
 
 

Delft University of Technology

Agent Selection Framework for Federated Learning in Resource-Constrained Wireless
Networks

Raftopoulou, Maria; da Silva Jr. , José Mairton B. ; Litjens, Remco; Poor, H. Vincent; Van Mieghem, Piet

DOI
10.1109/TMLCN.2024.3450829
Publication date
2024
Document Version
Final published version
Published in
IEEE Transactions on Machine Learning in Communications and Networking

Citation (APA)
Raftopoulou, M., da Silva Jr. , J. M. B., Litjens, R., Poor, H. V., & Van Mieghem, P. (2024). Agent Selection
Framework for Federated Learning in Resource-Constrained Wireless Networks. IEEE Transactions on
Machine Learning in Communications and Networking, 2, 1265-1282.
https://doi.org/10.1109/TMLCN.2024.3450829
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TMLCN.2024.3450829
https://doi.org/10.1109/TMLCN.2024.3450829


Received 14 February 2024; revised 23 June 2024; accepted 16 August 2024.
Date of publication 28 August 2024; date of current version 11 September 2024.

The associate editor coordinating the review of this article and approving it for publication was N. H. Tran.

Digital Object Identifier 10.1109/TMLCN.2024.3450829

Agent Selection Framework for Federated
Learning in Resource-Constrained

Wireless Networks
MARIA RAFTOPOULOU 1, JOSÉ MAIRTON B. DA SILVA JR. 2 (Member, IEEE),

REMCO LITJENS 1,3, H. VINCENT POOR 4 (Life Fellow, IEEE),
AND PIET VAN MIEGHEM 1 (Fellow, IEEE)

1Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, 2628 CD Delft, The Netherlands
2Department of Information Technology, Uppsala University, 751 05 Uppsala, Sweden

3Department of Networks, Netherlands Organisation for Applied Scientific Research (TNO), 2595 DA The Hague, The Netherlands
4Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ 08544 USA

CORRESPONDING AUTHOR: M. RAFTOPOULOU (M.Raftopoulou@tudelft.nl)

This work was supported by the NExTWORKx, a collaboration between TU Delft and Royal KPN N.V. (KPN) on future communication
networks. The work of José Mairton B. da Silva Jr. was supported in part by the European Union’s Horizon Europe Research and Innovation

Program under the Marie Skłodowska-Curie Project Federated Learning Supporting Efficient and Reliable Inference over Vehicular
Networks (FLASH), under Grant 101067652; in part the Ericsson Research Foundation; and in part by the Hans Werthén Foundation.

The work of H. Vincent Poor was supported by the U.S. National Science Foundation under Grant CNS-2128448 and Grant ECCS-2335876.
The work of Piet Van Mieghem was supported by the European Research Council (ERC) under the European Union’s

Horizon 2020 Research and Innovation Program under Grant 101019718.

ABSTRACT Federated learning is an effective method to train a machine learning model without requiring
to aggregate the potentially sensitive data of agents in a central server. However, the limited communication
bandwidth, the hardware of the agents and a potential application-specific latency requirement impact how
many and which agents can participate in the learning process at each communication round. In this paper,
we propose a selection metric characterizing each agent’s importance with respect to both the learning
process and the resource efficiency of its wireless communication channel. Leveraging this importancemetric,
we formulate a general agent selection optimization problem, which can be adapted to different environments
with latency or resource-oriented constraints. Considering an example wireless environment with latency
constraints, the agent selection problem reduces to the 0/1 Knapsack problem, which we solve with a fully
polynomial approximation. We then evaluate the agent selection policy in different scenarios, using extensive
simulations for an example task of object classification of European traffic signs. The results indicate that
agent selection policies which consider both learning and channel aspects provide benefits in terms of the
attainable global model accuracy and/or the time needed to achieve a targeted accuracy level. However,
in scenarios where agents have a limited number of data samples or where the latency requirement is very
stringent, a pure learning-based agent selection policy is shown to be more beneficial during the early or late
stages of the learning process.

INDEX TERMS Agent selection, federated learning, machine learning, wireless networks.

I. INTRODUCTION

TRADITIONAL machine learning (ML) algorithms are
performed at a central location, where large amounts

of data are aggregated and used to train the ML model.
However, the input data originate at different agents who
may be unwilling to share them due to privacy concerns.
Additionally, agents can generate a large amount of data in
a short period of time, which can saturate the communication

channel if all data from all agents need to be centrally
aggregated.

Addressing the difficulties of centralized ML algorithms,
McMahan et al. [1] introduced federated learning (FL),
a decentralized ML technique to train a centralized global
model using decentralized data from multiple agents and
without sharing the raw data at the agents. Specifically, the
agents train their own local model, which has the same neural

VOLUME 2, 2024


 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

1265

https://orcid.org/0000-0003-1856-6996
https://orcid.org/0000-0002-4503-4242
https://orcid.org/0000-0001-5423-5292
https://orcid.org/0000-0002-2062-131X
https://orcid.org/0000-0002-3786-7922


network architecture as the global model, with their own
data. After local training, the agents only transmit the tuned
parameters of their local model to the FL server, which is
then responsible for generating a new global model by com-
bining the received model parameters from the contributing
agents. The process repeats for a number of communication
rounds until the global model converges to a satisfactory
accuracy level. FederatedAveraging (or FedAvg) [1]
is the most popular method for FL. Agents apply the stochas-
tic gradient descent (SGD) optimizer, for a number of local
iterations, and the global model is generated by averaging the
submitted local models.

A challenge of FL is that the exchange of model param-
eters between the agents and the FL server can come at a
high communication cost, especially for models with a large
number of parameters [2]. This is of particular relevance in
wireless network scenarios, e.g. when considering applica-
tions such as autonomous driving and the internet of things,
which rely on resource-constrained wireless networks [3].
Also, wireless channels impose further challenges as they are
susceptible to interference, have limited resources and their
quality varies over location, time and frequency. To address
these challenges, a subset of agents is selected to participate
in a given communication round. Furthermore, although the
FedAvg method can perform very well [1], [4], its perfor-
mance can degrade significantly when data at the agents are
not independent and identically distributed (non-IID), i.e.,
heterogeneous, across all agents [5]. Therefore, the selection
of agents influences the convergence time and accuracy of the
global model.

A. RELATED WORK
In the literature, the agent selection problem has been
addressed from both a pure FL perspective and for the spe-
cific setting of a wireless network. From the FL perspective,
Charles et al. [6] address the effects of randomly selecting a
large number of agents is addressed. Rather than randomly
selecting agents, Cho et al. [7] show that selection of agents
based on their local loss improves the convergence of the
global model, even for scenarios with heterogeneous data.
The local loss is also considered by Lai et al. [8], who perform
agent selection with a statistical utility function. Nguyen et al.
[9] perform agent selection considering the gradient infor-
mation of each agent, while Chen et al. [10] use the norms
of the updates of each agent. Ribero and Vikalo [11] sug-
gest the selection of agents based on the progression of the
agents’ local weights with respect to time. However, none of
the above works consider a wireless network nor provide a
clear indication of which metric is the most appropriate to
characterize the importance of agents in the learning process.

Considering a wireless network, Hellström et al. [12] pro-
vide an overview of importance-aware agent selection with
learning and wireless policies. Nishio and Yonetani [13] pro-
pose a greedy method to maximize the number of selected
agents during a time interval. Yang et al. [14] compare the

performance of the random, round robin and proportional
fair schedulers, in terms of the FL convergence rate, for sce-
narios with limited bandwidth and interference. Amiri et al.
[15] show that selecting agents based on both their wire-
less channels and the l2-norm of their local model update
provides better performance than only considering one of
the two metrics individually. Zeng et al. [16] concentrate
on minimizing the energy consumption, whereas Yu et al.
[17] optimize the trade-off between minimizing the energy
consumption and maximizing the number of selected agents.
Shi et al. [18] consider latency-constrained systems and aim
to maximize the model accuracy within a given total latency
budget. Fan et al. [19] address latency-constrained systems
by minimizing the time duration of each communication
round, assuming mobile agents. Moreover, Albaseer et al.
[20] address agent selection in scenarios with data and device
heterogeneity and limited wireless resources. However, none
of the works perform agent selection by characterizing the
agents based on their importance in the learning process and
their transmission, processing and energy resource consump-
tion. Furthermore, the works in the literature focus on specific
objectives of a given problem rather than providing a general
agent selection framework, which can be easily adapted to the
problem and objective at hand.

The global model convergence, with the FedAvgmethod,
under non-IID training data is addressed in the literature in
many ways, including with data sharing [21], [22] and with
regularization [23], [24], [25]. Convergence guarantees have
also been derived for scenarios with non-IID data [26] and it is
suggested that for many real-world applications, the FedAvg
method can provide identical performance for IID and non-
IID data [27]. Therefore, motivated by the research so far,
we employ the FedAvg method in this work.

B. CONTRIBUTIONS AND PAPER ORGANIZATION
Our main contributions are the following:

• We propose a configurable metric to characterize the
agents based on their importance in the learning process
as well as their resource consumption, which depends
on the FL model and the agents’ wireless channels and
hardware. Such a metric describes the agents better and
hence allows for a more appropriate selection of agents
based on the scenario considered.

• We propose a general agent selection framework, which
considers both agent-specific and system constraints,
in the form of an optimization problem. The optimiza-
tion problem can be adjusted to accommodate different
needs and constraints from the application, network
and agent perspectives. Thus, the proposed framework
can address a number of different scenarios rather than
provide a solution to a single specific problem. More-
over, the optimization problem can be easily extended
to address the joint agent selection and resource
allocation problem in FL scenarios over wireless
networks.
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• We show that for scenarios with non-IID data, the local
loss is a better metric than the deviation between the
local and the global model to characterize the impor-
tance of an agent in the learning process.

• We demonstrate that the learning accuracy is improved
when both learning and channel aspects are consid-
ered to characterize the agents. However, when the
agents have few samples or when stringent latency
requirements apply, a higher global model accuracy
is achieved with pure learning-based agent selection
policies.

The remainder of this paper is organized as follows.
Section II provides the learning and communication models.
In Section III, the agent characterization is presented, while
the problem formulation is derived in Section IV. Section V
presents the considered use case for evaluating the agent
selection framework and Section VI provides the evaluation
of the agent selection policies, as derived from the framework.
Finally, the conclusions and recommendations for future
work are presented in Section VII.

II. SYSTEM MODEL
Consider a cellular network with one base station, which also
acts as an FL server and a set V of agents, where V =
|V|. The FL server and the agents collaboratively train a
global model, without requiring the transmission of the data
sets gathered by the agents. Therefore, each agent v ∈ V

holds its own training data set Kv and testing data set KT ,v,
where Kv = |Kv| and KT ,v = |KT ,v| denote the number
of training and testing data samples available at agent v,
respectively.

At a given communication round i, the FL server selects
which agents will participate in the learning and each selected
agent v ∈ VG[i] trains its local model, where VG[i] is the
set containing the selected agents at communication round i.
Once each selected agent v ∈ VG[i] finishes its local train-
ing, it transmits its local model to the FL server. After all
required local model uploads are completed, the FL server
is responsible to update the global model for the next com-
munication round i + 1 and transmit the new global model
to each agent v ∈ V. The process repeats until sufficient
accuracy is achieved at the global model, based on an FL
server- or agent-specific testing data set, or an application-
specific deadline is reached.

An application-specific deadline TAPP,MAX can also be set
on the time duration of each communication round i to pre-
vent the selection of agents with limited training power and/or
with poor wireless channel quality. Additionally, the FL pro-
cess can be bound to the available transmission resources
CR,MAX allocated to the FL task, e.g. in a slice in 5G net-
works, which can restrict the number of selected agents per
communication round. Table 1 provides a short description
of the most commonly used symbols in this paper. The rest of
this section describes in more detail the learning model and
the model for the communication between the agents and the
FL server.

TABLE 1. List of most commonly used symbols.

A. LEARNING MODEL
Consider an agent v, with training data set Kv. We denote
its input data Xv = [xv1, · · · , xvKv ], where xvk ∈ RnX

denotes the k th input vector to the model of agent v, with nX
as the size of the input vector. Additionally, the output data
Yv = [yv1, · · · , yvKv ], where yvk ∈ {0, 1}

nC denotes the real
output vector associated with the k th input vector xvk , where
nC is the size of the output vector and hence, the number
of model outputs. For example, for an object classification
learning task with nC classes, the real output yvk indicates
with value 1 the class that sample k belongs to, while for all
other classes, it holds a 0 value.

During local training with training data set Kv, the model
output (or predictions) Ŷv = [ŷv1, · · · , ŷvKv ] is generated,
where ŷvk ∈ RnC denotes the predicted output vector related
to the k th input vector xvk . The model output Ŷv depends on
the considered model architecture, e.g. the number of hidden
layers in the case of a deep neural network. The weights
Wv parameterize the considered local model and the goal
of the local model is to tune its weights Wv such that the
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predictions Ŷv will represent the real output Yv, given the
input data Xv. The relation between the predictions ŷv and
the real outputYv is typically measured with the loss function
F(Wv;Xv,Yv), which also depends onXv andYv. From here
onwards, we omit this dependency for the sake of simplifying
the notation.

The objective of tuning the local model is:

min
Wv

F(Wv) =
1
Kv

∑
k∈Kv

fk (Wv), (1)

where fk (Wv) is the loss function of sample k , which is
commonly set to the cross-entropy loss for classification
problems [28]. To find the weights Wv which minimize
the loss function F(Wv), a number of iterations nLE are
performed, known as local epochs. Assuming the SGD opti-
mizer [29], the weights Wv are adapted at every local epoch
based on the learning rate η, which controls the learning speed
of the model.

In an FL setting, a data set K, where K = |K|, is the
collection of the data sets Kv from all agents in set V and
hence K = ∪v∈VKv. With the FedAvg method [1] and
assuming that the global model is generated only based on
the models of the selected agents, the loss of the FL server,
at communication round i, is upper bounded by the weighted
average of the local losses

min
WG

F(WG[i]) ≤
∑

v∈VG[i]

Kv
K
F(Wv[i]), (2)

whereWv[i] denotes theweights of the localmodel of agent v,
after local training during communication round i andWG[i]
are the weights of the global model. Using this upper bound,
FL approximates the global objective function F(WG[i]) by
the weighted average of the local losses. Then, assuming the
SGD optimizer, the weightsWG[i] of the global model at the
end of communication round i are updated as follows:

WG[i]←
∑

v∈VG[i]

Kv
K

Wv[i], (3)

and then transmitted to all of the agents for the next commu-
nication round i+ 1.

B. COMMUNICATION MODEL
For the transmission of the local model, assuming a wireless
link, we measure the bit rate Rv of agent v in Mbps with the
Shannon–Hartley equation [30] as

Rv = Bv log2

(
1+

PvGv
PN

)
, (4)

where Bv is the transmission bandwidth of agent v in MHz,
Pv is the transmit power in Watt, Gv is the transmission gain
and PN is the thermal noise power in Watt. The transmission
gain Gv is given, in dB, by [30]

Gv = 20 log
(

c
4π fC

)
− 10γ log(dv)+ ψ, (5)

where c is the speed of light, fC is the carrier frequency, dv
is the three-dimensional distance between agent v and the
serving base station, γ is the path loss exponent and ψ is
a Normally-distributed random variable with zero mean and
variance σ 2, capturing the effects of shadow fading. Finally,
we ignore the transmission of the global model from the FL
server to the agents, which can be assumed to be a broadcast
and hence consume relatively few resources.

III. AGENT CHARACTERIZATION
In real-world applications, agents are diverse in terms of their
training data as well as processing capabilities (e.g. central
processing unit (CPU)) to train their local model, wireless
channel quality and energy availability. In this section we
define two metrics for measuring the importance of agents
in the learning process and we describe the potential resource
consumption of the agents.

A. LEARNING PROCESS IMPORTANCE
Non-random agent selection can improve the FL model con-
vergence [7], [8], [9], [10], [11]. Hence, we characterize an
agent v at communication round i based on its importance
QL,v[i] in the learning process. Specifically, we consider two
metrics which can express the importance QL,v[i] of agent v:
(a) the deviation qv[i] and (b) the loss F(WG,v[i]), which are
both defined below.

Inspired by regularization to address the challenges of non-
IID data [23], we propose as a metric for the importance
QL,v[i] in the learning process, the deviation

qv[i] = ||Wv[iv]−WG[i− 1]||22, (6)

which represents the deviation between the local model
Wv[iv] of agent v and the global model WG[i − 1], where
|| · ||2 denotes the Euclidean norm and iv denotes the most
recent communication round that agent v was selected for
learning. The deviations can be calculated at the FL server
and consequently used in the agent selection process without
any additional signaling from the agents. The reason is due to
the assumption that the FL server always stores the weights
of agents from their last participation in the learning pro-
cess until their next participation. Finally, although multiple
agents may have the same deviation, the proposed framework
ensures that those agents are differentiated during the agent
selection process, which is explained with more details in
Section IV.
Alternatively, the importance QL,v[i] in the learning pro-

cess can also be expressed [7], [22] in terms of the loss
function F(WG,v[i]) of agent v, which is locally computed at
agent vwith the testing data setKT ,v and the newly generated
global weights WG[i] at the end of communication round i.
Then, the loss F(WG,v[i]) is transmitted to the FL server as an
input for the agent selection process of communication round
i + 1. The time needed to calculate the loss F(WG,v[i]) is
addressed in Section III-B.2 and we consider the correspond-
ing transmission time to be negligible due to the loss being a
scalar value. Since all agents need to transmit their loss, the
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communication cost for this task is linearly proportional to
the number of agents in the network. However, the loss is a
scalar value and therefore its impact on the total communica-
tion cost is considered non-significant.

B. RESOURCE CONSUMPTION
When an agent participates in the learning process during
communication round i, it consumes resources. We charac-
terize the total resource consumption of an agent v based
on the resource consumption for the transmission CR,v[i],
processingCT ,v[i] and energyCE,v[i], respectively. The trans-
mission CR,v[i] and processing CT ,v[i] consumption relate
to system-specific resource, e.g. bandwidth and time, while
the energy CE,v[i] consumption is agent-specific. In the fol-
lowing, we detail the consumption for these three types of
resources.

1) TRANSMISSION RESOURCES
The consumption of the transmission, i.e. time-frequency,
resources CR,v[i] of agent v is related to the upload of the
local model Wv[i] at communication round i and depends
on the communication system. We consider an orthogonal
frequency division multiple access (OFDMA) system and
assume that the channel is static during the communication
round i and over the applied frequency carrier. Considering
that the transmission resources are defined in both the time
and frequency domains, we define the consumed transmis-
sion resources CR,v[i] as:

CR,v[i] = Tv[i]Bv[i], (7)

where Tv[i] is the transmission time in seconds andBv[i] is the
transmission bandwidth in MHz. Given that the transmission
bandwidth Bv[i] is fixed during communication round i, the
transmission time Tv[i] = Z

Rv[i]
, where Rv[i] is the bit rate as

given in (4) and Z is the size of the model in Mbits. Then, (7)
is re-written as

CR,v[i] =
Z

Rv[i]
Bv[i], (8)

which captures the dynamic nature of the channels over time
through the bit rate Rv[i]. The resource consumption CR,v[i]
is important for systems with limited resources because it
can be exploited for efficient agent selection. Also, the cal-
culation of the resource consumption CR,v[i] does not require
additional communication between the agents and the base
station, because the bit rates can be estimated by the base
station via the periodic channel quality indicator feedback
that all agents report to the network.

2) PROCESSING RESOURCES
The consumption CT ,v related to the local model training by
agent v is measured in terms of time and depends on the
agent’s processing capability gv, as well as on its data set size
Kv and other training-related parameters. Assuming a fixed
training data set sizeKv, the consumptionCT ,v is the same for

any communication round. Specifically, the processing capa-
bility gv of agent v is measured in floating point operations
(FLOPs) per second as [31]

gv = nCORES,v νv ωv, (9)

where nCORES,v is the number of CPU cores at agent v, νv is
the CPU clock frequency at agent v in cycles per second and
ωv is the number of FLOPs per cycle at agent v. Then, the
time consumption CT ,v for training at agent v is

CT ,v =
⌈
Kv
sB

⌉
nFLOP,G nLE

gv
, (10)

where nFLOP,G denotes the number of FLOPs to train the
model for a batch of size sB and ⌈·⌉ represents the ceiling
operation.

When the loss F(WG,v[i]) of agent v is considered for
the importance QL,v[i] in the learning process, an additional
term can be added to the training time consumption CT ,v to
represent the loss calculation:

CT ,v =
⌈
Kv
sB

⌉
nFLOP,G nLE

gv
+

⌈
KT ,v
sB

⌉
nFLOP,G
gv

, (11)

assuming a fixed testing data set size KT ,v.
The time consumption CT ,v can only be measured locally

at the agent and hence, it should be communicated to the FL
server when the agent first enters the network. Since this com-
munication occurs only once, the related communication cost
is considered negligible, regardless of the number of agents
in the network. The knowledge of the time consumption CT ,v
at the FL server is significant because it allows the FL server
to perform resource-efficient agent selection within a given
latency bound.

3) ENERGY RESOURCES
The energy consumption CE,v[i] of an agent v, during com-
munication round i covers both the training and the wireless
transmission. Applying the model in [31], the energy con-
sumption CE,v[i] is given, in Joules, by:

CE,v[i] =
ev
ω3
v

⌈
Kv
sB

⌉
g2v nFLOP,G nLE + Pv[i]Tv[i], (12)

where ev is the energy consumption coefficient based on
the CPU, measured in Watt(cycles/s)−3. When consider-
ing agents with energy limitations, the energy consumption
CE,v[i] is an important metric because the available energy
levelEv[i] of the agent should exceed the energy consumption
CE,v[i] required to participate in the learning process.
When energy aspects are taken into account during agent

selection, the energy consumption CE,v[i], as well as the total
available energy Ev[i], need to be reported to the FL server.
Specifically, the training-related energy consumption needs
to be reported to the FL server once, when first entering the
network, while the transmission-related energy consumption
can be estimated at the FL server for the same reasons given
for the transmission resource consumption CR,v[i]. Further-
more, the energy level Ev[i] of an agent v is dependent on the
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communication round i, because it decreases by the agent’s
energy consumption, every time agent v is selected and hence
the energy level Ev[i] should be periodically reported to the
FL server.

IV. PROBLEM FORMULATION
We define the agent importance Qv[i] as the metric govern-
ing the agent selection process to improve the performance
of the FL model by exploiting the different characteristics
of the agents. The agent importance Qv[i] is defined to cap-
ture the trade-off between the importanceQL,v[i] of the agent
v in the learning process against the total resource consump-
tion of the agent v as follows:

Qv[i] =
QρLL,v[i]

CρRR,v[i]C
ρT
T ,vC

ρE
E,v[i]

, (13)

with ρL+ρR+ρT +ρE = 1, where {ρL , ρR, ρT , ρE } ∈ [0, 1]
are constants to tune the relative significance of the learning
importance QL,v[i] and the consumed transmission CR,v[i],
as given in (8), processing CT ,v, as given in (10) or (11), and
energyCE,v[i] resources, as given in (12), respectively. Recall
that the importance QL,v[i] of the agent v in the learning
process can be expressed in terms of the deviation qv[i],
as given in (6), or the local loss F(WG,v[i]). Moreover, the
agent importance Qv[i] can be fine-tuned to the requirements
and constraints of the agents and the system. For example,
when the network is very congested, higher emphasis can
be given to the transmission resource consumption of agents
by increasing the value of ρR. Therefore, by appropriately
configuring the constants ρL , ρR, ρT and ρE in (13), both
learning and resource consumption aspects are simultane-
ously addressed.

For a given communication round i, we formulate the
following general agent selection optimization problem to
maximize the total agent importance, which can capture both
learning and resource consumption aspects:

max
S1[i],···SV [i]

∑
v∈V

Qv[i]Sv[i] (14a)

subject to
∑
v∈V

CR,v[i]Sv[i] ≤ CR,MAX[i], (14b)

(CT ,v + Tv[i])Sv[i] ≤ TAPP,MAX, ∀v ∈ V,

(14c)

CE,v[i]Sv[i] ≤ Ev[i], ∀v ∈ V, (14d)

gvSv[i] ≥ gMIN, ∀v ∈ V, (14e)

Sv[i] ∈ {0, 1}, ∀v ∈ V, (14f)

where the binary optimization variable Sv[i] indicates
whether agent v is selected at communication round i or
not. Constraint (14b) indicates that the transmission resources
allocated to the agents should not exceed the total system
resources allocated to the FL task at communication round
i. Constraint (14c) shows that the selected agents should
train and transmit their models within an application-specific
latency budget TAPP,MAX. Constraint (14d) ensures that the

selected agents have sufficient energy levels to participate
in the learning process. Finally, constraint (14e) ensures that
the processing capabilities of the selected agents exceed a
minimum requirement gMIN, to avoid selecting agents with
potentially long training times.

The objective in (14a) depends on the importance Qv[i]
for each agent v, which provides the differentiation between
the different agents. In case two or more agents have the
same agent importanceQv[i], the agents are differentiated via
the constraints. For example, constraint (14b) differentiates
the agents based on the quality of their wireless channels.
We remind that the agent importance in (13) serves as a
selection metric and thus, the selected agents transmit their
local models to the FL server after performing local train-
ing. Moreover, the optimization problem in (14) is general
and it can be adjusted to the communication system, the
application-specific requirements and the energy constraints
of the agents. Therefore, some of the constraints in (14)
might be irrelevant to specific problems. Furthermore, the
optimization problem can be extended to jointly consider
agent selection and radio resource allocation, for example
when multiple agents can be simultaneously served with
beamforming antennas.

Additionally, we consider that the convergence analysis
with the proposed framework can be provided based on
the convergence analysis for partial agent participation in
non-IID scenarios from Zhao et al. [5]. Therefore, we con-
sider that the general convergence of the FL model using
this framework is ensured and we leave for future work the
specific convergence analysis. Then, the goal of this work
is to analyze the performance of the framework in (14) and
investigate the trade-offs between learning and wireless com-
munication performance measures.

A. PROBLEM OF INTEREST
To investigate the trade-offs between learning and wireless
aspects, we simplify the problem in (14) such that only the
necessary constraints are considered. Specifically, we con-
sider the communication system described in Section III
and wideband radio resource scheduling. Then, the available
transmission resources CR,MAX[i], in constraint (14b), can be
expressed in terms of the application-specific latency budget
TAPP,MAX. For example, the transmissions of the local models
to the FL server will start once the agent with the shortest
training time that participates in the given communication
round i finishes its training. Considering that the duration
of each communication round is given by the latency budget
TAPP,MAX, the available transmission resourcesCR,MAX[i] are
given by:

CR,MAX[i] = B
(
TAPP,MAX − min

v∈VG[i]
CT ,vSv[i]

)
, (15)

where B is the system bandwidth. Therefore, when apply-
ing (15) in constraint (14b), the problem in (14) investigates
the scenario where agents have different training times and
hence, different hardware and/or data sizes.
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When agents with the same training time CT ,1 = · · · =
CT ,V = CT are considered, (15) is simplified to

CR,MAX = B(TAPP,MAX − CT ), (16)

and the available transmission resources CR,MAX are inde-
pendent of the communication round i. For the remainder
of this work, for simplicity, we consider that agents have
the same training time CT . Although this assumption makes
the problem simpler, this problem remains applicable to
real-world scenarios. Specifically, it can be assumed that
for synchronization purposes, the FL server dictates to all
agents the computing capability that should be applied by
the agents, which is set to the minimum capability among
all agents. Furthermore, when using (16) in constraint (14b),
constraint (14c) becomes redundant.

It is also important to consider scenarios with powerful
agents, e.g. vehicles or agents that have powerful hardware
and access to charging points. For such scenarios, con-
straints (14d) and (14e) can be ignored. Then, we can further
simplify the optimization problem in (14) to:

max
S1[i],···SV [i]

∑
v∈V

Qv[i]Sv[i] (17a)

subject to
∑
v∈V

CR,vSv[i] ≤ B(TAPP,MAX − CT ), (17b)

Sv[i] ∈ {0, 1}, ∀v ∈ V. (17c)

The problem formulation in (17) emphasizes the latency
constraints that might be imposed by the system. Moreover,
when problem (17) has all parameters discretized, it becomes
the classic 0/1 Knapsack problem, which is a known NP-hard
problem [32]. For problems with a small number of vari-
ables and constraints a pseudo-polynomial algorithm using
dynamic programming solves the integer 0/1 Knapsack prob-
lem optimally inO(VQ) time [32], whereQ =

∑
v∈V Qv. The

complexity can be reduced by a fully polynomial approxima-
tion. In this work, we apply the algorithm presented in [32],
with ϵ = 0.001, to find the approximate solution to (17).
To apply the algorithm solving the integer 0/1 Knapsack
problem, all parameters in (17) need to be integers. For this
reason, we discretize all parameters by multiplying themwith
a large number and rounding them to the closest integer.

Another important aspect to discuss is the incurred com-
munication cost in both the uplink and downlink channels
due to the FL task. The uplink channel is used for the
transmission of the local models to the base station and the
problem in (17) considers that the available transmission
resources are bounded by CR,MAX. The downlink channel is
used for transmitting the global model to the agents and for
notifying the agents about their participation in the FL task.
In both cases, we assume that broadcast transmissions are
used. Typically, the resources needed for the broadcast are
network-dependent, such that a minimum bit rate is ensured
at the cell edge. Therefore, for both the uplink and downlink
channels, there are resources allocated specifically to the FL

task, which are fixed during each communication round and
do not depend on the number of agents in the network.

B. AGENT SELECTION POLICIES
Depending on the configuration of the agent importanceQv[i]
in (13), different agent selection policies are derived as solu-
tions to problem (17). Considering that all agents have the
same hardware and hence the same training timeCT , as given
in (10) and (11), we set ρT = 0 for the agent importance
calculation in (13). The energy consumption in relation to
training is also the same for all agents. Thus, the total energy
consumption CE,v[i], as given in (12), depends only on the
model transmission and consequently on the bit rate, which
is covered by the consumption of the transmission resources
CR,v[i], as given in (8). Thus, we set ρE = 0 in (13).
Considering that the agent importance Qv[i] in (13) is now

tuned with the constants ρL and ρR, we consider two extreme
cases. For the extreme case of ρL = 1 and ρR = 0, two
solutions of the problem in (17) are derived. The first consid-
ers the deviation qv[i], whereas the second considers the loss
F(WG,v[i]) as a metric for the learning importance QL,v[i]
of agent v. We refer to the two solutions as max-sum-dev
and max-sum-loss, respectively, because they aim to
maximize the sum of the deviations/losses over all selected
agents. Therefore, these two policies simultaneously address
the trade-off between selecting agents that are important to
the learning and the limited transmission resources, which is
captured in constraint (17b). For the other extreme case, i.e.
where ρL = 0 and ρR = 1, only one solution exists, which
is denoted as max-sum-rate because it aims to maximize
the sum of the bit rates of the selected agents. Simulations
showed that the performance of the policies with ρL ∈ (0, 1)
and ρR = 1 − ρL is bounded by the max-sum-dev
(or max-sum-loss) and the max-sum-rate policies.
Therefore we do not show these policies in our evaluation.

V. EVALUATION SCENARIO
This section presents the considered scenario for evaluating
the agent selection framework and investigating the trade-offs
between learning and wireless performance measures, as cap-
tured in problem (17). First, we present the considered
learning task. Then, we introduce the baseline agent selection
policies that will be compared to the policies derived in
Section IV-B. Finally, we present the configured learning and
wireless parameters.

A. CLASSIFICATION OF EUROPEAN TRAFFIC SIGNS
As an example application, we perform the learning task of
object classification on the European traffic sign data set
(ETSD), which consists of 164 classes of signs aggregated
over data sets from six European countries [33]. Due to the
limited number of training samples per class, we only select
the nC = 10 classes with the highest number of samples.
For the classification task, we use a convolutional neu-

ral network (CNN) architecture similar to that in Serna
and Yuichek [33] and Chiamkurthy [34], which are both
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FIGURE 1. The considered CNN architecture to perform object
classification task for the ETSD.

inspired by the typical Visual Geometry Group (VGG)
architecture [35]. Fig. 1 shows the considered architecture.
Specifically, four convolutional layers are activated with a
rectified linear unit (ReLU) function and followed by batch
normalization. Further, max pooling and dropout regular-
ization with a range of 0.25 are performed. For the fully
connected layer, the output of the convolutional layer is flat-
tened and then activated with ReLU. Then, another dropout
regularization is performed with a range of 0.5, followed
by a batch normalization. Finally, the last layer is activated
by a softmax with 10 outputs with each output indicating
the probability for each class. Batch normalization makes
the network learn robustly [29], while the dropout layers
prevent overfitting [29]. In total, the network consists of
3349418 trainable parameters and thus, the size of the model
Z ≈ 107 Mbits, assuming 32-bit precision per parameter.

B. BASELINE AGENT SELECTION POLICIES
Apart from comparing the agent selection policies from
Section IV-B to each other, we also compare them to baseline
policies from the literature. One widely used agent selec-
tion policy is the FedCS policy, as introduced by Nishio
and Yonetani [13], which is based on a greedy method to
maximize the number of selected agents. In the considered
evaluation scenario, the FedCS policy is identical to the
max-sum-rate policy, which is derived as a solution to
the problem in (17) when setting ρL = 0 and ρR = 1. The
fact that the FedCS and max-sum-rate policies are iden-
tical shows the effectiveness of our proposed framework in
generating diverse policies. This further shows that our agent
selection framework is adaptable and allows fine-tuning of
the agent selection policy to the scenario under investigation.

Additionally, we also consider the pow-d policy as a
baseline policy, which was introduced by Cho et al. [7].
The pow-d policy only considers learning aspects, where d
defines the size of the subset of agents that can be selected
for training. Then, from the d randomly selected agents, the
m agents with the highest local loss are selected. Considering
that in our evaluation scenario the transmission resources are
limited, it may occur that not all m agents can participate in
the learning. Finally, based on the results shown in [7] and
the dimensioning of our scenario, we consider d = 15 and
m = 4.

Moreover, we also consider the random, max-dev and
max-loss policies. The latter two baseline policies are
derived as an approximation to the solution of the prob-
lem in (17). Specifically, they sort the agents in descending
order based on their importance Qv[i] (based on deviation
or loss, respectively) and select as many agents as possible
until constraint (17b) is violated. In line with this approach,
sorting and selecting agents based on their bit rates by setting
ρR = 1, yields a selection policy that is identical to the
max-sum-rate policy. Hence, it does not offer a further
selection policy to be assessed.

The main difference between the policies derived as a solu-
tion to problem (17), i.e. max-sum-dev, max-sum-loss
and max-sum-rate, and the baseline policies max-dev,
max-loss and random, is that the former class of poli-
cies explicitly takes the bit rates into account, due to
constraint (17b). We will refer to these policies as channel-
aware policies. The latter class of policies, i.e. max-dev,
max-loss and random, considers the bit rates implicitly
as these policies sort and select as many agents as possible
until constraint (17b) is violated. Finally, the baseline policy
pow-d is neither explicitly nor implicitly considering wire-
less channel aspects, as it aims to select a fixed number of
agents, based on their loss, per communication round.

C. LEARNING AND WIRELESS PARAMETERS
In our analysis we consider scenarios with V = 50 agents
and both IID and non-IID data. For the IID scenario, all
agents have the same number of samplesKv, which are evenly
distributed over the ten classes. For the non-IID scenario,
all agents have Kv samples, which are unevenly split over
two classes such that on average all classes are equally rep-
resented in the training data set K. Therefore, the non-IID
scenario has a highly skewed data distribution that aims to
represent a more realistic scenario than the IID scenario. For
the calculation of the loss F(WG,v[i]) of agent v at communi-
cation round i, the categorical cross-entropy loss function is
applied on the testing data setKT ,v, which is unique for every
agent and three times smaller than the training data set Kv.
For the training, the agents invoke the SGD optimizer with

learning rate η = 0.05, batch size sB = 64 and with each
agent performing nLE = 2 local epochs. The number of
FLOPs required from the agents to train the CNN for a batch
size sB = 64 is measured by the Keras library, in Python,
which is nFLOP,G = 6.55 GFLOPs. Regarding the hardware
of the agents, we consider the processing capabilities gv = 64
GFLOPs per second. Such processing power will be given,
for example, by nCORE = 1 CPU core, ν = 2 GHz CPU
frequency and ω = 32 FLOPs per cycle. Since the agents are
assumed to have the same hardware, their energy coefficient
is also identical ev = 10−27 W(cycles/s)−3 [36].

For the wireless communication scenario, we consider an
urban macro environment at fC = 3.5 GHz and a band-
width of B = 50 MHz [37]. For the wireless propagation,
we assume a path loss exponent γ = 3.7 and shadowing with

1272 VOLUME 2, 2024



Raftopoulou et al.: Agent Selection Framework for Federated Learning

σ = 8 dB, which are typical values for outdoor dense urban
environments [30]. Additionally, the agents are uniformly
distributed in a cell of radius 150m.We assume that all agents
are at a height of 1.5 m whereas the base station antenna is
at a height of 25 m [38]. The transmission of the local model
is performed assuming the agents’ maximum transmit power
Pv = PV,max = 24 dBm [39]. Finally, the thermal noise power
is PN = −97 dBm.

VI. EVALUATION
This section presents the evaluation of the considered agent
selection policies in terms of the achieved accuracy of the
global model, which is measured at the FL server based on its
specific testing data set. First, we consider Scenario 0, where
all agents have the same bit rates. For this scenario, our aim
is to study the policies from a pure learning perspective and
hence provide insights into the learning behavior when the
deviation qv[i] and the loss F(WG,v[i]) are applied as metrics
for the agent importance QL,v[i] to the learning. Besides
Scenario 0, we compare the policies in Scenarios 1, 2 and 3,
in which the agents have distinct bit rates that vary over time.
Specifically, in Scenario 1, we show the impact of thewireless
channel. Then, in Scenario 2, we investigate the performance
of the policies when agents have a lower number of samples
Kv. Finally, in Scenario 3, we evaluate the policies under a
reduced application-specific latency budget TAPP,MAX, thus
limiting the permitted communication latency.

Sections VI-A to VI-D present the accuracy of the global
model for Scenarios 0-3, respectively. Then, in Section VI-E,
we provide a comparison of Scenarios 1, 2 and 3, in terms of
what accuracy level is reached within a given deadline and
how long it takes to reach a certain accuracy level. Finally,
Section VI-F provides the total energy consumed by the
agents within a given deadline and to reach a certain accuracy
level. We present all results as an average of 70 independent
simulations and the source code generating all results is
available in [40]. For the sake of presentation, we also include
a short summary of the key result observed for each analyzed
scenario.

A. SCENARIO 0 - PURE LEARNING PERSPECTIVE
To study the behavior of the different agent selection policies
from a pure learning perspective, we consider the scenario
where all agents have the same bit rate, which is equal to
the average bit rate that can be experienced in the con-
sidered wireless environment. Hence, the max-sum-loss,
max-sum-dev and max-sum-rate/FedCS policies
behave like the max-loss, max-dev and random poli-
cies, respectively. Because of the identical bit rates, the
number of selected agents per communication round is con-
stant and the same for all policies, even for the max-loss
policy which requires extra processing time for the loss calcu-
lations. We set Kv = 300 samples at each agent and hence the
training time is equal to CT = 1.02s, excluding the time for
the loss calculation for the max-loss policy. Finally, setting
TAPP,MAX = 5s allows approximately 4s of uploading time.

1) IID DATA
Considering the case with IID data, Fig. 2 shows the increase
of the accuracy over time and illustrates that the max-loss
policy exhibits a slower convergence than the max-dev,
pow-d and random policies. The slower convergence of the
max-loss policy is explained by its persistency to select
the same agents over time while the max-dev, pow-d and
random policies tend to more evenly cover the entire agent
population over time. For IID data, all agents have samples
from all ten classes and hence, regardless of the selected
agents in a given communication round, the loss change
of all agents in that communication round will be similar.
Consequently, the agent sorting by the max-loss policy at
the beginning of each communication round, does not change
significantly over time and results in frequently selecting the
same agents. Therefore, the global model is mostly trained on
a subset of the total available samples which leads to a slower
convergence.

When an agent is selected for training, its deviation, as cal-
culated in (6), will be relatively small and for every round
that the agent is not selected, its deviation will be relatively
large. Hence, the max-dev policy behaves in a round robin
fashion, with some initial agent sorting. With this, an even
agent selection is achieved, which allows to consistently train
on all available samples. Furthermore, Fig. 2 shows that
the max-dev, pow-d and the random policies perform
similarly because the pow-d and random policies also tend
to cover the agent population well and hence train the model
on all samples. The similarity of the pow-d and random
policies can be attributed to the random component of the
pow-d policy. Therefore, we have the following important
result for the case of the IID data:

Result 1. From a pure learning perspective, for scenarios
with IID data, the learning process benefits from evenly
selecting the agents over time and hence the max-dev,
pow-d and random policies tend to outperform the
max-loss policy.

2) NON-IID DATA
When non-IID data are considered, the agents have samples
from only two classes and therefore, the selection of agents
in a given communication round is more crucial than for
IID data. Also, a larger number of communication rounds
is needed to reach a given accuracy level compared to the
scenario with IID data. Fig. 3 illustrates that for the non-IID
scenario, the pow-d policy outperforms all other policies.
Moreover, the max-loss policy provides better conver-
gence than the max-dev policy, in the sense that accuracy
fluctuates with the max-dev policy. In contrast to IID data,
for non-IID data, the losses of the agents after a given
communication round will differ depending on the selected
agents. Consequently, the max-loss policy does not per-
sistently select the same agents. Hence, both the pow-d
and max-loss policies select some agents more often than
others, which allows more training on samples that contribute
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FIGURE 2. Accuracy over time for IID data, when agents have
identical bit rates, Kv = 300 samples and Tapp,max = 5s.

FIGURE 3. Accuracy over time for non-IID data, when agents
have identical bit rates, Kv = 300 samples and Tapp,max = 5s.

more to the learning process. Overall, the pow-d policy pro-
vides better performance compared to the max-loss policy
because the random aspect of the pow-d policy ensures that
different agents are considered for selection at each commu-
nication round and hence, the pow-d policy is less persistent
on selecting the same agents. This result highlights that not all
agents are equally important to the learning process when the
data are non-IID but the bias due to selecting only the agents
with the highest losses may limit the achieved global model
accuracy.

Fig. 3 also shows that the accuracy achieved by the
max-dev policy fluctuates over time, where the period of
the fluctuation is equal to the time needed to select all
agents once, i.e. the round robin period. Since agents do

FIGURE 4. Accuracy over time for IID data, considering
time-varying wireless channels, Kv = 300 samples and
Tapp,max = 5s.

not have equally important data, the initial sorting of the
deviations qv[i] is essentially based on the data importance
of the agents. Subsequently, the agents are selected the same
number of times and in sequence, which can harm the accu-
racy and indeed lead to fluctuations. The accuracy fluctuation
is amplified by selecting the same number of agents per
communication round. Finally, Fig. 3 shows that the random
policy has the worst performance because it does not consider
any learning metrics. Therefore, the key takeaway result for
the case of the non-IID data is the following:

Result 2. From a pure learning perspective, for scenarios
with non-IID data, not all agents have equally important
data. Hence, the pow-d policy provides the highest accuracy
level and stable gains by selecting the most appropriate
agents per communication round while also ensuring that
different agents can be selected over time.

B. SCENARIO 1 - LEARNING AND COMMUNICATION
PERSPECTIVE
In this scenario, the agents have distinct bit rates, based on
the communication model in (4), with time-varying wireless
channels that vary at each communication round. Similarly to
Scenario 0, we assume Kv = 300 samples at each agent and
set TAPP,MAX = 5s.

1) IID DATA
Fig. 4 shows the accuracy of the considered policies over
time and illustrates that all considered policies, apart from
the max-loss and pow-d policies, perform similarly.
The slower convergence of the max-loss policy is due
to the uneven agent selection, as explained for Scenario 0
in Section VI-A.1. Even though the max-sum-loss pol-
icy also relies on the loss of the agents, it explicitly
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takes into account the bit rates of the agents, which
eventually leads to selecting different agents per round
and consequently achieving a higher accuracy level than
the max-loss policy. Moreover, and in contrast to the
results in Section VI-A.1, the pow-d policy now slightly
under-performs because it neither explicitly nor implic-
itly considers the wireless channels. Fig. 4 also shows
that the channel-aware policies, i.e. max-sum-loss,
max-sum-dev and max-sum-rate/FedCS, perform
similarly to the max-dev and random policies, which
implicitly take the wireless channels into account. This simi-
larity exists despite the fact that the former policies can select
more agents than the latter. Hence, we conclude that there are
no significant gains from exploiting the wireless channels.
For the remaining Scenarios 2 and 3, we will not consider
IID data. Therefore, the takeaway result is:

Result 3. For IID data, the exact agent selection policy is
not crucial as long as different agents are selected over time.
Additionally, the gains of channel-aware agent selection are
minimal.

2) NON-IID DATA
In Scenario 0, the max-sum-loss, max-sum-dev and
max-sum-rate/FedCS policies are identical to the
max-loss, max-dev and random policies, respectively.
In Scenario 1, they behave differently as a result of the
variable wireless channels. Fig. 5 shows the accuracy of the
policies over time and illustrates that the max-sum-loss,
max-sum-dev and max-sum-rate/FedCS policies
provide higher accuracy levels than in Scenario 0. The rea-
son is that they can exploit the gains from the wireless
channels, which lead to selecting more agents, and hence
training on more samples per communication round. The
max-sum-loss and max-sum-dev policies behave sim-
ilarly and achieve a higher accuracy than the other policies
throughout the considered time period. Thus, we can con-
clude that agent selection based on both channel and learning
aspects is beneficial to the learning process, regardless of the
learning metric considered, i.e. the deviations qv[i] or the loss
F(WG,v[i]).

Additionally, Fig. 5 shows that the max-sum-rate/
FedCS and max-loss policies perform similarly, even
though the max-sum-rate/FedCS policy selects on aver-
age approximately double the number of agents per round
compared to the max-loss policy. This result highlights the
effectiveness of the loss F(WG,v[i]) as a metric to indicate the
importance of an agent in the learning process. Similar to our
observation from Fig. 4, Fig. 5 shows that the pow-d policy
under-performs, which contrasts with its best performance
in Fig. 3 in Scenario 0. Once more, the reason is that the
pow-d policy neither explicitly nor implicitly considers the
wireless channels. Moreover, when comparing Figs. 3 and 5,
the policies that implicitly take the wireless channels into
account, i.e. max-loss, max-dev and random, behave
similarly. However, the accuracy with the max-dev policy

FIGURE 5. Accuracy over time for non-IID data, considering
time-varying wireless channels, Kv = 300 samples and
Tapp,max = 5s.

in Fig. 5 does not fluctuate as it did in Fig. 3, which is due
to the fact that the wireless channel variation impacts the
number of selected agents per communication round. This
leads to the averaging of the peaks that were observed in
Fig. 3. Therefore, the important message is:

Result 4. Choosing agents based on both channel and learn-
ing aspects is advantageous for the learning process in
non-IID data scenarios. The learning aspect ensures the
selection of agents with suitable data, while the channel
aspect benefits from the wireless channels, thus enabling the
selection of as many as possible agents per communication
round.

3) COMPARISON WITH THE CIFAR-10 DATASET
To show the effectiveness and adaptability of our proposed
framework, we also study the performance of the policies
with the CIFAR-10 dataset [41], which is a complex dataset
commonly used in the literature. For the training, we consider
the CNN as used in [13], whereas the agents invoke the SGD
optimizer with learning rate η = 0.1, batch size sB = 64 and
each agent performs nLE = 5 local epochs. Additionally,
we consider a non-IID scenario, where each agent holdsKv =
600 training samples andKT ,v = 100 testing samples. For the
sake of a fair comparison with the ETSD, we adjust the hard-
ware of the agents such that the time interval for uploading
the FL models is the same when using both datasets.

Fig. 6 shows the accuracy over time when training with
the CIFAR-10 dataset. Although higher accuracy levels have
been reported in the literature when training with the CIFAR-
10 dataset, the model we use is sufficient for our evaluations.
We highlight that our goal is to evaluate our proposed frame-
work and to investigate the trade-off between learning and
wireless communication performance measures, rather than
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FIGURE 6. Accuracy over time for non-IID data with the CIFAR-10
dataset, considering time-varying wireless channels and
Tapp,max = 5s.

provide the highest accuracy level. Moreover, more works
in the literature report similar accuracy levels when consid-
ering non-IID data [5], [13]. Additionally, Fig. 6 shows an
increasing trend in the achieved accuracy, which implies that
withmore time and communication rounds, a higher accuracy
level may be achieved.

Fig. 6 also shows that the max-sum-dev, max-sum-
loss and max-sum-rate/FedCS policies behave sim-
ilarly and provide the highest accuracy level. Therefore,
we can conclude that the policies that explicitly take the wire-
less channels into account perform the best because they can
select more agents than the policies that implicitly consider
the channels or not consider them at all. Thus, we conclude
that with the complex CIFAR-10 dataset, it is crucial that
many agents are selected for training such that more training
samples can contribute to the training.

When comparing the results with the ETSD and
CIFAR-10 datasets, we conclude that our proposed frame-
work is effective, as the policies generated from our
framework, i.e., max-sum-dev, max-sum-loss and
max-sum-rate/FedCS, perform the best in both datasets.
Moreover, the max-sum-dev and max-sum-loss poli-
cies, that take both learning and wireless channel aspects
into account, achieve the highest accuracy with both datasets.
The only difference between the results with the two datasets
is that the pure wireless based max-sum-rate/FedCS
policy matches the performance of the max-sum-dev and
max-sum-loss policies when the complex CIFAR-10
dataset is used.

C. SCENARIO 2 - DIFFERENT NUMBER OF SAMPLES
In this scenario, we continue to have varying bit rates, while
only considering non-IID data and reducing the number of
samples per agent from Kv = 300 to Kv = 100. Due to

FIGURE 7. Accuracy over time for non-IID data, considering
time-varying wireless channels, Kv = 100 samples and
Tapp,max = 4.3s.

the reduction of the training time CT given a lower num-
ber of samples Kv, for comparison reasons, we adjust the
application-specific latency budget to TAPP,MAX = 4.3s.With
this, we ensure that the time interval for uploading the FL
models is the same as in Scenarios 0 and 1.

Fig. 7 shows the accuracy of the policies over time and in
comparison to Scenario 1, it takes a longer time for the accu-
racy to reach a more stable level because the agents now hold
less data. Moreover, Fig. 7 shows that during the initial learn-
ing phase (until 400s), the max-loss policy learns more
quickly than the other policies. The good performance of the
max-loss policy is a consequence of selecting the most
appropriate agents for the learning, which is more crucial in
this scenario, since given that the agents have fewer samples,
the likelihood of an agent possessing non-beneficial data for
the learning process is higher. During this initial learning
phase, the max-sum-loss and max-sum-dev policies
perform worse than the max-loss policy because they sac-
rifice agents that are important to the learning process for less
important agents with high bit rates. Moreover, the pow-d
policy performs worse than the max-loss policy because it
is limited in the number of agents that can be selected at each
communication round. After 400s, the max-sum-loss,
max-sum-dev and pow-d policies perform similarly to the
max-loss policy because they selected enough agents with
important data over time.

Moreover, Fig. 7 shows that themax-sum-rate/FedCS
policy consistently under-performs during the learning pro-
cess, despite being the policy that selects the most agents per
communication round. This poor performance is attributed to
not at all taking into account the learning aspect, which is
dominant in this scenario. We can therefore get the following
takeaway message:
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FIGURE 8. Accuracy over time for non-IID data, considering
time-varying wireless channels, Kv = 300 samples and
Tapp,max = 2s.

Result 5. When agents have a small data set size in a non-IID
setting, the agent selection becomes very important, espe-
cially during the initial learning phase. For this reason, the
max-loss policy provides higher accuracy during the ini-
tial learning phase than other channel- and learning-aware
policies.

D. SCENARIO 3 - DIFFERENT LATENCY BUDGET
To investigate the impact of the application-specific latency
budget TAPP,MAX on the accuracy, we consider a scenario with
non-IID data, Kv = 300 samples and TAPP,MAX = 2s, instead
of TAPP,MAX = 5s that was considered in Scenarios 0 and 1.
The substantial reduction of TAPP,MAX limits the number of
agents that can be selected in a communication round as well
as the set of agents that can be selected. The reason is that
the cell edge agents, who suffer from low bit rates, may only
sporadically be able to transmit their local model within the
latency budget TAPP,MAX. Therefore, lower accuracy levels
are expected within a given time period, compared to Sce-
nario 1.

Fig. 8 shows the accuracy of the policies over time, which
fluctuate more than in Scenario 1 because the global model
is updated more frequently. Specifically, within 400s, 80 and
200 communication rounds are executed in Scenarios 1 and 3,
respectively. Moreover, Fig. 8 shows that the initial learning
phase in this scenario lasts for about 100s while in Scenario 1,
it lasts for about 200s, as a result of setting a different latency
budget TAPP,MAX. However, in both scenarios, the initial
learning phase lasts for a comparable number of communi-
cation rounds.

Another observation from Fig. 8 is that the performance of
the max-sum-loss and max-sum-dev policies is better
than the performance of the max-loss policy until 200s,

TABLE 2. Accuracy level reached for every policy after
300 seconds for each scenario, where the highest accuracy per
scenario is marked in bold.

when the max-loss policy becomes the best performing
policy. The reason is that the reduction of the latency bud-
get TAPP,MAX limits the extra number of agents that the
channel-aware policies can select compared to the policies
that implicitly take the channels into account. Hence, until
200s, there are some gains from exploiting the wireless
channel but after 200s the accuracy with the channel-aware
policies does not improve further, because the channel-aware
policies avoid selecting agents with poor bit rates. Due to
this reason, the max-loss policy can converge to a higher
accuracy level in the long term. This implies that it selects
agents at the cell edge more often than the channel-aware
policies. For the same reason, the max-sum-rate/FedCS
policy under-performs, thus making it slightly worse than
the random policy. Furthermore, the pow-d policy initially
under-performs due to being fully unaware of the wireless
channels but it eventually reaches a high accuracy level. The
reason is that similarly to max-loss policy, it selects more
persistently important agents at the cell edge. Overall, the key
message from the analysis of Scenario 3 is:

Result 6. A short latency budget TAPP,MAX in a non-IID set-
ting limits the gains of the channel-aware policies. In the long
term, the max-loss policy can provide a higher accuracy
because it selects agents with persistently poor bit rates that
have beneficial data for the learning process.

E. SCENARIO COMPARISONS
The policies in Scenarios 1-3 can be compared in terms of
what accuracy levels they have reached by a given deadline
as well as in terms of how much time is needed to reach a
certain targeted accuracy level.

1) DEADLINE
Considering that some applications may require the training
to be completed within a given deadline, we compare the
policies over the three scenarios by a deadline of 300s, i.e.,
5 minutes. Fig. 9 shows the accuracy for every policy and
scenario around the 300s deadline, while Table 2 shows the
measured accuracy level, which is derived by averaging the
accuracy over a 30-second period, therefore from 270s to
300s. The averaging of the accuracy in Table 2 is performed
to ensure that the provided results are not dominated by
the accuracy fluctuations. From both Fig. 9 and Table 2,
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FIGURE 9. Accuracy of the considered policies for non-IID data around the time intervals of interest, where the dashed line indicates
the 300 seconds deadline.

TABLE 3. Time, in seconds, needed to reach the 75%, 80% and 85% Accuracy levels for every policy in each scenario, where the
shortest time per level and scenario is marked in bold.

we observe that each policy reaches a higher accuracy level
in Scenario 1 than in Scenarios 2 and 3. The policies in
Scenario 1 perform better than in Scenario 2 because the
agents do not suffer from a small data set size. In Scenario
1, the policies perform better than in Scenario 3 because
the larger latency budget TAPP,MAX allows the selection of
more agents in a given communication round. Additionally,
Fig. 9 shows that even though the accuracy of the policies
in Scenarios 1 and 3 are roughly stable, the accuracy of
the policies in Scenario 2 is still sharply increasing, because
more communication rounds are needed to reach convergence
when the agents have a small data set.

Table 2 also shows that among the policies that implicitly
take the channels into account and thepow-d policy that does
not consider the channels, the max-loss policy converges
to a higher accuracy level. Moreover, the max-sum-dev
and max-sum-loss policies converge to approximately
the same accuracy level, regardless of the scenario and they
provide the highest accuracy in Scenario 1, as explained in
Result 4. However, in Scenario 2, where the agents have
limited samples and in Scenario 3, where the latency-budget
TAPP,MAX is short, the highest accuracy level is provided by
the max-loss policy, for the reasons provided in Results 5
and 6, respectively.

2) ACCURACY TARGET
Some applications require to train the global model until a
specific accuracy target is met. Therefore, we compare the
policies in the three scenarios in terms of how much time
is needed to reach the 75%, 80% and 85% accuracy levels.
We consider that an accuracy level is reached if the average
accuracy over a period of 30s is above the accuracy target.
Table 3 shows the time in seconds to reach each accuracy
level, where a hyphen indicates that the accuracy level could
not be reached within the simulated 400s while the values in
parenthesis under Scenario 2 indicate that the accuracy level
is measured after 400s.

Table 3 shows that the accuracy levels are reached faster
in Scenario 1 than in Scenario 2. The reason is that agents
have more samples in Scenario 1 and hence, the FL server
can train on more samples in a given time period. Table 3
also shows that when the latency budget TAPP,MAX is set
to a small value, i.e. in Scenario 3, the max-sum-dev,
max-sum-loss and max-loss policies reach the 75%
accuracy level faster than when TAPP,MAX is set to a larger
value, i.e. in Scenario 1. This is because in Scenario 3 more
communication rounds are performed within a given time
interval than in Scenario 1. However, in Scenario 1, higher
accuracy levels can be achieved within the 400s time interval
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FIGURE 10. Accuracy of the considered policies for non-IID data around the accuracy levels of interest, where the dashed lines
indicate the 75%, 80% and 85% accuracy levels.

compared to Scenario 3 because more agents can consistently
contribute to the learning process. For example, in Scenario 1,
the max-sum-dev policy can reach the 85% accuracy level
within 270swhile in Scenario 3, none of the policies can reach
the 85% accuracy level within 400s.

Moreover, Table 3 shows that the policies in Scenario 2
generally reach the 75% accuracy target at a later time com-
pared to Scenarios 1 and 3. However, higher accuracy targets
can be achieved in Scenario 2 than in Scenario 3, within
the 400s time period. This observation is also illustrated in
Fig. 10, as the accuracy curves in Scenario 2 are still in an
increasing phase while in Scenario 3 they are fairly constant,
which shows that the accuracy will not further improve sig-
nificantly. The only two policies that are in an increasing
phase in Scenario 3 are the max-loss and pow-d policies
because they select agents on the cell edge more persistently.
Yet, their increase is more modest compared to Scenario 2.
This result highlights that the more agents can participate in
the learning process, even if those agents have a small data
set, the higher accuracy levels can be achieved within a given
long-term time period, because more diverse data are used for
the training. Therefore, the comparison among scenarios has
the following important messages:

Result 7. When the latency-budget TAPP,MAX is set to a small
value, the policies initially learn faster than when the latency-
budget TAPP,MAX is large. However, in the long term, a higher
accuracy is achieved with a large latency-budget TAPP,MAX.

Result 8. Regardless of the considered scenario, the more
agents with diverse data are selected, the higher the accuracy
level that can be achieved.

F. ENERGY CONSIDERATIONS
In this section, we analyze the total energy consumption of the
agents for every policy and scenario. Fig. 11 shows the energy
consumption in Joules after a 300-second time interval and it
illustrates that the total energy consumption is dominated by

FIGURE 11. Total energy consumption of agents for every policy
and scenario after a time period of 300 seconds.

the training, rather than the transmissions. Therefore, the total
energy consumption depends primarily on the total number of
agents selected within the given time interval. Consequently,
the energy consumption is higher when channel-aware poli-
cies are applied, regardless of the scenario, as such policies
generally select more agents. For example, the pow-d pol-
icy, which does not consider the wireless channels, selects
the least amount of agents per communication round, thus
leading to the lowest energy consumption, as also shown in
Fig. 11.

Fig. 11 also shows that the ratio of the training energy
consumption between the policies considering explicitly and
implicitly the wireless channels, is smaller in Scenario 3 than
in Scenarios 1 and 2. The reason is that the channel-aware
policies select fewer agents in Scenario 3 compared to Sce-
narios 1 and 2 due to the shorter latency budget TAPP,MAX.
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FIGURE 12. Total energy consumption of agents for every policy
and scenario to reach an accuracy level of 80%.

Despite more rounds occurring within the 5-minute interval,
the total number of selected agents is lower than in Scenario
1. Consequently, both transmission and training energy con-
sumption are reduced in Scenario 3 compared to Scenario 1.
Moreover, the total energy consumption in Scenario 2 is lower
than in Scenarios 1 and 3, which is due to the agents hav-
ing fewer samples and consequently, shorter training times.
However, because of the shorter training times, more com-
munication rounds are performed during the 5-minute time
interval compared to Scenario 1. In addition, Scenarios 1 and
2 have a similar number of agents selected per communi-
cation round, implying that the transmission related energy
consumption is higher in Scenario 2 than in Scenario 1.

Table 2 shows that in Scenario 1, the max-sum-dev
and max-sum-loss policies provide the highest accuracy,
whereas Fig. 11 shows that their energy consumption is high.
However, the max-loss policy achieves a slightly lower
accuracy than the two above-mentioned policies while con-
suming about half the amount of energy. Additionally, the
max-loss policy achieves the highest accuracy in Scenar-
ios 2 and 3 while also consuming comparatively lower energy
due to selecting few agents. Therefore, the max-loss pol-
icy provides a good trade-off between accuracy and energy
consumption.

Fig. 12 shows the total energy consumption of the agents
per policy and scenario, until the time that the 80% accuracy
level is reached. The absence of a bar in Fig. 12, as it occurs
for policies in Scenario 3, implies that the 80% accuracy
level was not reached within 400s. Comparing the energy
consumption in Fig. 12 to the accuracy levels in Table 3,
a trade-off between time and energy is observed in Scenario 1.
Specifically, themax-sum-dev andmax-sum-loss poli-
cies reach the 80% accuracy level the fastest. However,
both policies have a higher energy consumption than the
max-loss policy, which reaches the 80% accuracy level

25s later. Another observation is that, despite the policies
in Scenario 2 taking longer to reach the 80% accuracy level
compared to Scenario 1, they consume less energy. Overall,
our takeaway message from the energy impact on the sys-
tem is:

Result 9. The max-loss policy provides a good balance
between achieving high accuracy levels fairly quickly and
consuming less energy due to selecting fewer agents per
communication round.

VII. CONCLUSION AND FUTURE WORK
This work has investigated the agent selection problem for
FL in wireless communication environments. We proposed
a general optimization problem which can be adapted to a
range of applications, depending on the needs and capabilities
of the network and the agents. We focused on the impor-
tant subproblem of latency-constrained networks, which is
a 0/1 Knapsack problem. We obtained its solution with a
pseudo-polynomial algorithm with low complexity. Then,
we conducted extensive simulations, which lead to the impor-
tant Results 1-9. Overall, our Results 1-9 indicated that the
loss is a very good metric to describe the importance of
an agent in the learning process. Additionally, we showed
that the policies derived from the optimization problem,
performed better than only channel-aware and only learning-
aware policies, as indicated in Result 4. Moreover, we also
showed in Results 5-6 that learning-based policies performed
well when the agents had few samples and when the wireless
channel could not be largely exploited due to short latency
budgets.

For future works, there are several interesting directions
worth investigating. First of all, the specific convergence
analysis that highlights both the wireless and learning aspects
is left for future work. In this work we calculated the devi-
ation by equally considering all the parameter features of
the model. For future works, it is interesting to investigate
a weighted calculation of the deviations, in which only the
parameter features of the model that are important to the
learning are considered. Moreover, as Results 5-8 indicated,
adaptive policies based on the scenario and communication
round are expected to further improve the accuracy. Addi-
tionally, the problem with agents having different hardware
and/or data set sizes is worth investigating due to the trade-off
between learning accuracy, latency deadline and energy con-
sumption showed in Results 5-9. Finally, we also leave for
future work the problem of joint agent selection and resource
allocation.
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