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Abstract—Graphs are a natural fit for modeling concepts used
in solving diverse problems in science, commerce, engineering,
and governance. Responding to the variety of graph data and
algorithms, many parallel and distributed graph-processing sys-
tems exist. However, until now these platforms use a static model
of deployment: they only run on a pre-defined set of machines.
This raises many conceptual and pragmatic issues, including
misfit with the highly dynamic nature of graph processing, and
could lead to resource waste and high operational costs. In
contrast, in this work we explore a dynamic, elastic model of
deployment. To conduct an in-depth elasticity study of distributed
graph processing, we build a prototype, JoyGraph, which is the
first such system that implements complex, policy-based, and fine-
grained elasticity. Using the state-of-the-art LDBC Graphalytics
benchmark and the SPEC Cloud Group’s elasticity metrics, we
show the benefits of elasticity in graph processing: improved
resource utilization, and aligned operation-workload dynamicity.
Furthermore, we explore the cost of elasticity in graph processing.
We identify a key drawback: although elasticity does not degrade
application throughput, graph-processing workloads are sensitive
to data movement while leasing or releasing resources.

I. PROBLEM STATEMENT AND CONCEPTUAL
CONTRIBUTION

Modern graph-processing systems use sophisticated tech-
niques to exploit the massive parallelism of scale-up ma-
chines [1] or the large-scale resources of distributed sys-
tems [2]. However, the use of the static deployment model
has negative consequences. Conceptually, graph applications
are a poor fit for static, fixed-size infrastructure, as they have
often iterative, but highly irregular workloads [3]. Previous
techniques do not focus on a dynamic model of deployment,
where infrastructure can grow and shrink to match the needs
of the graph-processing application. In contrast, in this work
we explore the use of elasticity, that is, the ability to lease and
release machines dynamically, as a key-feature of a new class
of graph-processing systems. Our study is the first to explore
the implications of elastic scaling policies, both growing
and shrinking resources, on distributed graph processing.
We give important performance insights, and quantify the
cost and benefits of elasticity in graph processing.

For public infrastructure, elasticity could reduce operational
costs by reducing resource waste [4], [5], and improve the
ability to meet Quality-of-Service guarantees (such as high
performance and availability) by using appropriate autoscaling
policies [6]. For private infrastructure, elasticity could reduce
operational costs by increasing resource utilization [7], or
throttle throughput to meet demands across applications [8].

Typically, when making a case for elasticity [9] in graph
processing, only graph-related metrics are considered, such as

active vertices, or messages exchanged per super-step. Many
complementary studies present an analysis on how the number
of active vertices affects the algorithm efficiency: direction-
optimizing BFS [10] is a technique entirely motivated by
the variable number of active edges per iteration; Mizan [11]
analyzes runtime per iteration and addresses the large imbal-
ance; GraphReduce [12] leverages the observed variability in
the number of active vertices (frontier size) for two datasets
and three algorithms; high workload imbalance appears even
between multiple designs and implementations of the same
algorithm running the same workload [3]; etc. In contrast,
we also analyze the impact of workload imbalance on the
consumption of system-level resources.

II. ELASTIC GRAPH PROCESSING SYSTEM

For our exploratory experiments aiming to understand the
performance of graph processing under elasticity, we use our
prototype, JoyGraph, which adapts the classic mechanisms of
elasticity to graph processing. We also propose three new auto-
scaling policies for deciding when to grow and shrink the
infrastructure, and new mechanisms for nested data reparti-
tioning without loss.

JoyGraph consists of three key components: The Master
node, which orchestrates the execution of the graph processing
workloads on the worker nodes; Worker nodes, which execute
super-steps of the graph processing workloads; and Storage, a
distributed file system which is used to load the input graph
and to store the generated results. JoyGraph supports a Pregel-
like programming model.

Policy-based elasticity for graph processing has not been
explored until now. Recently, we have seen that generic
autoscaling policies perform well with scientific workloads,
almost on-par with workload-specific policies [6]. Encouraged
by such results, we apply autoscaling policies to graph pro-
cessing.

Therefore, for JoyGraph, we evaluate two types of elastic
autoscaling policies: system-level policies, and generic au-
toscaling policies. The former are simple autoscaling policies
that take into account system level metrics, such as CPU-load,
wallclock time, and network-load. The latter are general au-
toscaling policies, originally used successfully for autoscaling
web applications.

We consider three system-level elastic-scaling policies: CPU
Load Policy (CPU): The average worker CPU-load is used to
generate a new partition function to redistribute graph vertices.
Wallclock Time Policy (WCP): Computes the wallclock time of
each worker on each super-step. Workers that take more time
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Fig. 1. The JoyGraph elastic policy WCP applied to BFS and PR. The
horizontal position of supersteps reflects the duration of elasticity operations.

than the average will distribute part of their vertices to new
workers. Network Load Policy (NP): Computes the amount
of network data sent by each worker on each super-step.

Moreover, we consider five generic autoscaling policies
(based on the previous study by Ilyushkin et al. [6]): React is a
simple reactive policy, in which the supply follows the changes
in demand, and does not predict future demand. AKTE is a
hybrid adaptive policy. It follows the changes in demand, and
also predicts future demand based on the change in the arrival
rate. ConPaaS is a web-application autoscaler that responds
to changes in throughput at fixed time intervals. Its predictor
uses time series analysis to forecast future demand. Reg is a
regression-based autoscaler that scales up by using a reactive
policy. Scaling down is based on predictions achieved by using
a regression model trained on past data. Hist is a histogram-
based controller that employs a queuing-model to determine
how many resources to deploy.

III. EXPERIMENTAL SETUP

For our experiments, we used Datagen scale factor 1000
graph (Datagen-1000) as input. The graph was generated using
the Datagen tool [13]. As the workload we implemented
the following algorithms: breadth-first search (BFS), page-
rank (PR), weakly-connected components (WCC) and single-
source shortest paths (SSSP). These algorithms were ran
statically, on both JoyGraph, our proposed solution, and the
well-established Giraph system [14]. To provide evidence of
extensive resource variability, during each algorithm run, we
measure: the number of active vertices, CPU load, memory
utilization, and wallclock time. We ensure that all the results
are correct using the Linked Data Benchmark Council (LDBC)
Graphalytics [15] validation tool.

IV. EXPERIMENTAL RESULTS

Using the LDBC Graphalytics, and the SPEC Cloud
Group’s elasticity metrics we assessed the benefits and costs
of elasticity. Our results show that even algorithms that do
not suffer from active vertices variability are impacted by
significant variability in system-level metrics (e.g., CPU load,
memory, wallclock time). For example, Figure 1a shows that
BFS which exposes significant variability in the number of

active vertices, has low variability with WCP. At the same
time, Figure 1b shows that PR which does not exhibit vari-
ability in the number of active vertices exposes high variability
with WCP. The consequences can lead to significant imbalance
in the utilization of resources. Therefore, active vertices is a
metric that cannot be proportionally translated into system-
level metrics. This indicates there is a need for dynamic
mechanisms that can elastically grow and shrink the number of
active resources to run graph-processing. We find that elasticity
offers an interesting trade-off between performance and fine-
grained resource management in comparison to the static state-
of-the-art alternatives. We characterize with many elasticity-
related metrics the performance of the autoscaling policies and
find that they offer distinct trade-offs.

V. ONGOING WORK

We are just beginning to understand the potential elasticity
holds for graph processing, and for big data processing in
general. We are currently extending this work in the following
directions: (i) exploring the situation when elasticity becomes
particularly challenging when multiple customers compete for
the same infrastructure, (ii) re-evaluating and extending Joy-
Graph for a more extensive set of (emerging) graph-processing
algorithms, (iii) addressing property graphs, mutable graphs,
and (dynamic) graph-processing workflows.
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