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Abstract

Micromachined membrane deformable mirrors (MMDMs) are commonly utilized in Adaptive
Optics (AO) systems due to their relatively good performance and cost-effectiveness. However,
these deformable mirrors often exhibit nonlinearity at high control magnitudes and a response
that is dependent on external factors such as temperature and humidity. In order to overcome
these nonidealities, AO controllers typically implement a linear proportional-integral closed-
loop control. Nevertheless, if the model is inaccurate, multiple wavefront (WF) measurements
are required, which slow down operations. To address these issues, this thesis proposes a novel
approach based on the Direct Inverse Control (DIC) framework, which involves modeling and
controlling the AO system using shallow neural networks. Specifically, the specialized learn-
ing DIC framework is employed. This approach consists of first identifying a forward model
of the plant using a neural network, then placing the controller network in series with the
plant one, and finally training the controller to make the overall system resemble an identity
transfer function. Since the analyzed system is underdetermined, the controller loss function
is augmented with a Lagrangian multiplier. This additional term also enables the regular-
ization of the inversion process, which helps to reduce the risk of saturating actuators. The
results of this study show that the proposed approach provides better modeling accuracy
than benchmarks, especially in the working ranges where nonlinearities are present. As a
result, it enables faster control convergence than the state-of-the-art method when generating
large-phase wavefronts. Moreover, when operating online, the DIC-based method demon-
strates better stability and similar tracking abilities to Recursive Least Squares. Overall,
the proposed approach provides a promising solution to the challenges associated with using
MMDMs in AO systems.
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Chapter 1

Introduction

Optical microscopy has played a crucial role in biological research for hundreds of years now.
The possibility of gathering detailed information regarding the structure of specimens in a
non-invasive way has tremendously helped scientists in numerous discoveries and research
advances [5]. Ideally, provided that high-quality components are employed and a precise cali-
bration process is done, the resolution of conventional microscopes is only constrained by the
diffraction limit. However, the quality of the observed image is in practice always impacted
by the heterogeneous structure of the analyzed specimen. Indeed, regardless of the quality of
the setup, wavefront aberrations are introduced as light passes through sections with different
refractive indices [6]. This phenomenon strongly limits the maximum depth at which useful
images can be gathered and therefore represents a major hindrance to research advances in
microscopy.

Adaptive Optics (AO) was firstly applied to microscopy in the early 2000s to specifically
address this issue. Its principle consists of reflecting the incoming light beam using an active
dynamical element, like a deformable mirror (DM), in order to compensate for wavefront
aberrations. During the last two decades, plenty of research microscopy advances have been
made possible by this technique, as thoroughly reported in [7]. As of now, a multitude variety
of AO techniques exist, depending on the type of microscope and other use-case-specific re-
quirements. Indeed, currently the most challenging and interesting concern in the AO world
is not to prove its potential and applicability, but rather to make it more accessible worldwide
[8]. During the first years of 2000s, membrane DMs started being manufactured using micro-
lithography technologies, the same ones used to produce electronic chips [9]. This was a major
breakthrough, which significantly reduced the cost of AO instruments and thus expanded the
market of DMs. Nevertheless, membrane deformable mirrors do present some performance
limitations, mostly related to the nonlinearity and temperature-dependency of the mirror’s
response.

The system’s nonlinearities arise when large surface deformations are required, that is when
the system operates far from its linearization point. For this reason, the analysis of deep
biological tissues, which are characterized by significant wavefront aberrations, is a rather
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2 Introduction

challenging task. Intuitively, the less accurate the identified system model is, the more control
iterations are required to provide a sharp image of the specimen. In other words, wavefront
correction becomes slower for large amplitude wavefront (WF)s. On the other hand, however,
reducing the exposure time of the specimens and being able to operate at a high speed are
extremely desirable features in microscopy, especially when analyzing in-vivo samples.

Furthermore, the behavior of membrane DMs is significantly affected by environmental con-
ditions, like temperature and humidity. If these parameters change with respect to the cali-
bration values, the model becomes inaccurate and the control less stable. In order to avoid
frequent recalibrations, the system model needs to be continuously updated online, which
poses interesting identification challenges.

Enhancing the range of phases that AO can successfully correct, without affecting the speed
of WF correction, is currently one of the most active research fields in AO [6]. Finding an ef-
fective solution is rather challenging since robustness and reactiveness are usually on opposite
sides of the control spectrum. This master thesis project aims at improving the homogeneity
of correction accuracy while preserving the model’s reliability. It does so by investigating the
following research question.

Research question How to mitigate the impact of DM nonlinearities and temperature
changes on correction accuracy, without reducing control speed?

1-1 Outline

The thesis report is organized as follows. Chapter 2 introduces Adaptive Optics and all
the necessary theoretical concepts needed to comprehend the researched problem. Chapter
3, instead, describes the proposed approach. Finally, Chapter 4 reports and analyzes the
obtained results, while Chapter 5 concludes the thesis.
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Chapter 2

Theoretical background

This chapter introduces the theory and concepts which the later proposed method is based
on. In this regard, Adaptive Optics (AO) theory is firstly explained in Section 2-1. Then, in
Section 2-2, the most common AO methodologies are discussed, especially regarding system
identification and control. Finally, the core principles of Artificial Neural Networks (ANN)
are introduced in Section 2-3, together with the latest applications to AO systems.

2-1 Adaptive Optics

Optical microscopes have been at the core of biomedical research for hundreds of years.
Theoretically, the resolution of conventional microscopes is solely defined by the diffraction
limit of light. However, in practice, performances are also affected by the optical properties of
the specimens, which often present varying refractive indices that introduce aberrations. In
the last decade, adaptive optical components like deformable mirrors have been increasingly
implemented in microscopy in order to overcome such limitations and improve the quality
of microscope images. In this section, AO theory is introduced, by discussing important
concepts and methodologies.

2-1-1 Image formation

A central concept of all the disciplines which involve optics is the propagation of light. This
phenomenon can be described through different models, each of them having its own advan-
tages and disadvantages.
In this regard, geometrical optics is a powerful and straightforward model, which makes use
of only a few assumptions. The first simplification considers light as propagating in straight
lines with constant speed v, when in homogeneous mediums. The ratio between the velocity
v and the light speed in vacuum c is called refractive index and it is defined as

n = c

v
.
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Figure 2-1: Representation of the Law of Refraction [1]

The second assumption is that light rays change direction when transitioning through medi-
ums with different refractive indices. This phenomenon is formalized in the law of refraction:

β = arcsin
(

sin(α) · n1
n2

)
, (2-1)

where α and β are the angles of propagation in a region having refractive indices n1 and n2
respectively. In inhomogeneous mediums, the refractive index is dependent on the position
r, n = n(r). These approximations, together with the idea of representing propagating light
as rays, significantly simplify the description of optical imaging. In this regard, some of the
most recurring elements in geometrical optics are here briefly described.

• Point source - A radiant source of light, which emits light uniformly in all directions
and has negligible size.

• Object - A collection of independent point sources.

• Optical Path Length (OPL) - The integral of the refractive index along the light prop-
agation path P

OPL =
∫

P
n(r)dr.

Intuitively, it also represents the travel time of light along the path P .

Consistently with the concepts just defined, in geometrical optics a wavefront is defined as
a surface of a constant OPL from the source. Alternatively, it can also be described as a
surface perpendicular to all the light rays emitted by a point source. A visual example of this
concept is given in Figure 2-2.

In order to be able to visualize a source of light, all the rays emitted by the point source
need to be recollected to a single point, which is called image of the source. What lenses and
other similar imaging systems do is indeed to exploit the law of refraction to make incoming
light rays converge to a single point. In Figure 2-3 a descriptive diagram of this process is
depicted.
In order to correctly place scientific cameras and obtain high-quality images of the observed
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Figure 2-2: Spherical wavefront generated by a point source in a homogeneous medium [1]

Figure 2-3: Example of object imaging through a thin lens [1]

object, it is of crucial importance to correctly measure the distance z1 between the lens
and the image plane. Considering a perfectly homogeneous medium, the distance z1 can be
theoretically computed using the thin lens equation

1
z0

+ 1
z1

= 1
f

, (2-2)

where f is the focal length of the lens.

2-1-2 Wavefront aberration

The thin lens equation introduced in the previous section truthfully describes the mapping of
an object to its image only in the ideal case of perfect alignment and homogeneous medium.
In practice, these assumptions are rarely satisfied, and therefore rays do not perfectly con-
verge to a single point on the image plane. As a consequence, the resolution of the captured
image, that is, the minimum distance between resolvable points, is reduced.

Static wavefront (WF) aberrations are inherent in optical systems and are usually due
to misalignments in the system or inaccuracies in the manufacturing of optical components.
The most effective way to compensate for these defects is to adopt more precise instruments
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Figure 2-4: Example of an unaberrated and aberrated wavefronts when passing through a lens
[1]

and enhance the complexity of the setup. Nevertheless, even ideal systems can suffer from
dynamic wavefront aberrations. Indeed, these defects are due to exogenous sources and can-
not be corrected a priori.
For example, in microscopy, light usually passes through complex biological specimens having
heterogeneous optical properties. The different refractive indices cause the rays to deviate and
introduce wavefront aberrations, which are strictly related to the analyzed specimen. Further-
more, when analyzing 3-dimensional in-vivo samples, aberrations can also change over time
and space following random and unpredictable patterns, which makes these sorts of defects
rather challenging to be corrected.

In this regard, Adaptive Optics is a powerful technique able to compensate for dynamic
wavefront aberrations. The idea at the base of such a method is to exploit the phase conju-
gation principle [10], which states that if an aberrated wavefront is reflected from a mirror
having the same shape and half the amplitude, the reflected beam will have a flat wavefront.
Therefore, if the WF is precisely measured and the mirror is promptly deformed, the imaging
system will be able to collect a sharp image of the object. However, these two assumptions
are not trivially satisfied in practice, and therefore, specific discussions on these matters are
reported in Section 2-1-3 and 2-1-4 respectively.

2-1-3 Wavefront detection

Scientific cameras, including wavefront sensors, are not able to measure WFs directly, but
instead, they can only quantify the brightness intensity of the light they are exposed to.
Nevertheless, pupil-plane sensors like the Shack-Hartmann (SH) sensor, are able to retrieve
an accurate approximation of the incoming WF only using a single measurement [11]. The
SH sensor presents an array of M lenslets, which divides the pupil plane into M smaller
spatial areas. The incoming light beam traveling through the sub-apertures of the sensor gets
projected to M individual focal spots. Ideally, if the wavefront of the light rays is flat, the
spots will be located exactly at the center of the sub-apertures. On the other hand, when a
distorted wavefront goes through the lenslets array, the centroids will be shifted with respect
to the reference positions. The major simplification that the SH-based WF reconstruction
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Figure 2-5: Application of the phase conjugation principle through a deformable mirror [1]

Figure 2-6: On the left, a schematic of a Shack-Hartmann sensor [1]. WF is the incoming
wavefront, MLA is the microlens array, and SP is the projected spot pattern. On the right, is an
image of the centroids pattern from the SHWFS used for this project.

applies, is to approximate the wavefront to be locally tilted in each one of the sub-apertures.
This allows to reconstruct the overall WF through linear regression and thus to significantly
reduce complexity. However, this advantage comes at the cost of losing high-frequency wave-
front information, especially when the number of sub-apertures M is limited [12].

Reconstructing a wavefront through a SH sensor generally consists of three steps: locat-
ing the centroids, computing the slopes with respect to the reference pattern, and finally
using a zonal or modal approach to obtain the incoming wavefront ϕ.
A possible way to locate the centroids (xc,m, yc,m) is following a center of mass principle based
on the measured pixel intensities Ii,j :

xc,m =
∑

i,j xi,jIi,j∑
i,j Ii,j

and yc,k =
∑

i,j yi,jIi,j∑
i,j Ii,j

, (2-3)
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with (i, j) ∈ Bm, where m is the lenslet number and Bm contains all the pixels belonging to
the m-th lenslet.
Secondly, comparing the measured centroids’ locations (xc,m, yc,m) with the reference spots
(xr,m, yr,m), the wavefront slopes are computed :(

⟨∂ϕ/∂x⟩
⟨∂ϕ/∂y⟩

)
m

=
(

sx

sy

)
m

≈ 1
z

(
xc − xr

yc − yr

)
m

+
(

ηx

ηy

)
m

, (2-4)

where z is the propagation distance between the aperture detection planes. Measurement
noise and approximation errors are both included in the term η.
Once the slopes s have been computed, the wavefront can finally be reconstructed. Here, a
modal approach is described, which consists of approximating the measured WF as a weighted
sum of a set of basis functions, for instance, Zernikes polynomials [13]:

s = Za

The vector a represents the weighting coefficients, while the matrix Z contains the slopes of
the modal functions:

s =



s1
s2
s3
...
...
...
...

sM


Z =



∂Z̄1(x1,y1)
∂x

∂Z̄2(x1,y1)
∂x · · · ∂Z̄D(x1,y1)

∂x
∂Z̄1(x2,y2)

∂x
∂Z̄2(x2,y2)

∂x · · · ∂Z̄D(x2,y2)
∂x...

... . . . ...
∂Z̄1(xM ,yM )

∂x
∂Z̄2(xM ,yM )

∂x · · · ∂Z̄D(xm,ym)
∂x

∂Z̄1(x1,y1)
∂y

∂Z̄2(x1,y1)
∂y · · · ∂Z̄D(x1,y1)

∂y
∂Z̄1(x2,y2)

∂y
∂Z̄2(x2,y2)

∂y · · · ∂Z̄D(x2,y2)
∂y

...
... . . . ...

∂Z̄1(xM ,yM )
∂y

∂Z̄2(xM ,yM )
∂y · · · ∂Z̄D(xM ,yM )

∂y



a =



a1
a2
a3
...
...
...
...

aD


.

Here, D is the number of modes that are used to describe the wavefront, and M is the number
of centroids in the SH pattern.

Zernike polynomials are frequently adopted in optics due to various reasons. Firstly, they
resemble common optical aberrations like coma, astigmatism, and defocus. Secondly, they
can be written through simple closed-form expressions in Cartesian coordinates. Last, they
are orthogonal on a unit disk, meaning that when they are applied to a circular aperture,
no information redundancy is present between modes. A visual representation of the first 21
modes is given in Figure 2-7.

2-1-4 Wavefront correction

As it was first introduced in Section 2-1-2, the principle at the base of Adaptive Optics con-
sists of correcting wavefront aberrations reflecting light with a surface having the same shape
and twice less amplitude. Once the incoming wavefront is detected and reconstructed, an
adaptive instrument needs to be promptly deformed. In most corrective imaging systems, the
adaptive element is a deformable mirror (DM), which generally speaking consists of a thin
deformable layer usually made of glass or plastic, coated with reflective material. The surface
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Figure 2-7: Graphic representation of the first 15 Zernike modes. This basis is commonly used
in optics due to various interesting properties. Zernike polynomials are orthogonal on the unit
disk, have simple formulations in the cartesian domain, and resemble typical optical deformations
like coma and astigmatism.

of such a mirror is changed by triggering C actuators, placed beneath the reflective layer.
The performances of DMs are thus characterized not only by the number of actuators, but
also by the maximal displacement of the surface, called stroke, and by the inter-actuators’
distance, which influences the precision of the correction.

Throughout the years, different designs and manufacturing technologies have been developed,
which have given birth to various DM types. A thorough review on the topic can be found at
[14]. In this following section, micromachined membrane deformable mirrors (MMDMs) are
discussed, consistently with the equipment at our disposal in the Delft Center for Systems
and Control (DCSC) Adaptive Optics lab.

Micromachined Membrane Deformable Mirrors

The first example of a DM consisting of a thin plastic membrane, deformed by an array of elec-
trostatic or magnetic actuators was introduced in 1977 by Grosso and Yellin [15] (Figure 2-8).
Twenty years later, membrane DMs started being produced using micromachine technologies,
in a way similar to electronic chips [16]. This was a major breakthrough that significantly
reduced the production cost of DMs and consequently made AO solutions more appealing.
MMDMs present a reflective membrane fixed at the edges that can only be attracted to the
electrode structure, thus assuming only concave shapes. Nevertheless, if a slightly concave
deformation is taken as a reference, operations are allowed in both directions. An explica-
tive diagram on this matter can be found in Figure 2-9. Electrostatic electrodes can easily
be placed in a high-density structure, however, the deformation they are able to trigger is
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Figure 2-8: Schematic of a Membrane DM. The shape of the reflective layer is changed through
electrostatic force, applied by electrodes beneath the surface. [2]

Figure 2-9: Schematic of biased operation of a Membrane DM. Bi-directional operations are
enabled by a slightly concave reference shape. [2]

directly proportional to their dimension. This poses a design trade-off between correction
accuracy and deformation stroke, which usually leads to membrane DMs able to reproduce
large deformations for low-order WF modes, and low deformations for high-order modes.
Finally, the relatively low production cost, together with good accuracy and lack of hystere-
sis, makes this kind of deformable mirror one of the most commonly used in Adaptive Optics
systems [17].

2-2 AO identification and control

In order to correctly compensate for wavefront aberrations, an accurate model of the AO
system needs to be identified. In this work, Zernike modes are used, due to their simplicity,
robustness, and similarity with real optical aberrations. The inputs of the model are then
defined as the electrical signals of the actuators, while the outputs are set as the Zernike
coefficients describing the measured wavefront.
Most deformable mirrors present a linear or linearizable relationship between the voltages
applied to the electrodes and the deformation of the reflective surface. Furthermore, AO
components usually do not present dynamics, and a change in actuators’ commands has an
immediate consequence on the shape of the mirror. For these reasons, AO systems are usually
modeled as an influence matrix Q:

ak+1 = Q · uk + ηk+1 (2-5)

where a ∈ RD, a = [a1, a2, . . . , aD]T are the WF slopes, Q ∈ RD×C is the AO model,
u ∈ RC , u = [u1, u2, . . . , uC ]T are the actuators’ commands, and finally η ∈ RD, η =
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[η1, η2, . . . , ηD] represents measurement noise. Intuitively, the elements of the matrix Q de-
scribe the influence that each actuator has on every WF mode.

The most straightforward method to retrieve such a model is based on the superposition
principle. It consists of poking each actuator individually while keeping the rest of the mirror
in a flat position. The influence of the i-th actuator on the mirror deformation, measured as
a vector of M slopes, forms the i-th column of the influence matrix Q. Despite the simplicity
and data efficiency of such an identification technique, data-driven approaches are usually
preferred, since they better compensate for modeling errors that arise due to nonlinearities
and coupling effects between actuators [18].

2-2-1 Least Squares method

Assuming the measurement noise η is white and Gaussian, the optimal linear estimator of
the matrix Q, based on N measurement samples, is computed through the Least Squares
approach:

Q = arg min
Q

N∑
k=1

(ak −Quk)2 (2-6)

= arg min
Q
||AN −QUN ||2. (2-7)

with AN ∈ RD×N , AN = [a1, a2, . . . aN ], UN ∈ RC×N , UN = [u1, u2, . . . uN ] being N
random input-output samples. Imposing the derivative of the loss function to be equal to 0,
a closed-form solution can be retrieved:

Q = AN UT
N

(
UN UT

N

)−1
. (2-8)

In order to make the matrix inversion process well-posed, the dimension of the dataset N
needs to be larger than the number of actuators C.

Once the model of the system has been identified, the influence matrix Q is inverted in order
to obtain a control matrix T , which maps desired wavefronts to the corresponding actuators’
commands:

uk = S · ar (2-9)

Since the matrix Q is usually not square, the Moore-Penrose pseudo-inverse is usually com-
puted, using Singular-Value-Decomposition (SVD):

Q =UΣV T (2-10)
S =V Σ−1UT (2-11)

In this case, SVD breaks down the influence matrix Q, such that the mapping between ac-
tuators commands and WF modes is done by passing through a set of orthogonal modes,
also called singular or eigen modes. These functions describe the patterns the mirror follows
when changing shape, and thus truthfully represent the reconstruction abilities of the system.
Understanding the connection between Zernikes and such modes is then crucial for WF cor-
rection tasks.
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In particular, the rows of V T matrix maps the influence of each actuator commands to the
eigen modes, while the columns of U represent the modes in sensor space. The singular values
stored on the diagonal of Λ represent the ability of the mirror to reproduce the corresponding
mode, and therefore the importance of that mode for WF reconstruction. Inverting the order
of the matrices as done in Eq. 2-11 allows to achieve the opposite task, that is, to compute
the linear combination of eigen modes, and thus of actuators commands, that is able to create
a desired wavefront shape.

Pseudo-inversion is a powerful tool, which however requires some extra attention when ap-
plied to real systems [19]. Indeed, the signal-to-noise ratio (SNR) of high-order parameters
of Q is in practice often low, and as a consequence, a full inversion of the matrix can lead to
extremely large entries in the control model S. In other words, the wavefronts that the DM
finds harder to reproduce, require larger control actions. Since this might cause actuators
to saturate, a regularization process is usually implemented. Singular-Value-Decomposition
provides a straightforward way to maintain the inversion process well-posed, which consists of
setting some of the lowest singular modes of Λ to zero. Naturally, this comes at the expense
of a reduced reconstruction ability of the mirror. Indeed, discarding some of the singular
modes will force the mirror to not use its full potential, and thus some high-order wavefronts
will not be controllable anymore. Nevertheless, this is usually a worthy trade-off, since most
common optical aberrations can be accurately approximated through low-order modes.

In this regard, a clear metric of the reconstruction abilities of the mirror is given by the
similarity matrix T = S ·Q, for which it holds:

a = T · ar (2-12)

where ar are the desired modal coefficients and a are the ideally obtained ones, according to
the influence and control matrices [20].

In this way, not only the reconstruction efficiency of the reference mode can be evaluated, but
also the impact of undesired ones (cross-talking). Ideally, T should indeed be a diagonal ma-
trix, however, SVD truncation reduces the mirror’s ability to reconstruct higher-order modes
and thus it inevitably impairs performances. On the other hand, letting the control matrix S
ignore the modes that require larger actuators signals, minimizes the risk of saturation and
thus of nonlinear behaviours.

Although the onset of saturation depends on the amplitude of the desired wavefront ar,
an accurate metric of the likelihood of such behaviour is represented by the largest value of
the control matrix S [20]. In this regard,

s̄ = max(S)

is also analyzed and plotted in Fig. 2-11 to give a more complete picture of the effects of the
truncation parameter δ.
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(a) δ = 0

(b) δ = 10

(c) δ = 20

Figure 2-10: Representation of the similarity matrix T and reconstruction efficiency diag(T ),
for different number of truncated modes δ. The gray scale represents the absolute value of
the matrix, element-wise. All Zernike modes between 4 (top-left) and 39 (bottom-right) are
represented. The histograms on the right depict the elements on the diagonal of the similarity
matrix and range from Zernike mode 4 to 39. Truncating the lowest singular values decreases
the reconstruction efficiency of highest-order modes, and enhances the cross-talking with other,
off-diagonal, elements.
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Figure 2-11: Maximum value of the control matrix S for different number of truncated singular
modes δ.

2-2-2 Challenges and limitations

In this section, the main hindrances of AO identification and control are discussed. In this
regard, analyses and considerations are supported by experimental results obtained through
an AO setup present in the AOlab of the TU Delft DCSC.

Description of the AO setup

As can be seen in Figure 2-12, the experimental AO setup is essentially composed of a de-
formable mirror and a SH sensor. Collimated light is emitted by a laser as a red beam having
a wavelength equal to 640 nm. The beam is then magnified through a couple of positive bi-
convex lenses, and filtered by a 20 mm sub-aperture. A 96-channel membrane DM produced
by OKO Technologies is used, whose characteristics are reported in Table 2-1 [21]. After
being reflected and diminished, the light beam enters the SH sensor. The specifications of
this last component are provided in Table 2-2.

Number of actuators Aperture Maximum surface deflection
96 25.4 mm 19 µm

Table 2-1: Specifications of the used DM from OKO Technologies.

Aperture AR coating range (ARC) Pitch Focal length
10 mm 400 nm - 900 nm 300 µm 14.2 mm

Table 2-2: Specifications of the used SH sensor.
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Figure 2-12: Experimental AO setup used for this thesis project. AO Lab, DCSC, TU Delft. The
deformable mirror is an OKO 96-channel MMDM with 25.4 mm aperture. The SHWFS consists
of a Thorlabs 1024 × 1024 CMOS Camera and a 10 mm × 10 mm lens array. The laser beam
has 640 nm wavelength, a diameter of 2.9 mm, and 1.2 mW power.

Nonlinearity

As introduced in the previous section, linear models are often preferred over nonlinear ap-
proaches for the modeling and control of DMs. However, the relationship between actuators’
commands and mirror deformation is often quadratic in membrane DMs [2], and, as a con-
sequence, some linearization process needs to be implemented. Two different approaches are
often followed: the first simply consists of choosing a linearization point and assuming the
mirror performs linearly around it:

â = Q · û
û = u− uR, â = a − aR

where Q is the influence matrix of the mirror, a and aR are respectively the measured and
reference wavefronts, and finally u and uR are the actuators action sets that generate a and
aR respectively.

Despite its clear simplicity, this method is only suitable for the correction of small wave-
front aberrations. Indeed, the approximation error becomes more significant the more the
desired wavefront is distant from the linearization point aR.

Alternatively, the model can directly be retrieved in a linear fashion, taking as inputs the
squares of the applied electrodes’ voltages. This is the case of our AO setup, where an
OKO deformable mirror is implemented, together with its Software Development Kit (SDK).
Every time an input command is sent to the mirror, the OKO SDK applies the following
transformation to each element of the control array:

ūi =
√

ui + 1
2 · umax (2-13)

In this way, the control commands u ∈ [−1, 1] get nonlinearly mapped to ū ∈ [0, umax]mV,
which are the voltage signals effectively sent to the actuators. Due to the quadratic relation-
ship between the latter and the mirror deformation s, an overall linear model Q is obtained.
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Figure 2-13: Modelling diagram of the DM implemented in our setup. The mirror presents a
quadratic relationship between the applied voltages contained in ū and the wavefront s. The
OKO SDK applies the square root operator, together with scaling and shifting, to create a linear
relationship between the control commands u passed to the mirror and the wavefront s.

Opposed to the first linearization approach, this second method theoretically allows obtain-
ing a linear model of the system with no approximation error. However, it has been so far
assumed that the mirror shows a perfectly quadratic response, which might not be the case
in reality. To validate such an approach, all the mirror’s actuators are poked with increasing
control signals and the measured wavefronts are evaluated with respect to the flat mirror
deformation:

||a − a0||2
where a0 is the wavefront obtained for ū = 0mV .

As shown in figure 2-14, the quadratic assumption proves to be satisfactory for low and mid
voltages. However, consistently with the documentation provided by OKO [2], the relationship
between large control actions and mirror deflection is better represented by a polynomial of
higher order. As a consequence, linearized models will inevitably present inaccuracies for
large deformations.

Time-varying dynamics

The second major simplification that the traditional Least Squares method implements, is to
assume that the AO system remains constant over time. In practice, this condition is hardly
ever satisfied, due to mechanical drift and changes in external conditions, like humidity and
temperature. This last issue is particularly interesting to analyze as it can significantly impact
the response of the system in a rather short period of time. Mechanical drift, instead, has a
negligible influence on AO performances if the system is periodically calibrated.

The metric used here to quantify the correction performances is the root-mean-square (rms)
wavefront error, in units of the wavelength of light:

σ = RMSw =
( 1

A

∫
pupil

(W (x, y)− W̄ )2 dx dy

)1/2
(2-14)

where A is the pupil area, W is the measured aberration in cartesian coordinates, and W̄ is
the mean wavefront. The rms is a common indicator of WF flatness, as it indicates how much
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Figure 2-14: Nonlinear behavior of our AO system. Control signals from umin = 0mV to
umax = 255mV are sent to all 96 actuators. The mirror deformation ||a− a0||2 is measured and
reported here on the y axis, where a0 contains the Zernike coefficients describing the wavefront
when 0mV is applied to the actuators. The OKO trajectory corresponds to a quadratic curve,
which is the modeling assumption made by the OKO SDK in order to make the whole system
linear. The plotted result is the mean of 10 different episodes. The standard deviation is minimal
and thus barely visible.

the given WF resembles its mean value. In AO it is often applied to the residual WF error
and it provides information regarding the correction accuracy. Additionally, the rms can also
be computed from a vector of Zernike coefficients:

σ =

 N∑
j=3

a2
j

1/2

(2-15)

As can be seen in Figure 2-15, the static aberration of the AO system is significantly impacted
by changes in temperature. This is mostly due to the dependency of the mirror’s tension on
temperature and it is thus inherent to AO systems. In Figure 2-16, the error trajectory of a
closed-loop reconstruction of a random WF is plotted for different temperature values. Con-
sistently with previous considerations regarding static aberration, the accuracy after the first
control step becomes worse, the further the working point is away from calibration conditions.
Furthermore, what is also interesting to notice in this plot, is that the reconstruction stability
is also affected by temperature. This means that the actuators’ influence on the measured
mirror deformation, i.e. the model Q, is also impacted by thermal effects.

2-2-3 Extensions

Least Squares (LS) is a powerful and straightforward method, which is currently still largely
implemented in plenty of scientific fields. As long as the assumptions it takes are not sig-
nificantly unfulfilled, the modeling accuracy is usually satisfactory for most control tasks.
Nevertheless, in order to overcome modeling errors and limitations, many extensions to this
method have been proposed over the years.
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Figure 2-15: Correlation between wavefront modes and temperature. The mirror is maintained
in the reference position and the measured wavefront at calibration temperature (24◦C) is taken
as reference. The temperature around the setup is then increased and subsequently set back to
the calibration one. Every second, a new wavefront is measured through the SH sensor while
actuators are maintained in the bias position. On the left, the mirror deformation with respect to
the reference wavefront is plotted. On the right, low-order Zernike modes are reported, named
according to Noll’s sequential indices [3].

The Nonlinear Least Squares (NLS) method, for instance, adapts the traditional LS approach
to the estimation of a generic modeling function h(). A closed-form solution like the one re-
ported in Eq. 2-8 cannot be retrieved in this case, as the loss function’s derivative generally
includes both independent variables and model parameters. As a consequence, the terms of
the model function h are estimated iteratively. The main drawback of such an approach is
that the structure of the function h has to be defined a priori and it then remains static,
which, in a time-varying system, is not an ideal solution.
Regarding this last matter, Recursive Least Squares (RLS) is the most common and effective
LS extension to identify systems that change over time [22]. Instead of collecting N samples
and estimating a static matrix Q based on them, RLS updates the model with every newly
gathered sample, which afterward gets discarded. Therefore, memory requirements are re-
laxed and the traditional LS approach is enhanced with time-tracking abilities. This method
has already been implemented in AO with promising results [18][23], and in the next section,
a more detailed description of it is given.

Recursive Least Squares method

The most natural and straightforward way to implement the Least Squares method iteratively
is to extend the regression dataset with every new input-output measurement, and estimate
a new model Qi at each time step. However, this causes the regression dataset dimension N
to rapidly increase, inducing the system to eventually run out of space.

Recursive Least Squares adopts a more data-efficient way to keep the model Q updated.
Whenever a new sample (ui, ai) is gathered, the RLS exploits it to update the entries of the
matrix Qi. In this way, past samples do not need to be stored anymore, which is particularly
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Figure 2-16: Closed-Loop reconstruction of a random wavefront for different temperature values.
A linear matrix model S is used to control the system, using a Proportional-Integral approach.
Controller’s gains are respectively 1 and 0.5. When the operating temperature is different from
calibration one (23◦C) the correction appears more unstable and a steady-state offset arises.

useful for high-dimensional systems like AO. Furthermore, when the system is known to be
time-varying, the loss function that RLS aims to minimize is usually slightly different from
the traditional LS one (Eq. 2-6):

Q = arg min
Q

N∑
k=1

γN−k (ak −Quk)2 . (2-16)

The weight γ is usually a scalar term constrained between 0 and 1, and since it is exponen-
tially decayed, it controls the forgetting rate of the algorithm. Indeed, the closer the sample
time k is to the current value N , the larger the weight will be, and as a consequence, the
prediction error will be taken into higher consideration. In other words, recent measurements
influence the estimation of the model Q exponentially more than older samples. In this way,
the model remains sensitive to system changes, regardless of the number of samples already
measured. It is then trivial to prove that setting γ = 1, makes the minimization problem
identical to the standard LS.

The RLS algorithm can easily be applied to the AO use-case as follows [23]:
Let us define the measured wavefront ak as

ak = Gkqk, (2-17)

where the control commands are passed as a Kronecker matrix

Gk = uk
T ⊗ I,

and the DM influence matrix is vectorized

qk = vec(Qk).
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The model is then updated following an integral approach, that is, adding to the previous
matrix a weighted version of the prediction error, which is here defined as

εk = ak −Gkqk. (2-18)

The update recursion then looks like:

qk+1 = qk + Lk+1 · εk+1, (2-19)

with

Lk+1 =PkGT
k Tk (2-20)

Pk+1 = 1
γ

Pk −
1
γ

Lk+1GkPk (2-21)

Tk =
(
γI + GkPkGT

k

)−1
(2-22)

0 < γ ≤ 1 (2-23)

as optimal gain parameters. The matrix P represents the parameters’ uncertainty and it is
usually initialized as a diagonal matrix. Similarly to the standard LS method, the model
parameters are updated based on the prediction error, the model uncertainty, and the control
actions. However, in this case, the entries of the covariance matrix P do not necessarily
converge to 0. Indeed, if γ < 1, the term 1

γ in 2-21 will force the matrix P not to shrink
excessively, which is a crucial point to keep the model sensitive to changes.

Recursive Least Squares usually presents great convergence speed and good tracking abilities.
For these reasons, it has been for years state-of-the-art for the estimation of time-varying
systems. Nevertheless, it also has its drawbacks. Firstly, as the traditional non-recursive
LS, it does not model nonlinearities and, as a consequence, it inevitably introduces approx-
imation errors when applied to real systems. Secondly, despite the more effective usage of
memory storage, RLS presents a higher computational complexity than most other linear
regressive methods [22]. This is due to the update process of the covariance matrix, which,
for high-dimensional systems like AO, can be a challenging task. Finally, whenever persistent
excitation is not provided, the accuracy of RLS drops significantly [24]. Indeed, if the most
recent measurements do not excite all system’s dynamics, the uncertainty of the parameters
increases which eventually makes the model unreliable. This last issue is usually fixed with
ad-hoc solutions, for instance, setting an upper boundary to the matrix P , or implementing
a method to set γ = 1 whenever persistent excitation is not provided [24].

2-3 Artificial Neural Networks

ANN are nonlinear adaptive function approximators, which are able to learn specific input-
output relationships from data. They include multiple interconnected processing units, called
neurons, which contribute to the output computation [25]. ANN have proven to be an ex-
tremely powerful tool for high-dimensional nonlinear systems, and, over the years, they have
been successfully implemented for system identification, control, and classification tasks in
plenty of different fields [26]. In the following subsections, a concise description of ANN is
given.
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(a) (b)

Figure 2-17: General and specific architecture of a fully connected deep neural network. On the
left, the contribution of input and hidden layers’ neurons to the output of the network can be
appreciated. When the network is fully connected as in this case, the output of each neuron is
mapped to the input of all the neurons of the following layer. Trivially, the modeling capabilities of
the network are directly correlated to the number of neurons and layers. On the right, instead, the
way each neuron computes its output based on the multiple inputs it receives is depicted. Using
a nonlinear activation function, it is possible to make the neural network models nonlinearities.
In this regard, plenty of different functions can be adopted, depending on the task the network is
meant to achieve.

2-3-1 Working principle

A neural network can be defined as a function q, computing an output y based on an input
x, and internal parameters θ:

y = q(θ, x).

Each internal neuron also represents a function, h(x, θ, σ), defined as:

h(x, w) = σ

(
N∑

i=0
θixi

)
. (2-24)

Indeed, every single neuron takes a set of inputs xi, computes a weighted sum of them based
on the current weights θi, applies an activation function σ on the calculated value, and thus
finally obtains a single output (Figure 2-17a). The activation function introduces nonlinearity
in the model and ensures that the neural network is able to identify nonlinear behaviors. Based
on the implementation task, different functions can be adopted, such as the Rectified Linear
Unit, the hyperbolic tangent, or the sigmoid.
Neurons can then be grouped in parallel to form a layer. The latter might also be stacked
in series with other layers to form what is called a deep neural network (Figure 2-17b).
The output of the network is then the result of the given set of inputs xi passing through
concatenated neurons’ functions hk(xi, θi).

2-3-2 Training

In order to properly approximate a nonlinear input-output map, the weights of each neuron
need to be accurately estimated from the available data. This process is called training and
it usually follows the backpropagation method [27]. The algorithm first computes the error
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gradient with respect to all the neurons’ weights. Then, it updates the network parameters
following a gradient descent approach:

θk = θk−1 − α · ∇θfk(θ, x, y),

with α being the update step size and f(θ, x, y) the loss function to be minimized. These two
steps are then repeated iteratively until convergence. Therefore, the way the error function is
defined has a significant impact on the accuracy and convergence speed of the training process.
For regression problems like system identification, the mean squared error loss function is
usually chosen [28]

f (θ, x, y) = 1
K

K∑
k=1

(yk − q(θ, xk))2

where K is the number of training samples.

ADAM optimizer

Over the years, plenty of different gradient descent variations have been developed regard-
ing the update of networks’ weights. In this regard, Adaptive moment estimation (ADAM)
optimizer is currently considered state-of-the-art for the training of ANN, given its fast con-
vergence speed, good accuracy, and noise robustness [29].
The loss function to be minimized is defined here as f(θ), where the dependency on input-
output data is made implicit. The ADAM optimizer updates the parameters θ at every
stochastic realization of the function fk(θ), exploiting the gradient gk = ∇θfk(θ). Differently
from other Stochastic Gradient Descent (SGD) algorithms, however, ADAM does not directly
use the stochastic realization of the gradient but instead exploits estimates of the 1st and 2nd

order moments of it, that is, the mean (mk) and the uncentered variance (vk). In Table 2-3,
a schematic description of the algorithm flow is shown, taken from [29].

Three main features uniquely define the ADAM optimizer. Firstly, the learning rate is adapted
to each individual parameter, which is crucially beneficial for sparse systems where neurons
have different changing rates. Secondly, using an estimate of the mean of the gradient mk,
instead of the real stochastic one gk, reduces the sensitivity to noise and significantly enhances
training stability. Finally, scaling the learning rate α with the ratio between the first and
the second-order moment of the gradient guarantees fast convergence speed, and good noise
robustness. Indeed, when the network is continuously acquiring new relevant information,
we will have that mk√

vk
≈ ±1 and the learning rate will not be reduced. On the other hand,

when an optimum is reached, the gradient gk will oscillate around 0, and as a consequence,
the ratio mk√

vk
will tend to 0, de facto not updating the parameter anymore.

2-3-3 Direct Inverse Control

As shown in section 2-2, accurate WF correction is obtained if and only if the controller model
is a good approximation of the inverse of the AO system. If the latter is nonlinear, computing
its inverse can be a challenging task. In this regard, plenty of methods have been published
over the years on the control of dynamical systems using neural networks. In particular,
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ADAM Algorithm: g2
k indicates the elementwise square gk ⊙ gk. All operations on vectors

are element-wise. With βk
1 and βk

2 we denote β1 and β2 to the power k.
Step Description
Require: α Stepsize
Require: β1, β2 ∈ [0, 1) Exponential decay rates for the moment

estimates
Require: f(θ) Stochastic objective function with param-

eters θ
Require: θ0 Initial parameter vector
m0 ← 0 Initialize 1st moment vector
v0 ← 0 Initialize 2nd moment vector
k ← 0 Initialize timestep
while θk not converged do

k ← k + 1
gk ← ∇θfk (θk−1) Get gradients w.r.t. stochastic objective

at timestep k
mk ← β1 ·mk−1 + (1− β1) · gk Update biased first moment estimate
vk ← β2 · vk−1 + (1− β2) · g2

k Update biased second raw moment esti-
mate

m̂k ← mk/
(
1− βk

1

)
Compute bias-corrected first moment es-
timate

v̂k ← vk/
(
1− βk

2

)
Compute bias-corrected second raw mo-
ment estimate

θk ← θk − 1− α · m̂k/
(√

vk + ϵ
)

Update parameters
end while
return θk Resulting parameters

Table 2-3: Schematic description of ADAM Algorithm.

Direct Inverse Control (DIC) [30][31] is an intuitive and straightforward technique that has
been successfully implemented in multiple fields like aerospace [32], unmanned vehicles [33],
mechanics [34][35], and chemistry [36].

Its principle consists of training a neural network as the inverse of a system and using it
to control the plant (Figure 2-18). Consistently with traditional control theory notation [37],
the term plant is here used to indicate the combination of process and actuators, and it is
thus often used as a synonym for system. Depending on the loss function being used to train
the controller network, two distinct DIC methods can be followed.

Generalized learning The most straightforward approach consists of directly training the
controller on historical data such as to predict the input actions u which generated the output
y. Despite its intuitive and effective structure, this approach presents two main drawbacks
which might hinder its success. Firstly, when the system is characterized by a many-to-one
mapping between actions and output, DIC might not be able to find a correct inverse of the
plant. Indeed, when multiple exact inverse models of the system exist, as is the case for
underdetermined systems, the DIC method provides an average of them, accordingly to the
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Figure 2-18: Direct Inverse Control diagram. The controller consists of a neural network that
models the inverse of the plant being controlled. When a reference signal r is requested, the ANN
computes a control action u, which is then sent to the actuators of the system. If the network
properly models the inverse of the plant, the output variable y will then resemble the reference r.

least squares principle. However, when the system is nonlinear, inverse images can belong to
a non-convex set, in other words, the average of the solutions might not necessarily be an
exact inverse of the system [4]. An explicative example of this issue is reported in Figure
2-19.

Figure 2-19: The convexity problem. The region on the left is the inverse image of the point on
the right. The arrow represents the direction in which the mapping is learned by direct inverse
modeling. The three points lying inside the inverse image are averaged by the learning procedure,
yielding the vector represented by the small circle. This point is not a solution, because the inverse
image is not convex. [4]

The second drawback of generalized learning is that the learning process is not goal-directed,
since the minimized training error does not consider the actual output of the plant. As a
consequence, the controller cannot be optimized for a specific state trajectory, and the effec-
tiveness of the method relies on a thorough and uniform sampling of the state space during
training. This is a major hindrance mostly for the control of systems having large action and
state sets, for which specialized learning is beneficial.
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Figure 2-20: Diagram of the training of the forward plant network. The network is placed in
parallel with the plant and thus receives the same input actions u. The prediction error e between
the plant output y and the network estimate ypred is backpropagated and used to update the
weights of the ANN. The training can either be done offline or online, during control operations.

Figure 2-21: Diagram of the training of the controller network, following the specialized learning
approach. The error between the desired and the predicted output is backpropagated through the
plant network, and exploited to update the controller one. In essence, the latter is trained to be
the inverse of the plant network and thus make the overall system replicate an identity function.

Specialized learning This second alternative method consists of training the controller net-
work to minimize the output error, exploiting a forward model of the plant. This allows to
solve the convexity issue and make the learning process goal-directed. Firstly, a shallow neu-
ral network is trained to predict the output y, based on an input u. Secondly, the controller
network is placed in series with the plant one and the overall system is trained such as to
replicate an identity transfer function. During the error backpropagation, only the controller
weights are updated, while the plant network is exclusively used to translate the output loss
gradient in the control action domain. In this way, the overall model learns to track the
reference signal r, and, as a consequence, the controller becomes a good approximation of
the inverse of the plant. Therefore, the quality of the controller, and thus of the reference
tracking operation, is closely related to the accuracy of the forward plant model. Indeed, if
the latter presents modelization errors, these will inevitably be present in the controller as
well.

2-3-4 ANN in Adaptive Optics

Given the complexity and high-dimensionality of Adaptive Optics systems, ANN have repre-
sented an appealing modeling technique since the early stages of AO in 1990 [38]. Over the
years, ANN have been successfully implemented for various challenging tasks like wavefront
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sensing [39], WF reconstruction [40], and turbulence prediction [41]. Regarding the identifi-
cation and control of deformable mirrors, ANN have been mostly implemented on Wavefront
Sensorless (WFSless) applications, where time-consuming random-search optimization is re-
quired to retrieve WFs, and thus neural networks can significantly speed up control [42].
In particular, Reinforcement Learning (RL) techniques have shown excellent robustness and
good converging speed, even in model-free implementations [43].

However, one of the major drawbacks of Machine Learning (ML) methods is their inher-
ent complexity with respect to traditional linear algorithms. Indeed, in order to outperform
the existing state-of-the-art, non-trivial network structures are often adopted like Long-Short
Term Memory Networks [44], autoencoders [45] and Convolutional Neural Network [40]. Nev-
ertheless, shallow ANNs have also been researched, in particular for the identification of DM
influence models, which often present nonlinearities and sometimes time-varying behaviors
[46]. In [47], a DIC-inspired approach is proven to be able to accurately control a simulated
AO system in the presence of misalignments. However, in order to train the ANN using
the output reconstruction error without implementing a plant model network, the proposed
framework runs a model-free estimation of the unknown gradient of the loss function on
the control actions. This is a rather noisy and time-consuming computation, which requires
additional modules to run efficiently, such as a model-actor parameter-sharing framework.
Furthermore, the gradient estimation process has to be initialized in every new control loop
and requires multiple measurements to reach convergence. Therefore, it is not a suitable
method to pursue fast, possibly open-loop, WF correction objectives.
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Chapter 3

Method proposal

The main idea behind this thesis work is to exploit neural networks’ ability to identify non-
linear systems while training online, to improve the control of Adaptive Optics (AO) that
present nonlinearities and time-varying behavior. High importance is given to the complexity
of the proposed algorithm, which should not represent an obstacle for the practical implemen-
tation of the method. Indeed, the given approach should be a valid and appealing alternative
to traditional linear control algorithms. In this regard, an AO-specific version of the Direct
Inverse Control (DIC) method, described in Section 2-3-3, is proposed here.

3-1 Adaptive Direct Inverse Control for Adaptive Optics

The approach presented here is based on the DIC specialized learning method, which consists
of identifying a forward model of the plant, and then computing the inverse of it through
the backpropagation of the output error. The proposed method can thus be analyzed as the
combination of two main processes, described more in detail here below:

3-1-1 Forward model identification

Similarly to the Least Squares method introduced in Section 2-2, the plant model is initially
estimated using random input-output calibration samples, collected offline. The actuators’
signals are sampled following a uniform distribution over the whole action space. The loss
function used to train the network is the mean squared error between the predicted wavefront
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and the measured one:

Lq (θq, a, u) = 1
K

K∑
k=1

(ēk)2 (3-1)

= 1
K

K∑
k=1

(ak − ā)2 (3-2)

= 1
K

K∑
k=1

(ak − q(θq, uk))2 (3-3)

where q is the plant network and ā is the predicted wavefront.

The implemented shallow Neural Network has C inputs and D outputs, respectively equal to
the number of mirror actuators and wavefront (WF) modes. The difference with the linear
Least Squares method exclusively stands in the internal structure of the identified model.
Consistently with the objective of this project, the complexity of the network is set to be as
low as possible. Following Occam’s Razor, the number of hidden layers is set to one since
adding more complexity proved not to result in any performance improvement. Wavefront
prediction tests are then run for different numbers of layer nodes, which showed that using the
same depth as the output layer represents the most effective choice (Figure 3-1a). Nonlinear
activation functions are only applied in the hidden layer, and in this regard, the hyperbolic
tangent is applied as it proves to obtain the lowest rms WF prediction error e. For more
details regarding this metric, the reader can refer to Section 2-2-2.
The number of samples used to train the network also significantly affects the performances
of the identified model, and it is thus optimized through iterative tests. In particular, the
network is trained on random sets of different sizes, while the other hyperparameters such
as the learning rate and the number of epochs are always set to guarantee stable training
convergence. As can be seen in Figure 3-1b, the network stops overfitting when the training
set consists of more than 4000 samples, which is thus taken as training size. Finally, the
ADAM algorithm described in Section 2-3-2 is chosen as the update method for the weights
of the network.

3-1-2 Forward model inversion

Finding the inverse of a nonlinear function is not a trivial task. The most useful feature of
DIC using specialized learning is that it approaches this matter with a rather straightforward
solution. The controller network is placed in series with the plant one, and the overall system
is trained to replicate an identity transfer function, that is, to obtain an output a as much
similar to the reference ar as possible (Figure 3-3). During training, the plant network is
not updated and it is indeed only used to back-propagate the output wavefront error to the
controller. In this regard, the minimized loss function is chosen as the root-mean-squared
error between the reference WF and the WF predicted by the plant network, on the base of
the control actions computed by the controller. Jordan and Rumelhart [4] refer to this metric
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(a) (b)

Figure 3-1: Hyperparameters tuning curves. On the left, it is plotted the training and validation
loss curves for different hidden layer depths. The loss function is minimized when more than 40
nodes are used in the hidden layer. For each test case, enough training samples are provided to
make the system not overfit. On the right, instead, the training and validation loss curves for
different training set dimensions are depicted. The network stops overfitting when more than
4000 samples are used for training.

as the predicted performance error :

L̂c (θc, θq, ar) = 1
K

K∑
k=1

(ēk)2

= 1
K

K∑
k=1

(ar,k − ā)2

= 1
K

K∑
k=1

(ar, k − q(θq, uk))2

= 1
K

K∑
k=1

(ar,k − q(θq, c(θc, ar)))2

where c is the controller network. Computing the error using the predicted WF rather than
the measured one allows us to train the controller offline, and thus significantly speed up the
inversion process. On the other hand, it must be said that in this way the controller network
is not able to compensate for inaccuracies in the plant model, as it is simply an inverted
version of it.

As it will be also mentioned in the dedicated Section 2-2-2, the AO setup used to validate the
proposed method consists of a deformable mirror having 96 channels, and a Shack-Hartmann
sensor characterized by 180 centroids, which suggests not using more than 60 wavefront modes
to represent the measured aberrations [48]. As a consequence, the inverse model of the plant
is an underdetermined system, that is, it contains more unknown variables (control actions),
than equations (WF modes). A visual representation of such a many-to-one mapping is re-
ported in Figure 2-19. It is here important to remark that since the measured wavefronts
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Figure 3-2: Diagram representing the offline learning architecture of the plant network. The
ANN is trained through the backpropagation of the prediction error ē, here represented by a
green dashed line. If the training is successful, the plant network should be able to replicate the
WF generation behavior of the system.

Figure 3-3: Diagram representing the offline learning architecture of the controller network.
Exploiting the pre-trained plant network, the controller model is identified through the backprop-
agation of the predicted performance error ē. The plant network is necessary to express the loss
gradients as a function of the control actions u, and thus to make the controller network be able
to train on the output error. During this process, the plant network is not updated and it is only
used to backpropagate the error. If the training is successful, the overall system composed of the
controller and plant networks should resemble an identity function.

are reconstructed with a finite number of modes, in particular lower than the number of ac-
tuators, different control action commands trigger mirror’s deformations that get measured
as the exact same WF. This poses a serious issue for model inversion since every wavefront
has to be mapped to only one control action. In the linear Least Squares case described in
Section 2-2, Singular-Value-Decomposition (SVD) can be used, which maps each output to
its minimum norm image. Following a similar approach, the training loss function of the
controller network is here expanded with an L2 regularizing term:

Lc (θc, θq, ar) = L̂c (θc, θq, ar) + α ·
T∑

j=1
θ2

c,j (3-4)

where θc,j are the weights of the controller network and α is the L2 regularizing gain. In this
way, if α is set to a positive number, the controller network is induced to map each WF to
the control solution having the lowest norm.
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The hyperparameters of the controller network are optimized following the same tests as
for the forward model. Since similar results are obtained, the structure of the two networks is
made identical, except for the dimension of the input and output layers, which are inverted.
Regarding the training process, it is important to remark that the controller network guar-
antees good reconstruction abilities only for those types of WFs observed during training,
therefore, it is extremely important to show to the network those WFs samples that are more
likely to be encountered in practice. The optimal number of training samples is significantly
dependent on the range of wavefronts that are meant to be controlled. More insights on this
regard are reported in the following chapter.

3-1-3 Online update of forward and inverse models

The proposed approach can also be used online, updating both the forward and the inverse
model during control operations. The training procedure is essentially the same as the one
described in the previous sections, with the difference that both networks are updated with
every new gathered measurement, through ADAM Stochastic Gradient Descent (SGD). In
Table 3-1, a summary of the online algorithm is provided.

Step Description
Require: q(θq,0) Pretrained plant network
Require: c(θc,0) Pretrained controller network
Require: αq ADAM SGD learning rate for the plant

network
Require: αc ADAM SGD learning rate for the con-

troller network
k ← 0 Initialize timestep
while wavefront control is active do

k ← k + 1
ar,k ← Obtain new reference wavefront
uk ← c(θc, ar,k) Compute control actions through inverse

model
ak ← Send control actions to DM and measure

reproduced wavefront
ēk ← ak − āk Compute prediction error
θq,k ← ADAM(θq,k−1, ēk) Update forward model
ēk ← ar,k − āk Compute predicted performance error
θc,k ← ADAM(θc,k−1, ēk) Update inverse model

end while

Table 3-1: Schematic summary of the Online DIC algorithm for AO.
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Figure 3-4: Diagram representing the online learning architecture of both the plant and controller
network. Once a new WF measurement is obtained, the forward model is firstly updated using the
performance error ē (green line). Secondly, the predicted performance error ē is back-propagated
through the plant network and exploited to update the inverse model (blue line).
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Chapter 4

Results

The performances of the proposed method are assessed using an experimental Adaptive Optics
(AO) setup, located in the AO Lab of the Delft Center for Systems and Control (DCSC) at
TU Delft. In Section 4-1, the details regarding the implementation of the control algorithm
on the AO equipment are given, together with a description of the investigated test cases
and the methods used as a benchmark. The results obtained by the proposed approach are
reported in three different sections, based on the issue being highlighted. Wavefront prediction
performances are discussed in Section 4-2, while insights into the model inversion process and
the impact of regularization are reported in Section 4-3. In Section 4-4, results concerning
WFs correction are then presented, with a particular focus on nonlinearities and time-varying
conditions. Finally, in Section 4-5, considerations regarding the obtained results are reported.

4-1 Experimental conditions

A technical description of the AO setup used to validate the method can be found in section
2-2-2 (Figure 2-12). The plant network used to model the system presents an input layer with
96 nodes, equal to the number of deformable mirror (DM) actuators, one hidden layer having
40 nodes and tanh activation function, and an output layer also with 40 nodes, equal to the
number of Zernike modes used to reconstruct wavefronts. Consistently with the test results
presented in Section 3-1-1, the plant network is firstly trained offline for 10000 epochs on 4096
random input-output samples gathered with the setup. The learning rate is set to 0.005. The
structure of the controller network is set to be exactly symmetric to the plant network, and
additionally, all the weights are regularized during training with an L2 coefficient α = 10−5.
This is to enforce the network to map wavefronts to their minimum norm solution, given the
system is underdetermined. The impact that the regularization has on the reconstruction
efficiency is not significant for most of the modes, as shown in Figure 4-1. The controller
network is trained for 20000 epochs on 10240 wavefront samples, generated by randomly
exciting the actuators of the mirror. This number is the smallest able to guarantee an ideal
reconstruction efficiency of at least 98% on the first 20 Zernike modes. Finally, in this case,
the learning rate of the ADAM optimizer is set to 0.001.
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(a) (b)

Figure 4-1: Reconstruction efficiency of the proposed method, for an L2 regularizing term α =
10−5. The trained identity model i(θc, θq) = q (θq, c(θc)) is inspected. Each one of the first 40
Zernike modes is fed to the system with unitary amplitude. The output of the identity model,
which represents the theoretical system reconstruction of the requested wavefront in terms of
Zernike magnitudes, is reported on the y-axis. Ideally, only the desired mode should be reproduced,
with unitary amplitude. The histograms on the right depict the diagonal elements of the grids on
the left-hand side. They represent the reconstruction efficiency regarding the desired mode only,
that is, not considering the cross-talking between modes. The larger the regularizing gain, the
more the reconstruction quality is affected, especially for high-order modes.

4-1-1 Investigated test cases

Wavefront reconstruction performances are essentially dependent on two matters: the quality
of the identified system model and the efficiency of the model inversion. The first point is
investigated in Section 4-2, where the wavefront (WF) prediction accuracy of the proposed
method is compared with the state-of-the-art. The second topic, that is, the identification of
the inverse model is instead discussed in Section 4-3. In particular, the impact of L2 regu-
larization on the ideal reconstruction efficiency is analyzed, in order to understand how the
risk of saturation can be mitigated, and how this technique relates to the Singular-Value-
Decomposition (SVD) truncation practice.

Once these two preliminary points have been discussed, results regarding WF reconstruction
are reported. Generally speaking, wavefronts can be corrected by either following an open or
closed-loop approach, depending if the residual aberration is fed back to the controller or not.
Trivially, the quality of the model plays a crucial role in open-loop implementations, where
linearization errors and neglected dynamics are not compensated for. As a consequence, in
order to better highlight methods’ performances in nonlinear environments, the open-loop
reconstruction of small and large-phase WFs is tested, and the results are reported in Sec-
tion 4-4-1. Nevertheless, in practice, closed-loop control is usually implemented to improve
the quality and stability of the reconstruction. Therefore, large-phase Zernike modes are
also generated in closed-loop, and insights regarding the convergence speed and accuracy of
the proposed method are obtained. Finally, in Section 4-4-2, the tracking abilities of online
Direct Inverse Control (DIC) are evaluated. In order to keep the system’s response linear,
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only low-phase wavefronts are reconstructed. Indeed, the possible performance degradation
should here be exclusively caused by a change in the plant’s dynamics. Experimentally, this
is induced by increasing the environmental temperature through a heating element.

In table 4-1, a brief schematic summary of the investigated test cases is given:

Task Triggered condition Benchmarks Section
WF prediction Nonlinearity LS 4-2-1
WF prediction Temperature changes LS, RLS 4-2-2
WF prediction Lack of persistent excitation LS, RLS 4-2-3
Model inversion SVD 4-3
WF correction Nonlinearity LS 4-4-1
WF correction Temperature changes LS, RLS 4-4-2

Table 4-1: Summary of the investigated test cases. LS and RLS respectively stand for Least
Squares and Recursive Least Squares.

Throughout the chapter, three main error signals will be used to present and discuss the
results: the performance error, the prediction error, and the predicted performance error
(Table 4-2).

Error Error in WF domain Name Source
e ar − a performance error environment, environment
ē a − ā prediction error environment, model
ē ar − ā predicted performance error environment, model

Table 4-2: Error signals and their sources. ar, a, and ā are respectively the reference, measured
and predicted WFs.

4-1-2 Benchmarks

As discussed in Section 2-2, the linear influence matrix approach (Eq. 2-5) represents the
state-of-the-art for the identification and control of DM-based Adaptive Optics, and therefore,
the proposed algorithm is benchmarked against it. In the tests which specifically aim to
assess the tracking abilities of the controller in case of time-varying conditions, the proposed
approach is also compared against Recursive Least Squares (RLS). Regardless of the method
being used, the linear influence matrix is identified using the same 4096 random samples
used to train the plant network. Furthermore, in order to maintain the pseudoinverse matrix
Q† = S well-conditioned, some of the lowest singular modes are set to zero (Figure 4-2). In
particular, as shown in Figure 4-2b, a significant magnitude increase happens after the 36th

normalized gain, and, therefore, the last 4 modes are truncated. It is important to remark
that the regularization applied here only concerns noise and does not have a significant impact
on the reconstruction efficiency, as can be seen in Figure 4-3.
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(a) (b)

Figure 4-2: On the left, the singular values of the DM influence matrix Q are plotted. The
orange cutoff line represents the threshold under which the values are set to zero and thus the
modes get truncated. On the right, instead, the singular gains of the DM influence matrix Q are
depicted. Gains are the normalized reciprocal of the singular values. The cutoff line represents
the threshold after which the modes get truncated.

(a) (b)

Figure 4-3: Representation of the similarity matrix T = S · Q and reconstruction efficiency
diag(T ), in the case of 4 truncated modes. The gray scale represents the absolute value of
the matrix, element-wise. All Zernike modes between 3 (top-left) and 39 (bottom-right) are
represented. The histograms on the right depict the elements on the diagonal of the similarity
matrix and range from Zernike mode 3 to 39.
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4-2 Wavefront prediction

4-2-1 Nonlinear conditions

Figure 4-4: Wavefront prediction performance for different control magnitudes. 500 random
control action sets are randomly sampled and sent to the DM. The measured WFs are then
compared with the ones predicted by the proposed method and the Least Squares (LS) state-of-
the-art. On the y-axis is reported the averaged wavefront prediction rms error, while the x-axis
shows the maximum actuator control action used to generate the given wavefronts. In the figure,
circles represent the average prediction error for the given control action, while the colored areas
depict the error distribution. For small actuator signals, the performances of DIC and LS are
comparable. For large phase WFs, instead, the proposed method outperforms the state-of-the-
art, both in terms of residual error and error deviation.

The main difference between the proposed DIC-based method and the linear LS approach
consists of the well-known ability of Artificial Neural Networks (ANN) to model nonlinearities.
In order to quantify the advantage gained from this characteristic, the forward plant network
is tested against the linear influence matrix on a WF prediction task. The metric used to
evaluate performances is the root-mean-square (rms) of the prediction error ē:

ē = ||a − ā||2,

where a and ā are vectors containing the modal coefficients of the measured and predicted
WFs respectively. For more insights regarding the rms metric, the reader can refer to Section
2-2-2.
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The experiment is rather straightforward and consists of sending a random set of control
actions to the mirror, predicting the WF that will be measured by the Shack-Hartmann (SH)
sensor, and then comparing the estimated WF with the measured one. The process is then
repeated for 500 random control actions of various magnitudes. The obtained results are
reported in Figure 4-4.

The plant network proves to outperform the linear influence matrix in predicting WFs that re-
quire medium and especially large control magnitudes. Small phase WFs, on the other hand,
are predicted with comparable accuracy. This behavior is consistent with the DM response
curve reported in Figure 2-14, which shows that the quadratic assumption used to linearize
the system is not satisfied for large control magnitudes. Furthermore, the Direct Inverse
Control method also shows a more stable error deviation var(ē) than the benchmark, which
instead presents rather unstable predicting performances for very large control magnitudes.

4-2-2 Time-varying conditions

As explained in Section 2-2-2, membrane DMs are sensitive to external conditions like hu-
midity and temperature, both in terms of bias deformation and response behavior. In this
regard, the tracking abilities of the proposed method are here assessed. The experiment is
rather similar to the one discussed in the previous section and indeed consists of sending
random control actions to the DM and predicting the measured WFs. In this case, however,
the maximal magnitude of the random control actions is set to 0.3, in order not to trigger
nonlinearities. Furthermore, the temperature around the AO setup is increased up to 40◦C.
The results of the test are reported in Table 4-3.

One first important remark is that the linear time-invariant model identified through Least-
Squares becomes unreliable once the working point has moved from the calibration one. The
prediction error ē relative to LS increases by a factor of 20, while on the other hand, RLS and
the proposed DIC-based method both present very limited effects on performances, which
are most likely due to the lower signal-to-noise ratio induced by the increase in temperature.
Indeed, the predicted error ē only increases by a factor of 1.9, for both methods.

Model identification method 23◦C 30◦C 35◦C 40◦C

LS 0.311 λ 2.120 λ 4.512 λ 6.523 λ
RLS 0.311 λ 0.398 λ 0.510 λ 0.585 λ
DIC 0.315 λ 0.399 λ 0.512 λ 0.591 λ

Table 4-3: WF root-mean-square prediction error e obtained by the proposed method and
benchmarks at different temperatures. For each test condition, the prediction of 100 random
small-phase wavefronts is considered.
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4-2-3 Lack of persistent excitation

As presented in Section 2-2-3, Recursive Least Squares iteratively updates the influence matrix
Q accordingly with the following equation:

Q = arg min
Q

N∑
k=1

γN−k (ak −Quk)2 . (4-1)

where γ is a positive forgetting factor lower or equal to 1. Here below, it is assumed that the
reader is familiar with the mathematical formulation of the method, which can be found in
Section 2-2-3.

Setting γ to be strictly lower than 1 enhances the priority given to the last measurements
with respect to older ones. In particular, doing so helps the covariance matrix P not to shrink
excessively, given its entries are reduced with every new gathered sample. This fact can be
better understood by looking at Eq.2-21. Since the gain L used to update the model Q is
strictly dependent on the uncertainty of the model, setting γ < 1 is necessary to maintain
the tracking abilities of the system over time. However, when the most recent measurements
do not provide the same amount of information as the older data, the covariance matrix P
tends to diverge, thus increasing the update gain L and eventually making the model unstable.

This matter is here studied through the following experiment. A constant control action
set is repeatedly sent to the mirror, and the prediction error ē obtained by the proposed
method and benchmarks is analyzed. This test case is meant to represent the scenario of
the system being in an idle state, which could happen, for instance, when no sample is being
analyzed or when the aberration has already been corrected. In this case, DIC is compared
against 4 RLS algorithms, each having a different exponential forgetting factor γ. Trivially,
the case of γ = 1 is equivalent to the traditional LS. Results are reported in Figure 4-5 and
clearly show that when persistent excitation is not provided, using γ < 1 eventually makes the
RLS-estimated model unreliable. On the other hand, the proposed method and the RLS with
λ = 1 both present stable prediction performances regardless of the information contained in
the gathered samples.

This is a well-known problem of RLS, which however does not have a unique, reliable so-
lution. Plenty of extensions have been developed over the years, like periodically resetting
the matrix P [49], using directional forgetting [50], or setting γ = 1 whenever persistent exci-
tation is not guaranteed [51]. Nevertheless, all these methods require additional development
effort and are rather specific to the considered use case.

4-3 Model inversion and ideal reconstruction efficiency

As firstly introduced in Section 2-2, high-quality WF correction is achieved when the con-
troller accurately represents the inverse of the DM model. Assuming the forward network
is properly trained to replicate the AO system response, the WF correction performances
are then solely dependent on the quality of the inversion process. In this regard, following
the framework presented in Section 3-1-2, the controller network is trained on 10240 random
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Figure 4-5: Recursive Least Squares performances when persistent excitation is not provided.
On the left-hand side, the residual wavefront prediction rms error is plotted over time. The x-axis
represents time and shows the control iterations. On the y-axis, instead, the rms error is reported,
in the wavelength unit. If the forgetting factor γ is set to be strictly lower than 1, the model
eventually becomes unreliable and the reconstruction accuracy drops. This is not the case for
the proposed DIC method or if RLS is set to have γ = 1. On the right-hand side, the maximum
covariance matrix element is plotted. The x-axis represents time and shows the prediction steps.
On the y-axis, instead, the maximum entry of the covariance matrix P is shown, in the logarithmic
scale. If the forgetting factor γ is set to be strictly lower than 1, the uncertainty increases and
the model eventually becomes unreliable.

wavefronts, without regularization. The identity model i(θc, θq) = q (θq, c(θc)) is then ana-
lyzed, inspecting the predicted reconstruction efficiency for all the 40 Zernike modes used
to describe WFs. According to the results reported in Figure 4-6a, WF modes are ideally
reconstructable with an average rms error of only 0.044 λ, which is significantly below the
noise level (0.126 λ) and thus indicates that the controller well models the inverse of the plant
network.

Nevertheless, regularizing the controller network can sometimes be beneficial. Indeed, the
actuators of membrane DMs can sustain only a limited amount of voltage, after which the
actuators saturate, thus introducing nonlinearity in the system’s response. In order to avoid
this phenomenon, the controller model can be regularized, that is, the magnitude of its gains
can be reduced, together with the correction abilities of the controller. In the linear case,
introduced in Section 2-2, the SVD technique allows to regularize the system truncating the
lowest modes while pseudo-inverting the plant model. In this way, controlling the trade-off
between reconstruction efficiency and the risk of saturation is a rather straightforward task,
and in this regard, the reader can refer to Figure 2-10.

Similarly to SVD, the L2 regularization process (Eq. 3-4) can also be exploited in the pro-
posed method to reduce the risk of saturating actuators. Trivially, this comes at the expense
of the reconstruction ability of the system, which inevitably gets worse the more the system
is regularized. In order to gather insights regarding the impact of the penalizing term α,
experimental tests are run. Maintaining constant hyperparameters and training conditions,
the network is trained on different L2 gain values, and the corresponding performances are
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compared. As can be seen in Figure 4-6, increasing the magnitude of the regularizing term
worsens the reconstruction efficiency and increases cross-talk between modes.

To give an example, if the controller network is trained with α = 0.05, and the wavefront to
be reconstructed is a coma with amplitude 1 λ, the WF generated in open-loop by the system
would ideally be composed by coma with amplitude 0.89 λ, vertical trefoil with 0.03 λ and
other minor modes like 0.01 λ of astigmatism. On the other hand, the likelihood of triggering
actuator saturation would also be reduced, and in the former example, the maximum actuator
signal would change from 125% of the maximum allowed voltage to 74%, thus avoiding sat-
uration. In this regard, Fig. 4-7 provides insights into the impact that the regularizing term
α has on the maximum control action required to generate Zernike modes. In conclusion,
similarly to the SVD truncation technique described in section 2-2, it has been shown that
the L2 regularization of the weights of the controller network allows controlling the trade-off
between efficiency and stability of the WF reconstruction process.

4-4 Wavefront correction

4-4-1 Nonlinear conditions

In this Section, the proposed method is compared with the linear state-of-the-art approaches
on a various range of wavefronts. Particular interest is posed on the performance error for large
phase aberrations, that is, when significant control magnitudes are required. As introduced
in Section 2-2-2, this is indeed the working range where most linearization errors arise.

Open-Loop reconstruction

Theoretically, if the model used to control the DM exactly represents the inverse of the AO
system, a perfect WF reconstruction can be achieved in a feed-forward fashion. Despite multi-
ple measurements and closed-loop iterations being in practice often necessary to minimize the
residual WF error, analyzing open-loop reconstruction performances provides useful insights
regarding the accuracy of the model being used in the controller. In particular, a metric often
used in AO to evaluate control techniques is the maximal wavefront amplitude that can be
reproduced with a satisfactory accuracy, where the latter usually stands for a threshold either
on the residual rms WF error or the variance of it [20]. This gives a clear indication of the
limits of the control algorithm, and the operating range in which satisfactory performances
can be achieved.

In this regard, a test is run here which consists in measuring the maximal Zernike mode
amplitude that can be reconstructed with a residual rms error lower than 0.3 λ. The ex-
periment is run 10 times per mode and the results are then averaged. Figure 4-8 shows the
performances of the proposed method and the LS benchmark for the first 10 Zernike modes,
excluding piston, tip, and tilt. In order to set up a fair comparison between the proposed
method and the linear benchmark, the DIC framework is not updated online, and, in both
cases, the regularization tool is set up such as not to impact the reconstruction efficiency of
the first 20 Zernike modes, as can be seen in Figures 4-1 and 4-3.
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(a) α = 0

(b) α = 0.01

(c) α = 0.05

Figure 4-6: Reconstruction efficiency of the proposed method, plotted for different L2-
regularizing coefficient values. The trained identity model i(θc, θq) = q (θq, c(θc)) is inspected.
Each one of the first 40 Zernike modes is fed to the system with unitary amplitude. The output of
the identity model, which represents the theoretical system reconstruction of the requested wave-
front in terms of Zernike magnitudes, is reported on the y-axis. Ideally, only the desired mode
should be reproduced, with unitary amplitude. The histograms on the right depict the diagonal
elements of the grids on the left-hand side. They represent the reconstruction efficiency regarding
the desired mode only, that is, not considering the cross-talking between modes. The larger the
regularizing gain, the more the reconstruction quality is affected, especially for high-order modes.
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Figure 4-7: Risk of saturating actuators, as a function of the applied L2 regularizing gain. On
the y-axis, it is plotted the maximum actuator input value required to reconstruct the first 40
Zernike modes with unitary amplitudes. On the x-axis are reported the different penalty values α.
This is equivalent to the maximum value of the control matrix S, analyzed in 2-11. Increasing the
regularizing term reduces the magnitude of the control actions and thus the likelihood of actuator
saturation.

As shown in Figure 4-8, the proposed DIC-based method proves to be able to generate larger
Zernike amplitudes, maintaining a low rms residual WF error. Since the inversion process
does not affect the reconstruction efficiency of the analyzed modes, the open-loop control
performances are uniquely dependent on the quality of the plant model. Therefore, given the
WF prediction results shown in Figure 4-4, it is not surprising that the proposed method
outperforms the linear benchmark in this open-loop reconstruction task.

Closed-Loop reconstruction

The control of AO systems is in practice usually run in closed-loop, in order to enhance perfor-
mances and stability [52]. In particular, this is done not only to compensate for nonlinearities
but also to improve the residual reconstruction error when the model is significantly regular-
ized. As a consequence, multiple WF measurements need to be gathered, which inevitably
slows down the WF reconstruction process. Since the research question of this thesis clearly
aims at compensating for DM nonidealities causing little impact on the correction speed,
investigating the control trajectory and convergence of the proposed method is extremely
important.

Generally speaking, frameworks like DIC and RLS can be used online to iteratively update
the model and correct residual WF errors, de facto performing closed-loop reconstruction.
However, this technique is able to correct for modeling errors only and does not guarantee
satisfactory results if the inversion process is regularized, which is usually the case in practice.
Therefore, with closed-loop correction I refer here to the traditional proportional controller,

Master of Science Thesis Alberto Dall’Ora



44 Results

Figure 4-8: Maximum amplitude of the first 10 Zernike modes that are reconstructed with a
wavefront rms error lower than 0.3 λ. The first 3 modes (piston, tip, and tilt) are excluded since
the used DM is not able to generate them. The proposed method outperforms the linear state-of-
the-art on all the modes. Indeed, DIC allows reconstructing larger mode amplitudes maintaining
a low WF error.
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which can be formulated as follows:

uk+1 = Q† · ar,k+1

= c(θc,k+1, ar,k+1),

with

ar,k+1 = ek + ar,k.

In Figure 4-9, an example of astigmatism mode generation is reported, where the proposed
DIC method is implemented in closed-loop. As can be seen from the plot at the bottom
right of the figure, convergence is immediately reached, and following control iterations do
not improve the residual WF error. The proposed method is then also compared against LS
and RLS on a batch of 50 wavefronts generated by randomly sampling the first 10 Zernike
modes. The averaged results are reported in Figure 4-10 and in Table 4-4. Finally, the closed-
loop correction performances relative to the first 6 Zernike modes are presented in Figure 4-11.

Consistently with what has been shown in the previous section, the proposed method out-

Control model rmse in Open-Loop rmse in Closed-Loop
LS 0.478 λ 0.205 λ

DIC 0.323 λ 0.204 λ

Table 4-4: root-mean-square performance error e obtained by the proposed method and bench-
mark on 50 wavefronts, randomly generated sampling the first 10 Zernike modes.

performs the linear benchmark after the first control step. Nevertheless, LS rapidly reaches
convergence and in 3 iterations the difference between the control methods is negligible. For
those wavefronts where the DIC-based approach does not present any initial advantage, the
converge speed is comparable with the state-of-the-art one.

4-4-2 Time-varying conditions

Finally, the WF reconstruction performances of the proposed method are tested in a time-
varying environment. In particular, the temperature is increased from the calibration level of
23◦C up to 40◦C, while the forward and inverse networks are updated online. In this regard,
a closed-loop extension of the online framework described in Section 3-1-3 is implemented,
which is reported in table 4-5.

The closed-loop correction of Zernike mode 5 for different temperature levels is reported in
Figure 4-12. Consistently with the prediction results shown in Section 4-2, the static model
identified through LS becomes unreliable when the working point moves from the calibration
one, and as a consequence, its correction performances are also hindered. In particular,
the closed-loop reconstruction presents a slower convergence and an offset at steady-state.
On the other hand, Recursive Least Squares and the proposed method are both able to
maintain the model reliable and indeed they show only minor performance degradation for
large temperature changes.
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Figure 4-9: Closed-Loop reconstruction of astigmatism mode using Direct Inverse Control.

Figure 4-10: Closed-Loop reconstruction error of the proposed method, averaged over 50 WF
corrections. The reference WFs are randomly sampled from the first 10 Zernike modes, and
it is made sure that no actuator saturation occurs. Consistently with the results presented in
the Open-Loop section, the proposed method shows lower wavefront rms error during the first
control iterations. Nevertheless, the performances of DIC and the benchmarks are comparable
once convergence is reached, after 3− 4 control iterations.
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Z4

Z8 Z9

Z5

Z6 Z7

Figure 4-11: Closed-loop reconstruction error of the first 6 Zernike modes, excluding piston, tip
and tilt. For each Zernike, the largest mode amplitude which does not trigger saturation is taken
as WF reference. Each WF reconstruction is run 5 times, and the results are then averaged.
The proposed method shows lower residual error during the first control iterations for all the
analyzed modes. Once convergence is reached, however, the difference between DIC and the
linear benchmarks is negligible.
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T = 35 °C

T = 23 °C T = 30 °C

T = 40 °C

Figure 4-12: Residual wf correction rms error at different temperature levels. The generated WF
is Zernike mode 5 with amplitude 3.14 λ, and each trajectory is the average of 5 experiment runs.
In between episodes, random wavefronts are corrected in order to allow RLS and DIC methods
to maintain the models updated. These 2 algorithms indeed present only minor performance
degradation regardless of the external condition. On the other hand, the static linear model
identified through LS presents slower convergence time and steady-state offset at 35◦C and
40◦C.
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Online Closed-Loop DIC Algorithm for AO Closed-loop extension of the
framework reported in Figure 3-4.
Step Description
Require: q(θq,0) Pretrained plant network
Require: c(θc,0) Pretrained controller network
Require: αq ADAM SGD learning rate for the plant

network
Require: αc ADAM SGD learning rate for the con-

troller network
For episode t = 1, T do

k ← 0 Initialize timestep
ar,0 ← Obtain new reference wavefront
For control iteration k = 1, K do

k ← k + 1
uk ← c(θc, ar,k) Compute control actions through inverse

model
ak ← SH(DM(uk)) Send control actions to DM and measure

wavefront
ek = ar,0 − ak Compute performance error
ar,k+1 = ek + ar,k Set new reference wavefront
R ← (uk, ak) Store samples

End for
θq,t+1 ← ADAM(θq,t, R) Update forward model using latest data
θc,t+1 ← ADAM(θc,t, R) Update inverse model using latest data

End for

Table 4-5: Summary of the Closed-Loop extension of the Online DIC Algorithm.

4-5 Discussion

In this chapter, the performances of the proposed method have been compared against state-
of-the-art techniques. The wavefront correction process has been studied by analyzing the
two main subproblems that compose it: forward model identification and model inversion.
Here below, considerations regarding the obtained results are reported and grouped according
to the investigated test cases.

WF prediction

The model identified through the proposed method proves to be more accurate than the linear
influence matrix Q in predicting the behavior of the AO system for large control magnitudes
(Figure 4-4). This fact can be explained by the presence of nonlinearities in this specific work-
ing range (Figure 2-14), which are not modeled by the LS identification method. Given the
current ferment in microscopy research around analyzing deeper tissues, this is an extremely
important remark.
Secondly, the proposed method proves to be able to maintain the model reliable regardless of
time-varying conditions (Table 4-3). This clearly represents an advantage over the traditional
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LS approach. On the other hand, RLS is able to achieve comparable results. The tracking
sensitivity of the proposed method can be tuned by changing the learning rate of the network,
however, further quantitative analyses in this regard are left for future work.
Finally, it is shown that the stability of the forward model is not hindered by the lack of
persistent excitation in the measured data (Figure 4-5). This is an important remark given
that the RLS requires specific extensions to maintain the model reliable when this condition
arises [24].

Ideal reconstruction efficiency

Regarding the identification of the controller, the first and most important point that has been
shown is that the proposed framework is able to invert the forward model with negligible losses.
This is an important result since it makes the WF reconstruction process solely dependent
on the quality of the forward model, which has been proven to outperform benchmarks in
multiple aspects.
In practice, however, the controller is often purposely regularized, in order to reduce the risk of
saturation and make the correction process more stable. As it is shown in Fig.4-1, augmenting
the loss function of the controller with a penalization term on the weights of the network,
allows to control the trade-off between reconstruction ability and saturation risk. Despite
the process being less trivial than truncating modes through Singular-Value-Decomposition,
L2 regularization is a well-documented method, that can easily be implemented through
available libraries. To the writer’s knowledge, model regularization is often not discussed
when proposing new Machine Learning (ML) approaches for the control of AO, and for this
reason, I believe these findings are particularly worth mentioning.

WF correction

Consistently with the prediction performances mentioned before, the proposed method proves
to outperform the linear state-of-the-art on the open-loop reconstruction of large-phase wave-
fronts (Fig.4-8). Direct Inverse Control presents an advantage only during the first 2 control
iterations, after which convergence is usually reached and the performance errors are compa-
rable. In this regard, it is worth noting that the proposed method often reaches convergence
after just 1 step and indeed does not improve the residual WF error through closed-loop iter-
ations. Given the research question of this thesis is to address system nonlinearities without
affecting control speed, this is an extremely important result.
Furthermore, the proposed method shows solid tracking abilities also with regards to the con-
troller network, which indeed guarantees stable WF correction regardless of the temperature
the system is working at (Fig.4-12). These considerations are also valid for the controller
based on RLS, while on the other hand, they do not hold for the static LS framework, which
presents slower convergence speed and a steady-state offset.
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Conclusion

This thesis aimed to investigate the problem of identifying and controlling an MMDM-based
Adaptive Optics (AO) system which exhibits nonlinearities and time-varying response. The
primary objective of this study was to develop an approach that compensates for these non-
idealities while affecting correction speed less than linear state-of-the-art approaches. The
proposed approach relies on the Direct Inverse Control framework, which exploits neural
networks to model the AO system. Specifically, the controller is computed by inverting the
plant network following the specialized learning Direct Inverse Control (DIC) architecture.

The results showed that the proposed approach provides better modeling accuracy than
benchmarks in the working ranges where nonlinearities are present, enabling faster control
convergence than the state-of-the-art when generating large-phase wavefronts. Moreover, the
DIC-based method demonstrated better stability and similar tracking abilities to Recursive
Least Squares. The analysis of model regularization yielded positive results. However, a
more comprehensive understanding of the method’s capabilities could be obtained by further
testing and comparisons with Singular-Value-Decomposition.

In this regard, other future development possibilities of this approach include:

• Using a Convolutional Neural Network (CNN) for the controller network.

• Benchmarking the proposed approach against DIC based on generalized learning.

• Running extensive tests to study the long-term tracking abilities of the algorithm.

• Automating the tuning of networks’ hyperparameters.

In conclusion, this study provides evidence that the proposed method based on the DIC
framework and neural network modeling can effectively compensate for the non-idealities of
MMDM-based AO systems. The findings suggest that this approach has significant potential
for further development and application in the field of Adaptive Optics.
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Nomenclature

Symbol Quantity Unit

α L2 regularizing coefficient -
a Individual Zernike mode’s coefficient -
a Wavefront’s Zernike modes coefficients -
ā Predicted wavefront’s Zernike modes coefficients -
A Series of wavefronts’ Zernike modes coefficients -
C Number of mirror actuators -
c Controller neural network
D Number of Zernike modes -
δ Number of truncated modes during SVD -
e Performance error -
ē Predicted performance error -
ē Prediction error -
ϵ Wavefront prediction error -
η Measurement noise -
f Focal length m
G Input vector of Deformable Mirror as Kronecker matrix
I Pixel intensity -
i Overall neural network (controller+plant) -
γ RLS forgetting factor -
L RLS update gain matrix -
λ Light wavelength -
M Number of wavefront slopes -
N Number of calibration samples -
n Refractive index -
ϕ Wavefront rad
P RLS uncertainty matrix -
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Symbol Quantity Unit

Q Influence matrix of a deformable mirror -
q Vectorized influence matrix of a deformable mirror -
q Neural network function -
S Control matrix of a Deformable Mirror
s Wavefront slopes rad/m
Σ Singular-Value-Decomposition (SVD) diagonal matrix -
σ Activation function of neural network -
T Reconstruction efficiency matrix -
θ Set of neural network weights -
u Individual actuator’s command -
u Actuators’ commands vector -
U Series of actuators’ commands vector -
U SVD left matrix -
v Light speed in a homogeneous medium m/s
V SVD right matrix -
xc Centroid position on the x-direction m
yc Centroid position on the y-direction m
xr Reference centroid position on the x-direction m
yr Reference centroid position on the y-direction m

DCSC Delft Center for Systems and Control
WF wavefront
DM deformable mirror
AO Adaptive Optics
OPL Optical Path Length
SH Shack-Hartmann
SVD Singular-Value-Decomposition
SNR signal-to-noise ratio
SDK Software Development Kit
CNN Convolutional Neural Network
LS Least Squares
RLS Recursive Least Squares
NLS Nonlinear Least Squares
ANN Artificial Neural Networks
WFSless Wavefront Sensorless
RL Reinforcement Learning
ML Machine Learning
DIC Direct Inverse Control
ADAM Adaptive moment estimation
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SGD Stochastic Gradient Descent
MMDMs micromachined membrane deformable mirrors
rms root-mean-square
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