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Abstract. Segmentation can degrade a high-quality dose distribution obtained by

fluence map optimisation (FMO). A novel algorithm is proposed for generation of MLC

segments to deliver an FMO plan with step-and-shoot IMRT while minimising quality

loss. All beams are considered simultaneously while generating MLC segments for

reproducing the 3-dimensional FMO dose distribution. Segment generation is only

steered by the 3D FMO dose distribution, i.e. underlying FMO fluence profiles are

not considered. The algorithm features prioritised generation of segments, focusing

on accurate reproduction of clinical objectives with the highest priorities. The

performance of the segmentation algorithm was evaluated for 20 prostate patients,

15 head-and-neck patients, and 12 liver patients. FMO dose distributions were

generated by automated multi-criteria treatment planning (Pareto-optimal plans) and

subsequently segmented using the proposed method. Various segmentation strategies

were investigated regarding prioritisation of objectives and limitation of the number

of segments. Segmented plans were dosimetrically similar to FMO plans and for

all patients a clinically acceptable segmented plan could be generated. Substantial

differences between FMO and segmented fluence profiles were observed. Avoidance

of the usual reconstruction of 2D FMO fluence profiles for segment generation, and

instead simultaneously generating segments for all beams to directly reproduce the

3D FMO dose distribution is a likely explanation for the obtained results. For the

strategies of limiting the number of segments large reductions in number of segments

were observed with minimal impact on plan quality.

Keywords : step-and-shoot IMRT, treatment plan optimisation, inverse IMRT planning,

prioritised MLC segmentation, column generation

1. Introduction

In intensity modulated radiation therapy (IMRT) treatment planning, the optimisation

problem may be split into a fluence map optimisation (FMO) phase and a segmentation

phase to convert the optimised fluences into multi-leaf collimator (MLC) segments. An

advantage of this approach is that the FMO problem can be modelled as a convex
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multi-criterial optimisation problem (Breedveld et al., 2019) with a guaranteed globally

optimal solution in optimisation. As treatment machine limitations (e.g. limitations of

the MLC) are not fully accounted for in FMO, the deliverable plan resulting from the

segmentation phase may have a quality loss compared to the FMO plan. Additionally,

decisions on multi-criterial trade-offs, as made during FMO, are generally not explicitly

taken into account in the segmentation phase (Salari and Unkelbach, 2013).

One approach for segmentation in static step-and-shoot IMRT is to separately

segment the beam fluence profiles for the involved beams into sets of deliverable segments

by stratifying fluences into discrete intensity levels and subsequently generate feasible

segments for each beam that match the optimised fluence profile (Xia and Verhey, 1998,

Süss et al., 2007). In general, the more segments are included the better the fluence

profile can be replicated. To restrict the treatment delivery time, pre-defined trade-offs

between plan quality and treatment time can be used to restrict the number of intensity

levels and number of segments (Craft et al., 2007). To the best of our knowledge,

published MLC segmentation approaches for static step-and-shoot IMRT plans are all

based on independent segmentation of the 2-dimensional fluence profiles of all beams

(Long et al., 2016, Gören and Taşkin, 2015, Luan et al., 2006, Süss et al., 2007, Sun

and Xia, 2004). Sequencing the fluences for each beam separately excludes mutual

dosimetric compensation of imperfect segmentations of the 2-dimensional beam fluence

profiles to optimally reproduce the initial 3-dimensional FMO dose distribution.

Extensive research has been done to improve MLC segmentation with non-

discretised intensity levels and leaf positions (Long et al., 2016), to investigate

segmentation efficiency under various MLC constraints (Gören and Taşkin, 2015), to

explore regularization in the dose domain before segmentation (Nguyen et al., 2015) and

to minimise beam-on-time (Crooks et al. 2002, Boland et al. 2004, Ahuja and Hamacher

2005). However, none of the published methods explicitly account for differences in

objective priorities during segmentation. Consequently, discrepancies between FMO

fluence and sequenced fluence may potentially lead to dose deviations in the PTV

and OARs with uncontrolled balances, i.e. without explicitly considering the clinical

priorities.

In contrast to FMO followed by segmentation, Direct Aperture Optimisation (DAO)

has been proposed to directly generate MLC segments (Shepard et al., 2002, Romeijn

et al., 2005, Men et al., 2007). DAO operates under the “What you see is what you

get” principle, meaning that at every stage of the optimisation process the treatment

plan is directly feasible for delivery and no segmentation phase (with possible loss in

plan quality) is needed. However, including the non-convex modelling of the (physical)

constraints of the collimator and treatment device leads to a non-convex optimisation

problem. The column generation (CG) approach has been proposed as heuristic in

the field of DAO to solve the optimisation problem in radiotherapy (Men et al., 2007,

Carlsson, 2008, Cassioli and Unkelbach, 2013). Research on CG approaches for DAO

includes investigations on convergence (Carlsson and Forsgren, 2014), generation of

segments under various MLC constraints (Men et al., 2007) and inclusion of pre-defined
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multi-criterial trade-offs (Salari and Unkelbach, 2013).

In our centre we have given preference to plan optimisation using FMO followed

by segmentation, because of the guaranteed Pareto and global optimality of the FMO

plans that we generate with Erasmus-iCycle, an algorithm for automated a priori Multi-

Criterial treatment plan Optimisation (MCO) (Breedveld et al., 2012). For each patient,

a single Pareto-optimal FMO plan is generated with clinically favourable trade-offs,

considering all treatment objectives with explicitly assigned priorities. This differs from

a posteriori MCO (e.g. Craft and Richter 2013, Bokrantz and Miettinen 2015) in which,

for each patient, a set of Pareto-optimal plans is generated with automated planning,

while selection of a clinically favourable plan is performed by a user.

In this study, a prioritised dose-based MLC segment generation method is proposed

which minimises 3-dimensional plan quality loss compared to the FMO plan by placing

extra consideration on high priority clinical objectives. To reconstruct the 3-dimensional

FMO dose, a CG approach was implemented that simultaneously optimises the beam

segments for all treatment beams, rather than replicating the 2-dimensional fluences

separately as is done in other published MLC segmentation methods. Segment

generation was only steered by the 3D FMO dose distribution, i.e. underlying FMO

fluence profiles were not considered. In this sense, the term segmentation as applied

in this paper has a slightly different meaning from that in the literature. The CG

approach was chosen because of its intuitive mechanism of generating segments and

proven effectiveness in IMRT treatment planning (Carlsson, 2008, Romeijn et al., 2005,

Salari and Unkelbach, 2013).

The overall goal was to achieve high quality radiotherapy treatment plans by

combining global optimality of the FMO plan with a fast prioritised “DAO-like”

segmentation. The segmentation was tailored to individual patients by using the

prioritised approach in combination with personalised clinical objectives obtained from

the FMO plan. The proposed technique was developed in the context of CyberKnife

robotic radiotherapy, but can be applied for segmentation of any static step-and-shoot

IMRT or stereotactic body radiation therapy (SBRT) plan. Possibilities for keeping

calculation and delivery times low were included in the investigations. The segmentation

performance was evaluated for prostate, head-and-neck and liver tumours.

2. Materials & Methods

This section starts with briefly describing the applied FMO (section 2.1). Next, CG

is introduced in section 2.2, while the proposed segmentation with CG is described in

section 2.3. Prioritised steering on personalised objectives is described in section 2.4,

which includes approaches to minimise the number of segments. Finally, plan evaluation

criteria and details on our computational study are presented in sections 2.5 and 2.6,

respectively.



Automated prioritised 3D dose-based MLC segment generation 4

Table 1. Overview of the clinical cases and FMO plans.

Treatment site Cases Treatment unit Beams Prescribed dose (Gy) Fractions

Prostate 20 CyberKnife 25 non-coplanar 38 4

Head-and-neck 15 Conventional linac 9 coplanar 46 23

Liver 12 CyberKnife 25 non-coplanar 60 3

2.1. Patients, FMO treatment plans and dose calculation model

An overview of the clinical cases and FMO plans used to evaluate the performance of the

MLC segmentation is presented in table 1. All FMO plans were generated with fully

automated multi-criterial optimisation as implemented in Erasmus-iCycle (Breedveld

et al., 2012, 2017). A pencil-beam approach was used to describe dose delivered to

the patient, i.e. d = Ax with d the vector containing the patient’s voxel doses, A

the dose deposition matrix, and x the pencil beam weights (see also Breedveld et al.,

2006, 2017, Nguyen et al., 2015, Zhu et al., 2012). For CyberKnife plans the beamlet

and segmentation resolutions were defined at 800 mm from the source, while this was

1000 mm for conventional linac plans. For all plans a beam energy of 6 MV was used.

For the prostate treatments, FMO was performed using pencil beams with a 5 x 5

mm2 beamlet resolution, while a 5 x 10 mm2 beamlet resolution was used for liver and

head-and-neck cancer. These FMO resolutions have shown to provide a good balance

between plan quality and computational efficiency. Since MLC segmentation of a FMO

dose distribution can result in degradation of plan quality, segmentation on a higher

resolution than the FMO resolution can compensate for potential degradation in plan

quality. We modelled the CyberKnife InCise2 MLC and performed all segmentations

(including the conventional linac plans) for this MLC, which has 2 banks of 26 leaves

with a leaf thickness of 3.85 mm defined at 800 mm SAD. Since our dose engine is limited

to integer values of resolution only, the segmentation was performed on a resolution of

a 1 x 4 mm2.

2.2. Column generation

CG is generally used to solve large-scale problems. The large-scale optimisation problem

is denoted as the Master Problem (MP). Instead of solving the MP directly, the MP is

solved by iteratively solving a restricted version of the problem denoted as the Restricted

Master Problem (RMP). The RMP only includes a subset of the original decision-

variables (i.e. the beamlet intensities x). During each iteration of the CG method,

the RMP is solved and the solution is projected onto the MP. The projection on the MP

can be used to identify the next promising subset of decision variables, which will be

added to the RMP in the subsequent CG iteration. This identification step is called the

Pricing Problem (PP). If no new decision-variables can be identified, the MP is solved

to optimality. For a detailed description of CG in RT, see Romeijn et al., 2005, Men

et al., 2007, Carlsson and Forsgren, 2014.
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Master Problem 
(MP) (2.3.1) 
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Figure 1. Schematic representation of the column generation (CG) approach for

prioritised MLC segmentation as a combination of the grey and red workflows. The

numbers between brackets refer to corresponding paragraphs.

2.3. Problem definition and segment generation

The CG workflow, as introduced by Romeijn et al. (2005) for DAO in radiotherapy,

was in this study used to segment FMO dose distributions by iteratively identifying

promising MLC segments, see figure 1. The CG workflow is denoted in grey, while the

proposed prioritised workflow consists of the grey workflow, followed by red.

The MP for plan segmentation is formulated in section 2.3.1. In each iteration the

most promising segment is identified by solving the PP (section 2.3.2) and then added

to the RMP (section 2.3.3). The RMP only contains the segments identified so far and

it is solved to optimality to determine the intensities of the segments. At the end of each

iteration, segments for which the intensity falls below the minimum required Monitor

Units (MU) are removed (section 2.3.4). Then, in the next iteration the PP is again

solved to identify the next promising segment.

For the proposed prioritised MLC segmentation, the CG workflow is incorporated

into an adaptive framework (section 2.4). If a segmented solution converges to a dose

distribution that does not comply with one or more of the DV criteria, segmentation is

re-started with extra emphasis on high priority objectives.

2.3.1. Master Problem With x denoting the fluence vector, our MP is formulated by:

minimise f(x) + ωp(x) (MP) (1)

subject to x ≥ 0
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x ≥ 0 ensures non-negative fluences and f(x) and p(x) are given by:

f(x) =
∑
v∈V
‖ηv1/2(Ax− dFv )‖22 (2)

p(x) =
1

NPTV

NPTV∑
j=1

e−α(Ajx−DP ) (3)

The quadratic term f(x) is the main driving force of the MP, similar to objective

functions commonly used in treatment planning (Breedveld et al., 2006, Carlsson and

Forsgren, 2014). The vector ηv contains voxel-dependent weight factors for each volume

v ∈ V , which play a key role in the MP adaptation part of the algorithm described

in section 2.4. dFv defines the FMO dose distribution. f(x) can be rewritten in the

canonical form to increase computational efficiency (Breedveld et al., 2006).

The term p(x) with weight ω in equation (1) puts extra emphasis on attaining

an adequate PTV coverage by penalising under-dosage of the PTV, for which the

Logarithmic Tumour Control Probability (LTCP) is used (equation (3), as proposed

by Alber and Reemtsen (2007)). DP denotes the prescribed dose for the PTV, NPTV

the number of sampled PTV voxels, and Ajx the dose delivered to PTV voxel j. α

is a constant related to cell survival (Alber and Reemtsen, 2007), which was tuned to

achieve adequate coverage. An α equal to 0.90, 0.82 and 0.40 was used for prostate,

head-and-neck and liver respectively.

2.3.2. Pricing problem and feasible segment generation For the identification of the

most promising feasible segment, an approach similar to Romeijn et al. 2005 has been

implemented, in which the gradient from the MP is projected onto the beamlet grid

for each of the beams. Beamlets with a negative gradient are favourable for inclusion

into the next segment, as these indicate the most effective descent direction for the

MP. These individual beamlets are grouped together into feasible MLC segments by

constructing a layered graph (per beam direction) for possible combinations of adjacent

negative beamlets. Mechanical restrictions of the MLC device are taken into account

during construction of the graph. The following segment restrictions, similar to the

restrictions of the CyberKnife InCise2 MLC, were enforced: the MLC segment contains

only one contiguous opening, a minimum number of 2 leaf pairs open per segment (7.7

mm in total), a minimum opening size of 7.6 mm in the direction of the leaves, and

interdigitation is allowed. Given that our dose engine operates on integer values of

resolution, a field size restriction of two leaf pairs open per segment (8 mm in total) and

a minimum opening size of 8 mm in the direction of the leaves were used instead. The

graph is subsequently solved using a shortest path algorithm. The pricing problem

was implemented in C++ using Boost Graph Libraries (v1.58) and solved using a

Bellman-Ford shortest path algorithm. A post-processing step was implemented to

guarantee feasible segments. Feasible segments are generated for all beam directions in

parallel, but only the most promising segment (the one with the largest sum of negative

contributions) is selected and added to the RMP.
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2.3.3. Restricted Master Problem The restricted version of the Master Problem is

formulated in equation (4), where the quadratic (2) and LTCP (3) terms are now given

by equations (5) and (6). Variable xr denotes segment intensities. In each iteration,

a promising segment is identified and added to the RMP; a new column is added to

the optimisation problem. The RMP is subsequently solved to optimality to determine

the intensities xr for included MLC segments. For this we use our in-house developed

solver (Breedveld et al., 2017), specifically designed and tuned for solving radiotherapy

optimisation problems, but any non-linear solver could in principle be used.

minimise fr(xr) + ωpr(xr) (RMP) (4)

subject to xr ≥ 0

Where the quadratic and LTCP terms are now given by:

fr(xr) =
∑
v∈V
‖ηv1/2(Arxr − dFv )‖22 (5)

pr(xr) =
1

NPTV

NPTV∑
j=1

e−α(Arjxr−DP ) (6)

2.3.4. Segment rejection For treatment delivery a minimum MU/segment is imposed

because dose delivery for MU below this threshold may be inaccurate. Also, segments

added to the RMP in an early stage of the segmentation process can decline in relevance

due to addition of newer segments. We have chosen not to enforce the minimum

MU/segment constraint while solving the RMP, in order to maintain the ability to

identify and remove segments for which the contribution to the solution diminishes.

When the intensity of a segment drops below the minimum the segment is removed

from the RMP. Additionally, after segment removal, the intensities of the remaining

segments are re-optimised and it is again verified whether they fulfil the minimum

MU constraint. Discarding redundant columns (segments) from the RMP reduces the

size of the problem which improves the computational efficiency of solving the RMP.

For the hypo-fractionated SBRT plans (prostate and liver) in this study a minimum

MU/segment per fraction of 5 was used and for the conventionally fractionated plans

the minimum MU/segment per fraction was 3.

2.4. Prioritised MLC segmentation

The performance regarding the posed (personalised) objectives is tracked during

segmentation (section 2.4.1). If a segmented solution converges towards a solution that

does not comply with one or more of the objectives, the MP is updated in an attempt

to better reflect the requested trade-offs (section 2.4.2), taking into account the clinical

priorities.
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2.4.1. Prioritised objectives for segmentation For the three investigated tumour sites,

the tumour and OAR objectives with assigned priorities as used for the segmentation

of FMO plans are presented in table 2a. They are in line with the clinical treatment

planning protocols at Erasmus MC. For each patient, the personalised goal values for

the OAR objectives are obtained from the Pareto-optimal FMO plan generated with

Erasmus-iCycle to obtain trade-offs in OAR sparing during the segmentation like they

were made during the automated multi-criterial FMO. During segmentation there is no

need to obtain a PTV coverage higher than requested in the clinical protocol, even if

it is obtained during FMO. Therefore, to generate maximum space for OAR sparing

during segmentation, the tumour objectives are enforced as provided in the treatment

protocol.

When during a segmentation all objective functions have converged and one or

more of the objective functions have not reached the goal value, an update of the MP is

performed, i.e. the MP is modified to put more emphasis on the objective function with

an unattained goal with the highest priority (table 2a) in a subsequent segmentation

run. When multiple objectives with equal priority are not fulfilled, the structure with

the largest deviation from the desired objective value is selected.

2.4.2. Updates of the MP during segmentation Two mechanisms are used

simultaneously for updates of the MP. The first approach is adjustment of the individual

voxel weights ηv within the quadratic objective function (equation 2). Increasing the

weight will magnify the difference between the attained dose in the segmented solution

and the reference dose for that voxel, as obtained in the FMO plan. This will put more

emphasis on that particular voxel for attaining its reference dose. The second option is

to adjust the reference dose dFv within the quadratic objective function. By adjusting

the reference dose for a voxel the difference in dose will be increased, thereby increasing

the contribution to the MP objective function, but this option also favours deviations

from the original FMO plan.

For each update, only the voxels in the selected structure that do not comply with

the criteria contribute to adjustment of the MP cost function. A maximum of three MP

updates was enforced to limit calculation time and to remain close to the FMO solution.

The values of ω, ηv and dFv with the updates are presented in section 3.1. If the update

of the objective function yields a plan of inferior plan quality than before the update

the segmentation falls back on the previous plan.

Segmentations are eventually terminated when the MP objective function has

converged with all clinical objectives (table 2a) met, or if the maximum number of

MP resets (three) has been reached. The convergence criterion was defined as the

objective value being within 10% of its current value over the last 10 iterations for

segment additions. This criterion was relaxed to 12.5% when all clinical objectives were

met. As a result, fewer segments were included when an adequate plan has already been

achieved.
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Table 2. Personalised objectives for prioritised segmentation of a prostate, head-

and-neck or liver FMO plan with assigned priorities (Pr.); for each patient, the goal

values for the OAR objectives were the plan parameters in the corresponding FMO

dose distributions, while the tumour objectives were always enforced as stated in the

treatment planning protocol (a) and hard constraints to evaluate clinical acceptability

of plans (b).

(a)

Prostate

Tumour objective Pr.

PTV VD>38Gy > 95% 1

Personalised objectives Pr.

Rectum D1cc 2

Bladder D1cc 3

Urethra D5% 4

Urethra D10% 4

Urethra D50% 4

(b)

Prostate

Clinical constraints

PTV VD>38Gy > 95%

Rectum D1cc < 32.3 Gy

Bladder D1cc < 38 Gy

Head-and-neck

Tumour objectives Pr.

PTV VD>43.7Gy > 98% 1

D1cc < 49.2 Gy 2

Personalised objectives Pr.

Spinal cord D1cc 3

Brainstem D1cc 3

Parotid L/R Dmean 4

SMG L/R Dmean 4

Larynx Dmean 5

Cochlea L/R Dmean 6

Oesophagus Dmean 6

Oral cavity Dmean 6

Head-and-neck

Clinical constraints

PTV VD>43.7Gy > 98%

D1cc < 49.2 Gy

Spinal cord D1cc < 50 Gy

Brainstem D1cc < 60 Gy

Liver

Tumour objectives Pr.

PTV VD>60Gy > 95% 1

D1cc < 75 Gy 2

Personalised objectives Pr.

Liver - GTV VD>15Gy 3

Duodenum D1cc 4

Small bowel D1cc 4

Stomach D5cc 4

Spinal cord D1cc 5

Oesophagus D1cc 5

Kidney L/R VD>15Gy 6

Liver

Clinical constraints

PTV VD>60Gy > 95%

D1cc < 75 Gy

Liver - GTV VD<15Gy ≥ 700 cc

Duodenum D1cc < 30 Gy

Small bowel D1cc < 30 Gy

Stomach D5cc < 22.5 Gy

Spinal cord D1cc < 18 Gy

Oesophagus D1cc < 27 Gy

Kidney L/R VD>15Gy ≤ 33%

2.4.3. Segment reduction An important contributor to treatment delivery time is the

number of segments. To investigate possibilities for active steering on the number

of segments, we have implemented and evaluated six segmentation approaches: three

prioritised segmentation (PS) methods and three non-prioritised (noPS) methods:

(i) PS full : Full prioritised segmentation as described in sections 2.4.1 and 2.4.2.

(ii) PS remove: PS full, followed by stepwise removal of segments. For every removal

step, the segments are ranked based on their relative contribution to the PTV

mean dose. Subsequently, the segment with the lowest contribution is removed and
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the intensities xr of the remaining segments (equation (4)) are re-optimised. This

process is continued until a tumour objective is violated.

(iii) PS terminate: Start prioritised segmentation like in PS full, but terminate as soon

as all tumour objectives are met after the last update of the MP.

(iv) noPS full : Start segmentation like in PS full, but do not update the MP, i.e. the

prioritised list of personalised objectives is not used during segmentation.

(v) noPS remove: noPS full, followed by stepwise removal of segments (see ii for

details).

(vi) noPS terminate: Start segmentation like in noPS full, but terminate as soon as all

tumour objectives are met.

2.5. Plan evaluation criteria

Plans segmented with the various approaches were mutually compared and compared

with FMO. The analyses focused on clinical acceptability, dosimetric quality, number of

segments, MU and segmentation time. Criteria for clinical acceptability are summarised

in table 2b. Dose-volume parameters and the Conformation Number (CN) as proposed

by van ’t Riet et al. (1997) were used to quantify dosimetric quality. Additionally, visual

inspections of the dose distributions were performed.

2.6. Computation times

Segmentations were performed on a dual CPU system, consisting of 2 octocore Intel

Xeon E5-2690 CPUs, running at 2.90 GHz and with 128 GB of memory. For the various

segmentation approaches, calculation times were recorded.

3. Results

Segmentation parameters found to be suitable for prioritised segmentation are presented

in section 3.1. Prior to presenting the overall performance results for the segmentation

approaches in section 3.3, one head-and-neck case is discussed in detail in section 3.2.

3.1. Prioritised segmentation parameters

A weight ω of 103 for the LTCP term of the objective function (1) was found to work

adequately for all tumour sites and was kept fixed throughout the investigations. As

mentioned in section 2.3.1, the contribution of the LTCP term diminished when an

adequate PTV coverage was attained. The value of 103 provided an appropriate trade-

off between steering on sufficient PTV coverage (when necessary) and reconstruction of

the FMO dose distribution provided. The voxel weights ηv of the quadratic part of the

objective function (2) were all set to 1 at the start of the segmentation. For updates

of the MP cost function, the weights for selected voxels were increased from 1 to 5, to

10 and to 15 for subsequent updates. For OAR objectives, the voxel reference doses
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dFv , initially obtained from the FMO dose distribution were decreased by 0.33 Gy at the

same time.

3.2. Segmentation performance - example patient

Figure 2 shows for an example patient axial and sagittal slices through the PTV for

the FMO plan (a) and the segmented PS full plan (b). FMO and segmented dose

distributions were similar, though small deviations were noticeable. As required by

the clinical protocol (table 2b), in both plans more than 98% of the PTV was covered

by at least 95% of the prescribed dose (yellow isodose line in figure 2, 43.7 Gy=95%).

Isodose lines of the segmented plan were somewhat smoother, which can be explained

by the difference in fluence modulation. In FMO, the fluence is modulated per beamlet,

although some form of regularisation (smoothing) is applied. In segmented plans,

collections of connecting beamlets are irradiated with equal intensity, which generally

results in smoother fluence profiles. In principle, the higher modulation in FMO could

have resulted in a more conformal plan. However, in this case a minor increase in CN

was observed in the segmented plan; CN=0.77 for FMO and 0.79 for the segmented

plan. FMO and segmented fluence profiles for all beams are shown in figure 3. Even

though FMO and segmented dose distributions were similar, substantial differences in

fluence profiles per beam were observed.

DVHs for the FMO plan and all segmented plans are presented in figure 4. For all

three PS methods the goal values for both PTV objectives were attained (table 2), with

PTV coverages of 98.9%, 98.8% and 98.8% and PTV D1cc of 49.0 Gy, 49.1 Gy and 49.2

Gy for PS full, PS remove and PS terminate respectively. In comparison, in none of the

noPS plans the PTV D1cc goal was achieved (PTV D1cc of 50.1 Gy). Since the PTV

D1cc was already violated for noPS full, no segments could be removed without violating

one of the tumour objectives in the reduction step and therefore all noPS plans were

equal. Figure 5 shows for the example HN case the PTV objective functions (VD>43.7Gy

and VD>49.2Gy) as a function of iteration number during the segmentation process. In

order to meet for both functions the goal values three MP updates for the PTV were

necessary, to place more emphasis on crucial voxels that contributed to PTV overdose.

3.3. Segmentation performance - all patients

Figures 6, 7 and 8 show population mean DVHs for the three patient groups. DVHs

per individual patient can be found in the supplementary materials. For prostate and

liver the mean DVHs for the six segmentation approaches were very close to those of the

FMO plans. For the OARs this also held for head-and-neck cancer, but for the three

noPS segmentation approaches the mean VD>49.2Gy for the PTV exceeded the clinical

dose constraint (table 2b), see inset of figure 7. Figure 9 shows the number of clinically

acceptable plans, which for head-and-neck indeed shows that for each of the three noPS

approaches only 1 out of 15 plans was clinically acceptable.
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Figure 2. Similar FMO (a) and PS full segmented (b) dose distributions for the

example HN patient discussed in section 3.2. Depicted structures: PTV (red), spinal

cord (green), brainstem (blue), parotid L/R (cyan/purple), oesophagus (yellow) and

oral cavity (light blue).

  FMO fluence profiles
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100

MU

 Segmented fluence profiles
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Figure 3. Fluence profiles to realise the FMO and segmented plans for the example

patient discussed in section 3.2, plotted per beam. Even though the FMO and

segmented dose distributions are similar (figure 2), substantial differences between

FMO and segmented fluence profiles per beam were observed.
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Figure 4. DVHs for FMO and segmented plans for the example head-and-neck case

presented in section 3.2. Tumour objectives are denoted with red triangles. Inset:

close-up of the DVHs around maximum dose. All three PS plans met both tumour

objectives compared to none of the noPS plans (none of them fulfilled the PTV D1cc

objective).
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Figure 5. For the example head-and-neck patient discussed in section 3.2, tumour

objective functions’ values during the PS full prioritised segmentation plotted against

iteration number. In order to meet the goal values (table 2a), three updates of

the objective function were necessary. Updates were performed at iteration 85 (PTV

VD>49.2Gy = 12.9 cc), at iteration 162 (PTV VD>49.2Gy = 3.2 cc) and at iteration 233

(PTV VD>49.2Gy = 1.5 cc). At the end of PS full, PTV VD>49.2Gy = 0.3 cc, which is

within the goal value (< 1 cc, table 2a).
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Figure 6. Average DVHs for the prostate cases (N=20) for the FMO plans (thick

solid lines) and the segmented plans (dashed). The PTV coverage objective is denoted

with a red triangle.

Figures 10, 11 and 12 show details on the performance of the six segmentation

approaches for the three investigated tumour sites. The subfigure “PTV D1cc” of

figure 11 shows that acceptability issues with noPS plans for head-and-neck cancer were

indeed indeed related to too large PTV volumes receiving high dose. Among the three

PS approaches, differences between achieved dosimetric parameters for head-and-neck

were clinically irrelevant (figure 11). Overall the best segmentation approach for this

group seems PS terminate as it has the lowest # segments (median: 75), the lowest

# iterations (median: 334) and the lowest MU (median per fraction: 979 MU). Also for

prostate and liver cancer, PS terminate is often a good choice, mainly because of the

relatively low # segments, low # iterations and low total MU.

Another interesting observation are the differences in deviation observed per

segmentation method over various objectives with different priorities (table 2a). For

example, for prostate cancer the smallest deviations were observed for the most

important OAR (i.e. rectum). With decreasing importance (increasing priority number)

the deviations in dose from the FMO plan increased (compare objective subplots in

figure 10). No similar trend was observed for the noPS approaches, which indicates that

the proposed extension of the segmentation technique is able to reduce dose deviations

in a prioritised manner.
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around maximum dose. PTV objectives are denoted with red triangles.
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solid lines) and the segmented plans (dashed). PTV objectives are denoted with red

triangles.



Automated prioritised 3D dose-based MLC segment generation 16

Figure 9. Percentage of clinically acceptable plans. A plan was considered acceptable

if for all constraints the obtained values were within 0.25 Gy or 0.25% of imposed

values (table 2b). Plans segmented using the prioritised methods (PS) outperformed

the non-prioritised methods (noPS). Especially for head-and-neck where more emphasis

was needed on crucial voxels, in 14 out of the 15 cases, in order to meet the PTV D1cc

constraint.

4. Discussion

MLC segmentation approaches were investigated that aim at accurate reconstruction

of optimised FMO distributions, while complying with the mechanical limitations of

the treatment device. To reconstruct 3-dimensional FMO dose distributions, a column

generation approach was implemented that simultaneously optimised the beam segments

for all treatment beams, while ignoring the underlying FMO fluence profiles.

For OARs the proposed segmentation method uses a convex quadratic objective

function to minimise the voxel-wise differences between the intended FMO dose and the

segmented dose. During prioritised segmentation, this objective function may iteratively

be adapted to maximally reproduce OAR dose parameters, while considering the clinical

priorities. In initial attempts, we tried to also use for the PTV only a quadratic cost

function, similar to the OARs. However, achieving clinically acceptable PTV coverages

and maximum doses often failed. Therefore, the quadratic function was supplemented

with an LTCP term. Also for FMO plan generation, the LTCP cost function is often

used for obtaining adequate PTV dose (Alber and Reemtsen, 2007, Breedveld et al.,

2012, 2017).

In our study, segmented plans were in good agreement with the FMO plans

(section 3.3), and the number of segments and MU of the generated plans are in line with

our clinical experience. Quantitative comparison with published segmentation methods

is difficult due to large variations in clinical cases and plans, and in applied segmentation

objectives, parameters and quality measures. Also, in published studies the number of

evaluated cases is generally relatively low (typically 2 to 10 compared to 47 in this study).

However, qualitative comparisons indicate a superior FMO plan reproduction with the

proposed approach. Explanations for this could be i) the direct reconstruction of the 3D

FMO dose distribution with total ignorance of obtained FMO fluences, and simultaneous
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segment generation for all beam directions, instead of the generally observed focus

on reconstruction of separate fluence profiles, and ii) the prioritised approach with

an explicit drive to avoid plan quality losses for the highest clinical priorities. With

this approach, segmentation is fully focused on maintaining the quality of the FMO

plan with minimal limitations in selecting optimal segments and preservation of the

clinical trade-offs. We have indeed observed substantial differences between FMO- and

segmented fluence profiles for similar dose distributions (see figures 2 and 3 for an

example patient). Possibly, the featured large freedom in beam segment selection has

contributed to the high quality of the reconstructed plans with clinically acceptable

numbers of segments (see figures 10, 11 and 12). Nguyen et al. 2015 investigated

dose domain regularisation for MLC segmentation and observed that the segmented

fluence profiles with and without regularisation could be substantially different. A

direct comparison with published or commercially available segmentation approaches

would be very interesting. For such studies it would be important to eliminate potential

bias, e.g. originating from difference in dose calculation models, segmentation objectives

or evaluation measures.

In this paper, FMO treatment plans were generated with Erasmus-iCycle

(Breedveld et al., 2012), which has been successfully implemented in clinical practice

for fully automated multi-criterial generation of clinically deliverable plans for head-

and-neck, prostate, advanced lung cancer and advanced cervical cancer. For these

tumour sites, Erasmus-iCycle is used for FMO plan generation, while the Monaco TPS

(Elekta AB, Stockholm, Sweden) is effectively used for segmentation (Voet et al., 2013,

2014, Sharfo et al., 2015, Gala et al., 2017, Heijmen et al., 2018). For automated

offline treatment planning calculation time is not crucial, but in other scenarios it could

be. Therefore, we have investigated calculation times for the segmentation approaches.

When plan quality is the most important aspect, the PS full is most suitable; fully

converged segmentation with the best plan quality. When calculation time is more

important, for example in the case of online-adaptive treatment, the PS terminate could

be a more suitable option. It provides a reduction in number of segments compared to

the PS full, with only minimal impact on plan quality. Additionally, the terminate and

remove plans generally have a lower number of MU and so these plans are more efficient

to deliver compared to the fully converged plans. A possible drawback of the terminate

and remove approaches could be that the personalised objectives obtained from the FMO

dose distributions are too challenging to reconstruct under the mechanical limitations.

In that case, a plan would be returned with a high number of segments while fulfilling the

highest feasible objectives. Regarding the terminate approach, since the segmentation

minimises the difference between the FMO dose and segmented dose, terminating the

segmentation when the tumour objectives are met does not necessarily mean that none

of the remaining objectives are met. The segmentation primarily works on all dose

points simultaneously with an extra emphasis on PTV coverage due to the LTCP term,

prior to placing extra emphasis on other prioritised objectives. Investigations on further

reduction of calculation times using GPU are on-going; preliminary results indicate a
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potential reduction in calculation time with a factor of 5.

The prioritised extension of the segmentation has been observed to be effective,

but the impact is patient dependent and it increases calculation time. An option for

clinical practice would be to always perform a full prioritised segmentation and let the

user decide which plan is most appropriate per patient, given that the intermediate

(e.g. PS terminate, noPS full, noPS terminate) plans are also available when PS full is

performed.

Interesting opportunities for further improving the proposed MLC segmentation

approach would be to integrate published improvements in DAO techniques into this

MLC segmentation method. One interesting approach in particular would be to

integrate the Aperture Shape Optimization (ASO) algorithm as proposed by Cassioli

and Unkelbach (2013), which optimises the shapes of the included segments in between

CG iterations. However, this will also increase computation time. Another useful

improvement might be to integrate a clinical dose engine in order to account for MLC

scatter effects or to include a fuzzy controller to reduce numerical noise on the gradient

maps as proposed by Yang et al. (2018).

5. Conclusions

Novel MLC segmentation approaches have been proposed for accurate reconstruction of

high-quality FMO dose distributions, while complying with the mechanical limitations

of the treatment device. 3-dimensional FMO dose distributions are reconstructed with

total ignorance of underlying FMO fluences, and simultaneous segment generation for

all beam directions. Due to the proposed prioritised approach, plan reconstruction has

an accent on high priority planning objectives. Clinically acceptable segmented dose

distributions could be generated for all cases with a plan quality that was in good

agreement with the FMO plan and clinically acceptable numbers of segments.
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Süss, P., Küfer, K.-H. and Thieke, C. (2007). Improved stratification algorithms for

step-and-shoot MLC delivery in intensity-modulated radiation therapy, Phys. Med.

Biol. 52: 6039–6051.

van ’t Riet, A., Mak, A. C., Moerland, M. A., Elders, L. H. and van der Zee, W. (1997).

A conformation number to quantify the degree of conformality in brachytherapy and

external beam irradiation: application to the prostate, Int. J. Radiat. Oncol. Biol.

Phys. 37(3): 731–736.

Voet, P., Dirkx, M., Breedveld, S., Al-Mamgani, A., Incrocci, L. and Heijmen, B. (2014).

Fully automated VMAT plan generation for prostate cancer patients, Int. J. Radiat.

Oncol. Biol. Phys. 88: 1175–1179.



REFERENCES 24

Voet, P., Dirkx, M., Breedveld, S., Fransen, D., Levendag, P. and Heijmen, B. (2013).

Towards fully automated multi-criterial plan generation: a prospective clinical study,

Int. J. Radiat. Oncol. Biol. Phys. 85: 866–872.

Xia, P. and Verhey, L. J. (1998). Multileaf collimator leaf sequencing algorithm for

intensity modulated beams with multiple static segments, Med. Phys. 25(8): 1424–

1434.

Yang, J., Gui, Z., Zhang, L. and Zhang, P. (2018). Aperture generation based on

threshold segmentation for intensity modulated radiotherapy treatment planning,

Med. Phys. 45(4): 1758–1770.

Zhu, L., Niu, T., Choi, K. and Xing, L. (2012). Total-variation regularization based

inverse planning for intensity modulated arc therapy, Technol. Cancer Res. Treat.

11(2): 149–162.


	Introduction
	Materials & Methods
	Patients, FMO treatment plans and dose calculation model
	Column generation
	Problem definition and segment generation
	Master Problem
	Pricing problem and feasible segment generation
	Restricted Master Problem
	Segment rejection

	Prioritised MLC segmentation
	Prioritised objectives for segmentation
	Updates of the MP during segmentation
	Segment reduction

	Plan evaluation criteria
	Computation times

	Results
	Prioritised segmentation parameters
	Segmentation performance - example patient
	Segmentation performance - all patients

	Discussion
	Conclusions

