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SUMMARY 
Defining drought is not straightforward. Unlike with other natural phenomena, defining 
drought depends on the area or sector being affected. From the perspective of human and 
social needs, drought has been studied in its relation to water resource sectors, including 
agricultural, economic and environmental. These various foci link the different sectors to 
a specific water cycle process. Such processes help describe meteorological drought, for 
example, which refers to a water deficit caused by anomalous precipitation and 
temperatures. This definition is used by the general public and very often by water 
agencies. There is a clear connection between lack of precipitation, surface runoff deficits 
and river flow, lake and reservoir levels. Thus, calculations of surface runoff are at the 
core of hydrological drought studies. Agricultural drought, as the name implies, relates 
mainly to the lack of soil moisture that affects crops. 

While the various drought types and their studies have resulted in different definitions, a 
good starting point is to refer to drought as a water deficit caused by anomalous 
precipitation and temperature. When extended over a region, this deficit can trigger a lack 
of soil moisture, runoff and groundwater. Importantly, intrinsic drought characteristics, 
like the space–time component of such a definition, are implicit. Characteristics of 
drought, such as duration and spatial extent, can be further extended to develop ideas 
regarding such concepts as drought similarity, morphology and dynamics. 

Drought indicators are the most common tools used to calculate and monitor drought. 
Based on the principle of an above-normal deficit (i.e. an anomaly), these indicators use 
mathematical formulas to transform hydro-meteorological variables into statistical values. 
These values are then related to the expected range of a normal condition and used to 
identify anomalies. The hydrological process is analysed, and the applicable drought 
indicator used according to the type of drought to be assessed. Due to data availability 
issues, some types of drought can only be monitored using a proxy hydrological variable. 
Such proxies are evaluated according to ranges of anomalies that mirror the effects of the 
target variable. This allows different types of droughts to be monitored, even in the 
absence of direct data. 

Along with the development of indicators and methods for drought monitoring, several 
contributions have been made to improve drought characterisation. Enhancing drought 
characterisation refers not only to improving estimations of the phenomenon’s intensity, 
duration and spatial extent but also to increasing our knowledge and understanding of 
how droughts develop and change over time. The former is important for operational 
purposes, and the latter for scientific research. 

In the last decades, studies of drought have increased in light of new data availability and 
advances in spatio-temporal analysis. However, the following gaps still need to be filled: 
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1) methods to characterise drought that explicitly consider its spatio-temporal features,
such as area and pathway; 2) methods to monitor and predict drought that include the
above-mentioned characteristics and 3) approaches for visualising and analysing drought
characteristics to facilitate the interpretation of drought variations.

This research aims to explore, analyse and propose improvements to the spatio-temporal 
characterisation of drought. The improved characterisation, monitoring and visualisation 
of drought are expected to provide new perspectives and information towards better 
prediction. This research proposes the following objectives: 

O1. Improve the methodology for characterising drought in space and time based on the 
phenomenon’s spatial features, such as spatial extent and location. 

O2. Develop a visual approach to analysing variations of spatio-temporal drought 
characteristics. 

O3. Develop a methodology for monitoring the spatial extent of drought (i.e. drought 
tracking). 

O4. Explore the applicability of using machine learning techniques to predict crop-yield 
responses to drought based on spatio-temporal drought characteristics. 

In this dissertation, drought is conceptualised as a phenomenon with a spatial extent, onset 
and end in space and time, as well as a spatial path composed of the union of successive 
tracks. Machine learning (ML) techniques and process-based approaches are used to build 
the research methodology. 

The present methodology was designed to achieve the proposed objectives. First, a 
literature review served as an overview of the existing methods and concepts regarding 
drought characterisation. The most relevant of those methods were selected to pursue the 
research objectives. For the first objective (O1), an approach was built to calculate and 
characterise drought. Different drought indicators were used to calculate meteorological, 
hydrological and agricultural droughts. For the second objective (O2), radial and polar 
charts were developed to analyse drought variations. Each visual element of the graphs 
encoded different drought characteristics, such as intensity and spatial extent. For the 
third objective (O3), a drought tracking method was constructed to calculate drought 
trajectories in space. The most extended droughts were calculated at a country scale and 
analysed using this new method. For the fourth objective, (O4) ML models were built to 
predict seasonal crop yields using drought areas as the main input. 

The first outcome compared different types of droughts using two approaches: area-
aggregated drought indicators and drought areas. Comparisons were carried out at the 
basin scale, at which meteorological, hydrological and agricultural droughts were 
analysed. The results showed little difference among the time series of the area-
aggregated drought indicators. However, the drought areas showed variations among the 
types of drought analysed. The drought area approach clearly detected a lag of time 
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between the meteorological and hydrological droughts. Comparisons across drought areas 
also revealed different seasonal drought behaviours, which were not easily detectable 
through aggregate time series. 

The second outcome was the construction of the season crop-yield model. In this second 
application, an ML framework for seasonal crop-yield prediction was built using drought 
areas. The drought areas were calculated from a database produced by a well-known 
global drought monitor and used to predict crop yields in three regions. The results 
showed that drought area is a suitable variable because its size is a good indication of 
drought magnitude. 

For the third outcome, three visual approaches were developed based on radial and polar 
charts for drought analysis. These visual tools helped to assess drought variations in the 
face of challenges specific to this type of analysis. The challenges included analysing 
more than two drought characteristics in a large data period, or identifying patterns, such 
as seasonality, that are not straightforward in line or area graphs. The results indicated 
that the proposed charts help to identify drought intensity and trends. These graphs 
allowed difficult patterns, such as seasonality, to be spotted more easily. 

The fourth outcome was the methodology for building the spatial path of a drought (i.e. 
the union of successive tracks). This methodology was applied to a case study of India, 
analysing the largest events from 1901 to 2013. The occurrence of the calculated droughts 
was corroborated with documented information from the region. For each drought event, 
the onset and final location, direction and spatial path were calculated. The data generated 
by the tracking methodology were then used to characterise drought dynamics. The results 
from India showed that consecutive areas in time overlapped considerably, suggesting 
that the spatial extent of drought remains in the same region after reaching a considerable 
size. The presence of large drought areas in the same region over time may explain the 
severity of such droughts.  

Finally, a scope was formulated for integrating ML and the spatio-temporal analysis of 
droughts. The proposed scope opens a new area of potential for drought prediction (i.e. 
predicting spatial drought tracks and areas). It is expected that the drought tracking and 
prediction method, when fully completed, will help populations cope with drought and 
its severe impacts. 
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SAMENVATTING 
Droogte treft meestal uitgestrekte gebieden en beperkt zich vrijwel nooit tot landsgrenzen. 
Droogte kan overal op de wereld voorkomen met ernstige gevolgen voor watervoorraden 
(oppervlaktewater en grondwater) en sociaaleconomische activiteiten. Het is alom bekend 
dat een betere karakterisering van droogte zal leiden tot een succesvollere ontwikkeling 
en implementatie van beleidsmaatregelen voor het verminderen van de gevolgen van 
droogte. Een verbetering van de karakterisering impliceert het vaststellen van de 
intensiteit, duur en uitgestrektheid van de droogte. Ofschoon, de karakterisering is 
gestimuleerd door het beschikbaar komen van nieuwe gegevens en vooruitgang in 
ruimtelijk-temporele analyse, de volgende leemten in kennis bestaan nog steeds: (1) 
ontbreken van methoden, die expliciet de ruimtelijk-temporele eigenschappen van 
droogte karakteriseren, zoals de oppervlakte in droogte en de verplaatsing (traject) van de 
droogte, (2) ontbreken van methoden, die deze eigenschappen monitoren en voorspellen, 
en (3) verbetering van systemen, die eigenschappen van droogte visualiseren/analyseren 
t.b.v. de interpretatie van ruimtelijk-temporele patronen. Dit onderzoek draagt bij aan
kennisontwikkeling door de ontwikkeling en toepassing van visualisatie methodieken om
de ruimtelijk-temporele karakterisering van droogte (STAND) uit te kunnen voeren en
helpt de voordelen te evalueren wanneer de methodieken worden gebruikt voor
voorspelling. Een uitgebreider concept voor droogte wordt geïntroduceerd, namelijk als
een gebeurtenis (onderwerp) met een oppervlakte, een begin en een einde in ruimte en de
tijd en een verplaatsing die bestaat uit samengestelde, opeenvolgende trajecten. De
ontwikkelde methodieken maken gebruik van zelflerende technieken en proces-
georiënteerde benaderingen. De methodieken worden geïllustreerd met de volgende
voorbeelden: (1) voordelen van het gebruik van gebieden in droogte versus ruimtelijk-
gemiddelde droogte indices, (2) een veelbelovende, zelflerende techniek waarbij
tijdreeksen van gebieden in droogte worden gebruikt om de gevolgen van droogte op
gewasopbrengsten te voorspellen, (3) analyse van ruimtelijk-temporele droogtepatronen
door visualisatie methodieken, en (4) analyse van de dynamiek in ruimtelijke patronen
van de meest ernstige droogte op de nationale schaal (India), inclusief verplaatsingen.
Tenslotte, wordt aan de hand van dit proefschrift een perspectief geschetst voor de
integratie van zelflerende technieken en ruimtelijk-temporele droogte resultaten om
nieuwe onderzoeksgebieden op het terrein van voorspelling van droogte verplaatsingen
verder te ontwikkelen.
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1. Introduction

2 

 BACKGROUND 

1.1.1 Drought 
Drought is a regional phenomenon that can occur anywhere in the world and often has 
severe consequences in terms of water resources and socioeconomic activity (Below et 
al., 2007; Markonis et al., 2013; Mishra and Singh, 2010; Sheffield and Wood, 2011; 
Tallaksen and Van Lanen, 2004; Van Lanen et al., 2013; Wilhite, 2000). It has been 
widely recognised that improving drought analyses would allow the development and 
implementation of more successful national policies for mitigating drought impacts 
(World Meteorological Organization (WMO), 2006). The WMO points out that to reduce 
the negative impacts of drought, technologies and methods must be developed to improve 
drought’s characterisation (i.e. enhance the calculation of its duration, magnitude, spatial 
extent, onset and end, among others). 

There is no unique definition of drought. However, there is an agreement among 
explanations that it is an anomaly in water availability, most often caused by changes in 
precipitation and temperature that lead to a lack of soil moisture, runoff and groundwater 
(Mishra and Singh, 2010; Van Loon, 2015). This lack of water availability is expressed 
and often analysed through a drought indicator. Drought indicators transform the hydro-
meteorological variable into a value that relates to a measurable standard statistic, 
allowing drought to be identified as an anomaly (Mshra and Singh, 2011). 

These drought indicators are commonly used to perform drought characterisation. The 
procedure of characterisation starts with drought calculations. First, the 
hydrometeorological variable is selected, and then transformed into the drought indicator. 
For each of the calculated droughts, an onset and an end are computed; these allow 
drought duration to be calculated. Drought-indicator magnitudes also help to estimate the 
severity of each calculated drought (Mishra and Singh, 2011). 

Currently, in many countries regional drought monitoring is often conducted using 
drought-monitoring systems, which are fed with hydro-meteorological variables to 
compute the drought indicators and estimate drought characteristics (Hao et al., 2017). 
The spatial condition of drought, including its extent, is monitored with the help of time 
snapshots, which provide qualitative information on the spatial behaviour of the 
phenomenon. 

The available drought monitors deliver information about spatial extent (i.e. snapshots); 
however, there still lacks a consistent procedure for assessing the variations of spatio-
temporal dynamics (Hao et al., 2017). ‘Drought dynamics’ refers to the way in which the 
spatial distribution of a drought changes over time. Developing new technologies to 
increase understandings of how droughts develop in space and time may help to acquire 
knowledge on their drivers and processes; such information would help improve drought 
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monitoring and prediction. Thus, this research investigates spatio-temporal drought 
dynamics.  

1.1.2 Drought study 
The study of drought consists of different components, such as drought characterisation, 
employing the methods to calculate drought features such as duration, magnitude and 
spatial extent. To provide context, the following paragraphs briefly describe the 
relationship between drought characterisation and other forms of drought study. Notably, 
some concepts related to drought characterisation have significant overlap. 

Drought study components 

Figure 1.1 presents a scheme showing the main components of drought study. The 
classifications are based on the respective objective that each component seeks within 
drought research. The overlapping areas in Figure 1.1 indicate the methods and models 
shared by different components. Drought study comprises drought indicators, 
characterisation, monitoring, prediction, analysis, visualisation and impact assessment. 

In each of the components shown in Table 1.1, two types of models can be used: process-
based and machine learning (ML) models. Most drought indicators focus on the 
identification and calculation of water anomalies in specific parts of the hydrological 
cycle. In drought monitoring and forecasting, process-based models are used to determine 
various hydro-meteorological variables needed to calculate water anomalies. When 
analysing the impact of drought on such areas as crops, models based on growth stages 
are used (i.e. crop phenology, which serves to monitor and estimate drought effects). 

drought indicators

analysis & 
visualisation

characterisation
monitoring prediction

impact 
assessment

Figure 1.1 Different components of drought study. 
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Table 1.1 Objective of drought study components 

Component Objective 

Drought indicators Calculation, development, improvement and testing of 
drought indicators. 

Characterisation Calculation of drought characteristics (e.g. duration, 
severity, spatial extent).  

Development of methods to describe drought 
development, changes and patterns. 

Monitoring Systematic review, observation, evaluation and reporting 
of drought development and/or effects (impacts) over a 
period of time. 

Prediction Systematic calculation, evaluation, model tuning and 
reporting of drought development and/or effects 
(impacts) over a forecasted time window. 

Analysis and visualisation Detailed examination of drought indicators, 
characteristics, development and effects (impacts), as 
well as their relationships. 

Impact assessment Calculation, evaluation and analysis of drought effects on 
environmental, economic and social activities. 

1.1.3 Machine learning 
When analysing drought, statistical and ML techniques are mainly used to predict 
(forecast) drought indicators and drought impacts. In characterising drought dynamics, 
literature reports a small number of examples of the use of ML for such purpose. ML 
models can be a useful complement to the physically-based (process) models, because 
they require less knowledge about the underlying complex physical processes, provided 
there is enough data to calibrate (train) them. (Learning in this context refers to the ability 
of a model to predict or classify information based on historical data.) 

Different types of techniques can be identified in ML, such as supervised and 
unsupervised learning (Figure 1.2). In supervised learning, the model setup follows the 
training-calibration-validation procedure. Supervised learning techniques include long-
known linear regression, as well as various types of neural networks, support vector 
machines, random forests, etc. In unsupervised learning, no training step is required 
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because the goal is to find common elements among the data that help in their grouping 
(labelling). Clustering and principal components analysis are examples of unsupervised 
learning techniques (Talabis et al., 2015). This research applies both types of ML 
techniques, most notably clustering, polynomial regression and neural networks. 

Figure 1.2 Types of ML techniques and examples. Figure shows a small list of techniques from the wide 
variety that exist. 

The methodology for this research draws on both process-based and ML models. Due to 
the complexity of the processes involved in calculating and characterising drought, ML 
techniques are seen as an important element of the methodology. The research 
methodology does not follow a purely ML approach, however; the data analysis and 
subsequent construction and application of ML models are integrated with process-based 
models. 

PROBLEM STATEMENT 

Currently, drought monitoring and prediction are not fully aided by the spatio-temporal 
analytical techniques. This demonstrates an opportunity to improve the way drought 
dynamics is characterised to explicitly consider the spatio-temporal features, such as 
spatial extent (spatial boundaries), location and spatial pathway. Due to the complexity 
of the phenomenon’s variation, approaches for visualising and analysing drought must 
also be improved to allow spatio-temporal drought patterns to be interpreted effectively.  

Machine 
learning

• supervised
learning

• unsupervised
learning

• linear regression
• multiple linear regression
• neural networks

• clustering
• principal components

analysis
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RESEARCH HYPOTHESES 

This research proposes the following key hypotheses: 

1) The spatio-temporal characteristics of drought can be calculated effectively using

ML techniques.

2) Drought tracking can be improved by considering its spatio-temporal

characteristics, such as spatial extent, with the appropriate visualisation

techniques.

RESEARCH OBJECTIVES 

The main objective of this research is to explore, analyse and propose improvements to 
the characterisation of spatio-temporal drought dynamics. The characterisation, 
monitoring and visualisation of drought are expected to provide new perspectives and 
information towards improved prediction. 

The research proposes the following objectives: 

1) Improve the methodology for characterising drought in space and in time based

on the phenomenon’s spatial features, such as spatial extent and location.

2) Develop a visual approach to analysing the variation of spatio-temporal drought

characteristics.

3) Develop a methodology for monitoring the spatial extent of drought, i.e. drought

tracking.

4) Explore the applicability of using ML techniques to predict crop-yield responses

to drought based on spatio-temporal drought characteristics.

DISSERTATION STRUCTURE 

This dissertation consists of 10 chapters, as outlined in Figure 1.3. The arrows indicate 
how the chapters interlink. 

Chapter 1: Introduction. This chapter presents the background, problem statement, 
objectives and hypothesis of the research. 

Chapter 2: Literature review. Concepts regarding the components of drought study are 
described, as are the ML techniques used to build the research methodology. 

1.3

1.4

1.5
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Chapter 3: Methodological framework. This chapter presents the general framework 
of this research. 

Chapter 4: Case studies and data. The cases studies and data selected for this research 
are described. 

Chapter 5: Spatio-temporal drought characterisation. The Spatio-Temporal ANalysis 
of Drought (STAND) methodology for drought characterisation is introduced. 

Chapter 6: Comparison of drought indicators. This chapter explains the 
methodology’s application to analyse how the spatial extent of drought changes across 
the hydrological cycle, from precipitation to runoff. It introduces the Standardized 
Evaporation Deficit Index (SEDI) developed for drought monitoring. The benefits of 
considering drought areas over area-aggregated drought indices are presented. 

Chapter 7: Machine-learning approach to crop yield prediction. An approach of 
using drought areas as inputs to predict crop yield is presented.  

Chapter 8: Visual approaches to drought analysis. This chapter introduces approaches 
based on radial charts for visualising and analysing drought variation. 

Chapter 9: Spatial drought tracking development. This chapter proposes an approach 
for characterising spatio-temporal drought dynamics and calculating the spatial paths of 
drought. 

Chapter 10: Conclusions and recommendations. The main conclusions of the research 
are presented, and recommendations made for future work on the subject. 

Figure 1.3 Structure of PhD dissertation.

Ch1 Introduction

Ch2 Literature review Ch3 Methodological 
framework

Ch4 Case studies and data

Ch6 Comparison of 
drought indicators

Ch5 Spatio-temporal drought characterisation

Ch8 Visual approaches to 
drought analysis

Ch9 Spatial drought 
tracking

Ch7 ML approach to 
crop yield prediction

Ch10 Conclusions and recommendations
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DROUGHT 

Drought is a natural phenomenon whose impacts generate many economic and human 
losses (Below et al., 2007; Sheffield and Wood, 2011; Tallaksen and van Lanen, 2004). 
A number of disciplines offer varying definitions of drought (Bachmair et al., 2016; 
Mishra and Singh, 2010), but the general consensus is that it is an anomaly originating in 
precipitation and temperature, whose further effects are observed in other components of 
the hydrological cycle (e.g. soil moisture, runoff, effect on human activities) (Tallaksen 
and van Lanen, 2004; van Loon, 2015). These definitions do not, however, explicitly 
elaborate on the spatial extent and duration of drought. Many studies of global models 
that explore drought require arbitrary steps to define the size (threshold) that can be used 
to consider an event as extreme or normal. In this sense, one drought event in a large 
region can be generalised in a particular time, even if the region only suffers drought in a 
small part of its area. 

Drought indicators or indices (DIs) are typically used to estimate the phenomenon’s 
magnitude and duration. A DI is a mathematical formulation that quantifies the water 
anomaly in a hydrometeorological variable (Mishra and Singh, 2010). When the DI is 
computed over a region in a spatial way, the spatial extent of the drought is estimated 
using a spatio-temporal method (e.g. Corzo Perez et al., 2011; Hannaford et al., 2011; 
Herrera-Estrada et al., 2017; Hisdal and Tallaksen, 2003; Lloyd-Hughes, 2012; Peters et 
al., 2006; Sheffield et al., 2009; Tallaksen et al., 2009; Tallaksen and Stahl, 2014; Van 
Huijgevoort et al., 2013; Vicente-Serrano, 2006; Zaidman et al., 2001). Per current 
practices, monitoring of drought magnitude, duration and area over a region is performed 
via drought monitoring systems. These systems are fed with hydro-meteorological 
variables, and the outcomes generated are known as drought-monitoring products. 
Drought indicator databases are part of this information. These drought-related data allow 
more detailed analyses to be performed on the spatio-temporal development of drought. 

Various types of drought indicators have been proposed for identification of different 
types of droughts (Mishra and Singh, 2011; Wanders et al., 2010). Drought indicators can 
be grouped into two sets: those that use procedures for standardisation of water anomalies, 
which are expressed as drought indices; and those where the hydrometeorological 
variable is directly evaluated via a threshold, such as a given percentile, and are not 
indices in the strict sense. Extensive catalogues of drought indicators are presented in 
Wanders et al. (2010) and WMO and Global Water Partnership (GWP) (2016). 

Variables that allow the water content in soil to be evaluated directly (e.g. soil moisture) 
are generally recommended when assessing agricultural drought (Agutu et al., 2017; 
Modanesi et al., 2020; WMO, 2011). Another variable, used to indirectly infer vegetation 
condition, is the Normalized Difference Vegetation Index (NDVI). This index is based 
on remote sensing data (Kogan, 1995). However, the NDVI can be influenced by factors 
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such as topography, cloud cover and land cover (Kogan, 1995). The Vegetation Condition 
Index (VCI), based on the NDVI, was designed to overcome these limitations. Other 
remote sensing formulations for agricultural drought assessment include the Temperature 
Condition Index (TCI) (Kogan, 1995) and methods based on or inspired by the NDVI, 
VCI and TCI. Another drought indicator used for agricultural assessments is the Palmer 
Drought Severity Index (PDSI) proposed by Palmer (1965). In PDSI calculation, relative 
soil moisture (SM) is computed first by modelling the water-budget system. Soil 
characteristics, precipitation and evapotranspiration data are considered for its calculation. 
Next, SM is standardised via a procedure suggested by Palmer (1965), in which the long-
term average components of the water-budget system are considered. This drought 
indicator has two key limitations. First, PDSI results are hardly comparable anywhere in 
the world because Palmer (1965) determined empirical constants using sample data from 
select parts of the United States to model the water-budget system. Second, snow melting 
is not considered when calculating PDSI, which restricts its use in some regions of the 
globe. To overcome these drawbacks, some improvements have been done that include a 
procedure to calibrate the water-budget system (Wells et al., 2004) and the integration of 
a snowmelt model (Van Der Schrier et al., 2013). These additions mean PDSI values can 
be used to compare drought variations across different regions. However, there are few 
applications of its use.  

Yet another approach often applied to calculate agricultural drought indicators is to use 
meteorological drought indicators as proxies of the former ones (WMO, 2012). 
Meteorological variables, such as precipitation, are accumulated over an aggregation 
period (1, 3, 6, 9 or 12 months) to infer what could happen in the terrestrial hydrological 
cycle. When using meteorological indicators as proxies, various aggregation periods are 
typically tested to determine the optimum length for agricultural drought assessment.  

DROUGHT INDICATORS 

Drought is identified and quantified through the application of drought indicators. In this 
dissertation, the term ‘drought indicator’ refers both to drought indices and other 
procedures like percentile-based threshold levels. Drought indicators are mathematical 
formulations that assign a number to the magnitude of the water deficit. Table 2.1 presents 
the main types of droughts and the hydrometeorological variables that are often used to 
monitor them.  

Meteorological drought indicators mainly use meteorological variables, such as 
precipitation and temperature, for their calculation. More information is often needed to 
compute agricultural and hydrological indicators. This information can come from 
observations or modelling. Meteorological indicators are also used to monitor 
hydrological and agricultural drought. To this end, the input when calculating a 
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meteorological drought indicator is the meteorological variable with the time aggregation 
period equal to or longer than a month. The WMO (2012) presents different aggregation 
periods that can be used to monitor meteorological, hydrological and agricultural drought 
in terms of precipitation (Table 2.1, third column). 

Several studies have described and compared drought indicators and their performance in 
detecting the different types of drought. Readers can consult the reviews of drought 
indicators by Keyantash and Dracup (2002), Wanders et al. (2010), Maskey and 
Trambauer (2014) and Bachmair et al. (2016). The following paragraphs provide a brief 
review of some of these studies.  

Table 2.1 Types of drought and the hydrometeorological variables used to monitor them. P, E, R and SM 
stand for precipitation, evaporation, runoff and soil moisture, respectively. The third column applies to 
precipitation. 

Type of drought Hydrometeorological 
variable used in the 
monitoring 

Time aggregation period 
of P in months 

Meteorological P, P-E, E 1,3 

Agricultural SM 1 to 6 

Hydrological R 6, 9+ 

Keyantash and Dracup (2002) compared seven meteorological, five hydrological and six 
agricultural drought indicators using time series of precipitation, streamflow and soil 
moisture, respectively. The objective of their study was to find the most outstanding 
indicators for each type of drought. To evaluate the performance of drought indicators, 
they followed a weighted set of six evaluation criteria. Evaluations were performed using 
visual comparisons. They found that the best drought indicators for meteorological, 
hydrological and agricultural drought were based on precipitation, streamflow, and soil 
moisture, respectively. 

Wanders et al. (2010) reviewed drought indicators that can be used for global-scale 
applications. They used time-series simulations of runoff and soil moisture from virtual 
catchments selected across the globe. The virtual catchments refer to half-degree cells 
with similar hydrological structures. Simulations were computed using a conceptual 
hydrological model forced with precipitation and temperature from the Water and Global 
Change (WATCH) data (Harding et al., 2011; Weedon et al., 2011). The authors reviewed 
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56 drought indicators and then tested the selected group to compare performance and 
analyse suitability at a global scale. 

Among the variety of drought indicators, the Standardized Precipitation Index (SPI) is 
used most extensively because it only requires precipitation for its calculations. This 
information is generally available in any location via at-site observations or remote-
sensing estimations. Another element that makes the SPI suitable is that results can be 
compared between different locations, which is important when conducting spatio-
temporal analyses (Mckee et al., 1993). The following section introduces the SPI and 
other drought indicators. This review is not extensive but serves as a foundation for 
chapters 3, 4, 5 and 6, where drought indicators are either computed or used for drought 
monitoring and characterisation. 

2.2.1 Meteorological drought indicators 
Drought indicators aim to quantify meteorological drought. As mentioned, they can also 
be used to detect other types of drought. The main representative in this group of 
indicators is the SPI introduced by McKee et al. (1993). In this index, precipitation 
probability distribution – typically gamma distribution – is first computed, then equalled 
to the normal distribution (Figure 2.1). Thus, the SPI represents the value of the standard 
normal variable with a mean (µ) of zero and a standard deviation (σ) of unity. 

Figure 2.1 Original SPI calculation scheme proposed by McKee et al. (1993). First, precipitation is fitted 
by gamma distribution (left). Second, the cumulative probability of fitted precipitation is used to compute 
the SPI value considering normal distribution (right). Dry periods occur when the SPI is below 0. The 
threshold of SPI = -1 is often used to calculate drought (shaded area, right panel). 

Different drought categories are distinguished according to the SPI’s magnitude: 
moderate, severe or extreme (Table 2.2). Operationally, the intervals shown in Table 2.2 
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are useful to qualitatively indicate drought severity. For a more complete and quantitative 
description of drought, an SPI threshold is often used to calculate the drought’s beginning 
and end (Figure 2.2). The onset occurs when the drought indicator is below the threshold, 
and the end occurs when it is above. The difference between the end and the onset is used 
to calculate duration. The sum of the magnitudes of drought indicators between the onset 
and end defines the severity or magnitude. Finally, intensity is computed as the ratio of 
drought magnitude and duration. 
Table 2.2 Drought categories according to the SPI magnitude. 

Drought indicator magnitude Drought category 

-1.5 < SPI ≤ -1.0 Moderate 

-2.0 < SPI ≤ -1.5 Severe 

SPI ≤ -2.0 Extreme 

Figure 2.2 Scheme of drought characteristics calculation. A drought starts when the drought indicator (Z) 
is below a set threshold (T) and ends when it is above. Magnitude is also referred to as severity. 

Another drought indicator found in this group is the Standardized Precipitation 
Evaporation Index (SPEI). The process for calculating the SPEI (Vicente-Serrano et al., 
2010) is similar to the one used to compute the SPI but considering precipitation (P) 
minus potential evaporation (E) instead of only P. Because the difference in P-E can be 
negative, gamma distribution is not recommended for calculating the SPEI. Log-normal, 
generalised logistic or generalised extreme value distribution is preferable in this case. 
Several studies have tested the SPEI’s suitability for agricultural and hydrological 
drought monitoring; its inclusion of evapotranspiration, for example, gives the SPEI a 
higher correlation with agricultural and hydrological drought indices (Bachmair et al., 
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2015, 2016; Diaz-Mercado et al., 2016; Li et al., 2015; Naumann et al., 2014; Maskey 
and Trambauer, 2014; Vicente-Serrano et al., 2012). 

2.2.2 Agricultural drought indicator 
The procedure for calculating SPI can be extended to other variables. For agricultural 
drought, soil moisture is the variable to consider. This requires an empirical distribution 
approach because soil moisture does not fit well with gamma probability distribution. In 
such an approach, the data is first sorted into ascending order. The smallest value occupies 
the position i of 1 and the highest value the position of n (i.e. the number of observations). 
The empirical probability p is calculated using Eq. 2.1, which is the formation of Kaplan-
Meier, though other expressions may be used instead. 

( ) ( )1+= nixp i (Eq. 2.1) 

Once the empirical probability p is calculated, the procedure follows that of the SPI in 
that the standardised value is obtained using the mean (µ) of zero and the standard 
deviation (σ) of unity (Figure 2.2, right). This procedure, including the empirical 
probability distribution, can also be used to calculate the SPI and SPEI. 

Another agricultural drought indicator was proposed by Narasimhan and Srinivasan 
(2005). They introduced the Evapotranspiration Deficit Index (ETDI), which involves the 
water stress ratio defined by Eq. 2.2:  

WS = (PET – AET) / PET      (Eq. 2.2) 

where potential evapotranspiration (PET) and actual evaporation (AET) are the rates of 
monthly reference potential evaporation and monthly actual evaporation, respectively. 
WS values are used to calculate the monthly water stress anomaly (WSA) as: 

WSAy,m = (WSy,m - MWSm ) / (MWSm – minWSm)×100, if WSy,m ≤ MWSm

WSAy,m = (WSy,m - MWSm ) / (maxWSm –MWSm)×100, if WSy,m > MWSm     (Eq. 2.3) 

where MWSy,m is the long-term median of water stress of month m, maxMWSm is the 
long-term maximum water stress of month m, minWSm is the long-term minimum water 
stress of month m and WSy,m is the monthly water stress ratio (y = 1968–2008 and m = 
1–12). MWSm – minWSm can be zero when using the long-term median, in that case, the 
long-term average can be used instead (Diaz-Mercado et al., 2016). Narasimhan and 
Srinivasan (2005) scaled the ETDI to between -4 and 4 to be comparable with the PDSI. 
Maskey and Trambauer (2014) proposed to scale the ETDI between -2 and 2 to make it 
comparable to the SPI and SPEI, as represented by: 

ETDIy,m = 0.5ETDIy,m−1 + (WSAy,m/100)                     (Eq. 2.4) 

ETDI1,1 = WSA1,1/100 
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2.2.3 Hydrological drought indicator 
Standardized Runoff Index (SRI) 

The SRI follows the same concept as the SPI (Shukla and Wood, 2008) but using runoff. 
In SRI calculation, the observed/simulated runoff time series is first fitted to a probability 
function. The cumulative probability is then translated into standardised normal 
distribution via the same procedure used to determine the SPI. Studies that applied this 
drought indicator include Barker et al. (2016), Diaz-Mercado et al. (2016) and Trambauer 
et al. (2014).  

2.2.4 Main difficulties of a standardized drought indicator 
computation 

Computing a standardised drought indicator requires handling several issues, such as 
fitting the most appropriate distribution function to the signal in question (i.e. P, D=P-
PET or runoff). When using SPEI, the most suitable method estimation for PET is also 
an issue to consider.  

Vicente-Serrano et al. (2010) proposed using three-parameter log-logistic distribution to 
fit D when formulating the SPEI. This method is based on data from eleven observatories 
around the world. However, some critics have pointed out that the chosen data may not 
completely represent global climate diversity (Beguería et al., 2014). To evaluate this 
possible limitation, a parameter-fitting review of the distribution function proposed by 
Vicente-Serrano et al. (2010) was performed using global gridded data from the Climatic 
Research Unit (CRU) TS3.10.01 dataset (Harris et al., 2014; http://badc.nerc.ac.uk) and 
three formulations for computing PET (i.e. Thornthwaite, Hargreaves and Penman-
Monteith). Ultimately, the researchers approved the use of log-logistic distribution for 
fitting D. As for PET formulation, the SPEI was found to reveal only small differences in 
areas with high precipitation, while the index changed significantly in areas with low 
precipitation when different PET equations were selected.  

Conversely, Stagge et al. (2015) recommend using generalised extreme value (GEV) 
distribution when conducting evaluations in Europe. They applied WATCH data 
(Weedon et al., 2011) to compute PET using the Penman-Monteith approach. Naumann 
et al. (2014) used log-logistic distribution to fit D in the context of Africa. Temperatures 
from ERA-Interim (Dee et al., 2011; section 2.2) were used to derive PET, per 
Thornthwaite’s method. The authors computed D using different precipitation datasets to 
compare SPEI values over Africa. These datasets came from ERA-Interim and the Global 
Precipitation Climatology Project (GPCP, Huffman et al., 2009). The results suggest that 
most differences when computing drought indicators arise from uncertainties in 
precipitation datasets rather than distribution parameter estimations. 
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Standardised drought indicators based on the SPI methodology are attractive for drought 
analysis because their values can be compared or correlated, not only among different 
indicators but also among different locations around the globe. However, there is a need 
for a generalised framework for computation purposes, particularly when calculating 
distribution function to assess droughts based on different hydro-meteorological variables. 

DROUGHT CALCULATION 

One of the first studies to consider the spatial extent (area) of drought was the work of 
Yevjevich (1967). He viewed drought as a phenomenon with a territorial extension and 
calculated time series of drought areas using precipitation data. These time series were 
also used to define the onset, end and duration of each drought. In the absence of observed 
precipitation, the methodology was applied using synthetic data. Later, Yevjevich and 
Karplus (1973) expanded the original methodology to apply precipitation data in two 
regions of the United States. Here, spatial extent was calculated using Thiessen polygons. 
The authors proposed the use of a grid system to represent and handle data, but it was not 
implemented. In such a grid system, information would be arranged in a matrix of 
columns and rows, with each cell representing a geographical location. At each time step, 
the information represented in each cell can change. 

Following the work of Yevjevich and Karplus (1973), Tase (1976) calculated drought 
areas using information arranged in a grid system (i.e. grid data). Due to limited 
availability of stations records, a technique based on the Monte Carlo simulation was 
applied to generate synthetic information. Later, Bhalme and Mooley (1980) developed 
an application for computing drought areas using grid data interpolated from stations. 
They used precipitation data to conduct drought analyses monthly in India. The observed 
droughts were categorised from the most severe (the largest average area) to determine 
the worst drought years. In Europe, Zaidman et al. (2002) estimated drought areas using 
rainfall and runoff information, spatially interpolated their data from stations. They used 
time series of drought areas to calculate the phenomenon’s onset, end and duration. 

These studies all viewed the entire regional drought area under analysis as the spatial 
extent of the phenomenon. However, Andreadis et al. (2005) proposed a methodology 
where the area is not considered as a whole, but rather a contiguous portion defined in 
space and time. Through a clustering technique applied to the grid data, they calculated 
what are called ‘drought events’. Each calculated drought event has a duration and an 
area. Similarly, Corzo Perez et al. (2011) proposed a methodology in which the centroid 
of the cluster defines the geographic location of the drought. This methodology may be 
applied using global simulated runoff data. Finally, Lloyd-Hughes (2012) applied a 
technique based on that by Andreadis et al. (2005) to calculate drought events in Europe 
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using precipitation data. Each drought event was defined in three dimensions: duration, 
location and volume (number of cells). 

Herrera-Estrada et al. (2017) presented their own analysis of how droughts move in space. 
They perform spatial tracking by calculating the displacement between consecutive areas 
in time, which allows tracks to be identified. Diaz et al. (2018) presented an alternate 
methodology to build the spatial path of a drought. Per their view, a path is defined as 
successive spatial tracks of a drought. Such a path should be calculated to define the onset 
and end of each drought in time and space. The authors suggest that the information 
provided by these drought path calculations can be used to build a model that will help to 
predict droughts, particularly in terms of location and spatial extent.  

All these prior studies demonstrate how drought characterisation (i.e. the calculation of 
such features as severity, duration, spatial extent and location) has been improving as new 
data and advances in spatio-temporal analysis become available.  

VISUALISATION AND ANALYSIS OF DROUGHT VARIATION

Data visualisations are widely used for drought analysis. Selected papers perform this 
analysis explicitly in terms of spatial extent (area), which is one of the target variables 
accounted for in the present study. The example studies described below identify drought 
according to different parts of the water cycle (e.g. precipitation, soil moisture, and runoff) 
and by following various calculation approaches. 

Visual approaches have been conducted using various applications. Zaidman et al. (2001) 
analysed drought development in Europe by applying a three-step procedure involving 
precipitation and streamflow. First, water anomalies were calculated over time series of 
grid data. The grid data were obtained by interpolating records from stations throughout 
Europe. Water anomalies were calculated using a standardised drought index. Second, a 
threshold was applied to indicate drought and non-drought conditions in each cell of the 
grid for each time step. Finally, the spatial extent (area) of drought was calculated in each 
time step, with all cells in the drought deemed part of the same drought area. Zaidman et 
al. (2001) were able to calculate the drought areas for specific well-known historical 
droughts in Europe and identify the worst ones (i.e. those with greatest extents) on maps. 
They used line charts to show how drought areas change over time; these charts helped 
interpret drought development in Europe and its subregions between 1975 and 1990. 

Similarly, Peters et al. (2006) analysed how drought propagates from precipitation to the 
groundwater system. To do so, they computed drought duration using spatially distributed 
simulations of recharge and hydraulic head. They presented maps of the spatial 
distribution of drought duration for selected years. Using area charts, they showed 
drought areas at specific times during the analysis period. The maps and charts aided the 
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researchers in concluding that a drought caused by precipitation is attenuated and delayed 
in the groundwater system. To calculate drought, Peters et al. (2006) used the threshold 
level approach. 

Other studies that applied the use of line and area charts were conducted by Andreadis et 
al. (2005), Corzo Perez et al. (2011), Diaz et al. (2019), Hannaford et al. (2011), Lloyd-
Hughes (2012), Justin Sheffield et al. (2009), Tallaksen and Stahl (2014), Van der Schrier 
et al. (2013) and Van Huijgevoort et al. (2013).  

The third type of visualisation, similar to the line (area) chart, is the bar chart. Examples 
include the works of Bhalme and Mooley (1980), WMO (2006) and Zaidman et al. (2001). 
Bar charts can be horizontal or vertical, though the latter is often preferred. 

Data in line, area and bar charts is usually presented along the x-axis to display the 
information over time. This layout allows the higher-than-average data to be identified 
within the analysis period. The layout also allows any trends in the reduction or increase 
of drought characteristics to be easily detected visually. However, these visualisations are 
limited in that drought patterns, such as seasonality, are difficult to identify. Seasonality 
refers to the situation in which drought characteristics show regular and repetitive changes 
in almost similar periods over time in a calendar year. 

Heat maps, in contrast, are data visualisations that aid recognising drought seasonality. 
Applications of heat maps, or colour-coded tables, include the works of Prudhomme and 
Sauquet (2007), who analysed drought changes over France; Hannaford et al. (2011), who 
presented a drought analysis of Europe; and Corzo Perez et al. (2011) and Van 
Huijgevoort et al. (2013), who performed global assessments of spatio-temporal drought 
development. 

Heat maps are also used for the visual representation and analysis of correlations among 
different droughts characteristics. Characteristics are usually calculated using drought 
indicators, hydro-meteorological variables or aggregation periods. Heat maps are often 
used in drought monitoring where two or more drought characteristics are compared to 
find correlations between them; for example, runoff-derived drought intensity might be 
compared with that derived from precipitation. Such a comparison would offer 
information about any good proxy of the runoff-derived drought using only 
meteorological variables, such as precipitation, which are easy to gather. In heat maps, 
values of correlation coefficients between drought characteristics are represented with 
colours. The highest values are usually indicated with a specific colour. These coloured 
spots (cells) help to reveal the most promising proxies of runoff-derived drought. 

Another type of visualisation used for drought analysis is the radial chart. Its application 
is found in studies where the development of more than two drought characteristics are 
analysed. For instance, Lloyd-Hughes et al. (2010) studied the occurrence and spatial 
extent of drought in Europe. They computed the area, onset and duration of each 
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calculated droughts. In the constructed radial histograms, which consisted of coloured 
radii, area magnitude was presented in colour-coded intervals; onset was indicated by the 
position of the radius in the chart; and duration was represented by the length of the radius. 
This layout allowed the researchers to identify drought-rich periods over the year, as well 
as average duration and the month in which droughts tend to start.  

Another example is the work of Lloyd-Hughes (2012), who used precipitation data to 
calculate drought areas across Europe. In this study, the centroid of the drought area 
represented its geographical location. These locations helped Lloyd-Hughes to determine 
the main routes followed by droughts. Three drought characteristics were plotted on radial 
charts: duration, area and main location (north, south, west and east). Much like Lloyd-
Hughes et al. (2010), Lloyd-Hughes used colours to encode area magnitude. The length 
of the radius represented duration, and the position of the radius in the diagram indicated 
drought area location. 

The use of radial charts to analyse drought is limited to a few applications (de Brito, 2021; 
United Nations Office for Disaster Risk Reduction, 2021). In hydrology and related areas, 
including drought research, radial graphs are mainly used to compare the performance 
metrics of models or algorithms. These graphs are known as spider charts (e.g. Smith et 
al., 2019). The use of radial charts is much more widespread in other science branches. 
In genetics, radial charts often appear in analyses of complex relationships concerning 
genes; specialised software exists for generating such visualisations. Ciros (Krzywinski 
et al., 2009), for example, is a computer package that allows relationships between 
different entities to be explored. Based on these applications, it is expected that drought 
research would benefit from incorporating radial charts into analyses of spatio-temporal 
drought patterns. 

MACHINE LEARNING TECHNIQUES IN DROUGHT STUDIES 

Machine learning (data-driven) models involve assessing mathematical equations to 
model a phenomenon using only data, as opposed to process (physically based) models 
describing the essence of physical processes, e.g. water motion or heat fluxes. The use of 
ML models has become increasingly common in recent decades (Chlingaryan et al., 2018; 
Rahmati et al., 2020; Solomatine and Ostfeld, 2008; Udmale et al., 2020; van 
Klompenburg et al., 2020). 

Typically, a data-driven model can be defined based on the connections between system 
state variables (input, internal and output variables), with only a limited number of 
assumptions about the physical behaviour of the system. Contemporary data-driven 
models can go much further than those used in conventional empirical hydrological 
modelling. Newer models allow for solving numerical prediction problems, 
reconstructing highly nonlinear functions, performing pattern recognition and 
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classification, and building rule-based systems (Solomatine and Ostfeld, 2008). Such 
models assume the presence of a considerable amount of data to describe the modelled 
system’s physics, i.e. meteorological or hydrological phenomena, as well as spatial data 
coming from remote sensing. 

In drought calculation and monitoring, Mallya and Tripathi (2013) note that researchers 
have addressed the topic using different ML models, such as nonlinear regression models, 
hybrid models and artificial neural networks (e.g. Shin and Salas, 2000; Kim and Valdes, 
2003; Mishra et al., 2007). Advanced statistical techniques have also been utilised. 
Copulas have been applied to model the joint dependence structure of drought 
characteristics (e.g. Wong et al., 2010, 2013; Madadgar and Moradkhani, 2013). Kao and 
Govindaraju (2010) suggest using a joint deficit index, which applies empirical copulas 
to provide a probability-based description of the overall drought status. 

Hao and Singh (2012) propose using entropy theory to construct the bivariate joint 
distribution of drought duration and severity and to make comparisons with a copula-
based analysis. Farahmand and AghaKouchak (2015) , meanwhile, recommend a 
generalised framework for deriving nonparametric univariate and multivariate 
standardised indices, e.g. SPI. They argue that current indicators suffer from deficiencies, 
including temporal inconsistency and statistical incomparability, because such indicators 
rely on a representative parametric probability distribution function that fits the data. The 
framework they propose draws on different variables, such as precipitation, soil moisture 
and relative humidity, whilst using an empirical plotting position without having to 
assume representative parametric distributions. 

In the calculation of drought as an event with a spatial extent, ML models have been used 
mainly for calculating contiguous drought areas (Andreadis et al., 2005; Corzo Perez et 
al., 2011; Herrera-Estrada et al., 2017; Lloyd-Hughes, 2012; Sheffield et al., 2009; Van 
Huijgevoort et al., 2013; Vernieuwe et al., 2019). This topic is addressed in detail in 
Chapters 5 and 9.  

Different clustering techniques have been used to identify drought events. These events 
are defined by a spatial extent, onset and end in space and time, duration and intensity. 
Some applications have even proposed the centroid of drought clusters as the location of 
the events (e.g. Herrera-Estrada et al., 2017). Drought trajectory calculation, analysis and 
characterisation are topics that have been addressed in recent years. 

There are several examples of ML models in drought prediction. In the ‘Special issue on 
data-driven approaches on droughts’ edited by Govindaraju (2013) , there are cases on 
this subject. In general, ML models were tested mainly to predict different types of 
drought indices. Regarding predicting drought impacts, for example, in agriculture, ML 
models have been widely tested. The works of Chlingaryan et al. (2018) and van 
Klompenburg et al. (2020) show reviews of different types of ML models and inputs used 
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to predict crop yield, a variable commonly used in agricultural assessments. Both reviews 
show that amongst the most used inputs are drought index values. However, variables 
related to the spatial characterisation of drought, such as drought area, are not reported in 
these reviews. 

SUMMARY AND CONCLUSIONS 

After reviewing previous studies, this research focuses on the use of standardised drought 
indicators for the calculation of drought for two reasons. First, to assess drought 
characteristics, a generic methodology for drought identification is required to resemble 
hydrological cycle components (i.e. precipitation, precipitation-evaporation and runoff) 
(Chapter 6). Second, the spatial component of drought analysis makes it convenient to 
work with standardised drought indicators in order to compare different parts of the same 
region under study (Chapters 5 and 9). 

The literature review has identified knowledge gaps in previous research. These gaps 
formed the basis for formulating the objectives of this study presented in Chapter 1.4. 

Recent research points out that characterising drought in space and time requires further 
exploration. The use of spatio-temporal approaches, which provide a more accurate onset, 
duration and intensity, is expected to result in better characterisations of drought events. 
The literature review indicates that ML techniques can help calculate drought events 
considering the spatial context, i.e. calculation of drought areas and clusters. 

The literature review also shows a gap in methodologies to characterise the spatio-
temporal development of drought. Methods that help in the calculation of spatial drought 
trajectories are lacking.  

Visual approaches are likewise needed to analyse the variation in spatio-temporal drought 
characteristics. Radial and polar charts that help manage long data periods and detect 
spatial patterns can be explored in the analysis of droughts. 

Finally, the use of the spatial properties of drought, such as drought area, has not been 
fully explored in predicting drought impacts. 
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The following paragraphs provide an overview of the general methodological framework 
used in this research, with references to other chapters where particular methods are 
presented in detail. This methodology was designed to achieve each of the objectives of 
this research formulated in Chapter 1. Figure 3.1 shows how the objectives and the 
different chapters of this paper are linked. The figure also indicates where to find the 
results of the methodology’s implementation for each objective. 

The literature review presented in Chapter 2 gives an overview of the current methods 
and concepts related to drought characterisation. The literature review allowed for 
pointing at the appropriate methods to be used in the methodology towards achieving the 
research objectives. Case studies were chosen with the objectives in mind, and are 
presented in Chapter 4. 

Chapter 5 describes the proposed approach to characterising drought dynamics in space 
and time. This approach was developed as part of the first objective (O1). This approach 
was then applied to all the objectives, according to the particular needs of each. 

The final chapter presents conclusions and recommendations based on the results of the 
methodology’s application. 

Figure 3.1 Schematic overview of PhD research methodology showing the link between objectives (O1 
to O4) formulated in Chapter 1, and the dissertation chapters (Ch2 to Ch10).  
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IMPROVE THE METHODOLOGY FOR CHARACTERISING DROUGHT IN
SPACE AND TIME BASED ON THE PHENOMENON’S SPATIAL FEATURES,
SUCH AS SPATIAL EXTENT AND LOCATION

Figure 3.2 shows the methodology for meeting the first objective (O1). A review of the 
methods used to calculate and characterise drought was first carried out to develop this 
section’s methodology. Based on current developments, an approach was built to 
characterise drought dynamics in space and time. This approach is described in detail in 
Chapter 5.  

As the first application, different drought indicators were compared and detailed in 
Chapter 6. First, drought indicators were selected to calculate drought. Types of indicators 
and their descriptions are shown in Chapter 2. An additional indicator based on 
evapotranspiration was developed for the reasons stated in Chapter 6. Drought indicators 
were then calculated for a case study. Afterwards, the methodology described in Chapter 
5 was applied to calculate the spatio-temporal characteristics of drought, such as spatial 
extent, magnitude and duration. The results are presented in Chapter 6. Figure 1 shows 
the steps to carry out the development of the drought indicator for hydrological drought 
analysis at a large scale. An ML model was used to either compute the drought indicator 
or carry out the drought characterisation. 

Figure 3.2 Methodology to improve the approaches for characterising drought in space and time. 
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DEVELOP A VISUAL APPROACH TO ANALYSING VARIATIONS OF SPATIO-
TEMPORAL DROUGHT CHARACTERISTICS

Visual approaches for analysing drought variations were developed to study the 
characteristics of drought calculated using the method presented in Chapter 5 (Figure 3.3). 
These characteristics included spatial extent, the number of clusters and the mean distance 
between clusters. Changes of these characteristics over time allowed for identifying 
different patterns, such as seasonality and persistence, to be described (see Chapter 5). 
Based on the different visual approaches used for drought analysis (see Chapter 2), radial 
and polar graphs were designed. In the designed charts, the different characteristics of 
droughts were encoded (i.e. displayed) through colours and other characteristics to 
visually identify drought variations and patterns. The results of applying these graphical 
approaches are shown in Chapter 8. 

Figure 3.3 Methodology to develop visual approaches to analysing variations of spatio-temporal drought 
characteristics. 

DEVELOP A METHODOLOGY FOR MONITORING THE SPATIAL EXTENT OF
DROUGHT, I.E. DROUGHT TRACKING 

The methodology for developing an approach to monitor and track a drought’s spatial 
extent was as follows (Figure 3.4): First, a literature review of the methods for calculating 
spatial extent and other related characteristics, such as location, was carried out. Chapter 
5 illustrates this step. Subsequently, a method was developed to calculate the spatial 
trajectory of a drought area. The method was then applied in a case study for which the 
trajectories of large drought events were identified. The application of the methodology 
for monitoring droughts is described in Chapter 9. Chapter 10 presents conclusions and 
recommendations. An approach to building a model for predicting the spatial extent and 
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location of a drought is also introduced in Chapter 10. This new approach to tracking 
drought areas is expected to aid in drought monitoring and prediction. 

Figure 3.4 Methodology for developing an approach to monitoring the spatial extent of drought (i.e. 
drought tracking). 

EXPLORE THE APPLICABILITY OF USING ML TECHNIQUES TO PREDICT
CROP-YIELD RESPONSES TO DROUGHT BASED ON SPATIO-TEMPORAL
DROUGHT CHARACTERISTICS

Droughts have diverse impacts on human activities and the environment. For example, in 
agriculture, drought causes quantitative economic losses due to crop-yield losses (see 
Chapter 7 for details). Decline in crop yield can also compromise food supplies, putting 
many human lives at risk, as well as incurring significant economic losses when crop 
distribution is affected.  

This research analyses the impacts of drought on agriculture because this area is one of 
the most affected by the phenomenon. The analysis focuses on crop yield because this 
measure is one of the most used and reported to quantify agricultural production. Chapter 
7 presents the application and results of the methodology shown below. The reason for 
using artificial intelligence (ML) models instead of those based on crop growth is 
explained in Chapter 7. 

The crop-yield prediction model was constructed as follows (Figure 3.5): First, the main 
ML models used for drought prediction were reviewed. This literature review is shown 
in Chapter 2. An ML approach was then designed to predict crop yield using two of the 
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most used ML models (see Chapter 2). Drought spatial extent was considered as input 
data for the ML models. This characteristic was calculated according to the methodology 
presented in Chapter 5. The results are presented in Chapter 9.  

Figure 3.5 Methodology to predict crop-yield responses to drought based on spatio-temporal drought 
characteristics and ML techniques.
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 MEXICO 

4.1.1 Large scale 
Mexico is a country prone to drought that has serious adverse impacts on human lives, 
and was chosen as a case study. This work analyses drought variation at a country scale 
using visual approaches based on radial charts presented in Chapter 8. The data used in 
the present study were retrieved from the Self-calibrating Palmer Drought Severity Index 
(scPDSI) for Global Land (scPDSIcru global, 
https://crudata.uea.ac.uk/cru/data/drought/#global). The scPDSIcru is based on the PDSI 
introduced by Palmer (1965) (Chapter 2), but incorporates the methodology presented by 
Wells et al. (2004) to calibrate the water-budget system (i.e. scPDSI), and a snowmelt 
model to extent its use to colder regions (Van Der Schrier et al., 2013). These additions 
allows scPDSI be used for drought analysis at large scale. An example of the use of the 
scPDSI in a global analysis is the work of Van Der Schrier et al. (2013). The spatial 
resolution of scPDSIcru is 0.5 degrees and it was calculated on a monthly basis. 

4.1.2 Catchment scale 
Hydro-meteorological data from the La Sierra River basin (Mexico) were used to 
compare different drought types and indicators (Figure 4.1). For this basin, Diaz Mercado 
et al., 2015) calculated runoff and evapotranspiration via hydrological modelling. They 
reported that model inputs included daily historical weather data from 40 weather stations 
(1968 to 2008) of both precipitation and temperature. The basin was divided into squares 
of 5 x 5 km. Then, precipitation and temperature values were interpolated spatially by 
Inverse Distance Weighting (IDW). Finally, the hydrological model was calibrated and 
validated using daily streamflow at a gauging station located at the outlet. Streamflow 
data was collected from 1968 to 1999. The overall Nash-Sutcliffe error (NSE) was 0.87, 
and the coefficient of determination (R2) value was 0.87. The outputs of the hydrological 
simulations, such as evaporation and runoff, were used in this research to analyse the 
performance of different droughts indicators (Chapter 6). 
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Figure 4.1 La Sierra River basin located at the southeast of Mexico. The outlet is in the north of the basin 
(Diaz Mercado et al., 2015). 

 INDIA 

4.2.1 Large scale 
This research characterises drought dynamics in the ‘real-world’ case of India, which 
regularly suffers from drought (Chapter 9). In principle, any other region would also 
qualify. The SPEI was selected for this study, but any other drought indicator would also 
suffice. Data from the SPEI Global Drought Monitor (http://spei.csic.es/) was used for 
drought tracking and to characterise drought dynamics. The chosen methodology for 
calculating the SPEI was similar to that used with the SPI proposed by Mckee et al. (1993), 
but with added consideration for the difference between precipitation (P) and potential 
evaporation (E). SPEI data from the drought monitor were charted in grid form for 
different temporal aggregation periods. SPEI-6, which corresponds to six-month P – E 
accumulation anomalies, was used. This aggregation usually refers to extended periods 
of lack of water availability; this indicates that the consequences of meteorological 
drought are similar to those caused by hydrological drought (World Meteorological 
Organization (WMO), 2012). In this study, SPEI-6 was selected as the drought indicator 
to characterise past droughts. Analyses were conducted monthly. The spatial resolution 
of the SPEI-6 data is 0.5 degrees. 
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4.2.2 Regional scale 
A ML approach was developed to predict crop yield using percentages of drought area as 
input (Chapter 7). This ML approach was applied in three regions of India: Bihar, Odisha 
and West Bengal (Figure 4.2). 

Crop yield 

Rice is the most important food grain in East India, so it was selected to assess ML-
oriented crop-yield predictions. Rice from this region accounts for roughly 85 percent of 
the total rice production in India (Ghosh et al., 2014). ML models were constructed for 
the states of Bihar, Odisha and West Bengal (Figure 4.2). State-wise crop-yield data were 
retrieved from 1966 to 2015 (49 years) through the Indian Directorate of Economic and 
Statistics from the Department of Agriculture (DAC) (http://eands.dacnet.nic.in/).  

There are three crop seasons in India: Rabi, Kharif and Zaid. Of these, the Kharif season 
was chosen for study because it is the largest in terms of crop production. Kharif crops 
are sown in June and harvested in November/December. Seasonal crop-yield data was 
obtained from the DAC website and arranged into time series per region. One value was 
assigned to each year of crops harvested in the Kharif season. 

Two important clarifications have to be made. First, in late 2000, Bihar was divided into 
two states: Bihar and Jharkhand. Thereafter, rice data was reported separately. In this 
study, both states are marked as the ‘Bihar region’; the crop-yield data from 2000 to 2015 
is the reported sum of current Bihar and Jharkhand. Second, in 2011, Orissa was renamed 
Odisha, but the territory remains the same. In this case, crop yield data for Odisha is that 
reported for the former Orissa and the current Odisha. 

Figure 4.2 Case study location. 
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Drought indicator 

Soil moisture is the preferred variable for calculating agricultural drought indicators. 
However, another widely disseminated way to indirectly infer a drought indicator is to 
use meteorological drought indicators as proxies. Among these, the SPEI has shown to 
be useful in assessing agricultural drought. The SPEI follows a similar methodology as 
that of the widely used SPI, but with added consideration for the difference between 
precipitation and evapotranspiration. SPEI data was retrieved from the SPEI Global 
Drought Monitor (https://spei.csic.es) between 1901 and 2015. The spatial resolution of 
the drought indicator data is 0.5 degrees. The SPEI data was available at different 
aggregation periods; for this study, it was retrieved for the aggregation periods of 1, 3, 6, 
9 and 12 months, indicated as SPEI1, SPEI3, SPEI6, SPEI9 and SPEI12, respectively 
(Chapter 7). 
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INTRODUCTION 

It has been highlighted that improved drought analyses would enable the development 
and implementation of more successful national policies to mitigate the negative impacts 
of drought (WMO, 2006). The WMO also points out that to reduce these negative impacts, 
new technologies and methods to improve drought characterisation must be developed. 

The objective of this chapter is to introduce the Spatio-Temporal ANalysis of Drought 
(STAND) and illustrate its use through case studies. The use of STAND method is 
illustrated in the following chapters through different case studies. 

SPATIO-TEMPORAL ANALYSIS OF DROUGHT (STAND) 

The drought analysis proposed here can be performed at different levels, from the most 
general (e.g. drought areas) to more detailed (e.g. contiguous areas in space or clusters). 
The aim is always to describe how drought evolves in space and changes over time.  

5.2.1 Temporal analysis 
Figure 5.1 shows a time series of a DI whose values oscillate from -3 to 3. The negative 
values are associated with drought anomalies. Each cell in the grid data has a DI time 
series. The characterisation of time series events is carried out for each cell. Per McKee 
et al. (1993), a time series event starts at the time ts, when the DI value is below a set 
threshold (T), and ends at the time te, when the DI is above it. The duration (d) and deficit 
(df) of each i-th time series are computed using Eq. 5.1 and 5.2, respectively.  

𝑑𝑑𝑖𝑖 = 𝑡𝑡𝑡𝑡 − 𝑡𝑡𝑡𝑡 (Eq. 5.1) 

𝑑𝑑𝑑𝑑𝑖𝑖 = ∑ (𝐷𝐷𝐷𝐷(𝑡𝑡) − 𝑇𝑇)𝑡𝑡𝑡𝑡
𝑡𝑡=𝑡𝑡𝑡𝑡 (Eq. 5.2) 

The deficit is standardised and expressed as a percentage using Eq. 5.3: 

𝑑𝑑𝑑𝑑𝑡𝑡𝑖𝑖 = 100 × 𝑑𝑑𝑑𝑑𝑖𝑖 �̅�𝑥⁄ (Eq. 5.3) 

where 𝑑𝑑𝑑𝑑𝑡𝑡𝑖𝑖 is the standardised deficit of the i-th time series, and �̅�𝑥 is the mean of the 
deficit values of the analysed time series. 

To summarise the d and df computations over each time series, their median values are 
calculated in each cell. In this way, maps of the spatial distribution of d and df are obtained. 

5.2.2 Spatio-temporal analysis: first approach 
This procedure follows that defined by Corzo Perez et al. (2011). To account for how 
much the spatial coverage of drought is changing, the amount of area affected in each 
time step must be calculated. The DI values must be converted into events (binary 

5.1
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representation) based on a feasible threshold. This, threshold method is well-known, and 
its algorithm is described in Eq. 5.4. At each time step (t), 1s and 0s are used to indicate 
whether a cell is in drought or not (Ds, drought state). In each cell, if the DI value is below 
a set threshold (T), it is assigned the value of 1; otherwise, it is assigned as 0 (Eq. 5.4).  

Figure 5.1 Schematic overview of the methodologies for drought analysis in STAND toolbox: Non-
Contiguous Drought Area (NCDA) analysis, and Drought DuRAtion, SeveriTy, and Intensity Computing 
(DDRASTIC). 
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𝐷𝐷𝑡𝑡(𝑡𝑡) = �
1 𝑖𝑖𝑑𝑑  𝐷𝐷𝐷𝐷(𝑡𝑡) ≤ 𝑇𝑇
0𝑖𝑖𝑑𝑑   𝐷𝐷𝐷𝐷(𝑡𝑡) > 𝑇𝑇    (Eq. 5.4) 

DI is then converted into a binary representation of the spatial coverage of droughts. For 
a region, the percentage of drought area (PDA) is calculated using the area of the cells in 
drought and the region’s area (Eq. 5.5). This allows the spatial variations in a time series 
spectrum to be represented. This process is implemented in the toolbox. Extensions to the 
method will be implemented later to create a non-binary representation that may better 
integrate droughts and provide more insight into the relative differences of the index 
values among the cells: 

𝑃𝑃𝐷𝐷𝑃𝑃(𝑡𝑡) = 100 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡 ∙⁄ ∑ (𝐷𝐷𝑡𝑡(𝑡𝑡) ∙ 𝑃𝑃)𝑁𝑁
𝑐𝑐=1  (Eq. 5.5) 

where A is the area of the cell c, and Atot is the region area. Per this methodology, drought 
magnitude is the PDA value. The PDA time series allows the large droughts across a 
region to be identified. Small areas are excluded by applying a second threshold. 

Drought DuRAtion, SeveriTy and Intensity Computing (DDRASTIC) 

DDRASTIC was developed in this research and is based on the one proposed by McKee 
et al. (1993), but is extended for use with the PDA concept proposed in NCDA (Corzo 
Perez et al., 2011). Computing drought duration (DD) starts at the time step when the 
PDA is below the defined threshold. In a PDA series, this threshold is estimated using the 
90th percentile of low PDA. The spatio-temporal event starts when the PDA is below the 
set threshold (TPDA) and ends when it is above it (Eq. 5.6): 

𝐷𝐷𝐷𝐷𝑗𝑗 = 𝑡𝑡𝐸𝐸 − 𝑡𝑡𝑆𝑆 (Eq. 5.6) 

where j is the j-th spatio-temporal event, and DD, 𝑡𝑡𝑆𝑆 and 𝑡𝑡𝐸𝐸 are the drought duration, start 
and end time of the event j. 

The region under the PDA curve represents drought severity (S, expressed as a 
percentage). This value is a measure of drought magnitude. S is calculated for each event 
j using Eq. 5.7: 

𝑆𝑆𝑗𝑗 = ∑ PDA(𝑡𝑡)𝑡𝑡𝐸𝐸
𝑡𝑡=𝑡𝑡𝑆𝑆 (Eq. 5.7) 

The intensity (I) is calculated as the ratio between S and DD (Eq. 5.8): 

𝐷𝐷𝑗𝑗 = 𝑆𝑆𝑗𝑗 DD𝑗𝑗⁄            (Eq. 5.8) 

This Ij ratio can be interpreted as the mean value of PDA during the time DDj. DD, S and 
I are calculated over the entire time series of PDA. Per this methodology, each triplet DD, 
S and I are characteristic of the so-called spatio-temporal event. It is important to highlight 
that if the spatial coverage is not large enough at any given time, there is no drought. 
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5.2.3 Spatio-temporal analysis: second approach 
In this second approach, whether or not drought areas are connected in space matters. 
Drought units (clusters) are identified using the Contiguous Drought Area (CDA) analysis 
method. The CDA is composed of neighbouring cells in a drought. The conditions of 
drought or non-drought are indicated by 1s and 0s, respectively, in each cell. Simply put, 
drought conditions are indicated when the drought indicator is below or equal to a 
threshold. DIs are mathematical representations of a water anomaly (see 2.3 Section). In 
general, a CDA can be applied over any DI in grid form. These CDAs are computed per 
the CDA methodology for each time step.  

The CDA analysis follow a connected-component labelling approach to cluster the cells 
in a drought (Haralick and Shapiro, 1992). Per this approach, a two-scan algorithm is 
applied. First, each cell is numbered for location issues. Then, an initial run is performed 
in which the binary grid is explored, and connected (contiguous) components (cells) are 
assigned provisional labels. These labels identify every cell's connection with its eight 
nearest neighbours, as in a grid section of 3 x 3 cells (nine cells in total), the central cell 
had eight surrounding cells. In this first run, the cell’s label does not yet refer to the 
number of clusters, but to the cells with which the given cell is connected. A second scan 
is then carried out to identify similar cell connections (i.e. clusters). In this second run, 
clusters are indicated with a unique label. The grid could is examined indistinctly by 
columns or by rows. CDA analysis is conducted for each time step over the whole grid. 
For more details on CDA analysis, please refer to Corzo Perez et al. (2011). 

The use of CDA relies on the assumption that the binary description of drought condition 
(0s and 1s) is homogeneous over the whole grid. If two or more cells denote drought 
(value of 1) conditions and are contiguous in space, they can be assumed to be part of the 
same drought unit. In this respect, it is recommended to choose a drought indicator that 
considers the normalisation of the spatial domain values.). 

After computing the clusters (areas in drought), the most major (largest) one can be 
identified in each time step t and linked to calculate the drought trajectory. The tracking 
algorithm developed in this research is presented in Chapter 9, it focuses on calculating 
the major spatial drought extent in each time step and building the spatial trajectories. 
Small or one-cell units are excluded with the selection of the largest one, allowing the 
elimination of possible artefact drought areas. 

Centroid localisation 

After the major drought cluster is identified, its centroid (p) is calculated for each time 
step. The centroid is used as cluster’s location because it resembles results presented by 
Corzo Perez et al. (2011) and Lloyd-Hughes (2012). Lowest drought indicator values can 
also be used to indicate the location of a given cluster (Andreadis et al., 2005; Herrera-
Estrada et al., 2017). However, the centroid is chosen for this research because the 
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drought indicator's spatial representation had already been reduced to 1s and 0s (i.e. 
drought and non-drought conditions, respectively). 

Distance between drought clusters 

The method presented for cluster calculation is restricted to the threshold selected for 
identifying drought conditions (i.e., cells with 0s and 1s). In this study, and the average 
distance between clusters, denoted by lc, was introduced to account for cases in which 
drought clusters are spatially close but not connected. The reasoning for using lc is as 
follows: if the average distance is small, clusters are more likely to be part of the same, 
large, quasi-contiguous one. Conversely, if the distance is large, it is more likely that the 
clusters are not spatially related. 

The average distance between clusters (lc) is calculated using Eq. 5.9 for each time step. 

( )
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2

1

1 min
1

nc

i
i

lc t l
nc

−

=

=
− ∑   (Eq. 5.9) 

To apply Eq. 5.9, the cluster with the largest area is first identified. Next, the minimum 
distance from the largest cluster is calculated for each of the remaining clusters. The 
number of clusters is denoted by nc in Eq. 5.9. The minimum distance (lmin) is calculated 
for each of the nc-1 pairs of clusters. Each pair consisted of an i-th cluster and the largest 
one. Finally, the root mean squared distance (RMSD) of all distances is computed (lc) 
with Eq. 5.9. RMSD was chosen because of its sensitivity to higher and smaller distances, 
which in the identification of quasi-contiguous clusters is important. When high distances 
abound, RMSD results in a larger value than the mean distance; opposite happens when 
there are more small ones in which RMSD results in a lower value.  

After completing the CDA analysis, the output was found to be the time series of the 
number of clusters (nc), the area of each cluster (DA) and the average distance (RMSD) 
between the clusters (lc). 
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5.2.4 Spatio-temporal drought patterns 
‘Drought pattern’ refers to the way a drought exhibits occurrence and development in a 
spatial and temporal context. Several approaches can be applied to analyse drought 
patterns. Table 5.1 lists and describes the most common patterns. Drought pattern 
analyses can be conducted using the visual approaches described in Chapter 8. This list 
of patterns is not exhaustive, but rather serves as a basis towards a more complete one. 

Table 5.1 Spatio-temporal drought patterns. DA, nc, and lc stand for drought area, number of clusters, and 
average distance between clusters, respectively. 

Drought 
pattern Description 

Drought 
characteristic(s) 
that help(s) in its 
identification 

Periodicity The drought characteristic shows regular intervals of time in its 
occurrence. 

DA 

Seasonality At fixed intervals of time in a calendar year, the drought 
characteristic shows low or high values. The latter are more 
important for drought analysis. 

DA 

Cyclicality The drought characteristic experiences fluctuations between 
low and high values. 

DA 

Persistence The magnitude of the drought characteristic remains more or 
less unchanged for intervals of time. 

DA 

Hotspots A time or place with considerably higher values than 
neighbours. 

Hotspots can be identified when the drought characteristic 
shows higher-than-average magnitudes at specific times or 
places. 

DA, nc, lc 

Cohesion When drought areas tend to be together. DA, nc, lc 

Fragmentation When the total spatial extent of the drought is composed of 
many clusters (fragments). 

DA, nc, lc 

Similarity The drought characteristic shows similar patterns of 
occurrence. 

DA, nc, lc 

Dispersion The drought characteristic presents a wide range of values. DA, nc, lc 

Trend When the drought characteristic values experience a marked 
increase or decrease. 

DA, nc, lc 
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SUMMARY AND CONCLUSIONS 

The method entitled Spatio-Temporal ANalysis of Drought (STAND) was introduced in 
this chapter. The use of STAND is illustrated through different case studies; these results 
are presented in the following chapters. STAND toolbox is available at 
www.researchgate.net/project/STAND-Spatio-Temporal-ANalysis-of-Drought. 

5.3
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INTRODUCTION 

This chapter focuses on using daily spatially distributed hydro-meteorological data for 
calculating three types of drought: meteorological, agricultural and hydrological (Chapter 
2.2). In this chapter, the performance of various drought indicators was examined to 
identify and characterise drought according to two catchment aggregation methods: 
catchment-aggregated time series of the drought indicator and the percentages of areas in 
drought. Historical droughts relevant to the study area were also compared in both 
methods. The case study is the La Sierra River basin, Mexico.  

METHODS AND DATA 

In a past study, Diaz Mercado et al. (2015) used the distributed hydrological model 
CEQUEAU-Idrisi to calculate runoff and evaporation for the La Sierra River basin, 
Mexico (see Chapter 4.1.2). In the present research, drought indicators were calculated 
for the following aggregation periods: 1, 3, 6, 9, 12 and 24 months. The following drought 
indicators were applied: the SPI (McKee et al., 1993), SPEI (Vicente-Serrano et al., 2010), 
SRI (Shukla and Wood, 2008), and the Standardized Evapotranspiration Deficit Index 
(SEDI) here introduced. Details on the description and methodology for calculating SPI, 
SPEI and SRI were presented in Chapter 2.2. 

The performance of each indicator is examined to identify drought according to two 
catchment aggregation methods: (1) catchment-aggregated time series of the drought 
indicator and (2) the percentages of drought areas (PDAs) identified by the NCDA 
method (Corzo et al., 2011) (Chapter 5.2.2).   

Standardized Evapotranspiration Deficit Index (SEDI) 

SEDI is a drought index based on the evapotranspiration deficit (ED). ED can be 
calculated with potential evapotranspiration (Ep) and actual evaporation (E). Some 
formulations consider the difference between these two variables (Ep-E). Another way to 
calculate ED is by using Ep and E's relative difference with respect to Ep, i.e. (Ep-E)/Ep. 
In this last equation, ED goes from 0 to 1 with the lowest value being the worst condition. 

For calculating drought with the use of ED, Diaz Mercado et al. (2016) proposed a 
drought index that follows the SPI methodology but using ED instead of P. ED is 
calculated as (Ep-E)/Ep. In this research, SEDI is calculated as proposed by Diaz Mercado 
et al. (2016) (Figure 6.1). For fitting ED, the empirical probability of Kaplan-Meier is 
followed (Sect. 2.2.2). 

Theoretically, with the use of Ep, it is possible to compute the amount of water lost 
through evaporation or transpiration if there is an adequate water supply. Therefore, the 
inclusion of Ep in drought calculation is more desirable than the use of only P. However, 

6.1
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Ep captures the most extreme situation of the evaporation situation. Therefore, a closer 
evaluation of the condition on the ground is necessary. This limitation can be overcome 
with the use of E that can be calculated following remote sensing approaches or 
hydrological modelling, although empirical formulas can also be applied. By taking into 
account E, which is the volume of the water that is really evaporated directly from the 
soil, SEDI can capture a more accurate image of the ground's drought condition. 

Figure 6.1 SEDI calculation (Diaz Mercado et al., 2016). First, evapotranspiration deficit (ED) is fitted by 
the empirical probability of Kaplan-Meier (left). Second, the cumulative probability of fitted ED is used to 
compute the SEDI value with consideration for normal distribution (right). 

 RESULTS AND DISCUSSION 

6.3.1 First method: catchment-aggregated drought indicator 
Figures 6.2a to 6.2f illustrate the time series of catchment -aggregated indicators at the 
time steps of 1, 3, 6, 9, 12 and 24 months, respectively. The dotted line at the value of -1 
represents the threshold used to indicate a drought event. All indicators show similar 
patterns of wet and dry periods. 

SPI-1 did not detect any drought between June and October, but SRI-1 detected that the 
basin was in drought in June 1994 (figure 6.3a and 6.3b). This drought event is consistent 
with a historical drought event reported in 1994. 

SEDI-12 and SEDI-24 captured a prolonged groundwater drought period in the early 70s, 
but the other indicators failed to do so. This period is also consistent with a historic 
drought in 1969, in which water supply problems and dry wells were reported. 

The SPI and SPEI presented a high correlation for the six-time steps: 1, 3, 6, 9, 12 and 24 
months (Figure 6.4). The SPIs and SPEIs correlate with the SEDIs, except for the long-
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term steps of 12 and 24 months. The SRIs were found to correlate with their counterpart 
SPIs, SPEIs and SEDIs. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Figure 6.2 Time series of catchment-aggregated drought indicators for the time steps of 1, 3, 6, 9, 12 and 
24 months.   
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(a) (b) 

Figure 6.3 Comparison of the results of (a) SPI-1 and (b) SRI-1 for the selected month of June 1994. 

Figure 6.4 Correlation matrix among all indicators. 
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6.3.2 Second method: drought areas 
Figure 6.5 illustrates the percentage of the basin area in drought (i.e. when the indicator 
value was ≤ -1). The matrices correspond to the indicators of the SPI, SPEI, SRI and 
SEDI, and to the time steps of 1, 3, 6, 9 and 12 months. The SPI, SPEI, SRI and SEDI 
followed roughly the same pattern for all time steps. 

For the short-term steps of 1 and 3 months, the SRI and SEDI identified droughts in places 
where the SPI and SPEI failed to do so. The long-term steps of 6 and 9 months were used 
principally as indicators of hydrological drought; as shown by the SPI and SPEI, these 
drought events tend to be longer, which is in agreement with the literature. 

The SRI and SEDI presented similar patterns of long periods of drought for the time steps 
of 6 and 9. These indicators also detected much longer periods, such as that observed in 
1966 (Figure 6.5, SRI-9 and SEDI-9). 

Figure 6.5 Percentage of drought area (PDA) for each drought indicator (columns) and each time steps 
(rows). 
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For the time step of 12 months, the SPI, SPEI and SRI followed roughly the same pattern. 
The SEDI, however, detected drought events in years where the others failed to do so. 
Around 1970, the SEDI identified a long drought period using the 12-month time step for 
detecting groundwater drought. According to historic drought data, 1969 was a year in 
which water supply problems and dry wells were reported. The SEDI was able to detect 
this drought even in the early 70s (Figure 6.2f). 

Percentages of drought area (PDAs) of the SPI and SPEI lagged behind those of the SRI 
and SEDI; this was verified by correlation coefficient calculations of PAD time series per 
the SPI, SRI and SEDI (Figure 6.6). The SPEI was not considered for this because the 
indicator presented a similar pattern to that of the SPI; as such, the SPI results were 
extrapolated to the SPEI. For the time steps of 3, 6 and 9 months, the SPI’s PAD time 
series exhibited a more significant correlation for a lag of 1 month. This result in the lag 
between SPI and the other drought indicators is expected because hydrological drought 
tends to start after the meteorological drought. 

Figure 6.6 Correlation analysis between PDA time series of SPI - SRI, and SPI - SEDI. 
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SUMMARY AND CONCLUSIONS 

These results demonstrate that meteorological drought indicators do not identify all 
drought events for the time steps of 1 and 3 months when considering drought areas. For 
the 3-, 6- and 9-month time steps, meteorological drought indicators tended to identify 
drought onset, but lagged behind the detections by hydrological drought indicators. For 
the long-term time steps of 12 and 24 months, the results indicate that agricultural and 
hydrological droughts indicators are more appropriate than meteorological ones. Further, 
drought in a catchment is best monitored via joint evaluation that combines 
meteorological drought indicators with hydrological and agricultural ones. This allows 
drought events and their spatio-temporal evolution to be identified with greater accuracy. 
The results also demonstrate that spatially distributed runoff and evaporation simulations 
can improve drought identification because the time series of catchment-aggragted 
drought indicators in some cases presents similar results giving the wrong idea that two 
indicators behave in a similar way, when their spatial distribution is totally different. 

Comparisons of drought indicators and their types can benefit greatly from spatio-
temporal drought analysis (second method). Considering the spatial extent of droughts 
allows the analysis of patterns such as seasonality, hotspots and lags between drought 
events to be calculated by different drought indicators. This last aspect is essential for 
forecasting matters. 

6.4
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INTRODUCTION 

Drought continually hits many regions across the world. It negatively affects (impacts) 
various human activities such as agriculture, which not only generates economic losses 
but can also trigger famine, causing millions of deaths (Below et al., 2007; Food and 
Agriculture Organization of the United Nations (FAO), 2017; Kim et al., 2019; Sheffield 
and Wood, 2011; World Meteorological Organization (WMO), 2006). Hence, methods 
that help to improve strategies for drought mitigation are necessary. Within these methods 
are those that allow predicting the impacts of drought. 

Assessments of drought impacts confirm that the presence of drought on human activities 
can be devastating. For instance, the Food and Agriculture Organization of the United 
Nations (FAO) calculated the damage and losses in the agricultural sector caused by five 
types of hazards, including drought. FAO estimates that drought causes damages and 
losses to this sector by up to 80% (FAO, 2017). Although multiple factors are involved 
in agriculture, drought often plays the primary role, as literature confirms (Dai, 2011; 
FAO, 2017; Kim et al., 2019). 

The assessment of drought impacts on agriculture can be performed in terms of crop yield. 
FAO defines crop yield as the measure of the yield of a crop per unit area of land 
cultivation (in kg/ha or ton/ha) (FAO and DWFI, 2015). For the assessment of crop yield 
under drought affectation, physical models based on crop properties turn out to be more 
comprehensive and descriptive (Reynolds et al., 2000; White et al., 1997; Wu et al., 2016). 
However, an important barrier to such models' realisation is the lack of detailed crop data 
and the difficulty representing all the processes involved in all stages of crop development 
(Reynolds et al., 2000; Wu et al., 2016). 

Statistical and machine-learning (ML) models, which involve mathematical equations to 
calculate the output of a model with suitable input(s), can be used to assess crop yield 
impact by drought without considering any biological or physical process of the crop but 
the analysis of the input and output data (Chlingaryan et al., 2018; Rahmati et al., 2020; 
Udmale et al., 2020; van Klompenburg et al., 2020). There have been studies where 
various inputs, ML techniques, and architectures (configurations) have been tested for 
crop yield prediction (e.g., Chlingaryan et al., 2018; van Klompenburg et al., 2020). 
However, the spatial extent of drought (area) is an input that has not been fully explored 
previously to crop yield prediction. The prediction refers to the calculation of crop yield 
at the end of the growing season (harvesting) with information available before or during 
the crop development season (pre-harvesting). 

This chapter introduces an ML approach to calculate seasonal crop yield (CY) with the 
monthly percentage of drought areas (PDAs) as input. The ML approach comprises two 
components. Each component includes a set of the following types of ML models: 
polynomial regression (PR) and artificial neural network (ANN). The goal is to compare 
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both ML models (ANN and MR) and use them as an integrated tool to support the 
decisions made based on the crop yield prediction. The logic is as follows. PR provides 
the prediction where the crop yield calculation is “clear” to the performer (the end user) 
because she/he has access to the equations that have a straightforward interpretation. For 
its part, ANN is used as the most accurate model, although the calculation of the output 
is not as “clear” as in the case of PR due to the difficulty of interpreting the structure of 
the resulting ANN. 

Three East Indian states where agriculture plays an important role were chosen as a case 
study. These states are Bihar, West Bengal, and Odisha. ML models were built for the 
period 1967-2015. ML models aim to predict rice crop yield since rice is the most 
cultivated crop in the region. The ML approach was applied separately to the three regions 
(states). 

Crop yield prediction in India 

In India, as in many other countries, the official crop yield prediction is mainly based on 
conventional data collections techniques such as ground-field visits (Reynolds et al., 2000; 
Sawasawa, 2003). The crop yield is measured through crop cutting experiments carried 
out over sample crop areas. In this country, principal crops' calculations of area and yield 
are released through the Directorate of Economics and Statistics, Ministry of Agriculture 
(DESMOA). The production (in kg or ton) of a specific crop is calculated by multiplying 
the whole field area by its crop yield. The crop production is needed for the decision-
makers to take various policy decisions relating to pricing, marketing, distribution, 
exportation and importation. 

The Kharif season, as it is locally known, represents about 80% of the annual rainfall 
(Naresh Kumar et al., 2012). This monsoon season generally goes from June to October. 
In this season, the highest agricultural production is obtained. Estimation of Kharif crop 
yield and production is released four times during the year with different levels of 
sophistication and precision, where the last one is considered the most accurate. The first 
calculation is presented in September, the second one in January, the third one in 
March/April, and the fourth, and the last one in June/July. It should be noted that the last 
two calculations of crop yield and production become available much after the crops have 
already been harvested in December/January. From the four calculations, the first two can 
be considered as predictions. These two first predictions serve as primary estimations 
about how much the final yield and production will be. 

The existing ground-field visits-based agricultural forecasting system provides reliable 
information; however, it lacks pre-harvesting forecasting. This limitation motivated the 
creation of a new satellite-based forecasting system to have information at the early stages 
of crop growth. This system is called the National Crop Forecasting Centre (NCFC) 
(Sawasawa, 2003). NCFC is continuously verified and continuously updated. Although 
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NCFC advances the one based on ground-field visits, data needed for its execution could 
be not always available. Therefore, it is necessary to explore other solutions. In this study, 
it is not intended to replace the previous and new forecasting systems, but to provide a 
complement to corroborate both estimates, and in a broader sense, to provide the scientific 
community with an approach to crop yield prediction with information on the spatial 
extent of drought. 

ML MODELLING METHODOLOGY

The experiment was carried out with the following methodology that involves the ML 
construction. The next paragraphs show each step in detail. These steps are (1) data 
preparation, (2) input variable selection, (3) polynomial regression models calculation, 
(4) artificial neural network models calculation, and (5) models application and
combination.

7.2.1 Step 1. Data preparation 
Two types of data were prepared, the time series of crop yield and the percentage of 
drought areas. For data preparation, three tasks were carried out (1) data retrieving, (2) 
drought areas calculation, and (3) data de-trending. 

Data retrieving 

Chapter 4.2.2 shows what corresponds to data retrieving for crop yield (CY) and the 
drought indicator. CY data correspond to the largest growing season. CY time series has 
a value for each year for the period 1966-2015 (49 years). On the other hand, drought 
indicator data is on a monthly basis for the period 1901-2015. The spatial resolution is 
half a degree. 

Drought areas calculation 

The drought areas were calculated following the methodology presented in Chapter 5.2.2. 
The monthly time series of drought areas were calculated for three regions (states): Bihar, 
Odisha, and West Bengal. The mask in raster format was built for each region. This mask 
is an array of ones and zeros, where the value of 1 indicates the land. The number of cells 
in each mask is 63, 54, and 31 for Bihar, Odisha, and West Bengal. 

Upon SPEI data, the cells in drought were identified at each time step. The threshold T = 
-1 was used to calculate cells in droughts. This threshold is widely used to identify a cell
in drought when working with standardised indices such as SPEI. Then, the time series
of percentage of drought areas (PDAs) were calculated for each SPEI dataset of 1, 3, 6,
9, and 12 months of aggregation period.  PDAs' time series are indicated as PDA1, PDA3,
PDA6, PDA9, and PDA12, respectively.

7.2
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Data de-trending 

In time series applications, data stationarity is typically assumed when modelling. 
However, the present study uses crop yield as its input variable, which is non-stationary 
in nature. The crop yield depends on factors that affect its trend, such as drought, flood, 
cultivars and its own management. Therefore, it is advisable to remove short-term 
fluctuations in crop yield before constructing the model (Montesino Pouzols and 
Lendasse, 2010). 

Among the methods available to de-trend data, the ‘first difference’ method is popular 
due to its simplicity. In this method, the trend is removed from the time series by 
subtracting the previous value x*(t−1) from the current one x*(t), as shown in Eq. 7.1. 
The de-trended value for the first time step (t=1) is not calculated. The length of the de-
trended time series is n=m−1, where m is the length of the original time series. The de-
trended data x(t) has the same units as the original data x*(t). 

( ) ( ) ( )* * 1x t x t x t= − − (Eq. 7.1) 

After obtaining the CY and PDAs time series, the trend of each was removed with Eq. 
7.1. For the case of CY, the de-trended time series retained one value per year. As noted, 
the method for removing the trend does not generate the value for the first time step; 
therefore, the de-trended CY data corresponds to the period 1967-2015.  

In the case of PDAs, Eq. 7.1 was applied as follows. Because the PDA data is monthly, 
i.e. 12 values per year, and CY data is seasonal, i.e. one value per year, PDA time series
were extracted for each month. The monthly values for January were extracted for each
year and so on until December. These twelve time series were compiled for each of the
five PDA1, 3, 6, 9 and 12 time series. A total of 60 time series (12 × 5) were obtained.
To refer to these time series, a number was added to indicate the month. In this way, for
example, the time series PDA3_7 indicates the percentages of drought area for July
calculated from SPEI3. Eq. 7.1 for the removal of the trend was applied to each of the 60
time series. All SPEI databases run from 1901-2015. For the construction of the ML
models, the common period 1967-2015 was chosen.

7.2.2 Step 2. Input variable selection 
In an ML model, the input, known as the predictor, is generally made up of independent 
variables. Often these variables are arranged in different ways to determine the best model 
input representation. An example arrangement is the selection of the independent variable 
using different previous time steps, such as t−1 (the previous time), t−2 and so on. When 
using drought indicators as the predictors, these arrangements include the different 
aggregation periods (i.e. different aggregation periods are tested). The idea is not to 
include all the variables and all their different possible arrangements but rather to find the 
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best ones and discard those that do not contribute significantly to the model's results. 
Other arrangements of the input variable include the average, or other statistics, over a 
period. 

There are different methods for selecting input variables. Based on the procedure, these 
methods are classified into model-based and filter types (May et al., 2011). The first 
includes all those where the model runs, and based on its performance, a specific variable 
is chosen or discarded. The latter include methods where the variable is chosen a priori 
through a generally statistical process and does not require the model to be run. 
Correlation analysis, which falls under the second category, is often chosen for its 
simplicity and wide application. Correlation is calculated between the time series of the 
output variable (CY in this case) and the different input variables, including the various 
arrangements. 

In this study, for the selection of the relevant input variables, the correlation analysis was 
done. The correlation was calculated between the de-trended time series of the seasonal 
CY and the 60 PDAs. As mentioned before, due to PDAs are monthly and CY is seasonal, 
12 time series of PDAs were prepared, one per month, for each aggregation period. The 
PDAs were then correlated with the CY. Another option could be to use an average value 
of monthly PDAs, such as the average of the PDAs of the months of the cultivation period, 
or something similar. However, we opted to identify the PDAs of the months that have 
the highest correlation with the seasonal CY.  

The approach of the selection of the most correlated PDAs was chosen for two main 
reasons. On the one hand, rice responds to the climate variations differently from one 
growth stage to another over the year, which could be better captured with the information 
of some months than others. On the other hand, different types of drought (i.e. 
meteorological, agricultural, and hydrological) are expected to affect (impact) the crop 
yield to different degrees. This level of affectation could be taken into account either by 
using different hydrological variables or selecting different aggregation periods of the 
meteorological variables, as in this case. An average of PDAs of the same or different 
aggregation periods could “hide” a significant drought area that could contribute more (or 
less) to the final crop yield. In addition, in this research, ML models are built to be used 
at different stages of crop cultivation, i.e. models to be applied in June, July, and so on, 
each of them with a different expected degree of accuracy. Therefore, the use of time 
series for each month extracted from the PDAs for all the different aggregation periods is 
more appropriate. 

Based on the correlation coefficient, the input variables were selected. In total, 15 sets of 
input variables (Table 7.2) were selected for each month from January to December. Each 
set is made up of different PDA time series, out of the 60 de-trended PDAs. The number 
of variables is different in each set. These sets of input variables are presented in the 
results section. All sets include the de-trended CY from the previous year (CYt−1). CYt−1 
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was used because, in the particular case of the study area, CY of the current year is 
planned to be reached based on data of the previous year. 

7.2.3 Step 3. Polynomial regression models calculation 
For the case of PR, four types of model were tested (Table 7.1). All the PR models were 
built for each month from January to December following Eqs. 7.3 to 7.6. For each month, 
different 15 sets of combinations of input variables were tested in each PR model. The 
best PR model was identified for each month following the RMSE criterion (Eq. 7.7). 
MATLAB software was used for implementation. 

PR is an extension of linear regression that allows the use of more than one input variable 
to calculate the output variable. PR is expressed with Eq. 7.2. 

0
1

n

i i
i

y b b x e
=

= + +∑ (Eq. 7.2) 

In Eq. 7.2, y is the output variable, also known as the response, which in this case is the 
crop yield. The term xi is the i-th input variable (predictor) from a total of n variables. The 
regression coefficients vector is represented by b. From the coefficients vector, b0 is 
known as the intercept. The vector of errors is indicated by e. 

Table 7.1 shows four formulations of PR. The PR models are indicated as linear, pure-
quadratic, quadratic and interactions. Descriptions of each and their equations are 
presented in Table 7.1 (Eqs. 7.3 to 7.6). The input variable (xi) is selected based on the 
correlation analysis. 

Table 7.1 Polynomial regression (PR) types followed in this study. 

PR type Equation Description 

Linear (Eq. 7.3) 0
1
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quadratic (Eq. 7.4) 2
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Quadratic 

(Eq. 7.5) 
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The best PR model is identified from four types using the root mean square error (RMSE) 
criterion. The RMSE is calculated between the observations (o) and the predictions (p), 
as shown in Eq. 7.7. 

( )2

1RMSE

n

i i
i

o p

n
=

−
=

∑
(Eq. 7.7) 

RMSE is one of the most widely used criteria in the comparison of observations and 
model calculations. 

7.2.4 Step 4. Artificial neural network models calculation 
ANN is a method loosely based on imitating the basic functionality of neurons (i.e. the 
working units of the human brain) (Govindaraju, 2000; Maier and Dandy, 2000). The 
input variables (predictors) are connected to each other through mathematical 
formulations that allow complex non-linear relationships to be represented. These 
connexions are symbolised as nodes interconnected within a network aimed at calculating 
the output variable (response). 

Of the different proposed ANN architectures (network designs), one of the most widely 
used is the feedforward neural network (FFNN). The FFNN is schematised by a series of 
nodes located in one of three layers: input, hidden or output. The number of input nodes 
is equal to the number of input variables in the input layer (Elshorbagy et al., 2010). This 
first layer is in turn connected to the hidden layer, which receives this name because the 
connections made there may not be immediately evident to the model performer. In this 
hidden layer, the number of nodes is not defined by default; rather, the greater the number 
of nodes, the more complex the model. Finally, the nodes of the hidden layer are 
connected to those of the output layer. In a single-output variable problem, there is only 
one node. ANNs are typically trained by non-linear optimization gradient-based 
algorithms, e.g. the Levenberg-Marquardt algorithm. 

In the ANN setup, the number of nodes of the input layer was equal to the number of 
variables of the respective combination. The number of nodes in the output layer was one 
and corresponded to the seasonal crop production (CY). An iteration optimization 
procedure was carried out regarding the hidden layer, varying the number of nodes from 
1 to 10. For each number of nodes, 100 iterations were done, being 1,000 in total. For 
reproducibility of the results, the random values were set to default at the beginning of 
the change of number of nodes. For each month, from January to December, the ANNs 
were built. MATLAB software was used to implement the ANNs with the Levenberg-
Marquardt algorithm for training. In each of the ANNs, 85 % of the data was used for 
training-validation, and the rest for testing (verification). The best model corresponding 
to each number of hidden nodes was identified, i.e. ten models per month and the best 
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model for each month. RMSE was used to identify the best models. RMSE was calculated 
for (1) the training-validation dataset (RMSE_cal), (2) the testing dataset (RMSE_test), 
and (3) the entire period (RMSE). In all the cases, the final (best) model was chosen based 
on RMSE for the entire period. 

7.2.5 Step 5. Models application and combination 
Once the best ML models, PR and ANN, are known, the pair of models were selected for 
each month. Depending on the performance of these models (and experience of their use), 
they can be used either separately or combined, e.g. being run in parallel so that a modeller 
could see the cases when models produce different results. An alternative is to use a 
dynamic weighting of the models' outputs (e.g. with the weights being proportional to the 
historical performance) to form a “model committee”.  

RESULTS AND DISCUSSION 

7.3.1 Correlation analysis 
Figures 7.1 (a, b, and c) shows the correlation between the de-trended crop yield and the 
percentage of drought areas.  

It is observed that the correlation is different over the year in the three regions. In general, 
in all cases, the correlation coefficient increases until it reaches a maximum and then 
decreases. The month in which the maximum value is reached is different for each region. 
For Bihar, it is in July. For West Bengal, there are four months with this pattern, June, 
July, October, and November. Finally, for Odisha, it is from October to December.  

These results can be useful for monitoring agricultural drought. For example, in Bihar, 
the drought areas calculated from SPEI6 (PDA6) show a maximum correlation in July. 
This correlation value means that the previous six months' accumulated effect is crucial 
for the crop yield of the Kharif season, which covers more or less from June to November. 
In general, for Bihar, results similar to PDA6 are observed for PDA3, 9 and 12. For West 
Bengal, something similar pattern happens concerning the peaks, except that there are 
two, one corresponding to PDA1 and 3, and the other for PDA6, 9, and 12. The first peak 
of PDA1 and PDA3 may indicate that it is crucial to pay attention to the immediate period 
conditions of one to three months. In the case of the second peak, the medium and long-
term conditions, 6 to 12 months, are more important to monitor for the harvest month. In 
the case of Odisha, the peak occurs until the end of the growing season, almost for all 
periods of aggregation. Hence, the condition before the growing season is decisive for the 
crop yield. Figure 7.1 (d) shows the percentage of agriculture irrigated and rain-fed in the 
three regions. For Bihar and West Bengal, about half is by irrigation, while in Odisha, 
only 35%. Perhaps this percentage for Odisha explains why the correlation coefficients 

7.3



7. Machine-learning approach to crop yield prediction

60 

for Odisha are higher than for Bihar and West Bengal. Odisha is more dependent on rain 
for agriculture. This condition is best captured using drought areas calculated with SPEI 
that considers precipitation and evaporation for its calculation. 

Figure 7.1 Correlation between de-trended crop yield and percentage of drought areas at different 
aggregation periods for Bihar (a), West Bengal (b), and Odisha (c). Percentage of rice area under irrigated 
and rein-fed agriculture (d). 

The following pattern is observed in the three cases in Figures 7.1 (a, b, and c). In general, 
the correlation coefficients between CY and PDAs increase according to the aggregation 
times, i.e. PDA1, PDA3 has a better correlation for the first months of the year, then 
PDA6 begins and PDA9 and 12 successively.  

Each respective PDA time series reaches a maximum (or maximums) of correlation, and 
then correlation decreases. According to this pattern, the 15 combinations of input 
variables shown in Table 7.2 were selected. As previously mentioned, the CY of the 
previous year was included in all combinations, and this time series is indicated as CYt-1. 
Combinations 1 to 5 only include a PDA time series. Combinations 6 to 9 are PDA pairs 
that were calculated with SPEI of successive aggregation times. For example, 
combination 6 forms PDA1 and 3, combination 7 includes PDA3 and 6, and so on. 
Similarly, combinations 10 to 13 are proposed, but for triples. Combinations 13 and 14 
are fourfold. Finally, the last combination (15th) is made up of all the PDA series.  

As mentioned in the previous section (Sect. 7.2), the models were built for each month 
using the 15 combinations corresponding to each month. For example, for January, the 
monthly series of PDAs extracted for January were used, these are PDA1_1, PDA3_1, 
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PDA6_1, PDA9_1 and PDA12_1. Then, PDA1_1 to PDA12_1 were used following the 
15 combinations. 

Table 7.2 Input sets (combinations) for ML models. 

Input set (combination) Input variables 

1 CYt−1, PDA1 

2 CYt−1, PDA3 

3 CYt−1, PDA6 

4 CYt−1, PDA9 

5 CYt−1, PDA12 

6 CYt−1, PDA1,3 

7 CYt−1, PDA3,6 

8 CYt−1, PDA6,9 

9 CYt−1, PDA9,12 

10 CYt−1, PDA1,3,6 

11 CYt−1, PDA3,6,9 

12 CYt−1, PDA6,9,12 

13 CYt−1, PDA1,3,6,9 

14 CYt−1, PDA3,6,9,12 

15 CYt−1, PDA1,3,6,9,12 

7.3.2 Polynomial regression (PR) models 
Some examples of the polynomial regression models' results are presented in the figures 
below for all three regions, Bihar, West Bengal, and Odisha. The data was divided into 
training-validating and testing dataset.  PR model result of Bihar region is shown in Figure 
7.2. RMSE shows that this model has less accuracy than Bihar’s ANN model, as was 
expected. The model was unable to predict all the unseen data successfully due to 
simplicity, therefore. For the Odisha region (Figure 7.4) also RMSE is lower than the 
ANN. The yield of this state considerably fluctuates over time. 
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Figure 7.2 Polynomial regression model for Bihar. 

Figure 7.3 Polynomial regression model for West Bengal. 

Figure 7.4 Polynomial regression model for Odisha. 

0
300
600
900

1200
1500
1800
2100
2400

19
67

19
69

19
71

19
73

19
75

19
77

19
79

19
81

19
83

19
85

19
87

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

20
07

20
09

20
11

Ri
ce

 y
ie

ld
 (k

g/
ha

)
Bihar

Observed yield
Predicted yield

RMSE = 466 kg/ha

0
300
600
900

1200
1500
1800
2100
2400
2700

19
67

19
69

19
71

19
73

19
75

19
77

19
79

19
81

19
83

19
85

19
87

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

20
07

20
09

20
11

Ri
ce

 y
ie

ld
 (k

g/
ha

)

West Bengal
Observed Yield
predicted Yield

0

300

600

900

1200

1500

1800

19
67

19
69

19
71

19
73

19
75

19
77

19
79

19
81

19
83

19
85

19
87

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

20
07

20
09

20
11

Ri
ce

 y
ie

ld
 (k

g/
ha

)

Odisha
Observed Yield
Predicted Yield

RMSE = 215 kg/ha

RMSE = 70 kg/ha 



7.3. Results and discussion 

63 

7.3.3 Artificial neural network (ANN) models 
The figures below show the example of the results of the trained and tested neural network 
models for each region. For Bihar, in Figure 7.5, it is clear that the model, during the 
training, successfully captured the drops or reduction in rice yield. RMSE for the tested 
model is relatively high (311 kg/ha) than the state average from 1967 to 2015 (1140 
Kg/ha). This region's error is about 27%, which can be attributed to data restriction, where 
more data is needed to train the model. From the previous figures, the results of the 
regional rice yield prediction models were presented. It is evident that ANN models' 
perform better than MR models for all three regions. In addition, in the West Bengal 
region (Figure 7.6) ANN model has high accuracy (RMSE = 62 Kg/ha), which accounts 
only for 3.6 % of the average yield over 1967 to 2015. Odisha region prediction accuracy 
indicated an RMSE relatively low (59 Kg/ha) when compared to the state average (1130 
Kg/ha), which is about 5.2 % (Figure 7.7). In the case of Odisha, the model was trained 
and tested well; almost all fluctuations were captured. It is important to note that only 
four last years have been used to test the model, and the other previous four years used 
for validation. 

Figure 7.5 ANN model for Bihar. 

Figure 7.6 ANN for West Bengal. 
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Figure 7.7 ANN for Odisha. 

7.3.4 ML modelling limitations 
The limitations of the presented approach are the following. 

(1) To determine drought areas, a threshold value of the Standardised Precipitation
Evapotranspiration Index (SPEI) drought index (SPEI ≤ −1) was used. Using one value
might lead to over or underestimation of the actual drought impacts over crop yield.

(2) Gridded data of SPEI at spatial resolution (0.5°X 0.5°) was used in this study over
each region individually. Using such a coarse spatial resolution on different region sizes
does not capture the drought's reality on the ground, leading to over or underestimating
the drought area.

(3) The study area has a diverse ecosystem of irrigated and rain-fed land, which may
influence the correlation between PDA and crop yield more or less.

(4) This study assumes that drought is the only causative factor; however, floods
negatively impact crop yield in the region, thus in the total production in the regions.
Flood impacts are not considered in the models.

(5) Many other factors might influence rice yield, such as market, technologies,
management, etc. In this study, it was assumed that drought plays the main role.

(6) Insufficient crop yield data for the ML model building was an issue because the CY
time series only had one value for each year.

SUMMARY AND CONCLUSIONS 

This chapter introduced an ML approach for predicting seasonal crop yield (CY) with a 
monthly percentage of drought areas (PDAs) as input. The ML approach comprises two 
components. Each component employs two ML models: polynomial regression (PR), and 
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artificial neural network (ANN). The goal was to compete the ML models (ANN and PR) 
with each other and use them as an integrated tool to crop yield prediction. 

The following conclusions are drawn from this study. 

• Based on the RMSE of ML and ANN models, results show drought area to be a
suitable variable to predict crop yield.

• The correlation analysis between PDA and CY showed high negative correlations
in Odisha. The correlation gradually decreases in Bihar and West Bengal. These
correlation values can be because West Bengal has better access to irrigation
facilities than Odisha and Bihar.

• On comparing ANN models and PR models, the ANN were more accurate than
PR models to predict crop yield for all regions. This could have been expected
since the drought–crop relationship is a highly non-linear problem.

• It can be concluded that neural network has a high capability to predict crop yield
in the pre-harvesting stage with good accuracy, considering SPEI which uses
climate variables such as precipitation and temperature (for evapotranspiration
calculation).

From the analysis and findings of this research, the following recommendations can be 
provided for further improvement. 

• Sensitivity analysis should be performed to identify the parameters that can
impact the model results. For instance, different spatial resolutions of SPEI and
different SPEI thresholds should be investigated to determine their impact on the
model results.

• Wet extreme events should be considered, especially in the flood-prone regions
such as the Coastal areas of West Bengal and Odisha region and North Bihar
where floods also influence crop yield.

• Non-climatic factors such as econometric, fertilizers, and management practices
are considered because they influence crop yield.

• In order to improve the model accuracy, more input data should be used in further
studies. For crop yield, this can be estimated by remote sensing techniques on a
monthly basis so that the ML models can be built for this temporal resolution.

• The performance of other ML models has to be investigated, especially committee
(ensemble) methods like random forests or boosting methods. In the case of data
at scales less than monthly, the use of deep learning algorithms (e.g. LSTM
networks) could be recommended to explore.
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INTRODUCTION 

Drought is a natural phenomenon whose effects (impacts) can cause numerous deaths and 
considerable economic losses (Below et al., 2007; Sheffield and Wood, 2011; Wilhite, 
2000). On the one hand, its analysis is essential for the understanding of its drivers and 
development. On the other hand, its monitoring is vital for quantifying its intensity and 
assessing its possible impacts (World Meteorological Organisation (WMO), 2006). 
During the performance of both drought analysis and monitoring, the following tasks are 
often carried out. (1) Calculation and comparison of the drought characteristics (features), 
such as spatial extent (area), duration, and intensity. (2) Identification of locations or 
periods with higher-than-the-average values of a given drought characteristic. (3) 
Analysis of drought patterns, i.e. how a given drought characteristic is presented over 
time. The information generated during or as results of the previous tasks is referred to 
here as drought-related data. 

In the tasks mentioned above, some data visualisation are frequently used to explore or 
explain drought-related data. To analyse or show how a drought characteristic change 
over time, line graph or area chart are often selected, while to analyse the correlation 
between different drought characteristics, scatterplots are preferred. Histograms are often 
used to present the statistical distribution, whereas boxplots are picked up to visually 
summarise the statistics (e.g. mean, standard deviation, maximum, minimum). To identify 
patterns on the variation of drought over time, heat maps, also referred to as colour-coded 
table, are considered. In this columns-rows arrangement, the information is organised to 
show how a given drought characteristic changes over time. The colour assigned to each 
cell relates to the magnitude of the analysed drought characteristic. The adjacent cells 
with similar colour aligned in columns (or rows) allow identifying periods with high (or 
low) intensity. 

Data visualisations mentioned above constitute a useful catalogue to explore and explain 
many aspects of the drought. However, the visual identification of spatio-temporal 
patterns in the development of drought is not always straightforward to perform with the 
existing catalogue. In particular, drought patterns such as periodicity, seasonality, among 
others are challenging to detect. 

This chapter introduces approaches based on radial and polar charts to interpret and 
analyse the spatio-temporal variability of drought. These charts can be used to perform a 
descriptive analysis of drought frequency, intensity and trend. It is foreseen that they aid 
in comparing spatio-temporal patters of drought calculated with different water cycle 
components, such as precipitation-based vs soil-moisture-based. The visualisations also 
can be used for comparing the results of different drought calculation approaches. 
Another expected application is their use in drought propagation research, i.e. how 

8.1



8.2. Methods and data 

69 

drought moves throughout the terrestrial hydrological cycle coming from precipitation to 
runoff (Peters et al., 2003; Van Loon and Van Lanen, 2012). 

METHODS AND DATA 

8.2.1 Visual approaches to drought analysis 
Graphs introduced in this chapter are designed to visually analyse the variation of drought 
characteristics calculated with the methodology presented in Chapter 5. PDA, number of 
events (clusters), and the average distance among clusters (lc) are the inputs to these 
diagrams. Consider the monthly PDAs of five years, shown in figure 8.1. In this series, 
percentages increase progressively by 1 % since January (J) of the first year. December 
(D) of the fifth year has a value of 60 %. In figures 8.2 to 8.4, the five-year PDA values
are used to explain the elements that integrate the next three diagrams: (1) Polar Area
Diagram (PAD), (2) AnnUal RAdar chart (AURA) and (3) MOnthly Spider ChArt
(MOSCA).

Figure 8.1 Example of the monthly percentage of drought areas (PDA) values of five years. PDAs are used 
to illustrate elements of diagrams shown in figures 8.2 to 8.4. 

Polar Area Diagram (PAD) 

Polar area diagram (PAD) is the polar chart that displays drought areas in a radial heat 
map layout. Drought areas are plotted in circular arrays (rings) following a calendar year. 
Colour of each polar area (segment), indicates the magnitude of the variable. PAD is 
inspired in the heat map, already used in drought analysis. PAD has been thought not to 
cut the cycle of data series by rows/columns as in heat maps, but to make it continuous 
by means of rings. This layout can facilitate the visual identification of drought duration 
and occurrence and the most severe years in drought. The darkest colours indicate the 
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highest values. Adjacent coloured segments represent extended periods of droughts. 
Episodes with few or no droughts are identified by voids (whitish segments). 

When assessing drought development on various water cycle components (e.g., 
precipitation, runoff, and soil moisture), respective PDAs can be plotted in different PAD 
charts and by visual examination identify the drought variability and propagation. 
Comparing different drought proxies’ datasets (e.g., SPI-/SPEI-based PAD) can also be 
done using different PAD charts. 

Drought seasonality, i.e., repetitive and regular drought fluctuations over time, is 
observed in PAD by (quasi-) cyclical patterns. Pie-slice-shaped sections help estimate the 
beginning and end of such seasonal variations. How data on drought areas is organised in 
PAD aids in the identification of differences between drought patterns of different years 
(inter-annual drought variability) and drought changes within the same year (intra-annual 
drought variability. 

'
Figure 8.2 Polar Area Diagram (PAD): monthly percentage of the drought areas (PDAs) of the example 
shown in figure 8.1. PDAs are presented clockwise from January (J) to December (D). The darkest colour 
specifies the most severe drought. 

AnnUal Radar chart (AURA) 

Area charts and histograms often make use of colours to emphasise the highest values. A 
disadvantage of these charts is that when the data series is long, it is difficult to present it 
on the same horizontal axis (e.g., plotting a century of data). AURA aids to tackle this 
problem by drawing the PDA information in a circle, using a sequence of equiangular 
rays (radii) proportional to the PDA values (Figure 8.3). AURA helps to detect trends. 
Another advantage of this layout is that it shows outliers and similar values within the 
PDA series, which is useful when locating severe and similar drought periods. By its 
design, in AURA various spatial features of drought can be displayed. For instance, by 
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applying different colours to the radii, the number of clusters (nc) can be indicated. It is 
also possible to use more than one axis to show different drought features. Graphically, 
on different water-related variables, the spatio-temporal drought variability can be 
examined through different AURA charts. As well, when contrasting diverse drought 
proxies’ datasets (e.g., SPI-/SPEI-based PAD). 

Figure 8.3 AnnUal RAdar chart (AURA): monthly percentage of drought areas (PDAs) of the example 
presented in figure 8.1. Data is displayed clockwise since the first year. Lengths of radii are proportional to 
PDAs and angles to the number of time steps. 

Monthly Spider ChArt (MOSCA) 

MOSCA is a kind of spider chart which allows analysing the variation of drought between 
years and months. In this chart, the time steps corresponding to one year period are 
represented in each segment. The length of the radius is proportional to the PDA 
magnitude (Figure 8.4). With the use of different colours, MOSCA enables visual 
comparison of distributions of PDAs between different years. This setup also permits to 
detect monthly outliers and (dis)similar drought distributions. Long-term stats of the 
PDAs, which provide a useful summary of the average and variation of drought's spatial 
extent, can also be depicted in this chart. Because PDA values are expressed in percentage, 
the coefficient of variation (CV [%]), i.e. the ratio of standard deviation and mean, is 
suitable for measuring long-term data variation. The box-plot chart inspired one proposed 
MOSCA variation: the box-plot MOSCA. In this chart, the PDA time series is shown as 
follows. Data distribution is displayed in the pie-slice-shaped sections. Each section refers 
to one month from January to December (J to D). Each box section's central line 
represents the median (50th percentile, q2); and the edges are the 25th and 75th 
percentiles (q1 and q3, respectively). The lower (w1) and upper (w2) whisker positions 
are defined by the Eq. 8.1 and 8.2, respectively. Three additional settings are included. 
First, PDA values are plotted to display data distribution using dots. Second, years with 
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the most severe monthly droughts, those with the highest PDA values, are depicted with 
text tags. Third, (3) in the centre of the chart, a selected number of years with high 
monthly PDA values are displayed with text tags. These three settings can help identify 
years with severe droughts. MOSCA chart can also help analyse drought variability and 
propagation on different water-related variables by using different graphs or by plotting 
the annual periods of the variables in the same chart. 

( )135.111 qqqw −−=  (Eq. 8.1) 

( )135.132 qqqw −+=   (Eq. 8.2) 

Figure 8.4 MOnthly Spider ChArt (MOSCA): First and fifth year of the monthly percentage of drought 
area (PDA) values of the example in figure 8.1. Annual periods are presented clockwise from January (J) 
to December (D). Radii are proportional to PDAs and angles to months. Coefficient of variation (CV) is in 
percentage. 

8.2.2 Experiment setup 
The visual approaches were applied in a case study to exemplify the radial and polar 
diagrams' use. Mexico was selected to apply the diagrams because of the frequent drought 
impacts presented over the country (Bhattacharya et al., 2014; CENAPRED, 2007; 
Florescano et al., 1980; Velasco, 2012). A description of the study area and the data used 
is presented in Chapter 4. Visual approaches were used for spatio-temporal analysis of 
agricultural drought variations in the 20th and the early 21st century (period 1901-2013). 
Drought was calculated with the Self-calibrating Palmer Drought Severity Index 
(scPDSI), provided in Chapter 4. The experiment was carried out in three sub-regions of 
different climate according to Köppen-Geiger climate classification (Kottek et al., 2006). 
Mexico was divided into three main climatic regions: equatorial, warm-temperature, and 

PDA [%]
time

year1
year5
mean
CV



8.2. Methods and data 

73 

arid climates (figure 8.5). Masks were created to conduct the spatio-temporal analysis 
over the entire region and the three sub-regions. The spatial resolution of the four masks 
is 0.5 degree, which is the same that for the drought indicator database (Table 8.1). 

Table 8.1. Summary of experiment. 

Analysis period (no. years) Drought proxy 
database 

Radial diagrams Masks 

1901-2013 (113) 
scPDSI.cru  PAD

 Box-plot MOSCA
 AURA

1. Country
2. Arid
3. Equatorial
4. Warm-temperature

Visual analysis was carried out for a number of variables. The methodology of 
spatio-temporal analysis presented in Chapter 5 was applied here for the scPDSI 
drought index. From NCDA, the PDA was calculated, and from CDA, the number of 
clusters (nc) and the average distance among clusters (lc) were calculated as well. PDA 
time series were used to build PAD and MOSCA charts. PDA, nc and lc distances were 
employed to create AURA charts. 

Figure 8.5 Simplified Köppen-Geiger climate classification for Mexico: equatorial, warm temperature, and 
arid climates. 
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RESULTS AND DISCUSSION 

The droughts calculated with scPDSI for the period 1901-2013 (113 years) are presented 
in this section. To illustrate the use of the charts designed, the results are shown as follows. 
First, graphs that are commonly used in this type of analysis are presented. Then, the 
proposed charts are used. More than a comparison of approaches or graphs, the intention 
is to show the advantages of polar and radial charts in identifying patterns of drought 
variation. 

As an example of the calculation of the percentage of drought area (PDA), number of 
clusters (nc), and average distance between clusters (lc), three of the largest droughts are 
shown in figure 8.6a. These droughts are those of 1953, 1987, and 2011. PDA and lc 
values are shown rounded for visibility purposes. Drought areas are displayed with dark 
red colour on each map. These maps are shown from January to December (J to D). For 
the analysis period, the maximum PDA was 75% occurred in May 2011 (figure 8.6a). 
This maximum value has a return period of approximately 110 years. Return period was 
calculated following the methodology of extreme values analysis (EVA), where the 
maximum annual values are extracted, then the probability of occurrence of the ordered 
values is calculated. From maps (Figure 8.6a), it is observed that the change of monthly 
PDA is very smooth over the three years shown in figure 8.6a. In 1953 and 2011, drought 
areas were located mainly in the northeast and southwest, while in 1987 in the northwest 
and southeast. The long-term monthly mean values of the analysis period are 27, 27.3, 
26.8, 26.4, 25.9, 25.8, 25.8, 26.4, 27, 27.2, 26.9, and 27 %, from January to December, 
respectively (not shown).  

Figure 8.6a shows that March 1953 and December 2011 have approximately PDAs of 
55% each, but the March’s area consists of 20 clusters (nc), while the second one has four. 
This example illustrates that nc indicates the degree of aggregation or disaggregation of 
drought areas. The lc indicates the degree of cluster conglomeration. For example, of the 
two months mentioned, lc of March 1953 is 11 cells, and for December 2011 is four cells, 
which implies that areas of December 2011 are closer to each other, as can be seen in 
figure 8.6a. 

Bottom of figure 8.6a displays monthly maps of drought occurrence for 1901-2011 (113 
years). Occurrence is calculated as the number of times cells are in drought (details in 
Chapter 5). The colour scale shows the intervals of occurrence. The highest occurrence is 
concentrated in the northern region. There are no significant changes between the 
distribution and the magnitude of the drought occurrence calculated for each month when 
comparing each month's results.  

Figure 8.6b presents the time series of PDA calculated for the whole period. The green 
boxes indicate the values for the years 1953, 1987 and 2011 shown in figure 8.6a. Figure 
8.6b shows values fluctuating over the decades. The decade with the highest number of 
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months of large droughts (PDA ≥ 50%) was 1950. The maximum PDA occurred in 2011. 
A limitation of this area chart is that identification of months with large values is not 
straightforward. 

The scatter plots of PAD vs nc, PAD vs lc, nc vs lc, and the box-plot of these three 
characteristics are displayed in figures 8.6c, d, e, and f, respectively. Figure 8.6c shows 
that when PDA increases the nc also increases until PDA reaches a specific value, then 
nc begins to decrease. In the case of the lc, it is observed that as the PDA increases the lc 
decreases. Regarding the nc-lc relationship, it is observed that lc tends to increase as nc 
does. 

 

 

 
Figure 8.6 (a) Example of the calculation of the percentage of drought area (PDA), number of clusters (nc) 
and the average distance between clusters (lc) of three selected years. PDA and lc are rounded. (b) PDA 
time series in an area chart. Green boxes refer to the selected PDAs in 1953, 1987 and 2011. (c) Scatter 
plots of PAD vs nc, PAD vs lc, nc vs lc, and the box-plot of PDA, nc and lc. 

In figures 8.6c, d, and e, years where the maximum PDAs occurred are also displayed. 
These PDAs occurred in 1953, 1996, 2011 and 2012, which are identified with green 
triangles, red triangles, blue crosses, and yellow circles, respectively. For these PDAs, 
different values of nc are exhibited. For example, the PDAs of 1953 (green triangles) are 
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formed with more clusters than those of 2011 (blue crosses), which indicates that the 2011 
drought areas are generally larger and contiguous, as shown in figure 8.6a. PDAs of two 
periods are shown in figures 8.6c, d, and e. These periods are 1917-1918 and 1951-1957, 
identified with blue squares and pink crosses, respectively. It is observed that in the two 
selected periods, there are combinations of PDA ≥ 50%, nc ≤ 5 and lc ≤ 5, which indicate 
the presence of large drought areas very close to each other. Figures 8.6c and c also show 
the largest monthly PDA occurred in 2011, which consisted of eight clusters and a very 
small lc distance that indicates that the large areas were very close to each other. Figure 
8.6f shows that the median of PDA, nc and lc time series is approximately 22%, 15, 16 
cells, respectively. 

 

 
Figure 8.7 (a) PAD, percentage of drought areas (PDAs) for the period 1901-2013. PDAs are displayed 
from January to December (J to D). (b) Box-plot MOSCA, long-term monthly PDA stats: median (red line), 
lower and upper edges (blue lines), 25th and 75th percentiles; lower and upper whiskers (black line). Text 
tags refer to the highest PDAs that occurred in 2011 and 1953. (c) AURA, monthly PDA, nc and lc values 
from January 1901 to December 2013. All information is displayed clockwise. PAD for the equatorial (d), 
warm-temperature (e), and arid climate zone (f). 

PAD, box-plot MOSCA and AURA are presented in figures 8.7a, b, and c, respectively. 
PAD shows the PDA time series in the form of rings. The PDAs remain almost constant 
month by month in most of the years. Years and periods with maximum and minimum 

no. clusters
lc

≥

PDA [%]
%

%

Equatorial Warm-temperature Arid
PDA [%]

(a) (b) (c) 

(d) (e) (f) 



8.3. Results and discussion 

 

77 

 

PDA values are observed with dark and white colour, respectively. The 1950s stand out 
with PDAs ≥ 50%. The period of 1917-1918 also shows high PDAs. The 1930s and 1980s  
have PDAs ≤ 40% indicated with whitish rings.  

In box-plot MOSCA (figure 8.7b), it is observed that the year-on-year distribution of PDA 
is practically similar in 12 months. This pattern agrees with the figure 8.6a bottom, where 
the values of drought occurrence were almost constant throughout the 12 months. The 
monthly PDA median is approximately 22% in all the cases. Although the distribution of 
PDA for each month is very similar, it can be seen that the highest values are presented 
in February, April, May, June and December, reaching 60% (see upper whiskers, figure 
8.7b). There are two outliers with PDAs around 75%; the first was in September of 1953 
and the second in May of 2011. Drought areas of these two months can be seen in figure 
8.6a. 

In AURA (figure 8.7c), the distributions of PDA and nc are observed throughout the 
period. The intervals with PDA ≥ 50% and nc ≤ 8, which indicates the presence of large 
drought areas close to each other, are the early 1910s, late 1910s, early 1920s, mid-1950s, 
and the beginning of the previous decade. The distribution of lc is shown in the centre of 
the AURA diagram. It is observed that in the years where PDA ≥ 50% and nc ≤ 8, the 
magnitude of lc varies. In the 1950s, lc is ≤ 10 cells, which indicates PDAs are constituted 
by drought areas close to each other in this decade. The same pattern is observed for 
1910s. In the first and third quarter of the 20th century, the lowest lc values are observed, 
while in the second and fourth quarters were the highest lc values. Results for period 
2010-2013 show a combination of PDA ≥ 40%, nc ≤ 8 and lc ≤ 10 cells, which indicates 
large drought areas close to each other. 

Figures 8.7d, e, and f are the PAD charts for the equatorial, warm-temperature, and arid 
climate zone, respectively (see figure 8.5 for climate zones). It is observed that in each 
type of climate, the drought areas and their temporal distribution differs. For example, in 
the equatorial zone's PAD (figure 8.7d), yellow and orange colours are more present that 
indicate PDAs between 10 and 40%. Semi-rings are also observed, indicating that the 
monthly PDAs do not remain constant for a given year but change. In the arid zone (figure 
8.7f), more rings with dark colours (PDA ≥ 60%) are observed. This pattern indicates that 
the PDAs are higher in this zone than the other two. The rings also show that the monthly 
PDAs for a given year remain almost constant. The PAD of the warm-temperature zone 
(figure 8.7e) shows mainly rings and semi-rings from orange to red colour (40% ≤ PDA 
≤ 60%). More white spaces are observed than in the other two zones. This pattern 
indicates that drought areas that occurred in the equatorial and arid zone were not located 
at the same time in this warm-temperature zone. 
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SUMMARY AND CONCLUSIONS 

This chapter introduced a set of visual approaches based on radial and polar charts that 
aid in interpreting the spatio-temporal variability of drought. The methodology for spatio-
temporal drought characterisation was applied on a monthly basis. Percentage of drought 
area (PDA), number of clusters (nc), and the average distance between clusters (lc) were 
calculated. The spatio-temporal drought analysis is based on these three features. 

The used set of charts reflects the three representations of the spatio-temporal drought 
variation: (1) Polar Area Diagram (PAD), (2) AnnUal RAdar chart (AURA), and (3) 
MOnthly Spider ChArt (MOSCA).  

Based on the findings, the following conclusions were drawn: 

• Radial charts can be used for individual descriptive analysis of drought intensity and
trend.

• PAD assists in identifying inter/intra-annual variability of spatio-temporal drought
variation and in the detection of drought seasonality.

• AURA helps to detect extreme drought years (outliers) and the number of clusters
that contribute to forming the overall drought area. AURA also aids in the analysis of
trends.

• MOSCA is suitable to represent the long-term monthly stats of the PDAs. This chart
also can assist in the inter-annual comparison of PDAs.

Some points for further research are identified and presented as follows. These polar and 
radial charts may help to explore how drought moves within the terrestrial hydrological 
cycle coming from precipitation, i.e. monitor drought propagation (Peters et al. 2003; Van 
Loon and Van Lanen, 2012). Since the PAD charts resemble tree cross-sections, a 
possible application of these charts is to analyse sampling three rings data for the 
assessment of drought impact using ML-based pattern recognition techniques. 

8.4
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INTRODUCTION 

Drought is a regional phenomenon that often covers large territorial extensions (World 
Meteorological Organisation (WMO), 2006). In terms of the spatial development of the 
drought, nowadays, available drought monitors deliver information about the spatial 
extent of droughts (i.e. snapshots) but still, the tracking of these drought areas is lacking, 
including the temporal variations that form its spatio-temporal dynamics (Hao et al., 
2017). This implies that the spatial distribution of drought at a specific time does not give 
any information about the spatial pathway of the droughts. The implementation of new 
methodologies to trace drought in space and in time on drought monitors can enhance the 
spatial tracking and prediction.  

The necessity to increase our understanding of the spatio-temporal development of 
drought has motivated the conduction of studies where drought is considered as a 
phenomenon that has at least the following main characteristics: duration, intensity 
(magnitude), and spatial extent (area) (Andreadis et al., 2005; Corzo Perez et al., 2011; 
Diaz et al., 2018; Herrera-Estrada et al., 2017; Lloyd-Hughes, 2012; Sheffield et al., 2009; 
Tallaksen et al., 2009; Van Huijgevoort et al., 2013; Vernieuwe et al., 2019). A general 
framework for the conduction of spatio-temporal analysis of drought can be identified 
from these studies, which is described as follows. First, a given drought indicator is used 
to transform the hydro-meteorological variable into water anomalies. The drought 
indicator is computed in a spatial way, where the study region is embedded in a grid. 
Then, by establishing a threshold on the drought indicator, the condition of non-
drought/drought is identified at each of the cells of the grid. This condition can be 
expressed in a binary way, i.e. using 0s and 1s. Finally, neighbouring cells showing the 
same drought condition are aggregated into regions (clusters) by applying a clustering 
technique. In this way, drought is defined in space and in time, with a spatial extent and 
duration. 

The spatio-temporal analysis of the drought, including the spatial drought tracking, is 
limited to a few studies such as Diaz et al. (2018), Herrera-Estrada et al. (2017), and Zhou 
et al. (2019). The first two address the analysis for large-scale studies and the latter 
presents a basin-scale application. Although there are other publications that consider the 
study of drought extent locations, they miss the calculation of spatial drought tracks. 
Following the framework mentioned in the previous paragraph, after the extraction of 
drought extent (areas), it becomes possible to identify of their location and further 
construction of the spatial tracks (defined by the linkage between consecutive centroids 
in time). The calculation and further analysis of these tracks, along with outcome on 
drought areas, may help to answer the following questions regarding drought dynamics. 
What are the main places where drought remains? Are there predominant routes followed 
by drought? How fast does drought change (its extent and location) along its spatial path? 
Literature review shows that the development of methodologies to describe drought 
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dynamics is still in progress (Chapter 2), therefore more research is needed in this regard 
(e.g., Herrera-Estrada et al., 2017; Vernieuwe et al., 2019; Zhou et al., 2019). 

This chapter introduces the main principles of a new method that complement current 
drought monitoring by tracking the spatial extent of drought (referred in this document as 
an area or a cluster). In this study, the description and the application of the methodology 
to calculate drought tracks are presented in detail. The proposed method is accompanied 
by an algorithm to calculate the drought characteristics. Both methods are described after 
this introduction section. The spatio-temporal Contiguous Drought Area (CDA) analysis 
(Corzo Perez et al., 2011) is used as a basis for the development of the tracking method 
(Chapter 5). The CDA is applied to identify the neighbouring cells that form the drought 
clusters. In this chapter, a drought is defined by an onset location, pathway over time, and 
an end location based on the built tracks. A new drought characteristic is introduced in 
this study, rotation. Rotation is a feature often calculated when tracking objects in the 
space dimension. The application of drought tracking method was performed over the 
country of India for the time period 1901-2013. 

 METHODS 

9.2.1 S-TRACK: Spatial tracking of drought 
The spatial determination of drought tracks was firstly introduced by Diaz et al. (2018) 
and further developed in this research (Diaz et al., 2020a, 2020b). S-TRACK consists of 
three main steps: (1) calculation of the spatial drought units (referred to here also as areas 
or clusters); (2) localisation of centroids; and (3) linkage of centroids (figure 9.1). 

Step 1. Spatial drought units computation 

In the spatial context, drought units are identified by means of the Contiguous Drought 
Area (CDA) analysis (Corzo Perez et al., 2011). A CDA is composed of neighbouring 
cells in drought. As mentioned in the introduction section, the condition of drought or 
non-drought is indicated with 1s and 0s, respectively, at each cell. Therefore, in each cell 
drought conditions are indicated when the drought indicator is below or equal to a 
threshold. Drought indicators (DIs) are mathematical representations of a water anomaly. 
In general, CDA can be applied over any DI that is in a grid form. Following the CDA 
methodology, in each time step, the CDAs are computed.  

CDA analysis follows a connected-component labelling approach to cluster the cells in 
drought (Haralick and Shapiro, 1992). In this approach, a two-scan algorithm is applied. 
Firstly, each cell is numbered for location issues. Then, the first run is performed where 
the binary grid is explored and connected (contiguous) components (cells) are assigned 
with provisional labels. These labels point out the connexion of every cell with its 8 
nearest neighbours. Within the grid, in a section of 3x3 cells, 9 cells in total, the central 

9.2
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cell has 8 surroundings. In this first run, the cell’s label does not refer to the number of 
cluster yet but to the cells with which the given cell is connected. Finally, a second scan 
is carried out to find similar cell connexions, i.e. clusters. In this second run, clusters are 
indicated with a unique label. Examination of the grid can be performed indistinctly by 
columns or by rows. CDA analysis is conducted in each time step over the whole grid. 
For more details on CDA analysis refer to Corzo Perez et al. (2011).  

Figure 9.1 Schematic overview of S-TRACK method for spatial drought tracking which involves: (step 1) 
spatial drought units (clusters) computation, (step 2) centroids localisation, and (step 3) centroids linkage. 
Example of the procedure is presented for the case of three times steps: from t1 to t3. Columns in the diagram 
show the sequence of the steps. Coloured cells in the first column indicate all cells in drought. Colours in 
the second column point out different clusters identified. In the third column, the largest contiguous area in 
drought is presented with a different colour. Only the largest cluster is shown in fourth column and its 
centroid (p) is indicated by a point. Subscript stands for every time step. 

The use of CDA relays on the assumption that the binary description of drought condition 
(0s and 1s) is homogeneous over the whole grid. Thus, if two or more cells denote drought 
(value of 1) conditions and are contiguous in space, it is assumed that all of them are part 
of the same drought unit. In this respect, it is recommended to choose a drought indicator 
that considers the normalisation of the values in the spatial domain. In this study, a 
standardised drought indicator was applied as mentioned afterwards, which allowed the 
clustering of neighbouring cells in drought (cells with 1s). 

drought area
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After the computation of clusters (areas in drought), the major (largest) one is identified 
in each time step t (figure 9.1). As the tracking algorithm focuses on the calculation of 
the major spatial drought extent in each time step, small or one-cell units are discriminated 
with the selection of the largest one, allowing the elimination of possible artefact drought 
areas. 

Step 2. Centroids localisation 

After the identification of the major (largest) drought cluster, its centroid (p) is calculated 
in each time step. This feature is used as the location of the cluster in a similar way as 
Corzo Perez et al. (2011) and Lloyd-Hughes (2012) presented. The way that clusters are 
joined in time is explained in the next step. Step 2 and 3 presented in this document, are 
an extension of the CDA analysis of Corzo Perez et al. (2011). Another point that can be 
taken into account to indicate the location of a given cluster is, for instance, the one with 
the lowest drought indicator value (Andreadis et al., 2005; Herrera-Estrada et al., 2017). 
In this research, we chose the centroid since we already reduce the spatial representation 
of drought indicator by only 1s and 0s, i.e. drought and non-drought condition, 
respectively. 

Step 3. Centroids linkage 

In this step, an algorithm to link centroids of consecutive clusters in time is explained. In 
this algorithm, a set of rules help to separate or join the sequence in time (figure 9.2). The 
rules consider two types of threshold parameters: (1) two that control the magnitude (size) 
of cluster (A, with dimensions L2), and (2) two that constrain the Euclidean distance 
between consecutive clusters (Δl, with dimensions L) (figure 9.2). The parameters are 
denoted as follows: a, b, c and d. The first two used to the drought area A, and the last 
two to the distance Δl. The output in this step is a time series with 0s and 1s. The time 
series is denoted by S(t). Here, the value of 1 indicates linkage of clusters in time. If the 
cluster at time t is not connected with that one at time t–1, the value of 0 is used instead. 
Consecutive values of 1s in the time series S show the occurrence of what is defined as a 
drought track. The flowchart of the rules for linking the centroids is presented in figure 
9.2 and below these rules are explained. 

Centroids linkage starts by identifying if the cluster area A is above parameter a (figure 
9.2, rule 1). This first comparison helps to discriminate small clusters. If A is below a, 
there is no connexion between consecutive clusters and this procedure finalised retrieving 
0. Before comparing the distance between areas (Δl), the second comparison of A is
applied to identify if it is a “very large” area (figure 9.2, rule 2). Parameter b is proposed
to consider these large areas alternatively. When A is below b, the parameter c is used to
compare distances between clusters (figure 9.2, rule 3). Otherwise, when A is above b, to
restrict the distances the parameter d is considered instead (figure 9.2, rule 4). The reason
of the second comparison of cluster areas and the use of parameter d is because centroids
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of clusters with a considerable size may be located farther away from each other and then 
the distance Δl could fall outside of the limit indicated by parameter c (figure 9.3).  

Another parameter that could be included in this linkage algorithm is the degree of 
overlap between consecutive clusters in time. This way of intersection is not considered 
directly in our linkage algorithm as a parameter (e.g., percentage of overlapping). The 
overlap is contemplated in the use of the parameters that control the distance between 
clusters. An intersection may occur when the distance between centroids is short (figure 
9.3). 

Figure 9.2 Flowchart that shows the rules for linking drought areas (clusters) in time. Numbers in the boxes 
indicate the sequence of rules 1 to 4. The output of 1 means that the drought area A at time t joins its 
predecessor at time t–1, otherwise output is 0. The distance between the centroids at times t and t–1 is 
represented by Δl. The linking algorithm has the following parameters: a, b, c and d. The first two used to 
control drought area A, and the last two to the distance Δl. 

start
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Figure 9.3 Schematic overview of four cases when linking clusters (drought areas) in time. Area at time t 
is indicated by At (bold circle) and its predecessor at time t–1 by At–1 (dashed circle). Centroids of areas At 
and At–1 are pointed out by pt and pt–1 (points), respectively. Distance between centroids is represented by 
Δl (arrow). Centroids in both (i) & (ii) have the same location, in the same way, the centroids in both (iii) 
& (iv). Areas At in (i) & (iii) are of similar size and between the parameters a & b. On the other hand, in 
(ii) & (iv), areas At are also equal but above those parameters (case of a “big” area). Only the parameters of
drought area are represented in this figure. Schemes (i) to (iv) help to illustrate the relevance of using
parameters that consider not only the magnitude of areas but also the distance between them within the link
algorithm. As a distance limit that helps in linking large areas may not be adequate in connecting smaller
ones, as shown in (iv) & (iii), two distance parameters are proposed in the link algorithm.

9.2.2 Calculation of drought characteristics 
The methodology to build drought tracks allows for identification of paths with an onset 
and an end location. The information calculated along the paths can help to describe the 
occurrence of drought. Particularly, it is possible to extract information regarding the 
duration, severity, as well as rotation. In the following analysis of the spatio-temporal 
drought dynamics severity has a different meaning compared to on-site analysis or CDA 
studies: it expresses a certain degree of water missing, an anomaly compared to normal 
conditions. Herein, severity has a spatial meaning, it is connected to the temporal 
evolution of the drought are size, irrespective of the strength of the drought. In the 
following paragraphs, the procedure to calculate drought characteristics is presented. The 
proposed approach is called DDRASTIC-spatial. DDRASTIC-spatial stands for Drought 
DuRAtion, SeveriTy and Intensity Computing-spatial events. DDRASTIC-spatial is 
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applied after drought tracks are identified through the S-TRACK algorithm. This 
approach has as a predecessor (Diaz et al., 2019), a method that lacks the consideration 
of the elements regarding the spatial domain, such as clusters, locations and paths. 

For the calculation of the duration of drought, firstly the onset and an end are obtained. 
To do so, the time series of 1s and 0s calculated with S-TRACK method is analysed, i.e. 
S(t). As mentioned, the consecutive sequence of 1s in the time series S, indicate the 
occurrence of a drought track. One isolated value of 1 shows the linking of two clusters 
in time. Two consecutive 1 values show the linkage of three clusters in time, and so on. 
In a sequence of 1s, the time of the first value of 1 (tfirst) is the time step at which the 
second and first cluster are connected. The time step of the last value of 1 (tlast) is the one 
when the last and penultimate clusters are linked. The onset ti is defined as ti = tfirst - 1, 
while the end tf as tf = tlast. The duration (dd) is calculated with Eq. 9.1. 

( )∑
=

=
tf

tit
tdd S        (Eq. 9.1) 

The magnitudes of areas of the largest clusters calculated in each time step with S-
TRACK method are saved in the time series DA (drought area). The drought area is used 
as the measure of the drought severity. Drought severity (ds) is computed as the sum of 
drought areas of the period defined by the onset (ti) and the end (tf) (Eq. 9.2). Drought 
intensity (di) is defined as the ratio between drought severity and duration (Eq. 9.3). 

( )∑
=

=
tf

tit
tds DA       (Eq. 9.2) 

dddsdi = (Eq. 9.3) 

The definition of locations where a drought path starts and ends can provide its main 
direction. The initial and final locations are identified using the centroids of the first and 
last cluster, respectively. The location is a relative position in the spatial domain of the 
study region. It refers to a point in the axes south-north (S-N) and west-east (W-E) (figure 
9.4). The origin of the axes is assigned arbitrarily, here it is proposed to place this origin 
in the centroid of the study region. The centroid of a particular cluster can be located in 
one of the nine proposed positions: centre (C), east (E), northeast (NE), north (N), 
northwest (NW), west (W), southwest (SW), south (S) and southeast (SE) (figure 9.4). 
Centre (C) is situated in the centroid of the study region (figure 9.4). A point (centroid) 
is in the centre if the distance (r) between such point and the origin is within the rmin radius 
(figure 9.4). If distance r is out of the rmin radius, the location is assigned based on the 
angle θ. This angle is calculated between the W-E axis and the line defined between the 
centroid and origin (figure 9.4). All the rules to identify the centroid’s location are 
presented in Table 9.1. Within the algorithm, instead of letters, locations are denoted by 
means of numerical identifiers (Ids) as presented in the first column of Table 9.1. 
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Figure 9.4 Schematic overview of the procedure to define centroid’s location of a cluster. A centroid can 
be located in one of nine positions: centre (C), east (E), northeast (NE), north (N), northwest (NW), west 
(W), southwest (SW), south (S) and southeast (SE). The symbol r stands for the distance between the 
cluster’s centroid and the one of the region. The angle between W-E axis and the line defined by centroid’s 
cluster is indicated by θ. The radius to define if a cluster is located in the centre (C) of the region is pointed 
out by rmin. 

Table 9.1 Rules to define the location of a centroid’s cluster. Nine positions are proposed: centre (C), east 
(E), northeast (NE), north (N), northwest (NW), west (W), southwest (SW), south (S) and southeast (SE). 

Id Rule Location 

0 r≤rmin C 

1 r>rmin and 0° ≤θ< 22.5° or 337.5°   ≤θ<   360° E 

2 r>rmin and 22.5° ≤θ< 67.5° NE 

3 r>rmin and 67.5° ≤θ< 112.5° N 

4 r>rmin and 112.5° ≤θ< 157.5° NW 

5 r>rmin and 157.5° ≤θ< 202.5° W 

6 r>rmin and 202.5° ≤θ< 247.5° SW 

7 r>rmin and 247.5° ≤θ< 292.5° S 

8 r>rmin and 292.5° ≤θ< 337.5° SE 
r distance between centroid’s cluster and the one of the region.  
θ angle between W-E axis and the line defined by centroid’s cluster 
rmin limit distance to consider the location in the centre (C) of the region 

Drought tracks provide the whole overview of how drought moves in the spatial domain. 
Initial and end location (initial and end point of the track) helps to identify the direction 
followed by a given drought cluster. Another characteristic that complements the 



9. Spatial drought tracking development

88 

description of the dynamics of drought is the rotation. This characteristic is defined as the 
circular orientation followed by the spatial extent of drought. Rotation is a feature 
commonly attributed to objects that experience changes in space. It is a basic 
characteristic analysed in other weather-related phenomena such as cyclones (e.g., 
Chavas et al., 2017; Rahman et al., 2018) but that has not been investigated much in 
droughts so far. This study introduces an initial step towards a complete approach for the 
calculation of drought rotation. This characteristic is included because it is foreseen that 
it can help analyse drought drivers such as the role played by the climate and land surface 
control factors on the spatial development of droughts. The drought rotation patterns are 
expected to be different for each combination of the aforementioned factors. 

As the drought track can switch between clockwise and counter-clockwise along the 
pathway, we propose to classify the rotation in a more general way as (1) mostly 
clockwise (cw), or (2) mostly counter-clockwise (ccw) (figure 9.5). To determine the 
rotation, a procedure is considered which makes use of the centroids’ coordinates. The 
algorithm is based on that property to compute a polygon‘s area (A) from a vector with 
the coordinates x and y of the vertices (Eq.9. 4). In this area computation algorithm, firstly 
the sum of products between the coordinates x and y, denoted by ρ (Eq. 9.5), is calculated. 
Then, ρ is applied to define the rotation direction (Eq. 9.6). In this approach, the 
coordinates x and y are taken from the ones of centroids’ clusters. When there are only 
two points (two clusters), or when the track is horizontal or vertical, the rotation is not 
defined, because ρ takes the value of zero. In figure 9.5 two examples of the calculation 
of rotation are shown for illustration. One example is presented for mostly counter-
clockwise (figure 9.5 (left)) and one for mostly clockwise (figure 9.5 (right)). We chose 
this approach to compute rotation because it distinguishes between “big” and “small” 
turns in the calculation (Eq. 9.5). The fourth column of tables presented in figure 9.5 
provides examples of how the magnitude of each turn is considered differently in the 
rotation algorithm. 
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Figure 9.5 Example of rotation calculation. Two types can be assigned: (1) mostly counter-clockwise, when 
ρ<0 (left); and (2) mostly clockwise, when ρ>0 (right). The number in each centroid (point) indicates the 
tracking sequence. Arrows show the track direction, and rotation. Rotation of each line segment is also 
marked by ‘cw’ and ‘ccw’ that stand for clockwise and counter-clockwise, respectively. 

 EXPERIMENTAL SETUP 

9.3.1 Drought indicator data 
Drought tracks were calculated with S-TRACK algorithm for the period 1901 to 2013 
(113 years). The analysis was conducted on a monthly basis over India as an example. 
Data from the Standardized Precipitation Evaporation Index (SPEI) Global Drought 
Monitor (http://spei.csic.es/) was used (Beguería et al., 2014) to test the proposed 
methodology for drought tracking and characterisation (Chapter 4). The procedure to 
calculate SPEI (Vicente-Serrano et al., 2010) is similar to that used to compute the 
Standardized Precipitation Index (SPI) proposed by Mckee et al. (1993), but taking into 
account precipitation (P) minus potential evaporation (E) instead of only P. SPEI data 
from the drought monitor are in a grid form for different temporal aggregation periods. 
In this study, we used SPEI-6, which corresponds to anomalies of the six-month 
accumulation of P – E. This aggregation usually refers to extended periods of lack of 
water availability, therefore consequences of a meteorological drought are closer to those 
caused by a hydrological drought (WMO, 2012). 

9.3.2 Drought areas and centroids 
Before the application of the drought tracking algorithm, the size of the largest clusters 
and the distances between the centroids of consecutive clusters in time were calculated. 
This calculation was performed, on the one hand, to understand the order of their 
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# centroid (i ) x y (x i +1 – x i )(y i +1  + y i )
1 1.5 1.5 na
2 0.5 0.5 -2
3 3 1.5 5
4 4.5 1 3.75
5 4.75 4 1.25

Σ = 8
(x 1 – x 5)(y 1 + y 5) = -17.88

ρ  = (x 1 – x 5)(y 1 + y 5) + Σ = -9.88

# centroid (i ) x y (x i+1 – x i)(y i+1 + y i)

1 4.75 4 na
2 4.5 1 -1.25
3 3 1.5 -3.75
4 0.5 0.5 -5
5 1.5 1.5 2

Σ = -8
(x 1 – x 5)(y 1 + y 5) = 17.88

ρ  = (x 1 – x 5)(y 1 + y 5) + Σ = 9.88
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magnitude and frequency, and on the other hand, to set the values of the tracking 
algorithm parameters. 

For the definition of drought areas, usually, the threshold of -1 is used to indicate drought 
condition in the drought indicators that follow a similar methodology than SPI, also 
referred as standardised ones. In this research, the same threshold (SPEI=-1) was selected 
to define drought condition in each cell of the grid in each time step. When SPEI was 
below -1, with 1s the drought condition was indicated, in another case, with 0s the non-
drought status was pointed out. This binary representation allowed the identification of 
spatial drought units (clusters) through the application of the spatio-temporal analysis of 
Contiguous Drought Area (CDA) (Sect. 9.2.1). 

The largest clusters in each time step were then identified. The area of the largest cluster 
was compared with the total one to identify the similarity in size between them. It is 
assumed that the more similar the larger area to the total one, the better the identification 
of the drought tracks will be. This stands because the tracking algorithm focuses on only 
one area per time step. For the comparison, the area of all clusters (DA_total) and the area 
of the largest one (DA_largest) was calculated. Both areas were expressed as percentages 
calculated as the ratio between the number of cells in drought and the total of them. The 
total number of cells considered for the mask of India was 1,173. 

Once the centroids were identified, the distances between consecutive centroids were 
calculated over time (Sect 9.2.1). Both the clusters and the distances were calculated for 
the entire period of analysis on a monthly basis. 

9.3.3 Tracking algorithm setup and evaluation 
The tracking method can be used in the following two modes: specific and generic. 

In specific mode, parameters are calibrated with the use of reported droughts’ information. 
Ideally, this calibration should be carried out considering observed drought tracks. In the 
absence of this type of data, parameters can be assigned based on the best reproduction 
of drought occurrence. A drought occurrence refers to the best match of the onset and end 
time (month) between observed (reported) and calculated droughts. 

On the other hand, a way to carry out the generic mode is by following a sensitivity 
analysis approach. In this mode, the robustness of the structure of the method is examined 
through the analysis of the outputs under the variation of parameters. Formally sensitivity 
analysis is performed for the quantification of uncertainty of model results. On the other 
hand, it can be also applied to evaluate the structure of a model or algorithm (Pannell, 
1997). Sensitivity analysis generally allows answering the following questions when 
evaluating an algorithm. How parameters and output are related? What level of accuracy 
in the parameters is required? Which parameters are more sensitive? What are the 
consequences of varying the input parameters? 
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In this research, both the generic and the specific mode were followed to apply the 
tracking algorithm. Results are shown in sections 9.3.2 and 9.3.3 for the generic and 
specific mode, respectively. In the generic mode (Sect. 9.3.2), particularly the effect of 
parameters was examined over the identification of droughts tracks and characteristics. 
The questions mentioned in the previous paragraph were used as a guideline to perform 
such an analysis. For convenience, the four parameters of the S-TRACK algorithm were 
handled as percentiles. 

On the other hand, in the specific mode (Sect. 9.3.3), considering that there is no available 
information to compare the calculated drought paths in the study area, it was limited to a 
qualitative analysis of the paths of the most severe droughts reported in the analysis period. 
The droughts of 1905, 1942, 1965, 1972, 1987, 2000, and 2002 were considered because 
their severe impacts were referenced (Guha-Sapir, 2019). The qualitative evaluation was 
focused on the analysis of the extreme incidences using a combination of parameters. 
From the whole set of combinations we chose three that we consider as key: the one that 
produces the smallest number of droughts paths (combination_1), the one that yields the 
largest number (combination_3), as well as the one that produces a number of drought 
paths similar to the number of years of the analysis period (combination_2). In a more 
detailed analysis, optimal parameters should be selected based on reported drought’ 
information (source). In the absence of drought tracks, from the source, it is necessary to 
identify at least the following information: the onset and end month of the reported 
droughts. The near-optimal parameters are those that provide the best match between the 
observed and calculated onsets/ends. 

 RESULTS 

9.4.1 Drought areas and centroids 
Drought areas and centroids were computed for the period 1901 to 2013. With respect to 
the areas, firstly the comparison between the area of all clusters (DA_total) and area of 
the largest one (DA_largest) was performed. Figure 9.A1 (Annexes) shows the monthly 
values of both DA_total and DA_largest arranged in matrices. Columns indicate months 
from January (J) to December (D), while rows point out the year from 1901 to 2013. 
Drought area value is indicated with a colour scale, where the more red the colour is, the 
higher the value of the area. The white colour shows months with a small or no value of 
area. It is observed that DA_total and DA_largest presented similar values. Between both 
variables, the results showed an agreement in the occurrence of the large values. From 
the period 1920-1980, DA_largest was slightly smaller than DA_total. The highest values 
of DA_total and DA_largest were 72 and 70.7%, respectively. Both values occurred in 
2001/3. In 1998/3 and 1998/4, no drought areas were identified. The average for the 
period was 17.4% for the case of DA_total, while for DA_largest was 11.5%. Figure 9.A1 

9.4
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(right) presents the difference between DA_total and DA_largest. For all the period, the 
average of the differences was 5.9%. As DA_largest and DA_total were very similar, it 
can be considered that the largest cluster is a good proxy to analyse how drought changes 
in the region without considering the occurrence of two consecutive drought tracks.  

The centroids of the largest clusters are presented in figure 9.6. The spatial drought extent 
is shown schematically with symbols that indicate four intervals of the percentage of 
drought area with respect to the country extend. The origin of the axes is placed in the 
centre of the country. It is observed that the spatial distribution of the centroids is almost 
uniformly distributed over India. However, a higher density of the areas with a 
considerable extent can be seen in central India.  

Figure 9.6 Centroids of the largest clusters (DA_largest) identified on a monthly basis. Spatial drought 
extent is schematised by four symbols pointing out the drought area. The origin of the axes is placed in the 
centre of the country. 

The distances between consecutive clusters in time were calculated also for the whole 
period. Figure 9.A2 (Annexes) presents the area of the largest cluster (DA_largest) and 
the distance between clusters (Δl) on a monthly basis for the whole period. It can be 
observed the occurrence of DA_largest ≥ 25% during all decades of the analysis period. 
A pattern is observed between DA_largest and Δl: when DA_largest increases, Δl usually 
tends to decrease. This behaviour was expected, because the more the area increases, the 
distance between the centroids becomes smaller. This means that the location of the 
cluster is becoming the same. When Δl does not follow this behaviour, it might be because 
the consecutive areas in time are very far between them, i.e. they are part of different 
drought paths. 

Figure 9.7 shows the relative frequency of area of the largest cluster (DA_largest) and the 
distance between clusters (Δl).  For both variables, results are displayed in four intervals. 

N

EW

S

0 1,000 2,000500

km

DA_largest [%]
<10
10 to 25
25 to 50
≥50



9.4. Results 

93 

It was observed that as the area increases the frequency of long distances between these 
areas decreases, while the frequency of small distances increases. For the DA_largest 
interval of 25-50% and ≥ 50%, the frequency of the small distances (Δl < 250 km) was 
slightly greater than half of all the distances. This confirms quantitatively what is 
observed in figure 9.A2: in general when the area grows the distances between the 
centroids tend to decrease. On the other hand, the small value of the frequency of large 
distances in large areas (intervals 25-50% and ≥ 50%) indicates that there are large 
consecutive areas in time that are not necessarily connected to each other. 

Figure 9.7 Relative frequency of area of the largest cluster (DA_largest) and distances between consecutive 
clusters in time (Δl).  

9.4.2 Drought tracks and characteristics (generic mode) 
Based on the distribution of areas and distances between clusters (Sect. 9.3.1), the S-
TRACK algorithm was set to take parameters values with the following thresholds: a ≤ 
50, b ≥ 50, c ≥ 50, and d ≥ 50th percentile (median). As mentioned, a & b are parameters 
that control the size of clusters (area), and c & d are parameters that restrict the distances 
between consecutive clusters in time. The average duration, average severity, onset 
location, end location, were calculated for the different combinations of parameters. 
Results for a (30, 40, and 50), b (50, 70, and 90), c (50, 60, 70, 80, and 90), and d (50, 60, 
70, 80, and 90) are presented in figures 8 and 9.A3 to 9.A7 (Annexes). The a & b 
parameters are expressed as percentage of drought area and c & d as km. 

Figure 9.8 shows the number of drought paths (combination of tracks linked in time). It 
is observed that the number of drought paths in general increases when a decreases. This 
is expected since parameter a is the one that allows a cluster to join (or not) consecutive 
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clusters in each time step. When a is small, more clusters are expected to be connected in 
each time step and therefore more drought paths can be identified. The value of b (used 
for “very large” areas) seems to influence the number of paths less strictly than a, e.g., 
when b increases, there is a small proportional increase in the number of paths for all 
combinations of parameters. The combined variation of b and c seems to influence more 
the number of paths for small values of d. It is observed that in general, the number of 
paths drops when a increases and both b, c, and d decrease. In general, the number of 
drought paths seems to be more sensitive to the changes of parameter a. 

Figure 9.8 Number of drought paths obtained with different combinations of parameters. 

In figure 9.A3, average duration of drought paths is presented. Although the variation of 
average duration seems to be small to the changes of parameters, it is observed a slight 
increase as a decrease and both b, c and d increase. The average duration seems to be 
more sensitive to the increase of c and d that are the parameters that control distance 
between consecutive clusters in time). 

Regarding the severity, this value tends to be smaller when a increases and both b, c, and 
d decrease (figure 9.A4). Severity is calculated as the ratio between the total sum of 
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drought areas and duration (number of months). Its reduction depends on the increase in 
duration (see Eq. 9.1, 2, and 3). As in the number of drought paths, the average severity 
is also more sensitive to changes of parameter a. It is observed that when the number of 
paths decreases, the average severity increases (figures 9.A3 and 9.A4). This is the effect 
of the selection of a that controls the size of the areas that are joined at each instant of 
time. If a is small, more areas can be joined and severity may decrease due to the pooling 
of more areas of small sizes divided by a longer duration (see Eq. 9.1, 2, and 3). 

Figures 9.A5 and 9.A6 show the mode of onset and end location of drought paths, 
respectively. In figure 9.A5, not many changes are observed in the onset location. East 
seems to be the most common onset location in most combinations of parameters, 
followed by South. On the other hand, figure 9.A6 shows that the most common end 
location in most combinations seems to be at the South, followed by East. When both a 
decreases and b increases, the South tends to be the most common end location. 

Figure 9.A7 shows the mode of rotation. It is observed in most cases that mostly 
clockwise (cw) is the common rotation in the drought paths. When a decreases and b 
increases, the mostly clockwise rotation seems to be the most common rotation. This is 
the case when more drought paths were obtained. It is observed that rotation is mostly 
sensitive to the variations of c and d that are the parameters which control the distance 
between consecutive clusters in time. 

Summary 

Table 9.2 shows a summary of how the tracking algorithm responds to different 
combinations of parameters. In particular, the behaviour of the number of paths, duration, 
severity, onset and end location, as well as rotation, is indicated. The combinations where 
it was observed that the values of these characteristics tend to increase or decrease is 
presented. In general, the most sensitive parameter (important) is the one that controls the 
minimum area (parameter a). Changes in this parameter have more influence on the result 
of the number of drought paths and duration. Regarding duration and severity, it is 
observed that as the paths last longer the severity decreases. This may apply because the 
severity is calculated as the sum of the areas of clusters that belong to the drought duration. 
Thus, while the duration increases, the areas that are added tend to be smaller and then 
the sum does not increase significantly. 

The combination 11 (Table 9.2) refers to the identification of paths of “very large” areas. 
In this combination, it is expected that the initial and final locations will be in the centre. 
Centroids of these cluster areas tend to be identical to that of the region. For these paths, 
it is also observed that the rotation tends to be clockwise. 

In combinations 6, 7 and 14, by decreasing the parameter that controls the minimum area 
(parameter a), more drought paths are identified, with the characteristic of being long and 
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with a small severity (formed by a number of smaller areas). In these combinations, 
drought paths usually start in the East and end in the South, with a clockwise rotation. 

If the drought path starts in the South, it usually ends in the East, and in this case, the 
rotation tends to be counter-clockwise, i.e. the rotation seems to follow the minor turn 
(combination 14). In other words, if the path starts in the South and ends in the East it is 
more probable to be directed towards the East showing a counter-clockwise rotation, 
instead of going first to the West, then North and finally East, showing a clockwise 
rotation. 

Table 9.2 Summary of drought characteristics obtained with different combinations of 
parameters. Numbers in parentheses indicate the location as presented in figures A5 and 
A6. Abbreviations ccw and cw stand for counter-clockwise and clockwise, respectively. 

# 
parameters 

number of paths 
drought characteristics 

a b c d duration severity onset 
location 

end
location rotation

1 ↑ ↓ ↓ ↓ Decreases tends to 
decrease decreases tends to 

decrease increases 

2 ↑ ↓ ↑ ↑ decreases decreases increases 

3 ↑ ↑ ↑ ↑ decreases decreases increases 

4 ↑ ↑ ↓ ↓ decreases decreases increases 

5 ↓ ↓ ↓ ↓ increases increases decreases 

6 ↓ ↓ ↑ ↑ increases increases decreases tends to 
south (7) 

tends to 
cw 

7 ↓ ↑ ↑ ↑ increases increases tends to 
increase decreases tends to 

east (1) 
tends to 
cw 

8 ↓ ↑ ↓ ↓ increases increases decreases 

9 ↑ ↓ ↓ ↑ decreases decreases increases 

10 ↑ ↓ ↑ ↓ decreases decreases increases 

11 ↑ ↑ ↓ ↑ decreases decreases increases tends to
increase 

tends to 
centre 
(0) 

tends to 
centre 
(0) 

tends to 
cw 

12 ↑ ↑ ↑ ↓ decreases decreases increases 

13 ↓ ↓ ↓ ↑ increases increases decreases 

14 ↓ ↓ ↑ ↓ increases increases decreases tends to 
south (7) 

tends to 
east (1) 

tends to 
ccw 

15 ↓ ↑ ↓ ↑ increases increases decreases 

16 ↓ ↑ ↑ ↓ increases tends to 
increase increases decreases tends to 

decrease 
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9.4.3 Qualitative evaluation (specific mode) 
Seven of the most extreme droughts reported during the analysis period were selected to 
analyse their tracks. These droughts, as it was mentioned earlier, correspond to the 
following years: 1905, 1942, 1965, 1972, 1987, 2000, and 2002. In the absence of 
information regarding the dynamics of the droughts, such as trajectories, our validation 
focuses on the analysis of the calculated tracks in the period when the droughts occurred. 

From the whole set of combinations of parameters shown in the previous section, three 
of them were selected. These were considered key to analyse the results of drought tracks 
and characteristics. In the first combination, the lowest number of drought paths was 
obtained in the analysis period (combination_1, a=50, b=50, c=50, d=50). In the second 
combination there was a number of drought paths similar to the number of years of the 
analysis period (combination_2, a=40, b=50, c=70, d=80), i.e. more or less a drought path 
per year. Finally, in the third combination, the highest number of drought paths was 
identified (combination_3, a=30, b=70, c=90, d=50). 

Figure 9.9 presents the occurrence of drought paths calculated for the three combinations 
of parameters. Columns indicate the months from January (J) to December (D) and the 
rows show the years. Consecutive cells in colour indicate the occurrence of a drought path 
(figure 9.9 (top)). The frequency per month was calculated to analyse the distribution of 
the tracks over the months (figure 9.9 (bottom)). In general, the month with the less 
frequency of drought tracks was March. From January to July, first part of the year, the 
frequency is fewer than from August to December. It seems that when the number of 
drought paths increases they start to occur more frequently in the first part of the year. 

Figures of the seven selected droughts were prepared to present the results from the 
calculation of clusters and distances between centroids to the construction of drought 
paths. Outputs for the drought of 1987 are presented here in the results section in figure 
9.10. For the rest of the droughts, the results are presented in figures 9.A8 to 9.A13 
(Annexes). In figure 9.10 (top), clusters and centroids are pointed out from 1987/3 to 
1988/6. Areas of largest cluster (DA_largest) and distances between consecutive areas in 
time (Δl) are shown from 1987/1 to 1988/6 (figure 9.10 (centre)). Duration of the drought 
paths is indicated in a schematic way with a horizontal line for each combination of 
parameters. Drought tracks calculated with the three combinations of parameters are also 
presented (figure 9.10 (bottom)). In most of the seven droughts, the great areas of the 
largest clusters are in the second half of the year and the first half of the following one 
(e.g., figure 9.10 (centre)). It was observed that, in general, when DA_largest increases, 
Δl usually tends to decrease (e.g., figure 9.10 (centre)). This relationship can be explored 
in further research to define quantitatively the onset and end of the droughts. 

Table 9.3 presents a summary of the duration of the selected droughts. It is observed that 
although the number of drought paths increases from the combination_1 (figure 9.9 (right)) 
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to the combination_3 (figure 9.9 (left)), in terms of the most severe droughts the durations 
remain almost similar (Table 9.3, column 2 & 4, and figure 9.10 (bottom)). This indicates 
that more drought tracks were identified in the first part of the year. These drought tracks 
were not able to join with those of the second half of the previous year. If the parameters 
c & d that control the distance between centroids are more flexible, i.e. consider longer 
distances, drought tracks of the second part of the year are more likely to join those of the 
first part of the next year, as occurs in combination_2. In the combination_2, the drought 
paths showed the longest durations (Table 9.3, column 3 and figure 9.10 (bottom, centre)). 

In all the selected droughts (figures 9.10 and 9.A8 to 9.A13), it is observed that 
consecutive clusters in time overlap considerably, which suggests that the spatial extent 
after reaching a considerable size, it remains in the same region. This presence of large 
drought areas in the same region over time may explain the severity of drought events in 
those droughts. There is no predominant pathway followed by droughts in those years. In 
terms of spatial extent, 2000 and 2002 events were the largest as shown in figures 9.A12 
and 9.A13, respectively. The drought with the longest duration was that of 1965 (Table 
9.3), which is consistent with the reported in (Guha-Sapir, 2019). 

Figure 9.9 Occurrence of drought paths calculated with three combination of parameters: (left) 
combination_1 (a=50, b=50, c=50, d=50), (centre) combination_2 (a=40, b=50, c=70, d=80), and 
(right) combination_3 (a=30, b=70, c=90, d=50). Consecutive cells in colour indicate the occurrence of 
a drought path (top). Frequency is calculated per column from January (J) to December (D) (bottom). 
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Table 9.3 Duration of selected droughts calculated with three combinations of parameters. In parentheses, 
the period is indicated. 

drought 
duration [months] 

combination_1 combination_2 combination_3 
a=50, b=50, c=50, d=50 a=40, b=50, c=70, d=80 a=30, b=70, c=90, d=50 

1 6 (1905/7 to 1905/12) 12 (1905/6 to 1906/5) 6 (1905/7 to 1905/12) 
2 5 (1942/10 to 1943/2) 6 (1942/10 to 1943/3) 5 (1942/10 to 1943/2) 
3 6 (1965/7 to 1965/12) 22 (1965/5 to 1967/2) 6 (1965/7 to 1965/12) 
4 3 (1972/8 to 1972/10) 16 (1972/4 to 1973/7) 3 (1972/8 to 1972/10) 
5 6 (1987/9 to 1988/2) 8 (1987/7 to 1988/2) 6 (1987/9 to 1988/2) 
6 5 (2000/8 to 2000/12) 11 (2000/8 to 2001/6) 6 (2000/7 to 2000/12) 
7 5 (2002/8 to 2002/12) 12 (2002/4 to 2003/3) 6 (2002/8 to 2003/1) 

Figure 9.10 Results for drought of 1987. Largest clusters and centroids are indicated from 1987/3 to 1988/6 
(top). Area of largest cluster (DA_largest) and distance between consecutive clusters in time (Δl) are 
displayed from 1987/1 to 1988/6 (centre). The drought duration is pointed out schematically with a 
horizontal line for each combination of parameters. Drought tracks calculated with the three combinations 
of parameters are also presented (bottom). Spatial drought extent is schematised by four symbols pointing 
out the size of area. The origin of the axes is placed in the centre of the country. Arrows point out the 
direction of each track segment. Insets show zoomed-in views. 
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 DISCUSSION 

9.5.1 Drought indicator and areas 
In this initial version of the tracking method, we used a unique threshold over the drought 
indicator to indicate drought and non-drought conditions in each grid cell (1s and 0s). 
This threshold is one of the most common proposed in drought studies when considering 
standardised drought indicators. SPEI drought indicator was applied in this research, but 
it is possible to use any other indicator, including threshold indicators (Wanders et al., 
2010), with the condition of being spatially distributed. The effects of other drought 
indicator thresholds over the cluster size were not assessed because the scope of this study 
was limited to testing the drought tracking algorithm. 

On the other hand, the clustering algorithm used in this study assumes that all cell values 
in the space domain are homogeneous. To ensure that this assumption is correct, it is 
recommended to employ a drought indicator that uses a normalization procedure in its 
calculation. In addition, our clustering approach is based only on drought indicator values 
and does not consider others aspects that can influence the spatial extent of drought, such 
as topography, land use, and climate regions. In further studies, it is recommended to 
improve the clustering method to incorporate other elements to make it more general. 
Another way of considering the factors mentioned above, without modifying/changing 
the clustering algorithm, is the use of a drought indicator that takes into account variables 
such as soil moisture or runoff. 

9.5.2 Drought tracking method 
The S-TRACK methodology was performed in both the generic and specific mode 
explained in the experimental setup section (Sect. 9.2.3.3). On the one hand, in the generic 
mode, the application was based on the sensitivity analysis of drought tracks and 
characteristics on the parameters. We presented the performance of the tracks and 
characteristics when selecting different combinations of parameters. On the other hand, 
in the specific mode, the analysis of drought tracks of seven of the most severe droughts 
reported in the literature was presented. 

The current version of S-TRACK algorithm focuses on the largest drought areas. In this 
way, areas with a considerable territorial extent are identified. We are aware that smaller, 
intense droughts would not be captured by this tracking algorithm. Also, that mild 
droughts over large areas obtained by the algorithm would overshadow smaller, intense 
droughts. 

Although S-TRACK makes the use of CDA analysis for the extraction of drought clusters, 
other algorithms used for the same purpose can also be considered. These algorithms 
include the recursion-based approach (Andreadis et al., 2005; Herrera-Estrada et al., 2017; 

9.5
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Lloyd-Hughes, 2012; Sheffield et al., 2009), and variations of the connected-component 
labelling approach (Van Huijgevoort et al., 2013; Vernieuwe et al., 2019). The 
composition of drought clusters extracted with any of these algorithms should be the same. 
The main difference involves the computational efficiency and processing time among 
them, which is an important element to consider when processing a large amount of data. 
In this sense, algorithms based on connected-component labelling are considered more 
efficient (He et al., 2009). 

To connect two consecutive clusters in time and ensure that they are not far in space, the 
length between centroids of the clusters is taking into account, similar to Herrera-Estrada 
et al. (2017) and Zhou et al. (2019). The degree of the overlap between these two clusters 
can be another way to handle the connection between them. A more complete way of 
joining clusters in time is through the use of the CDA approach but extended to the time 
domain, i.e. to connect 26 nearest neighbour cells, a cube in the space and time domain, 
as shown in Corzo Perez et al. (2011), Lloyd-Hughes (2012), and Herrera-Estrada et al. 
(2017). 

In the case that more than one drought track occurs at the same time, i.e. more than one 
large area present at the same time step, the algorithm will aim to identify the largest one. 
The algorithm does not detect simultaneous drought tracks, nor merge the areas of the 
same time step into a single one. 

In this research, we compared the area of all clusters and the one of the largest cluster in 
each time step, to see if the presence of more than one large area is predominant or not. 
We found that difference between DA_total − DA_largest was, in most of the cases, close 
to zero (Figure 9.A1). This indicates that the size of the area of the largest cluster is very 
similar to the total one. Based on the latter, it is assumed that the presence of more than 
one large cluster at the same time step, is not dominant. Then the research was focused 
on testing the tracking algorithm, without considering the effect of the presence of more 
than one simultaneous drought track. 

If the presence of more than one consecutive drought track are suspected, an option to 
perform the tracking method is to test it considering different sub-regions of the study 
area (analyse it by parts) and then superimpose the drought tracks. In this way, one would 
expect to identify more than one tracks, if any. In a future version of the tracking 
algorithm, it is recommended to include the identification of more than one simultaneous 
drought tracks. 

The use of CDA approach can retrieve areas with “islands” of non-drought cells (0s). In 
this research, we do not consider the possible effects of these holes over the drought tracks 
construction (the centroid could be located in one of these holes). We assume that centroid 
is a good spot to locate the contiguous drought area.  
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In largest clusters, the centroid approaches the centroid of the analysis region. This is an 
expected outcome because if the cluster covers the entire region of analysis the centroid 
will be similar to that one of the region. In our case, the maximum DA_largest was 70.7%, 
therefore in the period of analysis, no cluster covered the entire territory. In addition, two 
simultaneous large clusters are not expected. 

Although drought tracks that occurred near the boundaries of the domain may not be 
calculated well, it is assumed that these tracks do not significantly impact the region 
because they are at the limits. To improve the calculation in such cases, it is recommended 
to increase the size of the analysis region. 

SUMMARY AND CONCLUSION 

In this study, a method that allows the construction of drought tracks in space was 
introduced. The onset and end of drought paths (combination of linked drought tracks) 
are used to compute the drought duration. The information obtained during the path 
calculation is employed to compute the severity, as well as the onset and end location, 
direction, and rotation. All these features have been identified as drought characteristics 
and are framed within the DDRASTIC-spatial methodology, also presented in this 
document. Outputs of the tracking algorithm S-TRACK and the method for drought 
characterisation DDRASTIC-spatial help to describe the dynamics of droughts. 

S-TRACK has four parameters. Parameters a & b control the size of the cluster (area) to
be included in the drought tracks. Parameters c & d limit the distances between
consecutive clusters in time (Sect. 9.2.1). In this document, the S-TRACK application
was also illustrated in the construction of drought tracks in space.

From the application of S-TRACK, some key findings were presented: 

• The number of drought paths, duration, and severity seems to be more sensitive

to the change of the parameter that limits the minimum drought area (parameter

a) (Sect. 9.2.1).

• If the duration of the drought paths increases, severity does not necessarily do so,

because the longer the duration, the areas that make up the path tend to be smaller

(Sect. 9.3.2).

• To obtain drought paths with longer durations, it is important to be flexible with

the parameters that control the distance between areas (parameters c & i), i.e. to

consider larger distances.

9.6
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The outcome of the approach presented in this paper is relevant for (i) drought forecasting, 
i.e. drought tracks can help to predict how drought moves over a particular region, and
(ii) for improving knowledge on drought-generating processes. The first item is more for
operational purposes (short term) and the second item – for scientific research (long term).

Regarding the improvement of knowledge on drought-generating processes, i.e. the 
interaction between climate and land surface characteristics, a new drought characteristic 
is introduced, the rotation (Sect. 9.2.2). This feature is common in studies of other 
weather-related phenomena such as cyclones, because it helps in the 
description/identification of forcing mechanisms behind their spatial development (e.g., 
Chavas et al., 2017; Rahman et al., 2018). We foresee that this drought characteristic can 
help in the identification and description of climate and land surface control factors that 
drive the spatial behaviour of droughts. 

For the case of India, we found that consecutive clusters in time overlap considerably in 
the droughts selected (1905, 1942, 1965, 1972, 1987, 2000, and 2002), which suggests 
that after reaching a considerable size, the spatial extent of drought remains in the same 
region. This presence of large drought areas in the same region over time may explain the 
severity of droughts in those years. There is no predominant pathway followed by 
droughts in those years. In terms of spatial extent, 2000 and 2002 events were the largest. 
The drought with the longest duration was that of 1965.  

With the presented approach to identify and analyse the drought tracks, the next challenge 
would be to develop a ML (or hybrid) model able to predict the drought tracks. 





 

10 
10 CONCLUSIONS AND 
RECOMMENDATIONS 



10. Conclusions and recommendations

106 

 GENERAL 

This study deals with developing and applying analytical and visual methodologies for 
carrying out the spatio-temporal characterisation of droughts. Droughts are 
conceptualised as events with a spatial extent, onset and end in space and time, as well as 
a spatial path composed of the union of successive tracks (Chapter 9). The methodologies 
developed and presented in this study were built based on computational imaging, ML 
techniques and approaches combined with the process-based concepts developed in 
drought studies. 

Before the conclusions for each objective are presented, the two hypotheses (H1 and H2) 
formulated at the beginning of this research are discussed below. 

H1) It was hypothesised that the spatio-temporal characterisation of droughts could be 
improved by including ML techniques in the calculation of droughts. This research 
showed that incorporating ML techniques, such as clustering, into the identification 
of drought areas allows for the delineation of the spatial extent, considered in this 
research as the area of the drought event in a given time step (Chapter 5). The drought 
areas were further connected over time to build spatial drought trajectories (Chapter 
9). Consequently, ML techniques also helped in identifying the largest drought areas, 
i.e. the most extended ones, which were found to be associated with the most severe
drought impacts presented in local reports (Chapter 9).

Recommendations: Regarding the calculation and characterisation of droughts, the 
following limitations need to be addressed in further developments. First, the 
algorithm for calculating the connection of drought areas over time, i.e. spatial 
trajectories, is focused on the largest events (areas), so its application is 
recommended at the basin or country scale (Chapter 9.5). For continental or global 
use, an analysis of the sizes of the drought areas must first be conducted to identify 
whether more than one of the largest drought occurs at the same time. Then, based 
on this analysis, the continent/globe can be sectioned for individual uses of the 
algorithm. In future developments, the calculation of more than one drought event 
should be considered. 

H2) It was also hypothesised that drought tracking can be improved by considering the 
characteristics related to the spatial properties of drought with the appropriate 
visualisation techniques. Drought tracking was limited to the monitoring of the time 
series of drought indicators, drought areas or drought impacts. This research 
presented a method for calculating spatial drought tracks that can enhance drought 
tracking (Chapter 9). 

Recommendations: In further research, including cases of spatial splitting or merging 
drought areas over time that were not considered in this first realisation of the drought 
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tracking algorithm is recommended. For continental or global applications, the 
factors that cause drought areas to separate or marge could reveal the details about 
their development and attenuation. Investigating the drivers with which these spatial 
behaviours are associated is also necessary. Regarding the visual approaches for 
analysing drought variation, developing graphs that facilitate the analysis of the 
spatial trajectories of droughts is necessary. Aspects such as the predominant routes, 
regions with greater drought activity and the relationship between duration, intensity 
and trajectory length of the drought are some of the spatial patterns that can be 
addressed with the help of visual approaches, such as those developed in this thesis 
(Chapter 8). 

The four objectives (O1 to O4, see Section 1.4) set in this research were achieved, and 
the general conclusions can be summarised as follows: 

O1) Methodology for the spatio-temporal characterisation of drought dynamics was 
developed. This methodology improves the characterisation of drought in space and 
time by conceptualising drought as an event that develops in space. The spatial 
features of drought, such as area and location, can be used to describe its dynamics. 

O2) Visual approaches were developed to analyse variations in drought characteristics. 
These approaches were based on radial and polar charts, which facilitated the 
handling of large amounts of information and the interpretation of drought patterns. 

O3) Methodology for monitoring the spatial extent of drought, i.e. drought tracking, was 
developed and applied to analyse the most extensive droughts at the country level. 
This methodology can be extended to develop an ML approach for drought prediction. 

O4) Applicability of ML techniques to the prediction of crop yield responses to drought 
was investigated. It was found that drought area is a suitable input for building ML 
models to predict seasonal crop yield. 

In more detail, the conclusions and recommendations are presented below. 

 (O1) SPATIO-TEMPORAL CHARACTERISATION OF DROUGHT BASED ON
THE PHENOMENON’S SPATIAL FEATURES 

Characterising drought, i.e. calculating drought duration, intensity and spatial extent, is 
often carried out for drought monitoring purposes. Drought is mainly identified 
(calculated) with the help of drought indicators, as presented in Chapter 2. In a region, 
e.g. a basin, when the drought indicator is spatially distributed, it is often condensed into
a single value for each time step prior to drought calculation. The average is typically
used for this aggregation. Although this practice is often widely extended for its simplicity,
much of the spatial information is lost in the aggregation (Chapter 6). To avoid this
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inconvenience of information loss, a methodology based on drought area was tested to 
compare drought indices. Two comparisons were carried out—one amongst the 
aggregated values of different indicators and another amongst the calculated drought 
areas. The methodology was applied at the basin scale, in which meteorological, 
hydrological and agricultural droughts were analysed (Chapter 6). 

The results showed little difference amongst the time series of the area-aggregated 
drought indicators. However, the drought areas exhibited different behaviours, indicating 
agreement only between the meteorological drought indicators (SPI and SPEI). The 
drought area analysis also showed a clearly observable lag in time between the 
meteorological (SPI and SPEI) and hydrological (SRI) drought indicators. The new 
drought indicator that incorporated actual evapotranspiration (SEDI), which was 
developed for this research, showed similar behaviour as SRI, suggesting its use for 
hydrological drought analysis. Finally, comparisons across the drought areas revealed a 
seasonal drought variation that was not easily detectable through aggregate drought 
indicator data. 

Recommendations: It is recommended that future studies incorporate analyses of drought 
propagation, i.e. how water anomalies increase or decrease and how drought duration is 
modified across precipitation, runoff and soil moisture. Remote sensing variables should 
also be incorporated to calculate drought indicators in the context of drought area analysis. 
Forecasting models that use drought areas instead of the aggregated values of drought 
indicators are recommended. 

 (O2) VISUAL APPROACHES TO ANALYSING SPATIO-TEMPORAL
DROUGHT VARIATION

Problems can arise when visually assessing the spatio-temporal characteristics of drought. 
Assessing more than two characteristics at once is not always straightforward because of 
the difficulty of detecting certain patterns, such as seasonality or periodicity. Another 
issue is the length of the data period. When information is available for long periods, as 
in the current case study, which accounts for a century of information (Chapter 8), 
analysing drought variation is challenging. To deal with these limitations, visual 
approaches based on radial and polar graphs were developed (see Chapter 8). The results 
showed that these graphs facilitated the identification of drought variations and the 
detection of spatial patterns. 

Recommendations: Further development of these visual tools is recommended to include 
other spatial characteristics, such as direction, to help identify the predominant routes of 
drought. The proposed graphs could aid in exploring the spatial patterns of drought within 
the framework of big data mining by using a large amount of data from existing drought 
indicator databases. 
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 (O3) METHODOLOGY FOR DROUGHT TRACKING 

This research introduced a methodology for building the spatial path of a drought, i.e. the 
union of its successive tracks. The spatial paths of the most extensive droughts in India 
were calculated for the period between 1901 and 2013 (see Chapter 9). The occurrences 
of these calculated events were corroborated with documented information from the 
region. The results indicated that the methodology correctly captured the largest droughts. 
The data generated from the constructed drought paths, i.e. area and location, were then 
used to characterise drought dynamics. The droughts were found not to follow a specific 
spatial path, and those with the greatest spatial extent negatively impacted the country 
most significantly. 

Recommendations: The developed methodology should be used to analyse future 
droughts across the region. This type of spatio-temporal analysis should be carried out 
for other large-scale cases. It is also recommended that other drought indicators associated 
with agricultural drought, such as soil moisture, be calculated. 

The results of this research can help improve forecasting in the long run. Further research 
is recommended to develop a model based on ML techniques that will predict the spatial 
extent of droughts and track them using the STAND methodology. The ML model’s 
construction may be based on Eq. 10.1 as follows: 

( ) ( )1 1 1, , , , , ,t t t t t tL da f L da L ddθ θ+ + +∆ = ∆              (Eq. 10.1) 

where 

dat  = drought area at time t 

dat+1  = drought area at time t+1 

1tL +∆  = distance between dat and dat+1 

1tθ +  = angle (deg) of the line between the centroids of dat and dat+1 

tL∆  = distance between dat-1 and dat 

tθ  = angle (deg) of the line between the centroids of dat-1 and dat 

L  = average length of trajectories 

dd  = average duration 

 (O4) ML MODELS TO PREDICT CROP YIELD RESPONSES TO DROUGHT 

Crop yield is one of the variables most used to assess the impact of droughts on agriculture. 
Crop growth models calculate yield and variables related to plant development, but they 
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are limited in that specific data are needed for computation. Given this limitation, ML 
models are often widely utilised instead, but their use with the spatial characteristics of 
droughts as input data is limited.  

This research explored the use of drought areas as input data for building a framework to 
predict seasonal crop yield (Chapter 7). This framework is made up of two components. 
The first includes polynomial regression (PR) models, and the second considers an ANN. 
In this framework, the purpose was to compare both types of ML models (PR and ANN) 
and integrate them into the framework. The logic was as follows: ANN models determine 
the most accurate predictions, but in practice, issues regarding data retrieval and 
processing can make the use of equations, i.e. PR, preferable. The proposed framework 
provides these equations to perform such calculations. The estimates can be further 
improved when the ANN models are run with new input data. The results indicated that 
the empirical equations (PR) produced good predictions when using drought area as the 
input data. ANN provides better estimates, in general. 

Recommendations: Future work could include drought areas calculated using remote 
sensing data. Building models at shorter time scales, such as weeks or even days, is also 
recommended, as these shorter periods are critical for certain crops. 

 CONCLUSION IN BRIEF 

This research presented analytical and visual methodologies for carrying out the spatio-
temporal characterisation of drought (STAND). The methodologies developed and 
introduced in this dissertation may be used to help in calculating, monitoring and 
predicting drought. These methods include the Standardised Evapotranspiration Deficit 
Index (SEDI)  for drought monitoring (Chapter 6); the ML framework for predicting crop 
yield with drought area as input (Chapter 7); the Polar Area Diagram (PAD), the AnnUal 
RAdar chart (AURA) and the MOnthly Spider ChArt (MOSCA) for analysing drought 
variation (Chapter 8); the Drought DuRAtion, SeveriTy and Intensity Computing 
(DDRASTIC) method for drought characterisation (Chapter 5); and the Spatial 
TRACKing of drought (S-TRACT) method for drought monitoring (Chapter 9).  

The outcome of this research is relevant for the following: 1) drought forecasting (i.e. 
drought tracks can help predict how spatial drought events move around in a specific 
region) and 2) improved knowledge of drought-generating processes. The first item is 
more important for operational purposes (short term), and the second one for scientific 
research (long term).  

The results of this research are expected to help improve the calculation of drought 
characteristics. A better characterisation of droughts will allow for better development of 
plans and policies for the management of the negative impacts of droughts. It is hoped 
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that the methodologies for calculating drought and trajectories can also help hydro-
meteorological organisations in charge of drought monitoring to deal with this task.  

Recommendations for future studies have also been shown. Addressing drought as a 
spatial event has gained attention in the last decade. In the coming years, studies related 
to its drivers, the way in which drought spreads through the different components of the 
hydrological cycle, prediction of drought trajectory and intensity, and spatial patterns of 
droughts (including spatial splitting and merging), are some of the subjects that are 
expected to have a fruitful future development in this fascinating topic of drought 
characterisation and prediction. 
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ANNEXES 

Figure A1 Monthly values of drought area considering all clusters (DA_total, left), and considering only 
the largest one (DA_largest, centre). Right panel shows the difference between DA_total and DA_largest. 
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Figure A2 Area of the largest cluster (DA_largest) and distances between consecutive centroids in time 
(Δl) for the period 1901-2013. 
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Figure A3 Average duration (months) of drought paths obtained with different combinations of parameters. 

a = 50

b  = 50 b  = 70 b  = 90

50 60 70 80 90 50 60 70 80 90 50 60 70 80 90
50 3.9 4.5 5.1 5.7 6.2 50 3.9 4.6 5 5.2 5.3 50 3.9 4.2 4.2 4.3 4.2
60 3.9 4.5 5.1 5.7 6.2 60 3.9 4.5 4.9 5.2 5.2 60 4.2 4.5 4.6 4.7 4.7
70 3.9 4.5 5.1 5.7 6.2 70 3.9 4.6 5.1 5.4 5.5 70 4.4 4.8 5.1 5.2 5.2
80 3.9 4.5 5.1 5.7 6.2 80 3.9 4.6 5.2 5.7 5.9 80 4.6 5.1 5.6 5.7 5.7
90 3.9 4.5 5.1 5.7 6.2 90 3.9 4.6 5.3 6 6.2 90 4.9 5.4 6 6.2 6.2

a = 40

b  = 50 b  = 70 b  = 90
4
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80 4 4.6 5.4 6.2 6.6 80 4.1 4.9 5.6 6.2 6.4 80 5.1 5.6 6.1 6.2 6.3 7
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70 3.8 4.4 5.2 6.1 6.8 70 4 4.6 5.2 5.7 5.9 70 4.5 4.9 5.2 5.4 5.4
80 3.9 4.7 5.5 6.7 7.3 80 4.2 5.1 5.9 6.7 6.9 80 5.3 5.8 6.4 6.7 6.7
90 3.9 4.7 5.6 6.8 7.5 90 4.3 5.2 6.1 7.1 7.5 90 5.7 6.2 7.1 7.5 7.5
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Figure A4 Average severity of drought paths obtained with different combinations of parameters. Severity 
is expressed as the ratio between the total sum of areas (in percentage) and duration (months). 

a = 50

b  = 50 b  = 70 b  = 90

50 60 70 80 90 50 60 70 80 90 50 60 70 80 90
50 225.4 219.4 222.3 219.1 215 50 225.4 228.8 237.1 240.2 241 50 225.4 234.7 249.8 253.7 254.4
60 225.4 219.4 222.3 219.1 215 60 217.4 219.4 229.1 231.9 231.1 60 211.6 219.4 232.9 237.2 238.1
70 225.4 219.4 222.3 219.1 215 70 211 212.6 222.3 225.8 224.8 70 205.1 212.9 222.3 228 228.5
80 225.4 219.4 222.3 219.1 215 80 204.3 203.8 215.8 219.1 217.9 80 199.5 206.1 214 219.1 219.6
90 225.4 219.4 222.3 219.1 215 90 200.5 200.6 210.1 215.1 215 90 198 203.5 208.9 214.4 215

a = 40

b  = 50 b  = 70 b  = 90

50 60 70 80 90 50 60 70 80 90 50 60 70 80 90
50 197.7 195.7 198.8 197.9 192.4 50 197.7 200.6 208.5 211.3 213.5 50 197.7 205.5 218.8 220.5 222.9
60 197.5 193.6 197.1 196 190.6 60 192.4 193.6 202.2 204.1 205.4 60 187.4 193.6 204.3 206.2 208.5
70 193.7 190.6 194.2 192.8 187 70 184.9 186.7 194.2 196.2 194.8 70 181.8 188.4 194.2 197.6 197.9
80 192 189.7 193.4 191 185.3 80 179.1 180 189.7 191 189.7 80 176.5 182.4 188.2 191 191.3
90 191.7 189.3 192.7 190.4 184.7 90 175.1 176.4 183.7 185.3 184.7 90 173.3 178.3 181.5 184.4 184.7

a = 30

b  = 50 b  = 70 b  = 90
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Figure A5 Mode of onset location of drought paths obtained with different combinations of parameters. 
Locations: centre (0), east (1), northwest (4), and south (7). 

a = 50

b  = 50 b  = 70 b  = 90

50 60 70 80 90 50 60 70 80 90 50 60 70 80 90
50 0 7 0 1 1 50 0 1 0 1 1 50 0 0 0 0 0
60 0 7 0 1 1 60 0 7 7 1 1 60 0 7 0 0 0
70 0 7 0 1 1 70 0 1 0 1 1 70 0 0 0 0 0
80 0 7 0 1 1 80 0 1 0 1 1 80 1 1 1 1 1
90 0 7 0 1 1 90 0 1 1 1 1 90 1 1 1 1 1

a = 40

b  = 50 b  = 70 b  = 90

50 60 70 80 90 50 60 70 80 90 50 60 70 80 90
50 1 1 1 1 1 50 1 1 1 1 1 50 1 1 4 0 0
60 7 7 7 1 1 60 7 7 7 7 1 60 7 7 7 7 7
70 0 7 1 1 1 70 0 1 1 1 1 70 0 1 1 1 1
80 7 7 7 1 1 80 7 7 7 1 1 80 7 7 7 1 1
90 7 7 7 1 1 90 7 7 7 7 1 90 7 7 1 1 1

a = 30

b  = 50 b  = 70 b  = 90

50 60 70 80 90 50 60 70 80 90 50 60 70 80 90
50 1 1 1 1 1 50 1 1 1 1 1 50 1 1 1 1 1
60 7 7 1 1 1 60 7 7 7 7 1 60 7 7 7 7 7
70 7 7 1 1 1 70 7 1 1 1 1 70 0 1 1 1 1
80 7 7 7 1 1 80 7 7 1 1 1 80 7 1 1 1 1
90 7 7 7 1 1 90 7 7 1 1 1 90 7 1 1 1 1
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Figure A6 Mode of end location of drought paths obtained with different combinations of parameters. 
Locations: centre (0), east (1), north (3), and south (7). 

a = 50

b  = 50 b  = 70 b  = 90

50 60 70 80 90 50 60 70 80 90 50 60 70 80 90
50 0 0 1 7 7 50 0 0 0 0 0 50 0 0 0 0 0
60 0 0 1 7 7 60 0 0 0 0 0 60 1 0 0 0 0
70 0 0 1 7 7 70 1 1 1 7 7 70 1 1 1 1 1
80 0 0 1 7 7 80 7 7 7 7 7 80 7 7 7 7 7
90 0 0 1 7 7 90 3 1 7 7 7 90 7 7 7 7 7

a = 40

b  = 50 b  = 70 b  = 90

50 60 70 80 90 50 60 70 80 90 50 60 70 80 90
50 1 1 1 7 7 50 1 1 1 0 0 50 1 1 0 0 0
60 7 1 7 7 7 60 7 1 7 7 7 60 1 1 0 0 0
70 1 1 7 7 7 70 7 1 7 7 7 70 1 1 7 7 7
80 1 1 7 7 7 80 7 7 7 7 7 80 7 7 7 7 7
90 7 7 7 7 7 90 7 7 7 7 7 90 7 7 7 7 7

a = 30

b  = 50 b  = 70 b  = 90

50 60 70 80 90 50 60 70 80 90 50 60 70 80 90
50 1 1 1 7 7 50 1 1 1 7 0 50 1 1 0 0 0
60 7 1 7 7 7 60 7 1 7 7 7 60 1 1 0 0 0
70 7 1 1 7 7 70 7 1 1 7 7 70 1 1 1 1 1
80 1 1 1 7 7 80 7 7 7 7 7 80 7 7 7 7 7
90 1 1 1 7 7 90 1 1 1 7 7 90 1 1 7 7 7
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Figure A7 Mode of rotation of drought paths obtained with different combinations of parameters. Rotation 
is indicated by ccw and cw that sand for mostly counter-clockwise, and mostly clockwise, respectively. 

a = 50

b  = 50 b  = 70 b  = 90

50 60 70 80 90 50 60 70 80 90 50 60 70 80 90
50 ccw cw cw cw cw 50 ccw cw ccw ccw ccw 50 ccw cw cw cw cw
60 ccw cw cw cw cw 60 ccw cw cw ccw cw 60 ccw cw cw cw cw
70 ccw cw cw cw cw 70 cw cw cw ccw cw 70 cw cw cw cw cw
80 ccw cw cw cw cw 80 cw cw cw cw cw 80 cw cw cw cw cw
90 ccw cw cw cw cw 90 cw cw cw cw cw 90 cw cw cw cw cw

a = 40

b  = 50 b  = 70 b  = 90

50 60 70 80 90 50 60 70 80 90 50 60 70 80 90
50 ccw cw cw cw cw 50 ccw cw cw ccw cw 50 ccw cw cw cw cw
60 ccw cw cw cw cw 60 ccw cw cw ccw cw 60 cw cw cw cw cw
70 ccw cw cw cw cw 70 ccw cw cw cw cw 70 cw cw cw cw cw
80 ccw cw cw cw cw 80 cw cw cw cw cw 80 cw cw cw cw cw
90 ccw cw cw cw cw 90 cw cw cw cw cw 90 cw cw cw cw cw

a = 30

b  = 50 b  = 70 b  = 90

50 60 70 80 90 50 60 70 80 90 50 60 70 80 90
50 cw cw cw cw cw 50 cw cw cw ccw cw 50 cw cw cw cw cw
60 cw cw cw cw cw 60 cw cw cw cw cw 60 cw cw cw cw cw
70 ccw cw cw cw cw 70 ccw cw cw ccw cw 70 cw cw cw cw cw
80 ccw cw cw cw cw 80 cw cw cw cw cw 80 cw cw cw cw cw
90 ccw cw ccw cw cw 90 cw cw ccw cw cw 90 cw cw cw cw cw
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Figure A8 Results of drought of 1905. Largest clusters and centroids are indicated from 1905/3 to 1906/6 
(top). Area of largest cluster (DA_largest) and distance between consecutive clusters in time (Δl) are 
displayed from 1905/1 to 1906/6 (centre). The drought duration is pointed out schematically with a 
horizontal line for each combination of parameters. Drought tracks calculated with the three combination 
of parameters are also presented (bottom). Spatial drought extent is schematized by four symbols pointing 
out the size of area. The origin of the axes is placed in the centre of the country. Narrows point out the 
direction of each track segment. Insets show zoomed-in views. 
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Figure A9 Same as Fig. A8 but for drought of 1942. 
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Figure A10 Same as Fig. A8 but for drought of 1965. *In the figure only it is shown the tracks until 1966/6 

but they end in 1967/2. 

0
250
500
750
1000
1250
1500

0
20
40
60
80

19
65

/0
1

19
65

/0
2

19
65

/0
3

19
65

/0
4

19
65

/0
5

19
65

/0
6

19
65

/0
7

19
65

/0
8

19
65

/0
9

19
65

/1
0

19
65

/1
1

19
65

/1
2

19
66

/0
1

19
66

/0
2

19
66

/0
3

19
66

/0
4

19
66

/0
5

19
66

/0
6D

A
_l

ar
ge

st
[%

]

Δl
[k

m
]

3  4  5  6  7  8  9  10  11  12  1  2  3  4  5  6

N N N

1965     1966

DA_largest [%]
<10
10 to 25
25 to 50
≥50

1965/7 to 1965/12 1965/5 to 1966/6* 1965/7 to 1965/12

combination_1
combination_2
combination_3

parameters

0 1,000 2,000500
km

DA_largest Δl

Annexes 



Annexes 

133 

Figure A11 Same as Fig. A8 but for drought of 1972. *In the figure only it is shown the tracks until 1973/6 

but they end in 1973/7. 
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Figure A12 Same as Fig. A8 but for drought of 2000. 
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Figure A13 Same as Fig. A8 but for drought of 2002. 
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Studies of drought have increased in light  
of new data availability and advances in 
spatio-temporal analysis. However, the 
following gaps still need to be filled:  
1) methods to characterise drought that 
explicitly consider its spatio-temporal features, 
such as spatial extent (area) and pathway;  
2) methods to monitor and predict drought that 
include the above-mentioned characteristics 
and 3) approaches for visualising and 
analysing drought characteristics to facilitate 
interpretation of its variation. This research 
aims to explore, analyse and propose 
improvements to the spatio-temporal 
characterisation of drought. Outcomes provide 
new perspectives towards better prediction. 

The following objectives were proposed. 
1) Improve the methodology for characterising 

drought based on the phenomenon’s spatial 
features. 2) Develop a visual approach to 
analysing drought variations. 3) Develop a 
methodology for spatial drought tracking.  
4) Explore machine learning (ML) techniques 
to predict crop-yield responses to drought.  
The four objectives were addressed and 
results are presented.

Finally, a scope was formulated for integrating 
ML and the spatio-temporal analysis of 
drought. Proposed scope opens a new 
area of potential for drought prediction (i.e. 
predicting spatial drought tracks and areas). 
It is expected that the drought tracking and 
prediction method will help populations cope 
with drought and its severe impacts.
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