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Abstract
We can see and we can hear through the inter-
net, but not yet touch. Tactile Internet (TI) is the
paradigm that will enable the transmission of tac-
tile feedback through the internet. TI requires Ultra
Low Latency (ULL) networking to prevent desyn-
chronization. Reaching the ULL requirements for
medium to long distances is not possible without
breaking the known physical limits of the speed
of light. We propose instead to bypass these re-
quirements by running a physical simulation of the
controlled environment to perform predictions be-
fore the information can arrive. To this end, effi-
cient low-polygon 3D meshes from the objects in
the environment are required for physical simula-
tion. The focus of this work is on reconstructing
these meshes from point cloud scanners. Through
a combination of Marching Cubes [10] mesh re-
construction and Hoppe’s Mesh Simplification [6],
point clouds with up to 20mm Gaussian noise can
be accurately reconstructed into compact low poly-
gon meshes.

1 Introduction
Right now the internet is limited to the transfer of visual and
auditive information. Yet humans are an incredibly tactile
species, especially when it comes to the execution of motor
tasks. Tactile Internet (TI) aims at making the transmission
of tactile feedback in real-time from remote locations around
the world a reality. This would enable a whole new set of
use cases for remotely operated robotic actuators, such as
for remote surgeries or maintenance of inaccessible satellites
through remote-controlled robotic arms.

The general use case of a TI application involves a human
operator, using advanced sensors and actuator devices. These
devices include sensing gloves, robotic arms, and exoskele-
tons among others. The motion input from the user is then
transferred over the network and received by the controlled
environment. The received input is then used to execute the
desired intent of the human operator by robotic actuators. The
controlled environment must then communicate with the op-
erator the updated environment as well as force feedback to
keep the system in sync.

While promising, TI still poses various challenges. The
biggest one is the ultra-low latency (ULL) requirement of
sub 10ms round-trip latency [5]. Above 10ms, the quality
of feedback between the human operator and the controlled
environment becomes of poor quality. While advancements
in networking and innovations in 5G are making drastic im-
provements on latency times, physical laws still set a ceiling
for maximum improvement. Even if networks transmitted in-
formation as fast as the speed of light in a vacuum, the round-
trip latency of communications between opposite parts of the
globe would still be above 200ms [4]. But what if the tactile
feedback information could be known before it is received?

A physical simulation of the controlled environment run-
ning on the master environment could be used to predict the

Figure 1: On the left is an example of a polygon mesh. On the right
an example of a point cloud sampled with random Montecarlo from
the left mesh.

results of the human operator’s actions in real-time, thus by-
passing the ULL requirements. This creates a whole new set
of challenges. Such a simulation would require sophisticated
synchronization algorithms. These would keep the controlled
environment up to date with the simulation despite medium
latency and package loss while making sure the human oper-
ator does not notice that the physics with which he is inter-
acting is simulated. The simulation would also require a ro-
bust method of transforming the real-world environment into
a digital environment that can be used for computations. This
is what this research project is mainly focused on.

Point Clouds Humans and animals can reconstruct their vi-
sual environment through color only. But it is much easier for
computers to do the same if the images have depth informa-
tion. This is what Point Clouds are. A point cloud is a set
of 3D points used to represent laser scans and depth images.
An example can be seen in Figure 1. It used to be that 3D
depth imaging could only be done with expensive equipment
but this is no longer the case. Nowadays cheap commod-
ity hardware that can produce point clouds is easily available
for consumers, with even high-end smartphones having point
cloud scan capabilities.

Polygon Meshes Using depth cameras in the controlled en-
vironment, the color and depth data can be used to reconstruct
3D models for physical simulation. 3D objects are usually
represented as polygon meshes. Meshes are a collection of
vertices and faces, with the faces generally being triangles or
quadrilaterals. An example polygon mesh can be seen in Fig-
ure 1. A physics engine can then use these meshes to simulate
collisions, friction, and reactive forces for tactile feedback.

The main sub-question of this research project is to find the
most efficient way of generating a polygon mesh from a point
cloud with as much resemblance to the original point cloud
as possible. The technique should be robust against potential
noise on the point clouds since commercial point cloud scan-
ners are not perfect and have readings with various degrees of
noise. Also important is the reduction of the polygon counts
of the generated mesh to reduce bandwidth utilization and the
processing power necessary to run the simulation.



1.1 Contribution
This paper brings a few contributions to the field of Tactile In-
ternet. Mainly it describes a procedure for turning real-world
object point clouds into polygon meshes for tactile simula-
tion. Secondly, it provides insight into how much noise is tol-
erated by the popular Marching Cubes mesh reconstruction
technique. This paper also investigates the ideal degree of
mesh simplification on reconstructed meshes. This makes it
possible to know how much mesh simplification is too much
before the error increases in a noticeable way.

2 Methodology
The procedure described in this paper can be split up into two
major steps. Mesh reconstruction and then mesh simplifica-
tion. In this section, both of these parts will be described in
detail.

2.1 Mesh Reconstruction
There are plenty of mesh reconstruction techniques in the
literature. A survey by Huang et al. [8] benchmarks vari-
ous of the most well-known mesh reconstruction techniques.
Among the techniques described, Screened Poisson Surface
Reconstruction [9] stands out as one of the best-performing
methods, even surpassing deep-learning based models.

Screened Poisson Surface Reconstruction This technique
consists of modeling the surface reconstruction problem as
a Poisson equation. The biggest downside of this technique
is that it is not designed to work well with non-watertight
surfaces. This is a problem for Tactile Internet since many
objects will be scanned from only one perspective if they
have not moved yet, thus yielding an incomplete point cloud.
And as seen in Figure 2, Poisson Reconstruction leaves some
residue on its attempt to close the mesh. While it is possible
to have yet another algorithm for trimming the excess, this is
both computationally expensive and error-prone.

Marching Cubes An alternative to Poisson Reconstruc-
tion that does not require watertight surfaces is Marching
Cubes [10]. The simplest version of this algorithm consists
of a fixed-size cube that traverses in small steps the whole
point cloud, inserting different arrangements of triangles on
the reconstructed mesh depending on how many and the po-
sition of points of the cloud found inside the marching cube.
More advanced versions include an adaptive cube and step
size [12] which results in more detailed geometry. This is at
the expense of more complex meshes and longer computation
times.

As seen in the Screened Poisson Surface reconstruction
paper [9], in the table comparing qualitatively and quantita-
tively 8 other different surface reconstruction algorithms. The
Marching Cubes implementation of Hoppe et al. [7] provides
a good trade-off between quality and speed. Next will the
different mesh simplification algorithms be analyzed.

2.2 Mesh Simplification
All the mesh reconstruction algorithms generate very detailed
meshes with excess triangles. This holds especially true for
very simple geometries, such as flat faces and simple curves.

Figure 2: On the left is a partial point cloud scan of a mug. On the
right is a mesh generated using Poisson Reconstruction [9]. Since
the point cloud does not represent a watertight surface a residue layer
forms on the outer part of the mesh. The point cloud scan of the mug
was obtained from [1].

A simple flat face from a reconstructed mesh can use hun-
dreds of triangles when it should be possible to represent it
with just 2 triangles. Although properly finding simple sur-
faces that could be simplified in a point cloud is a very diffi-
cult task. More complex surfaces are not as straightforward
to simplify. Many existing techniques deal with this problem.
The most prominent will be listed in this subsection.

Edge Collapse based Algorithms There is a subset of
mesh simplification techniques that falls into the Edge Col-
lapse category. These techniques rely on the property of trian-
gle meshes that an edge can be easily removed by collapsing it
into one of its vertices. This simple operation can be applied
multiple times until the desired level of detail is achieved.
But for these simplifications to be accurate, the next edge to
be collapsed must be carefully chosen to minimize the loss
of the original mesh’s shape. For this, different cost func-
tions have been developed. The simplest one of all consists of
choosing the shortest edges whose faces form the least sharp
angle [11].

||u− v|| ·max
f∈Tu

{min
n∈Tuv

1− fnorm · nnorm

2
}, (1)

Where u and v are vertices in the mesh. Tu is the set of
triangles that contain u and Tuv is the set of triangles that
contain both u and v. xnorm stands for the direction of the
normal of plane x.

This algorithm is very fast but not great at preserving
global features of shapes. One of the more advanced tech-
niques is that of Hoppe [6].

E(M) = Edist(M) + Erep(M) + Espring(M), (2)

Where M is a mesh. The Erep(M) term is a penalty for the
number of vertices in the mesh. The Espring(M) term is the
spring energy and it is introduced for regularization.

Instead of using a cost function, Hoppe attempts to mini-
mize an energy function through well-chosen edge collapse
operations. While at first sight Hoppe’s mesh simplification
seems prohibitively slow based on the results published in
the paper (simplification taking tens of minutes for a single,



Figure 3: Original meshes used for testing. All shapes were cre-
ated with Blender [3]. Top row: cube, cylinder, cone. Bottom row:
sphere, torus, monkey.

medium mesh), this paper was originally published in 1996
and computers have become exponentially faster since.

By combining a surface reconstruction algorithm with a
mesh simplification algorithm an accurate yet efficient mesh
can be generated for physical simulations.

3 Experimental Setup
The goal is to generate, from a real object, a mesh that feels
accurate to human touch and is as low in polygons as possible
so that valuable bandwidth and computation costs are saved
for the simulation. To properly measure the accuracy of the
technique a ground truth model is necessary.

A test set of meshes ranging from simple geometric shapes
to more complex geometries was used for the experiment,
these can be seen on Figure 3. These meshes are primitives of
the open-source 3D modelling software Blender [3]. All their
bounding boxes are approximately 1m wide. A synthetic
point cloud will be sampled from an already existing poly-
gon mesh using random Montecarlo sampling on the faces of
the mesh. The generated mesh from this point cloud can then
be reliably compared with the original mesh from which the
point cloud was sampled. To test for the robustness of the so-
lution, varying amounts of noise was added to the point cloud
sampling.

To perform accuracy measurements an error metric is nec-
essary. It is difficult to compare meshes directly from their
component vertices and faces as these will not be triangulated
in the same way. An error metric that works independently
of the original vertex positions is necessary. The most well-
studied error measurement for 2 polygon meshes that fulfills
these criteria is the Hausdorff Distance [2]. The Hausdorff
Distance is defined as the minimum distance between a ver-
tex on one mesh and all the other vertices on the other mesh.
Since the number of vertices can get quite low on the more
simplified meshes, vertices are also sampled from the faces
of the mesh. The Mean Error results shown in this paper are
produced from averaging 50,000 samples of the Hausdorff
Distance between meshes.

Figure 4: Reconstructed meshes from sampled point clouds with no
noise and 0.1 sampling distance.

Figure 5: Marching cubes reconstruction varying noise with 0.1
sampling distance. Top Row: Original, 0mm and 10mm noise
Bottom Row: 20mm, 30mm and 40mm noise. From 30mm on
wards, the noise results in significant deformations.

4 Results
In this section, the results will be analyzed. First the results of
Mesh Reconstruction and then those of Mesh Simplification
using the reconstructed meshes as input.

4.1 Mesh Reconstruction
On the point clouds with no noise, marching cubes gener-
ates an accurate mesh reconstruction of the original sampled
mesh. Examples of the reconstructed meshes with no noise
applied can be seen in Figure 4. Curved shapes like the torus
are very accurately reconstructed. Sharp edges such as in the
cube lose some of their detail. The monkey loses a lot of
detail on the mouth, ears, and eyes but its overall structure
remains.

Marching cubes, using a sampling distance of 0.1, works
well with up to 20mm of noise. Using marching cubes on the
point clouds with 40mm noise produces meshes with signif-
icant deformations. Even on the 20mm noise meshes, there
are still some small but significant deformations, but on av-



Figure 6: Marching cubes reconstruction on torus with 40mm noise
and varying sampling distance. With sampling distances of 0.1, 0.15
and 0.20 respectively. A higher sampling distance reduces the detail
of the reconstructed mesh but improves it’s tolerance to noise.
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Figure 7: Hausdorff error as a function of number of faces on each
mesh throughout simplification. The error remains mostly flat ini-
tially and then spikes as most of the redundant faces generated by
Marching Cubes have already been decimated.

erage the meshes look well and the Mean Hausdorff Error is
low. An example of the reconstructed torus with varying lev-
els of Gaussian noise can be seen in Figures 5.

Varying the sampling distance of marching cubes can re-
sult in different degrees of tolerance against noise. The trade-
off is that a larger sampling distance results in less detailed
meshes. Examples of varying the sampling distance can be
seen in Figure 6. Since popular commercial point cloud scan-
ners have a noise standard deviation of around 17mm [13],
a sampling distance of 0.1 seems like a good choice for TI
applications as it can accurately reconstruct point clouds with
around 20mm noise.

4.2 Mesh Simplification
After reconstructing the meshes, the next step is reducing
the face count through simplification. From Figure 7 it can
be clearly seen that a big percentage of the faces generated
by mesh reconstruction are completely redundant and do not
contribute at all to the important features of the mesh. This
can be seen by the flat initial error curve. Well over 80% of
the faces in each reconstructed mesh can be simplified with-
out incurring much penalty on the error. Curved shapes like
the sphere and torus are greatly simplified, even going below
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Figure 8: Mean Hausdorff error as a function of number of faces on
cone with varying degrees of noise throughout simplification. The
black dashed line symbols the face count of the original mesh. It can
be observed here that mesh simplification even manages to initially
reduce mean error on the high noise samples.

the original mesh’s face count without a big increase in error.
But for a sharp shape like the cube the original face count
is not reached before a big jump on root mean square error.
This is probably more to blame on the mesh reconstruction
algorithm than on the mesh simplification algorithm since the
initial meshes for simplification do not preserve the original
sharp edges very well. As expected, the monkey mesh being
the most complex, also has the highest amount of error. Also
interesting to notice is how the mesh simplification algorithm
even manages to reduce the error on high noise reconstruc-
tions in Figure 8.

One of the main questions on mesh simplification was how
to know when to stop simplifying a mesh. Computing the
Mean Hausdorff Error metric after each iteration of edge col-
lapse is prohibitively expensive. Hoppe’s mesh simplifica-
tion algorithm aggregates the maximum directional residual,
a form of error estimation, while it computes the next opti-
mal edge for collapse. While not as accurate as Hausdorff
error, this maximum directional residual can give a good es-
timate on when the simplification has gone too far. Looking
at mean Hausdorff error plotted together with the maximum
directional residuals on Figure 9, it can be seen that a good
estimate is to stop simplification when the maximum residu-
als reach around 0.1, this is right before the big spike in error
starts to happen. An example of the 20mm noise models sim-
plified until the maximum directional residual reaches 0.1 can
be seen on Figure 10.
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Figure 9: Mean Hausdorff Error (MHE) and Maximum Directional
Residual (MDR) as a function of number of faces on each mesh
throughout simplification. After the MDR reaches 0.1 the MHE
starts spiking, stopping here ensures the error remains low without
needing to calculate MHE on each simplification iteration.

Figure 10: 20mm Gaussian noise point clouds reconstructed into
meshes simplified until maximum directional residual exceeds 0.1.

Shape Nfaces
Recon
Nfaces

Result
Nfaces

Reduction
% MHE

cone 62 2952 104 96.5 0.00887

cube 12 4796 118 97.5 0.00488

cylinder 124 4476 158 96.5 0.00748

monkey 967 3770 926 75.4 0.0213

torus 1152 2512 134 94.7 0.0143

sphere 960 3948 116 97.1 0.0111

Table 1: Shows the overall results of running the complete pipeline
on the 20mm Gaussian noise test clouds. Nfaces is the number of
faces on the original meshes. Recon Nfaces is the number of faces on
the mesh reconstructed using Marching Cubes. Result Nfaces is the
number of faces on the reconstructed mesh after simplifying until the
maximum directional residual exceeds 0.1. Mean Hausdorff Error
(MHE) is the average error of the resulting mesh. The resulting
meshes can be seen on Figure 10.

5 Responsible Research
It is important to ensure the reproducibility of the results de-
scribed in this paper. To ensure this, the source of the original
test meshes was described in the previous section, as well as
the methodology used for error measurement. All methods
used from other works are cited and all the algorithms used
are specified along with their respective parameters used.

6 Future Work
There is still a lot of research to be done. Some potential
research paths stemming from this paper are the following:

• Tactile Error Metrics While the Hausdorff Distance is
a great general purpose error metric for mesh compari-
son, it is unknown how this metric correlates with how
accurate an object feels to touch. Further research could
experiment on how much Hausdorff error (or perhaps
other error metrics) is tolerated by human operators be-
fore they notice that what they are touching is not the
object itself, but a reconstruction.

• Further testing with organic shapes and real point
clouds All testing on this paper was performed on a
small and artificial set of objects. While most real-world
man-made objects with which we interact daily have
similar shapes to what was tested. It would still be rele-
vant to test the procedure with more organic shapes and
using real point clouds instead of sampled point clouds.

• Preservation of sharp features The accuracy of this
method on smooth surfaces is very promising. But
sharper features are not preserved that well. This can be
seen in the jagged edges produced from the reconstruc-
tion and simplification of the cube, cylinder, and cone.

• Detection and Simplification of planes Planes are not
simplified completely. This can be seen on the cube re-
quiring 5 times more faces than on its original mesh.
Future algorithms could have a special case for sur-
faces that are planes and simplify them accordingly. Flat



planes are quite common in the real world so this could
result in significant improvements.

• Environment motion to simulation motion Since even
the best mesh reconstruction techniques are still expen-
sive to compute (with run times in the seconds instead
of milliseconds), it is not possible to execute mesh re-
constructions on every frame of the simulation. There
has to be a way for the system to generate a mesh once
per object. And then map the motions of the real object
to the mesh inside the simulation instead of having to
reconstruct it again.

7 Conclusions
Tactile Internet is still in its infancy and the research to
achieve the ambitious goal of Ultra-Low Latency (ULL) is
just getting started. We believe that the best approach for
achieving this is through a simulated version of the remote
physical environment. This research paper should be a step-
ping stone in this direction, providing a potential technique
for mesh generation from objects in the physical environment.

Various mesh reconstruction methods were analyzed. Pois-
son reconstruction techniques are not suited for partial point
cloud data. Marching Cubes surface reconstruction can ac-
curately reconstruct point clouds while preserving significant
detail tolerating up to 20mm of Gaussian noise. Improve-
ments can still be made to the preservation of sharp edges
and features.

Reconstruction techniques produce very dense and redun-
dant meshes. Mesh Simplification manages to cut the num-
ber of reconstructed faces by up to 97% without significant
increases in error. This makes the resulting meshes almost 2
orders of magnitude more bandwidth and compute efficient,
ideal for Tactile Internet utilization.

Combining Marching Cubes with Hoppe’s Mesh Simpli-
fication produces accurate and efficient low polygon meshes
that can be readily used on future physical simulations for
Tactile Internet (TI).
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