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Preface

This story has started in August of 2014. It was a beautiful warm summer evening,
which we spent out of town with the whole family. David and Liia were already 8
months old. We were enjoying dinner outside and having a nice usual chat just
about everything. We had already been lightly thinking about moving somewhere
abroad for some time, but by the end of that calm and quiet evening Alina and I
suddenly realized: it is now or never. So, I picked up the phone and called the
only person abroad that I knew well  Denis. Until our determination was gone, I
wanted to ask if he has anything to suggest  and of course he did.

A year later, we got off a plane and set foot on Dutch soil, as I accepted a
PhD candidate position in Delft University of Technology under Denis’s supervision.
My experience in the development of reservoir simulators and highperformance
computing provided certain confidence in the success, creating high pressure on
the level of achievements to reach on the other hand. Denis helped to define
the right mindset  I desired to use the unique opportunity of working under his
guidance for 4 years to create something really interesting, useful, and of course
fast.

More than 4 years, 15.000 cycled kilometres, and 100.000 written lines of code
later, at this very moment, I can say that the results have exceeded my wildest
expectations. The book you are holding now is a mere compilation of the published
materials over these years. Could it be written better including more thorough
and consistent investigations? Definitely, yes. However, a lot of effort has been
deliberately put in flexibility, reusability, conciseness, and modularity of architecture
of the reservoir simulation platform that we created. DARTS is already used by many
MSc and PhD students, postdocs in our department for their research. Moreover,
my faith in its both academic and industrial potential is so strong, that I decided to
carry on as a postdoc at TU Delft to be able to continue this work.

Given the complexity of the algorithms and software that we design, I share
the opinion that corresponding source code should be made available for the entire
community, complementing the published materials for the sake of reproducible
research. Therefore, I set myself a goal to make DARTS publicly available and
hereby complete my scientific contribution. I am impatient to see how it will evolve
over the next few years. And another calm yet fateful family evening may follow...

Mark KHAIT
Delft, November 2019

xi





Summary

The modern development of subsurface resources requires numerical reservoir sim
ulation. It is used to predict and compare the performance of different reservoir
development schemes as well as to reduce uncertainties in parameters estimation
and associated field management risks. Growing computational power available in
the highperformance computing market spawned a higher demand for more com
plex, accurate, and larger models. However, these complexities often challenge the
performance of the simulation process.

The opening Chapter 1 briefly introduces the current context of general purpose
reservoir simulation. Nonisothermal multiphase compositional simulation is based
on the solution of governing equations describing mass and energy transfer in the
subsurface. Usually, a Newtonbased method is used to solve a strongly nonlin
ear system of residual equations robustly and efficiently. It requires linearization
stage consisting of Jacobian assembly for a fully coupled system of equations. This,
in turn, requires the determination of the derivatives of all the residual equations
with respect to independent variables. Linearization completely defines the mod
elling capabilities of a reservoir simulator and often represents the most specific,
complicated, and volumetric part of its source code.

A novel OperatorBased Linearization (OBL) method for multiphase composi
tional fluid flow and transport in the subsurface is established in Chapter 2 and
extended to support thermal and buoyancy effects in Chapter 3. The approach
simplifies the Jacobian assembly introducing discretization of the physical descrip
tion of fluid and rock in addition to space and time discretizations. The tradeoff
between accuracy and performance of a reservoir simulator receives thereby a new
degree of freedom. Coarse resolutions of discretization of physical properties, de
livering satisfiable solution accuracy, can substantially improve the nonlinear con
vergence of the complex thermalcompositional problems. Besides, OBL decouples
physical description of fluid and rock from the main simulator core creating unique
opportunities in the architecture of a reservoir simulator.

The applicability of the OBL approach to the general purpose reservoir simu
lation problems is demonstrated for different physical kernels including deadoil,
blackoil, isothermal compositional fluids with 4 and 6 components, low and high
enthalpy geothermal, and thermalcompositional multiphase formulations. As a rule
of thumb, a resolution of 64 uniformly distributed points along each of parameter
space axes within the required range is sufficient for an accurate representation of
fluid and rock properties. On the other hand, the limited coarsening of parame
ter space improves the nonlinear convergence in most cases. The performance of
the OBL approach benefits from the simplified assembly of Jacobian of the simula
tion problem and almost complete bypass of phase behaviour calculations (except
supporting points).

xiii



xiv Summary

Chapter 4 describes and compares several prototype implementations of the
OBL approach, revealing the difference in computational performance depending on
chosen software and hardware platforms. The linearization approach was initially
designed within Automatic Differentiation General Purpose Research Simulator (AD
GPRS) framework and then implemented in standalone simulators in MATLAB, C++
(for CPU platform), and C++/CUDA (for GPU platform). The latter prototype was
implemented for both CPU and GPU platforms. Compared to conventional ADbased
linearization, the singlethreaded CPU prototype performs the Jacobian construction
up to 19x times faster, while the GPU prototype boosts the linearization by a factor
of 260x.

The Delft Advanced Research Terra Simulator (DARTS) is introduced and de
scribed in Chapter 5. It combines the experience and knowledge obtained during
previous iterations of OBL implementation. Having kept all performancecritical
parts of simulator core in C++, DARTS exploits physical description decoupling to
the full extent, providing Pythonbased plugin interface to customize fluid and rock
properties. DARTS demonstrates how the architecture of a reservoir simulator can
reveal the performance potential of OBL in three independent levels: improved non
linear performance  algorithmic level; actual performance of linearization stage 
software level; portability to alternative computing architectures including GPU 
hardware level.

Finally, Chapter 6 discusses current DARTS applications and future develop
ments. Two different approaches of nonuniform parameterization of physical space
are investigated. A significant increase in parameterization accuracy was confirmed
compared to uniform parameterization with a similar amount of supporting points in
most cases. In addition, DARTS platform can be easily and efficiently used to create
different kinds of proxy models. For example, MultiScale Compositional Transport
(MSCT) approach approximates the compositional description of a multicomponent
fluid with a specially built binary system. The resulting proxy model is straightfor
wardly constructed within DARTS simply by substituting restricted fractional flow
curves into operators. Another possibility to construct a proxy model in DARTS is
to coarsen the space and time discretization resolution of the full model.

Chapter 7 concludes this dissertation recapitulating the main points. Additional
accuracyperformance tradeoff provided by OBL, simplified manipulation of a sim
ulation model via Python, and exceptional computational performance make DARTS
an ultimate platform for both forward and inverse modelling. Its architecture allows
to change existing formulations and even introduce new physical descriptions with
minimal efforts not sacrificing computational performance. Furthermore, the com
plete transition of the main simulation loop to GPU, along with the implementation
of adjoint gradients will allow taking the inverse modelling performance on a new
level.



Samenvatting

De moderne ontwikkeling van ondergrondse bronnen vereist numerieke reservoir
simulatie. Het wordt gebruikt om de prestaties van verschillende reservoir ontwik
keling plannen te voorspellen en te vergelijken, en om onzekerheden in de schatting
van parameters en bijbehorende veldbeheer risico’s te verminderen. Toenemende
rekenkracht die beschikbaar is gekomen binnen de hogeprestatie computatie markt
heeft tot een hogere vraag naar complexere, nauwkeurigere en grotere modellen
geleidt. Deze complexiteit daagt echter vaak de prestaties van het stimulatie pro
ces uit. Hoofdstuk 1 geeft een korte introductie over wat de huidige context van
reservoir simulatie voor algemene doeleinden is. Nietisotherme meerfasige com
positie simulatie is gebaseerd op de oplossing van vergelijkingen die de massa en
energieoverdracht in de ondergrond beschrijven. Normaal gesproken wordt een
op Newton gebaseerde methode gebruikt om een   sterk nietlineair systeem van
restvergelijkingen robuust en efficiënt op te lossen. Het vereist een linearisatie
fase bestaande uit Jacobiaanse constructie voor een volledig gekoppeld stelsel ver
gelijkingen. Dit vereist op zijn beurt de bepaling van de afgeleiden van alle rest
vergelijkingen met betrekking tot onafhankelijke variabelen. Linearisatie definieert
volledig de modellering mogelijkheden van een reservoir simulator en vertegen
woordigt vaak het meest specifieke, gecompliceerde en het grootste deel van de
broncode. Een nieuw uitgevonden OperatorBased Linearisation (OBL) methode
voor meerfasige compositie vloeistofstroming en transport in de ondergrond is vast
gesteld in Hoofdstuk 2 en uitgebreid om thermische en drijfvermogen effecten in
Hoofdstuk 3 te ondersteunen. De benadering vereenvoudigt de constructie van de
Jacobian die discretisatie van de fysieke beschrijving van vloeistof en gesteente in
troduceert naast ruimte en tijddiscretisaties. De afweging tussen nauwkeurigheid
en prestaties van een reservoir simulator krijgt daardoor een nieuwe graad van vrij
heid. Een grove resolutie in de discretisatie van fysische eigenschappen, die een
tevreden nauwkeurigheid van de oplossing leveren, kan aanzienlijk de nietlineaire
convergentie van de complexe thermische compositie problemen verbeteren. Bo
vendien ontkoppelt OBL de fysieke beschrijving van vloeistof en gesteente van de
hoofd simulatorkern en creëert het unieke kansen in de architectuur van een re
servoir simulator. De toepasbaarheid van de OBLbenadering op de reservoir simu
latie problemen voor algemene doeleinden wordt aangetoond voor verschillende
fysieke kernen waaronder dodeolie, zwarteolie, isothermische vloeistoffen met
meervoudige componenten met 4 en 6 componenten, geothermische met lage en
hoge enthalpie, en thermische formuleringen voor vloeistof met meervoudige com
ponenten. Als vuistregel is een resolutie van 64 uniform verdeelde punten langs
elk van de parameter ruimteassen binnen het vereiste bereik voldoende voor een
nauwkeurige weergave van vloeistof en gesteenteeigenschappen. Anderzijds ver
betert de beperkte vergroting van de parameter ruimte in de meeste gevallen de

xv



xvi Samenvatting

nietlineaire convergentie(this sentence might need to restructuring, not sure what
you exactly want to say here). De prestatie van de OBLbenadering is gebaat bij de
vereenvoudigde constructie van de Jacobian van het simulatie probleem en via een
bijna volledige vermijding van de fasegedrag berekeningen (behalve ter plaatse
van ondersteunende punten). Hoofdstuk 4 beschrijft en vergelijkt verschillende
prototypeimplementaties van de OBLaanpak. Vervolgens wordt het verschil in
rekenprestaties onthuld welke afhankelijk is van de gekozen software en hardware
platforms. De linearisatie benadering werd oorspronkelijk ontworpen binnen het
ADGPRS (Automatic Differentiation General Purpose Research Simulator) kader en
is vervolgens geïmplementeerd in zelfstandige simulators in MATLAB, C ++ (voor
CPUplatform) en C ++ / CUDA (voor GPUplatform). Het laatste prototype werd ge
ïmplementeerd voor zowel CPU als GPUplatforms. Vergeleken met conventionele
ADgebaseerde linearisatie, voert het singlethreaded CPUprototype de Jacobian
constructie tot 19x keer sneller uit, terwijl het GPUprototype de linearisatie met
een factor van 260x versneld. De Delft Advanced Research Terra Simulator (DARTS)
wordt geïntroduceerd en beschreven in Hoofdstuk 5. Het combineert de ervaring
en kennis die is opgedaan tijdens eerdere iteraties van de OBLimplementatie. Alle
prestatiekritische delen van de simulator kern zijn ontwikkeld in C ++ en wordt een
op Python gebaseerde interface om vloeistof en gesteenteeigenschappen aan te
passen aangeboden. Hierdoor maakt DARTS optimaal gebruik van de ontkoppeling
van de fysische beschrijving en het numerieke rekenwerk. DARTS laat zien hoe
de architectuur van een reservoir simulator het prestatiepotentieel van OBL op drie
onafhankelijke niveaus kan onthullen: verbeterde nietlineaire prestaties  algorit
misch niveau; werkelijke prestaties van linearisatie fase  software niveau; draag
baarheid naar alternatieve computerarchitecturen inclusief GPU  hardware niveau.
Ten slotte bespreekt Hoofdstuk 6 huidige DARTStoepassingen en toekomstige ont
wikkelingen. Twee verschillende methodes van nietuniforme parameterisatie van
fysieke ruimte worden onderzocht. In de meeste gevallen werd een significante toe
name van de nauwkeurigheid van de parametrering bevestigd in vergelijking met
een uniforme parametrering met een vergelijkbaar aantal ondersteunende punten.
Bovendien kan het DARTSplatform eenvoudig en efficiënt worden gebruikt om ver
schillende soorten proxymodellen te maken. De benadering van MultiScale Com
positional Transport (MSCT) benadert bijvoorbeeld de beschrijving van een vloeistof
met meerdere componenten met een speciaal gebouwd binair systeem. Het re
sulterende proxymodel is eenvoudig geconstrueerd binnen DARTS door beperkte
fractionele stroomcurves te vervangen door operators. Een andere mogelijkheid
om een   proxymodel in DARTS te bouwen, is om de ruimte en tijddiscretisatie
resolutie van het volledige model te vergroten. Hoofdstuk 7 concludeert dit proef
schrift waarin de belangrijkste punten worden samengevat. Extra afweging van
nauwkeurigheid en prestaties verwezenlijkt met OBL, vereenvoudigde manipulatie
van een simulatiemodel via Python en uitzonderlijke rekenprestaties maken DARTS
een ultiem platform voor zowel voorwaartse als inverse modellering. De archi
tectuur maakt het mogelijk om bestaande formuleringen te veranderen en zelfs
nieuwe fysieke beschrijvingen te introduceren met minimale inspanning zonder de
rekenprestaties op te offeren. Bovendien zal de volledige overgang van de hoofd
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simulatielus naar GPU, samen met de implementatie van aanvullende gradiënten,
de inverse modellering prestaties naar een nieuw niveau brengen.





Nomenclature

Linearization Operators

𝛼𝑐 physical term of component mass accumulation operator

𝛼𝑒 physical term of energy accumulation operator

𝛽𝑐 physical term of component mass convection operator
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𝛽𝑐𝑔 physical term of component gravity operator

𝛽𝑐𝑝 physical term of component in phase mass convection operator

𝛽𝑒𝑔 physical term of energy gravity operator

𝛽𝑒𝑝 physical term of energy in phase mass convection operator

𝛿𝑐 physical term of component gravity operator

𝛿𝑝 physical term of phase gravity operator

𝛾𝑒 physical term of energy conductive operator
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𝜃𝑒 energy influx/outflux term

𝜁𝑝 physical term of phase rate operator

𝑎 spatial term of mass accumulation operator

𝑎𝑒 spatial term of energy accumulation operator

𝑏 spatial term of mass convection operator

𝑏𝑒 spatial term of energy convection operator

𝑏𝑝 spatial term of phase mass convection operator

𝑏𝑒𝑝 spatial term of energy in phase convection operator

𝑏𝑔 spatial term of gravity operator

𝑐𝑒 spatial term of energy conductive operator
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𝐼 interpolation operator
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𝜅𝑝 phase thermal conduction
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𝜌𝑝 phase molar density
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1
Introduction

Numerical simulations are essential for the modern development of subsurface
reservoirs [1–3]. They are widely used for the evaluation of oil recovery efficiency,
performance analysis, and various optimization problems. Due to the complexity
of the underlying physical processes and considerable uncertainties in the geolog
ical representation of reservoirs, there is a persistent demand for more accurate
models.

To increase the accuracy of a model, one can apply a more refined computa
tional grid in space or time, or use a more detailed description of the fluids, such
as in a thermalcompositional model. However, an improvement in the accuracy
of numerical models is usually counterbalanced by a reduction in the overall per
formance of the simulation. Besides, more refined space and time approximations
can increase the nonlinearity of governing equations, which need to be resolved
numerically.

Depending on the formulation, different types of nonlinear unknowns and strate
gies can be used to perform nonlinear update [4]. The most frequently used ap
proaches for reservoir simulation are the natural [5] and molar formulations [6, 7].
For natural formulation, phase behaviour computations include equally important
phase split calculation and stability test. Compared to the straightforward algo
rithm, the performance of both can be improved by 12 orders of magnitude by
using physicallybased heuristics and bypassing techniques [8] or by employing pa
rameterization idea and approximating the calculations with desired accuracy [9].
The main difference of (overall) molar formulation is that the set of variables re
mains constant in the course of simulation independently on the number of phases
in the given grid cell, avoiding the need of variable substitution. Noting that it is
difficult to compare different formulations directly and fairly, the two formulations
show comparable performance in terms of nonlinear iterations [10]. However, the
molar formulation does not allow to avoid or bypass phase equilibrium calculations
hence is likely to be slower in terms of CPU time at a single nonlinear iteration.
Confirming that, [11] also show that for miscible displacement regimes the molar

1
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formulation requires significantly less nonlinear iterations outrunning its counter
part in terms of CPU time. Also, the authors demonstrate that the parametrization
technique applies to the molar formulation, speeding up phase behaviour com
putations. Finally, it was shown recently that some specific treatments of phase
appearance or disappearance may help to improve the nonlinear behaviour of the
natural formulation in miscible regimes [12].

Fully implicit methods are conventionally used in reservoir simulation because
of their unconditional stability [1]. On the other hand, after discretization is ap
plied to governing Partial Differential Equations (PDE) of a problem, the resulting
nonlinear system represents different tightly coupled physical processes, which is
difficult to solve. Usually, a Newtonbased iterative method is applied, which de
mands an assembly of the Jacobian and the residual for the combined system of
equations (i.e., linearization) at every iteration forming a linear system of an equal
size (often illconditioned). Precisely the solution of such systems takes most of
the simulation time in most practical applications. Alternatively, localized nonlinear
solving strategies can be used. They exploit the fact that the transport mechanism
of fluid phases is in practice mostly unidirectional, exhibiting countercurrent flow
due to buoyancy and capillary forces only in local areas of the computational do
main. Therefore, it is possible to apply fluxbased reordering (see Cascade ordering
for cocurrent flow defined by [13] and generalized to address countercurrent flow
by [14]) and solve a series of nonlinear systems of reduced size localized along the
upwind direction. This strategy may involve a rearrangement of blocks of the entire
nonlinear system to exhibit lower triangular form, which is then efficiently solved
on a cellbycell basis. This approach was consistently improved over the years
by [15–17], including generalizations for an unstructured grid and compositional
formulation. Alternatively, the influence of every source of mass imbalance can be
limited to a certain neighbourhood, leading to a collection of localized nonlinear
problems which superpositioned solutions reproduce Newton update of the full sys
tem [18, 19]. These strategies, however, require sequentially coupled solution of
flow and transport equations for total velocity field construction, hence inheriting
splitting errors.

Conventionally used in most practical applications Newtonbased nonlinear solvers
require linearization. Several conventional linearization approaches exist, though
neither of them is robust, flexible, and computationally efficient all at once. Nu
merical derivatives provide flexibility in the nonlinear formulation (see [20], for ex
ample), but a simulation based on numerical derivatives may lack robustness and
performance [21]. Straightforward handdifferentiation is the stateoftheart strat
egy in modern commercial simulators [22, 23]. However, this approach requires
an introduction of a complicated framework for storing and evaluating derivatives
for each physical property, which in turn reduces the flexibility of a simulator to
incorporate new physical models and increases the probability for potential errors.

The development of Automatic Differentiation (AD) technique allows preserving
both flexibility and robustness in derivative computations. In reservoir simulation,
the Automatically Differentiable Expression Templates Library (ADETL) was intro
duced by [24]. Using the capabilities of ADETL, an Automatic Differentiation Gen
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eral Purpose Research Simulator (ADGPRS) was developed [10, 25]. Later, the AD
technique becomes more demanded in research frameworks for reservoir simulation
[26]. Certain frameworks even allow any of the mentioned linearization approaches
to be used in a particular formulation [27]. Being attractive from the perspective
of flexibility, the AD technique by design inherits computational overhead, which
affects the performance of reservoir simulation [28].

Once the linear system with Jacobian and righthand side is constructed, it needs
to be solved. Since the dimensionality of a typical reservoir simulation problem is
rather high, iterative linear solvers are usually used with effective preconditioning
schemes. Widely used twostage preconditioning scheme addresses mixed elliptic
hyperbolic behaviour of underlying nonlinear equations applying Constrained Pres
sure Residual (CPR) [29–31] to decouple an elliptic system with only pressure un
knowns. Then it can be efficiently solved using algebraic multigrid methods (AMG,
see [32, 33]) concluding the first stage of preconditioning. At the second stage,
the entire linear system is processed with finescale smoother to address high
frequency errors, and incomplete LUfactorization with zero fillin (ILU(0)) is the
standard choice [34].

Once the solution to the linear system with predefined tolerance is found, we
need to update the nonlinear unknowns and repeat the nonlinear iteration. The
nonlinear solution may require several nonlinear iterations to converge depend
ing on the nonlinearity of a problem. Even if a fullyimplicit scheme is chosen, a
standard Newton solver can fail to converge within a reasonable number of iter
ations, especially for large timesteps. In such cases, all computations related to
that timestep are discarded, and the Netwon process is repeated with a smaller
timestep. In order to address this problem, a sophisticated analysis of Newton up
dates can be made to loosely follow the solution path. For example, Continuation
Newton method assigns every nonlinear update to an inner timestep and therefore
avoids discarded nonlinear iterations [18].

The number of nonlinear iterations for transport problems can be sufficiently
reduced (implying also that more timesteps will not be discarded) by controlling the
nonlinear update of saturation variable. Several heuristic algorithms were designed
for blackoil models to prevent a rapid change of phase mobility properties, as well
as that of the magnitude of saturations themselves (e.g., Appleyard chop) [22]. The
generalization of such control of saturation update, based on a thorough analysis of
the shape of flux functions, has led to a new family of trustregion based nonlinear
solvers, established by [35]. Later, it was enhanced by [36] improving convergence
on large timesteps for viscous dominated flows, and by [37] with the focus on
strong capillary forces.

All these techniques can be straightforwardly and effectively applied to compo
sitional models with the natural formulation where saturation unknown is present
(e.g., see [38]). The Negative Saturation method is another extension of the natural
formulation helping to avoid variable substitution and apply corrections to discontin
uous changes in derivative, usually related to phase appearance and disappearance
[39, 40]. On the other hand, there is a lack of efficient advanced strategies for the
overall molar formulation, where saturation unknown is not present. A version of
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a trust region correction was developed for the molar formulation [41], but it still
lacks robustness in comparison to the natural formulation. This can be explained
by the more complicated nonlinear update procedure, which requires performing
an exact flash for every block at a twophase state in each nonlinear iteration.

This problem can be avoided by using parameterization in compositional space
instead. A strategy, based on the Compositional Space Parameterization idea [9],
was designed by [11]. The nonlinear solver based on a special point correction
along the fractional flow curve has proved to be robust and efficient [11]. However,
this approach requires reformulation of a nonlinear problem in a tieline space and
formally cannot be applied to the conventional molar formulation [42].

Another approach for the molar formulation called OperatorBased Linearization
(OBL), was proposed recently in [43]. It could be seen as an extension of the idea to
abstract the representation of properties from the governing equations, suggested
in [11] and [44]. In the OBL approach, the parameterization is performed based on
the conventional molar variables. A similar approach can be designed for the natural
formulation, but it requires dealing with several parameter spaces and switching
between them.

In the OBL approach, all properties involved in the governing equations are
lumped in a few operators, which are parameterized in the physical space of the
simulation problem either in advance or adaptively during the simulation process.
The control on the size of parameterization hyperrectangle helps to preserve the
balance between the accuracy of the approximation and the performance of non
linear solver [45]. Note, that the OBL approach does not require the reduction in
the number of unknowns, and only employs the fact that physical description (i.e.,
fluid properties) is approximated using piecewise linear interpolation.

1.1. Research Objectives
Numerical simulation is based on space and time discretization, which provides a
tradeoff between accuracy and computational performance. The OBL approach can
be viewed as an attempt to build such a discretization for the physical description
of fluid and rock. The research objectives addressed by this work are:

• Investigate the applicability of the OBL approach to general purpose reservoir
simulation based on thermalcompositional description.

• Develop a general purpose simulation framework targeting to exploit the ad
vantages of OBL to the full extent.

• Investigate how OBL can be coupled with modern software and hardware
architectures to improve flexibility and performance of reservoir simulation.

1.2. Thesis Outline
The dissertation consists of seven chapters, including this introductory Chapter 1.
First, we show the applicability of the OBL approach to multiphase multicomponent
mass transport and demonstrate the numerical convergence of physical solutions
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based on the OBL technique for problems with up to 6 components in Chapter 2.
Chapter 3 describes the extension of the OBL method to account for energy balance
and buoyancy. We investigate several approaches for the robust treatment of grav
ity forces and demonstrate its applicability for challenging thermalcompositional
problems including a fullfield example.

Then, we describe the details of OBL implementation in different prototypes
in Chapter 4. Based on several numerical models with various physical descrip
tions, the computational performance of prototypes is compared, including an en
tirely GPUbased implementation. Chapter 5 presents a detailed description of the
Delft Advanced Research Terra Simulator (DARTS). It provides a simulation frame
work built around the OBL approach in an attempt to maximize its flexibility and
performance. We show how this attempt affects the architecture of the reservoir
simulation framework and what advantages it allows to achieve. Sensitivity to the
resolution of the OBL representation is investigated. Benchmarks comparing the
accuracy of the numerical solution and computational performance with other sim
ulators are also provided.

Finally, Chapter 6 shows several applications of DARTS and describes how the
OBL method can be advanced further. We demonstrate two approaches for a
nonuniform OBL parameterization and describe proxymodelling within the DARTS
framework. Chapter 7 concludes the work and defines perspectives of further de
velopment of OBL and DARTS.





2
OperatorBased Linearisation

(OBL)

2.1. Governing Equations
First, we describe one of the conventional nonlinear formulations for a general pur
pose compositional model. This formulation was implemented in the Automatic
Differentiation General Purpose Research Simulator (ADGPRS)[10] and is used to
obtain the reference solution. Mass transport for a system with 𝑛𝑝 phases and 𝑛𝑐
components is considered. For this model, the 𝑛𝑐 component molar mass conser
vation equations can be written as

𝜕
𝜕𝑡 (𝜙

𝑛𝑝

∑
𝑝=1

𝑥𝑐𝑝𝜌𝑝𝑠𝑝) + div
𝑛𝑝

∑
𝑝=1

𝑥𝑐𝑝𝜌𝑝𝑢𝑝

+
𝑛𝑝

∑
𝑝=1

𝑥𝑐𝑝𝜌𝑝 ̃𝑞𝑝 = 0, 𝑐 = 1,… , 𝑛𝑐 . (2.1)

Here, 𝑡 is time, 𝜙 is effective rock porosity, 𝑥𝑐𝑝 is component 𝑐 concentration in
phase 𝑝, 𝜌𝑝 denotes phase 𝑝 molar density, 𝑠𝑝 is saturation of phase 𝑝, 𝑢𝑝 is
velocity of phase 𝑝, and ̃𝑞𝑝 denotes source of phase 𝑝.

Phase flow velocity is assumed to follow the Darcy law:

𝑢𝑝 = −(𝑲
𝑘𝑟𝑝
𝜇𝑝
(∇𝑝𝑝 − 𝛾𝑝∇𝐷)), (2.2)

where 𝑲 is the effective permeability tensor, 𝑘𝑟𝑝 is phase 𝑝 relative permeability,
𝜇𝑝 is phase 𝑝 viscosity, 𝑝𝑝 is phase 𝑝 pressure, 𝛾𝑝 is vertical pressure gradient, and
𝐷 is depth.
Parts of this chapter have been published in Journal of Petroleum Science and Engineering 157, 990
(2017) [46]
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Equation 2.1 is then approximated in time using a Fully Implicit Method (FIM).
The method suggests that the convective flux term depends on the values of non
linear unknowns at the current time step. After application of a finitevolume dis
cretization on a general unstructured mesh and a backward Euler approximation in
time we get

𝑉 ((𝜙
𝑛𝑝

∑
𝑝=1

𝑥𝑐𝑝𝜌𝑝𝑠𝑝) − (𝜙
𝑛𝑝

∑
𝑝=1

𝑥𝑐𝑝𝜌𝑝𝑠𝑝)

𝑛

)

−Δ𝑡∑
𝑙
(
𝑛𝑝

∑
𝑝=1

𝑥𝑙𝑐𝑝𝜌𝑙𝑝Γ𝑙𝑝Δ𝜓𝑙) + Δ𝑡
𝑛𝑝

∑
𝑝=1

𝑥𝑐𝑝𝜌𝑝q𝑝 = 0, 𝑐 = 1,… , 𝑛𝑐 , (2.3)

where 𝑉 is volume of mesh grid block and 𝑞𝑝 = ̃𝑞𝑝𝑉 is a source of phase 𝑝
over the control volume. Here, we have neglected capillarity, gravity and used
a TwoPoint Flux Approximation (TPFA) with an upstream weighting. Therefore,
Δ𝜓𝑙 becomes a simple difference in pressures over an interface 𝑙. In addition,
Γ𝑙𝑝 = Γ𝑙𝑘𝑙𝑟𝑝/𝜇𝑙𝑝 is a phase 𝑝 transmissibility over interface 𝑙, with Γ𝑙 assumed to
be the constant geometrical part of transmissibility, including rock permeability and
geometry of the control volumes connected by interface 𝑙. All terms of the equations
are defined at 𝑛+1 timestep, except the second part of accumulation term denoted
by 𝑛 superscript.

This choice of a fullycoupled approach introduces nonlinearity into the sys
tem, which is further increased by the closure assumption of instantaneous ther
modynamic equilibrium. In this formulation, an exact thermodynamic equilibrium
is required at every nonlinear iteration. Hence, for any grid block that contains a
multiphase (𝑛𝑝) multicomponent (𝑛𝑐) mixture we solve the following system:

𝐹𝑐 = 𝑧𝑐 −
𝑛𝑝

∑
𝑝=1

𝜈𝑝𝑥𝑐𝑝 = 0, (2.4)

𝐹𝑐+𝑛𝑐 = 𝑓𝑐1(𝑝, 𝑇, 𝒙1) − 𝑓𝑐𝑝(𝑝, 𝑇, 𝒙𝑝) = 0, (2.5)

𝐹𝑝+𝑛𝑐×𝑛𝑝 =
𝑛𝑐
∑
𝑐=1
(𝑥𝑐1 − 𝑥𝑐𝑝) = 0, (2.6)

𝐹𝑛𝑝+𝑛𝑐×𝑛𝑝 =
𝑛𝑝

∑
𝑝=1

𝜈𝑝 − 1 = 0. (2.7)

In this procedure, which is usually called multiphase flash [47], the overall molar
composition 𝑧𝑐 of component 𝑐 is defined as:

𝑧𝑐 =
∑𝑝 𝑥𝑐𝑝𝜌𝑝𝑠𝑝
∑𝑝 𝜌𝑝𝑠𝑝

. (2.8)
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Note, that overall molar composition is computed across all existing phases in the
mixture, unlike composition in the chemical sense meaning the relative amounts of
chemicals making up a single phase. Further in this work, by composition we will
assume overall molar composition. Next, 𝑓𝑐𝑝(𝑝, 𝑇, 𝑥𝑐𝑝) is the fugacity of component
𝑐 in phase 𝑝. By solving the system of Equation 2.4Equation 2.7, we obtain mole
fractions for each component 𝑥𝑐𝑝, phase molar fractions 𝜈𝑝, and consequently phase
saturations 𝑆𝑝 for the given state.

After obtaining the solution of the multiphase flash, we determine partial deriva
tives with respect to nonlinear unknowns using the inverse theorem (see [10] for
details) and assemble the Jacobian and the residual. This step, often referred to as
linearization, is required by the NewtonRaphson method, which solves the follow
ing linear system of equations on each nonlinear iteration:

𝑱(𝒙𝑘)(𝒙𝑘+1 − 𝒙𝑘) + 𝒓(𝒙𝑘) = 0, (2.9)

where 𝑱(𝒙𝑘) and 𝒓(𝒙𝑘) are the Jacobian and the residual defined at a nonlinear
iteration 𝑘. The conventional approach assumes the numerical representation of
rock and fluid properties and their derivatives with respect to nonlinear unknowns.
This may require either table interpolation (e.g., for relative permeability) or the so
lution of a highly nonlinear system Equation 2.4Equation 2.7 for properties defined
by an Equation of State (EoS) in combination with the chain rule and the inverse
theorem. As a result, a nonlinear solver has to resolve all of the small features of
the property descriptions, which can be quite challenging and is often unnecessary
due to the numerical nature and uncertainties in property evaluation.

2.2. Physical State and Spatial Coordinate
According to the Operator Based Linearization (OBL) method proposed in [43], all
variables in the discretized form of Equation 2.1 are introduced as functions of
a physical state 𝝎 and/or a spatial coordinate 𝝃. The physical state represents
a unification of all state variables (i.e., nonlinear unknowns: pressure, temper
ature/enthalpy, saturations/compositions, etc.) of a single control volume. In the
overall molar formulation, the nonlinear unknowns are 𝑝 and 𝑧𝑐, therefore the phys
ical state 𝝎 is completely defined by these variables. The spatial coordinate defines
the location of a given control volume which reflects the distribution of heteroge
neous rock properties (e.g., porosity) and elements of space discretization (e.g.,
transmissibility). Besides, well control variables 𝒖 are introduced to represent vari
ous well management strategies.

Now, all terms of Equation 2.1 and Equation 2.2 can be characterized as func
tions of the spatial coordinates 𝝃, physical state 𝝎, and well control variables 𝒖 as
follows:

• 𝜙(𝝃,𝝎) – effective rock porosity,

• 𝑥𝑐𝑝(𝝎) – component concentration in phase,

• 𝜌𝑝(𝝎) – phase molar density,
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• 𝑠𝑝(𝝎) – phase saturation,

• 𝑢𝑝(𝝃,𝝎) – phase velocity,

• ̃𝑞𝑝(𝝃,𝝎, 𝒖) – source of phase,

• 𝑲(𝝃) – effective permeability tensor,

• 𝑘𝑟𝑝(𝝎) – phase relative permeability,

• 𝜇𝑝(𝝎) – phase viscosity,

• 𝑝𝑝(𝝎) – phase pressure,

• 𝛾𝑝(𝝎) – vertical pressure gradient,

• 𝐷(𝝃) – depth.

2.3. Operator Form of Conservation Equations
First, we introduce notions of statedependent and spacedependent operators. A
statedependent operator is defined as a function of the physical state only. There
fore, it is independent of spatial position and represents physical properties of fluids
and rock. A spacedependent operator is defined as a function of both physical state
𝝎 and spatial coordinate 𝝃.

Next, we rewrite Equation 2.3 neglecting buoyancy and capillary forces, and rep
resent each term as a product of statedependent and spacedependent operators
[43]. The resulting mass conservation equation reads

𝑎(𝝃) (𝛼𝑐(𝝎) − 𝛼𝑐(𝝎𝑛)) + ∑
𝑙
𝑏(𝝃,𝝎)𝛽𝑐(𝝎)

+ 𝜃𝑐(𝝃,𝝎, 𝒖) = 0, 𝑐 = 1,… , 𝑛𝑐 . (2.10)

Here

𝑎(𝝃) = 𝜙0𝑉(𝝃), (2.11)

𝛼𝑐(𝝎) = (1 + 𝑐𝑟(𝑝 − 𝑝𝑟𝑒𝑓))
𝑛𝑝

∑
𝑝=1

𝑥𝑐𝑝𝜌𝑝𝑠𝑝, (2.12)

𝑏(𝝃,𝝎) = Δ𝑡Γ𝑙(𝝃)𝑝𝑙 , (2.13)

𝛽𝑐(𝝎) =
𝑛𝑝

∑
𝑝=1

𝑥𝑙𝑐𝑝𝜌𝑙𝑝
𝑘𝑙𝑟𝑝
𝜇𝑙𝑝
, (2.14)

𝜃𝑐(𝝃,𝝎, 𝒖) = Δ𝑡
𝑛𝑝

∑
𝑝=1

𝑥𝑐𝑝𝜌𝑝𝑞𝑝(𝝃,𝝎, 𝒖). (2.15)
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In the equations above, 𝜙0  rock porosity at reference pressure, 𝑐𝑟 is rock
compressibility, 𝑝𝑟𝑒𝑓  reference pressure, 𝑝𝑙  pressure difference between the
mesh grid blocks connected by interface 𝑙, while 𝝎 and 𝝎𝑛 are nonlinear unknowns
at the current and previous time step respectively.

The physical meaning of mass accumulation operator 𝛼𝑐 is the molar mass of
component 𝑐 per unit pore volume of uncompressed rock under physical state 𝝎.
The physical meaning of the mass flux operator for component 𝑐 is the total mobile
molar mass of that component in all phases of the mixture under physical state 𝝎
per unit time, pressure gradient, and constant geometrical part of transmissibility.

This representation allows us to identify and distinguish the physical state
dependent operators  𝛼𝑐 , 𝛽𝑐 in mass conservation Equation 2.3. The source/sink
term can also be processed in a similar manner, see Section 5.4.

2.4. Approximation of Fluid and Rock Properties
The proposed approach simplifies the description of fluid and rock properties by
building approximation interpolants for the operators 𝛼𝑐 , 𝛽𝑐 within the parameter
space of a simulation problem. For a general isothermal compositional problem
with 𝑛𝑐 components and 𝑛𝑝 phases with neglected buoyancy and capillary effects,
the method requires [2𝑛𝑐] operators: one accumulation and one flux operator per
component. If fluid properties change spatially and several regions of pressure
volumetemperature (PVT) or special core analysis (SCAL) properties are employed,
several sets of operators need to be introduced accordingly (see Section 5.5). The
values of the operators are fully determined by the set of 𝑁 = [𝑛𝑐] independent
variables {𝑝, 𝑧1, … , 𝑧𝑛𝑐−1}. The range of pressure variable in the compositional pa
rameter space can usually be determined by the conditions specified for wells, or
inferred from permissible pump operation regimes, while the overall composition is
naturally bounded by the interval [0,1].

Figure 2.1: 2D parameterization of an abstract operator

Next, we parametrize the interval of each state variable using, for simplicity, the
same number 𝑛 = 𝑛1 = ⋯ = 𝑛𝑁 of uniformly distributed points on the intervals of
parameters, according to Equation 2.16. This results in a set of supporting points
(𝑝𝑖 , 𝑧1𝑖 , … , 𝑧𝑛𝑐−1𝑖) ∶ 𝑖 = 1,… , 𝑛, which can be interpreted as a discrete representation
of physical space in the simulation. At the preprocessing stage, or adaptively, we
can evaluate the operators 𝛼𝑐 , 𝛽𝑐 at every point in the discrete parameter space
and store them in 𝑛𝑐dimensional tables 𝐴𝑐 and 𝐵𝑐. Figure 2.1 illustrates an exam
ple for an abstract operator, parametrized in twodimensional space describing a
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binary system. During the simulation, we interpolate both the values and the par
tial derivatives of all statedependent operators, using tables created for each grid
block. This provides a continuous description based on the interpolation operator
whose accuracy is controlled by the resolution of discretization in parameter space.

Note, that this approach is different from the numerical derivatives often used in
reservoir simulation [20, 48], since the nonlinear physics is fully defined by interpo
lated properties 𝑓 = {𝛼𝑐 , 𝛽𝑐} and consistent with their derivatives. Due to piecewise
interpolation, the approximated operators may not be differentiable at the support
ing points (i.e., are piecewise differentiable). However, such functions do not cause
any problems for numerical simulation partly because of discrete computer repre
sentation of floating point numbers [49]. Piecewise differentiable functions are
widely used in industrygrade simulators (e.g., majority of PVT and SCAL properties
are tabulated).

This representation significantly simplifies the implementation of complex sim
ulation frameworks. Instead of keeping track of each property and its derivatives
with respect to nonlinear unknowns, we can construct a linear system of equations
with abstract algebraic operators representing the complex physics. The perfor
mance of this formulation benefits from the fact that all expensive evaluations can
be performed using a limited number of supporting points. Finally, the performance
of the nonlinear solver can be improved since the Jacobian is constructed based on
a combination of piecewise linear operators directly dependent on the nonlinear
unknowns.

2.5. Computation of Partial Derivatives During Mul
tilinear Interpolation

The key difference of the proposed approach is the replacement of conventional
property computations by an interpolation procedure. Specifically, we use a piece
wise multilinear generalization of piecewise bilinear interpolation for an𝑁dimensional
space at the linearization stage. We chose this approach for its relative application
simplicity in comparison with the approach proposed in [11] for compositional sys
tems with a large number of components. Both methods have comparable accuracy
and performance when applied to systems with a limited number of degrees of free
dom; see [50] for details.

An interpolant approximation 𝐴(𝑥1, … , 𝑥𝑁) to a function 𝛼(𝑥1, … , 𝑥𝑁) can be built
using interpolation table values of 𝛼:

{𝛼(𝑋𝑖1 , 𝑋𝑖2 , … , 𝑋𝑖𝑁) ∶ 𝑖1 = 1,… , 𝑛1, … , 𝑖𝑁 = 1,… , 𝑛𝑁}, (2.16)

where 𝑛1, … , 𝑛𝑁 are the numbers of points along interpolation axes. The first step
of the method is to find table intervals (𝑋𝐼1 , 𝑋𝐼1+1), … , (𝑋𝐼𝑁 , 𝑋𝐼𝑁+1) such that

𝑋𝐼1 ≤ 𝑥1 ≤ 𝑋𝐼1+1, … , 𝑋𝐼𝑁 ≤ 𝑥𝑁 ≤ 𝑋𝐼𝑁+1. (2.17)

In order to further simplify the description, we scale each of the intervals to (0, 1).
That allows us to reformulate the problem to finding an approximation Π(𝑦1, … , 𝑦𝑁)
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for a function 𝜋(𝑦1, … , 𝑦𝑁) defined over the unit Ncube, described as

0 ≤ 𝑦1 ≤ 1,… , 0 ≤ 𝑦𝑁 ≤ 1, (2.18)

where

𝑦𝑖 =
𝑥𝑖 − 𝑋𝐼𝑖
𝑋𝐼𝑖+1 − 𝑋𝐼𝑖

, (2.19)

using the table values

{𝜋(𝑗1, … , 𝑗𝑁) = 𝛼(𝑋𝑖1+𝑗1 , , … , 𝑋𝑖𝑁+𝑗𝑁) ∶ 𝑗1 = 0 or 1,… , 𝑗𝑁 = 0 or 1}. (2.20)

The piecewise multilinear approximation is here represented via recursion just
to provide a clear description. Implementationwise, however, it is performed via a
nested loop, which is far more efficient in this case. First, we define

Π𝑖1 = Π(𝑗1, … , 𝑗𝑖−1, 1, 𝑦𝑖+1, … , 𝑦𝑁),
Π𝑖0 = Π(𝑗1, … , 𝑗𝑖−1, 0, 𝑦𝑖+1, … , 𝑦𝑁). (2.21)

Then,

𝐴 = Π(𝑦1, … , 𝑦𝑁), (2.22)
Π(𝑗1, … , 𝑗𝑖 , 𝑦𝑖+1, … , 𝑦𝑁) = Π𝑖0 + 𝑦𝑖(Π𝑖1 − Π𝑖0), 𝑖 = 1,… ,𝑁, (2.23)

where the table values are

Π(𝑗1, … , 𝑗𝑁) = 𝜋(𝑗1, … , 𝑗𝑁). (2.24)

The partial derivatives are determined in a similar way. First,

Π𝑘𝑖1 = Π𝑘(𝑗1, … , 𝑗𝑖−1, 1, 𝑦𝑖+1, … , 𝑦𝑁),
Π𝑘𝑖0 = Π𝑘(𝑗1, … , 𝑗𝑖−1, 0, 𝑦𝑖+1, … , 𝑦𝑁), (2.25)

and then

𝛿𝛼
𝛿𝑥𝑘

= 𝛿𝐴
𝛿𝑥𝑘

= Π𝑘(𝑦1, … , 𝑦𝑁), (2.26)

Π𝑘(𝑗1, … , 𝑗𝑖 , 𝑦𝑖+1, … , 𝑦𝑁) =
⎧⎪
⎨⎪⎩

Π𝑘𝑖0 + 𝑦𝑖(Π𝑘𝑖1 − Π𝑘𝑖0 ), 𝑖 = 1,… , 𝑘,
Π𝑖1 − Π𝑖𝑜
𝑋𝐼𝑖+1 − 𝑋𝐼𝑖

, 𝑖 = 𝑘,

Π𝑖0 + 𝑦𝑖(Π𝑖1 − Π𝑖0), 𝑖 = 𝑘 + 1,… ,𝑁.

(2.27)

2.6. Adaptive Parameterization
The total size of the interpolation tables is defined by the number of dimensions 𝑁
and the number of interpolation points 𝑛 as 𝑛𝑁. While the dimensionality depends
on the number of components and thermal assumptions in a problem of interest,
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the number of interpolation points corresponds to the desired accuracy of the phys
ical representation. Therefore, parameterization at the preprocessing stage would
require a substantial amount of memory for the multicomponent systems modelled
at a high interpolation precision. Furthermore, the necessity of searching support
ing points (i.e., operator values) for every interpolation in a huge array of data
affects the performance of the simulation. Notice that due to the hyperbolic nature
of some variables (e.g., overall compositions), the vast majority of parameter space
remains unused [9, 11].

The adaptive parameterization approach avoids these disadvantages by remov
ing the need for the entire preprocessing stage [11]. In this approach, supporting
points are computed only when they are required by the current physical state of
a control volume. The obtained operator values are then employed in the interpo
lation process and stored for future use.

Consequently, the method adds a new supporting point and computes appropri
ate operators, if the supporting point was not evaluated before, as shown in Fig
ure 2.2. On the left, an example of a twodimensional parameter space is shown
at the moment, when the simulation occupies rectangle 2, while rectangle 1 was
already used. Each rectangle has 4 vertices (for a 𝑛dimensional space there will
be hyperrectangles, or 𝑛orthotopes, with 2𝑛 vertices each), depicted as coloured
circles. Each circle represents a supporting point with the set of corresponding
operator values required to perform interpolation within the rectangle. Since rect
angles share vertices, and a simulation process is likely to spread continuously over
the parameter space, in most cases many operator values can be reused.

An efficient implementation of adaptive parameterization includes two storages
 hyperrectangle and vertex  which are associative containers of keyvalue(s) pairs
with unique hashbased keys. This choice was made to ensure fast data access for
highdimensional cases. In the hyperrectangle storage, all vertices of each occu
pied hyperrectangle are kept together to maximize interpolation performance. The
vertex storage is used when a new hyperrectangle is requested by the simulation
process. If the new hyperrectangle shares some vertices with already visited hyper
rectangles, then those vertices will be simply copied to the first storage, as shown by
black arrows on the right in Figure 2.2. Missing supporting points will be calculated
and added to both storages (shown with green arrows). This approach is crucial in
highdimensional cases when each vertex is shared among many hyperrectangles.

At the end of the simulation, the resulting sparse multidimensional table of
stored operators represents an actual subspace of physical parameters being used
in the process. For example, Figure 2.3 shows an adaptive parameterization in

Figure 2.2: Representation of adaptive OBL storage
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Figure 2.3: Snapshot of adaptive parameterized points in the OBL for blackoil physical kernel after 10
and 1900 days respectively

the parameter space for a black oil simulation at two different timesteps (at the
beginning and the end of the simulation). The adaptive approach reproduces the
exact numerical results of the preprocessing method used in [45] with greatly
improved overall performance, especially for multicomponent systems.

2.7. Numerical Results
In this section, we present the results of modelling with the OBL approach, im
plemented in the ADGPRS simulator [10, 51]. A performance study and an error
analysis are provided for different resolutions of the physical parameter space, using
the results of the conventional approach as a reference solution. The improvement
in the performance of OBLbased simulations is achieved by a smaller number of
nonlinear iterations, the absence of iterative phase behaviour computations in the
OBL method, and avoidance of derivative computations in ADETL [24], which is
the underlying automatic differentiation library used by ADGPRS for construction
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and assembly of the Jacobian. However, the necessity of artificial data (values and
derivatives obtained by interpolation) injection back to ADbased data structures
negatively impacts the performance. That can be avoided if a standalone simula
tor is implemented entirely from the OBL perspective, as shown in Chapter 4.

For all simulations, we used twodimensional heterogeneous reservoir based on
a 7th layer of SPE10 model shown in Figure 2.4. An injection well is placed in the
middle of the reservoir, with four producers set at the corners. We applied TPFA
discretization and coupled this model with different physical kernels to demonstrate
the applicability of the OBL method for a general purpose simulation.

Figure 2.4: Reservoir permeability map used for all simulations

2.7.1. Isothermal BlackOil Kernel
Here, we used a standard blackoil model, where only the gas component can
dissolve in the oil phase and most of the properties are described as tablebased
correlations. The water injection well operates at Bottom Hole Pressure (BHP) con
trol at a pressure 𝑃𝑖 = 350 bar, and the producer well operates at 𝑃𝑝 = 270 bar for
the first 2000 days and then switched to 𝑃𝑝 = 170 bar for the rest of simulation.
The reservoir was initialized uniformly with pressure 𝑃0 = 300 bar, water saturation
𝑆𝑤 = 0.2, gas saturation 𝑆𝑔 = 0 and bubble pressure 𝑃𝑏𝑢𝑏 = 270 bar. All simu
lations were run for 6000 days with a maximum timestep of Δ𝑡 = 10 days, which
corresponds to average Courant–Friedrichs–Lewy (CFL) number = 5.3.

In order to estimate the error between the reference solution and the solution
obtained with OBL, the following error estimation was introduced for each of primary
variables:

𝐸 =
∑𝑛𝑖=0 |𝑥𝑖𝑜𝑏𝑙 − 𝑥𝑖𝑟𝑒𝑓|

𝑛 (𝑚𝑎𝑥(𝒙𝒓𝒆𝒇) − 𝑚𝑖𝑛(𝒙𝒓𝒆𝒇))
(2.28)

Here, 𝑛 is the number of grid blocks in the model, 𝒙𝒐𝒃𝒍 and 𝒙𝒓𝒆𝒇 are solution vectors
for OBL and reference simulations respectively, and 𝑥𝑖 is a particular solution value
at grid block 𝑖. This error was determined at the end of simulation (65 years) for



2.7. Numerical Results

2

17

pressure and composition variables.
The PVT properties and relative permeabilities were used from the SPE 9 test

case [52]. The obtained performance results are shown in Table 2.1. The resolution
of parameter space, defined by the number of interpolation points 𝑛, is shown in
the first column. The total number of nonlinear iterations for each test case is
presented in the second column. The next two columns show the error in pressure
and compositions (average for both components). The fifth column shows the
percentage of points used for the adaptive parameterization of parameter space by
the OBL approach. The sixth column reflects the CPU time required for a serial run
on an Intel Xeon E51620 @ 3.5 GHz processor. Finally, the last two columns show
the percentage of CPU time spent on generation and interpolation of all operators
respectively.

Table 2.1: Results of black oil simulation

Resolution Iters. 𝐸𝑝, % 𝐸𝑧, % Space,% CPU, sec. Gen., % Interp., %
Std. 6404    1217.2  
64 4206 1.12 2.60 1.7447 659.4 < 0.1 19.7
32 3544 1.60 3.18 3.8681 555.9 < 0.1 19.7
16 3303 1.69 4.09 9.3506 542.2 < 0.1 18.8
8 2916 2.26 7.53 22.5586 482.2 < 0.1 18.8

Table 2.1 demonstrates that a smaller number of interpolation points results in
a simpler nonlinear system since it requires fewer Newton iterations to be solved.
Note, that the number of Newton iterations performed in the OBL method is sig
nificantly lower than that for the standard simulation. Based on this and other
improvements provided by the OBL approach (e.g., simplified Jacobian assembly),
the corresponding CPU time is significantly reduced in comparison to the conven
tional approach implemented in ADGPRS. For a blackoil kernel, the generation
stage is very cheap and does almost not require any extra time. The time spent
on interpolation of operators is almost independent of the resolution of parame
terization space and represents the time spent for complete Jacobian and residual
assembly including property and derivatives evaluation.

In this test, the overall composition of the water component introduces the
largest error with respect to the rest of the unknowns. Maps of water overall com
position and distribution of errors (in %) after 6000 days of the simulation are shown
in Figure 2.5. It is clear that the error is distributed near the displacement fronts
and is comparable with the time and space truncation error typical for reservoir
simulation [53, 54].

2.7.2. Isothermal Compositional Kernel
4 Components
Next, we demonstrate the applicability of the OBL technique for an isothermal pro
cess of carbon dioxide and methane injection into the oil with composition from
[55]. The initial oil was made of 4 components 𝐶𝑂2, 𝐶1, 𝐶4, and 𝐶10 at correspond
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Reference solution OBL error (n = 8), % OBL error (n = 64), %

Figure 2.5: Composition of water and error distribution for two OBL resolutions after 6000 days of
simulation

ing compositions: 1% of carbon dioxide, 11% of methane, 38% of nbutane, and
50% of decane. We injected a mixture of 80% of CO2 and 20% of 𝐶1 at a BHP
𝑃𝑖 = 120 bar. The production wells operated at BHP 𝑃𝑝 = 60 bar. The initial pres
sure was 𝑃0 = 90 bar and temperature 𝑇0 = 80𝑜 C. The simulation period was 4000
days with a maximum timestep Δ𝑡 = 50 days that corresponds to an average CFL =
110. A description of phase behaviour and properties based on the PengRobinson
Equation of State [56] and LohrenzBrayClark (LBC) correlations for viscosity [57]
was used in this kernel.

Table 2.2 shows the main results of the isothermal compositional simulation. The
difference in the number of Newton iterations between the standard and operator
based linearization simulations is less than in the previous case, but the trend is
similar with an exception for 8 points where the number of nonlinear iterations is
slightly larger than for 16 points. This reflects the fact that the location of interpola
tion supporting points in the current version of the approach was blindly determined
by uniform distribution without any analysis of nonlinearity.

At the same time, the performance of simulation with the OBL approach was
improved even more significantly in comparison with the conventional simulation,
than it was in the blackoil kernel. It can be explained by more expensive phase be
haviour, usually required for conventional compositional simulation, in comparison
with black oil. Notice that these phase behaviour calculations are almost com
pletely absent in the OBL approach, which explains an additional CPU gain. On the
other hand, the interpolation kernel still performs effectively (see Gen. and Interp.
columns) since the dimensionality of parameter space is relatively low.

In this test, the overall composition of CO2 component generates the largest
error. The distribution of CO2 composition and error maps (in %) after 2000 days
of the simulation are shown in Figure 2.6. Again, the error is distributed near the
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Table 2.2: Results of compositional (4 comp.) simulation

Resolution Iters. 𝐸𝑝, % 𝐸𝑧, % Space,% CPU, sec. Gen., % Interp., %
Std. 626    562.2  
64 561 0.33 0.71 0.1262 152.6 11.6 20.3
32 531 0.34 1.00 0.4392 129.8 3.0 21.7
16 498 0.34 1.73 1.7006 119.5 0.8 22.0
8 509 0.54 3.96 7.4463 123.7 0.2 21.5

Reference solution OBL error (n = 8), % OBL error (n = 64), %

Figure 2.6: Composition of CO2 and error distribution for two OBL resolutions after 2000 days of simu
lation

displacement fronts and is comparable to the typical time and space truncation
error.

6 Components
To estimate the performance of the OBL approach for a system with a larger num
ber of components, we ran a similar simulation with 6 components oil made of
{𝐶𝑂2(1%), 𝐶1(10%), 𝐶2(9%), 𝐶3(10%), 𝐶4(15%), 𝐶10(55%) }. The same mixture
of {𝐶𝑂2(80%), 𝐶1(20%)} was used as an injection stream and the same timestep
Δ𝑇 = 50 days, which corresponds to an average CFL = 139, was employed in this
case. The results of the simulation are presented in Table 2.3. Here, the per
formance of the OBL approach still improves in comparison to the conventional
technique, but the speedup is lower. This is because the performance of the
OBL approach is directly dependent on the performance of a piecewise multilinear
interpolation, which becomes more expensive in the case of a high dimensional
parameter space, as discussed in [50].

In Table 2.3 one can see, that both generation and interpolation times sig
nificantly increase in comparison to the previous (four component) simulations.
Here, the generation of operator tables becomes the slowest procedure for a high
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resolution case due to the larger dimensionality of the parameterization space. In
this case, it is more convenient to switch to the simplexbased interpolation which
requires less supporting points and was fully utilized in [11] for compositional sim
ulation based on tieline space parameterization. Another possibility is to improve
the generation stage by optimizing flash calculations [58]. Still, the most expensive
highresolution OBL case performs more than 2times faster than the conventional
compositional approach implemented in ADGPRS. The error distribution in this case
is similar to a fourcomponent test case.

Table 2.3: Results of compositional (6 comp.) simulation

Resolution Iters. 𝐸𝑝, % 𝐸𝑧, % Space,% CPU, sec. Gen., % Interp., %
Std. 577    829.5  
64 466 0.31 0.91 0.0001 393.6 44.0 18.5
32 448 0.31 1.51 0.0017 249.2 15.0 27.4
16 431 0.35 3.02 0.0280 213.8 4.4 30.5
8 416 0.70 7.53 0.4761 202.6 1.0 31.2



3
Extensions of

OperatorBased Linearisation

3.1. Thermal Extension
3.1.1. Governing Equations
In this section, we extend the description of multiphase multipcomponent mass
transport for the nonisothermal case introducing an energy conservation equation:

𝜕
𝜕𝑡 (𝜙

𝑛𝑝

∑
𝑝=1

𝜌𝑝𝑠𝑝𝑈𝑝 + (1 − 𝜙)𝑈𝑟) + div
𝑛𝑝

∑
𝑝=1

ℎ𝑝𝜌𝑝𝑢𝑝

+ div(𝜅∇𝑇) +
𝑛𝑝

∑
𝑝=1

ℎ𝑝𝜌𝑝 ̃𝑞𝑝 = 0. (3.1)

Here U𝑝 is phase 𝑝 internal energy, U𝑟 is rock internal energy, ℎ𝑝 denotes phase
𝑝 enthalpy, and 𝜅 is thermal conduction. After application of a finitevolume dis
cretization on a general unstructured mesh and backward Euler approximation in
time we get

𝑉 [(𝜙
𝑛𝑝

∑
𝑝=1

𝜌𝑝𝑠𝑝𝑈𝑝 + (1 − 𝜙)𝑈𝑟) − (𝜙
𝑛𝑝

∑
𝑝=1

𝜌𝑝𝑠𝑝𝑈𝑝 + (1 − 𝜙)𝑈𝑟)

𝑛

]

−Δ𝑡∑
𝑙
(
𝑛𝑝

∑
𝑝=1

ℎ𝑙𝑝𝜌𝑙𝑝Γ𝑙𝑝Δ𝜓𝑙 + Γ𝑙𝑐Δ𝑇𝑙) + Δ𝑡
𝑛𝑝

∑
𝑝=1

ℎ𝑝𝜌𝑝q𝑝 = 0. (3.2)

Parts of this chapter have been published in SPE Journal 33, 522 (2018) [59] and in Geothermics 74,
7 (2018) [60]
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As in Equation 2.3, we neglected capillarity, gravity and used a TwoPoint Flux
Approximation (TPFA) with an upstream weighting. Therefore, Δ𝑇𝑙 is the temper
ature difference between neighboring blocks. In addition, Γ𝑙𝑐 corresponds to con
ductive transmissibility which includes thermal conduction of all phases (including
solid) and geometry as

Γ𝑙𝑐 = Γ𝑙 (𝜙(
𝑛𝑝

∑
𝑝=1

𝑠𝑝𝜅𝑝) + (1 − 𝜙)𝜅𝑟) . (3.3)

Similarly to Equation 2.3, all terms of the equation are defined at 𝑛 + 1 timestep,
except the second part of accumulation term denoted by 𝑛 superscript.

Operator form of the conservation equations
For the nonisothermal case, physical state 𝝎 is also defined by 𝑇 (or ℎ) in addition
to 𝑝 and 𝑧𝑐. All terms in Equation 3.1 can be characterized as functions of the
spatial coordinates 𝝃 and physical state 𝝎 as follows:

• U𝑝(𝝎) – phase internal energy,

• U𝑟(𝝃,𝝎) – rock internal energy,

• ℎ𝑝(𝝎) – phase enthalpy,

• 𝜅(𝝃,𝝎) – thermal conduction.

Next, for simplicity we assume that the rock internal energy and thermal con
duction are spatially homogeneous, thus

𝑈𝑟 = 𝑓(𝝎), 𝜅 = 𝑓(𝝎). (3.4)

In order to apply the described approximation method, we rewrite Equation 3.2,
representing each term as a product of statedependent and spacedependent op
erators [43]. Besides, we assume the initial porosity as a pseudophysical state
variable (𝜙0 ∈ 𝝎). The modified energy conservation equation becomes

𝑎𝑒(𝝃)(𝛼𝑒(𝝎) − 𝛼𝑒(𝝎𝑛)) + ∑
𝑙
𝑏𝑒(𝝃,𝝎)𝛽𝑒(𝝎)

+ ∑
𝑙
𝑐𝑒(𝝃,𝝎)𝛾𝑒(𝝎) + 𝜃𝑒(𝝃,𝝎, 𝒖) = 0, (3.5)
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where

𝑎𝑒(𝝃) = 𝑉(𝝃), (3.6)

𝛼𝑒(𝝎) = 𝜙(
𝑛𝑝

∑
𝑝=1

𝜌𝑝𝑠𝑝𝑈𝑝 − 𝑈𝑟) + 𝑈𝑟 , (3.7)

𝑏𝑒(𝝃,𝝎) = 𝑏(𝝃,𝝎), (3.8)

𝛽𝑒(𝝎) =
𝑛𝑝

∑
𝑝=1

ℎ𝑙𝑝𝜌𝑙𝑝
𝑘𝑙𝑟𝑝
𝜇𝑙𝑝
, (3.9)

𝑐𝑒(𝝃) = Δ𝑡Γ𝑙𝑇𝑙 , (3.10)

𝛾𝑒(𝝎) = 𝜙(
𝑛𝑝

∑
𝑝=1

𝑠𝑝𝜅𝑝 − 𝜅𝑟) + 𝜅𝑟 , (3.11)

𝜃𝑒(𝝃,𝝎, 𝒖) = Δ𝑡
𝑛𝑝

∑
𝑝=1

ℎ𝑝𝜌𝑝𝑞𝑝(𝝃,𝝎, 𝒖). (3.12)

In these derivations, 𝑇𝑙 is temperature difference between two mesh grid blocks
connected by interface 𝑙.

This representation allows us to identify and distinguish the physical state
dependent operators  𝛼𝑒 , 𝛽𝑒 , 𝛾𝑒 in the energy conservation equation.

Approximation of fluid and rock thermal properties
The proposed approach simplifies the description of fluid and rock properties by
building approximation interpolants for the operators 𝛼𝑐 , 𝛽𝑐 , 𝛼𝑒 , 𝛽𝑒 , 𝛾𝑒 within the pa
rameter space of a simulation problem. For a general nonisothermal compositional
problem with 𝑛𝑐 components, the method requires [2𝑛𝑐 + 3] operators.

The values of the operators are fully determined by the set of 𝑁 = [𝑛𝑐+1] inde
pendent variables {𝑝, 𝑇, 𝑧1, … , 𝑧𝑛𝑐−1}. The pressure and temperature ranges in the
compositional parameter space can usually be determined by conditions specified
for wells, while the overall composition is naturally bounded by the interval [0,1].
As mentioned above, we add the porosity as a pseudophysical state variable with
the corresponding range.

Next, we parametrize the interval of each state variable using, for simplicity,
the same number 𝑛 = 𝑛1 = ⋯ = 𝑛𝑁 of uniformly distributed points on the inter
vals of parameters, according to Equation 2.16. This results in a set of vectors
(𝑝𝑖 , 𝑇𝑖 , 𝑧1𝑖 … , 𝑧𝑛𝑐−1𝑖 , 𝜙𝑖) ∶ 𝑖 = 1,… , 𝑛, which can be interpreted as a discretization
of physicalstate space in the simulation. At the preprocessing stage, or adap
tively, we can evaluate the operators 𝛼𝑐 , 𝛽𝑐 , 𝛼𝑒 , 𝛽𝑒 , 𝛾𝑒 at every point in the discrete
parameter space and store them in (𝑛𝑐 + 2)dimensional tables 𝐴𝑒 and Γ𝑒 and
(𝑛𝑐 + 1)dimensional tables 𝐴𝑐 , 𝐵𝑐 , 𝐵𝑒.
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3.1.2. Numerical Results
In the next few subsections, we introduce numerical results of simulations based on
the described approach. First, in Subsection 3.1.3, we present a threedimensional
heterogeneous model describing a realistic reservoir for lowenthalpy geothermal
operations. We show a comparison between simulation using the conventional
geothermal formulation in ADGPRS [61] and using the COMSOL simulation platform
[62], which was utilized for lowenthalpy geothermal simulations in the past [63].
COMSOL is interactive simulation software, where one can model problems from
different application fields (e.g., electrical, mechanical, chemical or fluid flow). The
penalty of this generality is the low computational performance of the simulation.

Further, in Subsection 3.1.4, we display the results of a simple sensitivity analysis
of the geothermal model, based on the variation of a doublet position. In Subsec
tion 3.1.5, we present a convergence study of the operatorbased linearization for
the onecomponent geothermal model based on different resolutions of parame
terized tables using the same reservoir. Finally, similar convergence analysis is
performed for a geothermal system with natural gas coproduction in lowenthalpy
(Subsection 3.1.6) and highenthalpy (Subsection 3.1.7) regimes.

3.1.3. ThreeDimensional Realistic Heterogeneous
Geothermal Reservoir

Here, we present the results of a geothermal simulation based on the realistic ge
ological model introduced by [64]. This model is one of the realizations of sed
imentological simulation for the Nieuwerkerk sedimentary formation in the West
Netherlands Basin. These realizations have been generated for an investigation
of the performance of a doublet (a pair of injection and production wells) in low
enthalpy geothermal systems. Reservoir dimensions are 1km x 2 km x 50 m and
the discretized model contains 50x100x20 grid blocks. Both wells are placed in
the middle of the model, along the long side (Yaxis) with a spacing of 1 km (see
Figure 3.1). The fluvial sandstone bodies are located along the longer side of the
reservoir, with the porosity distributed within the range [0.16, 0.36] and permeabil
ity distributed within the range [6, 3360] mD. The boundary conditions along the
short sides (Xaxis) of the reservoir are set to a constant initial pressure; the bound
ary conditions at the other sides are set to noflow. The reservoir in Figure 3.1 is
vertically scaled up by a factor of 5 for better visibility.

Both wells operate under a constant water rate control q = 2400 m3/day. The
production well consumes energy from the reservoir, producing hot water at a reser
voir temperature 𝑇𝑝𝑟𝑜𝑑 = 348 K. The injection well returns cold water to the reservoir
at 𝑇𝑖𝑛𝑗 = 308 K, forcing a coldfront propagation to the production well. Both wells
are perforated through all layers of the model. Two energytransfer mechanisms
are involved in this process: fluid flow and heat conduction. When the cold front
arrives at the production well, the temperature drops below a certain limit (338 K
in this study) and the socalled doublet lifetime is reached.

To verify the conventional geothermal formulation in the ADGPRS framework,
we compare our simulation results with the results of a COMSOL simulation de
scribed in [64]. For both simulations, we used similar correlations for the proper
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Figure 3.1: Permeability distribution and geothermal doublet configuration of the geothermal reservoir
realization

ties of fluid and rock described by [63]. In Figure 3.2, we show the comparison
between the temperatures at the production well in both cases.

Figure 3.2: Comparison between COMSOL and ADGPRS realistic heterogeneous reservoir simulation
results

It can be seen that the ADGPRS and COMSOL results are very similar until the
time around 50 years when the temperature reduction is already quite significant.
These differences can be explained by the differences in the spatial discretization
since ADGPRS is using a conservative Finite Volume discretization while COMSOL
supports a general FiniteElement (i.e., nonconservative) discretization. Based on
this fact, we believe that the temperature reduction is more realistic in ADGPRS
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simulation; however, further investigation is required. We use the conventional
geothermal formulation by ADGPRS as a reference solution and compare it with
the proposed OBL approach.

3.1.4. Sensitivity Analysis of Geothermal Doublet Position
The importance of sensitivity analysis can hardly be overestimated for risk man
agement in geothermal reservoir development. Sometimes, key performance indi
cators dramatically change with a small variation of, as it might seem, insignificant
parameters. To demonstrate it, we ran a series of geothermal simulations, using
the described above model as a base case and varying just one parameter – doublet
position.

Both wells were simultaneously shifted in the lateral direction from the base grid
cell to all neighbouring cells (including diagonal neighbours) so that their mutual
arrangement remained unchanged. Wells were controlled by rate 𝑞 = 2400 m3/day
during the whole simulation period of 200 years for each of the models. This light
deviation in wells position provoked a large difference in geothermal doublet lifetime
(up to 20 years or more), even if we discard three cases with the biggest lifetime
(see Figure 3.3). The two numbers in square brackets denote the offsets (in grid
cells) of the doublet position from the base case along X and Y axes of the reservoir
respectively. The base case is therefore denoted as [0;0].

Figure 3.3: Variation of the coldfront arrival time for doublet lateral position deviations of one grid cell
from the base case [0;0]

That difference can be explained by different distributions of energy in the reser
voir, caused by variation of connectivity between injection and production wells.
Thorough sensitivity and uncertainty analyses help to mitigate reservoir develop
ment risks but require a large number of simulations. A tradeoff between the num
ber of models to run and available time/computational resources always occurs,
that is why the computational performance of reservoir simulation is so important.

3.1.5. OneComponent Geothermal Model
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Convergence of OperatorBased Linearization
Here, we compare the results of simulation with OBL performed at the different
resolutions of interpolation tables and the reference solution based on the conven
tional (continuous) linearization method. We use a modified variant of the original
test case with uniformly distributed thermal properties of rock while rock perme
abilities and porosities remain heterogeneous. Both wells work at the same rate
control 𝑞 = 2400 m3/day. Each simulation was performed with a different number
of points in the interpolation table which, for simplicity, was equal for all of the
unknowns (𝑝, 𝑡 and 𝜙), while values were uniformly distributed within the range
between 𝑝𝑚𝑖𝑛=160 bar and 𝑝𝑚𝑎𝑥=250 bar for pressure, 𝑇𝑚𝑖𝑛=308 K and 𝑇𝑚𝑎𝑥=349
K for temperature, and between 0 and 1 for porosity.

The results of the comparison are presented in Table 3.1. The number of points
used for interpolation operators is shown in the first column. The second column
contains the number of nonlinear iterations, which are directly proportional to the
simulation time. The third and fourth columns represent the error in the tempera
ture and pressure solution (obtained according to Equation 2.28), respectively. The
last column shows relative single average linearization cost (in terms of CPU time)
of the OBLbased simulator prototype, described in Chapter 4, with respect to the
standard ADGPRS simulator.

Table 3.1: Results of 3D homogeneous simulation

Resolution Newton iters. 𝐸𝑝, % 𝐸𝑇, % Linearization cost per Newt.
Std. 174   1
64 182 0.0005 0.002 0.051
32 212 0.001 0.007 0.054
16 231 0.002 0.028 0.051
8 240 0.008 0.116 0.048
4 245 0.039 0.561 0.051
2 195 0.24 3.775 0.045

From Table 3.1, the results based on any parameterization approach with a
resolution of 8 and higher show relatively small error, while the linearization is
performed about 20 times faster in comparison with ADbased linearization. At the
same time, this cost does not change significantly with an increase in resolution in
the OBL approach. The error in this simulation is so small because all interpolated
properties, based on correlations from [63], have substantially linear behaviour with
respect to the nonlinear unknowns. It seems sufficient in this model to perform the
operatorbased linearization using the resolution of 8 points.

The comparison of the production temperatures and temperature distribution
also supports this conclusion, as shown in Figure 3.4 and Figure 3.5 respectively.
Figure 3.4 demonstrates a good match between reference and parameterization ap
proach based solution with 8 points, while simulation based on the coarsest table
introduces nonphysical initial growth of temperature due to a very coarse approx
imation of operators involved in the energy equation.

In Figure 3.5, the cold front propagates over the top layer of the reservoir. The
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Figure 3.4: Comparison of temperatures at production well based on different linearization approaches

Figure 3.5: Temperature front after 15 (a), 30 (b) and 45 (c) years for the conventional linearization
(upper), OBL with 8 point resolution (middle), and absolute difference between them (lower) in the top
layer of the reservoir

top row in Figure 3.5 represents the results from the conventional linearization after
15, 30 and 45 years of simulation. The middle row shows the results obtained with
OBL using a resolution of 8 points at the same times. The lower row displays the
absolute difference between the reference and OBL solutions. The injectionwell
position is marked with the blue circle; the productionwell position is shown with
the red one.

Analysis of Linearization Operators
In Figure 3.6, we present the mostnonlinear operators used in the proposed lin
earization approach. All of them are built based on the 64point interpolation ta
bles in parameter space. These operators correspond to the linearization of mass
accumulation 𝛼𝑤 and flux 𝛽𝑤 terms in the watercomponent mass equation and en
ergy accumulation 𝛼𝑒 and conduction 𝛾𝑒 in the energy equation (see Equation 2.10
and Equation 3.5). They are represented by isosurfaces in pressure, temperature
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Figure 3.6: Physicsbased operators of water mass accumulation 𝛼𝑤 (a), energy accumulation 𝛼𝑒 (b),
water mass flux 𝛽𝑤 (c) and energy conduction 𝛾𝑒 (d) terms

and porosity parameter space. As expected, all of the operators behave almost
linearly in parameter space that explains why the results of simulation with just 8
points are so accurate.

3.1.6. TwoComponent LowEnthalpy Geothermal Model
Here, we demonstrate geothermal simulation with gas coproduction using the
same threedimensional reservoir. The injection well injects cold water at 𝑇𝑖𝑛𝑗=308
K and controlled by a water rate 𝑞 = 1200 m3/day. The initial reservoir composition
of the gas component (methane) 𝑧𝑔 = 0.1, with initial pressure 𝑝=100 bar, and
initial temperature 𝑇=348 K. The production well is controlled by the bottomhole
pressure 𝑝𝑝𝑟𝑜𝑑=70 bar. Since the injection rate is now 2 times lower, we increased
simulation time to 100 years.

We used phase behaviour and densities based on the PengRobinson Equation
of State [56] with critical parameters described in Table 3.2. For the enthalpy of the
mixture, we used a correlation described in [65] with parameters from the same
table. The LohrenzBrayClark (LBC) correlations were used for the viscosities of
each phase [57].

Table 3.2: Parameters for properties

Comp. 𝑇𝑐 (K) 𝑃𝑐 (bar) 𝑉𝑐 ACF 𝑀𝑤 𝐶𝑃𝐺1 𝐶𝑃𝐺2 𝐶𝑃𝐺3 𝐶𝑃𝐺4
𝐶1 190.6 46.04 0.098 0.013 16.04 19.251 0.0521 1.197e5 1.132e8

𝐻2𝑂 646.8 220.60 0.056 0.344 18.015 32.243 0.0019 1.055e5 3.596e9

Convergence of OperatorBased Linearization
We performed a set of simulations with 6 different interpolationtable resolutions
and compared solutions with the reference solution based on the conventional
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approach. For parameterization, we used uniformly distributed points between
𝑝𝑚𝑖𝑛=60 bar and 𝑝𝑚𝑎𝑥=120 bar for pressure, 𝑇𝑚𝑖𝑛=300 K and 𝑇𝑚𝑎𝑥=360 K for
temperature, and finally between 0 and 1 for both composition and porosity. The
results can be seen in Table 3.3. Columns 14 are same as in Table 3.1, the fifth col
umn shows the error in gas composition, and the last column shows a relative cost
of OperatorBased Linearization per Newton iteration in comparison with ADbased
linearization.

Table 3.3: Results of 3D, twophase lowenthalpy simulation

Resolution Newton iters. 𝐸𝑝, % 𝐸𝑇, % 𝐸𝑧𝑔 , % Linearization cost per Newt.
Std. 1247    1
64 974 0.155 0.809 1.734 0.029
32 968 0.557 1.529 3.692 0.028
16 977 1.305 2.567 6.414 0.028
8 890 1.977 4.288 11.215 0.028
4 890 1.628 5.308 11.397 0.027
2 867 2.191 5.618 13.207 0.027

The twocomponent twophase geothermal model is more challenging for the
operatorbased linearization approach in comparison to the previous case. However,
the error of the OBL method drops significantly with the increasing resolution of
interpolation tables. Here, the cost of the Operatorbased Linearization is more
than 30 times lower in comparison with the ADbased linearization. This happened
because, in ADGPRS, an iterative solution of EoS is required in the twophase
region, while in OBL, it only required for a limited number of parameterization
points. For a higher OBL resolution, the linearization cost insignificantly increases.

Figure 3.7: Comparison of temperatures at production well based on different linearization approaches
in lowenthalpy model with coproduction

Production temperatures for the reference solution and solutions based on lin
earization operators are shown in Figure 3.7. Here, the nonphysical behaviour for
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Figure 3.8: Temperature front after 20 (a), 40 (b) and 60 (c) years for the conventional linearization
(upper), OBL with 64point resolution (middle), and absolute difference between them (lower) in the
top layer of the reservoir in lowenthalpy model with coproduction

2point resolution is similar to the previous case. This behaviour is quickly stabilized
for the cases with a higher resolution.

The comparison of the thermal fronts is shown in Figure 3.8. Here, one can
see that the reference solution (upper row) and the solution based on the OBL
with 64 points (middle row) mostly match, and the largest errors of 5 degrees are
primarily observed around the thermal front. Importantly, the maximum error does
not grow along with the simulation. Compared to the previous case, the flow is now
more influenced by the production well because of the changed pressure boundary
conditions. Therefore, injected cold water primarily flows towards the production
well causing faster breakthrough despite a lower injection rate.

Analysis of Linearization Operators
In Figure 3.9, the 3D isosurfaces are shown to characterize the most nonlinear
operators for the case of the twophase geothermal model. These operators cor
respond to the linearization of mass accumulation 𝛼𝑔 and flux 𝛽𝑔 terms for the gas
component in the mass equation and energy accumulation 𝛼𝑒 and flux 𝛽𝑒 in the
energy equation. All of the operators are built based on the 64point interpolation
table. They are shown as functions of pressure, temperature and composition at a
constant value𝜙 = 0.2. Unlike for the pure geothermal case, all operators are more
nonlinear as functions of all state variables.

3.1.7. TwoComponent HighEnthalpy Geothermal Model
Here, we demonstrate geothermal simulation with gas coproduction for a high
enthalpy reservoir. The initial temperature, pressure and composition of the gas
component (methane) was adjusted to 𝑇=500 K, 𝑝=100 bar, and 𝑧𝑔 = 0.1, which
makes the original mixture close to a critical fluid at reservoir conditions. The
injection temperature stays the same 𝑇𝑖𝑛𝑗=308 K, and the injection well operates
under a constant water rate control 𝑞 = 120 m3/day. Only the top layer of the
reservoir was modelled because of the significant reduction in simulation speed.
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Figure 3.9: Physicsbased operators of mass accumulation for gas component 𝛼𝑔 (a), mass flux for gas
component 𝛽𝑔 (b), energy accumulation 𝛼𝑒 (c) and energy flux 𝛽𝑒 (d) terms in lowenthalpy model with
coproduction

This drop is related to moreexpensive phase behaviour evaluations (in the near
critical region) for the reference solution and a lower limit of simulation timestep to
suppress instabilities associated with highenthalpy systems [66].

Convergence of OperatorBased Linearization
Similarly to the previous runs, we performed simulations with 6 resolutions of the
interpolation table and compared them with the reference model. For parameteri
zation, we used uniformly distributed points between 𝑝𝑚𝑖𝑛=60 bar and 𝑝𝑚𝑎𝑥=290
bar for pressure, 𝑇𝑚𝑖𝑛=300 K and 𝑇𝑚𝑎𝑥=510 K for temperature, and between 0
and 1 for both composition and porosity. The results can be seen in Table 3.4 with
columns similar to Table 3.3.

Table 3.4: Results of 2D twophase highenthalpy simulation

Resolution Newton iters. 𝐸𝑝, % 𝐸𝑇, % 𝐸𝑧𝑔 , % Linearization cost per Newt.
Std. 7617    1
64 2715 0.023 0.092 0.711 0.027
32 2629 0.071 0.356 2.257 0.027
16 2489 0.096 0.496 3.443 0.026
8 2118 0.07 0.615 3.748 0.026
4 2113 0.088 1.104 3.99 0.027
2 1901 0.108 4.279 3.672 0.026

In comparison to the lowenthalpy case, the highenthalpy simulation requires
much more Newton iterations to converge. That is related to the fact that the
highenthalpy system corresponds to more nonlinear pressuretemperature depen
dencies. However, the OBL method introduces smaller errors, still requiring 64
points to keep the errors below 1%. We believe that overall accuracy increased
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because the model has become 2dimensional, therefore some factors affecting
the solution, such as vertical conduction, are no longer present. Still, the error
for OBL decreases as the resolution of interpolation tables increases. The cost of
linearization per Newton iteration behaves similarly to the lowenthalpy case.

Figure 3.10: Comparison of temperatures at production well based on different linearization approaches
in the highenthalpy model with coproduction

Production temperatures for the reference solution and solutions based on the
linearization operator are shown in Figure 3.10. The lowest resolution in the phys
ical tables introduces a large error in the temperature breakthrough time, as was
expected from Table 3.4. With higher resolutions, the behaviour becomes closer
to the reference solution, even though some nonphysical results can be observed
at intermediate resolutions. For example, the 4point resolution in Figure 3.10
demonstrates production temperature higher than initial temperature right at the
beginning of simulation.

Figure 3.11: Temperature (condensation) front after 20 (a), 40 (b), and 60 (c) years for the conventional
linearization (upper), OBL with 64point resolution (middle), and absolute difference between them
(lower) in highenthalpy model with coproduction

The spatial distribution of temperature demonstrates a certain discrepancy be
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tween two approaches — up to 2 degrees, as can be seen in Figure 3.11. As in
previous cases, the maximum error does not increase along with the simulation and
is concentrated around the thermal front.

Analysis of Linearization Operators

Figure 3.12: Physicsbased operators of mass accumulation for gas component 𝛼𝑔 (a), mass flux for
gas component 𝛽𝑔 (b), energy accumulation 𝛼𝑒 (c) and energy flux 𝛽𝑒 (d) terms in highenthalpy model
with coproduction

In Figure 3.12, we plot again 3D isosurfaces to describe operators in the case
of a highenthalpy geothermal model with coproduction. Here, we show the same
operators as in Figure 3.9. For the highenthalpy case, all operators demonstrate
more nonlinear behaviour. That is partially due to the closeness to superheated con
ditions of the gaswater mixture and partially due to the larger interval of changes
in temperature covered in simulations. We hope that in the future work, the de
tailed analysis of parametrized operators will help to improve the nonlinear solver
in geothermal simulations.

3.1.8. Thermal Compositional Model With 4 Components
The next simulation model was built on a thermalcompositional physical kernel,
extending the isothermal model described in subsection Subsection 2.7.2. The initial
and injection conditions stayed the same as in the previous example except that the
injection mixture had a lower temperature of 𝑇=315 K. The simulation period was
2000 days with a maximum time step of Δ𝑡=20 days. The temperature distribution
at the last time step and the corresponding errors are depicted in Figure 3.13. The
errors are concentrated near the cooling front (similar to composition errors located
near the displacement front) and the injection well. The latter can be explained by a
larger nonlinearity in the energy conservation equation, introduced by a correlation
for enthalpy.

The convergence results of the thermalcompositional simulation, presented in
Table 3.5, are similar to those for the isothermal model, provided by Table 2.2
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(a) Reference (b) Error for 8 points, % (c) Error for 64 points, %

Figure 3.13: Temperature solution at t=2000 days

(a) Total gas injection rate (b) Total gas production rate (c) Total oil production rate

Figure 3.14: Total well rates for reference solution, OBL with 8 points, and OBL with 64 points

Table 3.5: Results of nonisothermal compositional simulation

Resolution Iters. 𝐸𝑝, % 𝐸𝑇, % 𝐸𝐶𝑂2 , % 𝐸𝐶1 , % 𝐸𝐶4 , % 𝐸𝐶10 , % Space,% CPU, sec
Std. 647        628
64 587 0.12 0.12 0.19 0.37 0.20 0.21 0.005 317
32 553 0.12 0.27 0.33 0.67 0.35 0.37 0.037 234
16 536 0.14 0.48 1.15 2.02 1.21 1.35 0.241 209
8 555 0.41 1.21 2.79 5.16 3.64 3.86 2.371 217

(the description of columns also matches, except that errors are provided for each
component individually, but still according to Equation 2.28). In this simulation, the
region of adaptive parameterization of physical space drops down to 0.001% which
reflects the importance of the adaptive approach for higher dimensional systems
(i.e., systems with more nonlinear unknowns per control volume).
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3.2. Buoyancy Extension
In this section, another important extension of OBL to buoyancy dominated systems
is described.

3.2.1. Phase Potential Upwinding (PPU)
In the conventional modelling approach, the introduction of buoyancy in multiphase
flux calculations assumes that each phase has its own phase potential difference at
a given interface 𝑖𝑗, allowing countercurrent flow:

Φ𝑝,𝑖𝑗 = (𝑝𝑗 − 𝑝𝑖 − 𝛿𝑝,𝑖𝑗(𝐷𝑗 − 𝐷𝑖)) (3.13)

𝛿𝑝,𝑖𝑗 =

⎧
⎪

⎨
⎪
⎩

𝛿𝑝,𝑖 + 𝛿𝑝,𝑗
2 , if phase 𝑝 appears in both cell 𝑖 and 𝑗;

𝛿𝑝,𝑖 , if phase 𝑝 appears only in cell 𝑖;
𝛿𝑝,𝑗 , if phase 𝑝 appears only in cell 𝑗;
0, if phase 𝑝 doesn’t exist in neither cell 𝑖 nor 𝑗,

(3.14)

where 𝛿𝑝,𝑖 = 𝛿𝑝(𝝎𝑖) = 𝑔𝜌𝑚𝑝,𝑖, 𝑔  the acceleration of gravity, 𝜌𝑚𝑝,𝑖  mass density
of a phase 𝑝 in a control volume 𝑖. Numerical fluxes are usually computed using
a phase potential upwinding (PPU) strategy, in which phase mobilities are selected
depending on a sign of the corresponding phase potential difference separately for
each phase.

Straightforward implementation of PPU within the OBL approach implies an in
crease in the number of flux operators from 𝑛𝑐 to 𝑛𝑐𝑛𝑝, since phases should be
treated separately. In addition, a mass density operator 𝛿𝑝 has to be introduced
for each phase. Striving to reduce the amount of required interpolations, we evalu
ate a single mass density value per phase for the united control volume of adjacent
blocks, instead of averaging the two values obtained for each of the blocks. Hence,
Equation 3.14 becomes:

𝛿𝑝,𝑖𝑗 = 𝛿𝑝(𝝎𝑖𝑗) (3.15)

𝝎𝑖𝑗 =
𝝎𝑖 +𝝎𝑗
2 (3.16)

Taking into account buoyancy, Equation 2.10 is transformed into:

𝑎(𝝃) (𝛼𝑐(𝝎) − 𝛼𝑐(𝝎𝑛)) + ∑
𝑗∈𝐿(𝑖)

∑
𝑝
𝑏𝑝(𝝃,𝝎)𝛽𝑐𝑝(𝝎)

+ 𝜃𝑐(𝝃,𝝎, 𝒖) = 0, 𝑐 = 1,… , 𝑛𝑐 , (3.17)

where

𝑏𝑝(𝝃,𝝎) = Δ𝑡Γ𝑖𝑗Φ𝑝,𝑖𝑗 , (3.18)

𝛽𝑐𝑝(𝝎) = 𝑥𝑐𝑝,𝑖𝑗𝜌𝑝,𝑖𝑗𝜆𝑝,𝑖𝑗 = {
𝑥𝑐𝑝,𝑖𝜌𝑝,𝑖𝜆𝑝,𝑖 if Φ𝑝,𝑖𝑗 < 0
𝑥𝑐𝑝,𝑗𝜌𝑝,𝑗𝜆𝑝,𝑗 otherwise.

(3.19)
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Similarly, the energy balance equation (Equation 3.5) becomes:

𝑎𝑒(𝝃)(𝛼𝑒(𝝎) − 𝛼𝑒(𝝎𝑛)) + ∑
𝑗∈𝐿(𝑖)

∑
𝑝
𝑏𝑒𝑝(𝝃,𝝎)𝛽𝑒𝑝(𝝎)

+ ∑
𝑙
𝑐𝑒(𝝃,𝝎)𝛾𝑒(𝝎) + 𝜃𝑒(𝝃,𝝎, 𝒖) = 0, (3.20)

where

𝑏𝑒𝑝(𝝃,𝝎) = 𝑏𝑝(𝝃,𝝎), (3.21)

𝛽𝑒𝑝(𝝎) = ℎ𝑝,𝑖𝑗𝜌𝑝,𝑖𝑗𝜆𝑝,𝑖𝑗 = {
ℎ𝑝,𝑖𝜌𝑝,𝑖𝜆𝑝,𝑖 if Φ𝑝,𝑖𝑗 < 0
ℎ𝑝,𝑗𝜌𝑝,𝑗𝜆𝑝,𝑗 otherwise.

(3.22)

Therefore, OBL with PPU requires 𝑛𝑐+𝑛𝑐𝑛𝑝+𝑛𝑝 operators for the isothermal prob
lem with 𝑛𝑐 components and 𝑛𝑝 phases, and 𝑛𝑐 + 𝑛𝑐𝑛𝑝 + 2𝑛𝑝 + 2 for the non
isothermal one.

3.2.2. ComponentPotential Upwinding (CPU)
Striving to reduce the number of operators, we introduced a following component
density paradigm:

𝜌𝑐(𝝎) =

𝑛𝑝
∑
𝑝=1

𝜌𝑚𝑝 𝑥𝑐𝑝𝜌𝑝𝜆𝑝
𝑛𝑝
∑
𝑝=1

𝑥𝑐𝑝𝜌𝑝𝜆𝑝
, 𝑐 = 1,… , 𝑛𝑐 . (3.23)

Using this mobilityaveraged density of a component allows to obtain a single
componentpotential at an interface 𝑖𝑗 for upwinding. Countercurrent flow is still
possible, but each component now moves only in one direction, apart from PPU:

Φ𝑐,𝑖𝑗 = (𝑝𝑗 − 𝑝𝑖 − 𝛿𝑐,𝑖𝑗(𝐷𝑗 − 𝐷𝑖)) , (3.24)
𝛿𝑐,𝑖𝑗 = 𝛿𝑐(𝝎𝑖𝑗) (3.25)

𝝎𝑖𝑗 =
𝝎𝑖 +𝝎𝑗
2 (3.26)

𝛿𝑐(𝝎𝑖) = 𝑔𝜌𝑐,𝑖 . (3.27)

The physical interpretation of this approximation is based on the fact that in
crosscurrent flow, independently of phase directions, the total mass of the com
ponent is moving to a single direction. In addition, this scheme avoids summa
tion across phases for each component and, thus, reduces the number of oper
ators involved. It implies minimal changes in the original mass and energy bal
ance equations (Equation 2.10, Equation 3.5) by making the space operator 𝑏(𝝃,𝝎)
componentdependent:

𝑏(𝝃,𝝎) = 𝑏𝑐(𝝃,𝝎) = Δ𝑡Γ𝑖𝑗Φ𝑐,𝑖𝑗 . (3.28)
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In this scheme, OBL requires 3𝑛𝑐 operators for the isothermal problem with 𝑛𝑐
components and 𝑛𝑝 phases, and 3𝑛𝑐 + 3 for the nonisothermal one.

3.2.3. Independent Upwinding (IU)
Following the idea of hybrid upwinding (HU) [67] to the full extent, we completely
separated computations of viscous and buoyancyinduced flow. For each of the
two parts, the upstream direction is obtained independently, based on the pressure
difference for the first and based on the depth difference for the second. This
implies

𝑎(𝝃) (𝛼𝑐(𝝎) − 𝛼𝑐(𝝎𝑛)) + ∑
𝑗∈𝑎𝑑𝑗(𝑖)

(𝑏(𝝃,𝝎)𝛽𝑐(𝝎) + 𝑏𝑔(𝝃,𝝎)𝛽𝑐𝑔(𝝎))

+ 𝜃𝑐(𝝃,𝝎, 𝒖) = 0, 𝑐 = 1,… , 𝑛𝑐 . (3.29)

Here

𝑏𝑔(𝝃,𝝎) = Δ𝑡Γ𝑖𝑗(−𝑔(𝐷𝑗 − 𝐷𝑖)), (3.30)

𝛽𝑐𝑔(𝝎) =
𝑛𝑝

∑
𝑝=1

𝑥𝑐𝑝,𝑖𝑗𝜌𝑝,𝑖𝑗𝜆𝜌𝑚𝑝,𝑖𝑗 ,

where 𝑥𝑐𝑝,𝑖𝑗𝜌𝑝,𝑖𝑗𝜆𝑝,𝑖𝑗𝜌𝑚𝑝,𝑖𝑗 = {
𝑥𝑐𝑝,𝑖𝜌𝑝,𝑖𝜆𝑝,𝑖𝜌𝑚𝑝,𝑖 if 𝐷𝑖 < 𝐷𝑗
𝑥𝑐𝑝,𝑗𝜌𝑝,𝑗𝜆𝑝,𝑗𝜌𝑚𝑝,𝑗 otherwise.

(3.31)

This approximation can be interpreted as a compositional version of HU, where
independently of flow direction, the gravity term of the lighter phase is always
pointing up while for the heavier phase it is pointing down.

Similarly, the energy balance equation ( Equation 3.5) becomes:

𝑎𝑒(𝝃)(𝛼𝑒(𝝎) − 𝛼𝑒(𝝎𝑛)) + ∑
𝑗∈𝑎𝑑𝑗(𝑖)

(𝑏𝑒(𝝃,𝝎)𝛽𝑒(𝝎) + 𝑏𝑔(𝝃,𝝎)𝛽𝑒𝑔(𝝎))

+ ∑
𝑗∈𝑎𝑑𝑗(𝑖)

𝑐𝑒(𝝃,𝝎)𝛾𝑒(𝝎) + 𝜃𝑒(𝝃,𝝎, 𝒖) = 0, (3.32)

where

𝛽𝑒𝑔(𝝎) =
𝑛𝑝

∑
𝑝=1

ℎ𝑝,𝑖𝑗𝜌𝑝,𝑖𝑗𝜆𝜌𝑚𝑝,𝑖𝑗 ,

where ℎ𝑝,𝑖𝑗𝜌𝑝,𝑖𝑗𝜆𝑝,𝑖𝑗𝜌𝑚𝑝,𝑖𝑗 = {
ℎ𝑝,𝑖𝜌𝑝,𝑖𝜆𝑝,𝑖𝜌𝑚𝑝,𝑖 if 𝐷𝑖 < 𝐷𝑗
ℎ𝑝,𝑗𝜌𝑝,𝑗𝜆𝑝,𝑗𝜌𝑚𝑝,𝑗 otherwise.

(3.33)

This approach matches the previous one in terms of the number of required state
operators.
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3.2.4. OneDimensional DeadOil Model with Gravity Segrega
tion

We started with a simple onedimensional domain for a vertical segregation model
with buoyancydriven flow. It consist of 5 grid cells 10×10×10 m each, extending
over a depth of 50 m overall. The rock permeability is equal to 100 mD and the
porosity is equal to 0.2. We started with a deadoil kernel, filling the top three grid
cells with water (with a constant density 𝜌𝑚𝑤 = 1000 kg/m3) while the bottom two
cells were filled with oil (with a constant density 𝜌𝑚𝑜 = 800 kg/m3). The reservoir
was initialized with 𝑃0=100 bar. We ran the model for 10,000 days until the system
reached an equilibrium. The dynamic distribution of fluids is shown in Figure 3.15.
It can be seen that the heavier water phase, placed on top, has exchanged position
with the oil phase by the end of the simulation time.

Initial fluid distribution After 1.000 days After 2.000 days After 10.000 days

Figure 3.15: Deadoil gravity segregation

In Figure 3.16(a), the error between the reference and OBL simulations is shown
depending on parameterization resolution. It is clear that the error is converging
to zero at high OBL resolution. Next, Figure 3.16(b) demonstrates the dynamic
cumulative number of nonlinear iterations versus time for two OBL resolutions of
16 and 100 points. The plot covers only the first 1800 days since later the system is
close to equilibrium and requires a single Newton iteration to converge for all sim
ulations. The lower resolution demonstrates better convergence at the beginning
of the simulation requiring more iterations near its end. The finer resolution model
behaves similarly to the model with the reference physics.

Table 3.6: Results of deadoil gravity segregation with PPU

Resolution Iters. 𝐸𝑝, % 𝐸𝑧, % Space,%
Std. 1054   
64 1076 0.05 0.11 4.350
32 1276 1.02 6.40 7.599
16 1119 0.92 2.03 13.281
8   
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(a) Final solution error of OBL
compared to reference model

(b) Comparison of nonlinear solver behaviour between
reference and OBL simulations

Figure 3.16: OBL behaviour for deadoil kernel

Table 3.7: Results of deadoil gravity segregation with CPU

Resolution Iters. 𝐸𝑝, % 𝐸𝑧, % Space,%
Std. 1054   
64 1076 0.05 0.11 4.091
32 1276 1.02 6.40 7.248
16 1119 0.92 2.03 12.283
8   

3.2.5. OneDimensional Compositional Model with Gravity Seg
regation

Next, we ran the gravity segregation test with 4component isothermal composi
tional model used before. The initial oil with 1% of CO2, 11% of C1, 38% of NC4,
and 50% of C10 was placed in the top three grid cells, while mixture of gas with
80% of CO2 and 20% of 𝐶1 was placed in the two bottom cells. The initial reservoir
pressure was set to 𝑃0=120 bar and temperature 𝑇0=350 K forming a pure liquid
phase in the top and a pure gas phase in the bottom. The dynamic distribution of
phases is shown in Figure 3.17. Unlike in the deadoil kernel, the gravity segre
gation here is combined with extensive mass exchange between liquid and vapor
phases which drastically changes the composition of fluids.

In Figure 3.18(a), one can see the corresponding error in pressure and composi
tion (maximum over all components) for the final solutions of OBL model, compared
to reference physics, depending on the resolution of the OBL approach. It is clear
that the error is converging slower than in the deadoil kernel due to a more com
plicated dynamics of the process. At the same time, the nonlinear performance
(Figure 3.18(b)) behaves more predictably, being better for the lower resolution
and slightly worse for the high resolution in the OBL simulation. Again, the plot
covers only the most intense first 140 days, as later the nonlinear behaviour of all
simulations is equal.
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Initial fluid distribution After 100 days After 200 days After 1.000 days

Figure 3.17: Compositional gravity segregation

(a) Final solution error of OBL
compared to reference model

(b) Comparison of nonlinear solver behaviour between
reference and OBL simulations

Figure 3.18: OBL behaviour for compositional kernel

Table 3.8: Results of compositional gravity segregation with PPU

Resolution Iters. 𝐸𝑝, % 𝐸𝑧1, % 𝐸𝑧2, % Space,%
Std. 298    
64 424 45.95 1.50 0.83 0.399
32 445 208.96 2.92 1.68 1.782
16 303 441.45 6.66 1.99 5.382
8    

3.2.6. Brugge Field Model
To demonstrate the applicability of the OBL approach for a full field threedimensional
model, we employ the Brugge field, which is often used as an optimization bench
mark for reservoir simulation study [68]. This model is based on realistic reservoir
structures and properties shown in Figure 3.19. The simulation time spans 10 years
with BHP controls changing every 3 months for both injection and production wells.
For reservoir parameters and well controls, we used the base case realization de
scribed in [69].
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Table 3.9: Results of compositional gravity segregation with IU

Resolution Iters. 𝐸𝑝, % 𝐸𝑧1, % 𝐸𝑧2, % Space,%
Std. 298    
64 130 385.23 20.22 28.92 0.202
32 129 473.79 20.79 29.17 0.998
16 124 379.98 19.40 29.70 3.601
8 117 502.72 17.22 36.50 11.963

Figure 3.19: Porosity distribution of the Brugge field

In Figure 3.20, we compare total well rates for both production and injection
wells for the reference deadoil kernel and the OBL implementation (with the reso
lution 𝑛 = 64) with and without gravity. It can be seen, that the buoyant forces play
an important role in this model, and only the simulation using OBL with buoyancy
successfully recovers reference well rates.

Figure 3.20: Well rates comparison for Brugge field
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The corresponding errors and nonlinear behaviour are shown in Figure 3.21. It is
clear that the overall error is quite insignificant even for the coarsest resolution (𝑛 =
8). The error stabilizes at 𝑛 = 32 and remains so up to the finest resolution 𝑛 = 96.
The nonlinear behaviour is almost equivalent between the reference solution and
OBL at different resolutions in the first half of the simulation. After that OBLbased
simulations require slightly more nonlinear iterations to converge. The CPU cost of
simulation with the reference physics is comparable with the OBL approach without
buoyancy (580 vs. 582 seconds respectively, while linearization takes around 260
seconds in both). The corresponding number of operators in the OBL approach with
gravity grows significantly (from 2 to 6 for deadoil kernel) increasing the overhead
due to ADETL. That can explain why the simulation time for the OBL approach
with buoyancy is larger. Table 3.10 and Table 3.11 demonstrate the results for OBL
approach with PPU and IU accordingly. The amount of newton iterations in case of
PPU is slightly higher than for reference physics, while in case of IU is even higher
that for PPU. At the same time, the error remains very low for both approaches. The
simulation time for OBL in this case is 734790 seconds with linearization cost of
around 470 seconds. As was already mentioned above, the proper implementation
of the OBL approach can speed up Jacobian assembly by a factor of 14x. Moreover,
the migration and optimization of algorithms for emerging architectures (e.g., GPU)
improves the linearization performance by another order of magnitude [28].

Final solution error Nonlinear solver behaviour

Figure 3.21: OBL error behaviour for Brugge field model

Table 3.10: Results of Brugge model with PPU

Resolution Iters. 𝐸𝑝, % 𝐸𝑧, % Space,% CPU, sec
Std. 817    579.7
64 829 0.13 0.01 20.521 786.6
32 856 0.13 0.01 23.757 799.9
16 824 0.13 0.01 28.693 766.2
8 826 0.16 0.02 44.318 769.1
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Table 3.11: Results of Brugge model with IU

Resolution Iters. 𝐸𝑝, % 𝐸𝑧, % Space,% CPU, sec
Std. 817    579.7
64 960 0.37 0.13 20.513 782.1
32 956 0.37 0.13 23.806 773.2
16 980 0.37 0.13 29.601 791.2
8 893 0.40 0.14 43.403 734.6



4
Prototype Implementations of
OperatorBased Linearization

4.1. Extension of Existing Simulation Framework
Automatic Differentiation General Purpose Research Simulator (ADGPRS) is a flex
ible and efficient reservoir simulation research laboratory with extensible modelling
and solution capabilities. ADGPRS is one of a few simulators based on automatic
differentiation (AD) framework (see also [26]). It has a modular objectoriented
design, while all of the code is written in standard C++. This design is convenient
for researchers to extend the simulator by incorporating new physics, introducing
complex processes, or adding new formulations and solution algorithms. It was
a natural choice to implement OBL as an alternative nonlinear formulation in AD
GPRS. To better understand the specifics, the structure of the ADGPRS framework
will be briefly observed first.

4.1.1. General Structure of ADGPRS
The system model shows the basic classes and their relations, and it is very helpful
for understanding the structure of ADGPRS. Due to the complexity of ADGPRS, the
systemmodel can be addressed level by level using multiple figures. The description
will be concentrated on the most necessary aspects for the understanding of OBL
implementation.

Figure 4.1 shows the overall structure of the entire simulator. SimMaster is a
manager of all simulationrelated objects. When SimMaster is created, in turn it
instantiates a specific NonlinearFormulation object. After that, common objects in
cluding Reservoir, Facilities, NonlinearSolver are constructed. The data members
of SimMaster also include the global variable set (adX) that stores all the simulation
variables with both values and gradients, as well as the global backup set (adX_n)

Parts of this chapter have been published in the proceedings of SPE Reservoir Simulation Conference
(2017)[28]
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Simulator 

SimMaster 

Nonlinear 
Formulation 

Reservoir Facilities 
AIM 

Scheme 
Nonlinear 

Solver 

adX adX_n 

Containment 

full_set 

Streamline 
Tracer 

adFX allStatus totalBlocks 

Figure 4.1: Overall structure of the entire simulator

that saves a copy of values of all variables. Those can include, in particular, pres
sure, temperature, phase saturations, component molar fractions, phase mobilities,
and so on. Special status in a variable formulation activates a part of the corre
sponding variables to be independent and leaves the rest of the variables to be
dependent, without changing their values.

Nonlinear 
Formulation 

Natural 
Variable 

Formulation 

Molar 
Variable 

Formulation 

Containment 

Inheritance 

Gamma 
Variable 

Formulation 

…… (new 
formulation) 

Phase 
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Conservation 
Equation Order 

Thermal 
Properties 

Figure 4.2: Structure of the NonlinearFormulation

Now, the NonlinearFormulation class will be discussed in detail. Figure 4.2 shows
its structure. This is the abstract base class of various formulations, such as Natu
ralVariableFormulation, MolarVariableFormulation, and so on. By constructing new
inherited classes of NonlinearFormulation (or one of its derived classes) with the
same interfaces but possibly different realizations, we are able to introduce new
formulations.

NonlinearFormulation contains a variety of formulationrelated virtual member
functions. Some functions are called in the initialization stage to specify the phase,
component and variable structure of a formulation. This includes, among many
others, fluidPropertiesCalculation, which computes all fluid properties for a given
control volume, and computeMassFluxTerm, which performs computations related
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to a specific interface between two control volumes.
It is essential to understand that nearly all computations at the nonlinear level

in ADGPRS are performed using data structures from Automatic Differentiation
Expression Template Library (ADETL). The most important ones are aforementioned
adX and adX_n, but there are many other locally used data storages. Any operation
with ADETL types additionally involves augmented gradient computations, which
are happening behind the scenes according to the selected primary variable set.
Each nonlinear formulation defines such a specific set. Then, in order to construct
a Jacobian matrix, one should only care of residual equations, and all gradients are
computed automatically.

4.1.2. Additional Nonlinear Formulation with OBL
It was a natural choice to implement OBL in the ADGPRS framework as an addi
tional nonlinear formulation. MolarVariableFormulation was chosen to be modified,
since it provided a primary variable set which does not require variable switch
ing (as, for instance, in NaturalVariableFormulation where the number of phases is
changing). In order to apply OBL to computations of accumulation and flux terms of
a residual equation, fluidPropertiesCalculation and computeMassFluxTerm functions
of the new nonlinear formulation were modified accordingly.

All ADETLbased computations related to the evaluation of state operators were
replaced by corresponding multilinear interpolation procedures. Nevertheless, all
gradients obtained through interpolation had to be injected back into ADETL struc
ture adX for further processing in Jacobian assembly. This was implemented in
additional function assembleADScalar. Of course, these manipulations of gradient
data can be seen as unnecessary overhead computations, which can be avoided in
a standalone simulator designed on top of the OBL from the very beginning.

All state operators were interpolated in an adaptive manner, which is thoroughly
described in Section 2.6. It allowed to run OBLbased simulations with up to 6 de
grees of freedom (see Subsection 2.7.2). Each operator was stored and interpolated
separately. On one hand, that allowed applying a different parameterization res
olution for each of them. On the other hand, it was not found really beneficial,
and, for consistency, in the majority of simulations an identical parameterization
resolution was applied to all operators. In this case, the search of values of their
supporting points and interpolation was also performed independently, despite the
fact that a large degree of those computations was redundant.

Even though the implementation of OBL within ADGPRS had the aforemen
tioned issues, the performance benefits of the approach were confirmed (see Chap
ter 2, Chapter 3). To estimate the full performance advantage provided by OBL, a
standalone simulation capability with combined operator storage was needed. All
implementation stages are described in the sections below.

4.2. OneDimensional Simulator in MATLAB
As a first step, a standalone simulator was created in Matlab. Its goal was to model
conservation equations in operator form, while operator values were generated
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by ADGPRS implementation and provided to Matlab externally via text files. To
simplify the analysis, the model was limited to a 1D reservoir with Cauchy boundary
conditions on the left and right sides. This made the spatial discretization simpler,
yielding to the following equation in vector form (the length of vector corresponds
to the number of components 𝑛𝑐) for the block 𝑖:

𝒓𝒊(𝝎𝑖−1, 𝝎𝑖 , 𝝎𝑖+1, 𝝎𝑛𝑖 ) = (𝜶(𝝎𝑖) − 𝜶(𝝎𝑛𝑖 )) 𝑎𝑖
− 𝜷(𝝎𝑖)𝑏𝑖+(𝝎𝑖 , 𝝎𝑖+1)
+ 𝜷(𝝎𝑖−1)𝑏𝑖−(𝝎𝑖 , 𝝎𝑖−1) = 0, (4.1)

where

𝑎𝑖 = 𝜙0𝑖𝑉𝑖 , (4.2)
𝑏𝑖+(𝝎𝑖 , 𝝎𝑖+1) = Δ𝑡𝑇𝑖,𝑖+1(𝑝𝑖+1 − 𝑝𝑖), (4.3)
𝑏𝑖−(𝝎𝑖 , 𝝎𝑖−1) = Δ𝑡𝑇𝑖−1,𝑖(𝑝𝑖 − 𝑝𝑖−1). (4.4)

In the case of total velocity formulation

𝑏𝑖+(𝝎𝑖 , 𝝎𝑖+1) = Δ𝑡𝑇𝑖,𝑖+1(𝑝𝑖+1 − 𝑝𝑖)Λ(𝝎𝑖) (4.5)
𝑏𝑖−(𝝎𝑖 , 𝝎𝑖−1) = Δ𝑡𝑇𝑖−1,𝑖(𝑝𝑖 − 𝑝𝑖−1)Λ(𝝎𝑖−1). (4.6)

Next, we assume a homogeneous reservoir with 𝑉, 𝜙0 and 𝑇 constants. Equa
tion 4.1 written for internal reservoir block can be simplified:

𝒓𝒊 = (𝜶𝑖 − 𝜶𝑛𝑖 ) + 𝛾 (𝜷𝑖𝑏𝑖+ + 𝜷𝑖−1𝑏𝑖−) , (4.7)
𝜶𝑖 = 𝜶(𝝎𝑖), (4.8)
𝜷𝑖 = 𝜷(𝝎𝑖), (4.9)

𝛾 = Δ𝑡 𝑇
𝑎𝑏

𝜙0𝑉
, (4.10)

𝑏𝑖+ = 𝑝𝑖 − 𝑝𝑖+1, (4.11)
𝑏𝑖− = 𝑝𝑖 − 𝑝𝑖−1. (4.12)

In the case of total velocity formulation

𝑏𝑖+ = (𝑝𝑖 − 𝑝𝑖+1)Λ(𝝎𝑖) (4.13)
𝑏𝑖− = (𝑝𝑖 − 𝑝𝑖−1)Λ(𝝎𝑖−1). (4.14)

Now, the internal 𝑖th Jacobian block row can be written as:

𝐉𝐢 = [
𝛾𝑩𝑖−1𝑏𝑖− + 𝛾𝜷𝑖−1 × 𝒃′𝒊−,𝒊−1

𝑨𝑖 + 𝛾 (𝑩𝑖𝑏𝑖+ + 𝜷𝑖 × 𝒃′𝒊+,𝒊 + 𝜷𝑖−1 × 𝒃′𝒊−,𝒊)
𝛾𝜷𝑖 × 𝒃′𝒊+,𝒊+1

]

𝑇

(4.15)
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where

𝑨𝑖 = [ 𝜕𝜶𝑖𝜕𝝎𝑖
] = [𝜕𝛼𝑐𝜕𝑝𝑖

𝜕𝛼𝑐
𝜕𝑧𝑖,1

⋯ 𝜕𝛼𝑐
𝜕𝑧𝑖,𝑛𝑐−1

] , 𝑐 = 1,… , 𝑛𝑐 , (4.16)

𝑩𝑖 = [ 𝜕𝜷𝑖𝜕𝝎𝑖
] = [𝜕𝛽𝑐𝜕𝑝𝑖

𝜕𝛽𝑐
𝜕𝑧𝑖,1

⋯ 𝜕𝛽𝑐
𝜕𝑧𝑖,𝑛𝑐−1

] , 𝑐 = 1,… , 𝑛𝑐 , (4.17)

𝒃′𝒊−,𝒊−1 = [ 𝜕𝑏𝑖−𝜕𝝎𝑖−1
]
𝑇
=

⎧
⎪⎪

⎨
⎪⎪
⎩

[−10…0⏝⏟⏝
𝑛𝑐−1

]

𝑇

, conventional

[(𝑝𝑖 − 𝑝𝑖−1)
𝜕𝜆𝑖−1
𝜕𝝎𝑖−1

+ 𝜆𝑖−1 [−10…0⏝⏟⏝
𝑛𝑐−1

]]

𝑇

, total velocity

(4.18)

𝒃′𝒊−,𝒊 = [𝜕𝑏𝑖−𝜕𝝎𝑖
]
𝑇
=

⎧
⎪⎪

⎨
⎪⎪
⎩

[1 0…0⏝⏟⏝
𝑛𝑐−1

]

𝑇

, conventional

[𝜆𝑖−1 [1 0…0⏝⏟⏝
𝑛𝑐−1

]]

𝑇

, total velocity

, (4.19)

𝒃′𝒊+,𝒊 = [𝜕𝑏𝑖+𝜕𝝎𝑖
]
𝑇
= [

𝜕(−𝑏(𝑖+1)−)
𝜕𝝎(𝑖+1)−1

]
𝑇
= −𝒃′(𝒊+1)−,(𝒊+1)−1, (4.20)

𝒃′𝒊+,𝒊+1 = [ 𝜕𝑏𝑖+
𝜕𝝎(𝑖+1)

]
𝑇
= [

𝜕(−𝑏(𝑖+1)−)
𝜕𝝎𝑖+1

]
𝑇
= −𝒃′(𝒊+1)−,(𝒊+1). (4.21)

To maximize the simulation performance, functions performing operator interpo
lation and Jacobian assembly were vectorized. In addition, the Jacobian was com
posed as a tridiagonal block sparse matrix directly of three diagonals (i.e., bands).
That helped to speed up the assembly itself and, more importantly, to ensure the
usage of efficient sparse direct solver.

4.3. StandAlone Simulator with OBL for CPU and
GPU Architectures

In order to evaluate the genuine performance of the OBL approach, we decided
to develop a new C++ prototype of the compositional simulator, without using an
Automatic Differentiation (AD) library. Due to the limited time allotted for the de
velopment of both CPU and GPU versions of the simulation code, we restricted the
number of components to 𝑛𝑐 = 2. The target implementation was designed to
closely follow the implementation in ADGPRS to allow a proper performance com
parison between them. To ensure that, we aligned the initialization and simulation
loop in both simulators.

The initialization stage consisted of several parts. First, the mesh was initial
ized in both ADGPRS and prototype simulators from a connection list augmented
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by transmissibility, volume, and porosity values. This allowed to gain simplicity
and unstructured grids support [70]. Second, the initial state of the reservoir was
defined directly from the values of state variables, dumped from ADGPRS after ini
tialization. Finally, the lookup tables required by the OBL approach were processed
similarly: precalculated in ADGPRS, stored, and then loaded in the simulator pro
totype. Thereby, both ADGPRS and C++ prototypes were initiated identically.

The linearization stage with the linear and nonlinear solvers comprise the main
simulation loop. The OBL was implemented equivalently in all simulation codes
with the only difference in the Jacobian storage selection. While the ADGPRS
framework used ADbased specific storage, the new prototype employed a standard
Block Compressed Sparse Row (BCSR) matrix format. We selected the GMRES linear
solver preconditioned by ILU(0) [34], because this combination is well known for
its good convergence behaviour [71], and its implementation is widely available.
ADGPRS already had this setup implemented [72].

In the new prototype, we used our own implementation of the CPU linear solver,
while for the GPU version, the linear solver library from [73] was used. The basic
NewtonRaphson nonlinear solver was used in all modelling approaches. The non
linear convergence criterion was implemented based on the L2norm of a residual
for all simulations. Finally, we achieved an identical behaviour of the iteration pro
cess and the time stepping across all OBLbased modelling approaches, delivering
simulation results that closely match the conventional ADGPRS results as long as
the parameterization resolution 𝑛 is high enough.

The new simulator prototype is conceptually close to the approach described by
[74], having the same initialization driver for both GPU and CPU versions, which
are developed as interchangeable parts. The GPU version first loads the required
initial data to GPU memory and then performs all major computations on the device.
The CPU is only used to control the main execution logic and to launch the GPU
kernels. All kernels were implemented on a threadpercell basis, avoiding any
communication between threads. Restricted by only 2 components, we achieved a
streaming multiprocessor occupancy of 100% for the bilinear interpolation kernel
and 52% for the Jacobian assembly kernel. Gaining the performance by using the
BCSR storage and native data types, we did not specifically tune neither our CPU nor
our GPU kernels. Carefully applied vectorization, memory padding and alignment,
and mixed precision will be able to improve the computational performance further.

4.4. Numerical Resuls and Performance Compari
son

We compared the computational performance of four modelling approaches:

1. the default overall molar formulation in ADGPRS [10],

2. the OBLbased molar formulation in ADGPRS [75],

3. the prototype of the OBLbased compositional simulator on CPU, and

4. the prototype of the OBLbased compositional simulator on GPU.
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The first three approaches, which use only the CPU, were executed in a serial mode
on a single server with two Intel Xeon E52620 v2 processors clocked at 2.1 GHz.
We performed all executions on CPU in serial mode to escape considerations about
the efficiency of sharedmemory implementation. The fourth approach was run
on NVIDIA Tesla K40m at 875 MHz. All OBLbased approaches used a constant
resolution of 𝑛 =64.

4.4.1. Benchmark Model
The SPE10 test case [76], initially created to compare upscaling techniques, now is
probably the most commonly used model to benchmark the performance of reser
voir simulators. Due to its highly heterogeneous permeability distribution, achiev
ing 10 orders of magnitude, and considerable size of 1.1 million cells, this model is
quite challenging for both linear and nonlinear solvers. Here, we selected the SPE10
test case as a benchmark to compare Jacobian construction times. We chose the
simplest linear and nonlinear solution strategies, described above, to perform the
consistent comparison of all four implementations. Wells were modelled as simple
source/sink terms controlled by pressure. We introduced two wells, an injector and
a producer, at the opposite corners of the model, with perforations in all vertical
layers. The original porosity of the SPE10 model was adjusted to a minimum limit
of 𝜙𝑚𝑖𝑛 = 0.001 to avoid the presence of nonactive cells in the model.

In addition to the standard SPE10 model, we used a homogeneous model with
the same geometrical characteristics, but constant porosity 𝜙 = 0.2, horizontal
𝐾ℎ = 10 mDarcy, and vertical 𝐾𝑣 = 0.4 mDarcy permeabilities. For each of the
models, we performed a waterflooding simulation described by the original SPE10
deadoil properties and gas injection simulation based on EoS properties.

Conducting the benchmarks, we were limited by both small simulation timesteps,
caused by the choice of simple linear and nonlinear solvers, and a short timeframe
of exclusive access to the server. Due to these restrictions, we ran all simulations
for a limited runtime. For a more involved simulation and a detailed analysis of the
impact of OBL on solution see [75].

4.4.2. Waterflooding in Heterogeneous Reservoir
We employed a standard deadoil model, where oil and water components exist
only in their corresponding phases and do not mix. Most of the properties are
described as tablebased correlations. The water injection well operated with a
pressure control at 𝑝𝑖 = 400 bar, and the production well operated at 𝑝𝑝 = 100
bar. The initial pressure distribution was set at 𝑝0 = 200 bar and the initial water
saturation was set at 𝑆𝑤 = 0. All simulations were run for 0.1 days with a limited
timestep to avoid convergence issues in both the linear and the nonlinear solvers.

Table 4.1 demonstrates the performance results for the simulators, listed in
the first column. Due to identical initial conditions, tolerances and convergence
conditions for both the linear and the nonlinear solvers, the number of timesteps,
nonlinear iterations, and linear iterations, presented in the second, the third, and
the fourth columns respectively, match for all OBLbased simulators and are close
to those for the standard ADGPRS.
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Table 4.1: Performance results for the deadoil simulation in the heterogeneous reservoir

Simulator Ts Newt. it. Lin. it. Jac., s Single Jac., s Lin. solv., s Total, s
ADGPRS 16 51 1891 592.892 8.849 976.459 1569.351

ADGPRS + OBL 16 52 1887 505.644 7.436 964.846 1470.490
Prototype (CPU) 16 52 1887 35.400 0.521 715.000 751.000
Prototype (GPU) 16 52 1887 2.330 0.034 118.540 122.900

The difference in Jacobian construction time, which is shown in the fifth column,
between the standard linearization and OBL within the ADGPRS framework shows
the advantage of the approach. Furthermore, the same approach, built in the pro
totype simulator, speeds up the Jacobian construction by an order of magnitude
on the CPU platform, and by another order of magnitude on the GPU platform,
resulting in a 257x speedup over the Jacobian assembly performed in the default
ADGPRS implementation. There are several reasons explaining these results. First,
all simulation runs on the CPU platform were performed on a single processor core,
as we did not want to rely on the efficiency of a multithreaded parallel implementa
tion. Second, as was mentioned before, ADGPRS is based on the extensive use of
the AD technique [24] which introduces a certain overhead caused by augmented
algebra computations, storage selection, and compiler optimization.

The next column in the table represents an average time spent on a single
Jacobian assembly. It was estimated by dividing the Jacobian construction time
by the sum of nonlinear iterations and timesteps, which represents the number
of Jacobian evaluations. We calculated this value to compare the Jacobian con
struction performance regardless of the number of nonlinear iterations or timesteps
made. According to [74], their GPU implementation of Jacobian assembly takes 8
s in SPE10 simulation with 68 timesteps and 418 Newton iterations on the similar
NVIDIA Tesla K40, which gives an average of 0.016 s per single Jacobian assembly,
assuming there were no time step cuts. In this case, our first prototype implemen
tation of a general purpose simulator is only 2x slower.

Linear solver execution time is shown in the 7th column. The linear solver, used
in the CPU version of the prototype, performs better than that in the default imple
mentation in ADGPRS. The GPUbased linear solver has a convincing advantage
over the fastest CPU solver, performing 6x times faster. The total simulation times,
excluding initialization, are shown in the last column of the table. ADGPRSbased
simulations have a little difference due to the different linearization approaches.
The CPU version of the prototype is 2x faster than the standard ADGPRS owing to
a 16x faster Jacobian assembly and a more efficient linear solver implementation.
Finally, the GPU version of the prototype is only 12x times faster than the refer
ence simulation, even though the Jacobian assembly now takes only 2.3 s. The
reason is in a lower scalability of the linear solver, probably caused by employing
substantially sequential ILU(0) as a preconditioner in this simulation. However, an
additional speedup can be obtained by use of multiGPU systems.
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4.4.3. Deadoil Waterflooding in Homogeneous Reservoir
Here, we simplify the initial model by setting porosity and transmissibility values to
constant. This allowed us to set a larger timestep and run the simulation for 10
days. As Table 4.2 shows, the numbers of timesteps and nonlinear iterations still
match across all simulations, while the number of linear solver iterations is slightly
higher for the reference approach than that for OBLbased approaches. The cost
of a single Jacobian construction remains practically unchanged for all simulators.

Table 4.2: Performance results for the deadoil simulation in the homogeneous reservoir

Simulator Ts Newt. it. Lin. it. Jac., s Single Jac., s Lin. solv., s Total, s
ADGPRS 10 37 1420 411.776 8.761 677.327 1089.103

ADGPRS + OBL 10 37 1395 354.758 7.548 670.299 1025.057
Prototype (CPU) 10 37 1395 21.380 0.455 474.150 496.000
Prototype (GPU) 10 37 1395 1.630 0.035 84.100 87.200

4.4.4. Gas Injection in Heterogeneous Reservoir
Here, we present the results of gas injection into oil composed of {𝐶𝑂2,𝐶10} to
demonstrate the applicability of the developed simulators to compositional prob
lems. The gas was injected at a pressure of 𝑃𝑖 = 100 bar, while the oil was produced
at 𝑃𝑝 = 60 bar. The initial oil contained 31% carbon dioxide and 69% decane, while
the injected mixture was composed of 79% of 𝐶𝑂2 and 21% of 𝐶10. The reservoir
was initialized uniformly at a pressure of 𝑃0 = 80 bar and a temperature of 𝑇0 = 372
K. As before, the simulations were performed with a limited timestep and ran for
0.1 days.

Table 4.3: Performance results for the compositional simulation in the heterogeneous reservoir

Simulator Ts Newt. it. Lin. it. Jac., s Single Jac., s Lin. solv., s Total, s
ADGPRS 16 19 1403 304.540 8.701 872.068 1176.608

ADGPRS + OBL 16 19 1403 228.267 6.522 870.073 1098.340
Prototype (CPU) 16 19 1403 17.310 0.495 697.580 715.200
Prototype (GPU) 16 19 1403 1.110 0.032 97.720 100.200

Table 4.3 shows that the cost of a single Jacobian evaluation remained close
to the deadoil case for all approaches in compositional simulation. It can be ex
plained by a small runtime period used in our simulations. The real impact of phase
behaviour computations to the linearization stage and advantages provided by the
OBL approach can be found in [75].

4.4.5. Gas Injection in Homogeneous Reservoir
The results of 𝐶𝑂2 + 𝐶10 injection in the homogeneous reservoir are presented in
Table 4.4. The observations and conclusions in this case are similar to the previous
results. Notice that the time of a single Jacobian assembly for the OBL approach
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implemented in the prototype simulator is almost independent of the complexity of
the physics across all test cases.

Table 4.4: Performance results for the compositional simulation in the homogeneous reservoir

Simulator Ts Newt. it. Lin. it. Jac., s Single Jac., s Lin. solv., s Total, s
ADGPRS 10 20 1497 238.613 7.954 885.941 1124.554

ADGPRS + OBL 10 20 1497 178.292 5.943 886.649 1064.941
Prototype (CPU) 10 20 1497 13.500 0.450 705.890 719.700
Prototype (GPU) 10 20 1497 0.980 0.033 100.030 102.200

4.4.6. Gas Injection in OneDimensional Homogeneous Reser
voir

In order to add the MATLAB prototype into the comparison, we also modeled gas
injection into oil composed of {𝐶𝑂2,𝐶4,𝐶10} in a onedimensional reservoir with
1000 grid blocks. The gas was injected at a pressure of 𝑃𝑖 = 100 bar. The initial oil
contained 1% carbon dioxide, 65% buthane and 34% decane, while the injected
mixture was composed of 79% 𝐶𝑂2, 20% 𝐶4, and 1% 𝐶10. The reservoir was
initialized uniformly at a pressure of 𝑃0 = 60 bar and a temperature of 𝑇0 = 353 K.
The simulations were performed with a limited timestep of 1 day and ran for 200
days. For OBL simulations, the resolution of 32 was used.

Table 4.5: Performance results for the compositional simulation in the onedimensional heterogeneous
reservoir

Simulator Ts Newt. it. Lin. it. Jac., s Single Jac., s Lin. solv., s Total, s
ADGPRS 203 635 635 2.6 0.0031 0.6 4.5

ADGPRS + OBL 203 580 580 2.1 0.0026 0.5 3.4
Prototype (CPU) 203 580 580 0.2 0.0003 0.17 0.6

Prototype (MATLAB) 203 580  7.8 0.009 1 9.3

Table 4.5 demonstrates that the performance difference between the C++ and
MATLABbased simulators is around an order of magnitude. The main contribution
is made by linearization, which is almost 40x slower in MATLAB despite the vector
ized implementation. The linear solver is only 5x behind the C++ version (it should
be noted that the MATLAB version employed a direct linear solver, whereas the CPU
prototype uses an iterative GMRES + BILU(0) scheme). The difference in lineariza
tion performance between the ADGPRS and CPU prototypes did not change for the
models of reduced size and remained around an order of magnitude.
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Delft Advanced Research
Terra Simulator (DARTS)

After several prototype implementations of OBL were developed, tested, and vali
dated, a certain level of maturity was reached. Existing code has been significantly
refactored and extended, exploiting the advantages of the approach to its limits.
The main goal for the new Delft Advanced Research Terra Simulator (DARTS, [80])
was to preserve its simplicity and computational efficiency, but make it modular
and extendable as much as possible. At the same time, general purpose reservoir
simulation capabilities were required, with the potential to extend them further.

5.1. Combined Implementation in Python/C++
In order to reach these goals, it was decided to complement two technology stacks
in the simulator: C++ and Python. The former is the most popular compiled
programming language, inherently providing the required computational efficiency
and additionally allowing the usage of coarsegrained and finegrained parallelism
through OpenMP and CUDA language extensions. C++ was used in DARTS for im
plementation of critical for performance parts, such as linearization, interpolation,
and solution of a linear system. Python is one of the most popular interpreted lan
guages, providing flexibility and simplicity of development. Moreover, it integrates
with C++ with minimal overhead, allowing even to inherit existing C++ interface
classes and therefore extend original, already compiled functionality with a custom
script.

Python was used in DARTS mainly for data pre and postprocessing, where
performance fades into the background, yielding functionality in importance. For
a constantly developing research simulator, it is imperative to adapt existing and

Parts of this chapter have been published in the proceedings of 16th European Conference on the
Mathematics of Oil Recovery (2018)[77], in the proceedings of SPE Reservoir Simulation Conference
(2019)[78], and in the proceedings of 44th Workshop on Geothermal Reservoir Engineering (2019) [79]
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introduce new input data arrays. Traditionally used input keywords, rigidly imple
mented in C++ core code, become an obstacle here. It is much more natural to
prepare all input data in Python by reading text or binary files or generating it
according to any desired algorithm, and then feed it into DARTS.

It is also true for the output data: having all results as Python variables, it is up
to a user whether to save it in the desired format, analyse using various scientific
libraries, (e.g., NumPy, SciPy or Pandas [81–83]), or export to a powerful visualiza
tion tool such as Paraview [84]. Finally, the entire simulator can be wrapped by a
single Python function call, immediately opening opportunities for inverse modelling
without redundant Input/Output overhead.

5.2. Decoupling of Physical Properties
Following the main idea of OBL, the DARTS framework distinguishes operators from
governing equations and treats them in a special way. Operators are functions of
the state in a single control volume. Typically, they represent a combination of
fluid and rock properties and correspond to the most complex and nonlinear part
of the governing equations. Sometimes, the dependency of operators on the state
is determined through indirect procedures like phasesplit, and therefore it is hard
to linearize them in a general way. Suggesting an alternative to an automatic or
direct handdifferentiation solution to this problem, OBL replaces the operators with
their piecewise multilinear approximations. For those, it is possible to express their
derivatives with respect to state variables in a general way.

In DARTS, approximated operators values (along with partial derivatives) are
computed via multilinear interpolation, where the amount of dimensions matches
the number of nonlinear variables (i.e. the length of the state, or the number of
degrees of freedom) in a single control volume. The true operator values, which
are used in interpolations, are called supporting points or base points. They are
computed in an adaptive manner during simulation [59] only once for a given state.
Supporting points then are saved in a special twolevel sparse storage designed for
efficient lookup and reuse.

This approach has proven to be especially effective when property calculations,
involved in the evaluation of operator values, are computationally expensive (e.g.,
involve complex phase behaviour). Since supporting points are values of functions
of the state, they do not depend on spatial location and can be applied either across
the whole reservoir or at least within the subregions where fluid and rock properties
remain constant (e.g., PVT regions). Thereby in DARTS, property calculations occur
relatively rare and their amount depends not on the spatial discretization, but rather
on a discretization of the parameter space used for operator approximation and
development of the simulation in that space.

From the perspective of the simulation nonlinear loop, the operator interpolation
replaces properties calculations in the Jacobian assembly step. In addition, it also
’shadows’ physical phenomena behind the operators, leaving out only the values
of supporting points, which are rarely computed but utilized all the time during in
terpolation. This allows to detach fluid and rock properties calculations (now only
performed during operator evaluation at supporting points) from the main nonlinear
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loop, as well as to relax the performance requirements for such calculations. The
Jacobian assembly now depends on the choice of the nonlinear variables and the
governing physical mechanisms which are taken into account. The former deter
mine the dimensionality of parameter space, while the latter define the operators
required for the assembly. Once the choice is made, the Jacobian assembly is sim
ply the right combination of approximated operator values and partial derivatives
with spatial properties and states, encapsulated in a simulation engine.

Figure 5.1: DARTS modular structure

The modularity of DARTS is demonstrated in Figure 5.1. On the left, four simu
lation engines are shown:

• engine_pz – multiphase multicomponent mass transport,
𝝎 = {𝑝, 𝑧1, … , 𝑧𝑛𝑐−1};

• engine_pz_gc – multiphase multicomponent mass transport with gravity and
capillarity,
𝝎 = {𝑝, 𝑧1, … , 𝑧𝑛𝑐−1};

• engine_ptz – multiphase multicomponent mass and energy transport,
𝝎 = {𝑝, 𝑇, 𝑧1, … , 𝑧𝑛𝑐−1};

• engine_phz – multiphase multicomponent mass and energy transport,
𝝎 = {𝑝, ℎ, 𝑧1, … , 𝑧𝑛𝑐−1}.

All engines are written in a general manner for 𝑁𝐶 components (and 𝑁𝑃 phases for
engine_pz_gc). Notion < 𝑁𝐶 > here indicates that the variable represents integer
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template parameter of corresponding class, known at compile time. This approach
allows to maximize various compiler optimizations (e.g., loop unrolling).

Next, two interpolators are available (Figure 5.1, middle):

• static_itor – precomputes all supporting points in advance, and can be useful
for coarse physical representation and lowdimensional parameter space;

• adaptive_itor – adaptively computes supporting points along with the simula
tion, as described in Section 2.6.

Both interpolators are written in a general way for 𝑁𝐷 degrees of freedom and 𝑁𝑂
operators. All operator values are stored together to benefit from faster search and
interpolation. Moreover, operator values computed during simulation can be stored
and loaded, which can be extremely beneficial in case of running multiple models
with the same physical properties (inverse modelling, optimization).

Finally, several operator sets are present (Figure 5.1, right):

• Dead oil – water and oil components, water and oil phases,
𝝎 = {𝑝, 𝑧𝑤};

• Blackoil – water, oil, and gas components, water, oil, and gas phases,
𝝎 = {𝑝, 𝑧𝑔 , 𝑧𝑜};

• Compositional – 𝑛𝑐 components, liquid and vapor phases,
𝝎 = {𝑝, 𝑧1, … , 𝑧𝑛𝑐−1};

• Thermal compositional – 𝑛𝑐 components, liquid and vapor phases,
𝝎 = {𝑝, 𝑇, 𝑧1, … , 𝑧𝑛𝑐−1};

• Geothermal – water component, liquid and vapor phases,
𝝎 = {𝑝, ℎ}.

All the items above are implemented in C++, except the geothermal operator set,
which is implemented purely in Python, as a wrapper over the IAPWS library [85].
Nevertheless, as is shown in Section 5.7, it does not diminish simulation perfor
mance unless excessive parameterization accuracy is used. With sufficient param
eterization resolution, DARTS is significantly faster than other simulators (see Sub
section 5.7.4).

Note, that it is relatively easy to refactor existing C++based operator sets with
an AD library. In this case, it will be possible to skip the interpolation link and di
rectly supply the ADbased gradient from the operator set to the simulation engine.
This mode momentarily converts DARTS to a conventional simulator with the exact
representation of physical properties. It can be used to obtain a reference solution
or simulation time for accurate estimation of OBL accuracy and performance.

In addition, DARTS opens the opportunity to perform the entire simulation on
GPU architecture by offloading only engines, interpolators, and linear solvers. All
operatorrelated computations may be still performed on CPU without significant
impact on simulation performance thanks to adaptive parameterization.
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Detaching operators and engines create unique opportunities in terms of both
flexibility and performance. From the perspective of the engine, the exact im
plementation of evaluation of operator supporting points is not relevant, because
operators values along with their derivatives are computed by interpolation. Receiv
ing those, the Jacobian assembly is then done using straightforward computation
of derivatives, which is feasible because of the simplicity of the governing equations
written in operator form, even for complex physical applications.

5.3. Unstructured Grids
In order to keep the framework general and flexible, the space discretization proce
dure is left out of the simulation engines. They are initialized by a connection list,
which represents peertopeer connectivity between control volumes in the reser
voir and can be built in the same format for both structured and unstructured grids.
The connection list for TPFA is defined by the total amount of grid blocks and a
list of connections. Each connection is defined by the set (𝑖, 𝑗, Γ, Γ𝑑), where 𝑖 and 𝑗
are indices of neighbouring control volumes, Γ is transmissibility of fluxes and Γ𝑑 is
diffusion transmissibility. The sparsity pattern of the Jacobian matrix is computed
directly based on the connection list and remains fixed during the simulation.

(a) Coarse grid with 3722 control volumes
and 1376 fracture elements

(b) Fine grid with 31746 control volumes
and 3610 fracture elements

Figure 5.2: Unstructured grids for Descrete Fracture Model (DFM)

This approach allows to run the same simulation code on structured grids, grids
build within Discrete Fracture Model (DFM) concept (described among many others
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(a) Coarse grid (b) Fine grid

Figure 5.3: Unstructured radial grids

in [86]), or radial unstructured grids (see examples in Figure 5.2, Figure 5.3).

5.4. Multisegment Wells
Following the general unstructured grid framework, a well is discretized by a set of
control volumes of well segments, chained together by connections. The current
implementation only includes the homogeneous flow model in segments. Any well
segment can be connected with an arbitrary number of reservoir control volumes,
representing well perforations. For the well discretization, we use a connection
based approach, suggested by [87].

Each perforation is characterized by geometrical transmissibility representing the
connectivity of corresponding well segments to the reservoir, also referred to as a
well index. Similar to the connections between reservoir grid blocks, well indices are
computed outside simulation engine taking into account geometry and orientation
of wellbore and perforated grid block (along with associated rock properties) in a
general unstructured grid. In addition, the top well segment is also connected to a
ghost control volume, which has exactly one connection and is used as a placeholder
for well control equations (see details in [88]).

Two examples are shown in Figure 5.4: a onesegment well configuration (sim
ilar to a regular well) is on the left and a multisegment well configuration is on
the right. Reservoir control volumes are shown in gray; well control volumes in
cluding the top segment 𝑤1  in blue; the well ghost control volume 𝑤0  in red.
The interface between 𝑤0 and 𝑤1 is denoted as 𝑤. Black arrows represent con
nections between reservoir control volumes; blue arrows  perforation connections;
red arrows  intrawell connections. Even though the examples show a structured
grid case with a vertically oriented wellbore, the well configuration in DARTS can
be arbitrary owing to the connectionbased approach to describe well perforations.

All well control volumes are considered as extensions of a reservoir and treated
exactly the same way during Jacobian assembly, except for 𝑤0. Naturally, due to the
absence of the porous media inside a wellbore, the phase relative permeabilities
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Figure 5.4: Example of multisegment well discretization for structured reservoir

will be different from those in the reservoir. This can be modelled accordingly
via operator regions (Section 5.5). Each well segment is defined by a volume
dependent on a wellbore diameter and a segment length, while other properties
are neglected. The flow in the multisegment well is following the homogeneous
multiphase flow in an idealized tube without roughness or slip [88].

5.4.1. BHP Well Control
One of the two most common controls for wells in reservoir simulation is fixed
bottom hole pressure. The following system of equations is applied to the 𝑤0 control
volume instead of Eq. Equation 2.10 in order to maintain target pressure 𝑝𝑡𝑎𝑟𝑔𝑒𝑡:

𝑝 − 𝑝𝑡𝑎𝑟𝑔𝑒𝑡 = 0, (5.1)

𝑧𝑐 − 𝑧𝑢𝑝𝑐 = 0, 𝑐 = 1,… , 𝑛𝑐 − 1, 𝑧𝑢𝑝𝑐 = {𝑧
𝑖𝑛𝑗
𝑐 for injector
𝑧𝑤1𝑐 for producer

(5.2)

5.4.2. Rate Well Control
Another common way to define the well regime is to specify volumetric phase rate
at surface conditions. In order to parametrize this rate, we first define the state at
the separator (or surface) conditions using the overall composition of the flux 𝛽𝑤𝑐
over interface 𝑤, which is evaluated according to Equation 2.13:

𝝎𝑆𝐶 = [𝑝𝑆𝐶 , 𝑇𝑆𝐶 , 𝛽
𝑤
1

∑
𝑐
𝛽𝑤𝑐
, … ,

𝛽𝑤𝑛𝑐−1
∑
𝑐
𝛽𝑤𝑐

] (5.3)
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Next, we can obtain a target rate introducing rate operator 𝜁𝑝(𝝎):

𝑄𝑝 =
𝑏𝑤 ∑

𝑐
𝛽𝑤𝑐

𝑑𝑡
𝑆𝑝(𝝎𝑆𝐶)
𝜌𝑡(𝝎𝑆𝐶)

= 𝑏𝑤
𝑑𝑡 𝜁

𝑤(𝝎), 𝜁𝑤𝑝 (𝝎) = {
𝜁𝑝(𝝎) for injector
𝜁𝑝(𝝎𝑤) for producer

(5.4)

Finally, we write down equations for the control volume 𝑤0 to maintain target rate
𝑄𝑡𝑎𝑟𝑔𝑒𝑡𝑝 :

𝑏𝑤
𝑑𝑡 𝜁

𝑤
𝑝 (𝝎) − 𝑄𝑝 = 0, (5.5)

𝑧𝑐 − 𝑧𝑢𝑝𝑐 = 0, 𝑐 = 1,… , 𝑛𝑐 − 1, 𝑧𝑢𝑝𝑐 = {𝑧
𝑖𝑛𝑗
𝑐 for injector
𝑧𝑤1𝑐 for producer

(5.6)

Due to more nonlinear relations involved in operator evaluation for well controls,
parameterization tables with resolution higher than in reservoir simulation are often
needed to control the error.

Note, that physical state 𝝎 for well control volumes, including 𝑤0, is defined
exactly the same way as for the reservoir control volume. Hence, the choice of
nonlinear variables and their order is also identical. This approach simplifies effec
tive preconditioning of the linear system (see Section 5.6).

5.4.3. Validation
Another source of error comes from operators involved in the approximation of
properties for well controls. Multisegment wells provide the most accurate solu
tion when crossflow effects coupled with complex phase behaviour occur in the
reservoir model. In order to mimic these conditions, we took a synthetic model
comprised of three layers with lateral permeabilities of 𝐾𝑥𝑦 =100, and 500 mD,
while the vertical permeability was set at 𝐾𝑧 =

𝐾𝑥𝑦
100 . Each layer consisted of 10x10

grid blocks of 100x100x10m with a porosity of 25%. The initial oil is composed of
𝐶1, 𝐶4, and 𝐶10 at corresponding compositions: 1% methane, 35% nbutane, and
64% ndecane. The description of the phase behaviour and properties is based on
the PengRobinson Equation of State [56].

Two vertical multisegment wells with three segments each are placed at the
opposite corners of the model. Each segment is connected to the corresponding
layer with different well indices of 10, 20 and 30. We inject a mixture of 99% of 𝐶1
and 1% of 𝐶4 at a constant gas rate 𝑄𝑔 = 1.5 × 105 sm3/day. The production well
operates at a constant oil rate 𝑄𝑜 = 800 sm3/day with a minimum BHP constraint of
10 bar. In order to model singlephase gas injection into a singlephase liquid, we
set the initial pressure at 𝑃0 = 60 bar and temperature 𝑇0 = 77 ∘C. The simulation
period is 4000 days.

The comparison between DARTS and ADGPRS with multisegment well model
is shown in Figure 5.5, Figure 5.6. The two results match very well. The injector
BHP climbs up due to gas compressibility till breakthrough happens after roughly
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1600 days of simulation, as it can be seen from Figure 5.5. After that the injec
tion pressure rapidly drops, while the producer cannot satisfy the oil rate control
anymore after roughly 2300 days of simulation and therefore switches to the BHP
constraint of 10 bar.

Figure 5.5: BHP for injector and producer provided by DARTS and ADGPRS

Producer gas and oil rate comparisons are shown in Figure 5.6. There is a very
good match between the DARTS and ADGPRS results. The producer gas rate starts
at 0, then rapidly increases after breakthrough and falls back after the producer
switches to the BHP control. The production oil rates computed by the DARTS and
ADGPRS multisegment well models (denoted as ADGPRS_ms) match well. The
results provided by the ADGPRS standard well model, denoted as ADGPRS_std,
underestimate oil production after breakthrough and illustrate the substantial dif
ference between the two well models in this case.

Figure 5.6: Producer oil and gas rates provided by DARTS and ADGPRS

In order to test the same physical set up in a highly heterogeneous reservoir, we
took the top layer of the SPE10 test case [76] and applied an inverted five spot well
pattern. The reservoir’s initial physical state and injection mixture are the same as
in the previous case. The injection well starts with the BHP control at 180 bar, and
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after 500 days switches to gas rate control 𝑄𝑔 = 2300 sm3/day with a maximum
BHP constraint of 199 bar. The production wells, placed at the corners, operate
with gas rate control 𝑄𝑔 = 200 sm3/day with a minimum BHP constraint of 30 bar.
The simulation period is 2500 days.

Figure 5.7: Injector BHP and gas rate provided by DARTS and ADGPRS

Figure 5.8: P3 and P4 BHP provided by DARTS and ADGPRS

Figure 5.7, Figure 5.8, Figure 5.9 , Figure 5.10 demonstrate a close match be
tween the DARTS and ADGPRS results. The injection well switched to gas rate con
trol after 500 days of simulation and reached the BHP limit by roughly the 1900th
day, as can be seen in Figure 5.7. The P1 and P2 production wells happened to be
perforated in low permeable reservoir area producing negligible amounts of fluids,
so we omit their results. The BHPs for P3 and P4 are shown in Figure 5.8. For P3 it
remains constant throughout the simulation, while for P4 it starts raising after 1500
days of simulation  the well switches to gas rate constraint after the breakthrough.
This is confirmed by Figure 5.9 and Figure 5.10. The oil production rate immediately
decreases while the gas production rate increases until its limit of 𝑄𝑔=200 sm3/day
once the breakthrough is reached for P4. A small increase in the gas production
rate by the end of the simulation indicates the breakthrough for the P3 well.
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Figure 5.9: P3 and P4 oil rates provided by DARTS and ADGPRS

Figure 5.10: P3 and P4 gas rates provided by DARTS and ADGPRS
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5.5. Operator Regions
One of the important features, usually implemented in industrylevel simulators, is
the ability to model fluids and rock with spatially different properties in a single
reservoir. It is essential for modelling of complex multilayered reservoirs with sig
nificantly different characteristics, especially when wells are perforated in several
layers. Traditionally, each option of fluid PVT, SCAL, or rock compaction properties
is associated with a single corresponding region. Then, every control volume in
the computational mesh is explicitly assigned to a specific region via corresponding
keywords for each of spatially variable property (e.g., PVTNUM, SATNUM, ROCK
NUM in [22]). Usually, regions represent large reservoir partitions, their amount is
limited, and partitioning remains fixed during a simulation.

DARTS supports this feature introducing operator regions. Since all physical
properties of fluid and rock are represented by corresponding state operators, there
is no need to define a separate set of regions for every property. Therefore, it is
sufficient to associate every control volume of the computational mesh to a sin
gle operator region (via OPNUM, similarly to abovementioned keywords), whereas
each operator region represents spatial variability in any of fluid or rock properties.

Table 5.1: Validation model parameters

Parameter Value
Reservoir dimensions, m 1000x10x1
Reservoir grid 100x1x1
Permeability, mD 100
Porosity 0.2
Initial pressure, bar 100
Initial water saturation 0.2
Injector BHP, bar 150
Producer BHP, bar 50
Maximum timestep, days 10
Simulation period, days 3000

(a) SWOF 1

𝑆𝑤 𝐾𝑟𝑤 𝐾𝑟𝑜
0.2 0.0 1.0
0.5 0.2 0.6
1.0 1.0 0.0

(b) SWOF 2

𝑆𝑤 𝐾𝑟𝑤 𝐾𝑟𝑜
0.2 0.0 1.0
0.5 0.5 0.5
1.0 1.0 0.0

Validation of the numerical solution obtained by DARTS in case of spatial vari
ability of fluid properties was done by comparison against the solution obtained
from the Eclipse 100 simulator [22]. Conventional waterflooding based on Dead
Oil PVT description was modelled for an homogeneous onedimensional reservoir
with high resolution in space, time, and physical properties discretizations (only for
DARTS). In this model, gravity and capillarity effects were not taken into account.

The model parameters are represented in Table 5.1. The injector was placed at
the first grid block, the producer at the last one. The first half of the model was
considered as region 1, the second half  region 2. Each of the regions was assigned
to a specific oilwater relative permeability curve introducing spatial variability in
fluid properties. In the Eclipse 100 model, two SWOF tables (Table 5.1a, Table 5.1b)
were used along with the SATNUM keyword. In the DARTS model, two independent
sets of operators were initialized with corresponding tables. Since PVT properties
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were not different between the regions, values for accumulation operators matched
between sets, however flux operators values (for physical states corresponding to
water saturation above connate water saturation) were different.

Figure 5.11: Comparison of water production rates between DARTS and Eclipse 100 models for 2 regions
and a single region

Figure 5.11 shows the water production rate at the producer well for DARTS and
Eclipse 100 models. It is easy to see that the match between the two solutions is
almost ideal. In order to confirm the significance of spatial variability in fluid prop
erties in this case, also a single region model was simulated and compared. Here,
only the table corresponding to the first region was used for the entire reservoir.
Since Table 5.1a corresponds to the less mobile water phase, the breakthrough
happens later compared to the 2 regions model, and the water production rate
curve is substantially different. Still, the solutions obtained by DARTS and Eclipse
100 match very well.

5.6. Linear Solvers
For the vast majority of practical reservoir simulations, linear solution occupies the
most of simulation time. Efficient implementation of linear solvers is determined not
only by the actual algorithms and quality of their implementation but starts from
the choice of the underlying data storage and further depends on the number of
implicit transformations it undergoes at various levels of the linear solver.

One of the most common storage formats for large sparse matrices is Com
pressed Sparse Row (CSR) [34]. Its goal is to minimize data transfers between
memory and CPU by storing contiguously nonzero entries belonging to a single
row. Linear systems originating from problems with 𝑛 degrees of freedom per con
trol volume (element) solved with fully implicit schemes, usually exhibit 𝑛×𝑛 dense
blocks of nonzero entries in matrix portraits.

The Block Compressed Sparse Row (BCSR) matrix format, introduced by Pinar
and Heath [89], exploits this feature to reduce the memory access even further.
The amount of row and column indices is then reduced by a factor of 𝑛. More
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importantly, all linear combinations involving the matrix (e.g., sparse matrixvector
multiplications) are performed blockwise, operating on dense 𝑛 × 𝑛 submatrices,
which is more efficient on modern CPU architectures due to more intense usage of
register and cache storage.

DARTS engines perform Jacobian assembly directly into a BCSR storage in a
single pass, filling in both diagonal and offdiagonal values. This choice is condi
tioned by the goal to develop a general and efficient framework for simulation on
unstructured grids. Depending on the upwind direction, certain derivative values
result in zeroes. Nevertheless, they are still stored explicitly inside matrix blocks to
maintain uniform data storage format.

Since the computational mesh is assumed to be fixed for the entire simulation,
and well opening/closing does not entail changes in the number of variables, the
BCSR structure is computed once at the beginning of a simulation and does not
change in the process. Only matrix values are recomputed on every iteration, while
its portrait stays constant. This assumption allows to apply the same approach at
a linear level: internal structures are initialized only once, further increasing the
performance of the linear solution.

The standard choice of linear solvers for large reservoir simulation are Krylov
subspace iterative solvers with a sophisticated preconditioning strategy [34]. Pre
conditioning is an essential technique to reduce the condition number of the linear
system increasing the convergence rate of the iterative solver substantially. Typi
cally, different preconditioners work with various efficiency when applied to systems
with different nature. For example, the Algebraic Multigrid Method (AMG) is effi
cient for nearelliptic problems [32], while Incomplete LU factorization with 0 level
of fillin (ILU(0)) is successfully applied for nearhyperbolic equations [90].

Reservoir simulation equations with a Fully Implicit approximation scheme lead
to the linear system where both types of unknowns are present. It is comprised of
a nearelliptic pressure equation, a nearhyperbolic composition (saturation) equa
tion, while the temperature equation can be either type depending on whether the
process is conduction (thermal diffusion) or convectiondominated. For the effi
cient treatment of such systems, a Constrained Pressure Residual (CPR) approach
was designed in [29, 30].

The CPR method is a twostage preconditioner, where at the first stage, the
pressure system is decoupled from the full system and solved separately with AMG
based scheme. Often, a single Vcycle is enough for efficient preconditioning. At
the second stage, the full system is processed by an ILU(0) preconditioner using the
pressure solution from the first stage. This strategy has proved to be very robust
and efficient even for highly heterogeneous reservoirs with strong coupling between
elliptic and hyperbolic parts of the linear system. This results in stable convergence
within a limited number of linear solver iterations even when simulation time steps
are very large.

The linear system in DARTS is solved using the Flexible Generalized Minimum
Residual (FGMRES) iterative method [91]. All matrix operations are performed in
native BCSR format. The twostage CPR preconditioning strategy is employed. The
pressure system is decoupled from the full FIM system using a TrueIMPES reduction
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approach directly from the BCSR storage. Then, a single Vcycle of the AMG solver
is used to obtain an approximation of the pressure solution. Finally, it is substituted
in the full system and the block ILU(0) preconditioner is applied.

5.7. Geothermal Benchmark
In this section, we perform a set of benchmark tests and compare the simulation
results of DARTS with the stateoftheart research simulators TOUGH2 and AD
GPRS. First, we describe the geothermal model used in the benchmark. Next,
we compare simulation results of pressure and temperature solution under both
low and highenthalpy conditions. Finally, we display the performance of different
simulators in the geothermal formulation. In the benchmark study, because of the
complexity of data preprocessing in TOUGH2 and some convergence issues in AD
GPRS for the highenthalpy condition, a single layer of the model is used to run
and compare under low and highenthalpy condition within 3 simulators. The full
model is only compared with ADGPRS under the lowenthalpy condition.

5.7.1. Threedimensional Geothermal Model
A synthetic geological model from [92] is used in this section for benchmark tests.
All properties in the model are populated with a dataset from fluvial Nieuwerkerk
formation of the West Netherlands Basin similar to Subsection 3.1.3. The reservoir
dimensions are 1.8 km × 1.2 km × 0.1 km as shown in Figure 5.12. The discretized
model contains 60 × 40 × 42 grid blocks. One doublet is placed on the middleline
along the Xaxis with 1.2 km spacing as shown in Figure 5.13. The fluvial sandstone
is distributed along the Xaxis of the reservoir. The open flow boundary condition
is set along the Yaxis of the reservoir, and a noflow boundary condition is defined
along the Xaxis of the reservoir. Two energytransfer mechanisms are considered
in this process: convective and conductive heat flow.

Table 5.2: Parameters used in benchmark tests

Parameter Value
Depth, m 2300
Pressure, bar 200
Temperature, K 348.15
Porosity 0.16 ∼ 0.36
Permeability, mD 6∼ 3360
Sand heat capacity, kJ/m3/K 2200
Sand thermal conductivity, kJ/m/day/K 180

5.7.2. Comparisons of DARTS and TOUGH2
Table 5.3 shows the initial conditions and well controls used in the validation with
TOUGH2. The results are shown in Figure 5.14 and Figure 5.15 for low and high
enthalpy conditions respectively. The TOUGH2 solution is taken as a reference.
A good match can be observed between DARTS and TOUGH2 results under both
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Figure 5.12: Schematic of the facies distribution for synthetic geothermal model

Figure 5.13: Geothermal doublet location for synthetic geothermal model

conditions. The maximum relative temperature difference is just around 1.6% for
the lowenthalpy case rising to 4% and concentrating along the cold front for the
highenthalpy case. The higher difference in the highenthalpy case, apart from
being attributed to higher nonlinearity of the process, can also be explained by
a higher amount of timesteps for TOUGH2 (see Table 5.5), leading to a certain
difference in time truncation errors between the simulators. The saturation solution
exhibits differences up to 10% only along the front, where both liquid and vapor
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Figure 5.14: Comparison of final solutions for lowenthalpy conditions obtained from DARTS and TOUGH2
for pressure (top row) and temperature (bottom row). In each row, the left column corresponds to the
final solution from TOUGH2, while the right column represents the relative difference between solutions
from TOUGH2 and DARTS

Figure 5.15: Comparison of final solutions for highenthalpy conditions obtained from DARTS and
TOUGH2 for pressure (top row), temperature (middle row), and water saturation (bottom row). In each
row, the left column corresponds to the final solution from TOUGH2, while the right column represents
the relative difference between solutions from TOUGH2 and DARTS
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Parameter Lowenthalpy Highenthalpy
Initial temperature, K 348.15 623.15
Initial pressure, bar 100 100
Injection enthalpy, kJ/kg 100 100
Injection rate, m3/day 36 36
Production pressure, bar 80 80
Simulation time, years 100 100

Table 5.3: Simulation parameters used for comparison between DARTS and TOUGH2 in lowenthalpy
and highenthalpy cases

phases are present.

5.7.3. Comparison of DARTS and ADGPRS
Here, we take the ADGPRS solution as a reference. Figure 5.16 and Figure 5.17
show the solution and difference of a singlelayer model. Figure 5.18 shows the so
lution of the 20th layer of the full threedimensional model. That layer corresponds
to the highest differences in the solution since its average permeability is also the
highest.

Parameter Lowenthalpy Highenthalpy
Initial temperature, K 348.15 623.15
Initial pressure, bar 100 100
Injection temperature, K 298.15 298.15
Injection rate, m3/day 40 40
Production pressure, bars 80 80
Simulation time, years 100 100

Table 5.4: Simulation parameters used for comparison between DARTS and ADGPRS in lowenthalpy
and highenthalpy conditions

As shown in Figure 5.16, for the model with the lowenthalpy condition, the
maximum temperature difference between DARTS and ADGPRS is around 3% of
the overall temperature variation range. For the highenthalpy case (Figure 5.17),
the temperature variation range is from 25 to 225°C. The maximum temperature
difference, in this case, goes up to 3.5% similarly to the comparison with TOUGH2.
Again, partly the difference can be explained by the different amounts of timesteps
required for simulators to converge. However, the highest differences are not only
distributed along the front but are also present inside the liquid phase region. The
difference in saturation solution remains at 10 % and is predictably distributed over
the twophase region along the front, exactly as in the case with TOUGH2.

For the full threedimensional model with lowenthalpy conditions, the observed
maximum temperature difference is observed for the 20th layer. As shown in Fig
ure 5.18, it reaches around 2% for both temperature and pressure.
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Figure 5.16: Comparison of final solutions for lowenthalpy conditions obtained from DARTS and AD
GPRS for pressure (top row) and temperature (bottom row). In each row, the left column corresponds
to the final solution from ADGPRS, while the right column represents the relative difference between
solutions from ADGPRS and DARTS

Figure 5.17: Comparison of final solutions for highenthalpy conditions obtained from DARTS and AD
GPRS for pressure (top row), temperature (middle row), and water saturation (bottom row). In each
row, the left column corresponds to the final solution from ADGPRS, while the right column represents
the relative difference between solutions from ADGPRS and DARTS
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Figure 5.18: Comparison of final solutions for 20th layer of full threedimensional model with low
enthalpy conditions obtained from DARTS and ADGPRS for pressure (top row) and temperature (bottom
row). In each row, the left column corresponds to the final solution from ADGPRS, while the right column
represents the relative difference between solutions from ADGPRS and DARTS

5.7.4. Performance comparison

Table 5.5 shows the performance of different simulators as run on an Intel(R)
Xeon(R) CPU 3.50GHz desktop. All runs have been performed in a single thread
regime. Despite that in some cases, there are significant differences in the num
ber of timesteps, nonlinear, and linear iterations, it is clear that DARTS achieves
much better performance than TOUGH2 and ADGPRS among these runs. A smaller
timestep of 20 days is employed for highenthalpy conditions. Nevertheless, the
amount of timesteps for TOUGH2, in this case, is significantly higher than for DARTS,
possibly due to certain limitations in the nonlinear convergence for the former (see
[93]). Fast simulation in DARTS can be attributed to the OBL approach, which
significantly simplifies the calculation of statedependent properties and Jacobian
assembly. A slightly higher number of nonlinear iterations in DARTS runs in com
parison to ADGPRS in the low enthalpy cases is related to different convergence
criteria.

5.8. Performance on Realistic FullField Models
For general purpose simulation, it is important to deal with realistic fullfield models
at different levels of complexity. In this section, we demonstrate the applicability
of DARTS to reservoir models with different physics, reservoir structure, and model
size.
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Test case Simulator Max ts (days) Ts Newt. it. Lin. it. CPU
time (s)

Lowenthalpy
one layer model

DARTS 365 115 259 1950 2.9
TOUGH2 365 115 – – 24.1

Highenthalpy
one layer model

DARTS 20 2020 6834 95032 97.9
TOUGH2 20 2997 – – 942.0

Lowenthalpy
one layer model

DARTS 365 115 259 1950 2.9
ADGPRS 365 115 253 1616 5.5

Highenthalpy
one layer model

DARTS 20 2173 10855 125160 126.6
ADGPRS 20 2075 9742 159929 475.6

Lowenthalpy
full model

DARTS 365 115 261 2841 159.3
ADGPRS 365 115 264 2437 446

Table 5.5: Comparison of simulation performance of different simulators

5.8.1. Numerical Models
First, we describe different test cases utilized for performance comparisons. Models
introduced by ascending order in the number of control volumes, the number of
unknowns per control volume and the complexity of physics.

Brugge Field Model
The Brugge test case is often used as an optimization benchmark problem in reser
voir simulation [68]. In our study, we used a particular permeability realization and
production scenario described in [69]. The simulation time spans 10 years with
BHP controls changing every 3 months for both injection and production wells. In
this study, we only use this test case for performance comparisons. The detailed
convergence analysis and the comparison with the reference physics can be found
in [59]. The number of control volumes in this model is equal to 43,846 with two
unknowns per each. There are in total 124,370 connections and deadoil reference
physics is used.

(a) Porosity scaled 3 times along Z axis (b) Pressure along the water distribution

Figure 5.19: Brugge field

Geothermal Model
To test thermalcompositional formulation in the DARTS framework, we use a geother
mal model described in Subsection 5.7.1. Here, we use a modification of the original
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model where brine and dissolved methane are present at reservoir conditions. De
tails on validation of the geothermal model and the convergence analysis for OBL
resolution accuracy can be found in [60]. This model has 100,800 control volumes
with 3 independent unknowns (pressure, enthalpy and composition), 295,882 con
nections and mixed EoSbased thermalcompositional reference physics [94].

(a) Porosity distribution scaled 3 times
along Z axis

(b) Temperature solution with threshold
below 345 K

Figure 5.20: Geothermal model

SPE10 Model
The results of the isothermal compositional simulation for gas injection processes
is demonstrated using a fourcomponent model described in [59]. In this model,
the original distribution of permeability and porosity was taken from SPE10 prob
lem [76]. The compositional properties were processed using the PengRobinson
Equation of State [56] with original oil composition from [55]. The details of the
model, comparison with the reference physics and convergence analysis for numer
ical results can be found in [59]. This model has 1,122,000 control volumes with 4
nonlinear unknowns per control volume, 3,329,020 connections and compositional
reference physics [40].

5.8.2. Sensitivity to OBL Resolution
Here, we present the results of numerical simulation for the models described
above. The models are described in ascending order of complexity where the first
model has in total 87,728 degrees of freedom and simplest physics, the second
model has 302,400 degrees of freedom and more complicated physics and the last
model has 4,488,000 degrees of freedom with the most nonlinear physics.

Table 5.6 presents the inclusive simulation time for each model where the first
subcolumn ’Sim’ corresponds to the total simulation time, the second subcolumn
’Jac’ represents the linearization time (Jacobian assembly) and the last subcolumn
’Gen’ corresponds to the time spent on the generation of supporting points in the
OBL parameterization.

It is clear that for the simplest (DeadOil) physics in the first model, the gen
eration time is almost negligible since the property evaluation is extremely cheap



5.8. Performance on Realistic FullField Models

5

77

Porosity 𝐶𝑂2 composition

Figure 5.21: SPE 10 model

32 points resolution 256 points resolution

Figure 5.22: SPE 10 model compositional parameter space for pressure range 5385 bar
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Table 5.6: Performance results

Resolution Brugge Geothermal SPE10
Sim, s Jac, s Gen, s Sim, s Jac, s Gen, s Sim, s Jac, s Gen, s

16384 84.6 17.2 5.23 1441.1 1316.1 1300.56   
8192 83.5 15.5 4.02 1214.6 1082.7 1066.76   
4096 81.5 13.4 2.19 1089.6 959.7 944.00   
2048 80.0 11.7 0.88 809.1 683.4 668.40 14731.3 2639.2 2029.9
1024 79.6 11.0 0.30 491.5 368.5 354.22 13359.9 1020.1 419.6
512 79.1 10.4 0.09 266.3 139.3 125.19 10947.5 583.3 71.8
256 80.3 10.3 0.03 170.3 45.1 32.10 9627.5 476.8 12.3
128 78.0 9.8 0.01 137.0 17.6 6.35 7360.8 366.1 2.3
64 82.7 10.2 0.00 133.4 11.3 1.14 6323.8 327.3 0.5
32 84.8 10.3 0.00 130.2 9.7 0.21 5425.8 290.7 0.1
16 81.5 10.0 0.00 129.0 9.4 0.03 5432.4 307.2 0.1

(tablebased). Even at the most expensive OBL resolution, the total cost of lineariza
tion is below 15% of total simulation time. For the larger model with more complex
binary thermalcompositional physics, the cost of generation is growing much faster
and soon enough (with the resolution above 256 points) becomes dominant in the
simulation. For the bigger and more involved fourcomponent compositional model,
the linearization cost only becomes noticeable at extremely high OBL resolutions.
This is happening since the compositional model, even in the most realistic set
ting, has a strong hyperbolic behaviour with a limited spread of compositions in the
parameter space [11].

Notice that according to our previous investigations [see 46, 59], a resolution
above 64 points already guarantees an error in simulation results below 1% in the
most cases. It is also worth to mention that our multiphase flash solver is not
optimized for performance and only tuned for accuracy of the phase behaviour
prediction especially in the nearmiscible gas injection regime (close to the critical
point). In addition, the parameterized points in OBL can be effectively reused for
repeated simulations since the solution in compositional space is mostly controlled
by the thermodynamics of the problem [11]. Therefore, for subsequent launches
of models, the effective simulation time remains nearly constant for any resolution
of parameter space discretization.
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6.1. Parameterization
In the previous chapters, all provided examples with OBL used a uniform parame
terization of physical space. Despite that choice proves to be simple and efficient, a
resolution increase leads to refinement in the entire (used) parameter space. Con
sequently, the generation of supporting points starts to dominate in the Jacobian
construction (see Table 5.6) with highly accurate OBL parameterizations. At the
same time, the refinement is useful only for those regions of the parameter space
where the behaviour of state operators is the most nonlinear. Besides, ”blind” uni
form parameterization can be inaccurate when handling functions with a strong dis
continuity of partial derivatives. One important example is the parameterization of
phase boundaries in compositional simulation. While most of the phase properties
are continuous when composition crosses these boundaries, the derivative of these
properties can be highly discontinuous [40]. Intermediate solutions like local grid
refinement (LGR) can be applied to preserve a rectilinear parameterization mesh,
and therefore still applicable for piecewise multilinear interpolation. However, the
introduction of unstructured nonuniform parameterization is more attractive, since
it allows to minimize the number of supporting points and prescribe them freely and
accurately to any position in parameter space (e.g., at the phase boundaries). Also,
this choice forces to replace multilinear interpolation based on 𝑁dimensional rect
angles (hyperrectangles) with, for example, piecewise linear interpolation based
on 𝑁dimensional triangles (simplexes). Despite that searching for simplex loca
tions is more difficult, the interpolation itself is much less expensive especially for
highdimensional problems (see [50]). Therefore, we investigate two strategies of
nonuniform parameterization of physical space for compositional simulation.

Parts of this chapter have been published in the proceedings of 16th European Conference on the
Mathematics of Oil Recovery (2018)[77, 95]
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6.1.1. PhysicsBased NonUniform Parameterization
The OBL approach simplifies the description of fluid and rock properties by build
ing approximation interpolants for the operators 𝛼𝑐 , 𝛽𝑐 and 𝜃𝑐 within the parameter
space of a simulation problem [see 59, for details]. Those interpolants are then
used in the course of simulation to obtain the values and partial derivatives of the
operators with respect to nonlinear unknowns for the Jacobian assembly. Uni
form discretization of parameter space, which was used previously, proved to be a
simple, efficient, and robust approach. However in this approach, approximation
quality and consequently the accuracy of a simulation depend only on the number
of supporting points, while their locations are prescribed blindly.

Next, we describe a tielinebased nonuniform parameterization approach. The
key idea is to use the knowledge of the thermodynamic behaviour of a system to
discretize the parameter space more efficiently. Using this parameterization, we can
reduce the interpolation error with the same parameterization accuracy (number of
supporting points).

Representation of Phase Behaviour in Compositional Space
We show the application of tieline parameterization for a threecomponent isother
mal system with two hydrocarbon phases for the sake of simplicity. However,
similar parameterization techniques can be extended to a multidimensional pa
rameter space with multiple phases [11, 96]. For each pressure within the interval
of interest, we construct a ternary diagram for phase behaviour representation in
compositional space.

An example of such representation is shown in Figure 6.1. Here, the onephase
region is shown in green and the twophase region in red. A tieline is a key concept
in the thermodynamical description of a multiphase multicomponent mixture at
equilibrium assumptions. It is a line within the twophase region between a bubble
point 𝐵𝑖 and a dew point 𝐷𝑖 with equal compositions of liquid and vapour phases.
Along with this line, overall compositions z and phase saturations S keep changing,
but molar fractions of components within phases x remain constant.

All tielines can be extended through the onephase region to the sides of the
diagram covering the subcritical region 𝐶1𝐿𝑐𝑟𝑅𝑐𝑟𝐶2 (see Figure 6.1). If a critical
point 𝑧𝑐𝑟 exists for the system under given 𝑝, 𝑇, then the tieline which passes
through that point has zero length and is called a critical tieline. The part of the
onephase region which is above the extended critical tieline 𝐿𝑐𝑟𝑅𝑐𝑟 is called super
critical region. The approach provides a separate parameterization treatment for
these regions. If the critical point does not exist for given 𝑝, 𝑇 then we assume that
the subcritical region covers the entire compositional space [𝐶1, 𝐶2, 𝐶3].

Parameterization of SubCritical Region
We use an extension of tielines to parametrize the entire subcritical region. First,
we obtain the number of intermediate tielines between the critical 𝐿𝑐𝑟𝑅𝑐𝑟 and the
base (longest) 𝐶1𝐶2 tielines based on the distance between their midpoints𝑀𝑐𝑟 , 𝑀0
and discretization parameter Δ𝑥:

𝑛𝑖𝑡 = ⌈
|𝑀0𝑀𝑐𝑟|
Δ𝑥 ⌉ . (6.1)
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Figure 6.1: Tieline based compositional space parameterization

Next, we split 𝑀0𝑀𝑐𝑟 into 𝑛𝑖𝑡 + 1 equal segments and get the midpoints 𝑀𝑖 of
intermediate extended tielines 𝐿𝑖𝑅𝑖, where 𝑖 = 1…𝑛𝑖𝑡. Now, for every intermediate
tieline, we place supporting points at 𝐿𝑖 , 𝐵𝑖 , 𝐷𝑖 , and 𝑅𝑖. Naturally, we also place them
at 𝐶1, 𝐵0, 𝐷0, 𝐶2, 𝐿𝑐𝑟 , 𝑍𝑐𝑟 , and 𝑅𝑐𝑟. The segments 𝐿𝑖𝐵𝑖 , 𝐵𝑖𝐷𝑖 , and 𝐷𝑖𝑅𝑖 are evenly
divided by the fixed number of supporting points into subsegments, similarly to
𝑀0𝑀𝑐𝑟. As the result, each subsegment becomes shorter than Δ𝑥. Segments
𝐶1𝐵0, 𝐵0𝐷0, 𝐷0𝐶2, 𝐿𝑐𝑟𝑍𝑐𝑟 , and 𝑍𝑐𝑟𝑅𝑐𝑟 are treated in the same way.

Parameterization of SuperCritical Region
The supercritical region can not be parameterized using tielines, because they
neither exist nor extend there. Instead, we apply a uniform parameterization with
gridlines parallel to the critical tieline. First, we determine the number of such
lines:

𝑛𝑖𝑙 = ⌈
|𝑀𝑐𝑟𝐶3|
Δ𝑥 ⌉ . (6.2)

Then, we split each of the segments 𝐿𝑐𝑟𝐶3, 𝑅𝑐𝑟𝐶3 into 𝑛𝑖𝑙 + 1 equal subsegments.
Finally, we place supporting points at 𝐶3, 𝐿∗𝑖 , 𝑅∗𝑖 and along segments 𝐿∗𝑖𝑅∗𝑖 , so that the
segments become sliced into the equal subsegments shorter than Δ𝑥. Later, we test
the tielinebased parameterization against a uniform parameterization proposed in
[43, 46].
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Numerical Results
The quality of a parameterization approach can be assessed using the accuracy
of the interpolator built on the parameterization. Previously, the piecewise multi
linear interpolation was used, since the supporting points were evenly distributed
over parameter space. This condition is no longer valid with the tielinebased pa
rameterization approach. Therefore, to compare two types of parameterization,
we apply Delaunay triangulation to the set of supporting points and then use a
simplexbased interpolation based on triangular simplices in both cases [11, 50].

The accuracy of an interpolator 𝐼 can be estimated directly at any point of pa
rameter space by computing the absolute difference between the interpolated value
and the true value. A generalized error can be obtained by multiple application of
this procedure at every point in set 𝜴, covering densely the entire parameter space.
The error is computed at every point 𝑖 ∈ 𝜴 of compositional space using the 𝐿2 norm
of the operator for all components:

||𝐸𝛼||𝑖 =
√∑𝑛𝑐𝑐=1(𝐼𝛼𝐷𝑐 (𝝎𝑖) − 𝛼𝑐(𝝎𝑖))2

max𝑗,𝑐 |𝛼𝑐(𝝎𝑗)|
. (6.3)

Here, 𝐼𝛼𝐷𝑐 is the interpolant of operator 𝛼𝑐 in discrete parameterspace 𝜴
𝑫, 𝑐 cor

responds to the component and 𝝎𝑖 corresponds to the state at 𝑖.
We demonstrate the results of the approach by modelling a fluid mixture of

𝐶𝑂2, 𝑁𝐶4, and 𝐶10 at three particular pressures of 20, 60, and 100 bar, while the
temperature is fixed at 345 K.

Phase diagrams for the mixtures at all 3 pressures are shown in Figure 6.2. In
Figure 6.2(a), the twophase region occupies almost the entire parameter space.
Figure 6.2(b) shows the phase behaviour at 𝑝 = 60 bar. Here, the size of the
twophase region has reduced, but the extension of the twophase region still pa
rameterizes the entire compositional space.

A similar diagram was generated for 𝑝 = 100 bar in Figure 6.2(c). Here, the two
phase and entire subcritical regions occupy a smaller portion of the compositional
space and a large portion of space is present in the critical region.

(a) 𝑝 = 20 bar (b) 𝑝 = 70 bar (c) 𝑝 = 100 bar

Figure 6.2: Ternary diagram for the system 𝐶𝑂2 , 𝑁𝐶4 , 𝐶10 at 𝑇 = 345 K

Figure 6.3 and Figure 6.4 show the norm of combined operators 𝛼 and 𝛽 at
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different pressures respectively. These figures confirm that the thermodynamic
properties of the system dictate the behaviour of accumulative and flux operators.
The border between the onephase and twophase regions accounts for the most
abrupt changes in operator values. With growing pressure, the twophase region
shrinks and the nonlinearity increases, especially for the convection operator 𝛽.

Figure 6.3: Euclidian norms of accumulation operator 𝛼 at 𝑝 = 20, 60 and 100 bar

Figure 6.4: Euclidian norms of convection operator 𝛽 at 𝑝 = 20, 60 and 100 bar

For a meaningful comparison, the number of supporting points in uniform and
adaptive parameterizations should be equivalent. This is easy to control in the
uniform parameterization but more difficult in the adaptive version, since the num
ber and density of supporting points depend on the form of the twophase region.
In the following comparison, we generate the adaptive parameterization first with
fixed parameters. Next, we select the resolution of the uniform parameterization to
match the number of points in the adaptive parameterization as close as possible.
This approach lets us compare the errors consistently.

In Figure 6.5 and Figure 6.6, we demonstrate the normalized interpolation error
𝐸𝛼(𝝎) for the operator 𝛼 in case of adaptive and uniform parameterization respec
tively. The corresponding mesh is also shown for both types of parameterization.
It can be clearly seen how the tielinebased mesh adapts to the shape of the two
phase region. The number of points for adaptive parameterization at pressures
𝑝 = 20, 60, and 100 bar is 46, 36, and 51 points respectively. To compare the
errors, the resolution of uniform parameterization was tuned to generate 45, 36,
and 55 points for these pressures respectively. The error maps show that the main
error is concentrated at the boundary of the twophase region and is more pro
nounced for the uniform parameterization. For the convection operator 𝛽, the error
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in the adaptive parameterization is closer to the error in the uniform parameteriza
tion, see Figure 6.7 and Figure 6.8 for the adaptive and uniform parameterization
respectively.

Figure 6.5: Errors for adaptive parameterization of accumulation operator 𝛼 at 𝑝 = 20, 60, and 100 bar

Figure 6.6: Errors for uniform parameterization of accumulation operator 𝛼 at 𝑝 = 20, 60, and 100 bar

The maximum errors of a combined operator are considered for sensitivity anal
ysis as

‖𝐸𝛼‖ =max
𝑖
‖𝐸𝛼‖𝑖 . (6.4)

The variation of error with the increase in the number of supporting points is shown
on the semilog plot on the Xaxis in Figure 6.9 and Figure 6.10. Five intervals
are chosen between parameterizing distance Δ𝑥 = 0.1 and Δ𝑥 = 0.01. Since the
nonlinearity is strongly correlated with the twophase shape, the error behaves
nonmonotonically at the highest pressure for both parameterizations. However, in
most cases, the error at lower resolutions for the adaptive mesh is smaller than
the error for the uniform mesh. At lower Δ𝑥, the difference in errors between
uniform and adaptive mesh reduces since the proximity between the supporting
points increases.

6.1.2. Automatic NonUniform Parameterization
Compared to the physicsbased parameterization approach developed for compo
sitional simulation, described in Subsection 6.1.1, automatic nonuniform parame
terization is a more general technique and can be applied to a physical model of
any kind.

The key difference here is that the placement of supporting points does not
require prior knowledge of underlying physics. The technique requires only the
ability to compute operator values at any point in parameter space and aims to
detect parameter space locations where the operators are changing the most. Once
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Figure 6.7: Errors for adaptive parameterization of convection operator 𝛽 at 𝑝 = 20, 60, and 100 bar

Figure 6.8: Errors for uniform parameterization of convection operator 𝛽 at 𝑝 = 20, 60, and 100 bar

Figure 6.9: Mean error comparison for accumulation operator with various parameterization resolutions
at 𝑝 = 20, 60, and 100 bar
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Figure 6.10: Mean error comparison for flux operator with various parameterization resolutions at 𝑝 =
20, 60, and 100 bar

scattered supporting points are placed, similar to Subsection 6.1.1, triangulation is
introduced and linear barycentric interpolator is built to approximate a continuous
form of nonlinear operator. As a result, the error can be significantly reduced within
the same number of parameterization points compared to uniform parameterization.
Besides, simplexbased interpolation complexity is 𝑂(𝐷+1), which makes it highly
attractive for highlydimensional problems.

The suggested automatic parameterization approach requires three stages:

1. Initialization

2. Structuring

3. Enrichment

The first step accounts for the definition of boundaries in parameter space. The
corner locations of the parameterized region in parameter space constitute the initial
set of supporting points. The second step adds the locations corresponding to
operator extrema, forming a coarse set of supporting points. The third step adds
a limited amount of supporting points targeting to reduce approximation error as
much as possible. It can be performed multiple times until the parameterization is
enriched enough to meet the desired accuracy.

Several implementations of the suggested algorithm were developed and com
pared. The flux operator for decane in a binary compositional mixture of 𝐶𝑂2 and
𝑁10 was employed as a function to be parametrized and approximated. Setting
constant temperature 𝑇 = 350 K allowed to have only two degrees of freedom –
pressure and overall 𝐶𝑂2 composition. This choice was made for simplicity and
better visualization purposes. Pressure was bounded in a range of [30; 150] bar to
include both singlephase and twophase regions. Composition is naturally bounded
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by the [0; 1] interval. Therefore, the supporting point set is initialized with {(0, 30),
(0, 150), (1, 30), (1, 150)}.

Structuring Stage
A local constrained optimization algorithm can be used to detect extrema of a
general nonlinear function. In particular, a sequential least squares programming
(SLSQP) algorithm, based on the Han–Powell quasiNewton method, was used be
cause of its general robustness [97]. Local optimization algorithms converge to a
local extremum in a reasonable time, starting from a certain initial guess and fol
lowing the steepest descent (ascent) based on the local gradient. On the other
hand, there is no guarantee that the local extremum coincides with the global one.
Therefore, to make the algorithm more robust, several optimization processes can
be launched with different initial guesses. All local extrema which are found in
such process, even though they may not coincide with the global extrema, are still
important for accurate approximation.

Figure 6.11 illustrates the results of the described process with a variable amount
of initial guesses. The flux operator for decane in mixture of 𝐶𝑂2 and 𝑁10 shapes
a surface with a quite nonlinear behaviour ( Figure 6.11 AE). The orange points
correspond to locations where supporting points are placed. All subfigures contain
such points at the corner locations, coming from the initialization stage. Subfigure A
has one additional point, resulting from the local optimization process with a single
initial guess at the centre of parameter subspace under consideration. Subfigure B
has more points coming from 4 (2x2) initial guesses, uniformly scattered over the
parameter subspace. Similarly, CE, illustrate the results of the structuring stage
for 3x3, 4x4 and 5x5 uniformly scattered initial guesses.

Note that some optimization processes may fail or converge to very close po
sitions, therefore the total number of supporting points can be smaller than the
number of initial guesses. It is easy to see that 4x4 and 5x5 schemes result in too
many local extrema (caused by the sawtooth shape of the surface on the edge
of the cliff), therefore the 3x3 scheme was chosen to proceed with. Sometimes,
when the underlying function is monotonous, the entire structuring stage can be
wasteful, which is illustrated by subfigure F.

Enrichment Stage
Upon completion of the structuring stage, the coarsest parameterization is obtained.
To increase its accuracy, additional supporting points have to be added. This is done
in an iterative way, in which one or more points are added at a time. One of the
ways to process this enrichment is to continue using the optimizer, but apply it to the
absolute approximation error. Since it computes the absolute difference between
the accurate and approximated operator values, its local maxima represent the
locations where additional points are needed the most. This process is illustrated
in Figure 6.12.

Addressing Boundaries
As experience has shown, the chosen optimizer was not performing well enough
along the boundaries. This resulted in the relatively inaccurate approximation of
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Figure 6.11: AE: Flux operator for decane in mixture of 𝐶𝑂2 and 𝑁10 and detected extrema points with
1x1 (A), 2x2 (B), 3x3 (C), 4x4 (D) and 5x5 (E) initial guesses, F: accumulation operator for decane in
mixture of 𝐶𝑂2 and 𝑁10 and detected extrema points with 5x5 initial guesses

an operator on the edges of the parameter subspace under consideration. Fig
ure 6.13a, Figure 6.13c demonstrate the issue: only a few supporting points are
placed along the border leading to a large error.

To address the issue, a separate optimization process was launched at every
boundary. Since every boundary has one of the degrees of freedom fixed, such an
optimization problem will be less expensive than the main optimization procedure.
On the other hand, the number of boundary searches will grow for problems with
more degrees of freedom.

Therefore, every iteration of the enrichment stage specifically addresses the
edges of the parameter subspace under consideration. It includes several opti
mization problems with various dimensions and boundaries. As a result, the num
ber of supporting points and consequently the approximation quality significantly
improves along the borders, as Figure 6.13b, Figure 6.13d confirm.

Comparison Against Uniform Parameterization
Here, the quality of the automatic nonuniform parameterization is compared to
a uniform one. The mean and maximum errors are considered. Each of these is
found using the difference between approximated and actual operator values at
every point of a very dense uniform grid over the parameter subspace of interest.
Two different operators with highly nonlinear behaviour, displayed in Figure 6.14,
were used for comparison.

Figure 6.15 shows the mean error comparison for 16, 64, 256, 1024, and 4096
supporting points between the nonuniform (denoted as ”Adaptive grid”) and uni
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(a) Interpolated function before
enrichment stage

(b) Interpolated function after
enrichment stage

(c) Approximation error before
enrichment stage. Detected minimum
and maximum locations are shown

(d) Approximation error after
single iteration of enrichment stage.
Locations of all supporting points are shown

Figure 6.12: Approximated function and corresponding error before and after single iteration of enrich
ment stage for accumulation operator for carbon dioxide in mixture of 𝐶𝑂2 and 𝑁10

form (denoted as ”Regular grid”). Note, that the mean error axis has a log scale. It
is easy to see that automatic parameterization provides significantly better param
eterization accuracy on average for both operators. Furthermore, the difference
between the approaches increases as the parameterization resolution grows.

The standard deviation of the error, shown in Figure 6.16, characterizes its
spread. It is clear, that the errors for nonuniform parameterization are mostly
closer to the mean error than those for the uniform one.

However, the comparison of the maximum errors for the approaches, provided
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(a) Delaunay triangulation after
complementation stage

(b) Delaunay triangulation after
enrichment stage including
boundaries treatment

(c) Approximated operator after
complementation stage

(d) Approximated operator after
enrichment stage including
boundaries treatment

Figure 6.13: Delaunay triangulation and corresponding approximated operator after different stages of
parameterization

by Figure 6.17, shows that the nonuniform parameterization can induce a slightly
higher approximation error. The approximation errors for both parameterizations for
one of the cases are shown in Figure 6.18. Not only it confirms the conclusions made
from Figure 6.15  Figure 6.17, but also indicates that high values of maximum errors
for nonuniform parameterization are caused by the nature of local optimization
algorithms employed. Given that the area around high peaks is mostly flat, as
Figure 6.18 shows, it is complicated for a gradientbased SLSQP optimizer to spot
them.

6.2. Proxy Models in Physics
Proxy modelling is widely used in practice to obtain the best possible prediction
when time or/and computational resources are limited. For example, simplified



6.2. Proxy Models in Physics

6

91

Figure 6.14: Two operator functions used for comparison

Figure 6.15: The mean error comparison between automatic nonuniform and uniform parameterization
at different parameterization resolutions for both operators

Figure 6.16: Comparison of standard deviation of approximation errors between automatic nonuniform
and uniform parameterization at different parameterization resolutions for both operators
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Figure 6.17: Comparison of maximum approximation error between automatic nonuniform and uniform
parameterization at different parameterization resolutions for both operators

(a) Approximation error the uniform parameterization
(b) Approximation error the nonuniform parameteriza
tion

Figure 6.18: Approximation errors for uniform and nonuniform parameterizations of the second operator
for 1024 points

models are useful for global optimization in various scenarios of reservoir produc
tion/development, or decision support in realtime management of field production.
Here, we describe how the DARTS framework can be straighforwardly utilized for
the development of proxy models in physics.

Several efforts have been made to improve the performance of compositional
reservoir simulators by enhancing phasebehaviour computations [98–100], spa
tial coarsening of compositional models [101, 102] or reformulation of the com
positional nonlinear problem [103]. While the improvement of phase behaviour
computations usually does not introduce errors in results, its influence on the total
computational time is limited. The biggest improvement is usually achieved by the
coarsening in spatial representation (upscaling) since it can significantly reduce the
number of unknowns in the linear system of equations. However, upscaling always
introduces an error in computational results.

As an alternative to the upscaling, the Algebraic MultiScale (AMS) approach



6.2. Proxy Models in Physics

6

93

was initially proposed to solve an elliptic flow problem by [104]. Several extensions
of this method have been successfully developed [105–107]. However, most of
the AMS methods were focused exclusively on the flow solver and did not address
the transport problem, except [108], where an adaptive Multiscale Finite Volume
Method was proposed to accelerate the transport solver. Based on these ideas, a
MultiScale Compositional Transport (MSCT) method for reconstruction of the com
positional transport problem with an arbitrary number of components was devel
oped in [109].

This approach suggests a twostage reconstruction, where at the first stage, the
boundary of a twophase region is recovered, while the detailed solution in the two
phase region is reconstructed in the second stage. MSCT utilizes the OBL technique
proposed by [43] and is implemented within the DARTS framework.

6.2.1. MultiScale Compositional Transport
The solution of a compositional transport problem can be shown in a phase diagram
by the solution path in compositional space. Such a path defines the compositional
changes between the initial and injection mixtures. Conservation principles and
fractionalflow theory form the foundation for the general solution method [110].
The compositional path of a conventional gas injection problem where single phase
gas is injected into singlephase oil always results in two shocks (leading and trail
ing shocks) between the single and twophase regions. In a ternary diagram (Fig
ure 6.19a), it is presented as yellow lines connecting the initial oil and injected gas
composition.

(a) (b)

Figure 6.19: Gasinjection solution in ternary system: (a) ternary diagram with displacement path and
two key tielines and (b) fractionalflow curves for component 𝐶𝑂2 with solution path

The shocks between single and twophase regions are always aligned along
two key tielines (black dashed lines) defined by liquid 𝑥𝑖 and vapor 𝑦𝑖 fractions of
each component. For a fixed pressure, 𝑥𝑖 and 𝑦𝑖 remain constant and it is possible
to construct the fractionalflow curve corresponding with compositional transport,
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see Equation 6.5. Figure 6.19b gives the injection and initial fractionalflow curves
for CO2 in a ternary system corresponding to the injection and initial tie lines in
Figure 6.19a.

𝐹𝑖 = 𝑥𝑖 (1 − 𝑓𝑔) + 𝑦𝑖𝑓𝑔 , 𝑖 = 1, ..., 𝑛𝑐 − 1 (6.5)

The proposed MultiScale Compositional Transport approach consists of two
stages [111]. The first stage utilizes a set of restrictionprolongation operators for
reconstructing twophase boundaries (the trailing and leading shocks). The restric
tion here reduces the 𝑛𝑐 −1 transport equations to a single equation with a special
flux operator based on the pseudofractionalflow curve. Once the restriction so
lution is obtained, a simple interpolationbased prolongation operator is applied to
reconstruct the solution in the singlephase regions.

In the second stage, the set of restrictionprolongation operators is applied in
the twophase region to reconstruct the solution structure of the twophase dis
placement. This stage is based on the invariance of twophase solutions in tieline
space reported in [112] and adapted for practice in [113].

The proxy model for compositional simulation, utilized in this work, uses the
firststage multiscale reconstruction from [111]. A restriction operator combines
two fractionalflow curves for injection and initial tielines, defined as:

𝐹𝑖𝑛𝑖𝐼 = 𝑥𝑖𝑛𝑖𝐼 (1 − 𝑓𝑔) + 𝑦𝑖𝑛𝑖𝐼 𝑓𝑔 , 𝐹𝑖𝑛𝑗𝐼 = 𝑥𝑖𝑛𝑗𝐼 (1 − 𝑓𝑔) + 𝑦𝑖𝑛𝑗𝐼 𝑓𝑔 . (6.6)

The equivalent fractionalflow curve, serving as the restriction operator, is con
structed by taking a convex hull on the union of both curves:

𝐹𝑅 = conv(𝐹𝑖𝑛𝑗𝐼 ∪ 𝐹𝑖𝑛𝑖𝐼 ) (6.7)

In Figure 6.20, this curve is shown in green. Next, the equivalent values of 𝐹𝑖
and 𝑧𝑖 from the green curve are tabulated into the restriction operator and the re
duced system is solved. The reduced system of equations includes the conventional
pressure equation and the restricted transport equation based on the constructed
pseudofractionalflow curve. In structure, this system is very close to the conven
tional binary compositional problem.

Figure 6.21 gives an example of the operators which are tabulated from the
analytical fractional flow curve. Those operators are utilized in the OBL framework
[46] to solve the firststage restricted system.

Once the solution of the restricted system is found, the full system is recon
structed based on the prolongation operator. This operator applies interpolation
between initial and injection compositions using the solution of the restricted sys
tem 𝜿(𝑧𝑅) as an indicator:

𝜿(𝑧𝑅) [ℝ1 ⟹ℝ𝑛𝑐−1] ∶ z = I{𝑧𝑖𝑛𝑖 ,𝑧𝑖𝑛𝑗}(𝑧𝑅). (6.8)

Here, 𝜿 is the interpolationprolongation operator, 𝑧𝑅 is the restricted solution and
I is the piecewise linear interpolation function. Referring to this linear interpolation,
the transport solution of other components in the multicomponent system is recon
structed and used as a proxy model in place of the full compositional model. Notice
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Figure 6.20: Analytical fractional flow for CO2
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Figure 6.21: Operators for a restricted compositional system parameterized at N=64

that this system can accurately predict only the boundaries of the twophase region
and their dynamic propagation in space; for an accurate solution, the secondstage
multiscale reconstruction should be applied [111].

6.2.2. Restricted Solution
Next, the comparison between solutions of a full compositional model and a cor
responding proxy model is demonstrated. Here, we limit our investigation to a
conceptual 1D reservoir model for simplicity. In this model, the injection well on
the left operates at a constant gas rate when the production well on the right is
controlled by BottomHole Pressure (BHP).
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Figure 6.22 shows the restricted solution 𝑧𝑅, which yields the shock reconstruc
tion curves for simulation results for the growing BHP at the production well. All
simulation results are shown for the model with parameters after 1000 days of sim
ulation. The Kvalue table in this work is obtained from the embedded Constant
Composition Expansion (CCE) experiments in [114] based on the PR EoS. The K
value system does not develop miscibility even when BHP provides the pressure at
the displacement front close to the FirstContact Minimal Miscibility Pressure (FC
MMP) for this system (around 126 bar at T = 373 K). This happens due to the
inability of the Kvalue model to predict miscibility accurately since compositional
dependency is not captured in this model.

It can be overcome by either extension of the Kvalue parameterization with
additional degrees of freedom [e.g. 115] or incorporation of EoSbased phase be
haviour [113]. However, the twophase boundaries can be accurately represented
by the restricted model for Kvalue based physics. Besides, the complexity and
structure of the restricted solution are invariant to the number of components
present and only depends on initial and injection tielines in the multicomponent
system [see 111, for details].
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Figure 6.22: Shock reconstruction of the fourcomponent system for two different BHP controls at
production well (Kvalues)

Next, the results of the restricted solution for the compositional problem based
on the EOS is shown. The structure of the compositional transport solution depends
on key tielines [110]. For the restricted solution, we follow the same strategy
as before and construct the restriction operator based on combined fractional flow
(Equation 6.6) according to the first stage of the MSCT approach [111]. The solution
of the restricted transport equation reconstructs the boundaries of the twophase
region using one transport equation instead of 𝑛𝑐−1 equations in the conventional
compositional model.

The results of quaternary system reconstruction are shown in Figure 6.23. Here,
one can see that for a high BHP value, the structure of the solution is much closer to
miscibility (leading and trailing shocks stay closer to each other) than in the Kvalue
approximation. This happens because the EOSbased phase behaviour correctly
represents the compositional dependence of the solution. Similar to the Kvalue
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model, the leading and trailing shocks are accurately reconstructed by the proxy
model.
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Figure 6.23: Shock reconstruction of the fourcomponent system for two different BHP controls at
production well (EoS model)

Prolongation of Proxy Model
Now, we illustrate the construction of the proxy model using an interpolationbased
prolongation operator (Equation 6.8) for both cases. It can be seen in Figure 6.24
and Figure 6.25 that the restriction stage does not reconstruct the full structure of
the solution, but only one indicator component. For the full solution, the prolonga
tion stage should be applied (see [111] for details).
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Figure 6.24: Proxy model for a fourcomponent system (Kvalue based)

The prolongation stage yields a full compositional solution in every control vol
ume, which then can be used in a multiphase flash procedure to predict phase
behaviour. This phase behaviour provides the boundary of the twophase region in
space. This prediction can be used to compute phase rates at wells and evaluate
the net present value (NPV) for a proxy model. The comparison of NPV for one and
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Figure 6.25: Proxy model for a fourcomponent system (EoS based)

two controls are shown in Figure 6.26 and Figure 6.27. The details on economic
parameters can be found in [95].
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(a) Full model (b) Proxy model

Figure 6.27: Comparison of NPV with two control parameters obtained from full and proxy models





7
Recapitulation and

Conclusions

7.1. OperatorBased Linearization
A new linearization method for multiphase thermalcompositional fluid flow and
transport in the subsurface with twopoint flux approximation (TPFA) and Fully Im
plicit (FI) time approximation is established in Chapter 2. In this approach, the
governing equations of a general purpose reservoir simulation problem are repre
sented in the operator form where each term is a product of two types of operators.
The first type of operators is fully defined by the physical state of the problem, while
the second is characterized by spatial and temporal discretization. Mass conserva
tion equations in operator form are characterized by component mass accumulation
and flux statedependent operators.

To perform the linearization of the governing equations, we introduced a uni
form parameterization in the space of physical unknowns. Each statedependent
operator is evaluated at supporting points of the parameter space. This defines
discretization in the physical description of fluid and rock. Piecewise multilinear
interpolation is applied to compute both values and partial derivatives of state
dependent operators based on the created parameterization. Once that is done,
the linearization of the governing equations in simplified operator form is completed
in a conventional manner using analytical derivatives by chain rule between deriva
tives of two operator types.

Adaptive parameterization in the discretized thermodynamic space is devel
oped to address the performance limitations of accurate parameterization for high
dimensional problems. Because of the nearhyperbolic behaviour of several un
knowns in the nonlinear solution (i.e., saturation or overall molar composition),
only a limited amount of supporting points in parameter space is usually used in a
simulation. Therefore, operator values at every new supporting point, required by
the simulation process, can be computed adaptively onthefly and then stored for

101
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reuse during the same or a subsequent simulation.
We demonstrated the applicability of the OBL approach to general purpose reser

voir simulation problems. In particular, we applied different physical kernels that
include blackoil, isothermal compositional kernels with 4 and 6 components. We
showed that the OBL approach reproduces the results of the reference solution at
any reasonable resolution with insignificant errors, localized at the displacement
front. As a rule of thumb, a resolution of 64 uniformly distributed points along
each of the parameter space axes within the required range is sufficient for an ac
curate representation of fluid and rock properties. On the other hand, the limited
coarsening of parameter space improves the nonlinear convergence in most cases.

The performance of the OBL approach benefits from the simplified assembly of
the Jacobian of the simulation problem and an almost complete bypass of phase
behaviour calculations (except for supporting points). Compared to linearization
based on Automatic Differentiation (AD), the new approach is relieved from the
computational overhead related to augmented algebra computations, while provid
ing almost the same level of flexibility for the extension of the physical model in a
simulation framework.

Proving the last point, Chapter 3 introduces an extension of the OBL approach
to account for thermal effects. It demonstrates the applicability of the approach to
the simulation of thermalcompositional multiphase flow in porous media. In addi
tion to mass conservation, the energy conservation equation was also transformed
to the operator form, forming energy accumulation, convection, and conduction
statedependent operators. Initial porosity was chosen to enrich the vector of state
variables to reduce the number of statedependent operators. However, the dimen
sionality of the parameter space for energy accumulation and conduction operators
is consequently increased by one. A similar approach can be used to handle the
changes in the mass of solid phase(s) due to the chemical precipitation and disso
lution.

To test the geothermal application, we used a realistic model of a channelized
system of the Delft Sandstone member (DSSM), situated at the West Netherlands
Basin. Simulation results showed that the proposed approach reproduces the refer
ence solution results quite accurately with a reasonable parameterization resolution.
For a singlecomponent lowenthalpy geothermal model, a relatively coarse resolu
tion of interpolation tables can handle all governing nonlinearities and matches the
reference solution based on full physics precisely. For a twocomponent geother
mal model with natural gas coproduction, the required resolution of interpolation
tables is higher. This happens due to the highly nonlinear nature of linearization
operators in case of twophase systems. However, the simulation with a coarser
resolution still can be used as fast proxy models in the inversion and uncertainty
quantification process.

It is important to notice that the proposed linearization approach significantly
improves the performance of the ADbased linearization. The relative cost of OBL
does not grow significantly with the increased resolution while the number of non
linear iteration is decreasing with coarser representation. For all observer cases,
the parameterization resolution of 64 points provided a sufficient level of accuracy,
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keeping the average error below 1%.
In addition, Chapter 3 describes the buoyancy extension of OBL. We introduced

three types of upwinding based on phase potential, component potential, and inde
pendent treatment. The first type can be seen as the conventional approach, where
its OBL representation implies a substantial increase in the number of flux operators
compared to the case without the buoyancy effect. The two other types attempt
to simplify the conventional description and decrease the number of flux operators
while maintaining the accuracy of the solution. The developed approaches were
validated on deadoil and compositional simplified gravity segregation models. Be
sides, we investigated the sensitivity of the OBL solution accuracy and nonlinear
solver convergence to the parameterization resolution for a realistic model of the
Brugge field with buoyancy.

In overall, Chapter 2 and Chapter 3 confirm the applicability of the OBL approach
to general purpose reservoir simulation based on thermalcompositional description.
It is shown that coarsening of the physical description of rock and fluid introduces
an additional tradeoff between the accuracy of numerical simulation and the per
formance of the nonlinear solver. Similarly to the discretization in space and time,
the OBL description can be coarsened, loosing certain accuracy in favor of simu
lation performance to speed up optimization, uncertainty quantification, or inverse
modelling.

7.2. Delft Advanced Research Terra Simulator
While the entire concept was matured and improved, OBL has had a few prototype
implementations described in Chapter 4. The first implementation was performed
in the ADGPRS framework. It was a natural choice: in the beginning, it was vital to
validate the applicability of the new linearization method to a wide range of reser
voir simulation problems. Once that was done, it became clear that OBL provides
a significant performance advantage (by 1530%) over the conventional lineariza
tion despite nonideal implementation from the performance point. In the original
implementation, ADbased storages were abused by artificial injection of externally
computed gradients. Therefore, to estimate the true performance capabilities of
the method, a standalone implementation was needed.

As a first attempt, a MATLABbased prototype was coded. The parameterization
information was generated in ADGPRS, exported to a set of text files and then
imported to the simulator. The entire code was under 1000 lines, but capable to
solve onedimensional isothermal compositional flow and transport problem in a
fully implicit manner. This development confirmed the efficiency of the concept:
decoupling physical properties from the main simulator core allows to simplify and
generalize Jacobian assembly and make it portable to alternative computational
architectures.

Then, a standalone highperformance prototype of a compositional simulator
based on C++\CUDA was developed for both CPU and GPU computing architec
tures. Note, that the GPU version executes the entire simulation loop on GPU. The
prototype supports general unstructured grids via connection lists, hence one, two
, and threedimensional reservoirs are supported. To perform a fair comparison,
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initialization, nonlinear and linear solvers were aligned with ADGPRS. Benchmarks
showed that the singlethreaded CPU version performs the Jacobian construction
up to 19x times faster. The GPU version of the prototype boosts the linearization by
a factor of 260x. Careful tuning of GPU kernels and the use of multiGPU systems
can improve the performance even further.

Finally, the Delft Advanced Research Terra Simulator (DARTS) was introduced
and described in Chapter 5. It combined the experience and knowledge obtained
during previous iterations of OBL implementation. Having kept all performance
critical parts of the simulator core in C++, DARTS exploits physical description de
coupling to the full extent, providing a Pythonbased plugin interface to customize
fluid and rock properties. Since property computations are performed for a limited
amount of discrete locations (e.g., supporting points), the computational perfor
mance requirements for such plugins are relaxed. Moreover, the results of physics
parameterization can be simply saved and reused in subsequent simulations when
uncertainty quantification, inversion modelling or production optimization are per
formed. This allows introducing advanced thermodynamic and chemical equilibrium
computations based on complex software libraries, and couple them with flow and
transport in a fully implicit manner without sacrificing performance.

Parameterization, evaluation of operator values and their gradients are con
trolled by DARTS interpolators. Uniform parameterization with piecewise multilin
ear interpolation can be either performed statically (i.e., all supporting points are
precomputed) or adaptively (onthefly along the course of a simulation). Adap
tive parameterization allows to achieve extreme resolutions in parameter space
discretization (e.g., 4.3 × 1012 supporting points for 3dimensional space) and still
provide reasonable simulation time. Alternatively, the entire interpolator can also
be seamlessly replaced by ADbased operator evaluator. Then, DARTS would sup
port the conventional treatment of the rock and fluid properties description and
provide an exact reference solution.

The Jacobian assembly of the simplified operator form of the governing equa
tions is taken care of by DARTS engines. Depending on the desired amount of
components, primary variables, and physical effects to be taken into account, one
or another engine is chosen. Multisegment wells are introduced in DARTS via the
OBL approach and contribute to the Jacobian assembly in a way which keeps the
blocked structure of the matrix. Once the Jacobian is assembled, it is passed over
to the linear solver, which includes a CPRbased preconditioner, defacto standard
for a fully implicit scheme. The major computational load of the simulation process
is delegated to a relatively simple engine object and linear solver. Since various
linear solvers become available on different computing architectures such as a GPU
(e.g., see [116]), the whole simulation can be executed there, while the calculations
of operator values can still be performed on a CPU.

Petroleum and geothermal industries constantly exert pressure on reservoir sim
ulation for more rigorous models to improve accuracy and concurrently demands
faster turnaround times to speed up historymatching and uncertainty quantifi
cation. While the traditional CPU architectures are currently limited in providing
consistent acceleration to reservoir simulation codes, the GPU architectures evolve
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rapidly and promise to take the initiative. Hence, aside from the purely algorithmic
aspect of simulation performance, it is essentially important to take into account the
efficient implementation of the chosen methods in terms of both software and hard
ware. DARTS demonstrates how the architecture of a reservoir simulator can reveal
the performance potential of OBL in three independent dimensions: improved non
linear performance (algorithmic level); actual performance of linearization stage
(software level); portability to alternative computing architectures including a GPU
(hardware level).

7.3. DARTS Applications
Chapter 6 discusses current DARTS applications and future developments. It starts
with the investigation of two different approaches of nonuniform parameterization
of physical space. The first is designed specifically for compositional formulation.
It uses prior knowledge about the shape of state operators  phase envelope, and
therefore relatively cheap. The second is more expensive since it directly detects the
most problematic regions requiring refinement, using local optimization algorithms.
Both methods confirm a significant increase in parameterization accuracy compared
to uniform parameterization with a similar amount of supporting points in most
cases. Proper implementation of nonuniform parameterization approaches coupled
with the simplexbased interpolation will allow evaluating the resulting performance
of this alternative.

Proxy models in physics built within DARTS and their applications are also dis
cussed in Chapter 6. Usually, proxy models provide significant improvement in sim
ulation performance by introducing various simplifications into fullphysics models.
MultiScale Compositional Transport (MSCT) simplifies the compositional descrip
tion of a multicomponent system with a specially built binary system. This allows
reducing the size of the corresponding linear system by 𝑛𝑐

2 times. The resulting
proxy model is straightforwardly constructed within DARTS simply by substituting
restricted fractional flow curves into operators. It can accurately predict leading
and trailing shocks, which is enough for judgement of miscibility development.
Consequently, cheap yet accurate NPV estimation can be constructed and used
for production optimization based on a proxy model.

Employment of DARTS as a workhorse in production optimization and inverse
modelling is especially attractive because of the minimal input/output overhead pro
vided by the Python integration. It is especially valuable for proxy models, when
the runtime of a forward simulation is measured in seconds. At the moment, only
numerical derivatives can be used for gradientbased optimization methods. The
implementation of adjointbased gradient calculations within DARTS would be sim
plified owing to operator form of the governing equations, and would further im
prove gradientbased optimization performance ([117]).

In overall, additional accuracyperformance tradeoff provided by OBL, simpli
fied manipulation of simulation model via the Python interface, and exceptional
computational performance make DARTS an efficient platform for research for both
forward and inverse modelling. Its architecture allows to change existing formu
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lations and even introduce new physics with minimal efforts. Furthermore, the
complete transition of the main simulation loop to GPU, along with the implemen
tation of adjoint gradients will allow taking the inverse modelling performance to a
new level.
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