows to extract temporal information, which result in high latency. For
the ANN, reducing the number of binning windows led to a significant decrease in fidelity. The shallow
LSTM attains a much lower latency versus fidelity tradeoff than the traditional decoders and ANNs,
indicated by the trendlines, achieving peak R2 scores above 60% while having a latency between 4.05 ms and
16.05 ms. Notably, the fidelity drops significantly when using a longer binning window of 16 ms, indicating
that the LSTM relies on the temporal dimension of the neural data to extract information about neural
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Table 2. Experimental results of 6 neural decoders for decoding finger velocities. Six recording sessions of primates executing reaching
tasks were selected and split into the first 75% of the reaches for 10-fold cross-validation and the final 25% for testing. Notably, the
latency of the UKF is consistently high, given the delay caused by the computationally intensive matrix inverse.

Fidelity Latency
Power

consumption Size

Decoder type R2 ±sd r ±sd Bin (ms) MAC Total (ms) Eff. Ops
Memory
Access

Memory
Footprint

Traditional
neural
decoder

UKF

0.4510a 0.15 — — 16

28 799 269.6 23 M 116 k 736 Mb
0.4485a 0.16 — — 32
0.4290a 0.17 — — 64
0.4122a 0.32 — — 128

rEFH static

0.2103a 0.17 — — 16

3131

17

7 M 12 k 224 Mb
0.3879a 0.20 — — 32 33
0.5042a 0.17 — — 64 65
0.5961a 0.14 — — 128 129

rEFH dynamic

0.4248a 0.18 — — 16

3167

17.1

7 M 13 k 224 Mb
0.4996a 0.17 — — 32 33.1
0.6038a 0.14 — — 64 65.1
0.6319a 0.14 — — 128 129.1

ANN neural
decoder

ANN
(hist= 7)

0.6369 0.06 0.8023 0.03 196
162

196.1 34 k 136 k 1 Mb

ANN
(hist= 4)

0.5768 0.05 0.7615 0.03 112 112.1 20 k 80 k 647 kb

ANN
(hist= 14)

0.6515 0.09 0.8159 0.04 392 392.1 66 k 265k 2 Mb

ANN
(2x neuron)

0.6403 0.06 0.8051 0.03 196 322 196.1 71 k 285k 2 Mb

ANN
(0.5x neuron)

0.63 0.05 0.7989 0.03 196 82 196.1 17 k 67 k 532 kb

LSTM
(bin= 4 ms)

0.6014 0.04 0.7781 0.03 4 146 4.05
14 k 69 k 611 kb

LSTM
(bin= 8 ms)

0.6391 0.05 0.8027 0.04 8 146 8.05

LSTM
(bin= 16 ms)

0.5026 0.15 0.7128 0.10 16 146 16.05

LSTM64 0.6036 0.05 0.7784 0.03 4 578 4.19 53 k 224 k 2 Mb
LSTM128 0.6109 0.05 0.7834 0.04 4 1154 4.38 162 k 659k 5 Mb

SNN neural
decoder

SNN1 0.5948 0.06 0.7723 0.04 4 167 4.05 167 1503 158 kb
SNN2 0.6292 0.06 0.7968 0.04 4 202 4.07 202 1815 240 kb
SNN3 0.6071 0.08 0.7861 0.05 4 305 4.08 229 2068 322 kb

a The results of the UKF and the rEFH are reported fromMarmerstein et al [17], which only comprise R2 scores.

dynamics. The SNN achieved the best tradeoff with competitive R2 scores and lower latency for all three
models examined. The latency scales only marginally with an increasing number of layers.

The overall trend of the six decoders shows that recurrent neural networks (RNNs), such as the SNN and
the LSTM, can achieve competitive fidelity to non-recurrent ones while extracting neural dynamics from
intra-cortical spike data and having significantly lower latency, with SNNs maintaining lower latency for
higher fidelity than LSTMs.

5.2. Power consumption vs. fidelity
MACs, reported as the number of inner products of matrix-vector multiplications, are indifferent to the
length of the vectors in the inner product. This makes them inadequate for assessing power consumption.
Instead, the total number of required operations during inference provides a better estimate of the actual
energy cost. Figure 7 shows the operational cost versus fidelity tradeoff of the neural decoders.

All traditional decoders require matrix operations with large inner products, leading to, by far, the most
operations to effectively decode neural signals. The average number of operations for traditional decoders
across the experiments was between 700 000 and 2300 000. The three decoders have the same high number of
total operations across the various binning windows because unlike the other models, the length of the
binning window does not affect the operational cost. Traditional decoders had the most extensive range of R2

scores, ranging from 23% to 66%. NN-based decoders represent a shift towards more computationally

10



Neuromorph. Comput. Eng. 4 (2024) 024008 P Hueber et al

Figure 6. The accuracy versus latency trade-off of the six evaluated decoders. The R2 fidelity is plotted on the horizontal axis, and
the vertical axis is the millisecond latency. In the plot, traditional decoders are represented as squares, artificial neural
network-based decoders as triangles, and spiking neural networks (SNNs) as circles. The decoders with the best trade-off are in
the bottom right corner. Recurrent decoders such as LSTM and SNN achieve substantially lower latency while maintaining
competitive accuracy.

Figure 7. Visualized trade-off between R2 score and total operations. The specific closed-loop setting requires neural decoders in
the bottom right corner. ANN-based decoders, such as the ANN and the LSTM depicted as triangles, are an improvement
compared to traditional decoders, represented as squares. Yet, the SNN, denoted by circles, achieves the lowest operational cost
while maintaining competitive R2 scores. Comparing memory access instead of total operations shows the same trend and is
redundant.

efficient decoding algorithms. Our experiments demonstrated significantly reduced power consumption
compared to traditional decoders. The LSTM with 16 hidden neurons required 4700 operations, whereas the
ANN with seven binned windows required approximately 34 000 operations. Compared to the traditional
decoders, this significant improvement comes with consistently high fidelity, with R2 values of ANN-based
decoders ranging from 50% to 65%. The SNN decoders exhibited the highest energy efficacy among the
decoder types considered in this study. On average, SNN decoders required 200 operations while achieving
competitive fidelity levels, with R2 values ranging from 60% to 63%.
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Figure 8. The evaluated NN-based decoders’ Bayesian information criterion (BIC) shows that the SNN achieve far lower BIC
scores than other decoders, suggesting that SNNs are more suitable for the constrained closed-loop setting. A low BIC indicates
that a decoder can learn better, given its complexity. The lowest BIC score is achieved by SNN1. The various models appear in the
same order as presented in table 2.

Comparing memory access instead of total effective operations reveals the same tradeoff and is not
reiterated. A comparison of the power consumption and fidelity metrics reveals an intriguing trade-off
among the three decoder types. While traditional decoders require substantial operations, they offer a range
of R2 scores. In contrast, ANN-based and SNN-based decoders provide the advantage of reduced energy
costs, with SNN decoders exhibiting the lowest computational load while maintaining competitive fidelity
levels.

5.3. Bayesian information criterion (BIC)
The BIC serves as a valuable instrument for the comparing various neural networks, effectively addressing
the concern of increased model complexity and its potential impact on performance enhancement. The BIC
introduces a penalization term for the number of model parameters, thereby discouraging the adoption of
overly complex models with excessive weights and biases. This penalty term effectively balances fidelity and
model complexity, enabling us to discern whether a model’s performance improvements stem from an
increased number of learnable parameters or architectural design.

Figure 8 presents the BIC values for various configurations of the three neural network-based decoders.
Notably, the single-layer SNN, characterized by its minimal complexity, attains the lowest BIC score. In
contrast, SNN2 and SNN3 had significantly higher BIC scores despite exhibiting performance
improvements. This discrepancy suggests that the performance improvements are disproportional to the
increased number of learnable parameters in these models. All SNNs achieved much lower BIC scores than
the traditional and ANN-based neural decoder.

6. Discussions

In conclusion, optimizing neural decoders for closed-loop iBCI systems capable of CLN presents a delicate
balance, requiring careful consideration of the trade-offs between fidelity, latency, power consumption, and
memory size. Our findings emphasize that although more complex and deeper neural architectures with
more trainable parameters, hold the potential for improved decoding accuracy, optimizing only for fidelity
by increasing the complexity of a network can result in reduced usability for closed-loop iBCIs. The decoding
accuracy reaffirms the findings of Glaser et al [11] that conventional neural network-based decoders can
achieve the highest R2 scores. However, we observe that this comes at the cost of increased latency and power
consumption. Even when only considering fidelity, evaluating the BIC across the three NN-based decoders
showed that SNNs consistently outperformed the ANN and the LSTM, achieving significantly lower BIC
scores. This indicates that the performance improvement of the ANN is due to disproportionally more
learnable parameters. Remarkably, the single-layer SNN emerged as the top performer out of the models we
benchmarked in this paper, signifying its suitability for effectively learning data variance, particularly when
considering the number of learnable parameters. This highlights that the shallow SNN is preferable for
robust and energy-efficient neural decoding, given its complexity among the three neural network-based
decoder types we evaluated.

The ability of a neural decoder to effectively harness sparsity represents a crucial design consideration in
closed-loop iBCI systems. Conventional neural data are characterized by their inherent sparsity and temporal
encoding [21, 35, 73, 74], with rate-based encoding accounting for a mere fraction of the neural activity in
regions such as the visual cortex [75]. The inherent sparsity of neural spikes provides SNNs with a distinct

12



Neuromorph. Comput. Eng. 4 (2024) 024008 P Hueber et al

advantage, enabling them to capitalize on the spatiotemporal structure of the input data, which is less
pronounced in non-neuromorphic ANNs.

SNNs have previously demonstrated their potential for reduced power consumption and lower latency in
various applications. In our study, we reaffirm and extend these prior findings, indicating that SNNs can
extract neural dynamics from extracellular spiking data, while maintaining competitive fidelity and showing
superior performance in terms of power consumption and latency.

The latency metric introduced in our analysis operates under the assumption that the computation of an
inner product is equivalent to a single addition in terms of clock cycles. Although this abstraction aligns with
standard practices for MAC operations, it is essential to acknowledge that this assumption may only partially
represent the potential hardware optimizations for vector accumulations. While the process of counting
additions might initially appear as a potential disadvantage when comparing SNNs to ANNs in the context of
latency, we observe that despite this methodological abstraction, SNNs consistently achieved substantially
lower latency when compared to traditional decoders and the ANN. The longer latency of traditional
decoders and ANNs is primarily attributed to their reliance on long binning windows for extracting temporal
information and their high operational cost. Notably, the sole exception to this trend is the LSTM, which
demonstrates a latency level comparable to that of SNNs. This observation reaffirms the findings of Zenke
et al [73], who demonstrated the efficiency of RNNs, such as LSTMs and SNNs, in exploiting the temporal
structure of neural data, emphasizing their capacity to achieve competitive fidelity with low latency in a
closed-loop neural decoding system. These insights underscore that even without accounting for the
potential hardware optimizations, SNNs can exhibit a marked advantage in terms of latency over traditional
decoder models and non-recurrent ANNs, which require more extensive computational resources owing to
their temporal information extraction procedures.

The advantages of employing neuromorphic SNNs for closed-loop iBCIs become more apparent when
the energy cost is evaluated using the total number of operations. In this context, SNNs significantly
outperform traditional and ANN-based decoders. Our results show that traditional and ANN-based decoders
require several orders of magnitude more operations to attain performance levels comparable to SNNs. The
remarkable reduction in the number of operations required by SNNs can be attributed to their constrained
design, which minimizes the number of learnable parameters while still delivering competitive performance.
However, the primary driving forces behind the substantially lower energy cost associated with SNNs lies in
their ability to exploit sparsity [46] and their more energy-efficient operations. This capacity allows for
approximately 5% of the operations to be executed, emphasizing the exceptional efficiency achieved by SNNs
while maintaining high fidelity. Following previously reported estimates of required energy per operation, we
observe an approximate energy cost of around 2 µW per inference for the SNNs [50, 76], which is 50 times
lower than for the LSTM, 100 times lower for the ANN, and 10 000 times lower than for the UKF.

The field of neurotechnology and BCIs are rapidly expanding. New advancements and technologies
enable the development of more effective, user-friendly, and versatile BCIs. This paper discusses two main
challenges in designing processors for implantable closed-loop neural decoders: low energy consumption to
minimize heat diffusion, and low latency to enable real-time CLN. We defined metrics for neural decoders
and benchmarked common decoding methods to predict a primate’s finger kinematics. This study explores
the suitability of low latency and low computing neural decoders and highlights the potential advantages of
neuromorphic SNNs for CLN. Our results show that SNNs can balance decoding accuracy and operational
efficiency, offering immense potential for reshaping the landscape of neural decoders and opening new
frontiers in closed-loop intracortical human-brain interaction.

Using neuromorphic SNNs for CLN is an area of research with great promise, as indicated by successfully
predicting an NHP finger kinematic in this study. However, the list of evaluated decoders is non-exhaustive,
and only a single neural decoder, the SNN, was optimized for latency and power consumption. This allows
for comparing commonly used decoders, yet it favors inherently efficient and fast neuromorphic decoders.
Additionally, only one exemplary dataset was evaluated as representative of closed-loop iBCI tasks requiring
low latency and power consumption. Therefore, this study highlights the potential of SNN for iBCI for CLN,
however, further studies are required to explore the suitability of these networks for other types of neural
decoding tasks and to optimize their performance to meet the requirements of CLN systems. Developing
fully implantable iBCIs with local processing capabilities is crucial for reducing energy consumption and
latency and improving the real-time applicability of CLN systems.

Overall, the outlook for neural engineering and BCIs is bright. New developments will improve neural
recording and decoding technologies, ultimately enhancing our understanding of the brain and its complex
neural processes.
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7. Conclusion

Our study introduces methods to extrapolate algorithmic-to-hardware metrics that allow evaluating the low
latency and high energy efficacy requirements of iBCI suitable for CLN. We present six commonly used
neural decoders and compare them in predicting an NHP fine motor kinematics from binned neural activity.
Our results highlight the potential advantages of neuromorphic SNNs in the context of iBCIs capable of
CLN. In our benchmark, we observe that SNNs outperform other commonly used decoders, with evident
performance differences when compared against benchmarked traditional decoders. Notably, the
exceptionally low latency of SNNs and LSTMs, surpassing that of traditional decoders and non-RNNs, arises
from their innate ability to extract temporal information from spiking neural data. The power efficiency can
be attributed to the adeptness of SNNs in exploiting sparsity and their deliberately constrained architectural
design. Our results show that SNNs can achieve competitive decoding performance in less than 5 ms, using
less than 1% of computational resources, and more than 50 times less energy than other neural decoding
methods in this benchmark. This makes them highly suitable candidates for closed-loop iBCI challenges and
positions them as a game-changing technology for reshaping the landscape of neural decoders. Significant
advancements in CLN can be achieved by adopting SNNs as the preferred neural decoder. Their capacity for
efficient and accurate neural signal processing holds the potential to revolutionize BCI applications,
enhancing our ability to interact with and understand the intricacies of the human brain.
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