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ABSTRACT

Quantum networks offer more capabilities than classical networks. For example, quan-
tum networks can solve certain problems faster than classical networks and they can
even solve problems which cannot be solved with classical networks. One well-known
quantum network application is blind quantum computing (BQC). In a BQC application
a client node sends a computation to a server node in the network. The server node
performs this computation without knowing the details about the actual input or com-
putation being performed and returns the result of the computation to the client node.
Quantum applications are often repeated many times, due to randomness that is involved
in the result of executing a quantum application. When a server node performs BQC
repeatedly with multiple client nodes, there follows an interesting problem how all corre-
sponding instructions can be scheduled for the server optimally, given that certain types
of instructions referred to as entanglement instructions can only be scheduled at given
moments by a so called network schedule. One classical metric used to assess the quality
of a schedule is makespan, which is the time that it takes to complete all instructions. A
quantum oriented metric involved is success probability, which indicates what fraction of
executions yield a desired result when repeatedly executing an application. In this thesis,
an experimental demonstration is given of the use of constraint programming (CP) for the
scheduling of instructions of quantum network applications. This demonstration focuses
on scheduling instructions that the server node should execute when performing BQC
repeatedly with a small number of client nodes at the same time. Different CP models
are presented that assign start times to tasks that the server node should execute. By
comparing the CP models to a baseline scheduler that schedules tasks as soon as possible,
it was found that CP can be used to reduce the makespan when BQC is performed by the
server node with multiple clients at the same time, while preserving a similar success
probability. A main drawback that followed from the CP approach is scalability. Future
work is to be done on studying how CP can be used for larger quantum networks.
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1
INTRODUCTION

Quantum networks offer serious advantages over classical networks. For example, they
can offer great speed-ups or they can provide solutions for problems which cannot be
solved with classical networks [1] [2] [3]. Given the potential that quantum networks have
to offer, these networks provide an interesting research field.

Different applications can be executed in quantum networks, of which one well-
known application is blind quantum computing (BQC) [4] [5]. When executing a BQC
application, a client node in the quantum network sends a computation to a server
node which the server node blindly performs (not knowing about the input or the actual
computation being performed), after which it returns the result to the client. It is the
case that there can be many client nodes performing BQC applications with the same
server node and these BQC applications can also be repeated many times, as it is usual
to execute quantum applications repeatedly, due to uncertain outcomes. From this,
there follows an interesting problem how all instructions that the server node needs
to perform can be scheduled, while meeting a given set of constraints and optimising
both classical and quantum oriented performance metrics. A classical metric that is
considered is makespan, which is the total amount of time that it takes to finish all
instructions. An important quantum oriented metric is success probability, which is
defined as the fraction of application executions that yield a desired outcome, when
repeatedly executing a quantum application.

Experimental realisations of quantum networks exist at QuTech [6]. These quantum
networks are able to compile network applications and execute instructions sequentially.
These applications can consist of both local operations on qubits in the nodes and net-
work operations between nodes in the network. A special type of network operation is
entanglement. Entanglement is performed between two nodes in the network, which
should trigger this operation at the same time. A network schedule is used to indicate
when which pair of nodes performs entanglement. In the current realisations, there is idle
time when the next instruction to execute is entanglement for a pair of nodes for which it
is not the turn yet in the network schedule to do so.

Since instructions are always scheduled sequentially in the realised quantum net-
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works, there is no flexibility in re-ordering instructions. The lack of flexibility for instruc-
tion scheduling can have negative effects. For example, when a pair of nodes needs to
wait to perform entanglement, no other instructions can be done in the meantime. This
leads to a higher makespan. Especially when a server node performs BQC applications re-
peatedly with multiple clients, for which entanglement is needed, the makespan becomes
even higher.

In this thesis, an experimental demonstration is given of the use of constraint pro-
gramming (CP) for the scheduling of quantum network applications. This is done by
showing how CP can be used specifically for scheduling instructions for the server node
that performs BQC applications repeatedly with a small number of clients at the same
time. The types of instructions in BQC are general types that can be part of any quantum
network application, which means that the concepts of the case study in this thesis could
be further used for other kinds of quantum network application scheduling problems.

Four different CP models are presented that assign start times to instructions that a
server node in a quantum network needs to execute when performing BQC applications
repeatedly with multiple clients in the network. Schedules created by using these CP
models satisfy a set of constraints and directly minimise the makespan, as minimising
the makespan is the objective function in the models. The CP models do not directly have
a notion of the application success probability, and hence do not directly maximise this
probability. Instead, the CP models have ’execution deadlines‘ as one of their constraints.
The idea is that a smart application compiler provides suitable deadlines such that the
application success probability is maximised. Our scheduler, which respects these dead-
lines using our CP models, hence indirectly enables success probability maximisation.
The CP models are evaluated by comparing them to a baseline scheduler which iterates
over all tasks that the server should perform and schedules them as soon as possible.
As tasks are scheduled as soon as possible for the baseline scheduler, this provides an
upper bound for the success probability, given that the success probability increases as
the execution time decreases, given qubit degradation over time. The CP models are
evaluated based on two criteria. First, the makespan should be lower for the CP models
than for the baseline scheduler, to verify that CP can indeed help to generate schedules
which complete all tasks faster. Secondly, the CP models should yield a success prob-
ability that is similar to the upper bound provided by the baseline scheduler, in order
to investigate that the makespan can be improved while still meeting the best possible
success probability provided by the baseline scheduler.

By enabling the opportunity to re-order instructions that a server node has to execute
when performing BQC applications with different clients, these applications can be exe-
cuted more efficiently. Waiting times to perform entanglement with a specific client node
can be used to execute other instructions, such as performing entanglement with other
clients, following the network schedule. Having the opportunity to re-order instructions
allows the server to interleave instructions that are done for different clients.

For two out of the four implemented CP models, the SF and IF models, it was found
that the makespan of the server node can be significantly decreased in the case of multiple
clients invoking BQC compared to the baseline scheduler, while preserving a similar
success probability. For the remaining two models, the SS and IS models, it was found
that they can find solutions quicker than the SF and IF models and improve the makespan
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compared to the baseline when there are enough clients in the network. However, there is
a loss in success probability for these models compared to the baseline and the SF and IF
models. One main drawback found with CP is scalability. As the size of the problem input
increases, it becomes harder to solve the problem in a feasible amount of time.

Main contributions. The main contributions in this thesis are as follows: four CP
models are presented that assign start times to tasks that a server node in a quantum
network should execute when repeatedly performing BQC applications with multiple
client nodes in the network. These CP models are evaluated by comparing them to a
baseline scheduler, based on the performance metrics makespan (objective value that
the CP models minimise) and success probability.

This thesis is further structured as follows: first, preliminary information is given in
section 2. This is followed by a definition of the scheduling problem under study and the
introduction of the implemented CP models in section 3. Next, related work is discussed
in section 4. Section 5 presents the experimental results. Finally, section 6 concludes this
research.



2
PRELIMINARIES

In this section, different concepts are explained which are further used in this thesis.

2.1. QUBIT
In quantum computing, a qubit is a basic unit of quantum information. Whereas classical
bits only have a single state of 0 or 1, qubits combine these two states, meaning that
qubits are represented by a linear combination of 0 and 1. Qubits degrade over time
and when performing operations on them. The process of qubits degrading is called
decoherence. Decoherence of qubits may have a lower application success probability as
a consequence, since it can affect the result of executing an application negatively.

2.2. QUANTUM NETWORK
A quantum network consists of nodes, which are connected by channels. Nodes in a
quantum network contain a quantum memory, consisting of qubits. There are four types
of operations that nodes in such a network can perform. First, there are classical local (CL)
operations. These are operations that can be performed on classical operation systems
(for example Linux or Windows) such as simple additions. There are also quantum local
(QL) operations. These operations can be quantum gates such as rotations, and measuring
the value of a qubit. Next, there are classical communication (CC) operations. This
involves the sending of classical messages between nodes in the network. Finally, there
are quantum communication (QC) operations, representing entanglement operations
between nodes in the network. Nodes in the quantum network can perform all kinds of
applications containing these types of instructions.

2.3. ENTANGLEMENT
Entanglement can be performed between two nodes in a quantum network, resulting in
two entangled qubits, where one qubit is in one node and the other qubit is in the other.
When two qubits are in an entangled state, they cannot be described independently. This
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means for example that a measurement of a qubit in one of the two nodes automatically
influences the qubit in the other node. Entanglement is timed according to a network
schedule.

2.4. NETWORK SCHEDULE
Entanglement generation happens according to a network schedule, which we assume
is global (all nodes see and follow the same schedule). An example network schedule
is illustrated in Figure 2.1. For simplicity it is assumed that only one pair can generate
entanglement at a time. A network schedule is needed because both nodes in a pair
that performs entanglement need to do an entanglement attempt at the same time, so a
network schedule can provide information about when this should happen. Also, it might
be the case that two nodes which generate entanglement are not directly connected via
channels in the quantum network. In that case, the entanglement generation between
these two nodes should go via the nodes in the network that are on the path of chan-
nels between these two nodes. These nodes which connect the two nodes performing
entanglement should be ready to do so. Thus, the network schedule informs the whole
quantum network when it is the turn of which pair of nodes to perform entanglement.

Figure 2.1: The network schedule consists of timeslots which contain a pair of nodes indicating that during that
timeslot it is the turn of that pair of nodes to perform entanglement. In this example, there are three nodes
in the quantum network. The network schedule repeats a sequence of node pairs as long as needed. In this
illustration, that sequence is that nodes 1 and 2 are first scheduled. This is followed by nodes 1 and 3. Last in the
sequence are nodes 2 and 3. In this example, the sequence is then repeated twice. It is assumed in this thesis
that the timeslots in the network schedule are of constant length.

2.5. BLIND QUANTUM COMPUTING
Blind quantum computing (BQC) [4] [5] is an application performed between two nodes
in a quantum network. When executing a BQC application, one node in the network
acts as a server node and another node acts as a client node. The idea is that a client
node can submit a computation to the server node, which the server node would then
compute blindly. This means that the server node does not know anything about the
input or the actual computation being performed, meaning that the computation can be
securely performed. BQC starts with the server node and the client node both triggering
entanglement synchronously one or multiple times. Then, for every entanglement link
that is generated between the client and server nodes, both the server and client nodes
perform their own instructions. First, local operations are performed on the client node,
resulting in a value for a rotation angle. This rotation angle is sent to the server node
via classical messaging by the client node. After receiving the angle value, the server
node performs local operations with this value and performs a measurement with the
transformed value. Finally, the server node sends the measurement outcome to the client
node via classical messaging.
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2.6. BQC-CLIENT AND BQC-SERVER APPLICATIONS
During the execution of a BQC application, the server and client nodes both perform their
own list of instructions. These are referred to as a server performing a BQC-server applica-
tion and a client performing a BQC-client application. For both of these applications the
instructions are listed in Figure 2.2. In this thesis, the problem involves the scheduling of
BQC-server applications. It is assumed that client nodes perform their instructions when
needed.

Figure 2.2: Timeline of operations in a BQC application, with left the first operation and right the last operation.
The operations in blue are performed by the client node (part of the BQC-client application) and the operations
in orange are performed by the server node (part of the BQC-server application). It can be seen that the BQC
application is split into two parts. The first part involves both nodes performing entanglement. They do so by
synchronously doing an entanglement attempt, for that reason the client operation is placed above the server
operation in the timeline. Entanglement generation is done one or multiple times. The second part consists of
the other operations that are performed individually for every generated entanglement link. First, the client
performs local operations in order to calculate a rotation angle and this value is then sent to the server. The
server does local operations with this angle and then performs a measurement of which the outcome is sent
back to the client.

2.7. SUCCESS PROBABILITY
In quantum computing, applications are often executed many times. This is the case,
because quantum applications have uncertain outcomes, for example because of de-
coherence. The success probability is defined as the fraction of application executions
that yield a desired value out of all executions of a particular application. The success
probability is used as a quantum performance metric in this thesis. When qubits degrade
much for an application execution, the chance of a desired outcome decreases.

2.8. MAKESPAN
Makespan is a classical metric that is used for scheduling problems. The makespan
indicates how long it takes to finish a set of tasks that have to be completed. Makespan is
used as a classical performance metric in this thesis.

2.9. RCPSP
The resource-constrained project scheduling problem (RCPSP) is a well-known schedul-
ing problem. The idea is that there is a set of activities that needs to be scheduled.

Each activity has a duration and cannot be interrupted. There are also precedence
relations between pairs of activities, meaning that the second activity in the pair can only
be started after the first activity was finished. Furthermore, there is a set of renewable
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resources. Each resource has a maximal amount that can be used of it at a time. Each
activity has a demand for every resource, which can also be zero.

The goal is to schedule activities in such a way that the makespan is minimised, while
meeting precedence relations and never exceeding the resource capacities.

2.10. HEURISTICS
Heuristic algorithms are used to find solutions to a problem faster when other solving
methods such as performing brute force search (simply iterating over all possible so-
lutions) or constraint programming do not find solutions in a feasible amount of time.
Heuristic algorithms focus on performing approximations rather than finding exact solu-
tions, in order to find a possible solution in a shorter amount of time.

2.11. CONSTRAINT PROGRAMMING
Constraint programming (CP) is a technique used to find solutions to a problem, where
a valid solution would meet a set of conditions (constraints). With the use of constraint
programming, one can make a CP model that contains the following elements:

• Input parameters: this is a set of variables which form the input to the model. These
variables are assigned a value for the particular instance of the problem to solve.

• Decision variables: this is a set of variables to which values are assigned during the
solving process. A solution to a constraint problem would be a found assignment of
values to the decision variables. In the context of this thesis, the decision variables
would be the start times for the tasks to schedule for the server node performing
BQC applications in a quantum network.

• Constraints: this is a set of clauses which should hold for potential value assign-
ments to decision variables. A solution is valid if all these clauses hold for a given
assignment.

• Objective function: this is a function which maps the values assigned to decision
variable to some other value, which is the objective value. The objective function
should be minimised or maximised, depending on the problem. Thus, an objective
function is used to find optimal solutions, in case of an optimisation problem.
For satisfaction problems, where the goal is to only find a solution that meets all
constraints, an objective function is not needed. In the context of this thesis, the
objective function would be to minimise the makespan.

One well-known constraint programming language is that of MiniZinc [7], which is
also used for this research project. In MiniZinc, one can implement a constraint model
and run it with a given solver back-end. Different solver back-ends use different methods
in order to find solutions to a given problem.

2.12. GLOBAL CONSTRAINT
MiniZinc offers a range of global constraints to the programmer. These are constraints
that are already built-in and that can be called when making a constraint model. In this
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way, the programmer does not need to implement the constraint on their own. When
there exists a global constraint that implements a constraint that is needed for a model, it
is good practice to use it. The use of global constraints makes the model easier to read
and understand and it can improve the solver performance.

2.13. SYMMETRY-BREAKING CONSTRAINT
It can occur that there is symmetry a constraint model. This means that there can be
multiple solutions, yielding a same objective value, while being permutations of each
other. As an example, think of the n-queens problem, where n queens should be placed
on a n x n size chess board. The n queens should be placed in such a way that no two
queens share a row, column or diagonal on the board. Here, there would be symmetry, as
one could rotate the board and find essentially the same solution. Symmetry-breaking
constraints break this symmetry by enforcing some kind of order, depending on the
problem under study. This means that there would be less possible solutions to explore,
making problems easier to solve. MiniZinc has support for implementing symmetry-
breaking constraints.

2.14. REDUNDANT CONSTRAINT
Just as global constraints and symmetry-breaking constraints, redundant constraints
can also be used for optimising a CP model. Redundant constraints are constraints
that logically follow from other constraints, thus they do not constraint the model any
further. Redundant constraints can be used to give the solver more information early on
during the solving process, which may improve performance. MiniZinc has support for
implementing redundant constraints.

2.15. PROPAGATOR
In constraint programming, a propagator is used to reduce the search space of the decision
variable domains. During the solving process, various values are assigned to the decision
variables to see if that combination of assignments yields a valid solution. With the use of
a propagator, value assignments to decision variables that cannot produce valid solutions
are removed from the search space, possibly giving faster solving times.

2.16. SEARCH ANNOTATION
In MiniZinc, it is possible to include a search annotation in the constraint model. This
search annotation determines the search strategy of the solver. The search annotation
consists of two parts. First, there is a variable selection strategy. This determines which
variables to try to assign values to first. For example, one can choose to search variables
with the smallest domain first. There is also the value selection strategy, which determines
which value to assign to the given variable. An example value selection strategy is to
assign the smallest possible value first. The use of search annotations can make it easier
to find solutions for the solver, as the programmer is able to give the solver hints on how
possible solutions in the solution space should be searched.



3
PROBLEM DEFINITION

In this section, the underlying scheduling problem is defined. First, a brief introduction
is given of the problem. This is followed by a formal description. Next, four different
variants to the problem are discussed. Furthermore, the constraints are introduced that
solutions to the problem should adhere to for the different problem variants. Finally,
the four constraint programming models are discussed which were implemented for the
problem variants.

3.1. INTRODUCTION
When a client node in a quantum network invokes a server node in the network to perform
a BQC application, the client and server nodes perform their own applications, referred to
as the client performing a BQC-client application and the server performing a BQC-server
application. This is visualised in Figure 3.1. The focus of this project is on scheduling BQC-
server applications. A BQC-server application contains various instructions which include
performing entanglement with the client to establish a connection, receiving input from
the client, performing a computation with this input and sending the computation result
back to the client. A server and client node can execute the same BQC application
multiple times, as executing quantum applications involves random results and thus
applications are often repeated to get a desired result. The server repeats executing its
corresponding BQC-server application when a BQC application is repeated with a client.
As there can be different client nodes that perform BQC applications with the server
node repeatedly at the same time, there can be many BQC-server instructions that need
to be scheduled. The problem under study involves assigning start times to all tasks
that the server has to perform such that a list of constraints is satisfied, where a task is
defined as a single execution of an application instruction. In general, a low makespan
and a high success probability are desired. The problem is modelled as a constraint
model, where the makespan is directly minimised as the objective function. The success
probability is not directly part of the constraint model as this is complex to model, but
this is linked to a constraint which involves application deadlines. Tighter deadlines
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mean that qubits are in memory for a shorter amount of time, giving qubits less time to
degrade. This helps to increase the success probability, which is experimentally analysed
in simulation. The main challenge involves finding a schedule for BQC-server applications
that the server node should execute given that entanglement (QC) operations can only be
performed with the respective client during given timeslots as indicated by the network
schedule, while meeting all other constraints and minimising the makespan. Note that
the duration of a QC task can be shorter than the length of a timeslot in the network
schedule, meaning that other instructions might also be scheduled during these timeslots,
as long as the QC tasks are scheduled during the assigned timeslots. It is assumed that
the client nodes perform all their own instructions when the server node requires this, so
the instructions of BQC-client applications themselves are not considered in the problem
description. Four different problem variants are considered, which depend on the type of
network schedule used and the execution order for tasks that belong to a same BQC-server
application.

Figure 3.1: Visualisation of the server node performing a BQC application with two clients: clients 1 and 2. It can
be seen that every client performs their own BQC-client application. The server node performs a BQC-server
application for every client node. The corresponding BQC-server and BQC-client applications are connected.
This project focuses on the scheduling of the BQC-server applications for the server node, hence the title of the
server node is underlined.

3.2. FORMAL DESCRIPTION
The set A := {a1, .., an} represents BQC-server applications that need to be scheduled.
Each application a j (where j ∈ {1, ..,n}) is a 3-tuple, which is denoted as (D j , I j ,e j ) where
D j is the maximal run time of application a j in µs represented as an integer. The ordered
list I j represents the instructions that should be scheduled for a single execution of
application a j . The integer e j is the amount of times all instructions in the instruction list
I j should be executed. The list I j is denoted as I j := (i( j ,1), .., i( j ,m j )), where the integer m j

represents the number of instructions of application a j . Each instruction i j ,k (where j ∈
{1, ..,n} and k ∈ {1, ..,m j }) is represented by a 2-tuple. This tuple is denoted as (r( j ,k),d( j ,k)).
The string r j ,k ∈ {C L,CC ,QL,QC } represents the type of instruction i j ,k and the integer
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d j ,k is the maximal time instruction i j ,k takes to complete in µs. Figure 3.2 visualises an
example of two applications with a small list of instructions.

Figure 3.2: Two BQC-server applications are given that should be executed, applications a1 and a2 respectively.
Both applications consist of a list of instructions, lists I1 and I2 respectively. List I1 contains two instructions
of types QC and QL. The durations are 100 and 5 µs respectively. List I2 consists of three instructions of types
QC, QL and CC. The durations are 100, 5 and 50 µs respectively. Every execution of application a1 should be
finished within 400 µs after it starts and every execution of application a2 should finish within 200 µs after it
starts. For this example, both applications are only executed once.

Also, an ordered list G := (g1, .., g∞) is given, which represents the network schedule.
Each integer gb ∈ {1, ..,n} (where b ∈ {1, ..,∞}) is the index of the BQC-server application
for which entanglement (QC) tasks can be scheduled during timeslot b, so when it is
the turn of the server node and the corresponding client node BQC is performed with.
Network schedule G is formed by infinitely repeating a sequence of application indices of
length P . It is assumed that in this sequence of application indices that is repeated, every
application index occurs only once. Thus, after it was the turn to perform QC operations
for a certain application a j , this application has to wait P −1 timeslots in G before it can
perform another QC operation. All timeslots have the same duration in µs, defined by the
integer L. In Figure 3.3, an example is shown what a network schedule could look like,
given the two example applications in Figure 3.2.

Figure 3.3: An example network schedule which assigns timeslots to the two example applications a1 and a2
for the executions of QC tasks. The timeslots contain the application indices. For example, between 0 and 100
it is the turn of application a1 to perform QC tasks and between 100 and 200 it is the turn of application a2.
When it is the turn of a BQC-server application in the network schedule, only the client corresponding to the
BQC application can perform entanglement with the server node. The sequence that is repeated in the network
schedule here is that application a1 can first perform QC operations, followed by application a2. Thus, the
sequence length P = 2 in this case. The timeslot length L is defined as 100 µs.

The integer sb := L · (b−1) is the start time of timeslot b. The integer w j is the index of
the first timeslot in the network schedule where it is the turn of application a j to perform
QC tasks.
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The input can be mapped to a set of tasks, where for each instruction i j ,k , there exist
e j tasks, where e j is the number of times application a j is executed. Thus, tasks represent
the instructions that the server node repeatedly executes. A task is denoted as t j ,k,h ,
which indicates that instruction i j ,k is performed for the h-th time, where h ∈ {1, ..,e j }.
The goal is to create a schedule which indicates when each task should be performed.
A solution to the problem would be a set of start times for every task, S. An entry in
the set S is represented as s j ,k,h , represented by an integer, being the start time of task
t j ,k,h in µs. The integer T represents the makespan in µs, which represents the end time
of the task that finishes last in the resulting schedule S. T should be minimised as the
objective function. The integer f j ,h represents the time that it takes to complete the h-th
execution of application a j in µs in the resulting schedule S (difference between the end
time of the last task and the start time of the first task of the application execution). The
ordered list Q j := (q( j ,1), .., q( j ,v j )) represents the QC tasks that have to be executed for
application a j , where integer v j represents the total number of QC tasks for application
a j and q j ,z (where z ∈ {1, .., v j }) represents QC task z to schedule for application a j . A
possible schedule for the two example applications is given in Figure 3.4. The symbols
used in this section are also listed in Table 3.2.

Figure 3.4: A possible schedule for the example applications a1 and a2 in Figure 3.2. In total, there are five
tasks to schedule. This is, because for application a1 there are two instructions that are performed once and for
application a2 there are three instructions that are performed once. Important to note are the positions of the
QC tasks for both applications, tasks t1,1,1 and t2,1,1. These tasks are scheduled according to the timeslots in the
example network schedule in Figure 3.3. As from 0 to 100 it was the turn of application a1, its corresponding QC
task is scheduled during that timeslot. For application a2 this is the case from 100 to 200. The other three tasks
can simply be scheduled afterwards, since all task types other than QC do not have specific timeslots during
which they can only be executed. The makespan T = 260µs for this instance, since at that time all tasks are
finished that the server node should execute.

3.3. VARIANTS
Four different variants to the given problem are studied. These problem variants differ
in two aspects. Firstly, two variants of the network schedule are considered. The sec-
ond aspect involves the order in which multiple executions of a same application are
performed.

For the network schedule, there are the following two variants, which are also visu-
alised in Figure 3.5:

• The free network schedule. Here, entanglement operations can always be triggered
by the server during any timeslot where it is the turn of the server/client pair. It is
assumed that the client repeatedly triggers during all timeslots during which it is
the turn of the pair, so the client node is always ready to perform the operation and
it is up to the server to choose.

• The strict network schedule. Here, entanglement operations must always be trig-
gered by the server at the start of the next timeslot where it is the turn of the
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Symbol Definition

A given BQC-server applications
a j application j in A
D j a j maximal run time
I j a j instructions
e j a j number executions
m j a j number instructions
i j ,k a j instruction k
r j ,k i j ,k type
d j ,k i j ,k maximal duration

G network schedule
gb G timeslot b application index
P G repeating sequence length
L G timeslot length
sb G timeslot b start time
w j index first timeslot for a j in G

t j ,k,h task: i j ,k execution h
S solution list of task start times

s j ,k,h t j ,k,h start time in S
T S resulting makespan

f j ,h duration execution h of a j in S
Q j QC tasks for a j

v j a j number QC tasks
q j ,z a j QC task z

Table 3.2: Symbols used in the problem definition. For each symbol, the definition is shown.

server/client pair. It is assumed that the client also only triggers at the start of these
timeslots. So, here both the server and the client only trigger an entanglement
attempt at moments that have been agreed on beforehand (the timeslot starts).

In general, the strict network schedule is preferred, when taking into account that
entanglement generation attempts cause decoherence. In a free network schedule, it
could happen that the client attempts entanglement generation while the server does
not (since the server is free to choose to do it at another time). Therefore, these client
attempts lead to decoherence while not generating any entanglement. This unnecessary
decoherence does not happen with the strict network schedule. However, it is the case
that for the BQC applications that are taken into account for this research the client node
does not use its quantum memory, as the client measures qubits directly after generating
entanglement with the server in a BQC application (no values are stored), meaning that
decoherence is not a problem for the client node for this specific case and the server
only triggers when the entanglement generation would actually happen, so for the server
no unnecessary entanglement attempts are triggered. Hence, it is interesting to study
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Figure 3.5: Visualisation of the two network schedule variants. On top, the free network schedule is shown with
below the strict network schedule. In this illustration it is assumed that only the timeslots are shown for one
specific application, the other timeslots are left out. For the application, two QC tasks have to be performed.
It is assumed that these QC tasks have a constant duration for this example. The executions of the QC tasks
happen during the periods marked in blue. It can be seen that for the free network schedule the first and the
third timeslots are skipped, as skipping timeslots is allowed for the free network schedule. Also, the start time of
the QC task can be at any moment during the timeslot for the free network schedule. Note that the QC tasks
should be finished at the end of the timeslot that they start in; QC operations are not allowed to continue in the
next timeslot. For the strict network schedule, it can be seen that QC tasks should always start at the start of the
next timeslot where it is the turn of the application.

the free network schedule as well, to see if offering the server node more flexibility for
triggering entanglement can yield better schedules in terms of makespan, since using
a free network schedule would provide more options for scheduling tasks for the server
node.

For the execution order, the following two variants are taken into account, which are
also visualised in Figure 3.6:

• A sequential execution order. Here, an execution of an application should be fully
completed before starting the next execution of the same application.

• An interleaving execution order. Here, instructions of the next execution of an
application may already be executed before the current execution of this application
is completed.

Figure 3.6: Visualisation of the two execution order variants. On top, the sequential execution order is shown
with below the interleaving execution order. For this illustration, it is assumed that there is one application with
three instructions, with all instructions being of constant duration. This application is executed two times. For
the first execution the tasks are shown as purple blocks and for the second execution the tasks are shown as
orange blocks. It can be seen that for the sequential execution order, the first execution must be fully finished
before the second execution can start. For the interleaving execution order this is not the case; there it is possible
to start the next execution earlier, as it can be seen that the last instruction of the first execution is executed after
the first instruction of the second execution was finished. Note that these execution orders only apply for tasks
belonging to a same application as in this example. Tasks of different applications can always be interleaved.

An interleaving execution order would be more flexible, which could possibly give
a lower makespan. However, it is the case that with a sequential execution order the
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problem would be easier to solve and executing instructions on hardware would be easier,
especially for processors with less computing power. Thus, it is interesting to study the
differences between these two execution orders.

The four variants to the problem are the different possible combinations of the net-
work schedule variants and the execution order variants. These problem variants are
further referred to in this thesis as: sequential free (SF), sequential strict (SS), inter-
leaving free (IF) and interleaving strict (IS). For each of these four names, the first part
represents the execution order and the second part refers to the network schedule variant
used.

3.4. CONSTRAINTS
For each of the four problem variants, a resulting schedule S should meet a list of con-
straints in order to be considered a valid solution. The constraints are now defined.

3.4.1. NO OVERLAP
This constraint is for all four problem variants. Only one task can be executed at a
time. This means that it is required to check that there are no overlapping executions of
tasks. Given two applications j and j2, two instructions k and k2 from these respective
applications, two executions h and h2 from the respective applications, task start times
s j ,k,h and s j2,k2,h2 and maximal instruction durations d j ,k and d j2,k2 , this constraint is
formally defined as follows: s j ,k,h +d j ,k ≤ s j2,k2,h2 ∨ s j2,k2,h2 +d j2,k2 ≤ s j ,k,h .

3.4.2. APPLICATION DEADLINES
This constraint is for all four problem variants and is mainly there for optimisation
(it is added as an extra hard constraint). Every time that a BQC-server application is
executed, all tasks corresponding to this specific application execution should finish
within a maximal number of µs. This ensures that qubits are in memory as short as
possible, to prevent significant decoherence over time, in order to achieve a success
probability as high as possible. It is possible to run BQC applications without these
deadlines, but this constraint allows for finding schedules which possibly yield better
success probabilities. Given application j , execution h, the time that it takes to finish
the application execution f j ,h and application execution deadline D j , this constraint is
formally defined as follows: f j ,h ≤ D j .

3.4.3. INSTRUCTION ORDER
This constraint is for all four problem variants. During the execution of a BQC-server
application, tasks performed for that execution depend on earlier tasks performed for
that execution. For example, the server should have actually performed the computation
before it can send the result to the corresponding client. Thus, the list of instructions of a
BQC-server application should always be performed in order every time this application
is executed. Given application j , instruction k, execution h and task start times s j ,k,h and
s j ,k+1,h , this constraint is formally defined as follows: s j ,k+1,h > s j ,k,h .
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3.4.4. APPLICATION EXECUTION ORDER
For the SF and SS problem variants specifically (this constraint does not apply to the IF
and IS variants), application executions should be performed sequentially for simplicity.
This means that when a same application is performed multiple times, a next execution
of this application can only start if the current execution of this application is finished,
referring to the sequential execution order. Thus, tasks belonging to different executions
of the same application cannot be interleaved. Given application j , execution h, total
number of instructions m j of application j and task start times s j ,1,h+1 and s j ,m j ,h , this
constraint is formally defined as: s j ,1,h+1 > s j ,m j ,h .

3.4.5. NETWORK SCHEDULE
The final constraint involves that the network schedule should be respected at all times.
This constraint is different for the SF and IF variant pair and the SS and IS variant pair.

SF & IF
For the SF and IF problem variants there is more flexibility for the scheduling of QC
tasks. Any timeslot where it is the turn of the application to which the task belongs, can
be chosen. This means that timeslots can be skipped and that the QC operation can
be performed during any timeslot where it is the turn of the application. Also, the QC
task can start at any time during the timeslot, as long as it is finished before the next
timeslot in the network schedule starts, as the timeslot duration can be longer than the
duration of a QC task. Given an application j , an instruction k, type of instruction r j ,k , a
network schedule timeslot b, task start time s j ,k,h , network schedule timeslot start times
sb and sb+1 and maximal instruction duration d j ,k , this constraint is formally defined as:
r j ,k =QC ⇒∃b(gb = j ∧ s j ,k,h ≥ sb ∧ s j ,k,h +d j ,k ≤ sb+1).

SS & IS
For the SS and IS variants, there is no flexibility for the scheduling of QC tasks. A QC task
should be performed at the start of the next timeslot where it is the turn of the application
to which the task belongs. Note that here not any moment during the timeslot can be
chosen, the QC task should always start at the start of the specific timeslot, meaning that
only one QC operation can be done per timeslot for these variants. Given application
j , instruction k, execution h, corresponding QC task z, task start time s j ,k,h , network
schedule timeslot length L, index of the first network schedule timeslot where it is the
turn of the application w j and the repeating sequence length of the network schedule P ,
this constraint is formally defined as: s j ,k,h = L · (w j −1+P · (z −1)).

3.5. CONSTRAINT PROGRAMMING MODELS
For each of the four problem variants a constraint programming (CP) model was im-
plemented in MiniZinc that given the problem input generates a list of task start times
that meets the constraints of the corresponding variant and minimises the makespan
as the objective function. Thus, the makespan is used to directly assess the quality of a
schedule. The application deadline constraint is used to decrease qubit degradation over
time, to avoid significant loss in success probability while optimising the makespan. The
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SF model can be found in appendix A. This is followed by the SS model in appendix B.
Next, is the IF model in appendix C. Finally, there is the IS model in appendix D.

Optimisation is done for the four CP models. First, the use of global constraints was
considered. The ‘disjunctive’ MiniZinc global constraint was used for the no overlap
constraint. Next to making the models more readable, it also improved the solving time
compared to checking each pair of tasks manually if they do not overlap.

Also a symmetry-breaking constraint was added for the IF and IS models, as here there
is symmetry between multiple executions of a same application instruction (executions
that are repeated have no set order). The symmetry-breaking constraint breaks the
symmetry by enforcing that tasks with a same application and instruction index should be
ordered by execution number of the application. This significantly improved the solving
time for these two models, as an order was now enforced for the repeating executions.
For the SF and SS models symmetry was not a problem, since in those models all tasks
that belong to the same application are enforced an order already.

Also a redundant constraint was considered that all task start times should be different,
as this logically follows from the constraint that two task executions cannot overlap,
however this constraint had no significant effect on the solving time. Therefore, this
redundant constraint is not part of the final CP models.

The final part of the optimisation included the comparison of different combinations
of solver back-ends and search annotations, to see which search annotation would be
useful in the CP models and which solver back-end would be the best to use in simulation
for the final evaluation of the CP models. The results of this comparison and the final
evaluation of the CP models are included in section 5.



4
RELATED WORK

In this section, related work is discussed in the field of scheduling problems. Two cate-
gories of related work are discussed. First, papers are discussed which also use a constraint
programming approach to solve the problem under study, in order to see how this tech-
nique is used for solving other kinds of scheduling problems. Next, papers are discussed
which use an alternative method to constraint programming, in order to see how other
methods than constraint programming are used in the field of scheduling problems.

4.1. CONSTRAINT PROGRAMMING
[8] presents a study on the resource-constrained project scheduling problem (RCPSP) with
general temporal and calendar constraints. Calendar constraints make some resources
unavailable on certain days in the scheduling period. Various constraint programming
models are given to tackle this problem, together with a specialised propagator for the
cumulative resource constraints, taking the calendar constraints into account. One main
difference between the problem description in [8] and in this thesis, is that in the first
case resources are part of the environment which activities use and which can be used
to a maximum capacity at a time. The use of resources is not part of this thesis, which
makes the problem easier to solve.

In [9], another problem related to RCPSP is studied where constraint programming is
used to solve the problem. This problem involves industrial test laboratories in which
a large number of tests has to be performed by qualified personnel using specialised
equipment, while respecting deadlines and other constraints. As [9] also solves a problem
that is based on RCPSP, the use of resources is one of the main differences in the underlying
problem description compared to this thesis. There is another difference in the way that
the constraints in [9] are structured, namely that soft constraints are also part of the model.
Compared to hard constraints which should always hold for solutions, soft constraints are
there to make a solution more preferred (they are not strictly checked). [9] models the soft
constraint as functions which should be minimised. One example is that for each project
the total number of employees that are assigned to the project should be minimised. Soft
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constraints are not part of the problem under study in this research, since for this problem
it is only needed to minimise the makespan, given the hard constraints that should hold
for solutions.

4.2. ALTERNATIVE TECHNIQUES
[10] also focuses on scheduling for quantum networks. Specifically, a design is presented
of a centralised quantum network with multiple users that orchestrates the delivery of
entanglement which meets quality-of-service (QoS) requirements of applications. A
different method is used than constraint programming, namely heuristics that focus
on the problems of RCPSP and periodic task scheduling. One main difference between
the scheduling problem in [10] and the problem under study in this thesis, is that the
first work mainly focuses on network operations, as entanglement operations are mainly
discussed. This thesis focuses on the scheduling of both local operations on individual
nodes and network operations between nodes in a quantum network. One main benefit
of the heuristic approach used in [10] is that solutions to the scheduling problem are
found in a shorter amount of time, since it involves performing approximations rather
than finding exact solutions.

[11] provides a study on the problem of multi-program scheduling on a single proces-
sor. Two scheduling techniques are discussed. One technique assigns fixed priorities to
tasks that need to be scheduled on the processor. The other technique assigns priorities
to tasks dynamically, based on their current deadlines. One main difference between the
underlying problem description in [11] and the problem description in this thesis, is that
for the first problem description priorities are assigned to tasks. This is not the case for
the problem under study, since there are no explicit priorities assigned to tasks. However,
given the case that entanglement operations can only be performed during timeslots
as indicated by the network schedule, this implies that the constraint solver may give
priority to these tasks during these timeslots indirectly, as they cannot be executed during
periods outside of these timeslots. Another interesting aspect of the work in [11] has to do
with the fact that their deadline driven scheduling algorithm assigns priorities to tasks
dynamically, based on the deadlines of current requests. The request with the nearest
deadline is assigned the highest priority. This is harder to do with a constraint program-
ming approach, since there all tasks are assigned start times already before executing
them. In other words, a static scheduling approach is used.

[12] studies dynamic real-time systems. These are systems in which tasks arrive
at random times and which have associated time constraints. When a task arrives, a
scheduling algorithm is in place that accepts the task when the time constraints can be
satisfied or else the task is dropped. A main difference between the problem in [12] and
the problem under study is the fact that in the problem description of the first work,
task arrive at random times, whereas in this thesis all tasks that have to be scheduled
are known beforehand. This makes the problem as discussed in [12] more complex to
solve, as the algorithm has to adapt to incoming tasks, instead of being able to generate a
schedule directly when all tasks would have been known.

[13] presents another scheduling approach that differs from constraint programming.
The problem is studied of scheduling a set of periodic or sporadic tasks on a uniprocessor
without preemption and without inserted idle time. A set of conditions is introduced such
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that a set of periodic or sporadic tasks can be scheduled for arbitrary release times of the
tasks. It is shown that any set of tasks fulfilling these conditions can be scheduled, using
an earliest deadline first (EDF) scheduling algorithm. Tasks are modelled differently in
[13] than in this thesis. Tasks are modelled as pairs. First, there is the computational cost,
which is the time required to execute the task. Besides this being similar to the problem
description under study (tasks in this thesis also have a maximal duration), the second
element of the pair represents a minimal interval between invocations of a task, which
slightly differs from the problem under study. For the SF and SS problem variants this is
indirectly the case, as it is needed to finish the execution of an application, before being
able to start the next execution of this application. However, for the IF and IS models
there is not a minimal waiting time between executions of tasks that correspond to the
same instruction, as tasks can be scheduled freely, as long as all constraints are satisfied
for the corresponding schedule.



5
EXPERIMENTAL RESULTS

In this section, the experimental results are presented. First, the experimental setup is
described which includes the system specifications and the versions of different software
used. Next, the first experiment is discussed which was conducted to find a search
annotation and solver back-end to use with the CP models for the final evaluation. Finally,
the second experiment is discussed, which involved the final evaluation in simulation of
the CP models by comparing them to a baseline scheduler.

5.1. EXPERIMENTAL SETUP
The experiments were conducted on a HP ZBook Studio G4 laptop, on a 64-bit Ubuntu
20.04.4 LTS operating system. This laptop has an Intel® Core™ i7-7700HQ CPU @
2.80GHz processor with 4 cores and 8 logical processors. 8GB RAM is installed on this
laptop.

MiniZinc was used for both the implementation and the use of the CP models in the
experiments. Version 2.6.4 was used of MiniZinc.

Furthermore, the MiniZinc Python library was used to solve data instances with the
developed CP models. Version 3.8.10 of Python was used.

Three solver back-ends were used for the MiniZinc solving process. First, version 6.3.0
of Gecode [14] was used. This is followed by version 0.10.4 of Chuffed [15]. Also version
9.4.1874 of OR-Tools [16] was used.

Finally, the Qoala simulator [17] was used to perform simulations with the generated
schedules for the baseline scheduler and the CP models in the final evaluation. Version
0.1.7 of the Qoala simulator was used.

5.2. SEARCH ANNOTATION & SOLVER BACK-END COMPARISON
In order to use the CP models in simulation, a solver back-end needs to be chosen which
should be used to execute the MiniZinc constraint solver. Furthermore optional search
annotations can be used in the model in order to help the solver to find solutions faster. A
comparison was conducted on various solver back-ends and search annotations in order
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to choose a solver back-end and search annotation for the evaluation of the CP models.
Thus, this experiment was mainly conducted to prepare for the second experiment, which
is the actual final evaluation of the developed CP models.

5.2.1. DESCRIPTION
When solving a constraint problem in MiniZinc, it is necessary to specify a solver back-
end. Three solver back-ends were selected for comparison. The first solver is the default
solver for MiniZinc, Gecode. Next, Chuffed was used, as this solver can often be faster
than traditional CP solvers as stated in the MiniZinc documentation [18]. The last solver
used is OR-Tools, which is accessible to use due to its open source nature and it is tuned
for solving problems in the field of constraint programming among other fields.

Search annotations are optional in a MiniZinc model, but they can help to improve
the solver performance, by specifying how the solver should search for solutions. When
specifying a search annotation, a variable selection annotation and a value selection
annotation should be specified. The first annotation determines which decision variable
to search first. In the context of this thesis, that would be which task to find a start time for
first. The latter determines which value to assign to this variable. That would be the actual
start time to assign to a task in this context. It is stated in the MiniZinc documentation that
the variable selection strategy affects performance more than the value selection strategy
[19]. In order to not make this experiment too complex, the value selection annotation
was kept constant for that reason and various variable selection strategies were compared.
The value selection strategy used is ‘indomain’, which assigns values in ascending order
to the variables. This would be a simple strategy that would try the different possible start
times in order. Three different variable selection strategies were compared for each solver
back-end. First is ‘occurrence’, which chooses the variables with the largest number of
attached constraints, which may be useful for QC tasks for example, as these tasks have
additional network schedule related constraints. Next is ‘smallest’, which chooses the
variable with the smallest value in its domain, which may be useful to determine which
tasks should start first. Finally, ‘first_fail’ was considered, which chooses the variable with
the smallest domain, which may be useful to schedule tasks early on for which the least
amount of start times are possible.

Three data files were used to compare the different search annotation and solver
back-end combinations. The first data file, which can be found in appendix E, focuses on
a case where there are a few smaller applications which are executed many times. The
second data file, which can be found in appendix F, focuses on a case where there are
a few larger applications which are executed only a few times. Finally, there is a data
file which takes many small applications into account and execute these a few times.
This data file can be found in appendix G. These data files were made in order to find
out how the number of applications, the number of instructions per application and
the number of executions per application influence the solving time and objective value
(makespan). The data files were made manually by looking for values for the stated input
variables such that the data files were complex enough to see differences between the
different search annotation/solver back-end combinations, but still feasible to solve in a
reasonable amount of time.

For all four models all three data files were solved for each solver back-end and search
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annotation combination. This was done 10 times and the average value and standard
deviation of both the solving time and objective values were taken. The solving process
was repeated to get a more accurate solving time as this differs per solver execution and
to verify that always the same objective value was returned, as the search annotations
used in the comparison do not use any form of randomness. A time-out of 5 seconds was
considered for the solving process. This is, because the data files could take a long time
to solve for specific combinations and data files and therefore it would return the best
objective value found within the time-out period.

5.2.2. RESULTS
For each of the four models graphs were made to study how the different combinations of
solver back-ends and search annotations influence the objective value and solving time.
Objective values are represented by bars in the graphs and solving times are projected as
black dots, or black triangles in case of a time-out (the best objective value found within
that time would then be shown). When no solution was found before the time-out, a cross
is shown instead of a bar. The variance in solving time was negligible. For the objective
value, there was only a small variance for the objective value for the IF model, for the other
models the variance was zero for the objective value for all combinations. The results for
the models are now individually discussed.

SF
Figure 5.1 illustrates the results of the search strategy comparison for the SF model.
Interesting here is that for OR-Tools only solutions are found for the second data file. Also
remarkable is that for both Gecode and Chuffed, no solution is found for the ‘occurrence’
variable selection strategy in specific cases (second data file for Gecode and first and
third data files for Chuffed). On overall, Chuffed seems to have better solving times than
Gecode for the SF model, especially for the first and third data files for the ‘smallest’ and
‘first_fail’ variable selection strategies. In terms of objective value, the largest differences
are in the second data file. It can be seen that the ‘smallest’ variable selection strategy
provides the best objective values for the Gecode and Chuffed solver back-ends. For the
last data file, Chuffed seems to find a better objective value than Gecode for the ‘smallest’
variable selection strategy.

SS
Figure 5.2 illustrates the results of the search strategy comparison for the SS model.
Interesting here is that for each individual data file, the different combinations of solver
back-ends and variable selection strategy seem to produce similar objective values. There
is only one case in which no solution can be found, which is for the second data file for
the Gecode solver back-end for the ‘occurrence’ variable selection strategy. Furthermore,
all solving times seem to be low, excluding the fact that there were two time-outs for the
Gecode solver back-end for the second data file.

IF
Figure 5.3 illustrates the results of the search strategy comparison for the IF model. Simi-
larly to the SF model, OR-Tools only finds solutions for the second data file. Additionally,
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the ‘smallest’ variable selection strategy seems to only find solutions for both the Gecode
and the Chuffed solver back-ends for all data files, as no solution is found for ‘occurrence’
for both the Gecode and the Chuffed solver back-ends in the second data file and also
there is no solution for the ‘first_fail’ variable selection strategy for the Chuffed solver. In
terms of solving time, both Gecode and Chuffed do well for the ‘smallest’ annotation in
the second data file. Chuffed also finishes quickly for the ‘smallest’ search annotation in
the last data file. Interesting here is that for the first data file, using the Chuffed solver
back-end and the ‘smallest’ search annotation, a non-zero standard deviation of approxi-
mately 155 was found for the objective value. This could have to do with the variance in
solving times. That for some runs a better objective value was found for this combination
just before the time-out, whereas for other runs this objective value was not found yet and
a higher objective value was found before the time-out. For all other bars the standard
deviation of the objective value was 0.

IS
Figure 5.4 illustrates the results of the search strategy comparison for the IS model. In-
teresting is, that the results for this model look identical to those of the SS model. This
means that like the SS model, the IS model is also able to find solutions quickly.

5.3. EVALUATION OF CP MODELS
In order to evaluate the effectiveness of the CP models, BQC-server applications were
scheduled and simulated for both a baseline scheduler and the CP models that the server
node performs when performing BQC applications repeatedly with different numbers
of clients. Each BQC-server application had the same instructions, listed in appendix H.
These instructions were similar to the instructions listed for the server node in Figure
12 in [20]. This means that given a number of clients, for each client these instructions
were executed the number of times the particular application was executed. The baseline
scheduler would iterate over all BQC-server applications and their tasks and schedule
them as soon as possible. This means that the baseline scheduler provides an upper
bound for the success probability, taking decoherence over time into account. All tasks
other than QC tasks are always scheduled directly and when a QC task is encountered
the baseline scheduler waits until the next timeslot that it is the turn of the belonging
application and continues from there, if the QC task cannot be scheduled directly because
of the network schedule. The produced schedules by the CP models and the baseline
scheduler were simulated in the Qoala simulator and the results were compared. The
CP models and the baseline scheduler were compared based on makespan and success
probability. The idea was to show that the CP models improve the makespan for the case
when a server node performs BQC with multiple clients, while the success probability is
similar to that of the baseline scheduler. As aforementioned, the baseline scheduler gives
an upper bound for the success probability, since tasks are scheduled as soon as possible.
Therefore it is necessary to show that a similar success probability can be preserved for
the CP models, while improving the makespan to show that tasks can be finished faster
without the success probability degrading.
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Figure 5.1: Results of comparing solver back-end/search annotation combinations for the SF model for the 3
different data files. The bars represent the objective values (makespan) found for every combination, or a cross
is shown when there was no solution found within the time-out period. The black dots indicate the time that
solving the data file took for the CP model, using the given combination. When a black triangle is shown instead
of a black dot, that means that there was a time-out, which means that the best objective value found within
that time is shown in the associated bar.
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Figure 5.2: Results of comparing solver back-end/search annotation combinations for the SS model for the 3
different data files. The bars represent the objective values (makespan) found for every combination, or a cross
is shown when there was no solution found within the time-out period. The black dots indicate the time that
solving the data file took for the CP model, using the given combination. When a black triangle is shown instead
of a black dot, that means that there was a time-out, which means that the best objective value found within
that time is shown in the associated bar.
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Figure 5.3: Results of comparing solver back-end/search annotation combinations for the IF model for the 3
different data files. The bars represent the objective values (makespan) found for every combination, or a cross
is shown when there was no solution found within the time-out period. The black dots indicate the time that
solving the data file took for the CP model, using the given combination. When a black triangle is shown instead
of a black dot, that means that there was a time-out, which means that the best objective value found within
that time is shown in the associated bar.
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Figure 5.4: Results of comparing solver back-end/search annotation combinations for the IS model for the 3
different data files. The bars represent the objective values (makespan) found for every combination, or a cross
is shown when there was no solution found within the time-out period. The black dots indicate the time that
solving the data file took for the CP model, using the given combination. When a black triangle is shown instead
of a black dot, that means that there was a time-out, which means that the best objective value found within
that time is shown in the associated bar.
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5.3.1. DESCRIPTION
For different numbers of clients BQC-server applications were simulated. Every appli-
cation had the same instructions. The types, individual durations and total duration of
these instructions are in appendix H.

For every number of clients, a schedule was created using the CP models and the
baseline scheduler that would schedule 35 executions of the BQC-server application for
every client. This number was chosen as high as possible such that solutions could still
be found for the maximal number of clients in a reasonable amount of time for the CP
models, in order to find a more accurate success probability, as more executions would
yield a more accurate success probability. The different schedules were simulated. For
the makespan, the time would be taken that simulation of the schedule took. The success
probability was calculated separately for every client, which is the fraction of executions
that yield a desired result out of the total of 35 executions. The average was taken of
all client success probabilities, which is the value that was used for the evaluation. As
the success probability involves randomness, the simulation of the computed schedules
was repeated 120 times. Out of all repetitions, the average was taken as the final success
probability. The standard deviation was also calculated to get an idea of the variance in
the success probability. The makespan would always be the same for every repetition,
since the same schedule was repeated in simulation and only the success probability
involves randomness, as that can vary per repetition of simulating the schedule.

For the CP models, a time-out was used of 5 minutes in order to give the solver extra
time for finding solutions. The Chuffed solver back-end was used as it prove to give lower
solving times in the previous experiment. In terms of variable selection annotations,
‘smallest’ was used, as for this annotation a solution was always found by the Chuffed
solver back-end in the previous experiment. The ‘indomain’ value selection annotation
was used that was already constantly used in the first experiment. The network schedule
would repeat the clients in order. A timeslot length was used of 8e4 µs, which allowed to
see the differences between the SF and IF models with the SS and IS models, since for the
SF and IF models both QC instructions could be scheduled in the same timeslot, but for
the SS and IS models the solver should wait until the next assigned timeslot to perform the
second QC task. Furthermore, for every model different execution deadlines were used.
For the SF model a tight deadline was taken of 7e4 µs, which is approximately the total
duration of the BQC-server instructions. For the IF model this deadline was multiplied
with the number of clients and doubled, in order to give extra time for interleaving
executions. For the SS model a deadline was taken of 7e4 µs (again the total duration of
all BQC instructions) with added the product of the number of clients and the timeslot
length, to account for the fact that the solver has to wait for scheduling the second QC
task in the next assigned timeslot. For the IS model, this deadline was doubled in order to
assign extra time for interleaving instructions.

Different simulator specific parameters were used in order to model the decoherence,
which affects the success probability. A link fidelity of 0.8 was used in order to specify
the quality of entanglement links. The lower this quality is, the more decoherence occurs
such that the success probabilities would be lower. Also parameters were set for the nodes
themselves in the network. Probabilities were set for both single and two qubit gates that
they cause decoherence, these are 0.05 and 0.1 respectively. Finally, the decoherence over
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time was modelled. A standard way of modelling the noise over time is with the use of
two components: an amplitude damping component and a dephasing component [21].
These were set to 1e7 and 1e6 µs respectively.

In order to investigate if the differences between the means of the success probabilities
of the CP models and the baseline were statistically significant, an independent (unpaired)
t-test was done for each CP model with the baseline for every number of clients. The null
hypothesis stated that there is no statistically significant difference between the means of
the success probabilities of the baseline and a specific CP model for a specific number
of clients. The alternative hypothesis would be that there is a statistically significant
difference. A significance level (referred to as α) was taken of 0.05, which is the probability
of rejecting the null hypothesis when it is actually true. This is a value commonly used
for the significance level in t-tests. The sample size N is the number of times that the
different schedules were simulated, 120. The t-test was performed with the use of a
Python script that iterates over each CP model for each number of clients studied. For
each number of clients the standard error SE was first calculated for every CP model
and the baseline scheduler. Given a standard deviation S and a sample size N , the
standard error of the sample is calculated as follows: SE = Sp

N
. Given standard errors

SEmodel and SEbasel i ne for a CP model and the baseline respectively for a given number
of clients, the standard error of the difference between the means SED was calculated

as follows: SED =
√

SE 2
model +SE 2

basel i ne . Next, the value for t was calculated. Given

the standard error of the difference between the means SED and means Mmodel and
Mbasel i ne for a CP model and the baseline respectively for a specific number of clients,
a value for t was calculated as follows: tcalc = Mmodel−Mbasel i ne

SED . Next, the critical t-value,
tcr i t was calculated, with the use of a percent point function from the SciPy t-stats
library [22], using the complement of α and the degrees of freedom d f . Given sample
sizes Nmodel and Nbasel i ne for a CP model and the baseline respectively for a specific
number of clients (both the number of simulations, 120), the degrees of freedom are
d f = Nmodel +Nbasel i ne −2. Finally, the calculated t-value tcalc was compared to the
critical value tcr i t . If |tcalc | <= tcr i t would hold, it was shown that the null hypothesis
could not be rejected, meaning that for a given number of clients there would be no
significant difference between the found means of the success probabilities of a given
CP model and the baseline scheduler, meaning that the desired success probability was
indeed preserved.

5.3.2. RESULTS
For both the makespan and the average success probability, graphs were made which
show the values for the baseline and the four CP models for every number of clients. Both
performance metrics are now individually discussed.

MAKESPAN

Figure 5.5 shows the resulting makespans for every number of clients that executing
the generated schedules by the baseline and CP models gave. First, it can be noticed
that assigning higher deadlines to the IF and IS models than to the SF and SS models
respectively that were used to give the opportunity to interleave executions did not change
the makespan. It could be that a schedule without interleaving was the best schedule
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found before the time-out for the IF and IS models. Out of the four CP models, the SS
and the IS models perform the worst, which can be explained by the fact that there is
additional waiting time for performing the second QC task, since QC tasks only start at
the start of the network schedule timeslots. For 1 client the makespan is equal for the
baseline and the SF and IF models, which is logical, since in that case both the baseline
and the SF and IF models would perform instructions as soon as possible, which yields
the same results for 1 client. It can be seen that when adding extra clients, the makespan
of the SF and the IF models are better than for the baseline. Also, adding even more clients
increases the difference in makespan between the baseline and the SF and IF models.
Another note is that from 3 clients on, the IS and SS models clearly perform better in terms
of makespan than the baseline. So, it can be seen that the CP models are able to improve
the makespan found by the baseline scheduler. An explanation for the lower makespan
for the CP models is the fact that QC tasks interleave for clients: when one client has to
wait before it can perform QC tasks again, the other clients for which it is their turn in
the in-between timeslots, perform QC tasks. For the baseline scheduler this is not the
case, there no other tasks are performed while it is not the turn yet of the application to
perform QC tasks.

Figure 5.5: The results of the makespan comparison between the four CP models and the baseline. For every
number of clients first the value for the baseline is shown. This is followed by the values for the CP models.

SUCCESS PROBABILITY

Figure 5.6 shows the resulting average success probabilities for every number of clients
that executing the generated schedules by the baseline and CP models gave. Firstly, it is
good to notice that despite the fact that simulations were repeated 120 times, there is still
significant variance involved. This could have to do with the randomness that is involved
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in calculating the success probability. It seems however that this variance decreases when
adding more clients. An explanation for this is that in the case of more clients, the average
is taken of a bigger set of success probabilities (one for every client) for every repetition of
the schedule simulation, meaning that the overall average success probability becomes
more accurate. Out of the four CP models, the SS and IS models seem to give lower success
probabilities than the SF and the IF models and for more clients this difference seems
bigger. This can be explained by the fact that for the IS and the SS models there is a higher
application deadline, because there executions of applications take longer to complete
due to the waiting time between the QC operations. Decoherence that happens over time
could have caused the fall in success probability. Furthermore, the difference between
the baseline and the SF and IF models in success probability seems small, except for 1
client, where the average success probability for the SF model is noticeably higher. It is
good to say that this is under a high variance. On overall, it can be seen that the SF and IF
models are able to preserve the success probability of the baseline scheduler which was
taken as the minimal desired value.

Table 5.1 shows the results of the t-tests performed for every CP model for every
number of clients to see if the found mean of success probability for that combination
differs significantly from the mean found for the baseline scheduler. The cases where the
null hypothesis was rejected, so where there was a significant difference found, are high-
lighted. It can be seen that for the SF and IF models the null hypothesis was accepted for
every case. This means that there was indeed no significant difference found between the
means of the success probabilities for the SF and IF models with the baseline scheduler.

Figure 5.6: The results of the success probability comparison between the four CP models and the baseline. For
every number of clients first the value for the baseline is shown. This is followed by the values for the CP models.
The black vertical lines represent the standard deviation for a specific bar in the graph.
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Model Num. clients tcalc tcr i t Accept null hyp.

SF

1 -1.5656241938087199 1.6512811638136882 yes
2 0.4228138029434098 1.6512811638136882 yes
3 -0.12892801596526013 1.6512811638136882 yes
4 -0.7246455191180255 1.6512811638136882 yes

IF

1 0.7107607773586572 1.6512811638136882 yes
2 0.6836215792155761 1.6512811638136882 yes
3 -1.2975485008118615 1.6512811638136882 yes
4 0.7696178449843244 1.6512811638136882 yes

SS

1 1.1204839476536188 1.6512811638136882 yes
2 3.373277196432736 1.6512811638136882 no
3 6.692639011569419 1.6512811638136882 no
4 10.452772967376136 1.6512811638136882 no

IS

1 2.923002593042345 1.6512811638136882 no
2 3.8461601388686737 1.6512811638136882 no
3 5.099945261565124 1.6512811638136882 no
4 10.761468002801788 1.6512811638136882 no

Table 5.1: Table representing the results of the performed t-tests in order to study whether there is a significant
difference between the means of the success probabilities for the baseline and the given CP models for every
number of clients. For every CP model, there is a row for every number of clients. The calculated value tcalc
is shown together with the critical value tcr i t . The critical value tcr i t is the same for every combination (this
value only depends on the chosen value for significance level α and degrees of freedom). The last column
indicates whether or not the null hypothesis should be accepted that there is no significant difference. The null
hypothesis would be accepted if the absolute value for the calculated value tcalc was not higher than the critical
value tcr i t . The cases where the null hypothesis was rejected, so that there was a significant difference found
between the means of the success probabilities for a given combination with the baseline, are highlighted. It
can be seen that only significant differences in the means of the success probabilities were found for the SS
and IS models. This means that there is no statistically significant difference found between the means of the
success probabilities for the SF and IF models with that of the baseline for every number of clients.



6
CONCLUSION

Four different CP models were introduced that assign start times to tasks that a server
node in a quantum network should perform for BQC. Schedules generated by these
models satisfy constraints for performing entanglement according to a network schedule
among other constraints. The makespan is directly minimised as the objective function
and the extra execution deadlines allow for specifying how fast application executions
should finish in order to prevent significant qubit decoherence over time and to preserve
a sufficient success probability. The CP models were evaluated by comparing them on
makespan and success probability with a baseline scheduler. As the baseline scheduler
schedules tasks as soon as possible, this would give the best success probability that can
be achieved, taking qubit decoherence over time into account. It was found that the SF
and IF models can significantly decrease the makespan in the case of multiple clients
and the IS and SS models as well when enough clients are in the network compared to
the baseline. The SF and IF models yield a success probability that is similar to that of
the baseline, which was also verified with a t-test. For the IS and SS models, the success
probability is lower than that of the baseline, however these models can find schedules
faster than the SF and IF models, because QC tasks are scheduled at set times, reducing
the search space.

It has been shown with an experimental demonstration of the use of CP for scheduling
instructions for a server node performing BQC applications with multiple client nodes
repeatedly that CP is an approach that can be used to schedule instructions in such a
way that a network schedule is respected for entanglement generation and the overall
makespan is decreased. One main drawback of the CP approach is scalability. For larger
inputs, it becomes hard to find solutions in a feasible amount of time. Therefore, a
suggestion for future work would be to study how CP could be used to handle larger
quantum network applications in larger quantum networks. Furthermore, other methods
such as heuristics could be used which allow for finding solutions in a smaller amount of
time.
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A
SF MODEL

% MiniZinc model that finds task starttimes for sequential executions with a free network
schedule .

include " globals .mzn ";

% Number of applications .
int: n;

% The max. durations for each application .
array [1..n] of int: deadlines ;

% The number of instructions for each application .
array [1..n] of int: nr_ instructions ;

% Number of executions for each application .
array [1..n] of int: nr_ executions ;

% Max execution durations and instruction types for each instruction (-1 and "" respectively
if less instructions )

int: max_nr_ instructions = max(nr_ instructions );
array [1..n, 1.. max_nr_ instructions ] of int: instr _max_ durations ;
array [1..n, 1.. max_nr_ instructions ] of string : instr _ types ;

% Length of a timeslot in the network schedule .
int: L;

% Network schedule which contains timeslots when which application can perform ’QC ’ operations
.

array [int] of int: GS;

% The length of the network schedule .
int: g = length (GS);

% The total number of tasks to schedule (each instruction execution of each application ).
int: total _nr_ tasks = sum ([ app_nr_ tasks (i) | i in 1..n]);

% Array that contains for each application which task index contains the first task of that
application .

array [1..n] of int: app_ start _ indices = [sum ([ app_nr_ tasks (j) | j in 1..i -1]) + 1 | i in 1..n
];

% The duration of each task ( ordered by application and instruction ).
array [1.. total _nr_ tasks ] of int: task_ durations = [ instr _max_ durations [i,j] | i in 1..n,m in

1.. nr_ executions [i], j in 1.. nr_ instructions [i]];

% The type of each task ( ordered by application and instruction ).
array [1.. total _nr_ tasks ] of string : task_ types = [ instr _ types [i,j] | i in 1..n,m in 1.. nr_

executions [i], j in 1.. nr_ instructions [i]];
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% The application that belongs to each task ( ordered by application and instruction ).
array [1.. total _nr_ tasks ] of int: task_apps = [i | i in 1..n,m in 1.. nr_ executions [i], j in 1..

nr_ instructions [i]];

% Upper bound for task starttimes . This is the total duration + the maximal waiting time for
QC tasks .

int: start _ times _ upper _ bound = sum(task_ durations ) + L * g * count ([ task_ types [i] == "QC" | i
in 1.. total _nr_ tasks ]);

% Decision variable : starttime for each task ( ordered by application and instruction ).
array [1.. total _nr_ tasks ] of var 0.. start _ times _ upper _ bound : task_ start _ times ;

% Constraint : For a same application , the previous task should be completed before starting a
new task.

constraint forall (i in 2.. total _nr_ tasks where task_apps[i -1] == task_apps[i])(task_ start _
times [i] > task_ start _ times [i -1]);

% Constraint : no two tasks overlap .
constraint disjunctive (task_ start _times , task_ durations );

% Constraint : For all ’QC ’ tasks the task starts and ends in the same timeslot it is the turn
of the application .

constraint forall (i in 1.. total _nr_ tasks where task_ types [i] == "QC ") (( GS [(( gs_ timeslot (i) mod
g) + 1)] == task_apps[i]) /\ (((L * (gs_ timeslot (i) + 1)) - task_ start _ times [i]) >= task

_ durations [i]));

% Constraint : All applications executions are finished within the maximal duration ( deadline ).
constraint forall (i in 1..n, m in 1.. nr_ executions [i]) (( task_end_time(get_exec_task_ start _

index (i, m+1) - 1) - task_ start _ times [get_exec_task_ start _ index (i, m)]) <= deadlines [i]);

% Objective function : minimize the makespan . Search variables with smallest value in domain
and values ascendingly .

solve :: int_ search (task_ start _times , smallest , indomain ) minimize max ([ task_end_time(i) | i
in 1.. total _nr_ tasks ]);

% Given the number of a task calculates the time it is finished ( start time + duration ).
function var int: task_end_time(int: task_ index ) = task_ start _ times [task_ index ] + task_

durations [task_ index ];

% Calculates the absolute timeslot in the network schedule when a task starts . First timeslot
has index 0.

function var int: gs_ timeslot (int: task_ index ) = task_ start _ times [task_ index ] div L;

% Finds the task index a given execution starts of a given application .
function int: get_exec_task_ start _ index (int: app_index , int: exec_nr) = app_ start _ indices [app_

index ] + (exec_nr - 1) * nr_ instructions [app_ index ];

% Calculates the number of tasks for an application . For each instruction there is a task for
each execution .

function int: app_nr_ tasks (int: app_ index ) = nr_ instructions [app_ index ] * nr_ executions [app_
index ];

% Print the resulting starttimes .
output ["\( task_ start _ times )"];



B
SS MODEL

% MiniZinc model that finds task starttimes for sequential executions with a strict network
schedule .

include " globals .mzn ";

% Number of applications .
int: n;

% The max. durations for each application .
array [1..n] of int: deadlines ;

% The number of instructions for each application .
array [1..n] of int: nr_ instructions ;

% Number of executions for each application .
array [1..n] of int: nr_ executions ;

% Max execution durations and instruction types for each instruction (-1 and "" respectively
if less instructions )

int: max_nr_ instructions = max(nr_ instructions );
array [1..n, 1.. max_nr_ instructions ] of int: instr _max_ durations ;
array [1..n, 1.. max_nr_ instructions ] of string : instr _ types ;

% Length of a timeslot in the network schedule .
int: L;

% Network schedule which contains timeslots when which application can perform ’QC ’ operations
.

array [int] of int: GS;

% The length of the network schedule .
int: g = length (GS);

% The total number of tasks to schedule (each instruction execution of each application ).
int: total _nr_ tasks = sum ([ app_nr_ tasks (i) | i in 1..n]);

% Array that contains for each application which task index contains the first task of that
application .

array [1..n] of int: app_ start _ indices = [sum ([ app_nr_ tasks (j) | j in 1..i -1]) + 1 | i in 1..n
];

% The duration of each task ( ordered by application and instruction ).
array [1.. total _nr_ tasks ] of int: task_ durations = [ instr _max_ durations [i,j] | i in 1..n,m in

1.. nr_ executions [i], j in 1.. nr_ instructions [i]];

% The type of each task ( ordered by application and instruction ).
array [1.. total _nr_ tasks ] of string : task_ types = [ instr _ types [i,j] | i in 1..n,m in 1.. nr_

executions [i], j in 1.. nr_ instructions [i]];
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% The application that belongs to each task ( ordered by application and instruction ).
array [1.. total _nr_ tasks ] of int: task_apps = [i | i in 1..n,m in 1.. nr_ executions [i], j in 1..

nr_ instructions [i]];

% Upper bound for task starttimes . This is the total duration + the maximal waiting time for
QC tasks .

int: start _ times _ upper _ bound = sum(task_ durations ) + L * g * count ([ task_ types [i] == "QC" | i
in 1.. total _nr_ tasks ]);

% Decision variable : starttime for each task ( ordered by application and instruction ).
array [1.. total _nr_ tasks ] of var 0.. start _ times _ upper _ bound : task_ start _ times ;

% Constraint : For a same application , the previous task should be completed before starting a
new task.

constraint forall (i in 2.. total _nr_ tasks where task_apps[i -1] == task_apps[i])(task_ start _
times [i] > task_ start _ times [i -1]);

% Constraint : no two tasks overlap .
constraint disjunctive (task_ start _times , task_ durations );

% Constraint : All ’QC ’ tasks should start in the first possible timeslots that it is the turn
of the application .

constraint forall (i in 1.. total _nr_ tasks where task_ types [i] == "QC ")(task_ start _ times [i] ==
qc_task_ starttime (i));

% Constraint : All applications executions are finished within the maximal duration ( deadline ).
constraint forall (i in 1..n, m in 1.. nr_ executions [i]) (( task_end_time(get_exec_task_ start _

index (i, m+1) - 1) - task_ start _ times [get_exec_task_ start _ index (i, m)]) <= deadlines [i]);

% Objective function : minimize the makespan . Search variables with smallest value in domain
and values ascendingly .

solve :: int_ search (task_ start _times , smallest , indomain ) minimize max ([ task_end_time(i) | i
in 1.. total _nr_ tasks ]);

% Given the number of a task calculates the time it is finished ( start time + duration ).
function var int: task_end_time(int: task_ index ) = task_ start _ times [task_ index ] + task_

durations [task_ index ];

% Finds the task index a given execution starts of a given application .
function int: get_exec_task_ start _ index (int: app_index , int: exec_nr) = app_ start _ indices [app_

index ] + (exec_nr - 1) * nr_ instructions [app_ index ];

% Calculates the number of tasks for an application . For each instruction there is a task for
each execution .

function int: app_nr_ tasks (int: app_ index ) = nr_ instructions [app_ index ] * nr_ executions [app_
index ];

% Returns an array of all tasks indices which are the QC tasks for a particular app.
function array [int] of int: app_qc_ tasks (int: app_ index ) = [i | i in 1.. total _nr_ tasks where

task_apps[i] == app_ index /\ task_ types [i] == "QC "];

% Given the index of an application , returns the timeslot at which it is its turn for QC tasks
in GS.

function int: app_gs_ timeslot (int: app_ index ) = sum ([ if app_ index == GS[i] then i else 0 endif
| i in index _set(GS)]);

% Given the index of a QC task , returns the index it has in the QC tasks of the application .
function int: qc_app_task_nr(int: task_ index ) = sum ([ if task_ index == app_qc_ tasks (task_apps[

task_ index ])[i] then i else 0 endif | i in index _set(app_qc_ tasks (task_apps[task_ index ]))
]);

% Finds the time a QC task should start (the start of the next possible timeslot ).
function int: qc_task_ starttime (int: task_ index ) = L * (( app_gs_ timeslot (task_apps[task_ index

]) - 1) + g * (qc_app_task_nr(task_ index ) - 1));

% Print the resulting starttimes .
output ["\( task_ start _ times )"];
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% MiniZinc model that finds task starttimes for interleaving executions with a free network
schedule .

include " globals .mzn ";

% Number of applications .
int: n;

% The max. durations for each application .
array [1..n] of int: deadlines ;

% The number of instructions for each application .
array [1..n] of int: nr_ instructions ;

% Number of executions for each application .
array [1..n] of int: nr_ executions ;

% Max execution durations and instruction types for each instruction (-1 and "" respectively
if less instructions )

int: max_nr_ instructions = max(nr_ instructions );
array [1..n, 1.. max_nr_ instructions ] of int: instr _max_ durations ;
array [1..n, 1.. max_nr_ instructions ] of string : instr _ types ;

% Length of a timeslot in the network schedule .
int: L;

% Network schedule which contains timeslots when which application can perform ’QC ’ operations
.

array [int] of int: GS;

% The length of the network schedule .
int: g = length (GS);

% The total number of tasks to schedule (each instruction execution of each application ).
int: total _nr_ tasks = sum ([ app_nr_ tasks (i) | i in 1..n]);

% Array that contains for each application which task index contains the first task of that
application .

array [1..n] of int: app_ start _ indices = [sum ([ app_nr_ tasks (j) | j in 1..i -1]) + 1 | i in 1..n
];

% The duration of each task ( ordered by application and instruction ).
array [1.. total _nr_ tasks ] of int: task_ durations = [ instr _max_ durations [i,j] | i in 1..n,m in

1.. nr_ executions [i], j in 1.. nr_ instructions [i]];

% The type of each task ( ordered by application and instruction ).
array [1.. total _nr_ tasks ] of string : task_ types = [ instr _ types [i,j] | i in 1..n,m in 1.. nr_

executions [i], j in 1.. nr_ instructions [i]];
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% The application that belongs to each task ( ordered by application and instruction ).
array [1.. total _nr_ tasks ] of int: task_apps = [i | i in 1..n,m in 1.. nr_ executions [i], j in 1..

nr_ instructions [i]];

% The execution number of the belonging application of each task.
array [1.. total _nr_ tasks ] of int: task_ex_nrs = [m | i in 1..n,m in 1.. nr_ executions [i], j in

1.. nr_ instructions [i]];

% Instruction index within the application of each task.
array [1.. total _nr_ tasks ] of int: task_ instr _nrs = [j | i in 1..n,m in 1.. nr_ executions [i], j

in 1.. nr_ instructions [i]];

% Upper bound for task starttimes . This is the total duration + the maximal waiting time for
QC tasks .

int: start _ times _ upper _ bound = sum(task_ durations ) + L * g * count ([ task_ types [i] == "QC" | i
in 1.. total _nr_ tasks ]);

% Decision variable : starttime for each task ( ordered by application and instruction ).
array [1.. total _nr_ tasks ] of var 0.. start _ times _ upper _ bound : task_ start _ times ;

% Constraint : Execute all tasks of the same execution of the same application in order .
constraint forall (i in 2.. total _nr_ tasks where task_apps[i -1] == task_apps[i] /\ task_ex_nrs[i

-1] == task_ex_nrs[i])(task_ start _ times [i] > task_ start _ times [i -1]);

% Symmetry breaking constraint : For a same instruction of a same application , do the
executions in order .

constraint symmetry _ breaking _ constraint ( forall (i, j in 1.. total _nr_ tasks where i > j /\ task_
apps[i] == task_apps[j] /\ task_ instr _nrs[i] == task_ instr _nrs[j])(task_ start _ times [i] >
task_ start _ times [j]));

% Constraint : no two tasks overlap .
constraint disjunctive (task_ start _times , task_ durations );

% Constraint : For all ’QC ’ tasks the task starts and ends in the same timeslot it is the turn
of the application .

constraint forall (i in 1.. total _nr_ tasks where task_ types [i] == "QC ") (( GS [(( gs_ timeslot (i) mod
g) + 1)] == task_apps[i]) /\ (((L * (gs_ timeslot (i) + 1)) - task_ start _ times [i]) >= task

_ durations [i]));

% Constraint : All applications executions are finished within the maximal duration ( deadline ).
constraint forall (i in 1..n, m in 1.. nr_ executions [i]) (( task_end_time(get_exec_task_ start _

index (i, m+1) - 1) - task_ start _ times [get_exec_task_ start _ index (i, m)]) <= deadlines [i]);

% Objective function : minimize the makespan . Search variables with smallest value in domain
and values ascendingly .

solve :: int_ search (task_ start _times , smallest , indomain ) minimize max ([ task_end_time(i) | i
in 1.. total _nr_ tasks ]);

% Given the number of a task calculates the time it is finished ( start time + duration ).
function var int: task_end_time(int: task_ index ) = task_ start _ times [task_ index ] + task_

durations [task_ index ];

% Calculates the absolute timeslot in the network schedule when a task starts . First timeslot
has index 0.

function var int: gs_ timeslot (int: task_ index ) = task_ start _ times [task_ index ] div L;

% Finds the task index a given execution starts of a given application .
function int: get_exec_task_ start _ index (int: app_index , int: exec_nr) = app_ start _ indices [app_

index ] + (exec_nr - 1) * nr_ instructions [app_ index ];

% Calculates the number of tasks for an application . For each instruction there is a task for
each execution .

function int: app_nr_ tasks (int: app_ index ) = nr_ instructions [app_ index ] * nr_ executions [app_
index ];

% Print the resulting starttimes .
output ["\( task_ start _ times )"];
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% MiniZinc model that finds task starttimes for interleaving executions with a strict network
schedule .

include " globals .mzn ";

% Number of applications .
int: n;

% The max. durations for each application .
array [1..n] of int: deadlines ;

% The number of instructions for each application .
array [1..n] of int: nr_ instructions ;

% Number of executions for each application .
array [1..n] of int: nr_ executions ;

% Max execution durations and instruction types for each instruction (-1 and "" respectively
if less instructions )

int: max_nr_ instructions = max(nr_ instructions );
array [1..n, 1.. max_nr_ instructions ] of int: instr _max_ durations ;
array [1..n, 1.. max_nr_ instructions ] of string : instr _ types ;

% Length of a timeslot in the network schedule .
int: L;

% Network schedule which contains timeslots when which application can perform ’QC ’ operations
.

array [int] of int: GS;

% The length of the network schedule .
int: g = length (GS);

% The total number of tasks to schedule (each instruction execution of each application ).
int: total _nr_ tasks = sum ([ app_nr_ tasks (i) | i in 1..n]);

% Array that contains for each application which task index contains the first task of that
application .

array [1..n] of int: app_ start _ indices = [sum ([ app_nr_ tasks (j) | j in 1..i -1]) + 1 | i in 1..n
];

% The duration of each task ( ordered by application and instruction ).
array [1.. total _nr_ tasks ] of int: task_ durations = [ instr _max_ durations [i,j] | i in 1..n,m in

1.. nr_ executions [i], j in 1.. nr_ instructions [i]];

% The type of each task ( ordered by application and instruction ).
array [1.. total _nr_ tasks ] of string : task_ types = [ instr _ types [i,j] | i in 1..n,m in 1.. nr_

executions [i], j in 1.. nr_ instructions [i]];
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% The application that belongs to each task ( ordered by application and instruction ).
array [1.. total _nr_ tasks ] of int: task_apps = [i | i in 1..n,m in 1.. nr_ executions [i], j in 1..

nr_ instructions [i]];

% The execution number of the belonging application of each task.
array [1.. total _nr_ tasks ] of int: task_ex_nrs = [m | i in 1..n,m in 1.. nr_ executions [i], j in

1.. nr_ instructions [i]];

% Instruction index within the application of each task.
array [1.. total _nr_ tasks ] of int: task_ instr _nrs = [j | i in 1..n,m in 1.. nr_ executions [i], j

in 1.. nr_ instructions [i]];

% Upper bound for task starttimes . This is the total duration + the maximal waiting time for
QC tasks .

int: start _ times _ upper _ bound = sum(task_ durations ) + L * g * count ([ task_ types [i] == "QC" | i
in 1.. total _nr_ tasks ]);

% Decision variable : starttime for each task ( ordered by application and instruction ).
array [1.. total _nr_ tasks ] of var 0.. start _ times _ upper _ bound : task_ start _ times ;

% Constraint : Execute all tasks of the same execution of the same application in order .
constraint forall (i in 2.. total _nr_ tasks where task_apps[i -1] == task_apps[i] /\ task_ex_nrs[i

-1] == task_ex_nrs[i])(task_ start _ times [i] > task_ start _ times [i -1]);

% Symmetry breaking constraint : For a same instruction of a same application , do the
executions in order .

constraint symmetry _ breaking _ constraint ( forall (i, j in 1.. total _nr_ tasks where i > j /\ task_
apps[i] == task_apps[j] /\ task_ instr _nrs[i] == task_ instr _nrs[j])(task_ start _ times [i] >
task_ start _ times [j]));

% Constraint : no two tasks overlap .
constraint disjunctive (task_ start _times , task_ durations );

% Constraint : All ’QC ’ tasks should start in the first possible timeslots that it is the turn
of the application .

constraint forall (i in 1.. total _nr_ tasks where task_ types [i] == "QC ")(task_ start _ times [i] ==
qc_task_ starttime (i));

% Constraint : All applications executions are finished within the maximal duration ( deadline ).
constraint forall (i in 1..n, m in 1.. nr_ executions [i]) (( task_end_time(get_exec_task_ start _

index (i, m+1) - 1) - task_ start _ times [get_exec_task_ start _ index (i, m)]) <= deadlines [i]);

% Objective function : minimize the makespan . Search variables with smallest value in domain
and values ascendingly .

solve :: int_ search (task_ start _times , smallest , indomain ) minimize max ([ task_end_time(i) | i
in 1.. total _nr_ tasks ]);

% Given the number of a task calculates the time it is finished ( start time + duration ).
function var int: task_end_time(int: task_ index ) = task_ start _ times [task_ index ] + task_

durations [task_ index ];

% Finds the task index a given execution starts of a given application .
function int: get_exec_task_ start _ index (int: app_index , int: exec_nr) = app_ start _ indices [app_

index ] + (exec_nr - 1) * nr_ instructions [app_ index ];

% Calculates the number of tasks for an application . For each instruction there is a task for
each execution .

function int: app_nr_ tasks (int: app_ index ) = nr_ instructions [app_ index ] * nr_ executions [app_
index ];

% Returns an array of all tasks indices which are the QC tasks for a particular app.
function array [int] of int: app_qc_ tasks (int: app_ index ) = [i | i in 1.. total _nr_ tasks where

task_apps[i] == app_ index /\ task_ types [i] == "QC "];

% Given the index of an application , returns the timeslot at which it is its turn for QC tasks
in GS.

function int: app_gs_ timeslot (int: app_ index ) = sum ([ if app_ index == GS[i] then i else 0 endif
| i in index _set(GS)]);

% Given the index of a QC task , returns the index it has in the QC tasks of the application .
function int: qc_app_task_nr(int: task_ index ) = sum ([ if task_ index == app_qc_ tasks (task_apps[

task_ index ])[i] then i else 0 endif | i in index _set(app_qc_ tasks (task_apps[task_ index ]))
]);

% Finds the time a QC task should start (the start of the next possible timeslot ).
function int: qc_task_ starttime (int: task_ index ) = L * (( app_gs_ timeslot (task_apps[task_ index

]) - 1) + g * (qc_app_task_nr(task_ index ) - 1));
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% Print the resulting starttimes .
output ["\( task_ start _ times )"];



E
MANY EXECUTIONS DATA FILE

%
% Instance where we have a few smaller applications , which are executed many times .
%

% Network schedule
GS = [1, 2];

% Length of a timeslot in the network schedule
L = 600;

% Number of appplications
n = 2;

% Deadline for each application (max duration )
deadlines = [ 700 , 700];

% The number of times we execute each application
nr_ executions = [ 19 ,64];

% Number of instructions for each application
nr_ instructions = [ 2 ,2];

% The maximal duration of each instruction .
% Each application on a new row.
% -1 as dummies for applications with less instructions than the largest application .
instr _max_ durations = [|100 , 200
|100 , 200|];

% The types of each instruction .
% Each application on a new row.
% "" as dummies for applications with less instructions than the largest application .
instr _ types = [|" QC", "CC"
|" QC", "CC "|];
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%
% Instance where we have a few bigger applications , which are executed only few times .
%

% Network schedule
GS = [1, 2];

% Length of a timeslot in the network schedule
L = 1000;

% Number of appplications
n = 2;

% Deadline for each application (max duration )
deadlines = [ 1600 ,1600];

% The number of times we execute each application
nr_ executions = [ 2, 1];

% Number of instructions for each application
nr_ instructions = [ 12 ,12];

% The maximal duration of each instruction .
% Each application on a new row.
% -1 as dummies for applications with less instructions than the largest application .
instr _max_ durations = [|100 , 200 , 5, 5, 200 , 200 , 5, 200 , 5 ,5 ,200 ,5
|100 , 200 , 5, 5, 200 , 200 , 5, 200 , 5 ,5 ,200 , 5|];

% The types of each instruction .
% Each application on a new row.
% "" as dummies for applications with less instructions than the largest application .
instr _ types = [|" QC", "CC", "QL", "QL", "CC", "CC", "QL", "CC", "QL", "QL","QL", "QL"
|" QC", "CC", "QL", "QL", "CC", "CC", "QL", "CC", "QL", "QL","CC", "QL "|];
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%
% Instance where we have many smaller applications , which are executed only few times .
%

% Network schedule
GS = [1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12 ,13 ,14 ,15 ,16 ,17 ,18 ,19 ,
20 ,21 ,22 ,23 ,24 ,25 ,26 ,27 ,28 ,29 ,30];

% Length of a timeslot in the network schedule
L = 800;

% Number of appplications
n = 30;

% Deadline for each application (max duration )
deadlines = [ 1000 ,1000 ,1000 ,1000 ,1000 ,1000 ,1000 ,1000 ,1000 ,1000 ,1000 ,
1000 ,1000 ,1000 ,1000 ,1000 ,1000 ,1000 ,1000 ,1000 ,1000 ,1000 ,1000 ,1000 ,1000 ,
1000 ,1000 ,1000 ,1000 ,1000 ];

% The number of times we execute each application
nr_ executions = [ 3,3,3,3,3,3,3,3,3,3,3,3,3,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2 ];

% Number of instructions for each application
nr_ instructions = [ 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2 ];

% The maximal duration of each instruction .
% Each application on a new row.
% -1 as dummies for applications with less instructions than the largest application .
instr _max_ durations = [|100 , 200

|100 , 200
|100 , 200
|100 , 200
|100 , 200
|100 , 200
|100 , 200
|100 , 200
|100 , 200
|100 , 200
|100 , 200
|100 , 200
|100 , 200
|100 , 200
|100 , 200
|100 , 200
|100 , 200
|100 , 200
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|100 , 200
|100 , 200
|100 , 200
|100 , 200
|100 , 200
|100 , 200
|100 , 200
|100 , 200
|100 , 200
|100 , 200
|100 , 200
|100 , 200|];

% The types of each instruction .
% Each application on a new row.
% "" as dummies for applications with less instructions than the largest application .
instr _ types = [|" QC", "CC"

|" QC", "CC"
|" QC", "CC"
|" QC", "CC"
|" QC", "CC"
|" QC", "CC"
|" QC", "CC"
|" QC", "CC"
|" QC", "CC"
|" QC", "CC"
|" QC", "CC"
|" QC", "CC"
|" QC", "CC"
|" QC", "CC"
|" QC", "CC"
|" QC", "CC"
|" QC", "CC"
|" QC", "CC"
|" QC", "CC"
|" QC", "CC"
|" QC", "CC"
|" QC", "CC"
|" QC", "CC"
|" QC", "CC"
|" QC", "CC"
|" QC", "CC"
|" QC", "CC"
|" QC", "CC"
|" QC", "CC"
|" QC", "CC "|];



H
SIMULATED BQC-SERVER

INSTRUCTIONS

Instruction Type Duration (µs)

1* CL 200
2* QC 30000
3* CL 200
4* QC 30000
5 CL 200

6** QL 100
7** QL 100
8** QL 100
9 CL 200

10 CC 2000
11 CL 200

12** QL 100
13** QL 1
14** QL 1
15** QL 10
16** QL 100
17 CC 2000
18 CC 2000
19 CL 200

20** QL 100
21** QL 1
22** QL 1
23** QL 10
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24** QL 100
25 CC 2000

Total 69924

* Instructions 1 and 2 were made 1 single QC instruction, summing both durations. The
same was done for instructions 3 and 4. This was done for both the baseline and CP
models. This was done because the CL instructions are related to the QC tasks (used for
set-up) and because the IS and SS model constraints require to start with a QC
instruction.

** The subsequent QL instructions were made 1 single QL instruction, summing the
individual durations. This was done specifically for the CP models, in order to reduce the
total number of instructions, else the input would be too complex to find a schedule in a
short amount of time for more clients and executions. The grouping of QL operations
would not change anything for the schedule produced by the baseline scheduler, since it
always performs QL tasks directly.
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