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A B S T R A C T

This study delves into the interplay of residential electricity customers in low voltage distribution systems
(LVDS) with market designs that manage local grid constraints. Within this context, residential electricity
customers are self-interested agents, exposed to real-time pricing, that can invest in distributed energy resources
(DER) and participate in wholesale energy as well as ancillary service market. The study specifically evaluates
the trade-off between market design complexity and economic efficiency by examining market designs that
employ Static Limits (SLs), Dynamic Operating Envelopes (DOEs), and Distribution Locational Marginal
Pricing (DLMP) to ensure network integrity. Using a long-run equilibrium problem the study comprises
both operational and investment perspective, considering feedbacks between distribution and higher voltage
levels. The analysis reveals three key insights. Firstly, simpler market designs, namely SL-based and DOE-
based designs, can approximate the economic efficiency of DLMP-based design, contingent on the network’s
characteristics. Effective in networks comprised of shorter feeders and larger consumers, the efficacy of simpler
designs in approximating DLMP-based design diminishes in networks comprising longer feeders and numerous
small consumers. Secondly, consumer preferences play a crucial role in DOE-based design, with consumers
having a high willingness-to-pay (WTP) for grid capacity influencing economic efficiency. Thirdly, despite
differences in distribution, energy, and DER investment costs, for the majority of consumers, total costs remain
comparable across the three designs.
1. Introduction

1.1. Motivation and related work

Favourable regulatory frameworks, cost declines and technologi-
cal advancements have rendered distributed energy resources (DERs)
increasingly accessible. This has enabled a paradigm shift in the gen-
eration and consumption of power, giving rise to a growing number
of prosumers: residential electricity customers actively involved in
the production and/or storage of electricity. Aligning DERs with the
wholesale market can help unlock their full potential, fostering a more
resilient, sustainable, and consumer-centric energy system. However,
amidst market integration efforts, the interaction of self-interested
agents with low voltage distribution systems (LVDS) introduces a nu-
anced challenge. Uncontrolled, this interaction holds the potential to
violate physical as well as operational network limits at the local
level, underscoring the imperative for mechanisms that can effectively
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1 In this work import/export refers to agent’s offtake/injection.

manage local grid constraints. To fully harness the benefits of DERs,
it is essential not only to integrate them into the wholesale market but
also to judiciously manage their interactions at the local level, ensuring
the stability and reliability of the network infrastructure.

In safeguarding the integrity of the network, it is crucial that the
mechanisms devised for this purpose remain technology-neutral and
forward-looking [1]. Central to this is the recognition of consumer au-
tonomy. While granting prosumers the flexibility to manage their assets
according to their preferences and circumstances, network integrity can
be safeguarded through two mechanisms: (i) influencing the behaviours
of decision-makers with appropriate market signals, aligning DER op-
eration with system needs or (ii) directly limiting the operational
decisions consumers can make, e.g., by defining export/import limits.1

Within the second group, a straightforward approach is the imple-
mentation of static limits (SLs). Typically, with a primary focus on
restricting exports, these limits have been mandated by Distribution
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Nomenclature

Sets

 Set of conventional generators, indexed by 𝑔.
 Set of consumers, indexed by 𝑗.
 Set of network branches, indexed by 𝑙.
 Set of network nodes, indexed by 𝑛.
 Set of time steps, indexed by 𝑡.
𝛷 Set of phases, indexed by 𝜙.

Parameters

𝛺 Network capacity granted by network-aware market
operator, kW.

𝑁𝜙 Number of residential consumers in network con-
nected to phase 𝜙.

𝐴𝐹 𝑃𝑉
𝑡,𝑜 Availability factor of solar PV at time step 𝑡 for

orientation 𝑜.
𝐴𝐹𝑊

𝑡 Availability factor of wind at time step 𝑡.
𝑃𝑗,𝑡,𝜙 Active power demand of consumer 𝑗 at time step 𝑡

on phase 𝜙, kWh.
𝑄𝑗,𝑡,𝜙 Reactive power demand of consumer 𝑗 at time step

𝑡 on phase 𝜙, kVAR.
𝜂𝑐ℎ Charging efficiency of battery storage, %.
𝜂𝑑𝑐 Discharging efficiency of battery storage, %.
𝑃𝐻𝑉
𝑡,𝜙 Active power demand occurring at higher voltage at

time step 𝑡 on phase 𝜙, MWh.
𝑄𝐻𝑉

𝑡,𝜙 Reactive power demand occurring at higher voltage
at time step 𝑡 on phase 𝜙, MVAR.

𝐼𝐶𝑆
𝑗 Perceived, annualized investment cost of battery

storage for consumer 𝑗, €/kWh.y.
𝐼𝐶𝑆𝑖

𝑗 Perceived, annualized investment cost of battery
inverter for consumer 𝑗, €/kW.y.

𝐼𝐶𝐶
𝑔 Annualized investment cost of conventional genera-

tor 𝑔, €/MW.y.
𝐼𝐶𝑃𝑉

𝑗 Perceived, annualized investment cost of solar PV
panel for consumer 𝑗, €/kW.y.

𝐼𝐶𝑃𝑉 𝑖
𝑗 Perceived, annualized investment cost of solar PV

inverter for consumer 𝑗, €/kW.y.
𝐼𝐶𝑊 Annualized investment cost of wind farm, €/MW.y.
𝑃𝐿𝑉
𝑡,𝑛,𝜙 Active power demand occurring at low voltage at

time step 𝑡 on node 𝑛 on phase 𝜙, kWh.
𝑄𝐿𝑉

𝑡,𝑛,𝜙 Reactive power demand occurring at low voltage at
time step 𝑡 on node 𝑛 on phase 𝜙, kVAR.

𝐶𝐴𝑃 𝑆
𝑗 Maximum battery storage capacity that can be

installed by consumer 𝑗, kWh.
𝐶𝐴𝑃 𝑃𝑉

𝑗 Maximum solar PV panel capacity that can be
installed by consumer 𝑗, kW.

𝜅 Power factor.
𝑆𝑂𝐶𝐸 State of charge for battery storage at end and

beginning of each day, %.
𝑆𝑂𝐶 Maximum state of charge for battery storage, %.
𝑆𝑂𝐶 Minimum state of charge for battery storage, %.
𝑉 𝐶𝑃

𝑔 Variable cost of active power production of conven-
tional generator 𝑔, €/MWh.

𝑉 𝐶𝑄
𝑔 Variable cost of reactive power production of

conventional generator 𝑔, €/MVAR.

System Operators (DSOs) in response to high solar PV penetration,
aiming to reduce overvoltage and line congestion. Few currently rec-
ognize the importance of integrating export policies with import ones.
2

Primal variables

𝑒𝑗,𝑡 Energy content of battery storage of consumer 𝑗 at
time step 𝑡, kWh.

𝑐𝑎𝑝𝑆𝑗 Battery storage capacity installed by consumer 𝑗,
kWh.

𝑐𝑎𝑝𝑆𝑖𝑗 Battery inverter capacity installed by consumer 𝑗,
kW.

𝑐𝑎𝑝𝐶𝑔 Installed capacity of conventional generator 𝑔, MW.
𝑐𝑎𝑝𝑃𝑉𝑗 Solar PV panel capacity installed by consumer 𝑗, kW.
𝑐𝑎𝑝𝑃𝑉 𝑖

𝑗 Solar PV inverter capacity installed by consumer 𝑗,
kW.

𝑐𝑎𝑝𝑊 Installed capacity of wind farm, MW.
𝑐ℎ𝑗,𝑡 Energy charged to battery storage by consumer 𝑗 at

time step 𝑡, kWh.
𝑑𝑐𝑗,𝑡 Energy discharged from battery storage by consumer

𝑗 at time step 𝑡, kWh.
𝑐𝑎𝑝𝐷𝑂𝐸

𝑗,𝑡,𝜙 Capacity of dynamic operating envelope of con-
sumer 𝑗 at time step 𝑡 on phase 𝜙, kW.

𝑝𝑠𝑗,𝑡 Active power exchange of battery storage of con-
sumer 𝑗 at time step 𝑡, kWh.

𝑝𝑖𝑗,𝑡,𝜙 Active power grid import/export of consumer 𝑗 at
time step 𝑡 on phase 𝜙, kWh.

𝑝𝑐𝑔,𝑡,𝜙 Active power generation of conventional generator
𝑔 at time step 𝑡 on phase 𝜙, MWh.

𝑝𝑠𝑗,𝑡 Active power generation from solar PV panel of
consumer 𝑗 at time step 𝑡, kW.

𝑝𝑤𝑡,𝜙 Active power generation of wind farm at time step 𝑡
on phase 𝜙, MWh.

𝑞𝑖𝑗,𝑡,𝜙 Reactive power grid import/export of consumer 𝑗 at
time step 𝑡 on phase 𝜙, kVAR.

𝑞𝑐𝑔,𝑡,𝜙 Reactive power generation of conventional genera-
tor 𝑔 at time step 𝑡 on phase 𝜙, MVAR.

𝑞𝑠𝑗,𝑡 Reactive power generation from solar PV inverter of
consumer 𝑗 at time step 𝑡, kW.

Dual variables

𝜇𝑡,𝜙 Network capacity price at time step 𝑡 on phase 𝜙,
€/kW.

𝜆𝑃𝑡,𝑛,𝜙 Active power price at time step 𝑡 on node 𝑛 and
phase 𝜙, €/MWh.

𝜆𝑄𝑡,𝑛,𝜙 Reactive power price at time step 𝑡 on node 𝑛 and
phase 𝜙, €/MVAR

As highlighted by Neetzow et al. [2], the advent of storage, or electric
vehicles (EVs), can contribute to both import and export stresses if no
preventive mechanisms are in place. While most study the enforcement
of SLs as a percentage of installed solar PV capacity [2–4], few explore
the more technology-neutral approach of enforcing SLs at customer
connection points.

One example would be the work of Azim et al. [5], which, from
a purely operational perspective, disregarding branch rating limits,
investigates the impact of a non-optimally set, 5 kW export limit within
a P2P market in a real LV distribution network. This study reflects
common practice where region-wide static limits are imposed on cus-
tomer connections. Disregarding factors like unbalanced generation and
customer load variation, these limits are identical for all consumers
in the network, as exemplified by Energex’s 5 kW export and 10 kW
import limits in South East Queensland [6]. While the SL approach
minimizes communication requirements and is easy for consumers to
interpret, it has drawbacks, such as being overly conservative and
leading to the underutilization of DERs [7]. Moreover, these static
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limits, derived from worst-case scenarios, may hinder the full capacity
utilization of the network [8].

In addressing the limitations of static limits, the concept of Dynamic
Operating Envelopes (DOEs) has garnered increased attention in recent
years. A DOE can be defined as a time-varying principled allocation of
available hosting capacity [9]. When applied to customer connection
points, DOEs constrain the total behind-the-meter power flows, defining
export and import limits that vary over time. Literature comparing SLs
and DOEs has underscored the advantages of adopting the more dy-
namic approach [8,10–15]. The static limits employed in these studies
mirror those used in real-life in certain jurisdictions, lacking optimality
and assurance of network integrity [8]. Moreover, only [8] looks at the
comparison between DOEs and SLs, both export and import. With the
exception of [15] which considers investments in DER, the remaining
studies focus on an operational perspective. In all studies, prices are
exogenous to the models, disregarding how the system may adapt due
to decisions made at distribution level. By not considering the most
ample static limit that ensures network-feasible consumer decisions, the
main conclusion is then that DOEs, unlike SLs ensure network integrity
and enable more efficient utilization of network hosting capacity, with
higher penetration of distributed generation. Additionally, [8,10,12–
14] neglect the reactive power flexibility that can be provided by smart
inverters to potentially enable greater active power export [11].

DOEs introduce complexity to the system compared to SLs, requiring
more active management. Their calculation as well as communica-
tion may be a non-trivial multi-period problem that need be accurate
and scalable for distribution systems with many nodes [16].Various
methods exist for DOE calculation. Examples include the use of dis-
tribution system state estimation for capacity-constrained optimiza-
tion [17], decentralized frameworks using voltage measurements and
forecasts [18] and linearized unbalanced three-phase optimal power
flow models [19]. Additionally, several ways of allocating DOEs exist,
favouring technical performance, fairness or consumer preferences.
Studies [13,14] involve the use of an optimal allocation algorithm
which maximizes how much capacity can be allocated to connection-
points as a whole. Fairness-oriented methods, demonstrated in [10,12,
16,20], unlike technical methods, avoid large discrepancies in DOE size
between customers.2 Alternatively, the preference-based approaches
resent in literature, explicitly consider consumer/aggregator prefer-
nces through negotiation of DOEs with DSOs, as presented in [8,21].
or example, in [8], although neglecting the network’s branch rating
onstraints in their sequential approach, a DER merit order is created,
here desired bids and DOEs are communicated to the DSO who

hen allocates greater grid capacity to those bids that will be more
ompetitive in wholesale market. Consumer preferences can also be
onsidered implicitly through pricing of network capacity, thereby
reserving greater privacy [22,23]. Importantly, pricing network ca-
acity not only ensures fairer cost allocation, wherein consumers with
igher demands during peak times pay more, aligning with the actual
osts of providing necessary capacity, but also establishes a market-
riven mechanism for the optimal utilization of the electrical grid. This
ethod, along with others considering consumer preferences, is the
ost economically efficient strategy within the current discourse on
OE allocation, falling at the cusp between approaches (i) influencing

he behaviours of decision-makers with market signals and (ii) limiting
he operational decisions consumers can make.

Exemplifying the approach of influencing decision makers with
ppropriate market signals, distribution locational marginal prices
DLMPs) have been labelled as the ‘gold standard’ in efficient short-
un signals [24], yielding greatest economic efficiency and optimal
etwork use. In theory, DLMPs guarantee maximum system social

2 This is in contrast to technical methodologies wherein some connection
oints, particularly those farthest from the substation, can end up with no
etwork capacity.
3

surplus as they reflect the true value of an additional unit of con-
sumption/generation at a specific location (node) in the network,
motivating system-optimal operational and investment decisions [25,
26]. A plethora of studies have shown how DLMPs can be used to
manage network constraints and indicate where prospective DER ought
to connect as well as how they should be sized [27–31]. A typical
assumption in studies focusing on nodal pricing for the distribution
level is that the wholesale electricity price set at the slack node is
exogenous to the model. There is no feedback between actions at
the distribution level and those at higher voltage levels, nor any
consideration of how they may influence overall price formation.

It is crucial to recognize that the accuracy of a DLMP and its
components (energy price, congestion price, voltage support price and
loss price) are intrinsically linked to the fidelity of the underlying
power flow model, involving a delicate balance between computational
efficiency and precision in representing the complexities of the power
network. To overcome the computational complexity and challenges
of deriving meaningful prices, brought by the non-convexities of alter-
nating current optimal power flow (ACOPF), several studies, including
ours, have proposed to obtain DLMPs for congestion management via
linear approximations [32–34]. Nonetheless, the implementation of
DLMPs in real-life introduces significant complexities. Advanced com-
munication and control infrastructure for real-time data exchange and
price signalling are required. Numerous distribution system nodes make
the operationalization of DLMPs highly resource-intensive and limited
data availability can make it challenging to calculate accurate prices.
Moreover, highly active management of the network implies deeper
ramifications on current DSO operation and planning practices [35],
requiring new regulatory and market structures. From a consumer
perspective, correctly interpreting and responding to rapidly changing
prices may be difficult, especially if unequipped with smart appliances.

Overall, the literature recognizes static limits, dynamic operat-
ing envelopes and distribution locational marginal pricing as non-
prescriptive means of ensuring network integrity within a context
of DER market participation [1,12]. However, the literature lacks a
comprehensive study that recognizes the difference in complexity of
the three approaches and quantifies the trade-off in gains in economic
efficiency that can occur between the three. Such an assessment is
crucial as it provides essential information for stakeholders to evaluate
whether the derived economic benefits justify the entailed complexity,
thereby guiding informed decision-making in the design and operation
of distribution-level energy markets. In our study, this comparison is
performed considering the impact on both operational and investment
decisions. This expands upon existing literature, which within the realm
of studies on SLs and DOEs, largely focuses on the operational per-
spective, assessing how such mechanisms influence grid reliability [11,
12,21,36]. Considering both investment and operational perspectives
is crucial because it allows for a comprehensive understanding of
how market structures impact not only day-to-day operations but also
long-term infrastructure planning. Additionally, while the transmission
level is often treated as static in existing literature, e.g. [8,15,28,31],
we explore the feedback loops between transmission and distribution
level agents. This consideration allows for mutual influence between
decisions made at either level, impacting both each other and price
formation. This approach is crucial as it can dampen differences in
economic efficiency between market designs by enabling the entire sys-
tem to adapt in response to changing distribution level market designs
and resulting consumers’ decisions. Instead of emulating limits used in
real-life, as done [8,10–15], the comparison is performed considering
the maximal permissible capacity for both SLs and DOEs in order to
have a fair comparison in terms of cost efficiency. Additionally, a high
level of technical detail is included, such as inverter reactive power,
phase imbalance, branch rating limits, voltage bounds, and losses. This
is essential because it has been shown that the maximum export values
depend significantly on the sets of network limits represented [37] and

that inverter reactive power capabilities can help amplify exports [11].



Applied Energy 372 (2024) 123804C. Gorrasi et al.
Fig. 1. Network limitations and prices as seen by a consumer on node 10, phase 1,
under SL, DOE and DLMP based designs.

1.2. Contributions

This paper fills the research gap described above by determining
the extent of cost efficiency gained by a DLMP-based market design
in comparison to the simpler alternatives. In our SL-based design,
consumers are subject to the most ample, symmetrical export and
import limits that ensure network integrity. These limits are the same
for all consumers, across all phases and do not change over time. In
our DOE-based design, consumers bid, on an hourly basis, for per-phase
network capacity. The network operator assigns network capacity based
on their willingness to pay in a pay-as-cleared auction with an hourly
and per-phase resolution, defining their operating envelope, i.e. how
much they may import as well as export on each phase. A maximal
aggregate amount of network capacity is made available per-phase,
while ensuring a network-admissible solution. In DLMP-based design,
the operational constraints of the network are embedded in the market
clearing problem via linear power flow constraints. The resulting price
signal directly reflects the network’s status to consumers. A schematic
overview of the network limitations and prices observed by a consumer
under SL, DOE and DLMP concepts, are shown in Fig. 1, with a more
detailed example present in Section 6.1. We construct a model that
captures the long-run equilibrium between suppliers and consumers
within a wholesale electricity market in which residential consumers
may participate freely. Based on this, the main contributions of this
paper are:

(a) Guidance on market design trade-offs: We provide critical
guidance to researchers, DSOs, policymakers, and regulators on
balancing the complexity in different market designs required to
ensure network integrity and potential gains in cost-efficiency.
This is the first study to evaluate the performance of SLs, DOEs,
and DLMPs, integrating both operational and investment de-
cisions of agents at both distribution and higher voltage lev-
els. This study illustrates how market design affects both daily
operations and long-term investment strategies.

(b) Incorporation of feedback between voltage levels: Our model
uniquely allows for feedback between distribution and higher
voltage levels. By integrating this feedback, and not taking the
higher voltage levels as static, we demonstrate how transmission-
level decisions can adjust to those made at the distribution
level, leading to a more accurate assessment of the efficiency
differences between market designs.

(c) Extensive comparative assessment: We implement the pro-
posed market designs across 14 non-synthetic, three-phase, un-
4

balanced European LVDS, with 10 distinct consumer placements
per network, resulting in 140 cases per market design. This ap-
proach addresses the impact of varied DER deployment scenarios
on market outcomes and investment decisions. Additionally, we
consider real and reactive power, losses, voltage, and branch
rating constraints to emulate real-world network bottlenecks,
and include a reactive power market to leverage the flexibility
of prosumers with smart inverters.

(d) Use of maximal network permissible capacity: Our study
guarantees the best-case performance of each market design
by providing the maximal, network-admissible grid capacity in
each case. This comprehensive approach ensures that we un-
derstand how close simpler designs can get to the efficiency of
DLMP-based designs when applied effectively.

Results show that (1) SL-based and DOE-based design can approx-
imate the economic efficiency of DLMP-based designs to within 1%
when applied to networks comprising shorter, more densely populated
feeders, (2) the economic efficiency of DOE-based design hinges sig-
nificantly on where consumers with high willingness to pay (WTP) for
grid capacity are located and (3) the total cost seen by consumers is
comparable across the three market designs.

1.3. Paper organization

This paper is structured as follows. Section 2 provides the model
description. Section 3 presents the solution strategy for obtaining nu-
merical results. Section 4 details the data we used as well as our
assumptions. Sections Section 5 reviews our analysis metrics. Section 6
discusses results while Section 7 concludes.

2. Model description

The model presented in this section is a simultaneous-move, one-
shot, noncooperative game in which agents are coupled through market
clearing as well as other constraints that ensure network integrity.
Firstly, we provide an overview of the modelling approach in Sec-
tion 2.1. Secondly, we detail the mathematical formulation of the
decision problem of each agent in Section 2.2.

2.1. Modelling approach

We emulate a long-run equilibrium, between consumers and pro-
ducers, on a perfectly competitive electricity market, assuming com-
plete integration of wholesale and retail. In all market designs, con-
current to the electricity market, we also consider an ancillary service
market for regulation of reactive power. Market participants have per-
fect information and are price takers. We use a Nash game framework,
analysing the strategic interactions between self-interested consumers
and large-scale producers. Through this modelling approach, we thus
find the long-run Nash equilibrium where production is attained at
lowest possible cost and system social welfare is maximized. A diagram
providing a general overview of the market structure considered in the
model can be found in Fig. 2.

The considered market participants are large scale generators and
residential consumers. Generators are not located in the LVDS, we
place them at the slack node which represents higher voltage levels
(i.e. transmission level), on the other hand, residential consumers are
located on nodes throughout the LVDS. The large scale generators
comprise three conventional assets, generalized as a base-load, mid-
load and peak-load technologies, as well as a renewable generator,
namely, a wind farm. Residential consumers are categorized as small
(single household in a detached house) or large (multiple households
in a condominium). We highlight that the latter is one entity, having
a load that is the sum of that of all households in the building. All

consumers have the ability to invest in a BESS as well as a solar PV
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Fig. 2. Overview of market structure. Market agents in light grey boxes, exogenous inputs in dark grey boxes. Variables/parameters that each agent can communicate to the
etwork-aware market operator are illustrated. The network-aware market operator balances markets, safeguards LVDS network constraints and communicates prices and/or limit
epending on market design.
ystem, the size of the assets they can invest in is proportional to the
umber of households they represent.

To endogenise the wholesale price we also include a transmission
evel load, at the slack node, reflecting demand occurring at higher
oltage levels. Throughout the LVDS there also exist small commercial
oads and loads from street-lighting, garages, lifts and the like. These
re all parameters within our model.

All agents are given annualized investment cost values. Thus, their
perational and investment decisions are made for an entire year,
ssuming that these costs will remain the same for the lifetime of the
sset they invest in. Agents are interlinked via a series of constraints
hat ensure that supply meets demand and that LVDS network limits
such as branch ratings and voltage bounds) are respected. These
onstraints fall within the competences of, what we term, a ‘network-
ware market operator’. The market operator determines active and
eactive power prices on an hourly basis with no price caps being
mposed. Consumers and generators pay or are remunerated according
o these hourly prices for imports and exports. In the DLMP-based
arket design these prices are nodal and convey information on local
etwork status, guiding consumers to respect network limits. To en-
ure network integrity in SL-based design, the network-aware market
perator communicates a static limit, equivalent across all phases, to
ll residential consumers, and in the DOE-based design communicates
n hourly, per-phase grid capacity price, determined from an aggregate
mount of capacity that, regardless of how it is distributed, ensures a
etwork-admissible solution.

While we do not account for the physical constraints of the trans-
ission network, considering dispatch and investment decisions related

o large-scale generation technologies located at the transmission level
aptures their influence on wholesale price formation. Importantly, our
odelling approach allows for the interaction between distribution and

ransmission level decisions, both operational and investment, provid-
ng a comprehensive perspective on price formation at the distribution
evel. This differs from analyses in which wholesale electricity prices
re static and unaffected by distribution level decisions.

.2. Mathematical formulation

In this section, the decision-making problem of each agent is pre-
ented in detail. Except for the market operator, all agents’ decision
5

problems are cast as optimization problems. The market operator im-
poses design-specific linking constraints that maintain (1) market bal-
ance and (2) network integrity. These constraints must be satisfied by
the solutions of other agents’ individual optimization problems. Thus,
the market operator links the decisions of all agents, ensuring overall
market clearing and network management.

Where relevant, dual variables associated with a constraint are
given between brackets. Uppercase letters are used to denote param-
eters (exogenous to the model) while lowercase letters to denote vari-
ables (endogenous to the model). Each consumer has either a single-
phase or three-phase connection to the grid. A consumer’s phases are
thus denoted by the set 𝛷𝑗 ⊆ 𝛷. For clarity’s sake we omit consumer 𝑗
and generator 𝑔 indices in the mathematical description of the decision
problem of the respective agents. Acronyms SL , DOE , DLMP and
A , found in front of equations, denote whether the equation in

question is part of SL-based design, DOE-based design, DLMP-based
design or is common to all three.

2.2.1. Consumer problem
Residential consumers, as price-takers with inelastic demand, aim to

minimize costs, which vary based on market design. In SL and DLMP-
based designs, the consumer’s objective function is shown in (1), while
(2) illustrates the function under DOE-based design. Both objectives
feature terms representing the consumer’s interaction with energy and
ancillary service markets. Active power can be imported or exported
via variable 𝑝𝑖𝑡,𝜙, and reactive power via 𝑞𝑖𝑡,𝜙. Imports and exports are
valued at prices 𝜆𝑃𝑡,𝑛,𝜙and 𝜆𝑄𝑡,𝑛,𝜙, respectively. It is important to note
that, in the DLMP-based design, prices may differ across the network’s
nodes and phases, this is not the case in SL and DOE-based designs
in which we leave the indices 𝑛 and 𝜙, yet no spatial differentiation
of prices occurs. Additionally, (2) includes a term representing the
cost of network capacity. Consumers can purchase per-phase network
capacity, 𝑐𝑎𝑝𝐷𝑂𝐸

𝑡,𝜙 , hourly at price 𝜇𝑡,𝜙, affecting their import/export
capability. All residential consumers have the option to invest in both
a BESS and a solar PV system, with separate inverters for independent
sizing decisions. They choose the total solar PV panel capacity and solar
inverter capacity, as well as the battery capacity and inverter capacity
for the BESS, according to the perceived, annualized investment cost of
each.



Applied Energy 372 (2024) 123804C. Gorrasi et al.

(
i

b

o

p
p
c
c

Eqs. (4) to (8) outline the operation of the consumer’s solar PV
system. The total installed solar PV panel capacity must not exceed
the available roof space (4). Active power generation is limited by the
product of installed panel capacity and solar availability factor (5),
accounting for orientation. Each consumer has an assumed roof orien-
tation (south, east or west). Active power output is further constrained
by the installed solar inverter capacity (6). Inequality constraints, (5)
and (6), enable the consumer to curtail solar PV output and adhere
to export/import limits. Reactive power generation or absorption is
managed by the smart inverter (7). This equation is linearized as done
by Attarha et al. [21], using 24 linear segments to overestimate the
circle with at most 0.001% error. Reactive power adjustments are only
allowed during active power generation (8).

Eqs. (9) to (18) define the consumer’s BESS, establishing investment
limits (9)–(10), energy content constraints (11)–(12), operational limits
(13)–(14), and net power exchange (15). Eqs. (16) to (18) enforce
cyclical boundary conditions, ensuring that the BESS’s energy content
corresponds to a specific state of charge, 𝑆𝑂𝐶𝐸 , at the end of each
day. Consumers manage their BESS with the objective to minimize
their overall cost, while ensuring compliance with inter-temporal and
capacity constraints.

Eqs. (19) and (20) govern the behind-the-meter active and reactive
power balances of the consumer. Power exchange with the grid is
determined by the difference between the consumer’s load3 and the
power generated or absorbed by their BESS and solar PV system. For
three-phase consumers, export/import operations occur on each phase,
assuming that such consumers have three-phase inverters with power
distribution balanced across phases [38]. This approach is enforced
mathematically by dividing the respective terms by the number of
phases |𝛷𝑗 | and aligns with existing standards [39], in which prosumers
are obliged to minimize their phase imbalance from DER.

The remaining constraints are market design specific. Eqs. (21) and
24) are part of the SL-based design, where consumer exports and
mports are bound by an equivalent limit denoted as 𝛺. This limit, in

kW, set by the market operator, ensures network limits are respected.
We assume that import and export limits are symmetrical. Only in
the rare event of the limit falling short of their inelastic demand,
consumers retain the ability to import up to their demand. Eqs. (25) to
(29) belong to the DOE-based design, where consumers purchase per-
phase network capacity, 𝑐𝑎𝑝𝐷𝑂𝐸

𝑡,𝜙 , to use for import or export. Under this
design, consumers can adjust their export/import levels hourly. Their
imports are limited by the purchased capacity plus their demand, this
ensures that consumers can always fulfil their inelastic demand, even in
cases of network capacity scarcity or monopolization on behalf of other
consumers. In all constraints pertaining to reactive power, we use a
power factor of 0.95, denoted as 𝜅, indicating that a portion of either SL
or DOE can be allocated to importing/exporting reactive power, similar
to the approach in [16]. Finally, in the DLMP-based design, locational
price signals ensure operations remain within network limits, with no
additional constraints on consumer grid interactions.4

SL DLMP min
∑

𝑡∈

∑

𝜙∈𝛷𝑗

(

𝜆𝑃𝑡,𝑛,𝜙 ⋅ 𝑝𝑖𝑡,𝜙 + 𝜆𝑄𝑡,𝑛,𝜙 ⋅ 𝑞𝑖𝑡,𝜙

)

+ investments (1)

DOE min
∑

𝑡∈

∑

𝜙∈𝛷𝑗

(

𝜆𝑃𝑡,𝑛,𝜙 ⋅ 𝑝𝑖𝑡,𝜙 + 𝜆𝑄𝑡,𝑛,𝜙 ⋅ 𝑞𝑖𝑡,𝜙 + 𝜇𝑡,𝜙 ⋅ 𝑐𝑎𝑝𝐷𝑂𝐸
𝑡,𝜙

)

+ investments (2)

3 For large consumers, the aggregate of all households’ loads in the
uilding.

4 In reality there exists a physical limit: the consumers’ connection capacity
r fuse rating. We assume that this fuse rating is non-binding.
6

p

investments = 𝐼𝐶𝑃𝑉 ⋅ 𝑐𝑎𝑝𝑃𝑉 + 𝐼𝐶𝑃𝑉 𝑖 ⋅ 𝑐𝑎𝑝𝑃𝑉 𝑖

+ 𝐼𝐶𝑆 ⋅ 𝑐𝑎𝑝𝑆 + 𝐼𝐶𝑆𝑖 ⋅ 𝑐𝑎𝑝𝑆𝑖 (3)

A 0 ≤ 𝑐𝑎𝑝𝑃𝑉 ≤ 𝐶𝐴𝑃 𝑃𝑉 (4)

A 0 ≤ 𝑝𝑝𝑣𝑡 ≤ 𝑐𝑎𝑝𝑃𝑉 ⋅ 𝐴𝐹 𝑃𝑉
𝑡,𝑜 ∀ 𝑡 ∈  (5)

A 0 ≤ 𝑐𝑎𝑝𝑃𝑉 𝑖 ≤ 𝑐𝑎𝑝𝑃𝑉 (6)

A 𝑝𝑝𝑣2𝑡 + 𝑞𝑝𝑣2𝑡 ≤
(

𝑐𝑎𝑝𝑃𝑉 𝑖)2 ∀ 𝑡 ∈  (7)

A − 𝑝𝑝𝑣𝑡 ≤ 𝑞𝑝𝑣𝑡 ≤ 𝑝𝑝𝑣𝑡 ∀ 𝑡 ∈  (8)

A 0 ≤ 𝑐𝑎𝑝𝑆 ≤ 𝐶𝐴𝑃 𝑆 (9)

A 0 ≤ 𝑐𝑎𝑝𝑆𝑖 ≤ 𝑐𝑎𝑝𝑆 (10)

A 𝑒𝑡 ≥ 𝑐𝑎𝑝𝑆 ⋅ 𝑆𝑂𝐶 ∀ 𝑡 ∈  (11)

A 𝑒𝑡 ≤ 𝑐𝑎𝑝𝑆 ⋅ 𝑆𝑂𝐶 ∀ 𝑡 ∈  (12)

A 0 ≤ 𝑐ℎ𝑡 ≤ 𝑐𝑎𝑝𝑆𝑖 ∀ 𝑡 ∈  (13)

A 0 ≤ 𝑑𝑐𝑡 ≤ 𝑐𝑎𝑝𝑆𝑖 ∀ 𝑡 ∈  (14)

A 𝑝𝑠𝑡 = 𝑐ℎ𝑡 − 𝑑𝑐𝑡 ∀ 𝑡 ∈  (15)

A 𝑒𝑡 = 𝑐𝑎𝑝𝑆 ⋅ 𝑆𝑂𝐶𝐸 𝑡 = 𝑇 (16)

A 𝑒𝑡 = 𝑐𝑎𝑝𝑆 ⋅ 𝑆𝑂𝐶𝐸 +
(

𝑐ℎ𝑡 ⋅ 𝜂
𝑐ℎ −

𝑑𝑐𝑡
𝜂𝑑𝑐

)

𝑡 = 1 (17)

A 𝑒𝑡 = 𝑒𝑡−1 +
(

𝑐ℎ𝑡 ⋅ 𝜂
𝑐ℎ −

𝑑𝑐𝑡
𝜂𝑑𝑐

)

∀ 𝑡 ∈  ⧵ 1 (18)

A 𝑝𝑖𝑡,𝜙 = 𝑃𝑡,𝜙 −
𝑝𝑝𝑣𝑡
|𝛷𝑗 |

+
𝑝𝑠𝑡
|𝛷𝑗 |

∀ 𝑡 ∈  , 𝜙 ∈ 𝛷𝑗 (19)

A 𝑞𝑖𝑡,𝜙 = 𝑄𝑡,𝜙 −
𝑞𝑝𝑣𝑡
|𝛷𝑗 |

∀ 𝑡 ∈  , 𝜙 ∈ 𝛷𝑗 (20)

SL 𝑝𝑖𝑡,𝜙 ≥ −𝛺 ∀ 𝑡 ∈  , 𝜙 ∈ 𝛷𝑗 (21)

SL 𝑞𝑖𝑡,𝜙 ≥ −𝛺 ⋅ 𝐹 ∀ 𝑡 ∈  , 𝜙 ∈ 𝛷𝑗 (22)

SL 𝑝𝑖𝑡,𝜙 ≤

{

𝛺 if𝛺 ≥ 𝑃𝑡,𝜙

𝑃𝑡,𝜙 otherwise ∀ 𝑡 ∈  , 𝜙 ∈ 𝛷𝑗
(23)

SL 𝑞𝑖𝑡,𝜙 ≤

{

𝛺 ⋅ 𝐹 if𝛺 ⋅ 𝐹 ≥ 𝑄𝑡,𝜙

𝑄𝑡,𝜙 otherwise ∀ 𝑡 ∈  , 𝜙 ∈ 𝛷𝑗
(24)

DOE 0 ≤ 𝑐𝑎𝑝𝐷𝑂𝐸
𝑡,𝜙 ∀ 𝑡 ∈  (25)

DOE 𝑝𝑖𝑡,𝜙 ≤ 𝑐𝑎𝑝𝐷𝑂𝐸
𝑡,𝜙 + 𝑃𝑡,𝜙 ∀ 𝑡 ∈  , 𝜙 ∈ 𝛷𝑗 (26)

DOE 𝑞𝑖𝑡,𝜙 ≤
(

𝑐𝑎𝑝𝐷𝑂𝐸
𝑡,𝜙 ⋅ 𝐹

)

+𝑄𝑡,𝜙 ∀ 𝑡 ∈  , 𝜙 ∈ 𝛷𝑗 (27)

DOE 𝑝𝑖𝑡,𝜙 ≥ −𝑐𝑎𝑝𝐷𝑂𝐸
𝑡,𝜙 ∀ 𝑡 ∈  , 𝜙 ∈ 𝛷𝑗 (28)

DOE 𝑞𝑖𝑡,𝜙 ≥ −𝑐𝑎𝑝𝐷𝑂𝐸
𝑡,𝜙 ⋅ 𝐹 ∀ 𝑡 ∈  , 𝜙 ∈ 𝛷𝑗 (29)

where 𝐹 =

√

1 − 𝜅2

𝜅
(30)

2.2.2. Conventional generator problem
We assume conventional generators are three-phase connected at

transmission/higher voltage levels (represented by the slack node,
𝑛 = 1). They aim to maximize profits as outlined in (31). Profit is
derived from selling active, 𝑝𝑐𝑡,𝜙, and reactive power, 𝑞𝑐𝑡,𝜙, at market
rices, subtracting operational and investment costs. Operational costs,
roportional to variable generation costs (𝑉 𝐶𝑃 , 𝑉 𝐶𝑄), and investment
osts, based on capacity investment, 𝑐𝑎𝑝𝐶 , and annualized investment
ost, 𝐼𝐶𝐶 , are considered. Generator capacity, 𝑐𝑎𝑝𝐶 , determines active

ower generation limits (33). We assume that these large synchronous
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generators are required to generate reactive power and do so main-
taining a minimum power factor, 𝜅, of 0.90, as enforced by (35), as
n [32].

A max
∑

𝑡∈

∑

𝜙∈𝛷

(

(

𝜆𝑃𝑡,𝑛,𝜙 − 𝑉 𝐶𝑃 )𝑝𝑐𝑡,𝜙

+
(

𝜆𝑄𝑡,𝑛,𝜙 − 𝑉 𝐶𝑄)𝑞𝑐𝑡,𝜙

)

− 𝐼𝐶𝐶 ⋅ 𝑐𝑎𝑝𝐶 (31)

A 0 ≤ 𝑐𝑎𝑝𝐶 (32)

A 0 ≤ 𝑝𝑐𝑡,𝜙 ≤ 𝑐𝑎𝑝𝐶 ∀ 𝑡 ∈  , 𝜙 ∈ 𝛷 (33)

A 0 ≤ 𝑞𝑐𝑡,𝜙 ∀ 𝑡 ∈  , 𝜙 ∈ 𝛷 (34)

A 𝑞𝑐𝑡,𝜙 ≤
𝑝𝑐𝑡,𝜙 ⋅

√

1 − 𝜅2

𝜅
∀ 𝑡 ∈  , 𝜙 ∈ 𝛷 (35)

2.2.3. Renewable generator problem
Like conventional generators, we assume the renewable generator

is three-phase connected at higher voltage levels (represented by the
slack node, 𝑛 = 1). The renewable generator’s objective consists in
maximizing profit (36). Profit is the revenues made from selling active
power, 𝑝𝑤𝑡,𝜙, at the prevailing market price, minus the investment
cost, equal to the amount of capacity that is invested in, 𝑐𝑎𝑝𝑊 , times
the annualized capacity investment cost 𝐼𝐶𝑊 . We assume that the
renewable generator has no variable costs. The invested capacity, and
weather conditions, embodied by the availability factor, 𝐴𝐹𝑊

𝑡 , limit the
active power output of the generator (38).

A max
∑

𝑡∈

∑

𝜙∈𝛷

(

𝜆𝑃𝑡,𝑛,𝜙 ⋅ 𝑝𝑤𝑡,𝜙

)

− 𝐼𝐶𝑊 ⋅ 𝑐𝑎𝑝𝑊 (36)

A 0 ≤ 𝑐𝑎𝑝𝑊 (37)

A 0 ≤ 𝑝𝑤𝑡,𝜙 ≤ 𝑐𝑎𝑝𝑊 ⋅ 𝐴𝐹𝑊
𝑡 ∀ 𝑡 ∈  , 𝜙 ∈ 𝛷 (38)

.2.4. Market operator constraints
We consider a network-aware market operator responsible for bal-

ncing energy and ancillary service markets while safeguarding the
hysical limitations of the grid. The manner in which the market
perator will attain demand–supply equilibrium and achieve network
dmissible operation is dependent upon the market design.

L-based design. The market operator ensures a global balance of ac-
ive and reactive power according to (39) and (40). These equations
ictate that the aggregate generation from large-scale generators and
on-residential demand at various voltage levels matches the sum of
et consumer off-take per phase, per time-step. The wholesale prices
𝑃
𝑡,𝑛,𝜙and 𝜆𝑄𝑡,𝑛,𝜙that determine the balance are the dual variables of
39) and (40). These prices remain spatially uniform across nodes and
hases. To safeguard voltage and thermal limits, the market operator
ets the magnitude of 𝛺 in the consumer’s problem (21).

SL , DOE
∑

𝑗∈
𝑝𝑖𝑗,𝑡,𝜙 =

∑

𝑔∈

(

𝑝𝑐𝑔,𝑡,𝜙
)

+ 𝑝𝑤𝑡,𝜙 + 𝑃𝐻𝑉
𝑡,𝜙

+
∑

𝑛∈
𝑃𝐿𝑉
𝑡,𝑛,𝜙

(

𝜆𝑃𝑡,𝑛,𝜙
)

∀ 𝑡 ∈  , 𝜙 ∈ 𝛷 (39)

SL , DOE
∑

𝑗∈
𝑞𝑖𝑗,𝑡,𝜙 =

∑

𝑔∈

(

𝑞𝑐𝑔,𝑡,𝜙
)

+𝑄𝐻𝑉
𝑡,𝜙

+
∑

𝑄𝐿𝑉
𝑡,𝑛,𝜙

(

𝜆𝑄𝑡,𝑛,𝜙
)

∀ 𝑡 ∈  , 𝜙 ∈ 𝛷 (40)
7

𝑛∈
DOE-based design. The market operator ensures global power balance,
as done in SL-based design, by (39) and (40). Additionally, an hourly
market for grid capacity is established, with the operator determining
the aggregate purchasable amount and the grid capacity price 𝜇𝑡,𝜙.
The tradable network capacity, governed by (41), maintains network
integrity, with the sum of purchased capacity by consumers constrained
by 𝛺, representing a certain amount of individual capacity in kW,
multiplied by the number of residential consumers connected to the
network in that phase, 𝑁𝜙. The price 𝜇𝑡,𝜙, the dual of (41), is non-zero
when the constraint is binding. Consumers’ acquisition of grid capacity
is dependent upon their willingness to pay for 𝑐𝑎𝑝𝐷𝑂𝐸

𝑡,𝜙 .

DOE
∑

𝑗∈
𝑐𝑎𝑝𝐷𝑂𝐸

𝑗,𝑡,𝜙 ≤ 𝑁𝜙 ⋅𝛺
(

𝜇𝑡,𝜙
)

∀ 𝑡 ∈  , 𝜙 ∈ 𝛷 (41)

DLMP-based design. The market operator communicates DLMPs to all
agents. These reflect the marginal cost of energy, congestion, losses
and voltage issues at each node and phase of the network. To derive
DLMPs the market operator enforces power flow constraints. The dual
of the nodal balance constraints for active and reactive power formally
give 𝜆𝑃𝑡,𝑛,𝜙and 𝜆𝑄𝑡,𝑛,𝜙. In this paper we utilize the forward–backward
sweep (FBS) linearization of the nonlinear, non-convex AC power flow
constraints, formulated by [40], available in the Julia package Power-
ModelsDistribution.jl as FBSUBFPowerModel [41]. To this formulation
we add branch power rating constraints which we linearize by means
of an inner approximation of a circle, explained in further detail in
Appendix A.

3. Solution strategy

To solve the equilibrium problem between producers and consumers
in each market design, the mixed complementarity problem (MCP)
formed from the optimization problems of each agent linked together
via coupling constraints enforced by the network-aware market opera-
tor, is recast into a single optimization problem as outlined in [42].
This so called equivalent optimization problem (EOP), comprises all
constraints from the individual optimization problems of each agent
and aims to minimize the aggregate costs present in the system. By
solving this optimization problem, we identify a Nash equilibrium. In
this equilibrium state, no single agent can unilaterally improve their
outcome given the strategies of the other agents, reflecting the optimal
allocation of resources and maximization of system social welfare. Each
market design has its own EOP, namely EOPSL, EOPDOE and EOPDLMP.
It is interesting to note that EOPDLMP corresponds to an optimal power
flow (OPF) problem. The specific OPF is a quadratic program. While
all constraints are linear there exist quadratic terms in the objective,
which will be expounded upon in detail in the subsequent section. On
the other hand, EOPSLand EOPDOE are both linear programs. Utilization
of quadratic and linear programs is a deliberate choice so duals may be
readily interpretable as prices. For the full description of each EOP the
reader is directed to Appendix B. In the following sections we detail the
process of achieving AC feasible solutions within each market design
(Section 3.1) and discuss the integration of network losses for both SL
and DOE-based designs in Section 3.2.

3.1. AC feasibility

To ensure network-admissible solutions under an AC power flow
formulation, various methods are employed. For simpler designs, the
focus is on determining the largest feasible value of 𝛺, while for DLMP-
based design, an iterative approach is utilized with the linear power

flow formulation to achieve an AC feasible solution.
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3.1.1. Parametrization of 𝛺
In SL and DOE-based designs, to provide network admissible limits

or grid capacity, the network-aware market operator sets 𝛺. In practice,
e find the full range of 𝛺 yielding AC feasible market equilibria, using

he following iterative approach:

(1) Initialization: Set 𝛺 = 0 kW
(2) Solve EOP: Solve the design’s EOP, to find the market equilibrium

under the set 𝛺, yielding optimal investment and operational
decisions of all agents.

(3) Check AC feasibility: With the hourly active and reactive power
generation and consumption decisions of agents run an AC
power flow simulation using the PowerModelsDistribution.jl pack-
age [41]. Check for voltage and branch rating violations. If vio-
lations are found, then stop, the previous 𝛺, was the maximum
value guaranteeing safe grid operation.

(4) Update 𝛺: If no violation occurred, increase 𝛺 by 0.01 kW and
repeat steps (2) and (3).

3.1.2. Successive approximation
In the DLMP-based design, the FBS linearization of power flow

constraints can either directly replace AC power flow constraints for
an approximate solution or be used as part of an iterative, succes-
sive approximation approach to yield an AC feasible solution upon
convergence [40]. We employ the latter approach. The successive
approximation is carried out using the following steps:

(1) Initialization: Set iteration count 𝑘 = 0 and use a flat-start,
whereby 𝑉 𝑘=0 = |𝑉𝑉𝑉 |∠𝜃𝜃𝜃 = [1∠0◦ 1∠ − 120◦ 1∠120◦]𝑇 , as an
initial voltage estimate for all voltages.

(2) Solve EOP: Solve EOPDLMP, in which the voltage estimate is used
to linearize the appropriate power flow equations. The solution
yields a new voltage estimate 𝑉 𝑘+1.

(3) Check convergence: Check if the stopping criterion, 𝜖, which
defines a suitable deviation between 𝑉 𝑘 and 𝑉 𝑘+1, is satisfied.
If so, stop, the solution is AC feasible.

(4) Update voltage estimate: If the stopping criterion is not satisfied,
update the voltage estimate and repeat steps (2) and (3). The
voltage estimate is updated using 𝑉 𝑘 = 𝑉 𝑘+1.

To promote convergence, quadratic terms are incorporated into the
objective function of EOPDLMP, penalizing deviations in both active and
reactive power export/import of consumers from the previous iteration.
This approach draws inspiration from the work of [40]. Eqs. (42) and
(43) define these penalty terms, in which the superscript 𝑘 denotes the
iteration and the term 𝜌𝑘 is a small weighting factor.

𝑃𝑝𝑒𝑛 =
∑

𝑡∈

∑

𝑗∈

∑

𝜙∈𝛷

(

𝑝𝑖𝑘𝑗,𝑡,𝜙 − 𝑝𝑖𝑘−1𝑗,𝑡,𝜙

)2
⋅ 𝜌𝑘 (42)

𝑄𝑝𝑒𝑛 =
∑

𝑡∈

∑

𝑗∈

∑

𝜙∈𝛷

(

𝑞𝑖𝑘𝑗,𝑡,𝜙 − 𝑞𝑖𝑘−1𝑗,𝑡,𝜙

)2
⋅ 𝜌𝑘 (43)

3.2. Accounting for network losses

In the DLMP-based design, the presence of losses is accounted
for within the optimization problem by the embedded power flow
constraints, this is not the case for SL or DOE-based design. As such,
we estimate a cost of losses using the results of the ex-post AC power
flow simulation performed to check the AC feasibility of these designs.
This estimated cost of losses is added to the resulting objective of
the respective EOP to derive a total system cost that allows for a fair
comparison between all market designs.

The estimated cost of losses, 𝐶 𝑙𝑜𝑠𝑠, has two components: 𝐶𝑔𝑒𝑛,
the cost of additional generation needed to balance losses and 𝐶𝑐𝑎𝑝,
the cost of generation capacity investments needed to provide the
additional generation, as exemplified in (44). We value additional
generation at the appropriate market price (45). The terms 𝑃 𝑙𝑜𝑠𝑠and
8

𝑡

𝑄𝑙𝑜𝑠𝑠
𝑡 represent the sum of active and reactive series losses occurring

in the network at a specific time-step. In DOE and SL-based design,
prices are uniform across nodes and phases, as such the indices 𝑛 and
𝜙 in prices may be disregarded. Furthermore, we value supplementary
generation capacity, 𝐶𝐴𝑃 𝑒𝑥𝑡𝑟𝑎, at the annualized investment cost of our
peak-load generation technology (46). To evaluate if supplementary
generation capacity is needed we check that the sum of generation plus
losses, at every time step does not exceed available generation capacity.

𝐶 𝑙𝑜𝑠𝑠 = 𝐶𝑔𝑒𝑛 + 𝐶𝑐𝑎𝑝 (44)

𝐶𝑔𝑒𝑛 =
∑

𝑡∈
𝜆𝑃𝑡,𝑛,𝜙 ⋅ 𝑃 𝑙𝑜𝑠𝑠

𝑡 + 𝜆𝑄𝑡,𝑛,𝜙 ⋅𝑄𝑙𝑜𝑠𝑠
𝑡 (45)

𝐶𝑐𝑎𝑝 = 𝐼𝐶𝑝𝑒𝑎𝑘 ⋅ 𝐶𝐴𝑃 𝑒𝑥𝑡𝑟𝑎 (46)

4. Case study: data and assumptions

The performed case study is largely based on Belgian input data,
using 2030 cost assumptions. We model an entire year with hourly
temporal resolution. For computational tractability however, we make
use of 12 representative days. Representative days were selected using
the optimization problem outlined in [43], leveraging the Julia pack-
age RepresentativePeriodsFinder.jl [44]. As inputs to the optimization
problem we provide some of the time series data that is henceforth
described.

4.1. Time series data

The time series data employed in this study comprises availability
factors for solar PV and wind energy resources, along with demand
data. Availability factors are sourced from [45], in which current as
well as potential generation for Belgian residential solar PV and wind
installations is mapped. Specifically, availability factors are provided
for south, east, and west-facing solar panels, with each residential
consumer being randomly assigned one. Additionally, in each network,
each residential consumer is allocated a demand profile from a set
of 1200 profiles generated using the open-source web tool developed
by Baetens and Saelens [46]. This tool models residential occupant
behaviour based on Belgian statistical data, encompassing active power
demand for lighting, large and small appliances, and electronics.

To incorporate demand occurring at higher voltage levels, we scale
Elia’s active power grid load data from 2017 to match the weather
year utilized in load profile generation [47]. The scaling is adjusted
to be proportional to the number of households in the network in
question, accounting for Belgium’s approximate 5 million households.
Additionally, within the LVDS, non-residential loads such as small
commercial, street lighting, and schools are present. Given the scarcity
of available demand data on these loads, we adopt the assumption
that their demand remains constant and equal to their grid connection
capacity. Across all loads, we presume a power factor of 0.95 to
calculate reactive power demand and we evenly distribute demand
across the phases of the load’s connection point. Within the LVDS,
both residential and non-residential consumers are connected in either
single-phase or three-phase. The higher voltage load is spread across
three phases and placed at the network’s slack node. For the generation
of representative days, availability factors and higher voltage demand
data were utilized.

4.2. DER parameters

All solar PV capacity is exclusively installed at residential level,
in the form of grid-connected, roof-mounted systems. The capacity
limit, 𝐶𝐴𝑃 𝑃𝑉

𝑗 , for solar PV installations stands at 10 kW for small con-
sumers. For large consumers, it scales proportionally with the number
of households they encompass. The largest condominium in the LVDS
being allocated a 𝐶𝐴𝑃 𝑃𝑉

𝑗 of 100 kW. These installation sizes align with

those observed in Belgium [48]. We project 2030 solar PV system costs
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Table 1
Techno-economic parameters for residential solar PV and BESS. The data source is
shown as either a reference or own model assumption (MA). Listed investment costs
are not annualized.

Parameter Symbol Unit Value Source

Solar PV
Investment cost €/kW 481 [52]
Lifetime years 25 [53]
PV Inverter
Investment cost €/kW 96 [52]
Lifetime years 15 [53]
BESS
Investment cost €/kWh 153 [49]
Lifetime years 18 [49]
Charging efficiency 𝜂𝑐ℎ % 95 [49]
Discharging efficiency 𝜂𝑑𝑐 % 95 [49]
Min state of charge 𝑆𝑂𝐶 % 20 MA
Max state of charge 𝑆𝑂𝐶 % 90 MA
State of charge day’s end 𝑆𝑂𝐶𝐸 % 50 MA
BESS Inverter
Investment cost €/kW 56 [49]
Lifetime years 20 [49]
Common
Discount rate % 3–7 [50]

based on 2019 data using the learning curve (LC) method detailed in
Appendix C.

Similarly, all storage capacity is installed at residential level. We
establish installation capacity limits, 𝐶𝐴𝑃 𝑆

𝑗 , of 13.5 kWh for small
onsumers, resembling a typical Tesla PowerWall. While for large
onsumers, the capacity limit scales with the number of households,
ith the largest condominium granted a 𝐶𝐴𝑃 𝑆

𝑗 of 200 kWh. Considering
n Energy-to-power (E/P) ratio of 1, these sizes are in line with those
ound in [49] for residential storage.

All costs are annualized5 to derive model inputs, 𝐼𝐶𝑃𝑉
𝑗 , 𝐼𝐶𝑃𝑉 𝑖

𝑗 ,
𝐼𝐶𝑆

𝑗 and 𝐼𝐶𝑆𝑖
𝑗 , representing consumers’ perceived, annualized invest-

ent costs in 2030. We consider varying investment risks and oppor-
unity costs, assigning a random discount rate between 3% and 7% to
ach consumer [50]. All techno-economic parameters for solar PV and
ESS are detailed in Table 1 with their appropriate sources.6

.3. Large scale generator parameters

All other generation capacity is installed at higher voltage levels,
epresented by the slack node of each LVDS (𝑛 = 1). For these gener-

ators we take data from [54], considering one renewable technology,
namely a wind farm, and three conventional technologies generalized
as base, mid and peak-load generators. These broad technology classes
are used such that no fundamentally different insights would be gained
by increasing the complexity of the model with more technologies. In
Table 2 the variable as well as annualized investment costs are shown.
Shown in Table 2 is the variable cost for active power generation, we
assume that of reactive power to be 1% of this. A common rule of
thumb in literature is that the reactive power price is below 1% of the
active power price [55].

4.4. Network data

The 14 networks utilized in this study are a subset of a compre-
hensive, real (non-synthetic) LVDS representative of a typical European
town’s network, sourced from [56]. Each of these networks represents a
distinct segment, below individual substations, within the larger LVDS.
Overall, the LVDS is a TT grounded, three-phase, four-wire grid, that,

5 Annual cost = Asset cost × Discount rate
1−(1+Discount rate)Lifetime

6 BESS-related costs are converted from source using the average 2017
xchange rate of 1 EUR = 1.13 USD [51].
9
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Table 2
Variable (𝑉 𝐶𝑃 ) and annualized investment (𝐼𝐶𝐶 ) costs of the considered large scale
generation technologies.
Source: Taken from [54].

Technology Variable [€/MWh] Investment [€/MW]

Base 36 138,000
Mid 53 82,000
Peak 76 59,000
Wind 0 76,500

for modelling purposes was reduced to an equivalent three-wire system.
All substations are connected to a single, nearly infinite source (slack
node) and all loads have either three-phase or single-phase connection.
Further detail on these networks can be found in Appendix D.

For each network under investigation, we run each market design
10 times, assigning always different discount rates and demand profiles
from the set of 1200 profiles that were created. We term these different
‘consumer placements’. As such, we analyse a total of 140 cases per
market design. Lower and upper voltage bounds are set to 0.90 and
1.05 per unit.7 In DLMP-based design, we define the stopping criterion
𝜖, the deviation in voltage between iterations, to be 1 × 10−4. For

detailed discussion on the computational complexity involved in
inding the equilibrium in each market design across different networks
nd consumer placements, please refer to Appendix E.

.5. DSO cost recovery

Recognizing that in DLMP-based design the price signal encom-
asses components beyond the energy price, payable to the DSO and
hat in DOE-based design the same occurs with payments of network
apacity, we make the assumption that, irrespective of market design,
he DSO needs to recover, in total, an amount of 400 € per consumer
nnually, as done in [57]. While this specific cost is not explicitly
ntegrated into our model, it is employed in ex-post calculations to
llow for a comparative assessment of the costs faced by consumers
n each design.

These 400 €/yr per consumer, can be recuperated through a com-
ination of variable and fixed payments, contingent upon the market
esign. Under a DOE-based design, consumers make payments to the
SO for grid capacity. In a DLMP-based design, consumers compensate

he DSO/are remunerated by the DSO based on the network price
omponent of the DLMP and their interaction with the grid. Both of
hese entail variable payments made by individual consumers, con-
ributing to the DSO’s cost recovery and mitigating the need for a fixed
omponent. Thus, in these designs, consumers make variable payments
n addition to a fixed payment used to make sure the DSO recovers, in
otal, 400 €/yr per consumer. In contrast, under the SL-based design,
ach consumer simply pays a fixed annual fee of 400 €.

. Metrics

We now introduce a series of metrics utilized in our results analysis.
n Section 5.1 we introduce the metric of Consumer Type Distribution
ndex (CTDI), used within results to classify networks. In Section 5.2
e describe the concept of Per Consumer Capacity (PCC), a metric

or standardizing the measurement of given grid capacity across DOE
nd SL-based designs. In Section 5.3 we clarify what total system cost
epresents.

7 We set tighter upper voltage bounds, to prioritize avoiding overvoltage
cenarios, which are typically more critical in terms of system stability and
quipment protection, especially given the hourly resolution of our model.
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5.1. Consumer type distribution index

We introduce a metric, named the consumer type distribution index
(CTDI), to assess the spatial distribution of consumer types along elec-
trical feeders in each network and therefore categorize the spectrum of
networks under analysis. The CTDI is defined as the weighted average
of the ratio of the number of small consumers, 𝑁𝑠𝑚𝑎𝑙𝑙, to the total
number of consumers, 𝑁𝑠𝑚𝑎𝑙𝑙 + 𝑁𝑙𝑎𝑟𝑔𝑒, for each feeder in the network,
where the weights are the lengths of the feeders. The formula for the
CTDI of a network is given by (47)–(48) where 𝐹 denotes the set of
feeders in the network.

𝐶𝑇𝐷𝐼 =
∑

𝑓∈𝐹 Feeder length × Consumer factor
∑

𝑓∈𝐹 Feeder length
(47)

Consumer Factor =
𝑁𝑠𝑚𝑎𝑙𝑙

𝑁𝑠𝑚𝑎𝑙𝑙 +𝑁𝑙𝑎𝑟𝑔𝑒
(48)

A higher CTDI value indicates that the network is characterized
y longer feeders, and these longer feeders have a larger proportion
f small consumers relative to large consumers. On the other hand, a
ower CTDI suggests that the network consists of shorter feeders, and
hese shorter feeders have a higher proportion of large consumers or
ondominiums.

.2. Per consumer capacity

In both DOE-based design and SL-based design, the parameter 𝛺 de-
ines, in the modelling approach, the per consumer amount of useable
rid capacity.8 In SL-based design, 𝛺 is translated to consumer export
nd import limits. In DOE-based design, it is translated to an aggregate,
etwork-level capacity available for purchase by consumers such that
hey may export power to the grid or supplement their withdraw
apability. Although the meaning of 𝛺 remains consistent, its range
iffers between these two designs. As such, we introduce the term per
onsumer capacity (PCC) to specify 𝛺, normalized within each design
o the range of 0 to 1. This normalization allows for a standardized
omparison, facilitating assessment on the implications that the relative
mount of useable capacity has on results.

.3. Total system cost

In this study, total system cost (TSC) is used as an indicator of eco-
omic efficiency for each market design. Total system cost is composed
f: (1) capital expenditure (CAPEX) in DER, meaning all consumer
nvestments in solar PV, BESS and respective inverters (2) CAPEX in
arge-scale generators (3) operational expenditure (OPEX) of large-
cale generators, meaning the variable cost of running the conventional
eneration technologies:

SC = CAPEX DER + CAPEX large-scale generators

+ OPEX large-scale generators (49)

SC =
∑

𝑗∈

(

𝐼𝐶𝑃𝑉
𝑗 ⋅ 𝑐𝑎𝑝𝑃𝑉𝑗 + 𝐼𝐶𝑃𝑉 𝑖

𝑗 ⋅ 𝑐𝑎𝑝𝑃𝑉 𝑖
𝑗

+ 𝐼𝐶𝑆
𝑗 ⋅ 𝑐𝑎𝑝𝑆𝑗 + 𝐼𝐶𝑆𝑖

𝑗 ⋅ 𝑐𝑎𝑝𝑆𝑖𝑗

)

+
∑

𝑔∈

(

𝐼𝐶𝐶
𝑔 ⋅ 𝑐𝑎𝑝𝐶𝑔

)

+ 𝐼𝐶𝑊 ⋅𝑐𝑎𝑝𝑊

+
∑

𝑔∈

∑

𝑡∈

∑

𝜙∈𝛷

(

𝑉 𝐶𝑃
𝑔 ⋅ 𝑝𝑐𝑔,𝑡,𝜙 + 𝑉 𝐶𝑄

𝑔 ⋅ 𝑞𝑐𝑔,𝑡,𝜙

)

(50)

8 Not be confused with the physical capacity of network branches.
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6. Results

The following sections detail the case study’s results. Considering
a single case, we first clarify what signals consumers perceive in each
market design and how this affects their investment as well as opera-
tional decisions (Section 6.1). Subsequently, in Section 6.2, the analysis
considers all cases (networks and consumer placements), in order to
assess how the three market designs drive variations in system-level
outcomes.

6.1. Consumer perspective

Across the investigated market designs, consumers are exposed to
various signals, prompting different investment and operational deci-
sions. The DLMP encourages large solar PV installations and significant
energy injections. The network capacity price in DOE-based design
results in substantial variations in who injects energy and owns DER.
In contrast, the static limit homogenizes consumer decisions.

In DLMP-based design, consumers are exposed to a composite price
known as DLMP, which includes both the energy price and other
components reflecting network constraints. We collectively term these
as a ‘network price’. The energy price, set in our model at the slack
node (𝑛 = 1), remains uniform across the network (although it may
vary across phases), whereas the network price is location-specific and
can vary by node and phase. Negative network prices indicate that
within the LVDS, network infrastructure is nearing its capacity due to
excess generation or insufficient demand.9 Conversely, positive network
prices suggest insufficient generation or high demand.10 Operationally,
negative network prices prompt consumers to increase consumption or
reduce injection, while positive prices prompt the opposite behaviour.
Fig. 3 illustrates five consumers, of type small, that are distributed
across a network. The figure details: their DER investments, their active
power injection (green) or withdraw (blue) and perceived prices in a
specific time-step of the year that was modelled. Under DLMP-based
design, Fig. 3(a), in this specific time step, Consumer 4 (C4) seeing a
DLMP of 47 euros/MWh is incentivized to inject more, while Consumer
5 (C5) seeing a DLMP of 4 euros/MWh is discouraged from doing so.
Additionally, negative network prices prompt larger BESS investments
while positive network prices deter BESS investments since greater
profit can be made from injecting solar PV power into the grid. The
minimal investment in BESS by C4 hints that he is more often subject to
positive network prices, compared to the others. Overall, pricing which
directly reflects network status encourages significant energy injection
(where/when most cost-efficient), driving substantial investments in
solar PV as well as optimal BESS investments.

In DOE-based design, consumers are exposed to a common energy
price as well as a phase-specific grid capacity price: 𝜇𝜙. The phase-
specific pricing is exemplified in Fig. 3(b). Purchasing grid capacity can
serve to (1) provide export capability and (2) amplify import capability.
The amount purchased limits the extent to which a consumer may
interact with the grid, as delineated in Fig. 3(b) by the thick circle
borders confining injection/withdraw. The occurrence of a non-zero
grid capacity price indicates that all capacity is, at that time-step, being
purchased. According to this price-based allocation dynamic, those
consumers with a higher WTP for capacity will secure their desired
amount within the bounds of what is available and essentially set the
price. This mechanism is evident in Fig. 3(b) among consumers on
phase 3. C5 dominates a significant portion of the capacity, leaving
consumers 1 and 2 with a minimal amount, where C1 foregoes being a
prosumer. A higher WTP for grid capacity corresponds with a higher

9 In practice, this signals that we are reaching upper bounds on voltage or
ranch ratings for upstream power flow.
10 In practice, this signals that we are reaching lower bounds on voltage or
ranch ratings for downstream power flow.
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Fig. 3. The three market designs from a consumer perspective. All five consumers are
f type small and situated across one network, on varying phases. We showcase their
nvestments in solar PV and BESS using coloured bars as well as their grid interaction
or a specific time step using green circles for injection and blue circles for withdraw.
hick circle borders denote a bound on injection/withdraw. The prices observed in
ach design are stated in boxes.

illingness to install solar PV capacity. Cases in which capacity is
carce and there occur large differences in WTP, result in solar PV
apacity being concentrated in the hands of few, potentially leading
o a large disparity in installation sizes and injection across consumers,
s can be noted in Fig. 3(b).

In SL-based design consumers encounter a common energy price
nd a static limit on their injection and withdraw capabilities, as
elineated in Fig. 3(c) by the thick circle borders. The absence of
patially differentiated price signals, coupled with uniform access to
rid capacity, irrespective of location or WTP, results in a homoge-
ization of consumers’ ability to interact with the grid. Consequently,
onsumers face more comparable incentives for installing DER, leading,
s shown in Fig. 3(c), to solar PV and BESS installations that resemble
ach other in size across the consumer base. In contrast to DLMP-based
r DOE-based designs, the overall size of these installations tends to
e smaller since each consumer need receive an equivalent slice of
apacity, discouraging the development of large installations geared
owards maximizing profits from injection. What is encouraged, on the
ther hand, are smaller solar PV assets consistently coupled with BESS
n order to avoid curtailment.
11
6.2. System level outcomes

In the following sections we delve into the comparison of system
level outcomes, across the three market designs, considering all 140
cases (14 networks, 10 consumer placements each). We utilize the
DLMP-based market design as the benchmark to which we compare the
DOE-based and SL-based designs. Therefore, unless specified otherwise,
terms such as ‘percentage change’ and ‘percentage point difference’,
imply the difference from DLMP-based design to simpler design.

The analysis begins with Section 6.2.1 detailing how well simpler
designs can approximate the total system cost (TSC), defined in Sec-
tion 5.3, resulting from a DLMP-based design. How well a simple design
can approximate the TSC of DLMP-based design can be directly traced
back to how much PCC can be provided, so we detail the factors
affecting PCC magnitude in Section 6.2.2 and remind the reader that a
definition of PCC can be found in Section 5.2. The factors defining PCC,
have consequences on how consumers size their solar PV installations
(Section 6.2.3), and subsequently how much total solar PV capacity is
installed (Section 6.2.4). Concurrently to solar PV, consumers, driven
by price arbitrage opportunities, invest in BESS installations which
define how much total BESS capacity is integrated in the system
(Section 6.2.5). Simpler designs systematically integrate less solar PV
than DLMP-based design. This foregone capacity is replaced with in-
vestments in large scale generation technologies, that can supersede
those made in DLMP-based design based on how much BESS capacity
is installed. This trade-off and its ramifications on the cost efficiency
of the generation mix is discussed in Section 6.2.6. The generation mix
evidently has an effect on how demand is met (Section 6.2.7) which
further defines prices discussed in Sections 6.2.8 and 6.2.9. Finally, the
operational decisions defining prices and investment decisions explain
consumer costs, discussed in Section 6.2.10.

6.2.1. TSC varies ≤ 1% across market designs
Findings indicate that simpler designs can closely approximate the

TSC, defined in Section 5.3, of DLMP-based design. This approximation
is less robust under DOE-based design. Additionally, applying a static
limit can be more economically efficient than pricing grid capacity.

Across all examined cases, simpler market designs can approximate
the TSC of a DLMP-based market design within roughly a 1% increase,
as can be seen in Fig. 4(a)–(b). The ability of a simpler design to
approximate the TSC of DLMP-based design depends on the network
type. The sloping trend, in Fig. 4(a)–(b), indicates that as the PCC
decreases, simpler market designs deviate more from approximating the
TSC of DLMP-based design. Lower PCC values typically correlate with
networks featuring a higher CTDI, i.e. networks with longer feeders and
greater proportion of small consumers.

In cases offering a high PCC, typically observed in networks with
low CTDI (shorter feeders, more condominius), the DOE-based design
closely aligns with the TSC of DLMP-based design, as exemplified in
Fig. 4(b). The TSC increase from DLMP-based to DOE-based design
in these networks can be as minimal as 0.03%. However, PCC values
in DOE-based design exhibit less consistency with varying consumer
placement compared to SL-based design, resulting in greater variability
in the percentage increase in TSC for the same network. Specifically,
this variability is more pronounced in networks with lower CDTI, as
evidenced by the blue dots in Fig. 4(b). This implies that the DOE-based
design’s approximation of DLMP-based design’s TSC is more contingent
on the demographics of grid users and their locations compared to the
SL-based design.

When directly comparing the SL-based with DOE-based design, the
latter does not consistently outperform the former in TSC. Across all
examined cases, if the PCC in the DOE-based design is 65% or less
compared that in SL-based design, applying the latter design will ensure
a lower TSC, as can be seen in Fig. 4(c) which illustrates the percentage
change in TSC between SL-based and DOE-based design as a function

of the percentage change in PCC. In all cases, the DOE-based design
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Fig. 4. Panels (a) and (b) illustrate the percentage change in total system cost (TSC), from DLMP-based to simpler design, as a function of the PCC in simpler design. Dashed
lines represent maximum, mean and minimum, while shaded region represents standard deviation. Panel (c) illustrates the percentage change in TSC between SL and DOE-based
designs as a function of the percentage change in PCC between the two designs. Point colour denotes the CTDI of a network.
consistently offers a lower PCC compared to the SL-based design. This
is attributed to the tendency of consumers with a high WTP for grid
capacity to exacerbate grid issues.

Overall, the magnitude of PCC plays a pivotal role in determining
TSC both across and within market designs. Therefore, we delve into
the factors influencing the magnitude of PCC in the following section.

6.2.2. Feeder length, distribution of grid capacity and consumer location
influence PCC

Feeder length, how grid capacity is distributed among consumers
and the location of consumers with high WTP for grid capacity are
the three main factors affecting PCC levels (definition in Section 5.2)
and subsequently TSC. Fig. 5 comprises four panels, each illustrating a
network at a specific snapshot in time—the time-step in the year where
we observe the highest voltage levels due to abundant solar power
and injection. DOE-based design and SL-based design are compared
under two consumer placements. The first placement allows for more
PCC than the second placement. This provides a visual comparison
of the network, in simpler designs, under what we term a favourable
consumer placement and an unfavourable one.

Networks with a higher CTDI, such as the one depicted, can support
only a fraction of the PCC compared to networks with lower CTDI.
This limitation arises due to the challenge of maintaining statutory
voltage levels at the ends of long feeders when consumers invest in
solar PV. Fig. 5 illustrates that voltage levels consistently peak along
the longer feeder, potentially reaching upper voltage bounds even when
PCC is limited. The reduced PCC in networks with high CTDI leads to
a diminished injection of cheap renewable energy (as we will see in
Section 6.2.7), resulting in a greater discrepancy in social welfare be-
tween the simpler design and DLMP-based design, which, through the
use of locational price signals, can successfully manage the congestion
that would otherwise trigger voltage magnitude violations. On top of
feeder length or, more generally, type of network under consideration,
market design can also affect the amount of PCC that can be provided.
This is because ensuring network integrity via capacity limits or pricing
of grid capacity has ramifications on how grid capacity is distributed
and subsequently how consumers interact with the grid. When grid
capacity is priced, those with higher WTP will take up their desired
amount, which may be relatively large. On the other hand, capacity
limits guarantee a homogeneous distribution of capacity. This is visible
in Fig. 5, by comparing panels (b) and (d), showcasing DOE-based
design, where few are injecting, vs. panels (a) and (c), showcasing
SL-based design, where many are injecting similar amounts of power.

Under DOE-based design, one or few consumers, can undermine
others’ opportunity to inject power, to the detriment of the entire sys-
tem, as reflected by the TSC of favourable vs. unfavourable placement
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in Fig. 5(b) and (d). When one or more consumers with high WTP
for grid capacity are situated in network locations prone to violating
network limits, this leads to high prices and low PCC to ensure that
network limits are respected. This outcome is showcased in Fig. 5(d), in
which the PCC is minimal, signifying high grid capacity prices. Overall,
this links back to the discussion in Section 6.2.1: what renders the
amount of PCC provided in DOE-based design more volatile than SL-
based design to consumer placement? It is specifically the location of
consumers with high WTP for grid capacity. In turn, this has direct
consequences on how robustly DOE-based design can approximate the
TSC of DLMP-based design.

The magnitude of PCC and consumers ability to interact with the
grid are key factors influencing how they invest in DER, particularly
for solar PV. We begin to dissect this in the following section.

6.2.3. Market design impacts solar PV sizing
As can be seen from Fig. 6, which illustrates consumer solar PV

and BESS investments for one feeder under two different consumer
placements, the DLMP-based design motivates several large solar PV
installations. The locational signal efficiently guides consumer inter-
actions with the grid and is therefore conducive to the development
of larger, optimally located solar PV investments. Conversely, the SL-
based design motivates many, smaller, similarly sized solar PV installa-
tions. The static, network-wide limit, imposes a threshold beyond which
larger installations are, in absence of the benefit derived from injection,
obsolete. In DOE-based design, we note that the nature of solar PV
investments is characterized by consumers’ WTP for grid capacity, due
to this, a larger variance in installation size can arise. In the event of
an unfavourable consumer placement, i.e. agents with a high WTP for
grid capacity located in areas prone to breaching network limits, high
grid capacity prices (low PCC) significantly deter solar PV investments.
This is evident from the comparison of consumer placement one and
four under DOE-based design in Fig. 6.

Additionally, we note a systematic difference in the number of
solar PV installations between SL and DLMP-based design. The total
number of solar PV installations is always greater in SL-based design
than DLMP-based design, in other words, the simpler design motivates
a more distributed approach to solar PV investments. This can be seen
in Fig. 7(a) which shows the difference in number of installations for all
networks and consumer placements as well as the percentage difference
in total installed solar PV capacity as a function of PCC. As evident
from Fig. 7(a) the siting and sizing of individual solar PV installations
has ramifications on the total amount of solar PV capacity present in
the system (and consequently TSC), we explore this in the following
section.
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Fig. 5. Network with CTDI 0.79, at time step with highest recorded voltages on phase a, under simpler designs for favourable and unfavourable consumer placements. Lines
represent network branches, circles represent network nodes and squares denote consumers (only those on phase a depicted). Node colour indicates voltage magnitude, square
colour indicates whether the consumer is injecting or withdrawing and square size denotes the magnitude of the grid interaction. The latter is normalized to the range 0–1 using
the largest observed grid interaction.
6.2.4. The DLMP fosters greater solar PV capacity
The larger, strategically placed installations incentivized by the

DLMP lead to a consistently higher total solar PV capacity. On average
across all cases, SL-based design integrates 35% less while DOE-based
design integrates 54% less solar PV capacity compared to DLMP-based
design, Fig. 7. Additionally, the higher the CTDI of a network, the lower
the PCC and the larger the decrease in solar PV capacity with respect
to DLMP-based design. While the locational signal supports efficient
operations in these more congestion-prone networks, the lower PCC
under simpler designs decreases consumer’s ability to inject into the
grid, stifling the monetary benefit of owning solar PV and therefore
discouraging investment.11 When relating this trend back to Fig. 4,

11 We highlight that a small difference in PCC, occurring, for example,
between different consumer locations within the same network, does not mean
that, in absolute terms, less solar PV will be integrated. This can be seen in
Fig. 6. However, the relative difference between simpler design and DLMP-
based design is sustained, since a lower PCC is indicative of greater congestion,
which can be better dealt with using a locational signal.
13
we note that a reduction in solar PV capacity, with respect to DLMP-
based design, mirrors the percentage increase in TSC. Besides solar PV,
consumers can also invest in BESS. We explore the mechanisms driving
the differences in BESS investments in the following section.

6.2.5. Simpler designs yield more distributed BESS
For the majority of cases in DOE-based design and all cases in

SL-based design, there is a greater number of BESS installations than
in DLMP-based design, as can be seen in Fig. 7(b) which depicts the
difference in number of BESS installations for all networks and con-
sumer placements as well as the percentage difference in total installed
BESS capacity as a function of PCC. In practice, this means that DLMP-
based design motivates a more centralized form of storage, allowing
for efficient management and control of energy flow while DOE and
SL-based designs motivate a more distributed energy storage model.
This is, to a certain extent, also reflected in Fig. 6, wherein we see
more, small installations arise in simpler designs. For SL-based design,
this, in combination with the fact that also solar PV capacity is more
distributed (Section 6.2.3), highlights that consumer’s strategy is one
with greater focus on self-consumption.
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Fig. 6. Capacity of BESS and solar PV installations for consumers on a feeder within network with CTDI 0.51, under the three market designs, two consumer placements. Bar
colour represents consumers’ variable distribution cost, this is zero in SL-based design and close to zero in DLMP-based design (due to the fact that consumers both pay and are
remunerated based on network price component of DLMP). In DOE-based design the variable distribution cost is equivalent to how much consumers spend on grid capacity in the
year.
Fig. 7. Percentage change in total installed solar PV capacity (a) and BESS capacity (b) from DLMP-based design for SL-based and DOE-based design. Triangle direction indicates
whether simpler design incorporates more or less installations with respect to DLMP-based design. Dashed lines represent minimum, mean and maximum while shaded regions
represent standard deviation.
Albeit the larger number of installations in simpler designs, Fig. 7(b),
greater total BESS capacity integration is not methodically fostered. The
primary driver for BESS investment is the opportunity for price arbi-
trage, such results indicate that no market design offers a significantly
greater opportunity than the others.

Unlike solar PV, it is not straightforward to directly correlate the
relative BESS capacity of simpler designs with how accurately they
approximate the TSC of DLMP-based design. Rather, we need to con-
sider the interplay between solar PV, BESS and large-scale generator
investments. We do so in the following section. We reiterate that in our
study, decisions made at the distribution level affect decisions made at
transmission level and vice versa.
14
6.2.6. Technology trade-offs affect cost efficiency
Simpler designs exhibit lower solar PV integration and higher TSC

than DLMP-based design. The relative difference in TSC is not ex-
cessively elevated due, in part, to the similar levels of conventional
generation capacity required by all designs. The variation in TSC across
all considered cases arises from the differing approaches in managing
reduced solar PV capacity compared to DLMP-based design; substi-
tuting it with increased BESS and conventional generation capacity
significantly escalates TSC. In Fig. 8, we illustrate the percentage
change in conventional generation capacity as a function of the percent-
age change in total installed BESS capacity. In Fig. 8(a) the colour code
denotes relative wind capacity, with respect to DLMP-based design,
while in Fig. 8(b) it denotes percentage change in TSC.
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Fig. 8. Percentage change in total installed conventional generator capacity (from DLMP-based to simpler design) as a function of percentage change in total installed BESS
capacity (from DLMP-based to simpler design). In (a) colour scale denotes the percentage change in wind capacity and in (b) it denotes the percentage change in TSC, as always,
from DLMP-based to simpler design.
While simpler market designs systematically install less solar PV
capacity compared to DLMP-based design, conventional generation
capacity remains comparable across all market designs. This can be
seen from the narrow 𝑦-axis range of Fig. 8. Comparable conven-
tional generation capacity is installed due to extended periods of time
without renewable energy generation, surpassing storage capacities.
Regardless of the solar PV capacity installed, comparable levels of
conventional generation capacity are required, across designs, to meet
demand during these periods lacking renewable energy generation.

Although no systematic increase or decrease in total BESS capac-
ity was noted between DLMP-based design and simpler designs (Sec-
tion 6.2.5), there occurs a direct substitution between conventional
capacity and BESS capacity between DLMP-based design and simpler
designs, as evidenced by the linear relation in Fig. 8. Effectively, in
simpler designs, an x% increase in BESS capacity relative to DLMP-
based design, driven by greater price arbitrage opportunities, results
in a y% decrease in conventional capacity, again relative to DLMP-
based design. Simultaneously, greater BESS capacity in simpler designs
compared to DLMP-based design is synonymous with increased wind
penetration, as can be seen from the colour scale in Fig. 8(a).

In terms of TSC, cases with conventional and BESS capacities closest
to DLMP-based design best approximate its TSC. In moving further
from the origin in any direction, the approximation of the DLMP-
based design’s TSC worsens, albeit to varying extents. Cases with less
conventional capacity, more BESS, and more wind (Q4) are less cost-
efficient, while the most cost-inefficient cases are those with more
conventional capacity, less BESS, and less wind (Q2). This can be seen
from the colour scale of data points, in Fig. 8(b).

This trend can be linked back to the CTDI of a network. In increas-
ing CTDI, synonymous with decreasing PCC, networks are unable to
integrate as much solar PV capacity as in DLMP-based design. Albeit
resulting in a less cost-efficient system, the system makes up for the
loss in solar PV with additional BESS and wind capacity, displacing
conventional generation capacity, relative to DLMP-based design (Q4).
When CTDI increases even further, and PCC decreases, networks under
simpler designs can only integrate a small fraction of solar PV capacity
compared to that in DLMP-based design. With little solar PV in the sys-
tem, the incentive for BESS investments, or price arbitrage opportunity,
also decreases, such that the system replaces missing solar PV capacity
with conventional generation capacity, foregoing BESS as well as wind
farm investments, leading to the most cost-inefficient systems (Q2).

Across market designs, changes in the generation technology mix
affect how the system meets demand, we detail how this is so in the
next section.
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Fig. 9. Percentage point difference between DLMP-based and simpler design in renew-
able (solar + wind) and conventional penetration as a function of PCC. Penetration is
defined as the portion of demand that can be satisfied from generation from respective
technologies. Dashed lines represent mean and shaded regions represent standard
deviation.

6.2.7. Simpler designs rely more on conventional generation
Compared to DLMP-based design, in simpler market designs, a lower

portion of demand is satisfied by renewable sources such as wind and
solar PV, with the latter having a larger impact on this reduction.
Under simpler designs, the system is more reliant on generation from
conventional resources. This can be seen in Fig. 9 which illustrates the
percentage point difference in penetration of generation from conven-
tional technologies and renewable technologies (solar PV and wind) for
each simpler market design as a function of PCC.

The trade-off between decreased renewable penetration and in-
creased conventional penetration is exacerbated in networks with
higher CTDI. This can be linked back to solar PV capacity, which, as
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Fig. 10. Panel (a) illustrates the difference in demand weighted average (DWA) energy price. Panel (b) illustrates, for two cases, shown as cross-shaped points in panel (a),
the energy prices observed for binned tranches of demand. Colour scale is sub-divided using the variable costs of base (36 EUR/MWh), mid (53 EUR/MWh) and peak-load (76
EUR/MWh) conventional generation technologies.
previously analysed, decreased drastically compared to DLMP-based
design for networks with higher CTDI (Section 6.2.4).

Given the very limited PCC in certain cases under DOE-based design,
a notable reduction in solar PV capacity compared to DLMP-based
design ensues, leading, in turn, to a more pronounced trade-off be-
tween increased conventional and diminished renewable penetration
compared to SL-based design.

Since the dynamics of how system demand is satisfied differs across
the market designs so too do energy prices, having ramifications on the
costs borne by consumers. In the next section we address the differences
in energy prices.

6.2.8. Simpler designs yield higher average energy prices
In Fig. 10(a), we illustrate the difference in demand weighted

average (DWA) energy price between DLMP-based design and simpler
designs for all considered cases. The DWA energy price is a measure of
the average price of energy, taking into account the variations in energy
demand across different time steps.12 If the DWA energy price is higher
for one case compared to another, it indicates that, on average, the cost
of energy is higher when considering the demand at each time step. We
can distinguish between energy price and network price within a DLMP
since the DLMP occurring at the slack node exclusively represents the
energy price, whereas at all other nodes it is the sum of energy and
network prices. We further show in Fig. 10(b) the energy prices seen
per demand level for two particular cases: a network with high CTDI
and a network with low CTDI.

12 Mathematically defined as follows, where dw𝑡 is the day weight:

DWA energy price =
∑

𝑡 Total demand𝑡 × dw𝑡 × energy price𝑡
∑

𝑡 Total demand𝑡 × dw𝑡
(51)

.
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The DWA energy price is typically higher under simpler designs
compared to DLMP-based design. Furthermore, this difference becomes
more pronounced as the CTDI of a network increases, mirroring, as
previously seen the relative reduction in solar PV capacity and renew-
ables penetration. Under simpler designs, networks with low CTDI, can
better approximate the amount of demand met by solar PV generation
in DLMP-based design, consequently resulting in similar operational
costs and energy prices. On the other hand, networks with lower CTDI,
under simpler designs, only have a fraction of the solar PV generation
present in DLMP-based design. As such, in these networks, while DLMP-
based can meet a greater portion of demand at prices that fall below the
variable cost of mid load generator, and even below the variable cost of
base load generator, a simpler design cannot, Fig. 10(b), resulting in a
higher DWA energy price. Regardless, we note that this does not yield
a largely different average DWA energy price, as the bulk of demand is
still, as exhibited in Fig. 10(b), across all designs, met at similar prices.

In DLMP-based and DOE-based design the dynamics of how system
demand is satisfied also impacts the network or grid capacity price,
which too have ramifications on costs borne by consumers. We detail
the network prices seen by consumers under DLMP-based design in the
next section. In Appendix F the reader can find further detail on grid
capacity prices seen by consumers in DOE-based design.

6.2.9. DLMPs are most beneficial in networks with longer feeders
Across the considered cases, non-zero network prices occur for no

more than 25% of the year but can, throughout the year, affect the
majority of the network. This can be observed in Fig. 11 (exclusive to
DLMP-based design) which, in panel (a) illustrates the frequency of oc-
currence of network prices in time and space. Non-zero network prices
occur especially in networks with higher CTDI. In practice, this means
that the infrastructure limits of networks comprising longer feeders,
with a greater portion of small consumers, are more readily reached
when consumers invest in DER. Implementing a DLMP-based market in
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Fig. 11. DLMP-based market network prices. Panel (a) illustrates the occurrence of non-zero network prices throughout the year (i.e. the percentage of hours in which there are
non-zero network prices) as a function of the occurrence of non-zero network prices in space (i.e. the percentage of nodes in the network witnessing non-zero network prices in
the year). Panel (b) illustrates maximum (red) and minimum (green) observed network prices per consumer placement, per network, identified via CTDI. Panel (c) illustrates the
interquartile range (IQR) of observed non-zero network prices per network, again identified via CTDI. The solid line indicates the median.
Fig. 12. Yearly consumer costs under each market design. Each box plot encompasses all consumers under all networks and consumer placements. Distribution (fixed + variable),
energy, investment and total cost are shown. Each consumers yearly cost is divided by their demand to obtain units of EUR/kWh.
these networks, signalling to consumers the occurrence of congestion
can, as seen by the ramifications on TSC (Section 6.2.1), prove more
beneficial than in networks with lower CTDI. It is important to note
that the locational aspect of DLMPs, means that network prices can
differ across the network but even between phases of the same node.

In terms of magnitude, network prices in DLMP-based design can,
in our system, range anywhere between 300 EUR/MWh and −280
EUR/MWh as depicted by the network price spreads of Fig. 11(b).
However, these are exceptional cases in which the flow of power
upstream/downstream surpasses that of a branch power rating, leading
to a bottleneck. As shown in Fig. 11(b), maximum and minimum
network prices typically oscillate between 50 and −50 EUR/MWh.
Fig. 11(c), illustrating the interquartile range (IQR) of network prices
per network, indicates that the majority of observed network prices are
negative. Signalling that LVDS limits are being reached due to local
solar PV generation, i.e. power flowing upstream. A negative network
price discourages injection from solar PV by reducing the associated
monetary benefit, this is a unique ramification that DLMP-based design
has on the profits consumers can make. We delve into further detail on
this in the next section which reviews all net costs borne by consumers.

6.2.10. Consumers experience comparable total costs across designs
Finally, we analyse the costs borne by consumers in the follow-

ing section. These costs are: energy costs, DER investment costs and
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distribution-related costs. The individual distribution cost for con-
sumers is, in DOE and DLMP-based designs, made up of a variable as
well as a fixed component.13 Fig. 12 exhibits the distribution, energy
and investment costs of all consumers under each design, as well as
the total of these three. The cost is normalized against each consumers’
demand, thus portrayed as EUR/kWh. We highlight that a consumer’s
energy cost is the sum of what he pays for withdrawing and receives
for injecting power throughout the year.

Distribution costs. Distribution fees are similar across designs. Knowing
that in SL-based design all consumers are paying 400 EUR/year, we can
say that also in DOE-based and DLMP-based design most consumers,
summing both variable and fixed payments, are paying approximately
this yearly amount. This indicates that, in total, variable distribution
payments are not significant enough to largely offset the fixed distribu-
tion payment and that the latter is, in all designs, an essential means
for DSO cost recovery.

Few consumers in DOE-based design, however, are subject to higher
distribution costs, in absolute terms, the observed maximum is of 770

13 We highlight that in DLMP-based design variable distribution payments
can be positive or negative, depending on network price and consumer
interaction with the grid.
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EUR/year. These are consumers with large solar PV assets who can
offset this distribution cost by making a profit from injecting energy
into the grid.

Energy and investment costs. The comparison of consumers’ energy costs
etween designs reveals that in DLMP-based design, median energy
osts are closest to zero, suggesting a central tendency toward lower
nergy expenses compared to both SL-based and DOE-based design.
dditionally, the box plots’ spread indicates that, in DLMP-based de-
ign, there is lower variability in energy costs across all consumers. In
ractice, in DLMP-based design, the occurrence of lower energy prices
uring instances of simultaneous injection prevents consumers from
aking exceptional profit. Concurrently, significant injection of cheap,

olar energy, benefits those consumers who do not own a solar PV asset,
eading to greater homogenization of energy costs across consumers. As
an be seen from consumers’ investment costs, a greater portion of the
onsumer population is making greater investments in DER, compared
o the other two designs.

Median energy costs are highest in DOE-based design, confirming,
s previously found, that consumers are subject to higher energy prices
han in DLMP-based design. The small, positive IQR suggests that there
s very little variability in the majority of consumers’ energy costs,
ointing to the fact that these consumers do not own solar PV and are
elying on withdrawing from the grid. On the other hand, the presence
f extreme negative energy costs indicates that there exist few con-
umers owning significant DER capacity and making substantial profit
rom injection into the grid, benefitting from the higher energy prices.
verall, this is mirrored in consumers’ investment costs, whereby 75%
f consumers are investing in little to no DER, while 25% are making
ignificant investments. The operating profits made serve to offset these
arge investment costs.

In SL-based design, the largest DER investments do not reach the
ame level as those found in the other two designs. This, albeit similar
nergy prices to DOE-based design, prevents the occurrence of very
egative energy costs for certain consumers. A higher median consumer
nvestment cost is nonetheless observed, as more consumers are making
mall DER investments, leading to lower median energy costs, than
hose found in DOE-based design.

otal costs. Total consumer costs across the three designs, for most
onsumers, are similar, as can be seen by the comparable box plots in
he last panel of Fig. 12. Due to the fact that injecting into the grid is not
s lucrative in DLMP-based design as it is in the simpler designs, there
ccur some consumers who, having made large DER investments face
arger total costs. Generally however, and although achieved through
ifferent mechanisms, similar total costs are borne by the majority
f consumers across the three designs. In practice, what occurs is a
rade-off between cost components between the designs. In DOE-based
esign consumers with large solar PV assets are able to offset higher
istribution costs and investment costs with significant profits from
njection. SL-based design, on the other hand, strikes a balance with
odest DER investments and comparatively lower median energy costs.
LMP-based design, with its higher solar PV penetration, yields low
nergy costs as well as profits, benefitting most with the exception of
hose having purchased large DER with respect to their demand.

. Conclusion

Increased accessibility of DERs warrants a paradigm shift in power
eneration and consumption, with end-use customers in LVDS actively
articipating in electricity production and storage. Successfully inte-
rating DERs into the electricity market, to fully harness their benefits,
owever, necessitates effective mechanisms for guiding interactions
f self-interested agents with LVDS in order to manage local grid
onstraints. Static limits (SLs), Dynamic Operating Envelopes (DOEs),
nd Distribution Locational Marginal Pricing (DLMP) have all been
18

uggested as means to ensure network integrity within the context
of DER market participation. In this paper, we address the trade-off
between complexity and economic efficiency of market designs using
SLs, DOEs and DLMPs. Highlighting the significance in recognizing
the nuances associated with balancing system reliability, economic
efficiency, and consumer costs through these different approaches. We
systematically compare SLs, DOEs, and DLMPs from a long-run market
equilibrium perspective, considering investments in both customer-
owned DERs and transmission-level generators. The analysis explores
the system-level ramifications of each approach, filling a critical void
in the literature that often adopts an operational perspective without
factoring in investments and the feedbacks between distribution and
higher voltage levels.

Our analysis has shown that simpler market designs, such as SL-
based design and DOE-based design, can approximate the economic
efficiency of DLMP-based design. However, the proximity of the ap-
proximation is dependent upon the type of network under consider-
ation. While simpler designs can closely approximate the economic
efficiency of DLMP-based design in networks comprising shorter feeders
and larger consumers (at a fraction of the implementation complex-
ity) the same cannot be said for networks comprising longer feeders
with many small consumers. The locational signal provides significant
added value, in effectively managing congestion, within such networks
wherein infrastructure limits are more readily reached in presence
of DER. Simpler designs cannot match the benefit of the DLMP by
providing ample enough capacity limits or low enough capacity prices
that incentivize comparable levels of solar PV investments and injection
of cheap, renewable energy into the grid. As a byproduct, systems
within simpler designs lead to less cost efficient investments resulting
in heavier reliance on generation from conventional technologies.

Additionally, considering consumer preferences in the allocation
of DOEs by means of grid capacity pricing has shown that the self-
interested behaviour of few actors can significantly undermine others’
opportunity to inject, leading to a lower economic efficiency than
SL-based design. If consumers with a high willingness to pay (WTP)
for grid capacity are located in locations prone to triggering network
limit violations the problem can be even further exacerbated. This
is also true if there is significant variation in WTP for grid capacity
across the consumer base. As such, this renders the DOE-based designs
approximation of DLMP-based design’s economic efficiency, strongly
dependent on the set of consumers using the grid and their location.
If the allocation of grid capacity is approached through pricing, careful
consideration must be given to the heterogeneity of the consumer base.

While there are important differences at system level, the majority
of consumers are subject to comparable yearly total costs across the
three designs due to trade-offs between distribution, energy and DER
investment costs. For example, in DOE-based design a consumer may
pay higher distribution costs and make larger investments, compared to
the other two designs, but offset these with profits from injection. The
flexibility arising from the fact that consumers experience similar total
costs across the three designs means that it is possible to implement
diverse designs across different feeders of the same network, especially
in cases where applying the DLMP-based design to the entirety of a
network may still be impractical. Interestingly, albeit price differentials
are inherent to DLMP-based design, a factor that has triggered signif-
icant discussion on the fairness of implementing such approach, our
study has revealed that this design offers highly harmonized energy
costs among the consumer base and total costs, for the majority of
consumers, similar to those under simpler designs, with the exception
of those making significant investment in DER.
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Appendix A. Branch rating constraints

Branch rating constraints, also referred to as thermal limit con-
straints, are designed to prevent the power flowing through a branch
from surpassing its apparent power rating. Conventionally, these con-
straints are expressed by ensuring that the squares of the active power,
𝑝𝑓𝑙𝑜𝑤𝑡,𝑙,𝜙 , and reactive power, 𝑞𝑓𝑙𝑜𝑤𝑡,𝑙,𝜙 , flowing through the branch remain
elow the square of the apparent power rating of the branch 𝑆𝑙,𝜙.
eometrically this represents a circle. To express these constraints in
linear form, we utilize the following procedure to create an inner

pproximation of the circle using a polygon:

1. Set the maximum gap (𝑔𝑎𝑝𝑚𝑎𝑥), relative to the circumference of
the unit circle, between consecutive points on the circle. A value
of 0.04 means that the gap between points is approximately 4%
of the circumference of the circle.

2. Use (52) to calculate the number of points 𝑁 needed to create
the inner approximation.

3. Use (53) to calculate 𝑁 complex numbers evenly spaced around
the unit circle, and scale them by the power rating of the branch
(𝑆𝑙,𝜙). This represents the linear approximation of the circle.

4. Implement a cyclic rotation of the elements in the linear approx-
imation vector, as shown in (54). This rotation operation helps
in forming a more diverse set of points and contributes to the
creation of a dodecahedron.

5. Take the average of each pair of corresponding complex numbers
from the linear approximation and its rotated version, as de-
scribed in (55). This ensures that the resulting complex numbers
are evenly distributed between the original linear approximation
and its rotated version.

6. Finally, use the real 𝐴 and imaginary 𝐵 parts of the complex
numbers in 𝐃 in the branch rating constraints (56). This results
in 12 lines, these twelve lines form a dodecahedron inside the
original circle.

𝑁 = ⌈

𝜋
arccos(1 − 𝑔𝑎𝑝𝑚𝑎𝑥)

⌉ (52)

𝐚 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑆 ⋅
(

exp
(

𝑖⋅0⋅2𝜋
𝑁

))

𝑆 ⋅
(

exp
(

𝑖⋅1⋅2𝜋
𝑁

))

⋮

𝑆 ⋅
(

exp
(

𝑖⋅(𝑁−1)⋅2𝜋
𝑁

))

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(53)

𝐚rot =

⎡

⎢

⎢

⎢

⎢

⎣

𝐚[𝑁]
𝐚[1]
⋮

𝐚[𝑁 − 1]

⎤

⎥

⎥

⎥

⎥

⎦

(54)

𝐃 = 1 (

𝐚 + 𝐚rot)
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= 1
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⎛
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⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎢

⎣

𝐚[𝑁]
𝐚[1]
⋮

𝐚[𝑁 − 1]

⎤

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎣

𝐚[1]
𝐚[2]
⋮

𝐚[𝑁]

⎤

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎠

= 1
2

⎡

⎢

⎢

⎢

⎢

⎣

𝐚[𝑁]
2 + 𝐚[1]

2
𝐚[1]
2 + 𝐚[2]

2
⋮

𝐚[𝑁−1]
2 + 𝐚[𝑁]

2

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝐴1 + 𝐵1 ⋅ 𝑖
𝐴2 + 𝐵2 ⋅ 𝑖

⋮
𝐴𝑁 + 𝐵𝑁 ⋅ 𝑖

⎤

⎥

⎥

⎥

⎥

⎦

(55)

𝐴 ⋅ 𝑝𝑓𝑙𝑜𝑤𝑡,𝑙,𝜙 + 𝐵 ⋅ 𝑞𝑓𝑙𝑜𝑤𝑡,𝑙,𝜙 ≤ 𝐴2 + 𝐵2 (56)

∀ 𝑡 ∈  , (𝐴,𝐵) ∈ 𝐃, 𝑙 ∈ , 𝜙 ∈ 𝛷

ppendix B. EOP formulation

The objective function for EOPDOE and EOPSL is the same, as shown
n (57), while EOPDLMP’s objective differs due to the inclusion of
enalty terms aimed at promoting convergence, as depicted in (58).
ach EOP encompasses a set of constraints, with many of these being
ommon across market designs. These constraints pertain to consumer
ER operation (4)–(20), conventional generator operation (32)–(35),
nd renewable generator operation (37)–(38). However, constraints re-
ated to consumer-grid interaction and those governed by the network-
ware market operator vary across designs. The presence of these
onstraints in each EOP is detailed in Table 3.

SL , DOE min
∑

𝑔∈

(

∑

𝑡∈

∑

𝜙∈𝛷

(

𝑉 𝐶𝑃
𝑔 ⋅ 𝑝𝑐𝑔,𝑡,𝜙 + 𝑉 𝐶𝑄

𝑔 ⋅ 𝑞𝑐𝑔,𝑡,𝜙
)

+ 𝐼𝐶𝐶
𝑔 ⋅ 𝑐𝑎𝑝𝐶𝑔

)

+ 𝐼𝐶𝑊 ⋅𝑐𝑎𝑝𝑊 +
∑

𝑗∈

(

𝐼𝐶𝑃𝑉
𝑗 ⋅ 𝑐𝑎𝑝𝑃𝑉𝑗

𝐼𝐶𝑃𝑉 𝑖
𝑗 ⋅ 𝑐𝑎𝑝𝑃𝑉 𝑖

𝑗 + 𝐼𝐶𝑆
𝑗 ⋅ 𝑐𝑎𝑝𝑆𝑗 + 𝐼𝐶𝑆𝑖

𝑗 ⋅ 𝑐𝑎𝑝𝑆𝑖𝑗

)

(57)

DLMP min
∑

𝑔∈

(

∑

𝑡∈

∑

𝜙∈𝛷

(

𝑉 𝐶𝑃
𝑔 ⋅ 𝑝𝑐𝑔,𝑡,𝜙 + 𝑉 𝐶𝑄

𝑔 ⋅ 𝑞𝑐𝑔,𝑡,𝜙
)

+ 𝐼𝐶𝐶
𝑔 ⋅ 𝑐𝑎𝑝𝐶𝑔

)

+ 𝐼𝐶𝑊 ⋅𝑐𝑎𝑝𝑊 +
∑

𝑗∈

(

𝐼𝐶𝑃𝑉
𝑗 ⋅ 𝑐𝑎𝑝𝑃𝑉𝑗

𝐼𝐶𝑃𝑉 𝑖
𝑗 ⋅ 𝑐𝑎𝑝𝑃𝑉 𝑖

𝑗 + 𝐼𝐶𝑆
𝑗 ⋅ 𝑐𝑎𝑝𝑆𝑗 + 𝐼𝐶𝑆𝑖

𝑗 ⋅ 𝑐𝑎𝑝𝑆𝑖𝑗

)

𝑃𝑝𝑒𝑛 +𝑄𝑝𝑒𝑛 (58)

Table 3
Constraints specific to each market design in the EOP formulation. The abbreviation
FBS is for FBSUBFPowerModel, signalling that EOPDLMP encompasses all constraints
pertaining to this power flow formulation within the PowerModelsDistribution.jl package

Agent EOPSL EOPDOE EOPDLMP

Consumer (21)–(24) (25)–(29) –
Market op. (39)–(40) (39)–(40), (41) (56), FBS

Appendix C. Learning curve method

The 2019 solar PV costs sourced from [52] are as shown in Table 4.
According to [58] we apply a learning curve (LC) of 0.89 for balance
of system (BOS) as well as inverter costs and one of 0.80 for module
costs. Using capacity projections found in [59], we then apply (59) and
(60) to derive 2030 costs. We find the 2030 total solar PV system cost
to be 577 €/ kW, breaking this down into module/panel, plus BOS cost,
of 481 €/ kW and inverter cost of 96 €/ kW.
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𝐿𝐶 = 2−𝛽 (59)

𝐶𝑜𝑠𝑡2030 = 𝐶𝑜𝑠𝑡2019 ×
(

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦2030
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦2019

)𝛽
(60)

Table 4
Costs for solar PV installations.
Source: Sourced from [52].

System component Cost 2019 [€/W]

Module 0.36
Inverter 0.22
BOS 0.68

Appendix D. Network data

In Table 6 we provide further information on the utilized networks:
the ID of the network, CTDI, the number of nodes, branches, feeders,
overall length, the total number of households, the number of condo-
miniums, individual houses and other loads present in the network.

Appendix E. Computational complexity

The equivalent optimization problems (EOPs) used to find a Nash
equilibrium in each market design, were implemented in Julia [60] us-
ing JuMP [61] with the solver Gurobi [62]. For the AC power flow sim-
ulation (performed to check whether the chosen 𝛺 leads to a network
admissible solution in SL and DOE-based designs) the solver Ipopt [63]
was used. All optimizations/simulations were run on a Macbook Pro
with Apple M1 Pro chip and 16 GB RAM. For each market design the av-
erage computation time and number of iterations, across all considered
networks and consumer placements (140 cases) are shown in Table 5.
As it entails an explicit power flow model, the EOPDLMP does not need
an ex-post power flow simulation to check for network feasibility of
the solution. On the other hand, EOPDOE and EOPSL do since instead
of power flow constraints they rely on an exogenously set 𝛺 to ensure
a network admissible solution. As such, for DOE-based and SL-based
designs EOP and AC simulation are run sequentially, starting from an
𝛺 of zero up until the magnitude of 𝛺 is found to cause network issues
such as over/under voltage or exceeding branch ratings, using a step-
size of 0.01 kW for 𝛺. Iterations of EOPDLMP are required to find
an AC-admissible solution based upon the successive approximation
approach involving linearized power flow constraints.

Table 5
Average computation time in seconds and number of iterations for each market design,
across all considered networks and consumer placements.

Design Solve EOP [s] AC simulation [s] Iterations

DLMP 62 n/a 5.6
DOE 17 35 0–𝛺
SL 12 33 0–𝛺
20
Fig. 13. Yearly average grid capacity prices in DOE-based design as a function of PCC.
The unit of grid capacity price is €/MW but can also be €/MWh in our specific case
since the market is cleared hourly.

Appendix F. Grid capacity prices

In DOE-based design, consumers can purchase grid capacity to
export power to the grid or to augment their import capabilities.
Fig. 13 depicts the yearly average grid capacity price of each case as
a function of PCC. The sloping trend indicates that the lower the PCC
the higher the average cost of grid capacity. Under DOE-based design,
as seen throughout previous analysis, the interrelation between higher
CTDI and lower PCC is not as strong as in SL-based design. This is
because unfavourable consumer placements under DOE-based design
can significantly restrict the amount of PCC. As such, even networks
with high CTDI can, at times, present high grid capacity prices. Playing
into the magnitude of these prices is also the relative WTP of consumers
within each case, the stronger the competition the higher the price.
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