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ABSTRACT

The implementation of the Particle Swarm Optimization (PSO) algorithm is investigated to optimize the active attenuation of Tollmien–
Schlichting (TS) waves developing in a two-dimensional zero pressure gradient boundary layer. This is done numerically, where the PSO
algorithm optimizes the characteristics of harmonic suction and blowing jets, in a feedforward control framework. The PSO-based controller
selects and modifies the phase and amplitude of the jets to minimize the pressure fluctuation amplitude downstream of the actuator. To allow
for efficient simulation, the 2-dimensional incompressible Navier–Stokes equations are expanded in a harmonic perturbation form and solved
in linear and nonlinear variants using harmonic balancing. This study explores the performance of control in both linear and nonlinear devel-
opment regimes of TS waves through control of single and multi-frequency ensembles of instabilities. Respectively, linear and nonlinear con-
troller design approaches are employed. The findings reveal that the integration of PSO into the control design produces an effective
suppression of TS waves through opposition control. The linearly designed controller effectively attenuates single and multi-frequency distur-
bances. However, when applied in regions of strong nonlinear interactions among instability modes, performance degradation is observed.
On the contrary, the nonlinearly designed controller proves effective in mitigating nonlinear multi-frequency instabilities dominating the
later stages of growth. A near-complete elimination of TS waves is achieved by accounting for nonlinear interactions among harmonic modes
detected by an input sensor. This highlights the benefit of integrating the PSO algorithm in control of TS waves, particularly in the nonlinear
growth regime, where classical control methods are generally ineffective.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0243518

I. INTRODUCTION

Tollmien–Schlichting (TS) waves are a prominent type of
viscous instabilities, developing in two-dimensional boundary
layers. They lead to transition from laminar to turbulent flow in
low speed, low disturbance environments where pressure gra-
dients are predominantly aligned with the flow direction.1 As
such, the suppression of TS waves amplitude during their early
growth stages can delay transition, extend laminar flow, and
reduce skin friction drag, making them an attractive target for
both passive and Active Flow Control (AFC) methods.2–5

A. State of the art

Numerous active control methods have been proposed and devel-
oped based on the wave superposition principle, admissible to TS
waves’ initial linear, two-dimensional wave-like development. The
introduction of an opposing wave (of equal amplitude and opposite

phase) by actuators located typically near or at the wall is a common
approach in the implementation of these techniques. Early experimen-
tal investigations have already proved the possibility of damping TS
instabilities in their early linear growth stage.6,7 These experiments
were conducted in carefully managed flow environments, with single-
frequency TS waves artificially introduced by means of vibrating rib-
bons. The developing monochromatic waves were superimposed by an
opportune wall-mounted actuator operating with a properly adjusted
amplitude and phase shift. Direct Numerical Simulations (DNSs) were
also used to attenuate TS waves using a sensor-actuator arrangement
on a flat plate demonstrating wave superposition through a spectral
control approach.8 Specifically, the spectral control approach was pri-
marily focused on directly converting a sensor signal measured
upstream into an actuating signal by adjusting amplification and phase
shift. Their findings suggest that wave cancelation can be achieved for
both small and large amplitude instabilities even without feedback.
However, feedback is essential to fine-tune the control amplitude and
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phase for precise wave cancelation, particularly in cases of multi-
frequency wavetrains of instabilities.

Although the aforementioned early works treated the control of
artificially introduced disturbances, the natural development of TS
waves in realistic flow environments, such as those encountered in
flight, brings forth considerable challenges. These primarily stem from
the lack of a priori knowledge of incoming wave amplitude, frequency,
or phase, necessitating, thus, the use of sensors in the so-called closed-
loop approaches. The use of sensors further enables the implementation
of adaptive control schemes and is able to fine-tune and optimize the
control characteristics and performance in real time, even when operat-
ing conditions (e.g., Reynolds number, angle of attack, etc.) are chang-
ing. Model-based9,10 and model-free11–15 control strategies are two
common methods for the control of convective instabilities depending
on whether a model that describes the flow problem is provided.

A model-based approach operates under the assumption that the
controller possesses a comprehensive understanding of the flow prob-
lem, largely relying on the principles of linear system theory. Such
model-based approaches have found widespread application in the
control of convective instabilities within two-dimensional boundary
layer flows.9,10,16,17 In all model-based control strategies, the necessity
of an accurate flow model is a limitation that becomes critical in realis-
tic flow conditions, where a spatially and temporally accurate flow
model is usually unavailable. Furthermore, the performance of the
control will decline even with a presumed model if the global flow con-
ditions change significantly beyond what the model can predict.
Model-free techniques, which rely on system identification methods,
can address this issue and have demonstrated success in flow control
applications.14

Adaptive control is among the most widely utilized model-free
control strategies for convective instabilities, capable of real-time opti-
mization of control performance. Early investigations into adaptive
control of convective instabilities on flat plates and axisymmetric bod-
ies18–20 as well as on an unswept wing21–23 demonstrated successful
cancelation of naturally occurring TS instabilities. Later, attention was
drawn to adaptive filter-based controllers due to promising experimen-
tal results.11 Specifically, successful suppression of both artificially
induced and naturally occurring TS waves was reported, with a reduc-
tion in amplitude over 94% by employing an adaptive Filtered-x Least
Mean Square-based controller. Research on filter-based adaptive con-
trol techniques for convective instabilities has continued, spanning
numerical,4 in-flight,14 and experimental testing.13

Taking into account the investigations mentioned earlier, the
control of TS waves in realistic flow conditions remains a challenging
task for classical model-based or model-free control strategies. The
challenge largely pivots on the nondeterministic, yet bounded spec-
trum of naturally occurring TS waves.10 In addition, current model-
based and model-free approaches rely solely on the principles of linear
wave superposition. This inherently restricts the practical “window of
opportunity” for control to a narrow spatiotemporal regime where
boundary layer instabilities attain sufficient amplitude for the detection
by sensors, yet remain sufficiently weak to admit linear development
and dynamics. To extend this operational window of control and
accommodate inherent limitations in sensitivity and cost of sensors, it
is necessary to explore flow control techniques, which are able to effec-
tively suppress naturally occurring TS waves in their highly nonlinear
stage of development.

Artificial Intelligence (AI) techniques capable of handling high
nonlinearity and dimensionality could effectively address the need for
advanced control laws to suppress TS waves.24 The application of these
algorithms in fluid dynamics has led to significant advancements, par-
ticularly in resolving partial differential equations,25 turbulence model-
ing,26 aerodynamic shape optimization,27,28 flowfield reconstruction
from limited measurement data,29 and active flow control in nominal
laminar30–36 and turbulent37,38 regimes.

Among the flurry of artificial intelligence based methods, the
Particle Swarm Optimization (PSO) algorithm is particularly noted for
its ease of implementation as it operates on principles of swarm intelli-
gence, first introduced by Ref. 39. PSO has found extensive use
across diverse domains, including machine learning and adaptive con-
trol.40–42 Inherently, PSO is a population-based optimization tool that
can be easily implemented and applied to solve various function opti-
mization problems or problems that can be transformed into function
optimization problems. The main advantage of this approach resides
in its rapid convergence compared to other global optimization algo-
rithms like Genetic Algorithms (GA) and Simulated Annealing.43

Another advantage of PSO is its ability to handle non-differentiable
problems, as it does not rely on the gradient of the problem in its opti-
mization process. Furthermore, the method is compatible with distrib-
uted implementation due to the unique combination of individual and
social components.44 Therefore, PSO can be parallelized and distrib-
uted across multiple computing nodes to accelerate the optimization
process. This distributed approach makes PSO an efficient algorithm
for large-scale optimization problems.

The application of the PSO algorithm in fluid dynamics is limited
to a few studies exploring shape optimization45 and biomechanics
applications.46 However, its rapid convergence in optimization prob-
lems with high-dimensional exploration space, coupled with its capac-
ity to optimize nonlinear problems through swarm intelligence,
renders it as an ideal candidate for driving AFC systems aimed at con-
trolling convective instabilities.

B. Present work

In the current work, the performance of a model-free PSO-based
strategy in controlling TS waves is evaluated in two phases. First, opti-
mum control parameters are identified toward suppressing TS waves
in the linear development stage. Second, control is extended to a highly
nonlinear stage of development with the primary objective of over-
coming limitations of classic control strategies, which confined control
of TS waves exclusively within their linear growth regime. Enabling
control in the nonlinear growth regime of TS waves enhances the abil-
ity to detect disturbances by sensors and extends the temporal and
spatial control horizon. This adds flexibility for actuator/sensor posi-
tioning and type utilized in future control systems.

This study employs a closed-loop feedforward control framework
comprised of wall-mounted harmonic suction and blowing jets as
actuators, along with the PSO algorithm for determining the optimal
amplitude, and phase of these jets based on sensor feedback relies on
measuring the wall pressure perturbations. Linear (superposition) and
nonlinear approaches are employed for designing the controller, fol-
lowed by a comparative analysis of control strategy performance
between the two approaches. Here, it must be noted that the objective
of this work is not to outperform existing classical control techniques
but rather to provide a proof-of-concept for a PSO-based controller in
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these flows. The main ambition of this work is to explore the potential
of PSO-based strategies in controlling TS waves in the nonlinear growth
regime. Therefore, comparing controller performance with available
classical control techniques falls outside the scope of this study.

The work is organized as follows. Section II presents the
employed methodology, outlining the flow problem, numerical solver,
and control system. Section III evaluates and discusses the controller
performance for control cases ranging from linear to highly nonlinear.
Finally, insights gained from this study are summarized in Sec. IV.

II. METHODOLOGY

This section presents the flow problem, numerical method, and
control technique utilized for simulating and controlling TS waves in
an incompressible 2D laminar boundary layer. A Harmonic Navier–
Stokes (HNS) methodology is utilized in both linear and nonlinear for-
mulations, as detailed in Ref. 47. The decision to use the HNS
approach is motivated by its capability to exploit the temporal period-
icity of TS waves and model their evolution in the frequency domain.
This greatly increases computational efficiency in relation to a more
classical time-dependent solution of the Navier–Stokes equations.

A. Flow problem

For the entirety of this work, the development and control of TS
waves in a flat plate (i.e., zero pressure gradient) boundary layer flow is
considered. Figure 1 displays the physical and computational domains
as well as a conceptual representation of the flow control system. The
spatial dimensions are globally non-dimensionalized using the Blasius
length scale defined at the inflow of the simulation domain (x0),

denoted as d0 ¼
ffiffiffiffiffiffiffi
x0�0
U1

q
¼ 6:075� 10�4m.

The gray region in Fig. 1 represents the computational domain
X ¼ ½x0 ¼ 400; Lx ¼ 2480� � ½0; Ly ¼ 82�. The virtual origin for the
laminar boundary layer is located at (x ¼ 0), and a self-similar Blasius
boundary layer at the inflow of the computational domain is assumed.
The freestream streamwise velocity U1 is assumed constant (i.e., zero
pressure gradient) at a value of 10 m

s , corresponding to Reynolds num-

ber Re0 ¼ U1d0
�0

¼ 400, with kinematic viscosity �0 ¼ 1:511� 10�5 m2

s .

The spectral analysis of the TS wave enables the representa-
tion of these convective instabilities as individual harmonics with a
modal notation of ðm; nÞ developing in a precalculated steady lami-
nar base flow. The higher harmonic modes are defined based on
the fundamental spanwise wavenumber (b1) and angular frequency
(x1), where xm ¼ mx1 and bn ¼ nb1. More details on the numeri-
cal discretization are presented in Sec. II B describing the
Harmonic Navier–Stokes framework. To enforce the inflow insta-
bility, TS wave modes (depending on test cases—Sec. II A 1) are
imposed at the inflow as a solution to the local eigenvalue stability
problem. For the entirety of this work, purely two-dimensional TS
waves are considered (i.e., bn ¼ 0). The normalized frequency of
each mode, denoted as F, is defined as

F ¼ x0

Re0
� 106; x0 ¼ 2pd0f

U1
; (1)

where x0 in Eq. (1) refers to the local non-dimensional frequency of
the mode, while F is the non-dimensional frequency based on the
inflow Reynolds number. f is the physical dimensional frequency of
the mode. Three frequencies (F1 ¼ 28; F2 ¼ 57; F3 ¼ 86) are consid-
ered in this study. The corresponding instability modes are marked on
the stability diagram of this flow as predicted by Linear Stability
Theory, as shown in Fig. 2.

As evident in Fig. 2, for the chosen frequencies, the corresponding
TS wave modes are introduced at the domain inflow upstream of their
respective neutral points. This facilitates the initial damping of any
transient behavior resulting from the inlet conditions as well as pro-
vides a more realistic representation of natural flow conditions.4

Additionally, the stability diagram in Fig. 2 reveals that the range of
effective frequencies for the studied Reynolds number is narrow.
Frequencies that are too low result in no growth of TS waves, while fre-
quencies that are too high cause early stabilization of TS waves before
reaching the actuator, especially for the downstream control scenario.
These constraints ultimately guide the selection of these three frequen-
cies (F1 ¼ 28; F2 ¼ 57; F3 ¼ 86).

The amplitude of the TS wave modes at the inflows is defined by
a peak streamwise perturbation velocity and set to a root mean square

FIG. 1. Schematic view of the PSO-based
control system for the suppression of TS
waves in a 2-D flat plate boundary layer.
Width of actuator: kJ . The actuator’s cen-
ter is located at ðCx ; 0Þ. The control inputs
(Si , epc , ep) and outputs (av ) are reviewed
in Sec. II C. The terms related to the PSO
algorithm (p̂bi ; gbi ; x̂ i ; t̂ , and v̂ i ) are
defined in Sec. II C 1.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 124130 (2024); doi: 10.1063/5.0243518 36, 124130-3

VC Author(s) 2024

 30 D
ecem

ber 2024 07:48:43

pubs.aip.org/aip/phf


value of 0:25% of the freestream velocity, as described in Ref. 48,
except for the final test case, which will be discussed in Sec. II A 1.

Harmonic suction and blowing jets used for the control of TS
waves are defined by boundary conditions applied at the wall. The spa-
tial distribution of blowing/suction velocity is defined through a sinu-
soidal function (JA � sinð2pxsÞ � eðiJ/Þ). JA and J/ denote the actuation
amplitude and phase, respectively. xs 2 ½0; 1� is the local normalized
streamwise coordinate based on actuator width (kJ ). The location and
spatial wavelength (width) of the harmonic suction and blowing jets
are determined based on a parametric study.

In the control system, a reference signal and an error signal are
utilized, both derived from pressure values measured at the wall. The
reference signal is acquired directly at the domain inflow (x0 ¼ 400) to
detect incoming instabilities. The choice of such an upstream position
for the reference signal sensor was made to ensure minimal upstream
influence from the actuator. Similarly, the error sensor is positioned
downstream of the actuator at a distance equal to twice the longest
investigated TS wavelength (Xso ¼ 1782). This allows any spatial tran-
sients in the controlled instabilities to decay prior to reaching the error
monitoring location.

1. Test cases

Four TS wave cases (A� D) are considered in this study and
presented in Table I. Case A describes the linear development of a

single-frequency (F ¼ 86) disturbance introduced at the domain
inflow. The control system is developed and tested in two distinct
configurations, respectively, utilizing an upstream-located actuator
(Cx ¼ 660) and a downstream-located actuator (Cx ¼ 1653). This
variation in actuator location allows for the assessment of the control
system’s performance in a scenario where the actuator is required to
suppress a highly amplified TS wave. Case B is designed as a nonlinear
extension of case A. Through the activation of nonlinear interactions
within the HNS framework, the primary mode (F ¼ 86) introduced
at the inflow naturally generates higher harmonics downstream, as
illustrated in Ref. 49. In addition to the appearance of higher harmon-
ics, nonlinear interactions also contribute to a time-invariant modifi-
cation of the mean flow, often represented as mode ð0; 0Þ and
referred to as Mean Flow Distortion (MFD).

Cases C and D explore a fully nonlinear development of ensem-
bles of TS waves introduced at the inflow at frequencies F ¼ 86; 57;
and 28. In these cases, all three harmonics have a finite initial ampli-
tude imposed at the inflow, and only the mean flow distortion is natu-
rally generated, as illustrated in Fig. 3. This ensemble gives rise to
intensified nonlinear interactions, thereby increasing the complexity of
the flow control task. The initial amplitude of the first three modes in
case C is set as equal to 0:25%. For case D, the initial amplitude of the
first two modes (F ¼ 28 and 57) is increased to 0:5%, while the third
mode (F ¼ 86) is kept at 0:25%. This adjustment in case D is based on
a preliminary study, indicating that the increase in the initial amplitude
of the higher harmonics should be carefully selected due to the con-
straints of the HNS solver. Excessive amplitude at the inflow could
cause solver divergence by laminar breakdown downstream, which
deviates from the core assumptions underlying the used solver.

The various harmonics illustrated in Fig. 3 play distinct roles in
shaping the TS wave. In case C, mode ð2; 0Þ is notably stronger, exhib-
iting a peak amplitude positioned toward the domain’s downstream
end. This higher influence of mode ð2; 0Þ underscores the heightened
nonlinear effects present in case C. The initial amplitude of the TS
wave’s modes can significantly affect the degree of dominance of non-
linear interactions. For instance, case D reveals distinct nonlinear
harmonics compared to the other cases, as depicted in Fig. 3. The
dominant mode is no longer mode ð3; 0Þ, and the amplitudes of the
harmonics are pronounced. These four cases cover a wide range of lin-
ear to highly nonlinear dynamics of TS wave development, in which
the PSO control strategy needs to operate.

FIG. 2. Stability diagram of the considered flow based on Linear Stability Theory
analysis. The solid gray line is the neutral curve. The location of the actuator is pre-
sented with blue and red square markers for upstream (Cx ¼ 660) and downstream
(Cx ¼ 1653) control cases, respectively.

TABLE I. Summary of test cases explored in the present work. Fi and Fc refer to the frequency of introduced modes at the inflow and the frequency of controlled modes, respec-
tively. Si indicates the initial root mean square amplitude for each mode. The location of the actuator is defined with Cx .

Cases Simulation Control design Fi (Si in RMS) Fc Cx

A1 Linear Linear F1 ¼ 86 (0:25%) F1 ¼ 86 660
A2 1653
B1 Nonlinear Linear F1 ¼ 86 (0:25%) F1�3¼28, 57, 86 660
B2 1653
C1 Nonlinear Linear F1�3¼28, 57, 86 (0:25%) F1�3¼28, 57, 86 660
C2 1653
D1 Nonlinear Linear F1�3 ¼ 28, 57 (0:5%), 86 (0:25%) F1�3¼28, 57, 86 660
D2 1653
D2n Nonlinear Nonlinear F1�3 ¼ 28, 57 (0:5%), 86 (0:25%) F1�3¼28, 57, 86 1653
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B. Harmonic Navier–Stokes framework

To effectively model the development of Tollmien–Schlichting
waves in both linear and nonlinear growth scenarios, the incompress-
ible Navier–Stokes equations are considered in perturbed form.
The instantaneous flow is decomposed as the summation of a
steady base flow, Qðx; y; zÞ ¼ ½U;V ;W; P�, and a fluctuating flow,
q0ðx; y; z; tÞ ¼ ½u0; v0;w0; p0�.

The steady base flow is extracted as a solution of the incompress-
ible boundary layer equations. The boundary layer equations are
solved in a marching scheme and initiated at the inflow with a precal-
culated boundary layer profile derived from the local solution of the
Falkner–Skan–Cooke equations at an equivalent Hartree parameter to
the local pressure gradient. Dirichlet boundary conditions for pressure
and Neumann boundary conditions for velocity are applied at the free-
stream. The no-slip condition is set for the wall. The steady base flow
solution is calculated once prior to the HNS simulations and is used
identically in all test cases reported in this work.

For the simulation of the fluctuating flow, a periodic temporal
and spanwise spatial harmonic behavior is assumed through a double
Fourier ansatz, Eq. (2). This assumption greatly reduces the complexity
of the Navier–Stokes equations by removing the need to discretize two
primary dimensions (i.e., time and spanwise space), effectively reduc-
ing the physical problem to a two-dimensional state-space,

q0ðx; y; z; tÞ ¼
XM

m¼�M

XN
n¼�N

q̂m;nðx; yÞeiðbnz�xmtÞ: (2)

Specifically, the perturbation is harmonically expanded in both
the spanwise (z) direction and time (t). The vector q̂ describes the
Fourier modal shape of the perturbation in the x � y plane, while xm

is the modal angular frequency. The parameter bn denotes the span-
wise modal wavenumber and, in general form, is a non-dimensional
complex coefficient describing the growth (or decay) and periodicity
of the perturbations in the z-direction. Notably, in this investigation,
bn is assumed to be purely real, given that the base flow is strictly
invariant in the z-direction. Consequently, the perturbation does not
exhibit growth in the spanwise direction.

The angular frequency and spanwise wavenumber of higher
harmonic modes is defined based on the fundamental wave

specification (x1, b1) with modal notation ðm; nÞ, where xm ¼ mx1

and bn ¼ nb1, as discussed earlier. In addition, M and N indicate the
truncation limit of modes. In the present work, M ¼ 3 and N ¼ 0.
Specifically, the truncation of the temporal harmonic (i.e., M) to the
first 3 harmonics and MFD is confirmed to capture more than 92% of
the total kinetic perturbation energy.47 This is sufficient to demonstrate
the proof of concept of the controller while avoiding the additional
computational cost of adding more harmonic modes.

Upon substituting Eq. (2) into the general Navier–Stokes equa-
tions and neglecting the exponential terms associated with the har-
monic perturbation, the Harmonic Navier–Stokes equations are
produced. These equations exhibit inherent nonlinearity, but they can
be linearized if deemed necessary, yielding both the Nonlinear
Harmonic Navier–Stokes (NLHNS) and Linear Harmonic Navier–
Stokes (LHNS) equations. In the present work, the in-house Delft
Harmonic Navier–Stokes Solver (DeHNSSo) is utilized for the solution
of the HNS system. For a comprehensive description of the formula-
tion, discretization, and implementation of DeHNSSo, interested read-
ers are referred to Ref. 47.

1. Numerical setup

Both base flow and perturbation fields are solved on a uniform
grid in the streamwise direction (x). Two different resolutions are used
for the boundary layer equations solution (i.e., base flow) and the HNS
system (i.e., perturbations). For the boundary layer solution, a grid
with 5000 uniform grid points is used in the x-direction, while for the
HNS solution, 1200 uniform grid points are used. This grid density
ensures at least 30 grid points per TS wavelength for the shortest wave-
length case. In the HNS framework, first and second streamwise deriv-
atives are approximated with a fourth-order central finite difference
scheme.

In the y-direction, both boundary layer and HNS equations are
discretized using a spectral collocation method employing the
Chebyshev polynomial basis function. The spatial mapping proposed
in Ref. 50 is utilized for providing improved resolution in the near-wall
region of the boundary layer. The non-uniform grid in the y-direction
comprises 100 collocation points, arranged in such a way that half of

FIG. 3. Normalized amplitude evolution
based on maximum modal streamwise
velocity for test cases A� D (uncon-
trolled). Mðm; nÞ is the modal notation,
and MFD represents the modification of
the base flow by nonlinear mode
interactions.
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the points are located below y=H ¼ 0:1, whereH represents the height
of the domain.

The HNS framework requires the definition of appropriate
boundary conditions. At the inflow, an eigensolution to the linearized
stability equations is used to initiate the selected instability modes. At
the outflow, a damping buffer region is used to prevent nonphysical
reflections resulting from the domain truncation. The damping func-
tion within the buffer region follows a smooth hyperbolic tangent
shape and is applied directly to the perturbation terms.8,51 At the wall,
the no-slip condition is enforced for all perturbation modes. Similar
conditions are applied at the freestream with the exception of the
MFD mode, which is allowed to grow by expulsion of wall-normal
velocity through the top boundary.

The nonlinear discretized HNS equations are decomposed into a
system of mode-specific equations through the use of the harmonic
balancing procedure.52 Using this method, each mode is solved
sequentially, while nonlinear interactions are kept as forcing terms and
iteratively updated. Eventually, for each mode, the resulting system of
equations is formulated in the matrix form, as shown in the following
equation:

Am;n½ �q̂m;n þ Bm;n½ � @q̂m;n

@x
þ Fm;n½ � @

2q̂m;n

@x2
¼ rm;n: (3)

It is important to note that Eq. (3) pertains to the nonlinear for-
mulation for mode ðm; nÞ, where all nonlinear forcing terms are incor-
porated on the right-hand side rðm;nÞ for each mode. Matrices A, B,
and F encompass the base flow data and the characteristics of each
mode. Upon solving this system, one obtains the desired perturbation
velocity and pressure for each mode. The explicit form of the matrices
and equations of HNS can be found in Ref. 47.

The final resolution of numerical grids and dimensions of the
computational domain including domain height and collocation
median point are chosen based on a preliminary convergence study
for the LHNS solver. Interested readers are referred to Ref. 47 for a
detailed grid convergence study of DeHNSSo.

C. Control framework

The closed-loop feedforward control framework in this study
consists of harmonic wall-normal suction and blowing jets used as
actuators, and the PSO algorithm that selects the optimum amplitude
and phase of the jets. The maximum amplitude of the TS wave’s
streamwise velocity and wall pressure perturbations is measured to
provide the necessary information to the controller.

In the implemented control system (Fig. 1), the PSO algorithm
receives the reference signal (Si) measured at the computational
domain inflow by the pressure sensor from which it extracts the TS
wave’s characteristics such as frequency, phase, and amplitude. A base-
line error signal (epc ) observed during the actuator inactivity represents
the baseline state. The error signal (ep) emerges when the control sys-
tem is active, monitoring instabilities following actuation.

The core objective of the PSO algorithm is to adjust the actuator’s
amplitude and relative phase (aV ) to suppress the amplitude of the TS
wave. This optimization process hinges on maximizing a predefined
cost function established within the controller’s evaluation unit. The
PSO algorithm and its mathematical operations are briefly described
in the following sections.

1. PSO algorithm

The PSO algorithm finds an optimal solution through an iterative
improvement of candidate solutions using a measure of quality (i.e., a
reward or loss function). Here, without loss of generality, the maximi-
zation of a problem-dependent cost function C is considered. Initially,
a population of particles, each representing a candidate solution, is
randomly initialized. In the present work, one such PSO particle corre-
sponds to one distinct HNS simulation, featuring a set combination of
actuator parameters such as amplitude, phase, etc. Each particle has a
so-called “position” that represents a solution or candidate point
within the search space and a so-called “velocity” (step size) that indi-
cates the rate at which the position changes within that search space
between two successive iterations of the PSO algorithm. At the t̂ th
iteration, the Np particle’s positions and velocities in the d-dimensional
search space are defined by two vectors as x̂ ið̂tÞ 2 Rd and
v̂ ið̂tÞ 2 Rd , respectively. At iteration t̂ þ 1, the position and velocity
of the ith particle are updated based on its individual personal best
position, p̂b;ið̂tÞ, and the global best position, gbð̂tÞ, according to Eqs.
(4) and (5). Variables in the PSO algorithm are denoted with a hat
(e.g., t̂) to distinguish them from similarly defined variables in other
sections,

v̂ ið̂tþ1Þ¼ x̂v̂ ið̂tÞþ c1r1ðp̂b;ið̂tÞ� x̂ ið̂tÞÞþc2r2ðgbð̂tÞ� x̂ ið̂tÞÞ; (4)

x̂ ið̂t þ 1Þ ¼ x̂ ið̂tÞ þ v̂ ið̂t þ 1Þ: (5)

The individual personal best position of the ith particle at itera-
tion t̂ corresponds to the best position (according to the cost function
C) encountered by the ith particle up to iteration t̂ and is defined as

p̂b;ið̂tÞ ¼ argmax
x̂ i

Cðx̂ iðn̂ÞÞ; n̂ ¼ 0;…; t̂
� �

: (6)

The global best position at iteration t̂ , gbð̂tÞ, then corresponds to
the best p̂b;ið̂tÞ among all the Np particles in the swarm and is defined
as

gbð̂tÞ ¼ argmax
p̂b;i

Cðp̂b;ið̂tÞÞ; i ¼ 1;…;Np

n o
: (7)

After computing the new positions at iteration t̂ þ 1, using Eq.
(5), the updated personal best of each particle (p̂b;i) and global best
(gb) of the population are obtained according to Eqs. (6) and (7).

In Eq. (4), the PSO algorithm includes some hyperparameters: x̂
as the inertia weight coefficient to control the previous velocity contri-
bution in the updated velocity, and c1 and c2 as the personal learning
and global learning factors, respectively. The influence of the particle
self-exploration is determined by c1, while c2 indicates the influence of
the global best position in the entire swarm. Additionally, r1 and r2 are
random variables sampled from uniform distributions between zero
and one at each iteration, which are employed to preserve the popula-
tion’s variety.

These update and evaluation steps are iterated until convergence
of the solution is achieved. The PSO algorithm, as a metaheuristic
method, does not guarantee the discovery of the global optimum of an
optimization problem. However, by using specific sets of hyperpara-
meters, PSO can converge to one of the best local optimum regions
within the exploration area.53 The strategy makes few or no
assumptions about the optimization problem and does not require
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incorporating the physics of the problem into the algorithm. This char-
acteristic makes it a versatile optimization method suitable for a wide
range of problems, enabling it to explore a large search space in a sto-
chastic manner.

It is worth noting that changing the hyperparameters of the PSO
algorithm can affect the convergence rate of the algorithm. However,
the initial random selection of the PSO is unlikely to significantly
impact the convergence behavior of the algorithm, although it may
produce minor differences in the final optimum point.

2. PSO-based TS wave control

For the PSO-based controller used in the present study, the
set of hyperparameters resulting from a preliminary parametric
study is specified as ðx̂; c1; c2Þ ¼ ð0:9; 0:9; 1:2Þ. The (x̂ ¼ 0:9) fol-
lows the general suggestion of inertia weight in the [0.8, 1.2] range,
which enhances the chance of finding the global optimum within a
moderate number of iterations.54 Furthermore, these hyperpara-
meters are selected within the algorithm stability region,
�1 < x̂ < 1; 0 < c1 þ c2 < 4ð1þ x̂Þ, to guarantee the conver-
gence of the algorithm.55 The higher value of the global learning
rate compared to the local learning rate helps in situations where
individual particles might be stuck in local optima, as it encourages
the particle movement to rely more on the swarm’s collective
knowledge.

The exploration space parameters are also provided in Table II.
The choice regarding the number of iterations and particles within
each iteration was made to balance the exploration and exploitation
phases of the algorithm. A higher number of particles means more
exploration necessitating a longer convergence time. This is a limiting
factor considering the controller’s practical applicability and the avail-
able computational resources for this study.

The PSO algorithm seeks to maximize the cost function, C,
defined in Eq. (8). This cost functional has two terms, DPerr;r and E0,
which represent the reduction in pressure perturbation at the error
sensor location relative to the uncontrolled case and a relative energy
expenditure term, respectively, with we being a weighting term
between these two terms,

C ¼ DPerr;r � weE
0: (8)

Specifically, DPerr;r represents the attenuation of TS wave defined
here as the relative difference in the pressure perturbation measured
by the error sensor between scenarios with (ep) and without active

flow control (epc ), the latter denoted as the “baseline case.” It is, there-
fore, defined as

DPerr;r ¼
epc � ep

epc
; (9)

where E0 corresponds to the ratio between the mass flow rate of the
harmonic suction and blowing jets, EJ , and the maximum achievable
mass flow rate constrained by the exploration space of the PSO, EJmax ,
which is used as a proxy for the energy expenditure of the actuator. It
is defined as

E0 ¼ EJ
EJmax

� �
; (10)

where EJ and EJmax are defined in Eqs. (11) and (12), respectively,

EJ ¼
ðLx
0
jJA � sinð2pxÞj dx; (11)

EJmax ¼
ðLx
0
jJAmax

� sinð2pxÞj dx: (12)

In the above, JA corresponds to a user-defined term that the PSO
algorithm will have to optimize. The energy-related penalty in Eq. (8)
carries a weight of we. A larger weight motivates the PSO algorithm to
prioritize lower actuation amplitudes at the expense of maximum
wave suppression. A weight of 10% was found as a reasonable trade-
off, based on a preliminary parametric study.

In addition to the cost function defined earlier, in the following
discussion, the attenuation of the pressure perturbation will also be dis-
cussed in terms of dB reduction, defined as follows:

DPerr;dB ¼ 10 � log10
ep
epc

� �
: (13)

To ensure compliance with realistic and realizable actuators nec-
essary for the eventual deployment of the control framework to an
experimental setting, the actuation amplitude and phase are manually
bounded in the PSO algorithm, specifically defined by lower and upper
boundaries in Table II. The actuator phase shift with respect to the ref-
erence signal, Si½/�, is 6p, while the actuation amplitude is free to
change from zero to the amplitude of the reference signal, Si½A�. This
provides a large exploration space for the algorithm. However, the
amplitude and phase selection for the actuator are not solely con-
strained by the upper and lower bounds since the cost function takes
into consideration the energy expenditure of the jets as an extra limit-
ing factor.

3. Control design approach

For the control of the nonlinear cases ðB� DÞ, each harmonic
mode of the TS wave is individually controlled. This approach is neces-
sitated by the nature of the disturbance signal, which is treated as a
summation of harmonics. The control of each mode is then performed
similarly to case A, where a single-frequency disturbance matching the
mode’s frequency is introduced at the inflow, and a corresponding
control action is found for each mode. Finally, the action of the actua-
tor is superimposed by a summation of the control actions for each
individual mode. This approach is referred to as the “superposition
method.”

TABLE II. PSO algorithm parameters. Np represents the number of particles and d
refers to the number of parameters to be controlled including the amplitude and
phase of the jets. t is the maximum number of optimization iterations.

Parameters Value

Np 20
d 2
t 1000

JA 2 ½0; Si½A��
J/ 2 ½Si½/� � p�; Si½/� þ p�
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Through the superposition method, it becomes feasible to apply
an identical control strategy as applied to the case A to nonlinear sce-
narios while keeping computational expenses at a minimum. The
main potential lies in developing a lookup table comprising controllers
for the linear modes, which can then be utilized to control varied com-
binations of these harmonics in various nonlinear scenarios. The effec-
tiveness of this approach in three different test cases ðB� DÞ is
evaluated in Sec. III and compared with the nonlinear design approach
for case D in Sec. III E. In the nonlinear design of the controller, the
control system is applied directly to the nonlinear cases instead of
depending on the superposition technique.

The nonlinearly designed controller incurs substantial computa-
tional expenses, primarily driven by the computational cost of the non-
linear harmonic Navier–Stokes equations in comparison to their linear
counterparts. This complexity arises from an iterative method
employed for nonlinear forcing terms within the NLHNS framework.
These nonlinear forcing terms are retained as a lagged source term on
the right-hand side of Eq. (3) and are updated iteratively per mode.47

The computational outlay associated with nonlinear scenarios, even
when considering merely three principal harmonics, could be as much
as 30 times greater than that in linear scenarios.

III. RESULTS

The controller performance in several test cases ranging from lin-
early developing single-frequency TS waves to nonlinearly developing
multi-frequency control cases is explored in this study and presented
in the following four control cases (i.e., A� D). The section proceeds
with discussions concerning the control strategy, along with a compar-
ative analysis of the controller performance across various test cases.
Finally, the discussion concludes with a comparison between linearly
designed (i.e., superposition method, case D2) and nonlinearly
designed (i.e., caseD2n) controllers.

A. Control case A: Linear single-frequency control

Control cases A1 and A2, respectively, employing upstream
(Cx ¼ 660) and downstream (Cx ¼ 1653) actuators are explored in
the context of linearly developing single-frequency ðF ¼ 86Þ TS waves
introduced at the domain inflow. The arrangement of the actuator and
sensors is depicted in Fig. 1 and Table I.

Figure 4 illustrates the evolution of key performance characteris-
tics of the control framework as a function of training episodes,
encompassing concurrent exploration and evaluation phases.
Specifically, the PSO algorithm assesses the action’s performance after
every 20 episodes (actions) using exploration data to determine the
subsequent 20 actions. The optimal action of the PSO-based controller
is denoted by a red star in Fig. 4.

As demonstrated in Fig. 4, the control strategy effectively sup-
presses the amplitude of the instability, demonstrating noticeable
attenuation before reaching 100 episodes. However, the controller’s
full convergence requires a more extended period, ultimately converg-
ing after 580 episodes. As will be shown in the following cases, control
performance convergence varies greatly as a function of the active
instability modes and linearity of dynamics. The convergence is gener-
ally attained within 400� 800 episodes, depending on the control
case. In an equivalent real-time framework, this corresponds to
approximately 8� 16 s, equivalent to 130� 260 convective time units,
calculated based on the Blasius length scale at the inflow.

The normalized maximum streamwise velocity shown in Fig. 5
highlights that the controller reduces the instability amplitude, achiev-
ing a decrease by an order of magnitude for both cases A1 and A2.
However, downstream of the actuator’s location, the boundary layer
resides within the unstable region for the investigated mode, causing
the remaining disturbance to rapidly amplify once again. This phe-
nomenon underscores the significance of employing multiple consecu-
tive actuators in real-world applications to ensure a sustainable and
significant delay of transition.4

Upon comparing the suppression of TS waves in cases A1 and A2
in Fig. 5, it becomes evident that the upstream actuator is more effec-
tive in locally suppressing TS waves. Nevertheless, the growth of con-
trolled instabilities following the upstream actuation results in nearly
identical suppression values as those achieved by the downstream actu-
ator, as presented in Table III. This is largely expected due to the purely
linear regime of case A. The attenuation of the signal in Table III is cal-
culated based on the superposition of all modes, both in controlled
and uncontrolled cases, measured at the error sensor location
(Xso ¼ 1782).

B. Control case B: Weakly nonlinear single-frequency
control

Case B explores the control of a nonlinearly developing TS wave.
In this instance, a single-frequency disturbance (F ¼ 86) is introduced
at the inflow, mirroring the approach employed in case A. However,
unlike case A, case B allows nonlinear interactions among the first

FIG. 4. Illustration of controller performance convergence for case A1. jumaxj is the
maximum amplitude of streamwise disturbance velocity, and JA is the actuation
amplitude. J/ signifies the relative phase of the actuator blowing action with respect
to the TS wave wall-normal velocity at the input sensor.
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three harmonics of the TS wave and the mean flow distortion.
Consequently, the second and third harmonics of the TS wave are nat-
urally generated in the simulation domain through nonlinear
interactions.

Similar to case A, the superior effectiveness of the upstream actu-
ator remains evident in case B, as illustrated in Fig. 5. Unlike case A,
the suppression of the TS wave through upstream actuation in case B
is not local, and the remaining disturbances do not amplify rapidly
beyond the actuator’s location. This results in a suppression of 20 dB
(99% reduction in TS amplitude) in case B1. However, the efficacy of
the downstream actuator in case B2 is notably diminished resulting in
a reduction of the TS amplitude by 5dB (68%). The streamwise and
wall-normal velocities and pressure fields are depicted in Fig. 6 for the
nonlinear single-frequency case B2.

TABLE III. Summary of test cases and TS wave’s strength reduction (measured in
decibels).

Cases Dumax (dB) DPerr (dB)

A1 �8.82 �8.91
A2 �8.37 �6, 02
B1 �20, 08 �15.13
B2 �4.93 �5.43
C1 �19.47 �11.95
C2 �6.47 �5.54
D1 �18.51 �11.64
D2 �5.36 �2.11

FIG. 5. Normalized maximum streamwise
(u) disturbance velocity, with and without
control for control cases A� C.

FIG. 6. Contours of normalized stream-
wise (u), wall-normal (v) disturbance
velocity, and pressure (p) for the nonlinear
single-frequency case B2 (downstream
control). The actuator is located at
x ¼ 1653.
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C. Control cases C and D: Nonlinear multi-frequency
control

Moving beyond the investigation of the weakly nonlinear case B,
this study explores the framework performance in nonlinear multi-
frequency control cases. In case C, a wave train consisting of three TS
modes (F ¼ 86; 57, and 28) is initiated at the inflow. All modes are
assigned equal initial amplitudes, as detailed in Sec. II A 1. The uncon-
trolled instability’s velocity and pressure perturbations, as depicted in
Figs. 5 and 7, become more similar to naturally occurring TS waves
when multiple modes are considered for the convective instability.

The nonlinear multi-frequency control case C is controlled using
the superposition method, similar to case B. Despite dealing with a
more complex ensemble of instabilities, the controller’s performance
remains robust, leading to pressure perturbation attenuation of 12dB
for upstream control and 5.5 dB for downstream control in case C.

The effectiveness of the control system is further studied in test
case D, wherein the initial amplitude of two modes is increased to
intensify nonlinear interactions. In relation to case C, the initial ampli-
tude of two modes (F ¼ 28; 57) is raised from 0:25% to 0:5%, while
the amplitude of the third mode is maintained at 0:25%.

Figure 8 illustrates the modal amplitude evolution of the maxi-
mum streamwise velocity perturbation for controlled and uncontrolled
case D2. The decrease in amplitude for the first and second modes is
more pronounced than for the third mode. This observation follows
the dominant influence of the most growing mode in this control sce-
nario, exerting extra nonlinear forcing on the remaining modes.
Consequently, controlling the dominant mode yields the most benefi-
cial impact on other modes. In addition to the reduction in amplitude
of the controlled instabilities, it is worth noting the growth rate reduc-
tion of the controlled waves downstream of the actuation, resulting in
further attenuation of the waves.

It is apparent in Fig. 9 that a nearly complete wave cancelation is
accomplished for case D1 when the actuator is positioned upstream.

FIG. 7. Contours of normalized stream-
wise (u), wall-normal (v) disturbance
velocity, and pressure (p) with (right plots)
and without (left plots) control for the non-
linear multi-frequency case C2 (down-
stream control), the actuator is located at
x ¼ 1653.

FIG. 8. Amplitude evolution of maximum streamwise (umax) disturbance velocity for
the nonlinear multi-frequency case D2, control off (solid line), and control on
(dashed line).

FIG. 9. Normalized maximum streamwise (u) disturbance velocity, with and without
control for the nonlinear multi-frequency: top: case D1 (upstream control), down:
case D2 (downstream control).
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Despite lacking control authority over the spatial distribution and loca-
tion of the jets, the controller effectively mitigates the incoming
disturbances.

Although the attenuation of the disturbance signal is noticeable
in case D2, as shown in Figs. 9 and 10, the effectiveness of the control
system deteriorates when the actuator is located downstream. This is
attributed to the characteristics of the superposition technique, which
addresses each instability harmonic within a linear development
framework. For instance, in case D2, the degree of dominance of non-
linear interactions escalates downstream due to the elevated initial
amplitude of disturbances at the inflow. Consequently, the main
assumption of the superposition method regarding the linear progress
of the TS wave becomes invalid resulting in the deterioration of the
control system’s effectiveness. The present study examined a limited
set of nonlinear cases to establish proof of concept for the PSO control-
ler across various scenarios. Further studies with more nonlinear con-
trol cases are required to precisely determine the threshold of
applicability for the superposition methodology.

The results in the strongly nonlinear case D additionally offer
insights in the workings of the superposition method. The plot in
Fig. 11(a) illustrates the normalized streamwise velocity field when
influenced solely by the upstream disturbance input, as seen in the
uncontrolled scenario. Figure 11(b) depicts the velocity field when
exclusively driven by the corresponding control input. The controlled
case is also presented in Fig. 11(c). Comparing the plots in this figure
demonstrates that the wave generated by the actuator shares an equal
amplitude but opposite phase with the uncontrolled waves, resembling
the opposition control strategy.

D. Discussion

A summary of all considered test cases with corresponding TS
strength reduction with respect to the corresponding baseline (i.e.,
uncontrolled) case is presented in Table III. Here, Dumax represents
the maximum streamwise velocity reduction, while DPerr signifies the
reduction in pressure (error) signal as detected by the output sensor.

As evident in Table III, the controller’s performance is notably
influenced by the actuator’s spatial placement within the simulation
domain, as highlighted by the contrast between the cases 1 and 2.
Moving the actuator downstream leads to a decrease in controller per-
formance across all nonlinear test cases although the controller
remains effective with more than 4.9 dB reduction in maximum insta-
bility amplitude.

In contrast, the suppression of TS waves for linear single-
frequency (case A) is not noticeably different by comparing cases A1
and A2. This observation confirms that the performance deterioration
of the controller downstream occurs exclusively in nonlinear cases
where the assumption of linear progress of TS wave becomes invalid.

The noticeable difference between controller performance in
cases A1 and B1 arises from different feedback observed by the error
sensor always located at the same fixed location (Xso ¼ 1782).
Specifically, the nonlinear interactions active in case B1 will be

FIG. 10. Contours of normalized stream-
wise (u), wall-normal (v) disturbance
velocity, and pressure (p) with (right plots)
and without (left plots) control for the non-
linear multi-frequency case D2 (down-
stream control), and actuator is located at
x ¼ 1653.

FIG. 11. Contours of normalized streamwise (u) disturbance velocity for the nonlin-
ear multi-frequency case D1. (a) (actuator off, input disturbance: on), (b) (actuator
on, input disturbance: off), and (c) (actuator on, input disturbance: on), and actuator
is indicated with a small black square.
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registered in the feedback line of the controller. As shown in Fig. 5, the
growth of the controlled TS waves after the actuator is the main source
of differences between controller performance in cases A1 and B1.
Therefore, the detection of the nonlinear interactions between different
harmonics by the error sensor appears to aid the controller suppress
these nonlinear interactions and delay the growth of controlled TS
waves, while this information does not exist in the linear control case
A. Although the amplitude of the higher harmonics in case B1 is still
relatively small, the high sensitivity of the flow problem to minor
changes can result in significant variations in the developed flow and
the associated flow control problem. This effect is evident in Fig. 5,
where even the uncontrolled flows in cases A1 and B1 exhibit notice-
able differences downstream.

The lower control performance in case B2 compared to other test
cases can be attributed to the scenario where the single-frequency TS
wave introduced at the inflow transforms into a multi-frequency wave
downstream, characterized by unknown (to the controller) amplitudes
for the generated modes. This multi-frequency nature is not effectively
captured by the input sensor, subsequently resulting in diminished
controller performance downstream. This is further evident in the
uncontrolled amplitude evolution for each case (Fig. 3), where the dis-
tinction of the higher harmonics is clearly more evident for the refer-
ence sensor in cases C and D compared to case B.

The controller’s performance in nonlinear multi-frequency control
(caseD) is presented in Table IV, indicating the suppression of each har-
monic mode and mean flow distortion. The term dA in Table IV is cal-
culated by subtracting the amplitude reduction of each controlled mode
from the amplitude reduction of that mode in a linear single-frequency
control case. Examining the values of dA for case D2 in Table IV, the
reduced performance of the controller downstream is attributed to the
challenge of attenuating the higher harmonic modes, which are more
prone to nonlinear interactions developing downstream.

E. Nonlinear controller design

Approaching the four considered control cases using the super-
position method reveals a limitation in effectively suppressing

nonlinearly developing TS waves at a late growth regime. To ascertain
whether this limitation originated from the control method itself or is
inherent to the PSO algorithm, a further control case is studied by con-
sidering a fully nonlinear design of the controller for caseD2. This ena-
bles a performance comparison between a linearly designed controller
using the superposition method (D2) and a nonlinearly designed one
(D2n).

The nonlinearly designed controller effectively mitigates the
high-amplitude TS wave downstream of the actuator, resulting in a
reduction of 14.5dB in maximum instability amplitude. This is notably
superior to the 5 dB reduction achieved by the linearly designed con-
troller in case D2. This is highlighted in Figs. 12 and 13, where the
near-complete elimination of the instability waves is observable. The
controller based on the superposition method lacks knowledge of the
nonlinear harmonic mode interactions, leading to diminished perfor-
mance in downstream control scenarios. This aligns with the suppres-
sion of harmonic modes presented in Table V, where the nonlinearly
designed controller (D2n) has stronger attenuation of all modes,
including mean flow distortion.

This approach overcomes the limitation of the superposition
method in suppressing nonlinearly interacting modes, as can be seen

TABLE IV. TS wave’s modes strength reduction for multi-frequency nonlinear test
cases.

Cases Modes Dumax (%) dA (%)

D1

Mð1; 0Þ 99, 93 7,4
Mð2; 0Þ 98, 67 0.81
Mð3; 0Þ 95, 30 �3,1

MFDð0; 0Þ 99, 61 � � �

D2

Mð1; 0Þ 83, 33 �9,31
Mð2; 0Þ 75, 36 �18,64
Mð3; 0Þ 68, 33 �17,65

MFDð0; 0Þ 72, 96 � � �

FIG. 12. Contours of normalized stream-
wise (u), wall-normal (v) disturbance
velocity, and pressure (p) for the nonlinear
multi-frequency case. Left: D2—linearly
designed controller (superposition
method); right: D2n—nonlinearly designed
controller.
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in Fig. 14. Notably, this is achieved to an extent where the attenuation
surpasses what can be attained through separate control of modes
within a linear framework, as indicated by the positive dA values for
case D2n in Table V. This indicates that control of each harmonic
mode positively influences the control of other harmonic modes
within the nonlinearly designed controller by mitigating nonlinear
interactions between controlled modes.

Comparing TS modal amplitude evolution in Fig. 14 for both
linearly and nonlinearly designed controllers along with the
uncontrolled case clarifies the performance difference in these
two design approaches. The controllers effectively reduce the
growth rate of modes ð1; 0Þ and ð3; 0Þ, concurrently decreasing
the amplitude of the second mode without inducing any altera-
tions to its growth rate. The amplitude of higher modes is rapidly
attenuated in the nonlinear control method compared to the
superposition method. The difference in TS suppression between
the superposition method and the nonlinearly designed controller
increases with higher frequency harmonic modes, as illustrated in
Fig. 14 and Table V. The stronger effect of nonlinear interactions

on higher frequency harmonic modes explains this observation
making those modes more prone to nonlinear effects.

IV. CONCLUSION

In the present work, a PSO-based controller for active control of
Tollmien–Schlichting waves is introduced and studied numerically.
The numerical framework solves the harmonic two-dimensional
Navier–Stokes equations for zero pressure gradient boundary layer
based on perturbation formulation and harmonic balancing. A closed-
loop feedforward control system is utilized, consisting of wall-
mounted harmonic suction and blowing jets as actuators controlled by
the PSO algorithm to ascertain the optimal amplitude and phase for
maximum wave suppression. The integration of this AI-based algo-
rithm into the controller design process has proven highly effective in
realizing the suppression of TS waves through an opposition control
strategy.

Several test cases of single and multi-frequency TS control cases
are explored to study the performance of the controller in various lin-
ear and nonlinear stages of TS wave development. TS wave attenuation
is observed in all test cases, with an 8.5dB (86%) reduction in the max-
imum amplitude of instabilities for linear single-frequency test cases
and a reduction of up to 20 dB (99%) for nonlinear multi-frequency
control cases. Delving into nonlinear multi-frequency control cases,
two design approaches are followed, namely, linear superposition and
nonlinear controller design.

A notable performance deterioration in downstream control sce-
narios has been identified for the linearly designed controller, stem-
ming from amplified nonlinear interactions between higher-frequency
modes that deviate from the linear TS wave approximation in the
superposition method. This highlights the limitation of linear
approaches in detecting and controlling complex nonlinear interac-
tions. In contrast, the nonlinearly designed controller demonstrates
effective performance in mitigating nonlinear multi-frequency instabil-
ities at late growth regimes. This controller exhibits a reduction of
14.5 dB in maximum instability amplitude, indicative of near-complete
instability wave elimination, thus proving the ability of the PSO-based
harmonic suction and blowing jets to suppress naturally occurring
Tollmien–Schlichting waves in their nonlinear growth regime.

This study exhibits the capability of AI-based control strategies to
extend the active control of convective instabilities beyond the linear
growth regime. This improves sensor detection capabilities for distur-
bances and extends the temporal and spatial control horizon into the
nonlinear growth regime, thereby enhancing flexibility in positioning

FIG. 13. Normalized maximum streamwise(u) disturbance velocity for the nonlinear
multi-frequency case D2. Top: linearly designed controller (superposition method),
down: nonlinearly designed controller.

TABLE V. TS wave’s modes strength reduction for multi-frequency nonlinear test
case D2, with (D2) and without (D2n) the superposition method.

Cases Modes Dumax (%) dA (%)

D2

Mð1; 0Þ 83.33 �9.31
Mð2; 0Þ 75.36 �18.64
Mð3; 0Þ 68.33 �17.65

MFDð0; 0Þ 72.96 � � �

D2n

Mð1; 0Þ 86.43 �6.21
Mð2; 0Þ 98.89 4.89
Mð3; 0Þ 95.07 9.09

MFDð0; 0Þ 85.34 � � �

FIG. 14. Amplitude evolution of streamwise (u) disturbance velocity for the nonlinear
multi-frequency case D2, control off (solid line), and control on—linearly designed
(dashed line) and nonlinearly designed (dotted line). ði; 0Þ refers to the ith mode of
TS wave and so on.
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and broadening the range of actuators and sensors applicable in future
control systems.

Future research could explore alternative AI-based algorithms,
especially Machine Learning (ML) techniques like Deep
Reinforcement Learning (DRL). These approaches, which utilize
Neural Networks, are expected to have a better performance for con-
trol of convective instabilities in nonlinear growth regimes.
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