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Summary
The intention of the project is to design and implement a system that is able to quantify and
visualise intercity relations, using open data.

According to their web site1, ”OTB seeks tomake a visible contribution to society by addressing
societal challenges in the field of the built environment”. However, with the growing amount of
information available online, they have the need for IT solutions to support their research. This
project was intended to design and implement a system that is able to quantify and visualise in-
tercity relations, using the information from open data. Since there is a lot of data freely available,
the challenge was to accurately delimit the boundaries of the project and then convert the infor-
mation from within these boundaries to something the researchers could work with. Moreover,
we had to focus on both a full-fledged back-end and front-end.

The back-end consists of four main parts: (1) data gathering and processing, (2) data filtering,
(3) document classifying and (4) data storage. Data is gathered from the freely available corpus
Common Crawl. The cleaned textual data is then passed to the filtering component, which checks
the text for co-occurring cities. If either too few or too many co-occurrences are found, the doc-
ument is filtered out. Next, the document is passed to the classifier, which determines to which
of a predefined set of categories the document belongs to. Finally, the document is stored in a
graph database, along with the resulting category and probabilities retrieved from the classifier.
After this, relations are drawn between cities and documents they occur in. Finally, the relation
between two cities are calculated from documents in which they both occur, grouped by category.

The front-end is a Web application to allow the client to interactively browse the results and to
be able to see patterns in visualised data, which are otherwise hard to extract from raw numbers.
The application pulls relations from the database and visualises them on a geographical map, to
place cities on their natural locations. Lines are drawn between cities to represent relations, and
every item is clickable in order to see more information. In addition, there are sliders that allow
the client to control what the application shows. Besides the visualisation of data, we created an
interface in which one can manually classify documents, in order to further train the classifier.
The application focuses on efficiency, as it has to deal with large amounts of data.

The client was happy to see that we were able to deliver a viable product. However, some
work has to be done before the product can fully satisfy the client’s needs. For this, recommen-
dations have been made, in order to provide future developers with pointers to continue on the
application.

1https://otb.tudelft.nl
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1
Introduction

With the development of future cities in mind, the interest in city networks has grown over the
years. According to our client, a researcher of the built environment, cities do not function in
isolation but are connected forming ”systems of cities”. However, appropriate information on
how cities are connected and the strength of these connections is hard to find. An enormous
amount of raw, unordered data is available to extract the relations from, there is, however, no
good way yet to process the data. According to Short et al. (2017) comparative statistics are
not easily available and common assertions are repeated [35]. Similar assertions are made by
DeRudder et al. [9]. Using web data as a proxy for determining intercity relations is still in its
infancy.

The huge amount of textual data generated online and the numerous historic archives, such
as Delpher1 and the British Newspaper Archive2, are great sources of information on social and
economic behaviours. The client’s hypothesis is that ”semantic association”, the co-occurrence of
cities within a single document, of cities can give insight in the connections between cities. These
associations can be found using advanced text mining on newspapers and web pages. Similar to
research efforts in other domains, such as financial trade [30] and sales forecasting [46], where
socio-economic phenomenon are derived using web data, the client’s wish is to develop an appli-
cation that captures urban-urban interactions. An example of how one could try to achieve this
using the Google search Engine3 is "Rotterdam Amsterdam" OR "Amsterdam Rotterdam", which
searches for the co-occurrence of Amsterdam and Rotterdam. However, manually processing
all results a search engine yields is not feasible, because one would have to read each page to
determine which types of relationships the page contains. An application should process all the
pages that contain co-occurrences of cities to determine what type of relations, for example trans-
portation or leisure, between cities can be extracted from the document. Thus, we will answer the
following question: how can a framework be designed for leveraging open data such that ametric
for the strength of relationships between cities can be quantified and visualised?

First, we discuss related work in chapter 2. Second, we explore the problem domain, identify
the requirements for a solution to the problem and discuss issues that might arise in chapter 3.
Third, we develop a methodology for a framework that satisfies the requirements and tackles the
issues in chapter 4. In chapter 5, we explain how the framework was realised and discuss themost
important issues we were able to solve. Then, in chapter 6, we evaluate the product, showing how
well it meets its requirements and review the development process. Next, we discuss open issues
as well as some possible ethical issues that may come with the system. In chapter 8 we provide
some recommendations for the system for future versions. We conclude in section 9.

1http://www.delpher.nl
2http://www.britishnewspaperarchive.co.uk/
3https://www.google.com
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2
Related Work

Since the 1960’s the economymodernised rapidly. Concentration of jobs increased and the amount
of cooperation between remote firms grew. The desire to understand this led to an increase of
work on intercity relationships[43].

One of the most common methods used is the interlocking network model (INM)[39]. This
model assumes cities have a flow of knowledge connection if there are offices of the same com-
pany in those cities. The biggest problem with the INM is that it is very limited. It only includes
one relation type and it is disputable whether this is a goodmeasurement for the relation because
there is no precise measurement [23].

The last ten years there has been a lot of development in the field of data production and
processing. Information retrieved from existing technologies which have made the automatic
extraction of information and labelling a normality, could have an important role in understanding
interurban relationships.

When looking at digital data there are two different approaches for determining intercity re-
lationships: the cyberspace and the cyberplace [10]. The cyberplace measures relations by using
the infrastructure of the internet. Most research on this has been done on the ’backbone’ of
the internet made of cables and routers [6, 12]. The cyberspace method focuses on the virtual
communication of people through connected devices. One approach is by registering and map-
ping the number of pages indexed by search engines for queries containing the names of two
cities[10, 18, 19]. In 2010 Brunn et al. evaluated the linkage between two cities by entering those
cities into a search query followed by key words such as ”global financial crisis” or ”climate change”
and registering the number of pages indexed [5]. However, this method is very limited since you
would have to manually enter a new query for each pair of cities and for each relation.

Improving the textual analysis on websites to find digital links between cities requires a more
systematic approach. A piece of software designed specifically for this purpose should automati-
cally find predefined relations between cities and their strength by using all pages available from
search engines or corpora. In the following chapter we will investigate the requirements for such
a program.

2
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Problem Definition and Analysis

In this section first the problem definition will be introduced. Next, the analysis of this problem
will be discussed. After that, the requirements following from this analysis and the wishes of the
client are presented. Last, a few design decisions are presented that followed from the problem
analysis and requirements.

3.1 Problem Definition
As discussed in the previous sections the hypothesis the client proposed is if a semantic associ-
ation of cities can give insight in the actual relationships and strengths between cities. This hy-
pothesis introduces the problem how software could be used to find and analyse these semantic
associations. This lead to the following problem definition:

How can open data be leveraged such that a metric for the strength of relationships
between cities can be defined and visualised?

3.2 Problem Analysis
Theproblem canbedivided into four sub-problems that need to be addressed. These are Filtering,
Classification, Storing Data and Data Visualisation & Export.

Filtering

Filtering for this problem means searching through the available text data to find co-occurrences
of cities and discarding text data that does not contain co-occurrences. This should reduce the
amount of data and thereby potentially speed up the rest of process.

Classification

The sub-problem that arises after filtering is how to determinewhat relationships can be extracted
from the text-data, which will be referred to as the classification of the text-data. This requires a
method that reliably and efficiently processes the text-data and can be tuned to the clients wishes.

Storing Data

Next, the need arises to store the data and determine the strength of the relationships. This
means choosing an organised data storage solution to store the results, for example a relational
database.

3
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Data Visualisation & Export

When these three sub-problems have been successfully solved the last sub-problem that is left is
how to combine the stored data and present it to a user, this means visualising and/or exporting
the data in an accessible way.

3.3 Requirement Analysis
In this section, we first present user stories that were created together with the client. Next, we
define the design goals. Then, we list the requirements which followed from the user stories and
which the application should meet. To do so, we use the MoSCoW method[7] as a prioritisation
technique. Lastly, we discuss the design decisions that follow from the design goals and the re-
quirements.

3.3.1 User Stories
Together with the client, several user stories are identified for interaction with the system. These
are listed below.

As a user:

1. I want to be able to see all the identified relations between all cities, so that I can reason
about interesting patterns.

2. I want to be able to access extracted relations in an Excel file. I want this to be available per
relation type and as a total of all relations, so that I can apply my own models on the data.

3. I want to be able to see relation strengths, which can be expressed by counting the relations.

4. I want to be able to (de)select cities in the user interface, so that I can create a network of
cities connected with relations. A network of cities consists of the cities as nodes and the
different types of relationships as edges between them.

5. I want to be able to (de)select relations between cities in the user interface, so that I can
inspect only the relations I am interested in. For example, as a user Imight only be interested
in the Transportation relationship between Amsterdam and Rotterdam.

6. I want to be able to change the colours associated with the different relation types, so that I
can adjust the styling to my own preferences.

7. I want to be able to export an image of the map that I composed in the user interface so that
I can use it for presentations, papers or educational purposes

3.3.2 Design Goals
The high-level design goals for this project have been provided by the client. These serve as a
guideline to determine the priority label of the specific requirements as defined in section 3.3.3.
The design goals are listed below, ordered by priority.

Credible

The results of the project will be used in research on intercity relations. Therefore, the results
must be reliable and verifiable. This means that the application should produce the same results
given the same input and it should be possible to manually access the input to verify the output
of the application.

Understandable

The results of the application should be visually understandable, in order to make it easy for the
client to deduce conclusions.
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Scalable

During the project a TU Delft server will be used with a limited amount of resources. Therefore
only .nl pages will be used as input to limit the amount of data storage and processing power
needed. However, allowing for investigating other domains would greatly help the client in a later
stadium, whichmeans that the systemwill have to be scalable where possible. For example, using
a dedicated database which can be spread across clusters.

Plugable

It might be interesting for the user to let the application perform analysis on different data sets
without the need of a developer. So if possible within the time constraints the application should
be able to use any form of textual input data.

Exportable

Besides making the results available visually, all the relevant numeric data should also be ex-
portable, for example in CSV format, so the client is able to process the data beyond the system.

Fast Development

Because of the time constraints of the project we need a fast development cycle. As a result of
that, choices regarding tools, applications and programming languages are to be made with the
time constraint taken into account.

3.3.3 Product Requirements
As mentioned in the introduction of section 3.3 we will be using the MoSCoW prioritisation tech-
nique. Four levels of priority are defined: must have, should have, could have and would like. We
also differentiate between functional and non-functional requirements.

Must Have

Requirements labelled as must have are key to the minimal viable product. If they are not met,
the application can be considered a failure.

1. Data that is of relevance for the UrbanSearch project should be mined from the Common
Crawl web corpus (see section4.2.1) and stored for further processing and/or access.

2. There has to be a way to export the relations between cities.

3. Amachine learning algorithm should analyse and label the collected data to extract different
types of relations that are important for intercity relations.

4. A front-end should be built for the project. This front-end should visualise basic relations
and statistics and can be used for presentations and educational purposes.

5. Several statistically important aspects of intercity relations should be extracted from the data
set. These statistics should be easily accessible and visualised to the end user. Furthermore,
it should be easy to extend or update the list of statistics that are associated with a relation.

Should Have

”Should have” requirements are those that greatly improve system performance and/or usability
but might not fit in the available development time.

1. Relations between cities should be accessible hierarchically. This means that there is the
possibility to explore a relation and, provided that this relation has sub-types associated
with it, the relation can be expanded in the different sub-types of the relation.
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2. It should be possible to retrain the machine-learning algorithm on demand by feeding it a
set of labelled documents.

3. It should be possible to add large data sets, e.g. with more than one million documents, on
which the system can perform its data mining routines. This way a data set can be created
that contains potentially interesting information for intercity relations.

4. The application should be able to deal with the fact that the same city can have different
names in different languages and/or dialects. It should still be able to extract and group
relevant data correctly (e.g. ’The Hague’ and ’Den Haag’ should be viewed as the same city).

Could Have

Requirements labelled as ”could have” are useful and should be included in the system if time and
resources permit.

1. The system should use Delpher (see also section 4.2.2); a collection of over 60 million digi-
talised newspaper articles, books andmagazines in theNetherlands, of age ranging from the
seventeenth century to now, to characterise relationships between a region and cities out-
side that region. For example, the local newspaper of the province Gelderland writing about
the city of Alkmaar. These relationships are either simple or complex information flows.
A newspaper mentioning a city is considered a simple information flow, whereas multiple
cities mentioned in a single document is a complex information flow. Both simple and com-
plex flows reside on the basic properties of the document, such as the publication date. An
illustration of this is given in figure 3.1.

2. The relations that are extracted from the data by the machine learning algorithm have to be
visualised in a way thatmakes it easy to compare the different relations for the end user. For
example, a split-screen comparison in the user interface or an export of graphs comparing
selected relations.

Would Like

”Would like” requirements have been agreed upon to be not important to include within the cur-
rent time schedule. However, they can be included in future releases.

1. The application would be able to show all connections of all places on the map at the same
time.

2. Using data from top-level domains other than .nl.

3.3.4 Design Decisions
To be able to have a fast development cycle and leverage our experience we chose to develop
the application using Python. We plan to not only test the code we deliver thoroughly, but also
to cross-validate the obtained results. The specifics of this validation protocol will be discussed in
section 6.1.4.
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Figure 3.1: Solid lines represent simple information flows, whereas the dashed line is a complex connection
of information. We focus on the part depicted by the dashed line.



4
Framework and Tools

In this section, we gradually design the framework. First, we give a high-level overview of the
system. Second, we decide what data source to use initially and describe how to use the data.
Third, we present the method of choice to perform initial data filtering. Fourth, we explain what
kind of classification will be used. Fifth, we agree on which data storage and ingestion to use.
Sixth, we decide how users will interact with the obtained results. Last, we select the visualisation
tools to be used.

4.1 High-level Overview
The figure 4.1 represents a high-level overview of the system. Themost important inputs, outputs
and steps in system the are displayed. A more in-depth explanation of the different stages of the
process can be found in the following sections.

4.2 Gathering the Data
As explained in section 3.3.2, data sources should be plugable. An initial corpus of documents is
needed for the project, which we will choose in this section. Nowadays many people have access
to the Web, and for a lot of people the Web is probably also their primary source of information.
Next to that, the Web contains vast amounts of documents which could shed some light on re-
lations between cities. Therefore, the decision was made to use web-data as a data source. To
avoid duplicate work, which could occur by randomly searching the web, an obvious choice is to
use Common Crawl as a data source.

4.2.1 Common Crawl
Common Crawl [8] is a freely accessible corpus of pages across the web, updated and released on
amonthly basis. Many researchers have used the data for various purposes [26, 36, 37]. Since the
project requires analysis on a very large set of documents, the corpus is a very suitable candidate
for us to work with.

The data from Common Crawl comes in three formats1:

WARC This is the default and most verbose format. It stores the HTTP-response, information
about the request andmeta-data on the crawl process itself. The content is stored as HTML-
content.

1https://gist.github.com/Smerity/e750f0ef0ab9aa366558
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WAT Files of this type contain meta-data, such as link addresses, about the WARC-records. This
meta-data is computed for each of the three types of records (meta-data, request, and re-
sponse). The textual content of the page is not present in this format.

WET This format only contains extracted plain text. No HTML-tags are present in this text. For
our purposes, this is the most useful format.

Common Crawl stores these pages in the following way: each archive is split into many seg-
ments, with each segment representing a directory. Every directory contains a document listing
file and a folder for each file format (WARC, WAT andWET), which in turn contains the compressed
pages belonging to the segment. To be able to efficiently get a single page, CommonCrawl indexes
the segments to directly map URLs to document locations using an offset and length which can
be found using the Common Crawl index2. A single index is a combination of multiple key-value
pairs, for an example of a single index see listing 4.1. An index contains important information
such as for example the name of a WARC file, and the index and offset to find the correct data
within that WARC file. Since WAT- and WET-files can be generated fromWARC-files, they only pro-
vide such indices for WARC-files. If no file index is provided with a data request, an aggregated
compressed file of all files of the requested format is returned.

{”urlkey”: ”nl,tudelft)/”, ”timestamp”: ”20170323161043”, ”status”: ”200”, ”url”: ”http://
www.tudelft.nl/”, ”filename”: ”crawl−data/CC−MAIN−2017−13/segments/1490218187144.60/
warc/CC−MAIN−20170322212947−00594−ip−10−233−31−227.ec2.internal.warc.gz”, ”length”: ”
6837”, ”mime”: ”text/html”, ”offset”: ”727926652”, ”digest”: ”
WPTH3FM5VR7UGLA5PZS5L5YI22TNIKXG”}

Listing 4.1: Common Crawl index example

For extracting data from Common Crawl, many open-source libraries are available. Common
Crawl’s official website refers to cdx-index-client3 as a command line interface to their data
indices. It allows for, among others, specifying which data set to use, supports multiple output
formats (plain text, gzip or JSON) and can run in parallel. Since this library only retrieves the
file indices, we need another way to actually retrieve the pages pointed to. However, there is a
problem with this: we are only interested in WET-files, but Common Crawl does not have WET-
files indexed. We would therefore have to collect the WARC-files and convert them to WET-files
ourselves, requiring us to parse HTML for every document we are interested in.

As mentioned in the design goals section not all available web-data will be used due to limited
resources. A simple query url=*.nl&output=json&showNumPages=true on the CC-MAIN-2017-13
index using the online interface4 yields 1676 pages. Pages in this sense are listings of 15000 in-
dices, so there are roughly 25 million entries in total out of the 2.94 billion pages available in
Common Crawl. It is very important to note that searching for a top level domain like .nl only
includes the first page of every matching domain. To get all pages, additional queries for each site
with more than one page are to be performed.

4.2.2 Other Data Sources
Besides Common Crawl, there are a number of other sources that might contain valuable in-
formation. The most notable is the Dutch royal library, Delpher5. It contains millions of Dutch
digitalised newspapers, books and magazines from the fifteenth century up until about 1995. Be-
cause of this, it is a useful resource for historical research. Additionally, Statistics Netherlands6 is
the governmental organisation collecting statistical data about the Netherlands and comes with
an API, making most of their data publicly accessible. The NOW Corpus7 collects newspaper and
magazine articles through Google News and provides several tools to perform queries on this
data. It can also be downloaded.

Due to time and resource constraints, we have chosen to exclude these from the project. Of
course, in future versions, other data sources could be included.
2http://index.commoncrawl.org
3https://github.com/ikreymer/cdx-index-client
4http://index.commoncrawl.org/CC-MAIN-2017-13-index?url=*.nl&output=json&showNumPages=true
5http://delpher.nl
6https://www.cbs.nl/en-gb
7http://corpus.byu.edu/now/

http://index.commoncrawl.org
https://github.com/ikreymer/cdx-index-client
http://index.commoncrawl.org/CC-MAIN-2017-13-index?url=*.nl&output=json&showNumPages=true
http://delpher.nl
https://www.cbs.nl/en-gb
http://corpus.byu.edu/now/
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4.3 Filtering Documents
Because not all data from information sources such as Common Crawl is relevant to find rela-
tionships between cities, the data needs to be filtered. One way to do this, is to only select the
data that mentions at least two different cities. Because the data is plain text, we need a way to
scan through the text and determine if the text indeed has a co-occurrence of two different cities.
Making use of the comparative analysis of Rasool et al. [32], we chose the Aho-Corasick algorithm
[1], which is a multi-pattern exact string matching algorithm and is the driver of widely used tools
such as grep [21]. The algorithm creates a finite state machine, where strings to match are final
states. Since we are looking for the co-occurrence of cities, using a multi-pattern string matching
algorithm is preferred over a plain string matching algorithm. This is especially well illustrated
by table 4.1 below. The benchmark was performed on a string of 1500 characters, with a million
iterations. In the table, the average speed of matching is shown in milliseconds.

multi-pattern matching 0.049831339
plain string matching 1.870154497

Table 4.1: Benchmark of multi-string vs. plain string matching

The decision to use the Aho-Corasick algorithm is strengthened by the fact that a well docu-
mented and stable Python library exists, which implements the aforementioned algorithm. This
library is called pyahocorasick8 and is a fast andmemory efficient implementation in Cwith Python
bindings.

Using the Aho-Corasick algorithm, a predefined list of cities can be matched against the text of
a web page or document. If at least two cities from the list appear in the text, wemark it as a useful
document. However, an interesting note is that there are pages with lists of cities contained, e.g.
to let users select their place of birth. These hardly represent intercity relations, so a maximum
of 25 unique occurrences is used to cancel as much of those lists as possible beforehand. The
threshold is decided upon by the client, after having analysed figure 4.2 and documents with 20
to 25 unique occurrences.

Figure 4.2: Number of documents plotted against the number of unique occurrences contained in these
documents.

We make a selection of documents without storing the documents first, because storing all
documents is not feasible due to storage constraints. For the .nl web pages we would only need
about 250GB of storage and to store all available documents around 250TB of storage would be
needed. As we do not have access to a fast and large data storage platform, we will not store
8https://pypi.python.org/pypi/pyahocorasick/

https://pypi.python.org/pypi/pyahocorasick/
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everything first and then delete documents that were filtered out. However, to test if finding and
storing relationships between cities is fast enough when the documents are actually stored on
disk, a random selection of one million documents will be downloaded. Processing the already
stored documents could finish within one day9 whereas downloading all documents will most
certainly take multiple days.

4.4 Extracting Relations from Documents
Now that a selection of documents has been made, we can make an attempt to identify the rela-
tions between cities based on these documents. Since labelling every document by hand is not
feasible, an automated approach is desirable. One way to automate this process is by identifying
intercity relations using machine learning. Machine learning algorithms can be roughly divided
into two distinct groups: supervised and unsupervised algorithms. Supervised algorithms expect
an input set and a corresponding expected output set, with which a model is trained to predict
unseen instances of the problem. Unsupervised algorithms identify clusters of entities, such as
documents or pictures, based on similarities in the feature set corresponding to said entity.

We decided to go with the supervised approach, mostly due to the fact that the training and
tweaking of supervised algorithms can be done faster compared to unsupervised algorithms. This
stems from the fact thatwe donot need the complete data set to start training a supervisedmodel,
while for the unsupervised case the complete set is needed. A good quality training set is required
for the supervised algorithm, which might be difficult to find. However, we think finding such a
data set is doable within the time constraints.

4.4.1 Defining Categories
Our choice of using classification has naturally led to the need for categories to be identifiedwithin
the collected documents. Together with our client, we identified the following categories which
are useful to search for in the collected documents. For each category, a fictional article title is
given to illustrate what an article in that category would be about.

1. Collaboration - TU Delft builds software for hospital in Leiden

2. Commuting - Most commuters between Almere and Amsterdam

3. Education - University of Amsterdam popular among students from Utrecht

4. Leisure - Blijdorp Zoo welcomes children from asylum seekers’ centre Ter Apel

5. Residential mobility - More and more people leaving Maastricht for Den Bosch

6. Shopping - Shops in Breda struggling to compete with mall in Roosendaal

7. Transportation - Diary farms around Leeuwarden export most milk

8. Other

These categories represent topics that are of interest for our clients. They relate to research
that is being done by them and to relations that were deemed important in previous research on
intercity relations. The category other is there to make the classification exhaustive, i.e. relevant
documents can always be labelled.

9On a virtual server with 8GB RAM, 4 CPUs and 100GB of HDD storage.
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4.4.2 Pre-processing
For pre-processing the documents, there are a number of tools available. We used NLTK [11] for
removing stop words and we use regular expressions for removing unwanted characters. The
HTML parsing is done using BeautifulSoup[17].

Stop words Removing all common words (the, a, an etc) and symbols (’.’, ’,’, ’!’, etc.). For removing
stop words, we used a list from NLTK containing Dutch stop words.

Unwanted characters To strip unwanted characters we have defined a regular expression that
identifies unwanted characters that are not removed using the list of stop words and sym-
bols. Matching characters are removed from the document.

HTML Since we are dealing with HTML pages that are parsed to plain text documents, we need to
strip the HTML so that only the plain text remains. Using BeautifulSoup we strip unwanted
tags (script, style, link, etc.) and parse the rest of the page to plain text.

4.4.3 Data Set
Before we can start labelling the collected document, labelled data has to be collected that can be
used as training data for the classifier. To collect this data we considered several options.

The first option is to query for documents from news(paper) sites. Since the documents are
categorised by professionals, we assume these document are labelled correctly. This method
could thus provide us with a reliable training set. Unfortunately, the categories that we identified
with our client do not match typical newspaper categories, so this approach was not suitable for
us.

Another approach is to use Google Custom Search to obtain results from Google, using the
categories the client provided uswith as keywords. Themain disadvantage of this approach is lack
of control over the files that get added into the data set. This way documents that get returned
by the query are not analysed on desirable content but are added immediately. An example of
a page that is returned for the query ”woonwerkverkeer” (commuting) is given below. This page,
although it does contain information about commuting, contains more useless information than
useful information.

Figure 4.3: Example of an undesired result obtained with Google Custom Search

We found the open data repository of the ”Centraal Bureau voor de Statistiek” (CBS) to be a
source of quality documents that could be used as training data for the classifier. The articles
in the repository can be queried using taxonomy tags with which the articles are tagged. Since
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these articles are tagged by professionals we may assume that these tags are valid. The only
downside of the CBS data is that it is a limited source of documents, which means we will have to
find additional sources for training data in the future.

4.4.4 Modelling
When considering classification, there are a plethora of algorithms available. When choosing the
right algorithm for a problem, several factors should be taken into account[25]. These are:

Accuracy How well the algorithm separates the documents.

Training Time How long it takes to train the algorithm.

Linearity Some problems can be solved by splitting classes along a straight line in two. For other
problems this approach is not feasible.

Number of Parameters Adjustable parameters increase the flexibility of the algorithms. This is
a trade-off between training time and accuracy.

Number of Features A large number of features can make some algorithms slow. Extracting
features from text-data often results in a huge feature set (65000+ in our case).

Special Cases Some learning algorithms make particular assumptions about the data or the re-
sults (e.g. rank prediction, count prediction). This way we can increase desirable properties
like accuracy of the prediction or improved training times.

Keeping all these properties in mind, we construct a setup that fits our purposes best.

Features To get a useful set of inputs (features) for our systemwe need to decide what describes
the properties of our documents best. Since we are dealing with text-documents a natural
choice for these inputs are the words contained in these documents. The words alone do
not provide us a very useful input to the system. That is why we use TF-IDF to give the words
that we encountered a weight. TF-IDF (Term Frequency over Inverse Document Frequency)
gives words a weight based on their frequency in a document and on the frequency of the
word in the complete document set. This way words that are rare in the complete document
set but occur often in a document are assigned a high weight. Words that occur in many
documents in the complete document set get awarded a low weight[31]. Using TF-IDF our
features become words with weights associated to them.

Dimensionality Reduction Sinceweareworkingwith text documents andour features arewords
with TF-IDF weights we can assume that our feature set will be very large (65000+). The total
number of features determines how fastwe can train ourmodel andhas implications regard-
ing over-fitting [34]. To reduce the number of features we considered different techniques
from Sebastiani (2002)[34]. Since we have no time to test all the techniques, we decided to
select the top ten percent of our features (based on the TF-IDF weights). In Yang (1997) [47]
it is stated that a dimensionality reduction with a factor ten using this approach does not
lead to a loss in accuracy when classifying text documents.

Classification Even after applying dimensionality reduction we are left with a lot of features
(6500+). Thus, we need an algorithm that works well with a feature rich problem. From
the Microsoft machine learning cheatsheet[25] we know Support Vector Machines(SVM) is
an algorithm that works well with feature rich problems. Also Sebastiani (2002)[34] claims
SVM is one of the best techniques when considering text classification. This, combined with
the fact that Scikit offers an easy to use implementation of SVM, has lead us to use SVM as
our classification algorithm. The concept of an SVM is that of a hyper-plane that divides two
distinct sets, while trying to maximise the margin between these sets [42].
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4.4.5 Remarks
Scikit offers a lot of useful features to optimise the classifier. For example, using Scikit pipelines
combining a classifier with several transforms (e.g. dimensionality reduction transforms) is a rela-
tively easy task. Since we unfortunately do not have the time to benchmark the results of different
types of classifiers and to play around with the different optimisation options, we plan on imple-
menting our code in such a way that extending the code to use this optimising functionality and
these different pipelines will be easy to do.

4.5 Storing and Ingesting the Data
In this section we will discuss which data storage solution we are going to use and why. We will
compare a few options and select the best. We will then briefly explain how it works and how we
plan to use it.

4.5.1 Storing Extracted Data
The categories that are extracted from documents, as described in the previous section, need to
be stored. We want to be able to apply different models on the data and we also want access to
the raw data.
To keep this flexibility and to maintain scalability, we save the document information in conjunc-
tion with the category. The documents that are deemed useful are stored on disk, pointed to by
the document information node. Occurrences of cities in a document are stored as a relation
of these cities to the document. This means that if a relation ”transportation” is extracted from
a document that contains the cities ”Rotterdam” and ”Amsterdam”, we create a document node
and create relations from Amsterdam to the node and from Rotterdam to the node. In the end,
when all documents have been stored and relations created, the relation between two cities can
be computed by counting documents in which they both appear, grouping by category.
Considering the fact that relations are bidirectional, meaning a relation of ”Transportation” be-
tween ”Rotterdam-Amsterdam” implicates a relation of ”Transportation” between ”Amsterdam-
Rotterdam” as well, we only need one relation between two distinct cities.

4.5.2 Graph Database or Traditional Database
To store the relationships and documents discussed in the previous subsection, we look into two
possibilities: graph databases and traditional relational databases. A database is preferred over
for example an in-memory system since the client has asked for both visualisation and export
functionality. Databases are designed for this purpose.

Because visualisation of the network of cities as a graph is an important part of the application,
and relations between cities play a key role in the system, we need a database that is designed
for these features. Relations are the most important in the graph data model, where this is not
true for traditional relational databases. Vicknair et al. stated that a graph database such as
Neo4j has an easily mutable schema, where a relational database schema is less mutable [45].
Furthermore, the edges between nodes in a graph database can have properties, which is exactly
what the envisioned data structure should be for this application. Lastly, if the desire arises to
find indirect relationships between cities then a graph database is most appropriate choice. For
example, if the client wishes to find out howAlkmaar is connected to Tokyo via other cities then the
need for fast graph traversal arises. According to the graph database Neo4j their graph traversal
is already 60% faster than a relational database for a depth of just three10. Therefore, we are
confident that a graph database is the best choice.

10https://neo4j.com/news/how-much-faster-is-a-graph-database-really/

https://neo4j.com/news/how-much-faster-is-a-graph-database-really/
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4.5.3 Comparing Graph Databases
Next, which graph database we are going to use needs to be selected. For this, six of the most
popular databases according to the solid IT Graph DBMS ranking11 are compared. This rating is
established using multiple parameters, among these parameters is the number of mentions on
websites and in job offers. Next to that, the parameters also include the number of searches, rel-
evance in social networks and the general interest in the system12. These six most popular Graph
Databases are rated on five important aspects. These are, is the graph database open-source,
scalable, free, does it support Python and has built-in visualisation. Open-source is important be-
cause the application should be as transparent as possible to achieve maximum credibility, there-
fore it helps that the graph database is open-source. A scalable database is necessary to achieve
the design goal ”scalable”. Scalable in this sense means that should the system be extended to
manymore documents and/or cities, the database should be able to handle such extension. Next
to that, a free graph database is preferred so wewon’t leave the client with costs to keep the appli-
cation running. The Python and built-in visualisation aspects are important for fast development,
as built-in visualisation allows visualising the data before building a front-end for the application.
Name Open-source Scalable Python support Free Built-in Visualisation

AllegroGraph % ! ! !a %b

ArangoDB ! ! ! ! !

Neo4j ! ! ! !c !

OrientDB ! ! ! ! !

Teradata Aster % ! ! % %d

Titan ! ! % ! %e

a Only free up to five million triples
b With separate tool called Gruff: https://allegrograph.com/gruff2/
c Non-commercial use
d Using a separate tool called Aster AppCenter
e Using a separate tool
From this table, it can be deduced that three of these graph databases are viable candidates:

ArangoDB,Neo4j andOrientDB. For this project, Neo4j is the best choice because of three reasons.
Firstly because it is by far the most popular graph database11. Secondly, since Neo4j is the most
popular graphdatabase, the support community and amount of available examples is large. Lastly
because we have experience with Neo4j, which means less time will be spent on getting to know
the graph database and functionality.

4.5.4 Using Neo4j for Storage and Ingestion
Neo4j is a highly scalable graph database that leverages data relationships as first-class entities
[28]. It is the single highly scalable, fast and ACID compliant graph database available. ACID stands
for the four properties atomicity, consistency, isolation and durability of transactions in database
systems that ensure reliability for query results [13]. The scalability of Neo4j comes from the fact
that is easily spread across clusters, which provides a read throughput that scales linearly. Next
to that, when spread across clusters Neo4j provides data redundancy and still high write speed
[29]. Additionally, Neo4j is free to use for non-commercial purposes. To illustrate how scalable
Neo4j is, consider that very large companies such as eBay, Cisco, Walmart, HP and LinkedIn13

use it in their mission-critical systems. Holzschuher and Peinl (2013) compared the performance
of Neo4j to the more classic and commonly used NoSQL databases and found that the more
natural representation of relationships resulted in significant performance gains [15]. Jouili et al.
concluded that Neo4j has a read-only performance which is comparable to other graph databases

11https://db-engines.com/en/ranking/graph+dbms
12https://db-engines.com/en/ranking_definition
13https://neo4j.com/customers/

https://allegrograph.com/gruff2/
https://db-engines.com/en/ranking/graph+dbms
https://db-engines.com/en/ranking_definition
https://neo4j.com/customers/
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[20]. Compared to other databases Neo4j is slower with writing. However, the application will
eventually do more reading than writing making writing a less important aspect.

Querying a Neo4j graph is done using the query language Cypher. The model of Neo4j is
explained by three key concepts. These are:

properties Any entity in the Neo4j graph can be given properties (key-value pairs) containing
information about the entity. Properties are primarily meant to provide additional informa-
tion and are less suitable to be queried on. As an example, a city can have a number of
inhabitants and districts attached to it as a property.

labels Nodes can be tagged with a label, describing their roles in the network. These annotations
are especially useful to filter the data set on one or more categories. For example, a city can
be labelled as ”capital” to be able to distinguish between regular and capital cities.

relations Nodes can be connected using relationships. These are always directed, typed and
named and can have properties. Using these properties, one can control how the graph is
traversed. For example, if a path (relationship) is to be avoided unless absolutely necessary,
the relation can be given a high cost. To give importance to some relationship, one could
also assign a strength score to it. Since relationships are handled efficiently by Neo4j, nodes
can have any number of relationships linked to it without compromising performance. For
our purpose, a relation could comprise the strength of the relationship between two cities
(nodes).

The Neo4j model can be depicted as shown in figure 4.4. It consists of nodes, relationships
(edges), properties (within the nodes and relations) and labels (coloured blocks above the nodes).

Figure 4.4: The Neo4j model, as it appears in the default user interface
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Besides the aforementioned useful properties of Neo4j, the graph can be put to good use for
visualising the global urban network. By adding a location property to a city, nodes and relations
can bemapped directly to a geographicalmap. Most importantly, indices of text files can be stored
that mention the city as properties of nodes. That way, we are able to generate a subset of files
that can be analysed for calculating the strength of the relationship between the nodes.

4.6 Interacting with the Data
After having filtered and classified the data, the framework should provide a means for the client
to interact with the resulting data. In this section, several ways to do so are compared, after which
we decide which path to take.
The system should be intuitive and easy to use. Since the interface should allow the user to update
the information displayed on the map (relation and city properties), performance of the interface
is also a parameter we need to consider in our choices. We considered the following three options
because they match best with the client’s experience and preferences:

4.6.1 Design for a Query Language
One possibility is to let the client query the data. For this, we propose a simple, easy to use query
language specific to the domain of research. It has the following syntax:

! Logical NOT operation
& Logical AND operation
| Logical OR operation

(A&B) Grouping of clauses
A > R > B Relation R between cities A and B

In figure 4.5, an example is shown that queries the ”Shopping” relation between Rotterdam
and Amsterdam and between Rotterdam and Den Haag.

4.6.2 Design for a Query Composer Interface
Another possibility is to offer the client a query composition interface. This interface would have
the same functionality as the previously mentioned query language, but is more intuitive to use
for new users. An example of the interface is given in figure 4.6.

Figure 4.6: Example interface for the query composer
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4.6.3 Design for Querying Interactively
The last option we investigated is an interactive approach to querying data. For this, the client
interacts with a map containing relations and cities. A very simple example is given in figure 4.7
and 4.8.

Figure 4.7: Example 1 of an interactive map

Figure 4.8: Example 2 of an interactive map

In this setup the user clicks on cities and relations on the map. This event triggers a query on
the back-end and the resulting data is visualised on the map. An example of such an event is to
show information about the selected city.

4.6.4 Deciding on the Implementation
Together with the client, we conclude that the best option to go with is the interactive map. This
way, the client has easy access to the data and this pattern of interaction best suits the work flow
that the client envisioned prior to the project. The user does not have to write or compose a com-
plex query in advance but can do it directly on the map. Thus, retrieving a visual representation
of several cities, interconnected with multiple relations, only involves selecting cities and relations
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on the map. Interaction directly with the map also reduces the need to go to a separate page to
compose a query. This speeds up the use of the system by reducing page loads and it interrupts
the work flow of the user less.

4.7 Visualising the Data
This section focuses on the visual representation of the processed data. This should be done in
way that is easy to comprehend for users and helps them to interpret the data. To reach these
goals, we identified the client’s needs and desires. We have discussed the preferences of the client
and have drawn up a plan, which we present below.

4.7.1 Representing the Data Graphically
Since we are dealing with strongly related data, it is a natural choice to represent the data as a
graph. We chose, together with the client, to show the nodes and relations on a geographical
map. Visualising cities on a map is intuitive to the user and we believe this will increase the ability
of users to interpret the information in a productive manner.

4.7.2 Using Geographical Maps
We investigated two map libraries we can use to display our data on a map. The first one is
Google Maps, which can be used freely and offers a lot of customisation options. The API is well
defined and some of the group members have previously worked with it. The second option we
investigated is Leaflet. Leaflet is an open-source JavaScript library that provides responsive maps.
It also has fine grainedAPI and lots of plugins available. Both libraries arewell suited for our needs.
However, we decided to go with Google Maps, because of the experience of the group members.
Another reason to go with Google Maps is the amount of community support. This reasoning is
best supported by the fact that querying ”Google Maps” on StackOverflow.com returns 100.000+
results, while querying ”Leaflet” gives us around 13000 results.

4.7.3 Handling Map Clutter
One of the challenges of visualising networks, as stated in [2], is the occurrence of so-called map
clutter. Map clutter means the network is displayed as an incomprehensible set of nodes and
edges.

Users should be able to select what information they want to display. This will be included in
the system by allowing the user to select cities and relations, enabling them to filter nodes and
edges. The use of different sizes for nodes and edges or other attributes that are displayed can
convey extra information to the user. We will use this to represent, for example, city population
and exact strengths of relations. We will use colours to represent different types of relations and
utilise colour intensity and opacity to represent the strengths of these different types of relations.
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Figure 4.1: High-level overview of the system
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Figure 4.5: Example interface for the query language



5
Implementation

5.1 Downloading and Parsing Indices
As can be seen in figure 4.1, the first step of the process is to download data from Common
Crawl. This requires functions that will parse the Common Crawl indices and gather the data that
correspond to these indices.

Figure 5.1: UML Diagram of downloading and parsing classes

The parsing of indices and downloading of the data depends on the IndicesSelector and
PageDownloader classes. Methods from these classes are called by the TextDownloader, as can be
seen in figure 5.1. The classes contain workers that can be run using the run_workers()method.
This method utilises the Python multiprocessing1 library to run workers in parallel. Parallelising
these workers speeds up the downloading of partial WARC files and parsing of Common Crawl
indices.

The first step in parsing the Common Crawl indices is to filter out the indices that have a HTTP
Status Code 2 other than 200, as only indices with this HTTP Status Code are useful.
1 def _useful_responsecode(self, index):
2 # Check responsecode of index to determine if it’s useful to download
3 # the part. HTTP 200 is useful, other than 200 will be discarded.
4 if index:

1https://docs.python.org/3.5/library/multiprocessing.html
2https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
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5 return True if int(index[’status’]) == 200 else False
6 return False
7
8 def _clean_indices(self, indices):
9 # Removes useless entries with status code other than 200
10 for index in indices:
11 if not self._useful_responsecode(index):
12 indices.remove(index)

Listing 5.1: Initial implementation

At first, a simple implementation was used as can be seen in listing 5.1. However, remov-
ing an element from a Python list has a time complexity of O(n). Since the implementation of
clean_indices() loops over all indices and removes it if it has status code other than 200, this
function has a complexity of O(n2). To improve on this, a regular expression to search the string
for the status before parsing to JSON is used. This way, the list will never contain any indices
with a HTTP Status Code other than 200. This is because the function will be called in a list-
comprehension (see listing 5.3). This adjustment resulted in a speedup of about 5.6 times com-
pared to the O(n2)method.
1 def _useful_str_responsecode(string):
2 if string:
3 return int(re.search(’\”status\”: \”(\w+)\”,’, string)
4 .group(1)) == 200

Listing 5.2: Regex solution

1 with gzip.GzipFile(filename) as gz_obj:
2 # Remove the garbage before {, parse to json and add to list
3 indices = [json.loads(’{’ + x.split(’{’, 1)[−1]) for x in
4 gz_obj.read().decode(’utf−8’).strip().split(’\n’)
5 if self._useful_str_responsecode(x)]

Listing 5.3: List comprehension creating list of indices

While parsing the index, the memory footprint of the indices is also reduced with use of the
method from listing 5.4. Parsing every key of the index to JSON means the resulting JSON dic-
tionary is 480 bytes, where the size of the stripped index is 288 bytes. The size of the objects is
determined using the Python built-in sys.getsizeof()method.
1 def _remove_keys(json_dict):
2 # Strip all key−value pairs other than digest, length, offset & name
3 return {k: v for k, v in json_dict.items()
4 if k in [’digest’, ’length’, ’offset’, ’filename’]}

Listing 5.4: Reducing memory footprint

5.2 Filtering the Data
The next step in the process is filtering documents as explained in section 4.3 and can be seen
in figure 4.1. The implementation depends on the pyahocorasick library, which checks the page
and tries to match strings within the page. We can supply this class with a list of cities which the
Aho-Corasick algorithmwill try tomatch. By default the application will retrieve a list of cities from
the database and use this list to find matches in the text.

The implementation seemed straightforward at first, however, it became apparent that the
algorithm matched sub-strings. For example, if a text contains ”Leidende Amsterdammers” the
Aho-Corasick algorithmwouldmatch because of the sub-strings ”Amsterdam” and ”Leiden”. How-
ever, this should not be amatch because ”Leidende” is a verb. To solve this we added an additional
check in the co-occurrence filtering which can be seen in listing 5.5. However, this might result in
discarding documents that do contain interesting relations. This was the best way to get rid of a
lot of false positives that we found within the short time span of the project.
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1 for end, name in names:
2 # Skip words that contain city names (e.g. Amsterdammers)
3 if page[prev_end + 1] in ’abcdefghijklmnopqrstuvwxyz’:
4 prev_end, prev_name = end, name

Listing 5.5: Additional check to prevent substring matches

Another problem that surfaced during the implementation of the co-occurrence check was
the fact that Aho-Corasick is designed to be multi-matching. This means that it matches every
occurrence of a city in the text, where we were interested in which cities were found in the text
but not if it was foundmultiple times. Therefore, the result of the Aho-Corasick algorithmwas put
into a set to solve this problem.

5.3 Classification
This section describes howwedevelopedour interface for classifying documents. First, wewill first
give a short overview of the classification part of the application. Next, we discuss how classifiers
are defined. Then we will discuss how classifiers are created or loaded in the application. Finally
we will discuss the interface that accepts documents and returns a prediction of the category or
categories associated with the supplied document.

5.3.1 Overview
In figure 5.2 we give a concise overview of the classification subsystem. The UrbanSearch API is
used to classify documents by loading an instance of the ClassifyText class on startup. Further-
more the API offers the possibility to create new (default) classifiers or to modify existing classi-
fiers.
The ClassifyText object uses an implementation of the ModelManager class to predict categories
of documents.

Figure 5.2: UML Diagram depicting the interaction between the API and the classification subsystems

5.3.2 Scikit Pipelines
As explained in section 4.4 we decided to use the Scikit-Learn library for all our classification func-
tionalities. A key concept of Scikit is the so called Pipeline. A Pipeline in Scikit is an assembly
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of intermediate transform steps, combined with a final estimator 3. The intermediate transforms
the input data to get the best perfomance out of the final estimator. In listing 5.6 we show an
example of a Pipeline that we use in the system.

1 sgdc = Pipeline([
2 (’tfidf’, TfidfVectorizer(stop_words=sw.words(’dutch’))),
3 (’select’, SelectPercentile(f_classif)),
4 (’clf’, SGDClassifier(alpha=0.0001,
5 average=False,
6 class_weight=None,
7 epsilon=0.1,
8 eta0=0.0,
9 fit_intercept=True,
10 l1_ratio=0.15,
11 learning_rate=’optimal’,
12 loss=’log’,
13 n_iter=5,
14 n_jobs=1,
15 penalty=’l2’,
16 power_t=0.5,
17 random_state=None,
18 shuffle=True,
19 verbose=0,
20 warm_start=False))
21 ])

Listing 5.6: SGDC Pipeline

This Pipeline consists of three parts. The ”tfidf”-part transforms a text into amatrix of words with
corresponding TF-IDF scores (which are calculated first using the training set). The ”select”-part
selects the top ten percent of features which were returned by the previous transform, in our case
the TfidfVectorizer transform. For this particular Pipeline this means that 10 percent of the
features with the highest TF-IDF score are returned. Finally, the ”clf”-part is the final estimator.
For this Pipeline it is an SVM (see 4.4) that uses stochastic gradient descent (SGD) training [4].
Gradient descent tries to find the minimum of a cost function by traversing the function in the
opposite way of the descent and does this step by step. SGD takes random (stochastic) steps
which works more efficient when dealing with large data sets. The fully defined pipeline can now
be used to train the classifier. This is done by inputting a set of data with corresponding expected
outputs.

5.3.3 ModelManagers
Toprovide an easyway toworkwith Scikit Pipelines, we implemented autility class called ModelManager.
The ModelManager is a super class that should be used to implement algorithm specific Pipelines,
while providing easy to use interfaces for loading, saving, training andpredicting. Listing 5.7 shows
a snippet of the ModelManager base class.
1 class ModelManager(object):
2 ”””
3 ModelManager base class.
4 Should only be used to load saved models from disk.
5 If a file name is passed this file will be used to load a pickled
6 classifier from that location on disk.
7 ”””
8
9 def __init__(self, filename=None):
10 super(ModelManager, self).__init__()
11 self.x_train = []
12 self.y_train = []
13 self.x_validate = []
14 self.y_validate = []
15 self.x_test = []
16 self.y_test = []

3http://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html

http://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
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17
18 self.clf = self.load(filename) if filename else None
19
20 def load(self, filename):
21 ”””
22 Load the classifier from the supplied file
23
24 :param filename: the file containing the pickled classifier instance
25 :return: a Scikit classifier object
26 ”””
27 with open(os.path.join(MODELS_DIRECTORY, filename), ’rb’) as f:
28 return pickle.load(f)

Listing 5.7: ModelManager base class

The base class can be used to implement specific ModelManagers which define a Pipeline with
a final estimator of choice, like the MultinomialNB (Multinomial Naive Bayes) estimator used in
listing 5.8.

1 class MNBModelManager(ModelManager):
2 ”””
3 An implementation of the ModelManager base class which uses a Multinomial
4 Naive Bayes classifier as its default classifier.
5 ”””
6
7 def __init__(self, filename=None):
8 super().__init__(filename)
9
10 if not filename:
11 self.clf = Pipeline([
12 (’tfidf’, TfidfVectorizer(stop_words=sw.words(’dutch’))),
13 (’anova’, SelectPercentile(f_classif)),
14 (’clf’, MultinomialNB())
15 ])

Listing 5.8: ModelManager using the Multinomial Naive Bayes estimator

The MNBModelManager inherits all the load, save, predict and train functionality of the base class.
The base class can be used to load saved classifiers from disk. This is done by providing the
ModelManager class with a file name on initialisation. If the file is found, the classifier is loaded
from disk and ready to be used.

5.3.4 ClassifyText Interface
Most of the time we do not want to be busy creating and training classifiers; we want to classify
documents. To provide an interface that can be used easily to input documents and get back pre-
dictions of which category a document belongs to, we implemented the ClassifyText class. The
class loads a default classifier that should be available in the provided directory. After the class is
initialised, the predict and probability_per_categorymethods can be used to predict categories
for given documents.

The predict method, which is shown in listing 5.9, takes a document as input and returns a
prediction of the category which the inputted document best matches.

1 def predict(self, text, pre_processor=None):
2 ”””
3 Predict the class of the supplied text
4
5 :param :text the text that needs to be classified
6 :return: a prediction of the category for the passed text
7 ”””
8 if pre_processor:
9 text = pre_processor(text)
10
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11 return self.mm.predict([text])
Listing 5.9: Predict method of the ClassifyText class

1 def probability_per_category(self, text, pre_processor=None):
2 ”””
3 Predict the class of the supplied text
4
5 :param :text the text that needs to be classified
6 :return: a prediction of the category for the passed text
7 ”””
8 if pre_processor:
9 text = pre_processor(text)
10
11 return dict(zip(self.mm.clf.classes_,
12 self.mm.probabilities([text])[0]))

Listing 5.10: probability_per_category method of the ClassifyText class

5.4 Storing the Data
In this section, we discuss how the filtered documents are stored and how Neo4j was used for
storing extracted relations, following the design described in section 4.5. We discuss the storage
and graph database parts from the overview (see figure 4.1).

5.4.1 Storing Filtered Documents
The documents that pass the filtering stage can be stored for several reasons. For example, the
classifier can be retrained and might thus label documents differently. To avoid having to down-
load and process all the pages again, it is useful to store the documents on disk. If the disk is small,
it is wise to compress the documents. However, compression is a slow process, so if enough disk
space is available, storing the documents uncompressed is more feasible.

In the TextDownloader class, that was already shortly discussed in section 5.1, storage to disk
is done without compression in all cases. We did this since this project only involves a relatively
small data set, e.g. one that can be stored without the need for compression.

5.4.2 Storing Extracted Data
To be able to interact with the results of the application, it is required to store extracted relations.
The implementation of the storage follows the design of section section 4.5.1, using the graph
database Neo4j.

Neo4j Model

Themodel used for the graph structure follows the concepts described in section 4.5.4. It consists
of nodes, labels and properties. To distinguish between and to efficiently query for specific (types
of) nodes, at least one label is assigned to the node. Below, the labels we used are listed and per
label, a description of the nodes they are attached to is given:

:City Nodes labelled as :City represent the cities the application uses. These nodes contain mul-
tiple properties: name, population, longitude and latitude. Population is used in the visu-
alisation (see section 5.6) for scaling. Longitude and latitude are used to place the cities on
a map and were retrieved through the Google Maps Geocoding API4. However, this did not
work out quite well for duplicate city names. Google picks the coordinates for the city it con-
siders the most important. This was fixed manually. Indeed, this is not a feasible solution,
should there be many duplicate city names.

4https://developers.google.com/maps/documentation/geocoding/start?hl=en_US

https://developers.google.com/maps/documentation/geocoding/start?hl=en_US
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:Index Nodes with the :Index label represent documents that are found useful. Every document
has this label, in addition to the label representing the category they are classified as. The
following basic properties belong to these nodes: file name, offset and length. They point to
the exact file location where the page can be downloaded from CommonCrawl. Additionally,
the nodes contain a probability property per category. These probabilities come from the
classifier and are there for validation purposes.

Categories For each category, a label exists to separate a category from the bulk of documents.
This way, documents of a specific category can bematched against. This is particularly useful
to count, for example, the documents about ”Leisure” (and thus labelled :Leisure), that two
cities have in common. Category labels are only applied to nodes that also have the :Index
label and thus share the same properties.

The nodes are connected using relations. Cities (:City labelled nodes) occurring in documents
(:Index labelled nodes) are connected with a :OCCURS_IN relation. It is mainly used to find doc-
uments in which a pair of cities occurs. For example, the query below matches the documents
Rotterdam and Amsterdam have in common and returns the file names:
1 MATCH (:City { name: ’Amsterdam’ })−[:OCCURS_IN]−>
2 (i:Index)
3 <−[:OCCURS_IN]−(b:City { name: ’Rotterdam’})
4 RETURN i.filename

Listing 5.11: Querying documents containing two cities

Intercity relations are the relations betweendistinct :City labelled nodes and are called :RELATES_TO.
They represent what the client is actually interested in and have a property for every category,
containing the score. Additionally, the sum of the individual category scores is kept in a ”total”
property. The relations are used for exporting, visualisation and interaction. When populating
the relations, the count for every category is needed for all city pairs. Cypher, however, has no
easy way to count all labels per type. Therefore, the query to achieve the desired counts is slightly
more complex than necessary for example in a SQL based query language:
1 MATCH (:City { name: ’Amsterdam’ })−[:OCCURS_IN]−>
2 (i:Index)
3 <−[:OCCURS_IN]−(b:City { name: ’Rotterdam’)
4 WITH DISTINCT LABELS(i) as labels, COUNT(i) AS labelCount
5 UNWIND labels AS category
6 RETURN category, SUM(labelCount) AS score

Listing 5.12: Counting distinct labels

The query in listing 5.12 starts with matching all common :Index nodes between Amsterdam
and Rotterdam. Then, it collects the labels of the found nodes and counts them. However, the
issue with this is that LABELS(node) returns a list of labels. The counts (labelCount) therefore do
not represent individual labels but groups of labels. The lists are therefore expanded using UNWIND
and all counts are collected.

The full implemented model is given in figure 5.3



5.4 Storing the Data 29

Figure 5.3: The Neo4j model as implemented

During the first tests of the database functions, it appeared that matching and creating was
very slow. Checking the query plans (by means of prepending the very useful PROFILE to the
queries) gave no hints however. It turned out that we did not use parameterised queries, where
we should have. Because of this, Cypher had to recompile, plan and optimise the queries over
and over again, which is clearly unnecessary if only the query parameters change. To illustrate
the effect of this change, consider the list of cities we used, containing over 1600 cities. Matching
all of these in a single transaction by name, without parameterising the query, comes down to
repeating the following query for every city:
1 MATCH (c:City { name: ’Amsterdam’ }) RETURN c.name

Listing 5.13: Matching cities without parameterising

The same approach can be used for a parameterised query, where {name} is the parameter:
1 MATCH (c:City { name: {name} }) RETURN c.name

Listing 5.14: Matching cities without parameterising

Even for these 1600 simple matches, the improvements are already significant, as can be seen
in table 5.1.

non-parameterised 2.84s
parameterised 0.85s

Table 5.1: Parameterised versus non-parameterised total execution times

Another issue that was encountered during initial testing, is that executing only one query at a
time creates and commits a transaction for every query. This is an expensive process. Using the
parameterised query from listing 5.14 in a single transaction is a 15% performance gain, as shown
in table 5.2. Moreover, it seemed as if performance was fluctuating with a transaction per query.
However, we have not benchmarked this.

single transaction 1.07s
parameterised 0.85s

Table 5.2: Parameterised versus non-parameterised total execution times
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As will be explained later in section 5.7, we use multiprocessing to glue the system together
efficiently. However, it turned out that Neo4j did not behave correctly when nodes and relations
where matched, updated or created from multiple processes. The number of queries performed
did notmatch the number of results returned. In fact, the numbers diverged about 15%. However,
we currently suspect it is not a platform-wide issue. The server the system runs on successfully
inserted 154000 :Index labelled nodes and created all required relations, with the use of multi-
processing. We currently suspect (but cannot verify) the problem is related to the version of Neo4j
designed for macOS (which half of the group uses). However, we only discovered this close to the
deadline of the project. We therefore decided not to include multiprocessing at all for database
communication.

5.5 System API
To provide an easyway of interactingwith the back-end of the systemwedecided to develop aweb
API. With this API the different parts that compose the complete UrbanSearch system are made
easily accessible. During the development of the API we have tried to adhere to best-practices and
community standards of Apigee [27]. Appendix D contains a detailed description of the available
API routes and their functionality.

5.5.1 General Remarks
All routes in the API start with the ”/api/v1” prefix. The routes belowwill be referred to without this
prefix to keep the text concise. The API always returns a 200 status code if available, the response
body also contains a status code which indicates if a request was handled successfully.

5.5.2 Flask
TheUrbanSearch back-end is written completely in the Python programming language. To be able
to accept HTTP requests that leverage the systemweneeded a framework thatworks efficientwith
Python code. We chose Flask5, a Python microframework that lets us handle incoming requests
and use the functionalities of the UrbanSearch system.
The easy setup and good documentation, combined with the small size and efficiency made us
decide to use Flask as our web framework.

5.5.3 Blueprints
To keep our API modular we use the concept of Blueprints6. Blueprints in flask aremodules that
implement functionality which can be registered to an application. This way we can keep parts of
the API separated and relatively simple. After initialising a Blueprint, routes can be assigned to
it. An example of Blueprint is shown in listing 5.15.

1 predict_api = Blueprint(’predict_api’, __name__)
2 ct = ClassifyText()
3
4
5 @predict_api.route(’/’, methods=[’POST’], strict_slashes=False)
6 @predict_api.route(’/predict’, methods=[’POST’], strict_slashes=False)
7 @is_json
8 def predict():
9 ”””
10 API route for predicting the category of the supplied text.
11 The request should have type set to application/json and the provided JSON
12 should have a text attribute containing the text for which we want to
13 predict the category.
14 ”””

5http://flask.pocoo.org/
6http://flask.pocoo.org/docs/0.12/blueprints/

http://flask.pocoo.org/
http://flask.pocoo.org/docs/0.12/blueprints/
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15 try:
16 prediction = ct.predict(request.json[’document’])
17
18 return jsonify(category=str(prediction[0]),
19 status=200)
20 except Exception as e:
21 return jsonify(error=True,
22 status=500,
23 message=’Getting the prediction failed’)

Listing 5.15: Example code of a Blueprint used in the UrbanSearch system

5.6 Front-End
An important part of the UrbanSearch system is the part where the extracted and processed data
are visualised and made accessible to the end user. Our goals were to provide the end users with
a clear and easy to use interface. Extracted relations should therefore be visualised in a way that
is easily understandable for an end user. Another desire that was expressed by our client, was
the possibility to manipulate the displayed information in a fast, easy and intuitive way. To keep
the front-end flexible we decided to separate the front-end from the API. This way we can easily
make changes to both systems while not having to worry about breaking either system.

5.6.1 Technical Overview
In this section we will discuss some of the main technical aspects of the UrbanSearch project. We
will give an overview of and motivation for our most important design choices.

Modular Design

Dealing with huge amounts of data and displaying this data in a way that makes this easy to un-
derstand for users is a challenging task. The complexity of handling the data andmaking it easy to
manipulate by the end user means an increase in the complexity of our code. The growing desire
of our client to be able to view and manipulate the data lead us to a modular implementation of
the front-end. Besides the fact that this approach increases readability, maintainability and ex-
tensibility it is also a best practice in the front-end realm7.
Modular development means writing self-contained elements of a web page, consisting of HTML,
CSS and JavaScript. The components can be reused easily throughout the entire page and can be
initialised with different sets of data to alter their appearance or functionality.
We also used the concept of container and presentational components8. The idea behind this is
that container components are concerned with the application logic. Presentational components
on the other hand, are concerned with how elements looks, e.g. the styling and appearance of
elements.

NodeJS

We chose NodeJS as the backbone of our front-end server. The fact that NodeJS is easy to setup
and has a lot of modules that are quickly accessible through NPM9 was one of the main reasons
for selecting NodeJS. Having a server running in a matter of minutes is a big advantage for a short
project.
Another advantage of using NodeJS is the availability of tools like Webpack and Gulp. Webpack10
is a module bundler for NodeJS that provides us with the ideal infrastructure for modular devel-
opment. It allows us to bundle JavaScript code in different files, containing only the required code

7https://developers.google.com/web/fundamentals/
8https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0
9https://www.npmjs.com
10https://webpack.js.org/concepts/

https://developers.google.com/web/fundamentals/
https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0
https://www.npmjs.com
https://webpack.js.org/concepts/
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for a specific page. Gulp11 is a task runner for NodeJS that allows for tasks such as compiling HTML
templates that can later be used in the front-end. Another example of a Gulp task is bundling the
CSS of all the modules to one file.

ExpressJS

To handle the routing of incoming requests in the front end we use ExpressJS12. ExpressJS is a
minimal NodeJS web framework that can be set up and extended easily. With over ten million
downloads per month it can be considered a community standard. It allows for easy and clean
routing using the Routing module, and next to that, custom middelware can be added easily per
route or for the whole app.

5.6.2 User Interfaces
In this section we will provide an overview of the different interfaces that we implemented. We
will start with the main interface, the interactive map that shows the extracted relations. Next,
we will discuss the document classification interface. Finally we will present the system settings
interface that we implemented.

Interactive Map

The main part of the front-end is the interactive map. The extracted data is visualised on a (n
almost) full-screen Google Maps map. On the map we place markers which represent cities and
we draw poly-lines which represent relations between the cities. Only cities that have more than
500 documents in total associated with them are displayed on the map. This way we keep the
front end performance up while preventing unnecessary map clutter.

Figure 5.4: View on page-load of the interactive map

On the right side of the interface a ”Map Controls” card is always shown. This card makes it
possible for users to manipulate the data shown on the map. Since we have two main entities
of interest (cities and relations) that are shown on the map, the controls offer an intuitive way to
control these.

11http://gulpjs.com/
12https://expressjs.com/

http://gulpjs.com/
https://expressjs.com/
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Figure 5.5: Map Controls for the interactive map - Cities

Cities are indicated by the circles on the map. The circles have a diameter that is calculated
based on the population size of the city. Figure 5.5 shows the controls for the city entities. The
slider shown in the upper part of the card allows filtering of cities based on population. All cities
that are within the range of the slider are shown, all cities not within this range will be invisible.
Besides displaying and hiding cities based on population size, users can also toggle visibility of
cities by clicking on the cities displayed in the list below the slider.
Relations are shown as poly-lines on the map. The total strength of the relation (which will be
discussed below) is used to set an opacity for the relation, as shown in figure 5.6. A low opacity
indicates a strong total strength of the relation and vice versa.

Figure 5.6: Different relation strengths are shown by adjusting opacity
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The relations controls are shown in figure 5.7. Here the user can select which relations are
considered when calculating the total relation strengths. This is done by clicking the check-boxes
next to the name of the relations. The sliders provide a way to filter the relations based on the
total relation strength of that particular relation.

Figure 5.7: Map Controls for the interactive map - Relations

The drop-down shown in the relations control interface provides a way to scale the relation
totals. For example, if we do not want the absolute count of occurrences as a measure for total
relation strength but we want it to be scaled relative to the population size of two cities. This can
be done by selecting the right option in the drop-down.
All of these features are meant to provide the user with means for constructing a visualisation
that uncovers patterns which are not (easily) visible when looking at exported numerical data.

Document Classification

The document classification interface is designed to provide an easy way of extending our data-
set which is used to train and test our classifier.
As stated in 4.4.3 we looked at several options of collecting training data.
We decided to provide our clients with a document classification interface, because we found this
was the best way to extend the training data set. This way, we have total control of the documents
that are added to the data set. The documents are labelled by experts in the field of the built en-
vironment so we may assume these documents will represent the labelled categories well.
The interface loads documents that we have deemed relevant while analysing the available Com-
mon Crawl pages. The user can select one or multiple categories which the user feels best relate
to the document, after which the document will be saved to the training set(s) corresponding to
the selected category or categories. If no category is selected, the document is discarded from the
training set. If the user finds the document to be irrelevant the document can also be discarded
immediately. An example of the interface with a document belonging in the ”collaboration” cate-
gory is shown in figure 5.8).
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Figure 5.8: The labelling interface

System Settings

Both the back-end and the front-end of the UrbanSearch system share and depend on some
default settings. To keep the system configurable, even for a user that is not a developer, we have
implemented a system settings interface (figure 5.9). The interface can be extended with more
settings easily if the need arises. This is achieved by the loose coupling of the front-end and the
API that was mentioned before. Open issues regarding the settings interface will be discussed in
7.1.5.

Figure 5.9: The systems settings interface

5.7 Main Application
To couple all functions of the system, we created a main module. This file contains functions that
call all the appropriate functions of the subsystems, thereby providing the functionality that is
desired. For example, the classify_textfiles_to_db function (see listing 5.16), which combines
filtering, classification and storing data while making use of multiprocessing to divide and speed
up the execution.



5.7 Main Application 36

1 def classify_textfiles_to_db(num_cworkers, directory, threshold, to_db=False):
2 ””” Run workers to classify all documents and output to database.
3 Database must be online, all the textfiles from the specified directory
4 will be parsed using the number of workers specified.
5 :num_cworkers: Number of consuming workers, classifying indices from the
6 queue.
7 :directory: Path to directory containing textfiles
8 :to_db: Output results to database specified in config, True or False
9 ”””

Listing 5.16: Header of a function in main.py

The most important functions in main are listed in table 5.3. These functions can be called
using the API or by adjusting the function that is called in the __name__ == "__main__"13 part of
this file.

Name Description

download_indices_for_url(url) Download all indices for a given url and return as
string.

classify_documents_from_indices(pworkers,
cworkers, directory, threshold)

Runworkers to classify all documents andonly log
results, no output to database.

classify_indices_to_db(pworkers, cworkers,
directory, threshold)

Run workers to classify all documents from a
file/directorywith indices and output to database.

classify_textfiles_to_db(num_cworkers,
directory, threshold, to_db=True)

Run workers to classify all textfiles and output to
database.

create_ic_relations_to_db(num_workers,
to_db=True)

Create intercity relations and store them in the
database if desired.

Table 5.3: Functions available in main

13https://docs.python.org/3.5/library/__main__.html
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6
Project Evaluation

In this chapter we will first discuss the testing of the system, evaluation of the classifier and eval-
uation of the final results. After this we will evaluate the fulfilment of the requirements we set up
with our client. Next we will evaluate the fulfilment of the design goals. Finally, we will give the
product evaluation and a short evaluation of the development process.

6.1 Validation and Verification
In this section, we first describe how we tested the system by means of automated and manual
testing. Next we discuss how we tried to ensure code quality by following guidelines set up by
SIG[38]. Finally we will evaluate classification results and the validity of the relation scores that
were assigned to relations between cities.

6.1.1 Testing the Application
We will test the program using four different testing methods. The first is unit testing, which tests
the individual functions in our code. Next we consider integration testing. This tells us if different
system components interact like we expect them to. Finally acceptance testing is used to verify the
clients requirements. The testing framework that we used is pytest[22], which is part of Python.

Unit Testing

Unit testing is the process of testing individual units of code for correctness. If a unit of code
depends on other parts of the system, mocks can be used to mimic this dependency. This way we
can test the functionality of all the individual components of the system, without having to rely on
correctness, or even the presence, of units of code the tested unit depends on.
In figure 6.1 a coverage report can be found, which summarises the percentage of the code that
is covered by the implemented unit tests.

Integration Testing

Integration testing uses automated tests which test how well different components of the system
work together. Do to time constraints we did not implement any integration tests.

System Testing

We also used system testing. System testing provides a more complete test of the entire system.
This means it is useful to detect faults in the overall system, but less easy to determine where
these faults may be located. System testing is done manually, which means the tests can not be
easily repeated when the system changes whilst with other testing techniques this is possible.

37
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Figure 6.1: Report of test coverage using coverage.py

Acceptance Testing

Finally we used acceptance testing to verify if the software does what the client expects it to do.
The tests are therefore executed by the client manually. These tests are derived from the system
requirements which can be found in 3.3.3.
An example is the testing of the interactive map which visualises the relations between cities.

6.1.2 SIG
SIG [38], short for Software Improvement Group, is an organisation that analyses code of software
projects. SIG tries to give insights about the quality of the analysed code. SIG has an online tool,
Better Code Hub, which rates code based on the criteria that can be found in appendix A. It is a
convenient tool, which we used during the project to verify the quality of our code was up to par.

week 5

The first feedback from SIG was in the fifth week of development. While we scored 10 out of 10
on Better Code Hub, we scored 4 out of 5 in the review we got back from SIG. The main issue with
our code was that some functions were too complex (too long, too many branches or too many
input parameters). Still they rated our code as above average maintainable.

week 9

Since the deadline of the final upload to SIG is the same as for this report, we unfortunately can
not present these results. Instead we will present the results we got from Better Code Hub, ran
on the due date of this report. This time there were two issues which resulted in a score of 8 out
of 10. The issue was that we did not keeping unit interfaces small. Meaning we had methods that
take too many input parameters. The other issue was with coupling architecture components
loosely, which is the result of our workers being used in multiple parts of the application.
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6.1.3 Evaluating the Classification
There are several ways to evaluatemachine learning algorithms. Wewill base our evaluation of the
classifier on the guidelines of the Microsoft Azure Machine Learning evaluation model [24]. These
guidelines state that binary classification can be evaluated with the following metrics: Accuracy,
Precision, Recall, F1 and AUC. Note that we will use a one vs the rest strategy, meaning the result
will be evaluated per category.

Accuracy

Accuracy is the proportion of correctly classified instances. This however is a poor indication of
how well a classifier works. For instance, if you have a test set of 100 websites, of which 90% be-
longs to Category A. Than if the classifier simply predicts all websites to belong to category A the
accuracy will be 90%. It would seem the classifier performs well, but it actually fails to classify the
other 10% of the websites correctly.
To calculate the mean accuracy of our classifier we implemented an API route that splits our com-
plete data set in random training and test samples. The training sample contains 75% of the
complete data set and the test sample contains the remaining 25%. After issuing multiple calls to
the API we calculated a mean accuracy of 79.64% for our current classifier.

Confusion Matrix

A page can belong to class A (positive), or not belong to class A (negative). If a page is labelled
by the classifier with the correct class it is called a true positive (TP) or a true negative (TN). If the
classifier labels the page incorrectly it results in a false positive (FP) or false negative (FN). This
concept is visually depicted in figure 6.2.

Figure 6.2: confusion matrix 1

Precision, Recall, F1 and UAC

The precision of the classifier is the proportion of positives that are classified correctly: TP
TP+FP .

This is used for questions such as ”Out of the pages that were classified as category A, how many
were classified correctly?”.

the recall of the classifier is used to answer the question ”What percentage of the pages that
fit category A were classified correctly?”. In other words: TP

TP+FN .
The F1 Score uses both precision and recall. It is computed by using the following formula:

F1 = 2 · precision·recall
precision+recall . The F1 score summarises evaluation in a single number. But to get an

better understanding of the behaviour of the classifier considering recall and precision on their
own is recommended. The reason for this is that the F1 score gives no information on what is the
cause for the loss of accuracy, while the scores for precision and recall give us a better insight.

1https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-evaluate-model-performance

https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-evaluate-model-performance
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Figure 6.3: Precision Recall and F1 table

The Receiver Operating Characteristic (ROC) curve and the corresponding Area Under the
Curve (AUC) value can be used to inspect the true positive rate (Recall) vs. the false positive rate

FP
FP+TN . To do this, we need the probabilities that pages are classified correctly. For each possible
threshold, the true positive rate and the false positive rate are calculated. These are plotted in a
graph, which results in something like 6.4. The closer the ROC curve is to the upper left corner, the
better the classifier’s performance is. When close to the diagonal of the plot, the classifier tends
to make predictions close to random guessing. The UAC value is the are under the ROC curve.
The ROC curves for our categories can be seen in appendix C. The low smoothness is due to the
low sample amount, nevertheless they show good results as the curves are near the upper left
corner.

Figure 6.4: ROC / UAC graph 2

6.1.4 Evaluation of Relation Scores
Evaluating relation scores is done differently. An important factor here is that cities have a natural
relation due to their geographical position [41], so one would expect cities that lie close to each
other to bemore related than cities that are located on opposite sides of the country. This natural
relation can be represented using the Gravity Model by Reilly [33]. The Gravity Model describes
that the expected relation between two cities is based on the population of the two cities and the
distance between these cities. A relation between two cities that is extracted from the data should

2https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-evaluate-model-performance
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thus expose a similar relative score as it would in the gravity model. Consider for example Ams-
terdam and Hoofddorp, two cities that lie close to each other. Amsterdam is a large city, whereas
Hoofddorp is much smaller. However, due to their close geographical position, the score that re-
sults from the Gravity Model would be high. If they turn out to have a high score in our system,
this would imply that the system scored this relation correct. Besides the Gravity Model, one can
rely on the knowledge of an expert in the field of urbanism that can judge whether an extracted
relation resembles reality. We therefore agreed with the client, which in fact is an expert in the
field of urbanism, that they would verify on a subset of relations if these resemble reality. Lastly,
the relations in the Randstad, a large urban area with the four largest cities of the Netherlands,
have been examined before in [44]. These relations can be compared to the results extracted by
the UrbanSearch system.

6.2 Evaluation of Requirements
In section 3.3.3 we declared the requirements for our program. Table 6.1 shows which of these
requirements passed or failed and why. Failed requirements are discussed in section 7.1. As can
be seen most of the requirements passed, but unfortunately some failed. Most of the failed re-
quirements are acceptable. We plan to implement the failedmust have in the last week of coding.
Since this is after the due date of this report, this fix can not be included in the report.
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Table 6.1: Requirements fulfilment

Must Haves Pass / Fail Comment

1 Mining from Common Crawl Pass Data is successfully gathered from Common
Crawl.

2 Exporting relations Fail
Due to many delays in other parts, exporting the
datawas not achievablewithin the time set for the
product.

3 Extracting relations Pass Relations are successfully extracted from docu-
ments for about 80-85 %.

4 Visualisation Pass A front-end which shows the data on a map is
ready for use.

5 Present statistics Pass The front-end presents statistics with the shown
data.

Should Haves Pass / Fail Comment

1 Hierarchical relations Fail
Since extracting relations from text documents
was more challenging than first thought, hierar-
chical relations were not included.

2 Machine learning retrainable Pass It is possible to retrain the machine learning by
feeding it a set of labelled documents.

3 Add large data sets Pass

It is possible to add large data sets, however since
it does cause an increase in time needed to run
the algorithm, we did not use a large data set for
our demo version.

4 Duplicate city names Fail
The algorithm does not take cities with duplicate
names, or names fitting to multiple cities into ac-
count, due to time constraints.

Could haves Pass / Fail Comment

1 Use Delpher Fail It is not possible to use data from Delpher unless
it is already downloaded and stored.

2 Visualisation for comparing Pass The front-end includes visualisation for compar-
ing cities and relationships to each other.

Would likes Pass / Fail Comment

1 Show all connections Fail

Theoretically it is possible to do this, but it would
result in a map on which relationships can not be
differentiated from each other due to the large
amount the system was not build for (see section
4.7.3).

2 Other than .nl data Fail The classifier is only trained on Dutch domains.

6.3 Evaluation of Design Goals
In section 3.3.2 we discussed the design goals for this project. We came up with seven design
goals on which we will reflect.

6.3.1 Credible
As stated in section 6.1.3 the classification seems to be pretty accurate except for the recall score
for collaboration and the precision value for leisure. This is most likely due to the limited amount
of training data. These positive results can also be seen in appendix C.
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6.3.2 Understandable
Together with the client we concluded the visualisation as presented in 5.6 meets their require-
ments.
Although their still remain issues with the visualisation, which are discussed in 8, especially when
visualising many relations.

6.3.3 Scalable
The main goal concerning scalability was to allow the system to process pages from domains
other than ”.nl”. Since we used Neo4J for storing relationships, which is highly scalable, storing
the relationships for domains other than ”.nl” should not be a problem. The main issue here is
that of processing other languages than Dutch.

6.3.4 Plugable Data
Thedesign goal plugable the goalwas tomake the application able to performanalysis ondifferent
data sets without the need of a developer. Whilst this is possible, the documents from other data
sets would have to be in the correct format before they can be processed. For small data sets
this might not be that much of a problem, but for larger data sets it would become very time-
consuming without the help of a developer.

6.3.5 Exportable
At this moment we have not met the design goal exportable, which was to ensure the numeric
data could be exported, for example in CSV format. Since this is not a vital part of the application,
this has not yet been included. We are however working on this and expect it to be done in the
final week of development.

6.3.6 Fast Development
Another goal was to have a fast development cycle because of the time constraints. To do this we
choose tools, applications and programming languages with which members of our team were
already familiar. Even so, some setbacks occurred which caused the cycle to slow down.

6.4 Product Evaluation
To conclude the two previous sections; we have a functioning program that consists of most vital
components. Whilst the results from the application are not exportable (yet), the other design
goals were met. The program provides credible and understandable data which can be used to
analyse relationships between cities in the Netherlands.

6.5 Process Evaluation
In this section, we evaluate the development process, explain what methods were used and if
they were used correctly. Additionally, we discuss the collaboration with the client, the coach and
within the group.

6.5.1 Development Process Evaluation
In order to have a smooth development cycle, wemade several agreements in the beginning of the
project. All code changes had to be submitted through a pull request and needed to be reviewed
before they could bemerged into themain code base. This was enforced using the project settings
in GitHub, where branch access can be regulated. We believe that this approach has helped us to
write quality code and to make sure everyone knew what was going on.
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Furthermore, we used Travis CI3 for continuous integration. Building was automatically trig-
gered by both pull requests and normal pushes. GitHub also provides an option to require status
checks to pass before being able tomerge. However, we disabled this due to some testing stability
issues in the first few weeks of development. We did however agree to only merge when all status
checks passed. In all but a few hasty merges we managed to adhere to this agreement. Because
of the continuous integration of Travis CI, we hardly ever had to deal with unforeseen integration
problems of new features.

Travis was also configured to submit coverage reports to Coveralls4, so we could easilymonitor
how test coverage was affected by code changes. Rule of thumb was that all newly added files
should have at least 80% code coverage. Through Coveralls, we could quickly verify this.

The product development was managed using the agile development methodology Scrum.
Each week was a single sprint. We kept track of the current sprint and the product backlog in
Trello5, which helped us to have a clear overview of the product’s status. We did however notice
thatweekly sprintswere a bit too short. Usually, a sprint was too full and in the endwenoticed that
we got somewhat careless about sprints. Moreover, at times, unexpected time consuming issues
lead to not finishing the sprint at all. It might therefore be beneficial to extend sprint duration to
two weeks to allow for unexpected problems.

The systemwas initially run on a relatively small virtual private server (4GB RAM, 2 CPUs, 150GB
SSD) of one of the group members. With increasing database size, we noticed that we would
require more resources, especially RAM. We therefore asked the client to request a server of the
TUDelft thatwe could use for the application. After a fewweeks of inefficient (mis)communication,
we eventually got access to a 8GB RAM, 4CPUs, 100GB HDD virtual machine. This server meets
the minimal requirements for the system, but does not provide enough resources if the data set
is extended to more than a million documents. Moreover, the virtualisation is not ideal for the
many disk IO the application requires. Therefore, it would have been better to have a physical
device at hand.

6.5.2 Communication Evaluation
Communication with the client went very well throughout the entire project. We could always
walk into the office with questions or remarks, or email the client if he was not present. He also
complimented uswhenever he liked somethingwe achieved, but remained critical in his feedback.

The coach and the group had some teething problems but managed to improve quite satis-
factory on this. We received useful feedback on both the reports and design. Moreover, she kept
forcing us to keep feasibility of our solutions in mind, to make sure we kept aligned with the time
schedule.

The group communicated well over the course of the project. We agreed to be present every
day of the week between 09:00 and 17:00 to make sure everyone was involved.

3https://travis-ci.org/
4https://coveralls.io
5https://trello.com
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7
Discussion

This section is divided into two parts. First we will discuss the issues that remain. Since the classi-
fier requires somemore attention, it is discussed in a separate section. The last part of this section
is dedicated to discuss possible ethical issues this project may cause.

7.1 Open Issues
Although we managed to handle most of the issues that arose during development, some re-
main unsolved. However, we believe that with more time, we could have found a solution to
most issues. This is especially true for the classifier. Open issues with the classifier are therefore
discussed separately, in section 7.2.

7.1.1 Downloading and Parsing Indices
The downloading part of the system is arguably the easiest of all. Indeed, the issues that remain
are more related to the resources available, than to the implementation. Downloading speed is
dependent on the connection to Common Crawl. Since their data is hosted at Amazon, it might
be a lot faster to use a virtual private server from Amazon to host the system on, at least for data
collection and storage. One is then able to use the Simple Storage Server (S3)1 to retrieve data
faster from Common Crawl.

Another significant improvement is to use SSD instead of HDD storage, to speed up both read-
ing and writing of files.

A final issue is that Web developers can choose which character set they use for the page
content. We were struggling to find a fast and correct way to determine the encoding of the page
and then convert it accordingly to a general encoding. Eventually, we decided to stick to UTF-8 for
every document and ignore characters that cannot be encoded in UTF-8. However, ISO 8859-1
(also known as latin-1) is widely used in the Netherlands for special characters.

7.1.2 Filtering the Data
Filtering the downloaded documents went quite well overall, as explained in section 5.2. However,
we did leave out some important aspects. Most importantly, we had nomeans of checking on city
aliases (like ’s-Gravenhage is for Den Haag and Domstad for Utrecht). A possible solution to this
is to keep track of a list of aliases pointing to the actual name. However, since this also requires
changes further on in the system, we decided to leave this out. Additionally, we did not check for
complex occurrences of cities, such as ”Amsterdammers”, people from Amsterdam. We decided
to do this due to some large cities that are identical to or contained in commonly used words. An
example of this is the city Leiden, which translates directly to the verb ”to lead”. However, filtering

1https://aws.amazon.com/s3/
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every complex occurrence out is a too aggressive kind of filtering, resulting in discarding otherwise
useful documents.

7.1.3 Storing the Data
Storing the data efficiently turned out to be slightly harder than expected due to the many issues
we faced. The issues that were overcome are discussed in section 5.4. There are some that have
been left open. The most structural issue is that after all, a graph database is a bit overkill for our
purposes. We traverse nodes with only a maximum depth of two (for documents in which both
city A and city B occur). Such traversals are not complex and might even perform better in a SQL
database with foreign keys.

Besides, we did not manage to get the database speed that we expected to reach. This could
have to do with the fact that we use the HTTP transactional endpoint instead of the internal API,
which is only available for the Java programming language. Perhaps it would have been better to
write the database code in Java instead of in Python to use this internal API. To some extent this
also has to do with the fact that we do not have a physical server with a modern SSD at hand to
run the database on. This would increase reading and writing speeds significantly.

7.1.4 System API
The most prominent issue with the system API is the lack of authentication and authorisation.
This can lead to serious security issues, since anyone can send requests to the API and make the
system execute operations. User authentication and authorisation can be added easily2 but was
left out unfortunately due to time constraints.

Another issue that is left for the API is that it does not provide all the functionality that may be
wanted in the (near) future. Again this is because of time constraints, which forced us to imple-
ment only the routes that were needed for the minimum viable product.

7.1.5 Front-End
Themain issue in the front end is that settings interface is not connected yet to the API. Thismeans,
although we do have the setup for the interface, that submitting a setting from the interface does
not trigger a call to the API.

Furthermore, we have small styling issues. For example, relations that have a really small total
score are almost invisible when visualised on the map. Fixing this would be done by adjusting the
scaling function, which takes the total relations score and scales it to an number between 0 and
1 relative to the maximum total relation score. Scaling now is done by taking the square root of
total_score/max_total_score.

One last issue is the styling of the loaded document in the classification interface. To display
the document we load it into a HTML <pre> tag. The <pre> tag displays text like it was formatted,
otherHTML tags skipwhite space and line breaks. SinceweparseHTMLpages to plain text, we end
up with documents that have a lot of white space and line breaks. This leads to barely readable
text, an example is shown in figure 7.1. This can be fixed by pre-processing the documents before
they get loaded into the <pre> tag. This will not harm the validity of the data set since we do not
alter any meaningful content.

2https://realpython.com/blog/python/token-based-authentication-with-flask/
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7.2 Classification 47

Figure 7.1: Example of barely readable text in a <pre> tag

7.1.6 Main Application
Combining all components of the system into a full-fledged main application went fine overall.
However, a few features were left out that in fact should have been present. For example, there
is no decent way for invoking the application via the command line. The code has to be adjusted
depending on what part of the system should be started. Moreover, not every part of the system
is configurable and we have no progress indication if the system is running. However, we believe
these features can be easily added in future versions. It was therefore not our top priority to
include them.

7.2 Classification
In this section wewill discuss some of the issues that are prevalent in the classification subsystem.
First we will talk about the modest size of our data set. After that we will discuss how selecting a
threshold proved to be a more difficult task then envisioned at the start of the project. Finally we
will explain how this threshold lead to difficulties with assigning categories to documents.

7.2.1 Data Set
One of the main issues, if not the main issue, of the classification subsystem was the lack of qual-
ity documents in our data set. Finding documents that describe our categories well, proved more
challenging than envisioned at first. This was one of the reasons why we implemented the classi-
fication interface in section 5.6. The disadvantage of this method is that it takes an individual to
manually assign categories to the documents that get loaded into the interface. Since we were
busy developing most of the time we did not have a lot of time to categorise documents. Also our
client had a busy schedule which lead to the modest size of our data set.

Another issue concerning the data set is the fact that, to construct a fair classifier, we need
data sets of equal size for all the categories. While this is easy to implement, it does mean that we
are forced to use only the number of documents of the category data set of minimal size for every
category. So if for example ”shopping” has the least documents, lets say 50, we can use only 50
documents of every category data set.

7.2.2 Threshold
We use our trained classifier to estimate the probabilities of a document belonging to each avail-
able category. From the probabilities calculated by the classifier, we can decide which categories
are assigned to the document in question. We do this by using a threshold which tells us what
the minimum probability of a document belonging to a category is, that leads to assigning that
category to the document.
To decide the optimal threshold, we would need to manually examine results of multiple runs to
decide on the ideal value for the threshold. Unfortunately we did not have the time to do this,
which means we had to decide on the threshold rather arbitrarily.
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7.2.3 Ambiguity of Document Subject
An issue flowing from the issue with deciding on a solid threshold is that of it leads to documents
being classified ambiguously. The fact that we do not have a solid threshold which we can rely
on means documents may get added to categories they do not belong to, or that documents
are assigned to one category, for example ”shopping”, while they also should be tagged with the
category of ”transportation” for example.

7.3 Ethics
In this section some of the ethical issues with respect to the developed product are discussed.
First, possible issues with storing web data are discussed. Next, we discuss the potential conse-
quences of extracted relations.

7.3.1 Storage of Data
One of the ethical issues is the storage of web pages. Although these pages are accessible to
anyone at the time of downloading, this might change in the future. The owner of the original
web page may have good reason to delete the original page, however, this does not mean it is
deleted from the local storage of our application. Another issue with storing the web pages lo-
cally is a potential violation of copyright. As Thelwall et al. stated, ”web crawlers ostensibly do
something illegal: They make permanent copies of copyright material (Web pages) without the
owner’s permission.”[40] Because we store copies of the web data that has been crawled and
stored by Common Crawl, the same applies to our application.

7.3.2 Consequences of Extracted Relations
Another issue is that it is unknown how the results of the application will be used. It was designed
for research purposes, but there is no way of knowing what the results will be used for. For
example, the extracted relationships show which cities are the most important in a network of
cities. This information can be used by terrorists to decide to strike in the most important city to
maximise the impact.

The results may also result in some cities becoming more popular, which means they would
grow in size. This might have a negative impact on for example the health and living conditions
of the people in these cities.
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Recommendations

In this chapter, we will give some pointers for both the back-end and the front-end as to how the
system can be extended and improved.

8.1 Extending the Back-End
In this section, we present several recommendations to improve the back-end.

8.1.1 Extending the Data Set
The input data is now limited to Dutch documents only. This limits the amount of available data
and also limits the network of cities that can be extracted from this data. In a future version, it
will be interesting to be able to parse other languages as well, starting with English. This would
require some investigation regarding stop words in English and what primarily causes false pos-
itives for semantic association of cities in English documents. Next to that, in a future version of
the application it would be interesting to be able to use other data sources than Common Crawl.
This would require a few modifications to the data storage functions, because a unique identifier
per stored document is needed. These modifications should lead to an application that is able to
use a lot more data to find relations between cities, which in turn should lead tomore reliable and
credible results.

8.1.2 Improving Document Filtering
Other than the required co-occurrence of cities, there is little noise cancelling in documents. Some
documents contain lists of cities and are cancelled out as explained in section 4.3. However, there
might be more intuitive ways for better document filtering. One could for example discard the
contents of specific HTML elements, such as forms and input fields. Moreover, some kind of
domain blacklist could be constructed to filter out entire (sub)domains that are known to contain
mostly false-positives. For example, the clientmentioned thatmany pages of Airbnbwere reviews
from people of all over the country, but represent no relation between these locations. Another
way to extend the document filtering is to have some way to allow for city aliases. By doing so,
more documents will pass the filtering stage so more relations can be extracted.

8.1.3 Constructing More Advanced Classifiers
While our classifier achieves a reasonable mean accuracy of 75% - 80% (see 6.1.3), these results
can be improved upon to reach an even higher mean accuracy. Below we will explain what we
see as potential improvements to the classifier.
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Data Set

Our first recommendation is to keep expanding the data set. This will lead to a more accurate
classifier. The classification interface can be used for this task. This way the data set can keep
getting expanded over time.

Parameter Optimisation

The estimator algorithm that we use in our Scikit Pipeline takes a number of parameters that
effect the outcomes we get back from the classifier. These parameters can be tuned as described
in 1. These parameters, so called hyper-parameters, influence theworkings of the algorithmwhich
they are associated with. Each hyper-parameter can have a lot or almost no influence on the
returned results [3]. That is why it can be of great value to run a (random) search on these hyper-
parameters after a Pipeline is defined.

Empirical Tests of Classifiers

Besides these twooptions it would be a good idea to implementmore algorithmspecific ModelManagers
and to compare the results of these different classifiers on our data set. This way we could make
sure we always select the most accurate classifier when running the classification over our down-
loaded documents.
Another improvement concerning the classifier would be to try out binary classifiers instead of a
multi-value classifier which we currently use. A binary classifier is a classifier that takes positive
inputs and negative inputs and can decide if an unseen input is in that specific class or not. This
means we would generate a binary classifier for every category that we have and run a document
through every binary classifier after which we would select the category or categories to which
this document belongs. A multi-value classifier on the contrary can label an input with multiple
classes, or categories in our case[14].

8.1.4 Upgrading the Server
As discussed in section 7.1, multiple open issues are due to the server we used, which is not as
powerful as we would have liked. For future versions, the server should be upgraded to at least
16GB RAM and preferably at least 8 CPUs, to allow for more efficient multiprocessing and to be
able to keep the database inmemory formuch faster reading. Additionally, an SSD instead of HDD
would greatly improve the database speed for both reading and writing. To speed up database
access even more, it would help to have a dedicated physical server that only runs the database.

8.1.5 Building a Command Line Interface
The delivered application provides an API and a visual interface, however, there is no command-
line interface yet. If a user knows how to program Python it would be possible to call functions us-
ing the Python interpreter, but this is far from ideal. A future version could have a CLI (Command-
Line Interface) that makes calling parts of the system fairly straightforward. For example, this
would enable a user to call just the filtering subsystem or just the classification functionality on
one or more documents. Next to that, the user could also change and run a separate configura-
tion locally to experiment with parts of the application without changing the configuration of the
application running on a server.

8.2 Extending the Front-End
An improvement in the front end that could add great value to the system, would be an interface
that lets users manipulate classifiers and data sets. The interface should allow user first of all to
select which classifier is used as the default classifier for the system. Besides that allowing a user

1http://scikit-learn.org/stable/modules/grid_search.html
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to adjust parameters of the classifier in the interface and subsequently running accuracy tests
that get displayed clearly, would add a lot of flexibility and value to the system.

Furthermore, viewing and editing the data set associated to an classifier and/or categorywould
allow for validation by human users of the system and for quick adjustments if for example a
document would be added to a wrong category by accident.

Finally, we would recommend to look for better solutions of displaying relations on the map.
Now, if we showmany cities and relations, the map basically becomes a incomprehensible clutter
of lines, as show in figure 8.1.

Figure 8.1: Example of map clutter



9
Conclusion

In the past few months we worked towards building an application to find relationships between
cities by using data from online sources.

First, in section 2 we discovered that the related work currently present is either very limited
or questionable. Next, in section 3 we identified the requirements for a solution to the problem
and discuss issues that might arise. Afterwards in sections 4 and 5 we described a framework that
satisfies the requirements and tackles the issues and the implementation of this framework. In
section 6 we discussed the fulfilment of the requirements and the design goals, and evaluated the
process. Next, in section 7 we discussed the issues we are still facing, the results of the classifica-
tion, and the ethical issues our projectmight induce. Last, in section 8wemade recommendations
for future projects on this subject.

As explained in section 6 all of the design goals, except the exporting of extracted relations,
were met. While there are still some issues, the most important requirements were also success-
fully implemented.

We can now reflect on the problem definition from 3.1: how can open data be leveraged such
that a metric for the strength of relationships between cities can be defined and visualised?

One way open data can be leveraged such that a metric for the strength of relationships be-
tween cities can be defined and visualise is as follows. First, text data is collected from a corpus
(in our case documents from Common Crawl). Each document is then checked for the occurrence
of two or more city names by using the multi-pattern string matching and is discarded if it does
notmeet this check. This selection of documents is classified according to predefined relationship
types using the SVMmachine learning algorithm. The documents are stored on disk and the rela-
tions are stored in the graph database Neo4J. The strength of relationships between two cities is
then found by counting the number of all documents for each relationship that contain the two
city names. This is visualised using a Web application.

With this, we believewehave proven the application can be an asset to the research on intercity
relations and we hope this will give our clients a tool to help with their further research.
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A
Better Code Hub Guidelines

Better Code Hub [16] checks our code according to ten guidelines:

1. Write short units of code
Units of code should be no longer than 15 lines.

2. Write simple units of code
Separate units of code should contain no more than 4 branch points (if, for, while, etc)

3. Write code once
Shared code should be extracted, either to a new unit or to a super class

4. Keep unit interfaces small
The number of parameters per unit of code should be no more than four.

5. Separate concerns in modules
Identify and extract responsibilities of large modules to separate modules and hide imple-
mentation details behind interfaces.

6. Couple architecture components loosely
minimizing the amount of interface code (e.g. by using ’abstract factory’ design pattern)

7. Keep architecture components balanced
Organize code in such a way that the number of components is between 2 and 12, and
ensure the components are of approximately equal size (keep component size uniformity
less than 0.71).

8. Keep your codebase small
Refactor existing code to achieve the same functionality using less volume, and prefer li-
braries and frameworks over ”homegrown” implementations of standard functionality.

9. Automate tests
Add tests for existing code every time you change it.

10. Write clean code
Remove useless comments, commented code blocks, and dead code. Refactor poorly han-
dled exceptions, magic constants, and poorly named units or variables.
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B
SIG Feedback

B.1 Intermediary Feedback
[Analyse]

De code van het systeem scoort 4 sterren op ons onderhoudbaarheidsmodel, wat betekent
dat de code bovengemiddeld onderhoudbaar is. De hoogste score is niet behaald door een lagere
score voor Unit Complexity.

Voor Unit Complexity wordt er gekeken naar het percentage code dat bovengemiddeld com-
plex is. Het opsplitsen van dit soort methodes in kleinere stukken zorgt ervoor dat elk onderdeel
makkelijker te begrijpen,makkelijker te testen is en daardoor eenvoudiger te onderhoudenwordt.

Omdat jullie qua score al vrij hoog zitten gaat het hier voornamelijk om kleine refactorings.
Methodes als IndicesSelector.run_workers en CoOccurrenceChecker._calculate_occurrences zou
je nog iets verder kunnen opsplitsen in functionele gebieden.

De aanwezigheid van test-code is in ieder geval veelbelovend, hopelijk zal het volume van de
test-code ook groeien op het moment dat er nieuwe functionaliteit toegevoegd wordt.

Over het algemeen scoort de code bovengemiddeld, hopelijk lukt het om dit niveau te be-
houden tijdens de rest van de ontwikkelfase.
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Collaboration Commuting

Education Leisure

Residential Mobility Shopping

Transportation

Table C.1: ROC curves per class



D
API

D.1 Classify Route: /classify
The classify route is meant as an easy means of labelling a provided document with a category
or the probabilities of said document belonging to a set of predefined categories. The available
subroutes are specified below.

/
/predict Predicts the category of the document that is submitted in the body of the request.

Request:

Method POST
Content-Type application/json

Request data:

Property Required Description
document True String containing the document that needs to be labelled

Response:

Property Description
status Status code for the response
category The category that was predicted for this document
error Boolean indicating if there was an error during the processing of the request
message Message containing extra information about the response

/probabilities Returns the probabilities of the supplied document belonging to each of the
predefined categories.

Request:

Method POST
Content-Type application/json

Request data:

Property Required Description
document True String containing the document that needs to be labelled

Response:
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Property Description
status Status code for the response
probabilities The probabilities per category that are predicted for this document
error Boolean indicating if there was an error during the processing of the request
message Message containing extra information about the response

D.2 Data-set Route: /datasets
The datasets route is meant for extending and querying information about the data-set which is
used to train classifiers.

/append Appends a document to the data-set of the category specified in the request.

Request:

Method POST
Content-Type application/json

Request data:

Property Required Description
document True String containing the document that needs to be labelled
category True String specifying the category of the data-set we want to append this document to

Response:

Property Description
status Status code for the response
error Boolean indicating if there was an error during the processing of the request
message Message containing extra information about the response

/append_all Appends a document to the data-set of all the categories specified in the request.

Request:

Method POST
Content-Type application/json

Request data:

Property Required Description
document True String containing the document that needs to be labelled
categories True List of strings specifying the categories of the data-sets we want to append this document to

Response:

Property Description
status Status code for the response
category The category that was predicted for this document
error Boolean indicating if there was an error during the processing of the request
message Message containing extra information about the response

/create Creates a data-set from all the category specific data-sets.

Request:

Method GET

Response:
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Property Description
status Status code for the response
error Boolean indicating if there was an error during the processing of the request
message Message containing extra information about the response

/create/categoryset Creates a new file for the category specified in the request. In this file
we will save the documents that are submitted for this category

Request:

Method POST
Content-Type application/json

Request data:

Property Required Description
category True The category for which we want to create a file

Response:

Property Description
status Status code for the response
error Boolean indicating if there was an error during the processing of the request
message Message containing extra information about the response

/init_categorysets Appends a document to the data-set of all the categories specified in the
request.

Request:

Method POST
Content-Type application/json

Response:

Property Description
status Status code for the response
error Boolean indicating if there was an error during the processing of the request
message Message containing extra information about the response

/lengths Returns the lengths of the different category-sets

Request:

Method GET

Response:

Property Description
lengths The lengths of the data-sets per category
status Status code for the response
error Boolean indicating if there was an error during the processing of the request
message Message containing extra information about the response
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D.3 Documents Route: /documents
The datasets route is meant for extending and querying information about the data-set which is
used to train classifiers.

/ Gets an random document from the downloaded CommonCrawl pages.

Request:

Method GET

Response:

Property Description
status Status code for the response
document String containing the contents of the randomly selected file

D.4 Indices Route: /indices
The datasets route is meant for extending and querying information about the data-set which is
used to train classifiers.

/
/download Starts the download of all indices for a given url.

Request:

Method GET

Response:

Property Description
indices String containing a list of indices
status Status code for the response
error Boolean indicating if there was an error during the processing of the request

D.5 Classify Documents Route: /classify_documents
Run workers to classify all documents and log only. All the indices from the specified directory will
be parsed using the number of workers specified.

/log_only Predicts the category of the document that is submitted in the body of the request.

Request:

Method GET
?pworkers Number of producing workers, parsing indices and adds to queue
?cworkers Number of consuming workers, classifying indices from the queue
?directory Path to directory containing indices

Response:
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Property Description
status Status code for the response
error Boolean indicating if there was an error during the processing of the request
message Message containing extra information about the response

/to_database Run workers to classify all documents and output to database. Database must
be online, all the indices from the specified directory will be parsed using the number of
workers specified.

Request:

Method GET
?pworkers Number of producing workers, parsing indices and adds to queue
?cworkers Number of consuming workers, classifying indices from the queue
?directory Path to directory containing indices

Response:

Property Description
status Status code for the response
error Boolean indicating if there was an error during the processing of the request
message Message containing extra information about the response



E
Used Libraries

For the project, we used quite some open-source libraries. Some of them are Python libraries,
others server utilities. The libraries have been split in back-end and front-end and are listed below.

E.1 Libraries Used in the Back-End
For the back-end, we used the libraries listed below. They can all be installed via pip. The links
they can be found at are constructed by substituting ”<package>” in the following URL:
https://pypi.python.org/pypi/<package>

beautifulsoup4 Used for HTML processing

flask Used for the API

neo4j-driver Used to connect to the Neo4j database via Python

nltk Used to process textual documents

pyahocorasick Used to find co-occurrences within text

pytest Used for testing the application

pytest-cov Used to be able to see lines that have been covered in tests

PyYAML Used for system configuration

requests Used to connect to Common Crawl

scikit-learn Used for the classifier

testfixtures Used for (complex) test setup/teardown

E.2 Libraries Used in the Front-End
For the front-end, we used the libraries listed below, which can all be installed through npm. The
links they can be found at are constructed by substituting ”<package>” in the following URL:
https://www.npmjs.com/package/<package>.

gulp Used for creating tasks

gulp-concat Used to concat JavaScript, CSS and HTML files

gulp-nunjucks Used for pre-compiling HTML templates
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gulp-rename Used for renaming concatenated files

mocha Used for testing the application

nodemon Used as a development server

rimraf Used for cleaning up before a new build

uglifyjs-webpack-plugin Used to make scripts unreadable by end users

webpack Bundles JavaScript files into a single file

express Provides routing functionality for NodeJS applications

nouislider Provides JavaScript and styling for sliders

nunjucks Provides a HTML templating system for dynamic HTML

watch-object Used for observer-like functionality for controlling visibility of map objects
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