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Abstract

We show that a family of certain definite integrals forms a Chebyshev system if two families of associated 
functions appearing in their integrands are Chebyshev systems as well. We apply this criterion to several 
examples which appear in the context of perturbations of periodic non-autonomous ODEs to determine 
bounds on the number of isolated periodic solutions, as well as to persistence problems of periodic solutions 
for perturbed Hamiltonian systems.
© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

MSC: primary 41A50; secondary 34C07, 34C23, 34C25, 37C27
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1. Main results

Chebyshev systems (T -systems), complete Chebyshev systems (CT -systems) and extended 
complete Chebyshev systems (ECT -systems) are the natural extensions of polynomials of a 
given degree m to more general functions. Notice that degree m polynomials can be seen as 
elements of the vector space 〈1, x, . . . , xm〉 of dimension m + 1, for which each element has at 
most m roots, counting multiplicities, such that this bound is attained. In the next section we give 
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the precise definition of T , CT and ECT -systems, which essentially introduce them as vector 
spaces of functions satisfying these properties.

When studying perturbations of Hamiltonian systems with a continuum of periodic orbits, 
the level sets of the periodic orbits that persist as limit cycles are given by the zeroes of a line 
integral, or Abelian integral, see for instance [8]. A commonly used method to control the number 
of zeroes of such integrals when the perturbation depends on parameters is to prove that they 
form a basis which is a Chebyshev system. With this aim, a criterion was developed in [6] which 
shows that if some functions constructed from the integrands of the Abelian integrals form a 
Chebyshev system, then the Abelian integrals that generate the complete Abelian integral itself 
are a Chebyshev system as well. This is a powerful result since proving the Chebyshev property 
for functions is usually easier than to do so for functions defined as line integrals.

In the same spirit, the goal of the present paper is to prove that some definite integrals form 
a Chebyshev system if families of functions given by the integrands of these integrals are also 
Chebyshev systems. Our main result is:

Theorem 1.1. Consider a family of integrals of the form

Ii(h) =
b∫

a

fi(x)g(h, x)dx,

with a, b ∈R and h ∈ L for L ⊂ R open, satisfying the following hypotheses:

• f1, . . . , fn are continuous functions on the open interval (a, b) such that (f1, . . . , fn) is a 
CT-system on (a, b).

• g is an analytic function on L × (a, b) such that for any fixed set of n elements {x1, . . . , xn} ∈
[a, b] such that xi �= xj when i �= j , the functions

gi(h) := g(h, xi) for i = 1, . . . , n,

form an ECT-system on L.

Then (I1, . . . , In) is an ECT-system on L.

By relaxing the above hypotheses, in Theorem 2.4 below we give a similar result but proving 
that (I1, . . . , In) is a CT-system on L. The following is a corollary of Theorem 1.1, proved in 
Section 3, which we will use in all our applications.

Theorem 1.2. Let i ∈ N , a, b ∈R, α ∈ R \N , and let p be a monotone and continuous function 
on [a, b]. Denote by L the open interval given by the connected component of the set {h ∈ R :
1 + hp(x) > 0 for all x ∈ [a, b]} which contains the origin. For h ∈ L, we consider the analytic 
functions

Ji(h) =
b∫
fi(x)(1 + hp(x))αdx, (1)
a
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where f0, . . . , fn are analytic on (a, b) such that (f0, . . . , fn) is a CT-system in (a, b). Then 
(J0, . . . , Jn) is an ECT-system in L.

Theorem 1.2 complements the main result of [4] where the family of functions

Ki(h) =
b∫

a

qi(x)(1 + hq(x))αdx,

is studied and it is characterized under which conditions it forms a Chebyshev family. In that 
paper, nothing is assumed on the monotonicity of the function q but, the functions fi appearing 
in (1) are simply powers of q . Moreover, the proof given in [4] differs from our present approach 
and is based on the fact that the Wronskians introduced in Lemma 2.3 to prove that the functions 
form an ECT -system can be related to Gram determinants.

In Section 3 we apply Theorem 1.2 to study the number of zeroes of two families of func-
tions. The first one is a Melnikov type function that controls the periodic solutions that bifurcate 
from a one-dimensional non-autonomous periodic differential equation of Abel type. The second 
one controls the periodic orbits that persist in the rotary regions by perturbing several Hamilto-
nian potential planar systems. Recall that these persistent periodic orbits are given by zeroes of 
Abelian integrals, see [8]. In particular, we apply this result to study some periodic perturbations 
of the pendulum and of the whirling pendulum when the constant rotation rate is smaller that a 
given value.

2. Preliminary results and proof of the main results

We start by recalling the definitions of T , CT and ECT systems, the notions of continuous 
and discrete Wronskian and a useful characterization of CT and ECT -systems. This result and 
much more information on the subject can be found in the monographs [7,10].

Definition 2.1. Let f1, . . . , fn be functions on an open interval I .

(a) (f1, . . . , fn) is a Chebyshev system (T-system) on I if any nontrivial linear combination

α1f1(x) + · · · + αnfn(x)

has at most n − 1 isolated zeros on I .
(b) (f1, . . . , fn) is a complete Chebyshev system (CT-system) on I if (f1, . . . , fk) is a T-system 

for all k = 1, 2, . . . , n.
(c) (f1, . . . , fn) is an extended complete Chebyshev system (ECT-system) on I if the functions 

f1, . . . , fn are analytic and, for all k = 1, 2, . . . , n, any nontrivial linear combination

α1f1(x) + · · · + αkfk(x)

has at most k − 1 isolated zeros on I counting multiplicity.
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Definition 2.2. Let f1, . . . , fk be functions on an open interval I . The discrete Wronskian of 
(f1, . . . , fk) at (x1, . . . , xk) ∈ I k is

D[f1, . . . , fk](x1, . . . , xk) = det

(
fj (xi)

)
1≤i,j≤k

.

If f1, . . . , fk are Ck on I , the continuous Wronskian of (f1, . . . , fk) at x ∈ I is

W [f1, . . . , fk](x) = det

(
f

(i)
j (x)

)
1≤i,j≤k

.

For the sake of brevity we use the shorthands xk = (x1, . . . , xk) and fk = (f1, . . . , fk).

Lemma 2.3. The following equivalences hold:

(a) (f1, . . . , fn) is a CT-system on I if and only if for all k = 1, 2, . . . , n,

D[fk](xk) �= 0 for all xk ∈ I k such that xi �= xj for i �= j.

(b) (f1, . . . , fn) is an ECT-system on I if and only if for all k = 1, 2, . . . , n,

W [fk](x) �= 0 for all x ∈ I.

The proofs of the following two results are inspired by the proof of Proposition 3.3 in [6].

Theorem 2.4. Consider a family of integrals of the form

Ii(h) =
b∫

a

fi(x)g(h, x)dx,

for i = 1, . . . , n, where a, b ∈ R and h ∈ L for L ⊂ R open, satisfying the following hypotheses:

• f1, . . . , fn are continuous functions on the open interval [a, b] such that (f1, . . . , fn) is a 
CT-system on (a, b).

• g is a function on L × (a, b) such that a for any fixed set of n elements {h1, . . . , hn} ∈ L such 
that hi �= hj when i �= j , the functions

gi(x) := g(hi, x) for i = 1, . . . , n,

form a CT-system on (a, b).

Then (I1, . . . , In) is a CT-system on L.
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Proof. Let hn = (h1, . . . , hn) ∈ Ln such that hi �= hj when i �= j . We need to show that for all 
k ≤ n, D[Ik](hk) �= 0, where Ik = (I1, . . . , Ik). Fix k ∈ {1, . . . , n}, let Sk be the symmetric group 
of k elements and denote by �k the k-simplex defined by {xk ∈ [a, b]n : x1 < · · · < xk}. Taking 
into account the definition of the determinant we have that

D[Ik](hk) = det
(
Ii(hj )

)
1≤i,j≤k

=
∑
σ∈Sk

sgn(σ )

k∏
i=0

Ii(hσ(i))

=
∑
σ∈Sk

sgn(σ )

[ b∫
a

f1(x1)gσ(1)(x1)dx1· · ·
b∫

a

fk(xk)gσ(k)(xk)dxk

]

=
∑
σ∈Sk

sgn(σ )

[ ∫
[a,b]k

f1(x1) . . . fk(xk) · gσ(1)(x1) . . . gσ(k)(xk)dxk

]

=
∫

[a,b]k
f1(x1) . . . fk(xk)

∑
σ∈Sk

sgn(σ )gσ(1)(x1) . . . gσ(k)(xk)dxk.

Now we define for each permutation ρ ∈ Sk the invertible mapping ψρ :Rk → Rk ,

ψρ(x1, . . . , xk) = (xρ(1), . . . , xρ(k)),

and note that

⋃
ρ∈Sk

ψρ(�k) = [a, b]k \R,

where R ⊂ Rk is a set of Lebesgue measure zero. Therefore we can write

D[Ik](hk) =
∫

[a,b]k
f1(x1) . . . fk(xk)

∑
σ∈Sk

sgn(σ )gσ(1)(x1) . . . gσ(k)(xk)dxk

=
∑
ρ∈Sk

[ ∫
ψρ(�k)

f1(x1) . . . fk(xk)
∑
σ∈Sk

sgn(σ )gσ(1)(x1) . . . gσ(k)(xk)dxk

]
.

The next step is to change coordinates in each integral of the above sum according to xk =
ψρ(uk), that is, xi = uρ(i) for i = 1, . . . , k. In view of the fact that the absolute value of the 
determinant of the Jacobian of ψρ is one, we find that

D[Ik](hk) =
∑
ρ∈Sk

[ ∫
ψρ(�k)

f1(x1) . . . fk(xk)
∑
σ∈Sk

sgn(σ )gσ(1)(x1) . . . gσ(k)(xk)dxk

]

=
∑
ρ∈Sk

[∫
f1(uρ(1)) . . . fk(uρ(k))

∑
σ∈Sk

sgn(σ )gσ(1)(uρ(1)) . . . gσ(n)(uρ(k))duk

]

�k
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=
∫
�k

∑
ρ∈Sk

[
sgn(ρ)f1(uρ(1)) . . . fk(uρ(k))×

×
∑
σ∈Sk

sgn(σρ−1)gσ(1)(uρ(1)) . . . gσ(n)(uρ(k))

]
duk

=
∫
�k

det
(
fi(uj )

)
1≤i,j≤k

∑
ρ,σ∈Sk

sgn(σρ−1)gσ(ρ−1(1))(u1) . . . gσ(ρ−1(k))(uk)duk

=
∫
�k

det
(
fi(uj )

)
1≤i,j≤k

det
(
gi(uj )

)
1≤i,j≤k

duk

=
∫
�k

D[fk](uk)D[gk](uk)duk.

Since both (f1, . . . , fn) and (g1, . . . , gn) are CT-systems on (a, b) the integrand in the last inte-
gral is different from zero. Since �k is connected it follows that det(Ii(hj ))1≤i,j≤n �= 0 and the 
proof is complete. �
Proof of Theorem 1.1. Now we need to prove that for any k ≤ n and for any h ∈ L, W [Ik](h) �=
0. As in the previous proof fix k ∈ {1, . . . , n}, let Sk be the symmetric group of k elements and 
denote by �k the k-simplex defined by {xk ∈ [a, b]n : x1 < · · · < xk}. Taking into account the 
definition of the determinant we have that

W [Ik](h) = det
(
I

(j)
i (h)

)
1≤i,j≤k

=
∑
σ∈Sk

sgn(σ )

k∏
i=0

I
(σ (i))
i (h)

=
∑
σ∈Sk

sgn(σ )

[ b∫
a

f1(x1)gσ(1)(h, x1)dx1· · ·
b∫

a

fk(xk)gσ(n)(h, xk)dxk

]

=
∑
σ∈Sk

sgn(σ )

∫
[a,b]n

f1(x1) . . . fk(xk) · gσ(1)(h, x1) . . . gσ(n)(h, xk)dxk

=
∫

[a,b]n
f1(x1) . . . fk(xk)

∑
σ∈Sk

sgn(σ )gσ(1)(h, x1) . . . gσ(n)(h, xk)dxk.

We consider again for each permutation ρ ∈ Sk the mapping ψρ : Rk → Rk , ψρ(xk) = xρ(k) to 
write the last integral as

W [Ik](h) =
∫

[a,b]n
f1(x1) . . . fk(xk)

∑
σ∈Sk

sgn(σ )gσ(1)(h, x1) . . . gσ(n)(h, xk)dxk

=
∑
ρ∈Sk

[ ∫
ψρ(�k)

f1(x1) . . . fk(xk)
∑
σ∈Sk

sgn(σ )gσ(1)(h, x1) . . . gσ(n)(h, xk)dxk

]
.
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The change of coordinates xk = ψρ(uk) in each integral of the above sum and the fact that the 
absolute value of the determinant of the Jacobian of ψρ is one, yields

W [Ik](h) =
∑
ρ∈Sk

[ ∫
ψρ(�k)

f1(x1) . . . fk(xk)×

×
∑
σ∈Sk

sgn(σ )gσ(1)(h, x1) . . . gσ(k)(h, xk)dxk

]

=
∑
ρ∈Sk

[∫
�k

f1(uρ(1)) . . . fk(uρ(k))
∑
σ∈Sk

sgn(σ )gσ(1)(h,uρ(1)) . . . gσ(k)(h,uρ(k))duk

]

=
∫
�k

∑
ρ∈Sk

[
sgn(ρ)f1(uρ(1)) . . . fk(uρ(k))×

×
∑
σ∈Sk

sgn(σρ−1)gσ(1)(h,uρ(1)) . . . gσ(k)(h,uρ(k))

]
duρ(k)

=
∫
�k

det
(
fi(uj )

)
1≤i,j≤k

∑
σ,ρ∈Sk

sgn(σρ−1)gσ(ρ−1(1))(h,u1) . . . gσ(ρ−1(k))(h,uk)duk

=
∫
�k

det
(
fi(uj )

)
1≤i,j≤k

det
(
g(i)(h,uj )

)
1≤i,j≤k

duk

=
∫
�k

D[fk](uk)W [g(h,u1), . . . , g(h,uk)](h)duk.

Since (f1, . . . , fn) is a CT-system on (a, b) and (g(h, u1), . . . , g(h, un)) is an ECT-system on L
for any ordered set {u1, . . . , un} ∈ (a, b), the integrand in the last integral is different from zero. 
Therefore, det(Ii(hj ))1≤i,j≤n �= 0 and the proof is complete. �
Proof of Theorem 1.2. For any fixed set of n + 1 elements {x0, . . . , xn} ∈ (a, b) with xi �= xj

when i �= j let ai := 1/p(xi) for all i = 0, . . . , n. Notice that all such ai’s are distinct since p is 
monotone on [a, b]. Define

gi(h) := g(h, xi) := (1 + hp(xi))
α.

By Theorem 1.1, the proof will follow if we prove that (gi(h))ni=0 form an ECT-system on L. To 
prove this fact, note first that

gi(h) = (1 + h/ai)
α = 1

aα
i

(ai + h)α.

For k ∈ N , we introduce the notation [α]0 = 1, [α]k := α(α−1)(α−2) · · · (α−k+1). Therefore, 
the Wronskian determinant
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det

(
g

(j)
i (h)

)
0≤i,j≤n

=

= 1

�n
i=0a

α
i

det

⎛
⎜⎜⎜⎝

(a0 + h)α (a1 + h)α · · · (an + h)α

[α]1(a0 + h)α−1 [α]1(a1 + h)α−1 · · · [α]1(an + h)α−1

...
...

. . .
...

[α]n(a0 + h)α−n [α]n(a1 + h)α−n · · · [α]n(an + h)α−n

⎞
⎟⎟⎟⎠

= �n
i=0[α]i

�n
i=0a

α
i

det

⎛
⎜⎜⎜⎝

(a0 + h)α (a1 + h)α · · · (an + h)α

(a0 + h)α−1 (a1 + h)α−1 · · · (an + h)α−1

...
...

. . .
...

(a0 + h)α−n (a1 + h)α−n · · · (an + h)α−n

⎞
⎟⎟⎟⎠

= �n
i=0[α]i

[
�n

i=0(ai + h)
]n−α

�n
i=0a

α
i

det

⎛
⎜⎜⎜⎝

(a0 + h)n (a1 + h)n · · · (an + h)n

(a0 + h)n−1 (a1 + h)n−1 · · · (an + h)n−1

...
...

. . .
...

1 1 · · · 1

⎞
⎟⎟⎟⎠

is the determinant of a Vandermonde matrix. Since all ai are distinct, it is nonzero, and hence by 
Lemma 2.3, (gi(h))ni=0 form an ECT-system on L as we wanted to prove. �

Notice that in the above proof we show in particular that the family of functions (ai + h)α , 
with i = 0, 1, . . . , n and α /∈ N and all aj distinct, form an ECT-system in a suitable interval. It is 
curious to observe that any permutation of this set of n + 1 functions form also an ECT-system. 
This is an unusual property, which is not true for the ECT-system (1, h, h2, . . . , hn) for instance.

3. Applications

This section collects several applications of our main results.

3.1. Perturbation of periodic non-autonomous ODEs

Theorem 1.2 can be applied to determine upper bounds on the number of isolated periodic 
solutions obtained from the first order analysis for perturbations of certain 1-dimensional non-
autonomous differential equations. Consider the initial value problem

⎧⎨
⎩

dy

dx
= f (x, y),

y(0) = h,

(2)

where f is real analytic and T -periodic with respect to the first variable. Let ϕ(x, h) be the 
solution of this problem and assume that it is T -periodic for all h ∈ (h1, h2). Now for g(x, y)

also real analytic and T -periodic with respect to the first variable we consider the perturbed 
problem
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⎧⎨
⎩

dy

dx
= f (x, y) + εg(x, y),

y(0) = h.

(3)

We will look for T -periodic orbits that persist after perturbation. Denote by ψ(x, h, ε) the so-
lution of the perturbed problem (3). Notice that ψ(x, h, 0) = ϕ(x, h). By similarity with the 
notation used when studying the perturbations of Hamiltonian systems, see [8], we will say that 
the periodic solution corresponding to h = h∗ persists if for ε small enough there exists hε such 
that ψ(x, hε, ε) is T -periodic and limε→0 hε = h∗. From the theorems on dependence of solu-
tions on parameters we get that

ψ(x,h, ε) = ϕ(x,h) + m(x,h)ε + O(ε2)

with

m(x,h) = e
∫ x

0 D2f (z,ϕ(z,h)) dz ×
x∫

0

g(z,ϕ(z,h))

e
∫ z

0 D2f (w,ϕ(w,h)) dw
dz,

where D2f (x, y) denotes the derivative of f (x, y) with respect to y. So we have that

ψ(T ,h, ε) − h

ε
= m(T ,h) + O(ε).

Therefore, by the implicit function theorem, simple zeros of M(h) := m(T , h) give the values h∗
for which a periodic orbit persists after bifurcation. Moreover, using Weierstrass’s Preparation 
Theorem ([1, Thm 69]) it follows that if h∗ is a zero of M(h) with multiplicity k, then at most 
k periodic orbits bifurcate from the periodic orbit corresponding to h = h∗. So if M(h) is not 
identically zero, its number of zeroes in (h1, h2), counted with multiplicity bounds the number 
of isolated periodic orbits that bifurcate from the continuum of periodic orbits of (2). Observe 
that from the theorem on dependence of initial conditions we have that

∂ϕ(x,h)

∂h
= e

∫ x
0 D2f (z,ϕ(z,h)) dz,

and since ϕ(T , h) = h we get that e
∫ T

0 D2f (z,ϕ(z,h)) dz = 1 and

M(h) =
T∫

0

g(x,ϕ(x,h))

e
∫ x

0 D2f (z,ϕ(z,h)) dz
dx =

T∫
0

g(x,ϕ(x,h))

∂ϕ(x,h)/∂h
dx. (4)

As a more concrete example, consider the problem

⎧⎨
⎩

dy

dx
= λ(x)yk + εF (x)G(y),

y(0) = h,

(5)
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which is of the form (3) with k ∈ N , λ and F are T -periodic and �(x) = ∫ x

0 λ(s)ds such that 
�(T ) = 0. Direct computations give that

ϕ(x,h) = h
(

1 + (1 − k)�(x)hk−1
) 1

1−k
. (6)

Notice that the condition �(T ) = 0 implies that a neighborhood of y = 0 is full of T -periodic 
solutions. Moreover,

∂ϕ

∂h
(x,h) =

(
1 + (1 − k)�(x)hk−1

) k
1−k =

(
ϕ(x,h)

h

)k

and from (4) we get that

M(h) = hk

T∫
0

F(x)G(ϕ(x,h))

ϕk(x,h)
dx. (7)

Example 3.1. In our first example we revisit some results of [4], in which the number of isolated 
periodic solutions obtained from first order perturbations of some generalized Abel equations 
was obtained. The equations under consideration,

⎧⎨
⎩

dy

dx
= cosx

k − 1
yk + εPn(cosx, sinx)yp,

y(0) = h,

are of the form (5) with T = 2π , 1 < k ∈ N , k < p ∈ N and Pn a degree n polynomial. Using 
(6) and (7), simple computations show that

M(h) = hp
∑

i+j=n

ai,j

2π∫
0

sini x cosj x(1 − hk−1 sinx)
p−k
1−k dx,

for some ai,j ∈ R. Since 
∫ 2π

0 sini x cosj x(1 − hk−1 sinx)
p−k
1−k = 0 when j is odd and

2π∫
0

sini x cosj x(1 − hk−1 sinx)
p−k
1−k =

i+j∑
l=i

cl

2π∫
0

sinl x(1 − hk−1 sinx)
p−k
1−k

for some cl ∈ R when j is even, we get that

M(h) = hp
n∑

i=0

aiIi(h
k−1),

where
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Ii(h) =
2π∫

0

sini x

(1 − h sinx)α
dx, with α = p − k

k − 1
.

This is exactly the type of analytic functions studied in [4], see equations (1) and (5) of that 
paper. Notice that

Ii(h) =
2π∫

0

sini x

(1 − h sinx)α
dx =

5π/2∫
π/2

sini x

(1 − h sinx)α
dx

=
3π/2∫

π/2

sini x

(1 − h sinx)α
dx +

5π/2∫
3π/2

sini x

(1 − h sinx)α
dx

= 2

3π/2∫
π/2

sini x

(1 − h sin(x))α
dx.

Thus, we are under the hypotheses of Theorem 1.2 with [a, b] = [π/2, 3π/2], fi(x) = sini x

and p(x) = − sin(x). Therefore, when p−k
1−k

/∈ N the family (I0(h), I1(h), . . . , In(h)) is an ECT-
family on (0, 1).

Example 3.2. Rigid planar systems are frequently studied because they encompass all of the 
difficulties of Hilbert’s XVIth problem in a more tangible context: the system has a unique critical 
point at the origin and can be globally reduced to a one-dimensional non-autonomous differential 
equation. Moreover, the solution of the center-focus problem is equivalent to determining the 
isochronous centers, see [5,12] or [2], where these systems are called uniformly isochronous 
centers. Polynomial rigid systems with a center or focus at the origin are of the form{

x′ = −y + xP (x, y),

y′ = x + yP (x, y),

where P is an arbitrary polynomial. In polar coordinates they can be written as

dr

dθ
= rP (r cos θ, r sin θ), (8)

because θ ′ = 1, the property which gives rise to their name. In the particular case P = Pk−1 +
εPp−1, where Pm are homogeneous polynomials of degree m and k, p ∈ N , equation (8) reads

dr

dθ
= rkPk−1(cos θ, sin θ) + εrpPp−1(cos θ, sin θ), (9)

which is of the form (5). Hence, adding some additional hypotheses on Pk−1 and Pp−1 we have 
found new families of non-autonomous differential equations for which Theorem 1.2 can be 
applied to obtain upper bounds on the number of isolated periodic solutions by studying the 
zeroes of the corresponding M(h) given in (7). We skip the details.
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Fig. 1. Phase portrait showing the rotary regions R± and the oscillatory region R0 for a double potential.

3.2. Persistence of periodic orbits for double potentials

Consider the double potential

H(x,y) = V (x) + y2s

2s
, s ∈N,

on the cylinder [0, 2T ] ×R, where V is a 2T -periodic even function with a unique minimum in 
[0, 2T ) at x = 0 and a unique maximum at x = T . Denote h̄ = H(T , 0) = V (T ). This energy 
level separates the oscillatory region R0 from the rotary regions R±: for h < h̄ there exist peri-
odic orbits inside the region enclosed by the heteroclinic connections between the saddle points 
at (T , 0), while for h > h̄ the periodic orbits encircle the cylinder with period 2T above and 
below the heteroclinic connections, see Fig. 1. In what follows we will focus on periodic orbits 
in the rotary regions R±.

We consider the following perturbation of the double potential

{
x′ = y2s−1,

y′ = −V ′(x) + εyp
∑n

i=0 aifi(x),
(10)

where fi are 2T -periodic even functions satisfying that (f0, . . . , fn) is a CT-system on [0, T ]. 
To find out how many periodic orbits in the rotary region persist under the perturbation we study 
the zeros of the Abelian integrals M±(h), which for h > h̄ are given by

M±(h) =
n∑

i=0

ai

∫
fi(x)ypdx =

n∑
i=0

ai

T∫
fi(x)

(
2sh − 2sV (x)

) p
2s dx
H(x,y)=h −T
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=
n∑

i=0

2ai

T∫
0

fi(x)
(
2sh − 2sV (x)

) p
2s dx (11)

= 2(2sh)
p
2s

n∑
i=0

ai

T∫
0

fi(x)
(

1 − 1

h
V (x)

) p
2s

dx,

see [8, Chapter 7]. The superscript ± denotes the positive and negative rotary regions, respec-
tively. If we denote Ii(h) = ∫ T

0 fi(x)(1 − 1
h
V (x))

p
2s dx we can apply Theorem 1.2 to obtain that 

(I0(h), . . . , In(h)) is an ECT-system on (h̄, ∞) when p
2s

/∈N .

In the following we will study two examples to show how the formula (11) for the Abelian 
integrals M±(h) can be used to obtain bounds for the number of periodic orbits that persist in 
perturbed systems of the form (10).

Example 3.3 (Pendulum). In [3] the authors study the number of limit cycles for perturbed 
pendulum equations of the form (10) with V (x) = 1 − cosx, s = 1 and fi(x) = cosi x on the 
cylinder [−π, π] × R. Let h ∈ L = (2, ∞) and let us focus on the rotary region R+. Applying 
formula (11) to this example yields that the Abelian integral for R+ is

M+(h) = 2
p+2

2

n∑
i=1

aiIi,p(h),

where

Ii,p(h) =
π∫

0

cosi x (h − 1 + cosx)
p
2 dx,

which is exactly of the form found in [3]. Note that

Ii,p(h) = (h − 1)
p
2

π∫
0

cosi x

(
1 + 1

h − 1
cosx

) p
2

dx.

Therefore, if we denote

Ji,p(h) =
π∫

0

cosi x (1 + h cosx)
p
2 dx,

then (I1,p(h), . . . , In,p(h)) is an ECT-system on (2, ∞) if and only if (J1,p(h), . . . , Jn,p(h))

is an ECT-system on (0, 1). This last property holds by Theorem 1.2 provided that p/2 /∈ N . 
Therefore, the Abelian integral M+(h) has at most n − 1 isolated zeros, and consequently the 
maximum number of limit cycles appearing in the upper rotary region R+ by the first order 
analysis is n − 1.
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Example 3.4 (The whirling pendulum). Another example of a perturbed system with double 
potential of the form (10) is the so-called whirling pendulum,

{
x′ = y,

y′ = sinx(cosx − γ ), γ > 0,
(12)

with V (x) = −γ cosx + 1
2 cos2 x + γ − 1

2 and s = 1 on [−π, π] ×R, cf. [9,11]. Let us focus on 
the case γ ≥ 1, meaning that the constant rotation rate is smaller than a given value γ , for which 
the phase portrait is as in Fig. 1. As in the previous example, we consider the persistence problem 
of periodic orbits in the rotary regions R± under perturbations of the form (10) with fi analytic, 
even and 2π periodic functions and (f1, . . . , fn) is a CT-system on (0, π). The formula (11) for 
this example yields that the Abelian integral for the rotary region R+ is given by

M+(h) = 2(2h)
p
2

n∑
i=1

aiJi,p(h),

where

Ji,p(h) =
π∫

0

fi(x)

(
1 − V (x)

h

) p
2

dx,

for h ∈ L = (2γ, ∞). Applying Theorem 1.2 we obtain that (J0,p(h), . . . , Jn,p(h)) is an ECT-
system on (2γ, ∞) provided that p/2 /∈ N . Therefore, the Abelian integral has at most n − 1
isolated zeros, and consequently the maximum number of limit cycles appearing in the upper 
rotary region R+ by the first order analysis is n − 1.
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