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New Approach to Multisite Downscaling of
Precipitation by Identifying Different Set

of Atmospheric Predictor Variables
Bidroha Basu1; Maria Nogal2; and Alan O’Connor3

Abstract: Estimating reliable projections of precipitation considering climate change scenarios is important for hydrological studies.
General circulation models provide future climate simulations at large scale in terms of large-scale atmospheric variables (LSAVs). Those
LSAVs can be downscaled to finer special resolution using several downscaling approaches. This paper presents a support vector regression
(SVR)-based downscaling approach to downscale rainfall at several locations in a study area. Because the rainfall generation mechanisms
cannot be the same for all the sites in a study area, conventional multisite downscaling approaches that assume the same rainfall generation
mechanism should not be used. Therefore, a new downscaling approach is proposed that (1) divides the study area in several climatological
regions, and (2) develops different downscaling models for each of the climatological regions to obtain future projections of rainfall. The
new approach was implemented on rainfall data obtained for Republic of Ireland to demonstrate the effectiveness of the approach compared
with existing approaches. Future projections of rainfall were obtained for the period 2012–2050 corresponding to four Representative
Concentration Pathway climate change scenarios. The performance of the SVR approach was compared with that of relevance vector
machine– and deep learning–based downscaling approaches. DOI: 10.1061/(ASCE)HE.1943-5584.0001900. © 2020 American Society
of Civil Engineers.

Author keywords: Statistical downscaling; Rainfall; Support vector regression; Global K-means; Future rainfall projections.

Introduction

Precipitation is one of the most important hydrometeorological
variables for hydrological modeling. Prediction of rainfall on a
catchment scale due to the effect of climate change is a challenging
problem. Predictors available at the large scale from general circu-
lation models (GCMs) fail to capture the local- or catchment-scale
variability present in the rainfall. To overcome this limitation, large-
scale GCM outputs often are downscaled to finer spatial resolution.
The downscaling approaches can be classified broadly into two
categories, dynamic downscaling and statistical downscaling.

Dynamic downscaling considers the initial conditions, time-
dependent lateral meteorological conditions, and surface boundary
conditions along with the GCM data and transfers the large-scale
GCM data to a higher-resolution regional scale by using regional
climate models (RCMs). The advantage of those models is that they
can account for the physical processes governing the rainfall and
can simulate finer-scale atmospheric processes (e.g., orographic

precipitation) better than the host GCMs (Fowler and Wilby 2010).
The disadvantages of RCMs are that the models are complex and
require significant time to produce outputs (Eden and Widmann
2014). In addition, RCMs provide future climatic conditions at spe-
cific grids, and hence it is not possible to directly obtain future rain-
fall simulations in a region located slightly outside the RCM grids
(D’Onofrio et al. 2014). In statistical downscaling, the regional
climate at the local scale is considered to be a function of the large-
scale climate denoted by the large-scale atmospheric variables.
To perform the downscaling, a statistical relationship is developed
between those large-scale atmospheric variables (e.g., temperature
at high elevations, atmospheric pressure, wind speed, humidity, and
solar radiation) and the predictand variable (e.g., rainfall or temper-
ature at the watershed scale) at the local scale. Statistical downscal-
ing has gained wide popularity due to its low computational cost
and simplicity compared with dynamic downscaling (Okkan and
Fistikoglu 2014; Rashid et al. 2016; Sachindra et al. 2016). Wood
et al. (2004) considered linear interpolation, spatial disaggregation,
and bias correction and spatial disaggregation (BCSD)-based stat-
istical downscaling methods to simulate meteorological variables
from 1975 to 1995 and estimated land surface energy and water
fluxes using a variable infiltration capacity model. They noted that
the performance of BCSD was superior to that of the other two
statistical downscaling methods, and the dynamic downscaling did
not provide any improvement compared with statistical downscal-
ing. Ahmed et al. (2013) also used a BCSD-based statistical down-
scaling approach to downscale precipitation and maximum and
minimum temperature at the daily scale using six GCMs and com-
pared it with four RCMs, and found similar results for both types
of downscaling approaches. Application of multiple regression–
based statistical downscaling and RCM dynamic downscaling of
monthly precipitation at 42 stations in Sweden by Hellström et al.
(2001) yielded similar performance in reproducing the seasonal pre-
cipitation cycle. Landman et al. (2009) noted that a model output

1Research Fellow, School of Architecture, Planning and Environmental
Policy, Univ. College Dublin, Dublin D14 E099, Ireland; Adjunct Assistant
Professor, Dept. of Civil, Structural and Environmental Engineering,
Trinity College Dublin, Dublin D02, Ireland (corresponding author).
ORCID: https://orcid.org/0000-0002-8822-7167. Email: bidroha.basu@
ucd.ie; bbasu@tcd.ie

2Assistant Professor, Materials, Mechanics, Management, and Design,
Delft Univ. of Technology, Delft 2628 CN, Netherlands. Email: m.nogal@
tudelft.nl

3Professor, Dept. of Civil, Structural, and Environmental Engineering,
Trinity College Dublin, Dublin D02, Ireland. Email: oconnoaj@tcd.ie

Note. This manuscript was submitted on December 8, 2018; approved
on October 18, 2019; published online on February 27, 2020. Discussion
period open until July 27, 2020; separate discussions must be submitted for
individual papers. This paper is part of the Journal of Hydrologic Engi-
neering, © ASCE, ISSN 1084-0699.

© ASCE 04020013-1 J. Hydrol. Eng.

 J. Hydrol. Eng., 2020, 25(5): 04020013 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

T
ec

hn
is

ch
e 

U
ni

ve
rs

ite
it 

D
el

ft
 o

n 
03

/1
9/

21
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

https://doi.org/10.1061/(ASCE)HE.1943-5584.0001900
https://orcid.org/0000-0002-8822-7167
mailto:bidroha.basu@ucd.ie
mailto:bidroha.basu@ucd.ie
mailto:bbasu@tcd.ie
mailto:m.nogal@tudelft.nl
mailto:m.nogal@tudelft.nl
mailto:oconnoaj@tcd.ie
http://crossmark.crossref.org/dialog/?doi=10.1061%2F%28ASCE%29HE.1943-5584.0001900&domain=pdf&date_stamp=2020-02-27


statistics-based statistical downscaling method was slightly better
at simulating the rainfall at 963 stations in South Africa compared
with the RCM dynamic downscaling method. Various other studies
(Murphy 1999; Wilby et al. 2000; Diez et al. 2005) found that stat-
istical and dynamic downscalingmethods produce similar outcomes
in simulating the present and future climate.

The statistical downscaling can be classified in three categories,
weather generator, weather typing, and transfer function–based
methods (Wilby et al. 1998; Nguyen et al. 2006; Fowler et al. 2007;
Vrac and Naveau 2007). A weather generator (Wilks and Wilby
1999; Olsson et al. 2009) stochastically generates the future
weather scenarios in terms of local-scale time series by using a stat-
istical model (probability density functions) whose parameters
are related to the large-scale data (e.g., Vrac and Naveau 2007),
whereas weather typing generates synthetic sequences of weather
patterns from past observations by conditioning the simulation
of small-scale data on weather types over the region of interest
(e.g., Vrac et al. 2007b). Neither of those two statistical downscal-
ing methods is suitable for long-term rainfall projections. The third
option is the transfer function–based downscaling approach, which
translates the large-scale atmospheric information directly to the
local-scale meteorological data using a statistical transfer function;
it has been used by several researchers (Vrac et al. 2007a; Dibike
et al. 2008; Olsson et al. 2004; Srinivas et al. 2014).

Multisite downscaling of rainfall is required for analyzing
watersheds located in a complex terrain in which topography
becomes a major factor in the generation of the rainfall process.
Several studies in literature focused on multisite downscaling of
rainfall (e.g., Fowler et al. 2005; Haylock et al. 2006; Vrac and
Naveau 2007; Wetterhall et al. 2006). However, those studies as-
sumed that the rainfall generation process was the same for the
entire study area. Those studies considered the same set of large-
scale atmospheric variables to develop a unique downscaling model
for the entire study area to downscale precipitation. In a real-world
scenario, the rainfall generation process is expected to change
when the study area is considerably large in size. Few available
approaches can address this issue. This study developed an alter-
native approach to identify different sets of large-scale atmospheric
variables (LSAVs) at different regions of the study area and to use
those LSAVs to develop different statistical downscaling models
for each of those regions to obtain future projections of rainfall for
the sites located in each region. The study used a global K-means
(GKM) clustering algorithm to form clusters (climatological re-
gions) in the study area and subsequently used a transfer function
[support vector regression (SVR)]-based statistical downscaling ap-
proach to develop different downscaling models for each of the
identified climatological regions. The performance of the proposed
alternative approach was compared with that of the existing ap-
proaches which develop a unique downscaling model by assuming
the same set of large-scale atmospheric variables for the entire
study area. The advantages of the proposed method in downscaling
rainfall were demonstrated by application to 464 rain gauges in the
Republic of Ireland.

Description of Study Area and Data

The study considered 464 rain gauge stations having daily rainfall
obtained from MET Eireann (Éireann 2009). The rain gauges were
selected by ensuring that each gauge had at least 5 years of records
between January 1979 and May 2016. The locations of the rain
gauges are shown in Fig. 1 along with the elevation of the Republic
of Ireland.

The goal of the study was to obtain future projections of
rainfall considering the effect of climate change. For this purpose,

European Centre for Medium-Range Weather Forecasts ReAnaly-
sis (ERA) Interim data, which are available from January 1979,
were used.

A set of LSAVs that can affect the rainfall events was down-
scaled at a 2° × 2° grid scale covering the Republic of Ireland.
The grids ranged from 51°N to 57°N and from 5°W to 11°W,
and consisted of nine grids covering the Republic of Ireland. The
three-dimensional LSAVs are available at different pressure levels.
For this study, LSAV values at 17 pressure levels [100 (1,000),
92.5 (925), 85 (850), 70 (700), 60 (600), 50 (500), 40 (400),
30 (300), 25 (250), 20 (200), 15 (150), 10 (100), 7 (70), 5 (50),
3 (30), 2 (20), and 1 (10) kPa (mb)] were considered for analysis.

Proposed Methodology

This section presents the support vector regression–based rainfall
downscaling approach. Subsequently, details of the GKM cluster-
ing used to identify climatological regions are provided. Following
this, the theoretical background of the SVR approach and the pro-
cedure for obtaining future projections of rainfall is explained.

SVR Approach to Multisite Downscaling of Rainfall

The proposed methodology involves the following steps (Fig. 2):
1. The predictor variables are identified from large-scale atmo-

spheric variables available in the observed/reanalysis data and
GCM simulations, such that they are reasonably well correlated
with historically observed rainfall (predictand) at all the target
sites in the study area. In situations in which the study area is
large, the sites in the study area should be delineated in clusters/
climatological regions. The correlation vector between the his-
torically observed rainfall data and the identified LSAVs corre-
sponding to each site, along with the location indicators (latitude
and longitude and elevation of the rain gauges), can be used
as attributes to form climatological regions using a clustering
technique. This study used partition-based globalK-means clus-
tering (Likas et al. 2003) to form the climatological regions, be-
cause the climatological regions must exhibit hard boundaries.
Advantages of GKM are that, unlike conventional K-means
clustering, the GKM is not sensitive to the initial conditions
and it can identify the global optimal solution while optimizing
the objective function to identify clusters. Other hard clustering
techniques such as entropy-based clustering or hierarchical
clustering can be an alternative option to form climatological
regions. Most of the clustering techniques fail to form efficient
clusters when the data used to form clusters are nonlinear
and the regions/clusters cannot be separated by using linear
planes. The objective in forming climatological regions is to in-
crease the intersite correlation between the predictands in each
region. In situations in which observations of LSAVs are una-
vailable, reanalysis data can be used as a surrogate for the
analysis. To obtain future projections of rainfall (predictand),
general circulation model simulations can be used, which pro-
vide the simulated values of LSAVs for the future in different
climate change scenarios. The GCM data are available at various
time scales, such as 6-hourly, daily, and monthly scales. How-
ever, GCM simulations available at finer time scales are not
considered reliable (Prudhomme et al. 2002, p. 1,138; Brown
et al. 2008, p. 20), and simulations at coarser time scales
(e.g., monthly) are preferred. If the spatial resolution of reana-
lysis data and GCM data are different, the GCM data should be
spatially interpolated to the resolution of the reanalysis data
using software such as GrADS (Doty and Kinter 1993).

© ASCE 04020013-2 J. Hydrol. Eng.
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2. Once the clusters are formed, sets of predictor variables for
each cluster are identified using the correlation between the
LSAVs and the rainfall data. The identified predictor variables
henceforth are referred to as large-scale atmospheric predictor
variables (LSAPVs). The LSAPVs for separate climatological
regions can be different from each other.

3. To develop the SVR-based downscaling model, the available
historical data are divided into two subgroups. The first sub-
group is called the calibration set, and the second is called
the validation set. The SVR model is developed using data from
the calibration set, and the performance of the model is tested
based on data from the validation set.

4. Each of the identified monthly LSAPV data sets from the cali-
bration set corresponding to each of the regions is standardized
by subtracting the respective mean and dividing by the respec-
tive standard deviation. Standardization of the LSAPV is neces-
sary to nullify the effect of differences in magnitude, range, and
variance of values corresponding to the LSAPVs. Reduction of
dimensionality of LSAPVs and intercorrelation between the
LSAPVs can be achieved by preforming principal component
analysis. However, because some information will be lost due
to omission of some of the principal components, it was con-
sidered in this study.

5. Development of the SVR relationship is established for every
site in the region between the LSAPVs and the observed
monthly rainfall data. Because the optimal parameters of the
SVR model are not known a priori, a grid search procedure
(Gestel et al. 2004) is used to identify the optimal values of those
parameters for the cluster. The parameters for which the model
output (downscaled monthly values of rainfall for all sites in the
region) is the closest [quantified in terms of RMS error (RMSE)
and Nash–Sutcliffe error (NSE)] to the contemporaneous ob-
served monthly rainfall at the corresponding target sites are con-
sidered to be the optimal. The selected optimal parameters are
the same for all the sites in a region, and the developed SVR
model is called the regional SVR downscaling model. The equa-
tions to estimate RMSE and NSE are as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðŷi − yiÞ2
s

ð1Þ

NSE ¼ 1 −
P

n
i¼1 ðŷi − yiÞ2P
n
i¼1 ðyi − ȳiÞ2

ð2Þ

where yii ¼ 1; : : : ; n) = observed monthly mean rainfall; n =
number of observations; ȳi = mean of yi observations; and

Fig. 1. Location of 464 rain gauges in the Republic of Ireland.
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ŷi = predicted monthly mean rainfall based on the downscaling
model.

6. The developed regional SVR downscaling model then is vali-
dated by using data from the validation set. For this purpose,
each of the LSAPVs from the validation set is standardized
by subtracting the respective mean and dividing by the respec-
tive standard deviation. The standardized LSAPVs then are
provided to the regional SVR downscaling model to obtain
downscaled values of monthly rainfall outputs. The modeled
outputs of monthly rainfall for each site in a region are com-
pared with the corresponding values of observed rainfall for
the validation period, and the performance of the modeled out-
put is quantified in terms of the two performance measures,
RMSE and NSE. In situations in which the model outputs are
close to the observed rainfall, the RMSE should be small and
the NSE should be close to unity. When the model-predicted
rainfall for all sites in the study area is close to the observed
rainfall values, the developed model can be used to obtain future
projections of rainfall for those rain gauge sites. In situations in
which the performance is poor, it can be concluded that the se-
lected LSAPVs cannot model the rainfall process and a new set

of LSAPVs need to be identified for developing an effective
downscaling model.

7. Once the model has been developed and validated, it can be used
to obtain future projections of rainfall for all the sites in a
cluster/climatological region by using the developed downscal-
ing model for that region. The steps to obtain future projections
of mean monthly rainfall are as follows:
a. The selected LSAPVs extracted from the GCM simulations

for the historical period are collated. Because the values in
GCM have inherent biases, it is necessary to perform a bias
correction before the future projections of LSAPVs from the
GCM simulations can be used to obtain future projections of
rainfall. To perform bias correction, the equidistant quantile
matching (EQM) bias correction approach (Li et al. 2010) is
used. EQM-based bias correction explicitly considers the
changes in the distribution of the future climate, including
the upper tail of the distribution involving extreme rainfall
events (Li et al. 2010). Furthermore, EQM bias correction
is applicable to smaller as well as larger spatial domain,
whereas most of the existing bias correction approaches were
developed based on statistical moments or regression equa-
tions and are constrained to local-scale application.

b. The bias-corrected future projections of GCM-simulated
LSAPVs then are standardized and considered as an input
to the developed SVR-based downscaling model to obtain
future projections of monthly mean rainfall for each site in
the cluster/climatological region.

Global K -Means Clustering Algorithm

Consider that there are N rain gauge stations in the study area.
Furthermore, assume that the number of LSAVs considered is equal
to l. Corresponding to every pressure level for every LSAV, the
average correlation between rainfall and nine LSAV grids sur-
rounding the study area are estimated. Those correlation values
along with the three location details (latitude, longitude, and eleva-
tion) are considered to create feature vector for each rain gauge
station. Denote the feature vector as fz 0s ¼ ½z 0s;1; : : : ; z 0s;L�; s ¼
1; : : : ;Ng, where L is the dimension of the feature vector. The fea-
ture vectors are rescaled to fzs ¼ ½zs;1; : : : ; zs;L�; s ¼ 1; : : : ;Ng as

zs;j ¼ ðz 0s;j − z̄ 0jÞ=σj for 1 ≤ j ≤ L; 1 ≤ s ≤ N ð3Þ

where z̄ 0j ¼
P

N
s¼1 z

0
s;j=N and σj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
N
s¼1ðz 0s;j − z̄ 0jÞ=ðN − 1Þ

q
.

Rescaling of the attributes is necessary to nullify influences asso-
ciated with the magnitude and variance of their values in cluster
formation.

The rescaled feature vectors Z ¼ ½z1; z2; : : : ; zN �T are partitioned
into Kopt clusters (climatological regions) using global K-means
clustering algorithm. Details of the GKM steps that were adapted
from Basu and Srinivas (2016) are provided in the Appendix.

Support Vector Regression

This section describes the procedure to develop the SVR relation-
ship (Vapnik 1995) in terms of input vector (predictor) xt ¼
½xt;1; : : : ;xt;m� ∈ℜm, wherem denotes the number of predictors, and
output (predictand) yt ∈ ℜ, corresponding to time t¼ f1;2; : : : ;ng.

The relationship between xt and yt can be expressed as

yt ¼ fðxtÞ þ εt ð4Þ
where ffð·Þ;Rm → Rg = nonlinear transformation function; and
εt = white noise whose expected value E½εt� is zero.

Obtain Reanalysis grid climate data surrounding the study 
area and identify set of LSAVs that influence rainfall in 
the study area based on high correlation values between 
rainfall and LSAVs averaged over the selected grids 

Use the average correlation obtained at different 
pressure level to form climatological regions 
based on GKM clustering procedure 

Identify set of LSAPVs corresponding to identified 
pressure levels for each of the climatological regions 
based on the correlation between rainfall and LSAVs 

Divide the LSAPV and rainfall data in the climatological region into 
calibration and validation sets and use the calibration set data to 
develop SVR based downscaling model after rescaling the LSAPVs 

Use validation set data to validate the downscaled 
model. Develop different SVR based downscaling 
models for each climatological regions 

Obtain LSAPVs for each climatological regions for the same grids 
and at same pressure level as that for the Reanalysis data. Perform 
bias correction of the GCM based LSAPVs using EQM approach 

Use bias corrected GCM LSAPVs to predict 
future projections of rainfall using 
developed SVR based downscaling model 

Fig. 2. Flowchart of the proposed methodology for multisite downscal-
ing of rainfall.

© ASCE 04020013-4 J. Hydrol. Eng.

 J. Hydrol. Eng., 2020, 25(5): 04020013 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

T
ec

hn
is

ch
e 

U
ni

ve
rs

ite
it 

D
el

ft
 o

n 
03

/1
9/

21
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



Let the function ϕð·Þ map xt at a higher p-dimensional space,
where a linear relationship exists between ϕðxtÞ and yt. The linear
relationship can be expressed as

½yt�1×1 ¼ ½ϕðxtÞ�1×p½w�p×1 þ ½b�1×1 ð5Þ

where weights

½w�p×1 ¼ ½w1 w2 · · · wp �T ð6Þ

The parameters w1;w2; : : : ;wp, and b can be estimated by op-
timizing the following objective function:

Lðw; eÞ ¼ min
w;b;e

�
1

2
wTwþ C

1

2

Xn
t¼1

e2t

�
ð7Þ

where error

et ¼ yt − ϕðxtÞw − b ð8Þ

½e�n×1 ¼ ½ e1 e2 · · · en �T; and C = SVR parameter consid-
ered to be the weight associated itho the sum of squares of error
et at a given time. Choosing high values of the parameter reduces
(increases) the error in model prediction by overfitting (underfit-
ting) the model.

Minimization of the term ð1=2ÞwTw ensures that the model is
not overfitted, whereas minimization of the term Cð1=2ÞPn

t¼1 e
2
t

ensures that the model prediction error is not significantly high.
Introducing Lagrange multipliers, the optimization problem

becomes

Lðw; b; e;αÞ ¼ Lðw; eÞ −Xn
t¼1

αt½ϕðxtÞwþ bþ et − yt� ð9Þ

where αt = Lagrange multipliers; and ½α�n×1 ¼ ½α1 α2 · · · αn �T.
The optimal solution can be obtained by optimizing the function
Lðw; b; e;αÞ using the following conditions:

∂Lðw; b; e;αÞ
∂w ¼ 0;⇒ w ¼

Xn
t¼1

αtϕðxtÞ ð10Þ

∂Lðw; b; e;αÞ
∂b ¼ 0;⇒

Xn
t¼1

αt ¼ 0 ð11Þ

∂Lðw; b; e;αÞ
∂et ¼ 0;⇒ αt ¼ C × et ∀ t ð12Þ

∂Lðw; b; e;αÞ
∂αt

¼ 0;⇒ wTϕðxtÞ þ bþ et − yt ¼ 0 ∀ t ð13Þ

Based on the conditions in Eqs. (10)–(13), and eliminating
w and e

Xn
t¼1

αt ¼ 0 ð14Þ

Xn
t 0¼1

αt 0ϕðxt 0 ÞT · ϕðxtÞ þ bþ αt

C
¼ yt; for ∀ t ¼ 1; : : : ; n

ð15Þ
where ϕðxtÞT · ϕðxtÞ = dot product of input vector in high-
dimensional transformed space. The dot product can be expressed
by a kernel function (Vapnik 1995) given as

ϕðxiÞT · ϕðxjÞ ¼ Kðxi; xjÞ ð16Þ

This study considered a Gaussian radial basis kernel (RBF)
function for analysis, which can be expressed as

Kðxi; xjÞ ¼ e−γkxi−xjk2 ; γ > 0 ð17Þ

The RBF function was chosen instead of a polynomial
because the RBF function gives access to any analytic functions,
and it is parsimonious. For chosen values of γ and C, values of
fαt; t ¼ 1; : : : ; ng and b are estimated by solving Eqs. (9)–(12).
Subsequently, future projections of the predictand ytf can be
obtained as

ytf ¼
Xn
t¼1

αtϕðxtÞT · ϕðxtf Þ þ b ¼
Xn
t¼1

αtKðxt; xtf Þ þ b ð18Þ

where xtf = future projection of predictor vector corresponding to
time tf. From Eq. (12) it can be noted that αt=c ¼ et, where et is
the error, the expected value of which is assumed to be zero.

Results and Discussion

To identify the proper sets of LSAVs affecting rainfall for all the
rain gauge stations in the study area, the correlations of rainfall data
with each of the selected LSAVs at 17 pressure levels were esti-
mated. In this study, 10 LSAVs were considered (Table 1). The
average correlation between the rainfall and the surrounding 9
LSAV grids corresponding to each of the 10 variables and pressure
levels are plotted in Figs. 3(a–j).

A set of variables that were highly correlated with the rainfall
data for the 464 rain gauges at their corresponding pressure levels
were identified (Table 1). Those identified LSAVs henceforth are
called large-scale atmospheric predictor variables (LSAPVs).

One drawback of this approach to identify LSAPVs is that the
same set of attributes was considered for entire study area (Repub-
lic of Ireland). In a real-world scenario, it is unlikely that the rainfall
is influenced by the same climatological processes at every location
in the entire country. To address this issue, the correlations between
the LSAVs with the rainfall data along with three location indica-
tors (latitude, longitude, and altitude) were considered as attributes
to form climatological regions in the Republic of Ireland. The global
K-means clustering technique (Basu and Srinivas 2016; Bharath
et al. 2016) was used to identify those regions, and the analysis
showed that the study area can be divided into six clusters/
climatological regions (Fig. 4). The first cluster is in the windward

Table 1. List of LSAPVs considered for 464 rain gauges

No. V
and Fð·Þ LSAV −ve +ve

1 Specific humidity, q 200 100
2 Relative humidity, r 250 600
3 Temperature, t 700 200
4 U component of wind, u — 150
5 V component of wind, v — 925
6 Vertical velocity, w 500 —
7 Geopotential, z 1,000 —
8 Total column water, tcw — —
9 Mean sea level pressure, msl 1,000 —
10 Instantaneous surface

sensible heat flux, ishf
— —

Note: –ve (+ve) denote rainfall negatively (positively) correlated to the
LSAPV.
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direction of theWicklowMountains located in the eastern part of the
country, where the wind predominantly arrives from the southwest
direction. The second cluster is located in the western part of the
country near the Atlantic Ocean, at medium to high altitude (Fig. 1).
Cluster 3 is located in the central part of the country at low to
medium altitude, Cluster 4 is located in the southern part at low

altitude, and Cluster 5 is located in the northern part of the country,
where the altitude is relatively high. Cluster 6 ranges along the
southeastern coastline of the country at low altitude. The number
of stations and average record length in each of the clusters were
as follows: Cluster 1—82 stations, 22.7 years; Cluster 2—97 sta-
tions, 28.5 years; Cluster 3—98 stations, 26.1 years; Cluster 4—33

Fig. 3. Correlation plots between rainfall data for each of the 464 sites and LSAVs: (a) specific humidity (q); (b) relative humidity (r); (c) temperature
(t); (d) U component of wind (u); (e) V component of wind (v); (f) vertical velocity (w); (g) geopotential (z); (h) total column water (tcw); (i) mean sea
level pressure (msl); and (j) instantaneous surface sensible heat flux (ishf) corresponding to different pressure levels.
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stations, 12.2 years; Cluster 5—63 stations, 27.7 years; and
Cluster 6—91 stations, 30 years. Except for Cluster 4, which
had the least number of stations, the average record of each clima-
tological region had precipitation records covering more than
22 years.

Intersite cross correlation for the calibration and validation
data set for 464 stations was prepared (Fig. S1). Comparison of
the correlations indicated that the correlations between the rain
gauge stations changed considerably from the calibration period

to the validation period due to the effect of climate change. The
figures also indicate that the correlation structure between rain
gauge stations in the study area varied considerably, justifying the
requirement to develop different downscaling models in the study
area. To demonstrate the advantage of forming climatological re-
gions, correlation between sites in each of the six regions were plot-
ted (Fig. S2). The figures in the calibration set indicate that most of
the stations in those climatological regions had nearby correlations
among themselves. The differences in intersite correlation between

Fig. 3. (Continued)
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rain gauge stations for the validation period was found to be higher,
which might be due to the effect of climate change or to other natu-
ral or anthropogenic factors.

The large-scale atmospheric variables for each of those clusters
then were identified by investigating the average correlations be-
tween the rainfall and 9 grids for each of the 17 pressure levels.
The identified LSAPVs for each of the clusters are provided in
Table 2. The LSAPVs corresponding to each of the clusters
(climatological regions) were different from each other.

Based on the selected LSAPVs, support vector regression–
based downscaling models were developed for each of the clusters
in the study area. Because the model parameters γ and C were not
known a priori, a grid search procedure was used to obtain the
optimal parameters for the study. For this purpose, the first 75%
of the data set corresponding to each rain gauge for the historical
period was used for calibration, and the remaining 25% of the data
set was used for validation of the model. The number of data points
(in months) for the calibration and validation sets for each of the

Fig. 3. (Continued)
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464 stations was plotted as boxplot (Fig. S3). The majority of the
stations had more than 150 months of data points in the calibration
set and more than 50 data points in the validation set. Furthermore,
the average records for the calibration and validation sets for
stations corresponding to each of the climatological regions
were 204.6 and 67.7 months (Cluster 1), 256.9 and 85.2 months
(Cluster 2), 235.1 and 77.8 months (Cluster 3), 109.7 and
36.1 months (Cluster 4), 249.3 and 82.7 months (Cluster 5), and
270 and 90 months (Cluster 6), respectively. This indicates that,

except for Cluster 4, which consisted of only 33 stations, the ma-
jority of stations had adequate number of records for developing the
SVR-based downscaling model. Both SVR parameters were varied
from 10 to 1,000 with an interval of 10 units, and the difference
between the observed and model-predicted rainfall was measured
in terms of two performance measures (NSE and RMSE). The op-
timal parameters of the SVR model were selected when the model
yielded reasonable performance, i.e., NSE closer to unity and
RMSE close to zero. All the rain gauges in a region are not

Fig. 3. (Continued)
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expected to have the lowest error corresponding to a given param-
eter combination of SVR model. For this purpose, the parameter
combination that was selected by the majority of the rain gauges
in a climatological region was considered to be the optimal param-
eters for a region. The values of the optimal parameters are pro-
vided in Table 3, and the developed model is called Model 1. The
performance measures (NSE and RMSE) for each of the 464 rain
gauges in the calibration and validation periods for Model 1 are
plotted in Figs. 5(a and b), respectively.

For comparison purposes, the experiment was repeated consid-
ering (1) the same set of LSAPVs for each of the climatological re-
gions, but with different SVR parameters for each region (Model 2),
and (2) the same set of LSAPVs and the same SVR model for each
region (Model 3). The performance measures in the calibration and
validation periods for Models 2 and 3 are provided as boxplots in
Figs. 5(a and b) along with those for Model 1. The RMSE was the
lowest and the NSE was closest to unity when different LSAPVs
were considered and different SVRmodels were developed for each

Fig. 3. (Continued)
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of the climatological regions. The performance decreased slightly
(RMSE values increased and NSE values decreased) when the same
set of LSAPVs was considered for all climatological regions but the
SVR models were different for each region. The performance was
inferior when the same set of LSAPVs was considered and the same
SVRmodel was used for the entire study area. Better performance in
the case of Model 1 can be attributed to the identification of clima-
tological regions and the selection of appropriate attributes for each
region. In addition, different SVRmodels were used to obtain future
projections of rainfall for gauges located in each of those regions

because the rainfall generation process for each climatological re-
gion was different. The performance decreased slightly in case of
Model 2, in which different SVR models were selected but the
LSAPVs were considered to be the same for the entire study area.
The third approach was expected to provide inferior performance
because the approach assumed that the same rainfall generation
mechanism governs the rainfall for the entire study area.

Performance of the downscaled model (Model 1) in obtaining
rainfall was compared with the high-resolution Copernicus Climate
Change Service E-OBS v 19.0e gridded rainfall data obtained

6°W

6°W

8°W

8°W

10°W

10°W

56°N 56°N

54°N 54°N

52°N 52°N

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Republic of Ireland

Great Britain

0 10050 KM

Fig. 4. Locations of climatological regions in Ireland.

Table 2. List of LSAPVs considered for rain gauges corresponding to each of the clusters

No. Variable

Region 1 Region 2 Region 3 Region 4 Region 5 Region 6

−ve +ve −ve +ve −ve +ve −ve +ve −ve +ve −ve +ve

1 q 150 850 200 100 200 100 200 100 200 100 200 100
2 r 200 700 250 500 250 600 250 600 250 925 250 600
3 t 700 200 600 — 700 200 500 200 700 — 700 200
4 u — 200 — 150 — 150 — 100 — 150 — 150
5 v — 500 — 925 — 1,000 — 925 — 1,000 — 850
6 w 400 — 500 — 400 — 400 — 700 — 400 —
7 z 1,000 — 925 — 1,000 — 1,000 — 1,000 — 1,000 —
8 tcw — — 1,000 — — — — — — — — —
9 msl 1,000 — 1,000 — 1,000 — 1,000 — 1,000 — 1,000 —
10 ishf — — — — — — — — — — — —

Note: –ve (+ve) denote rainfall negatively (positively) correlated to the LSAPV.
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at 0.1° resolution. One representative station from each climatologi-
cal region was selected, and the performance of the model predic-
tions and the E-OBS gridded data was compared with the observed
station rainfall data at the monthly scale. The performance of each
station was plotted as a Taylor diagram (Taylor 2001) (Fig. S4).
In the figure, the radial distance indicates the standard deviation
of the monthly rainfall data, the azimuthal position provides the
correlation coefficient value between the observed rainfall and
the model-predicted/gridded rainfall, and the dotted line (shown
in green) originating from the reference point (REF) provides
the RMS distance (RMSD). In situations in which the predicted
rainfall is closer to the observed rainfall, the standard deviation
of the predicted rainfall is expected to be closer to that of the ob-
served rainfall; the correlation should be closer to unity and the
RMSD should be closer to zero. The figures indicate that the
model-predicted rainfall had less error than that obtained from
the gridded rainfall, except for the representative station located
in Climatological region 5, for which the gridded rainfall was
slightly better than the modeled value.

Once the SVR-based downscaling model is validated, it can be
used to obtain future projections of mean monthly rainfall for all the

sites in the study area. Because the performance of Model 1 was
superior compared with that of the other two models, future projec-
tions of mean monthly rainfall were obtained based on this model
only. For this purpose, simulations of National Aeronautics and
Space Administration Goddard Institute for Space Studies General
Circulation Model (NASA GISS GCM) coupled atmospheric–
oceanic model data were used, corresponding to four Representative
Concentration Pathways (RCPs). The resolution of the data was at a
2° × 2.5° grid scale, and they were regridded to a 2° × 2° grid scale
that matched the ERA Interim reanalysis data spatial scale. The
historical simulations of the GCM data from January 1979 to
December 2005 were considered to perform a bias correction for
the future projections of selected LSAPVs for the period January
2021–December 2050. The bias-corrected future projections of
LSAPVs corresponding to each of the four RCP scenarios (RCP2.6,
RCP4.5, RCP6.0, and RCP8.5) were used in the developed SVR-
based downscaling model (Model 1) to obtain future projections
of mean monthly rainfall at each of the 464 rain gauge sites. The
change in the mean for three decades (2021–2030, 2031–2040,
and 2041–2050) was estimated for each site in every cluster (clima-
tological region) corresponding to each of the four RCP scenarios
and were compared with the historical mean monthly rainfall.
The results corresponding to each of the six climatological regions
(clusters) are shown as boxplots in Figs. 6(a–f). For Clusters 1, 4,
and 6 (located in the eastern and southeastern part of the Republic
of Ireland), the mean monthly rainfall is expected to increase in the
future according to the RCP2.6 and RCP8.5 scenarios, whereas
based on scenarios RCP 4.5 and RCP 6.0, the meanmonthly rainfall
is expected to increase in the next two decades (2021–2040) and
to decrease after 2040. For Cluster 3, which is located in the central
part of the country, the mean rainfall is expected to increase in
the future according to the RCP8.5 scenario. For other locations
and corresponding to all scenarios, the mean monthly rainfall is

Table 3. Optimal values of SVR parameters for each region using Model 1
and Model 2

Region

Model 1 Model 2

γ C γ C

1 80 940 40 660
2 80 1,000 60 980
3 50 940 60 960
4 40 980 70 1,000
5 60 960 50 880
6 50 880 60 1,000

Fig. 5. Two performance measures obtained in calibration and validation by (1) identifying a set of attributes in each cluster and developing different
SVR models for each cluster (Model 1); (2) considering the same set of attributes but developing different SVR models for each cluster (Model 2);
(3) considering the same set of attributes and the same model for the entire study area (Model 3); (4) RVM-based downscaling considering different
LSAPVs; and (5) LSTM-based downscaling considering different LSAPVs: (a) NSE; and (b) RMSE.
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expected to decrease after 2040. RCP2.6 assumes that the global
annual greenhouse gas (GHG) emissions (measured in equivalent
CO2) will peak between 2010–2020 and decrease after 2020; in
the case of the RCP4.5 scenario, the emissions peak around 2040
and then decrease; for RCP6.0, the emissions are assumed to
peak around 2080 and then decline; whereas RCP8.5 assumes
a continuous increase in emissions that continue to rise through-
out the 21st century (Meinshausen et al. 2011). Chandler and
Wheater (2002) considered generalized linear models to relate
the changes in rainfall pattern at stations located in western
Ireland with the North Atlantic Oscillation (NAO) index. Nolan
et al. (2017) used a RCM model to investigate the effect of cli-
mate change in the rainfall pattern across Ireland after the 2040s.
They noted that the mean annual rainfall as well as rainfall in the
summer and spring seasons are expected to decrease, whereas the
frequency of heavy rainfall events in the winter months are sup-
posed to increase.

Currently, with advancement of computational facilities, robust
neural network–based techniques are gaining popularity for devel-
oping complex relationships between high-dimensional predictor
and predictand data sets. The relevance vector machine (RVM)-
based downscaling approach has been considered in a few studies
(Ghosh and Mujumdar 2008; Okkan and Inan 2015; Joshi et al.
2015; Deo et al. 2016) to downscale different hydroclimatological
variables. The statistical framework of RVM is the same as that of
the support vector machine algorithm; however, RVM considers an
alternative functional algorithm that develops a probabilistic regres-
sion between the predictors and predictant. Details of the RVM
approach were given by Tipping (2001). Recently, deep learning–
based techniques such as long short-term memory (LSTM) are
becoming popular due to their better performance when trained
with large amounts of data compared with other neural network–
based approaches. This study further investigated the use of the
LSTM algorithm in downscaling the rainfall data for the study area.
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Fig. 6. Mean projected monthly rainfall for each cluster averaged over 1 decade, corresponding to four climate change scenarios: (a) Cluster 1;
(b) Cluster 2; (c) Cluster 3; (d) Cluster 4; (e) Cluster 5; and (f) Cluster 6. OBS = mean monthly rainfall of historically observed rainfall data.
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The LSTM algorithm was considered to have 100 hidden units,
and the maximum iteration was set to 250. Technical details of
LSTM algorithm were given by Hochreiter and Schmidhuber
(1997).

The performance of the RVM- and LSTM-based downscaling
approaches was compared with that of the SVR-based downscaling
approach for the Model 1 case, in which different sets of LSAPVs
were selected for each climatological region. Only the Model 1
case was considered because the other two models (Model 2 and
Model 3) consider unrealistic assumptions, leading to poor perfor-
mance in downscaling rainfall. The performance of the two new
approaches is provided in terms of two performance measures
(RMSE and NSE) in Figs. 5(a and b). Results indicate that the per-
formance of LSTM downscaling was superior in the calibration
period, followed by that of the RVM-based downscaling approach.
However, the model performance of RVM and LSTM for the val-
idation data set was found to be considerably inferior to that ob-
tained using the SVR-based downscaling approach. Because the
RVM considers the posterior distribution and LSTM can retrain
the data set based on the model performance, prediction of rainfall
for the calibration set using both approaches was better than that
using the SVR-based approach. On the other hand, both RVM and
LSTM require larger data sets for training the model, and because
the monthly rainfall data for each station were limited, the perfor-
mance of those models in the validation set was poor compared
with that of the SVR-based model.

Conclusions

The paper presented a new approach to form climatological regions
using a global K-means clustering algorithm where the rainfall
generation mechanism can be considered to be similar. Sub-
sequently, support vector regression–based statistical downscaling
models were developed to obtain future projections of mean
monthly rainfall at rain gauges located in each of those climatologi-
cal regions. The effectiveness of the new approach was demon-
strated through a case study of 464 rain gauges in the Republic
of Ireland. The results indicated that the new approach provides
better rainfall projections than the existing downscaling approaches
which assume the same rainfall generation process for the entire
study area. The newly developed downscaling model subsequently
was used to obtain future projections of rainfall for the period
2021–2050 for four Representative Concentration Pathways sce-
narios. In general, the mean rainfall is expected to increase until
2040 and then to decrease for all scenarios in the western part
of the country, whereas in the eastern part of the country the rainfall
is expected to increase after 2040 according to two climate change
scenarios. Detailed analysis is underway to attribute the changes in
the rainfall pattern in the Republic of Ireland. The performance of
the rainfall downscaling technique proposed in the study depends
on the developed climatological regions as well as on the model
used to develop regression relationships between LSAPVs and his-
torical rainfall. Research is underway to evaluate effectiveness of
the climatological regions and to explore other nested downscaling
approaches that can account for the physical rainfall generation
phenomena.

Appendix. Details of Global K -Means Algorithm

The method attempts to minimize the following objective function:

FðZ;V∶KÞ ¼
XN
s¼1

XK
i¼1

Iðzs ∈ CiÞd2ðzs; viÞ ð19Þ

where Ci ¼ ith hard cluster; I ¼ 1 if zs ∈ Ci is true, and I ¼ 0

otherwise; V ¼ ½v1; : : : ; vK �T is a matrix containing centroids of
K clusters, such that vi ¼ ½vi;1; : : : ; vi;l� ∈ ℜl; d2ð·; ·Þ = square
of distance measure, which was considered to be Euclidean in this
study; and vi;j = mean value of attribute j for cluster i.
1. Define Kmin and Kmax as the lower and the upper bounds, re-

spectively, of the possible number of clusters. Initialize K to
Kmin (¼ 2).

2. Compute the mean of N feature vectors fzs; s ¼ 1; : : : ;Ng
[Eq. (20)] and choose it as the centroid of the first cluster.
Set epoch to 1.

vi;j ¼
XN
s¼1

zs;j=N j ¼ 1; : : : ; l ð20Þ

3. Choose zepoch as the centroid of the Kth cluster (i.e., vK ¼ zepoch)
and set iteration count to 1.

4. Determine the Euclidean distance of each feature vector zs from
the centroids of each K cluster and assign the vector to the clus-
ter whose centroid is nearest to it.

5. Update the centroid of each cluster by computing the average
of the feature vectors assigned to it. Then compute the value
of the objective function Fð·Þ for the current iteration. If iteration
count = 1, increment the count by 1 and proceed to Step 4.
Otherwise, compute the difference in the value of Fð·Þ between
the current and previous iterations. If the difference is suffi-
ciently small (<0.001), store V and Fð·Þ and proceed to Step
6. Otherwise, increment iteration count by 1. If the count is less
than or equal to a prespecified upper bound on the number of
iterations (e.g., 500), proceed to Step 4; otherwise store and pro-
ceed to Step 6.

6. Increment epoch by 1. If the resulting number is less than or
equal to N, repeat Steps 3–5. Otherwise, proceed to Step 7.

7. Identify the epoch h that yielded the minimum value for the
objective function Fð·Þ and note the corresponding V as
VoðKÞ ¼ ½vo1; : : : ; voK �T that denotes the optimal cluster centroid
matrix for the case in which the number of clusters is equal to K.

8. If K < Kmax, increment K by 1 and consider the first K − 1 clus-
ter centroids as VoðK − 1Þ, set epoch to 1, and repeat Steps 3–7.
Otherwise, proceed to Step 9.

9. From among the partitions resulting for all the K values
ð2 ≤ K ≤ KmaxÞ, identify the optimal partition Kopt as that for
which the value of the Davies–Bouldin cluster validity index
(Davies and Bouldin 1979) is minimum. The index is a function
of the ratio of the sum of within-cluster scatter to between-
cluster separation. It is computed as

DBIðKÞ ¼ 1

K

XK
i¼1

max
i; i ≠ r

�
Scatteri þ Scatterr

di;r

�
ð21Þ

where Scatteri and Scatterr = within-cluster scatter for ith and
rth clusters, respectively. In general, Scatteri is computed as

Scatteri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

zs∈Ci
kzs − voi k2=Ni

q
, di;r is the Euclidean dis-

tance between the centroids of the ith and rth clusters, and
Ni is the number of sites in cluster i.
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Figs. S1–S4 are available online in the ASCE Library (www
.ascelibrary.org).

References

Ahmed, K. F., G. Wang, J. Silander, A. M. Wilson, J. M. Allen, R. Horton,
and R. Anyah. 2013. “Statistical downscaling and bias correction of
climate model outputs for climate change impact assessment in the
US northeast.” Global Planet. Change 100 (Jan): 320–332. https://doi
.org/10.1016/j.gloplacha.2012.11.003.

Basu, B., and V. V. Srinivas. 2016. “Regional flood frequency analysis
using entropy-based clustering approach.” J. Hydrol. Eng. 21 (8):
04016020. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001351.

Bharath, R., V. V. Srinivas, and B. Basu. 2016. “Delineation of homo-
geneous temperature regions: A two-stage clustering approach.” Int.
J. Climatol. 36 (1): 165–187. https://doi.org/10.1002/joc.4335.

Brown, C., A. Greene, P. Block, and A. Giannini. 2008. Review of down-
scaling methodologies for Africa climate applications. IRI Technical
Rep. No. 08-05. New York: Columbia Univ.

Chandler, R. E., and H. S. Wheater. 2002. “Analysis of rainfall variability
using generalized linear models: A case study from the west of Ireland.”
Water Resour. Res. 38 (10): 10-1. https://doi.org/10.1029/2001WR
000906.

Davies, D. L., and D. W. Bouldin. 1979. “A cluster separation measure.”
IEEE Trans. Pattern Anal. Mach. Intell. 1 (2): 224–227.

Deo, R. C., P. Samui, and D. Kim. 2016. “Estimation of monthly evapo-
rative loss using relevance vector machine, extreme learning machine
and multivariate adaptive regression spline models.” Stochastic Envi-
ron. Res. Risk Assess. 30 (6): 1769–1784. https://doi.org/10.1007/s004
77-015-1153-y.

Dibike, Y. B., P. Gachon, A. St-Hilaire, T. B. M. J. Ouarda, and V. T. V.
Nguyen. 2008. “Uncertainty analysis of statistically downscaled
temperature and precipitation regimes in Northern Canada.” Theor.
Appl. Climatol. 91 (1–4): 149–170. https://doi.org/10.1007/s00704-007
-0299-z.

Diez, E., C. Primo, J. A. Garcia-Moya, J. M. Gutiérrez, and B. Orfila. 2005.
“Statistical and dynamical downscaling of precipitation over Spain from
DEMETER seasonal forecasts.” Tellus A: Dyn. Meteorol. Oceanogr.
57 (3): 409–423. https://doi.org/10.1111/j.1600-0870.2005.00130.x.

D’Onofrio, D., E. Palazzi, J. von Hardenberg, A. Provenzale, and S.
Calmanti. 2014. “Stochastic rainfall downscaling of climate models.”
J. Hydrometeorol. 15 (2): 830–843. https://doi.org/10.1175/JHM-D
-13-096.1.

Doty, B., and J. L. Kinter, III. 1993. “The grid analysis and display system
(GrADS): A desktop tool for earth science visualization.” In Proc.,
American Geophysical Union 1993 Fall Meeting, 6–10. Washington,
DC: American Geophysical Union.

Eden, J. M., and M. Widmann. 2014. “Downscaling of GCM-simulated
precipitation using model output statistics.” J. Clim. 27 (1): 312–324.
https://doi.org/10.1175/JCLI-D-13-00063.1.

Éireann, M. 2009. “Climate of Ireland.”Met Eireann. Accessed September
1, 2009. https://www.met.ie/climate/available-data/historical-data.

Fowler, H. J., S. Blenkinsopa, and C. Tebaldi. 2007. “Linking climate
change modelling to impacts studies: Recent advances in downscaling
techniques for hydrological modeling.” Int. J. Climatol. 27 (12): 1547–
1578. https://doi.org/10.1002/joc.1556.

Fowler, H. J., C. G. Kilsby, P. E. O’Connell, and A. Burton. 2005. “A
weather-type conditioned multi-site stochastic rainfall model for the
generation of scenarios of climatic variability and change.” J. Hydrol.
308 (1–4): 50–66. https://doi.org/10.1016/j.jhydrol.2004.10.021.

Fowler, H. J., and R. L. Wilby. 2010. “Detecting changes in seasonal
precipitation extremes using regional climate model projections: Impli-
cations for managing fluvial flood risk.” Water Resour. Res. 46 (3):
W03525. https://doi.org/10.1029/2008WR007636.

Gestel, T. V., J. A. K. Suykens, B. Baesens, S. Viaene, J. Vanthienen, G.
Dedene, B. D. Moor, and J. Vandewalle. 2004. “Benchmarking least

squares support vector machine classifiers.”Mach. Learn. 54 (1): 5–32.
https://doi.org/10.1023/B:MACH.0000008082.80494.e0.

Ghosh, S., and P. P. Mujumdar. 2008. “Statistical downscaling of GCM
simulations to streamflow using relevance vector machine.” Adv. Water
Resour. 31 (1): 132–146. https://doi.org/10.1016/j.advwatres.2007.07
.005.

Haylock, M. R., G. C. Cawley, C. Harpham, R. L. Wilby, and C. M.
Goodess. 2006. “Downscaling heavy precipitation over the United
Kingdom: A comparison of dynamical and statistical methods and their
future scenarios.” Int. J. Climatol. 26 (10): 1397–1415. https://doi.org
/10.1002/joc.1318.

Hellström, C., D. Chen, C. Achberger, and J. Räisänen. 2001. “Comparison
of climate change scenarios for Sweden based on statistical and dynami-
cal downscaling of monthly precipitation.” Clim. Res. 19 (1): 45–55.
https://doi.org/10.3354/cr019045.

Hochreiter, S., and J. Schmidhuber. 1997. “Long short-term memory.”
Neural Comput. 9 (8): 1735–1780. https://doi.org/10.1162/neco.1997
.9.8.1735.

Joshi, D., A. St-Hilaire, T. B. M. J. Ouarda, and A. Daigle. 2015.
“Statistical downscaling of precipitation and temperature using sparse
Bayesian learning, multiple linear regression and genetic programming
frameworks.” Can. Water Resour. J. 40 (4): 392–408. https://doi.org/10
.1080/07011784.2015.1089191.

Landman, W. A., M. J. Kgatuke, M. Mbedzi, A. Beraki, A. Bartman, and
A. D. Piesanie. 2009. “Performance comparison of some dynamical
and empirical downscaling methods for South Africa from a seasonal
climate modelling perspective.” Int. J. Climatol.: J. R. Meteorol. Soc.
29 (11): 1535–1549. https://doi.org/10.1002/joc.1766.

Li, H., J. Sheffield, and E. F. Wood. 2010. “Bias correction of monthly
precipitation and temperature fields from Intergovernmental Panel
on Climate Change AR4 models using equidistant quantile match-
ing.” J. Geophys. Res. 115 (D10): 1–20. https://doi.org/10.1029
/2009JD012882.

Likas, A., N. Vlassis, and J. J. Verbeek. 2003. “The global k-means clus-
tering algorithm.” Pattern Recognit. 36 (2): 451–461. https://doi.org/10
.1016/S0031-3203(02)00060-2.

Meinshausen, M., et al. 2011. “The RCP greenhouse gas concentrations
and their extensions from 1765 to 2300.” Clim. Change 109 (1–2):
213–241. https://doi.org/10.1007/s10584-011-0156-z.

Murphy, J. 1999. “An evaluation of statistical and dynamical techniques for
downscaling local climate.” J. Clim. 12 (8): 2256–2284. https://doi.org
/10.1175/1520-0442(1999)012<2256:AEOSAD>2.0.CO;2.

Nguyen, V. T. V., T. D. Nguyen, and P. Gachon. 2006. “On the linkage of
large-scale climate variability with local characteristics of daily precipi-
tation and temperature extremes: An evaluation of statistical downscal-
ing methods.” In Advances in geosciences: Volume 4: Hydrological
science (HS), 1–9. Singapore: World Scientific.

Nolan, P., J. O’Sullivan, and R. McGrath. 2017. “Impacts of climate change
on mid-twenty-first-century rainfall in Ireland: A high-resolution
regional climate model ensemble approach.” Int. J. Climatol. 37 (12):
4347–4363. https://doi.org/10.1002/joc.5091.

Okkan, U., and O. Fistikoglu. 2014. “Evaluating climate change effects
on runoff by statistical downscaling and hydrological model GR2M.”
Theor. Appl. Climatol. 117 (1–2): 343–361. https://doi.org/10.1007
/s00704-013-1005-y.

Okkan, U., and G. Inan. 2015. “Bayesian learning and relevance
vector machines approach for downscaling of monthly precipitation.”
J. Hydrol. Eng. 20 (4): 04014051. https://doi.org/10.1061/(ASCE)HE
.1943-5584.0001024.

Olsson, J., K. Berggren, M. Olofsson, and M. Viklander. 2009. “Applying
climate model precipitation scenarios for urban hydrological assess-
ment: A case study in Kalmar City, Sweden.” Atmos. Res. 92 (3):
364–375. https://doi.org/10.1016/j.atmosres.2009.01.015.

Olsson, J., C. B. Uvo, K. Jinno, A. Kawamura, K. Nishiyama, N. Koreeda,
T. Nakashima, and O. Morita. 2004. “Neural networks for rainfall fore-
casting by atmospheric downscaling.” J. Hydrol. Eng. 9 (1): 1–12.
https://doi.org/10.1061/(ASCE)1084-0699(2004)9:1(1).

Prudhomme, C., N. Reynard, and S. Crooks. 2002. “Downscaling
of global climate models for flood frequency analysis: Where are

© ASCE 04020013-15 J. Hydrol. Eng.

 J. Hydrol. Eng., 2020, 25(5): 04020013 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

T
ec

hn
is

ch
e 

U
ni

ve
rs

ite
it 

D
el

ft
 o

n 
03

/1
9/

21
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

http://ascelibrary.org/doi/10.1061/%28ASCE%29HE.1943-5584.0001900#supplMaterial
http://ascelibrary.org/doi/10.1061/%28ASCE%29HE.1943-5584.0001900#supplMaterial
http://www.ascelibrary.org
http://www.ascelibrary.org
https://doi.org/10.1016/j.gloplacha.2012.11.003
https://doi.org/10.1016/j.gloplacha.2012.11.003
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001351
https://doi.org/10.1002/joc.4335
https://doi.org/10.1029/2001WR000906
https://doi.org/10.1029/2001WR000906
https://doi.org/10.1007/s00477-015-1153-y
https://doi.org/10.1007/s00477-015-1153-y
https://doi.org/10.1007/s00704-007-0299-z
https://doi.org/10.1007/s00704-007-0299-z
https://doi.org/10.1111/j.1600-0870.2005.00130.x
https://doi.org/10.1175/JHM-D-13-096.1
https://doi.org/10.1175/JHM-D-13-096.1
https://doi.org/10.1175/JCLI-D-13-00063.1
https://www.met.ie/climate/available-data/historical-data
https://doi.org/10.1002/joc.1556
https://doi.org/10.1016/j.jhydrol.2004.10.021
https://doi.org/10.1029/2008WR007636
https://doi.org/10.1023/B:MACH.0000008082.80494.e0
https://doi.org/10.1016/j.advwatres.2007.07.005
https://doi.org/10.1016/j.advwatres.2007.07.005
https://doi.org/10.1002/joc.1318
https://doi.org/10.1002/joc.1318
https://doi.org/10.3354/cr019045
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1080/07011784.2015.1089191
https://doi.org/10.1080/07011784.2015.1089191
https://doi.org/10.1002/joc.1766
https://doi.org/10.1029/2009JD012882
https://doi.org/10.1029/2009JD012882
https://doi.org/10.1016/S0031-3203(02)00060-2
https://doi.org/10.1016/S0031-3203(02)00060-2
https://doi.org/10.1007/s10584-011-0156-z
https://doi.org/10.1175/1520-0442(1999)012%3C2256:AEOSAD%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(1999)012%3C2256:AEOSAD%3E2.0.CO;2
https://doi.org/10.1002/joc.5091
https://doi.org/10.1007/s00704-013-1005-y
https://doi.org/10.1007/s00704-013-1005-y
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001024
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001024
https://doi.org/10.1016/j.atmosres.2009.01.015
https://doi.org/10.1061/(ASCE)1084-0699(2004)9:1(1)


we now?”Hydrol. Process. 16 (6): 1137–1150. https://doi.org/10.1002
/hyp.1054.

Rashid, M. M., S. Beecham, and R. K. Chowdhury. 2016. “Statistical
downscaling of rainfall: A non-stationary and multi-resolution ap-
proach.” Theor. Appl. Climatol. 124 (3–4): 919–933. https://doi.org/10
.1007/s00704-015-1465-3.

Sachindra, D. A., A. W. M. Ng, S. Muthukumaran, and B. J. C. Perera.
2016. “Impact of climate change on urban heat island effect and ex-
treme temperatures: A case-study.” Q. J. R. Meteorolog. Soc. 142 (694):
172–186. https://doi.org/10.1002/qj.2642.

Srinivas, V. V., B. Basu, N. Nagesh Kumar, and S. K. Jain. 2014. “Multi-
site downscaling of maximum and minimum temperature using support
vector machine.” Int. J. Climatol. 34 (5): 1538–1560. https://doi.org/10
.1002/joc.3782.

Taylor, K. E. 2001. “Summarizing multiple aspects of model performance
in a single diagram.” J. Geophys. Res.: Atmos. 106 (D7): 7183–7192.
https://doi.org/10.1029/2000JD900719.

Tipping, M. E. 2001. “Sparse Bayesian learning and the relevance vector
machine.” J. Mach. Learn. Res. 1 (Jun): 211–244.

Vapnik, V. 1995. The nature of statistical learning theory. New York:
Springer.

Vrac, M., P. Marbaix, D. Peillard, and P. Naveau. 2007a. “Non-linear stat-
istical downscaling of present and LGM precipitation and temperatures
over Europe.” Clim. Past 3 (4): 669–682. https://doi.org/10.5194/cp-3
-669-2007.

Vrac, M., and P. Naveau. 2007. “Stochastic downscaling of precipitation:
From dry events to heavy rainfalls.” Water Resour. Res. 43: W07402.
https://doi.org/10.1029/2006WR005308.

Vrac, M., M. Stein, and K. Hayhoe. 2007b. “Statistical downscaling of
precipitation through nonhomogeneous stochastic weather typing.”
Clim. Res. 34 (3): 169–184. https://doi.org/10.3354/cr00696.

Wetterhall, F., A. BÃrdossy, D. Chen, S. Halldin, and C.-Y. Xu. 2006.
“Daily precipitation-downscaling techniques in three Chinese regions.”
Water Resour. Res. 42 (11): W11423. https://doi.org/10.1029/2005WR
004573.

Wilby, R. L., L. E. Hay, W. J. Gutowski, Jr., R. W. Arritt, E. S. Takle, Z. Pan,
G. H. Leavesle, and M. P. Clark. 2000. “Hydrological responses to dy-
namically and statistically downscaled climate model output.” Geophys.
Res. Lett. 27 (8): 1199–1202. https://doi.org/10.1029/1999GL006078.

Wilby, R. L., T. M. L. Wigley, D. Conway, P. D. Jones, B. C. Hewitson,
J. Main, and D. S. Wilks. 1998. “Statistical downscaling of general cir-
culation model output: A comparison of methods.” Water Resour. Res.
34 (11): 2995–3008. https://doi.org/10.1029/98WR02577.

Wilks, D. S., and R. L. Wilby. 1999. “The weather generation game:
A review of stochastic weather models.” Prog. Phys. Geogr. 23 (3):
329–357. https://doi.org/10.1177/030913339902300302.

Wood, A. W., L. R. Leung, V. Sridhar, and D. P. Lettenmaier. 2004.
“Hydrologic implications of dynamical and statistical approaches to
downscaling climate model outputs.” Clim. Change 62 (1–3): 189–216.
https://doi.org/10.1023/B:CLIM.0000013685.99609.9e.

© ASCE 04020013-16 J. Hydrol. Eng.

 J. Hydrol. Eng., 2020, 25(5): 04020013 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

T
ec

hn
is

ch
e 

U
ni

ve
rs

ite
it 

D
el

ft
 o

n 
03

/1
9/

21
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

https://doi.org/10.1002/hyp.1054
https://doi.org/10.1002/hyp.1054
https://doi.org/10.1007/s00704-015-1465-3
https://doi.org/10.1007/s00704-015-1465-3
https://doi.org/10.1002/qj.2642
https://doi.org/10.1002/joc.3782
https://doi.org/10.1002/joc.3782
https://doi.org/10.1029/2000JD900719
https://doi.org/10.5194/cp-3-669-2007
https://doi.org/10.5194/cp-3-669-2007
https://doi.org/10.1029/2006WR005308
https://doi.org/10.3354/cr00696
https://doi.org/10.1029/2005WR004573
https://doi.org/10.1029/2005WR004573
https://doi.org/10.1029/1999GL006078
https://doi.org/10.1029/98WR02577
https://doi.org/10.1177/030913339902300302
https://doi.org/10.1023/B:CLIM.0000013685.99609.9e

