

Delft University of Technology

Ecologically Sound Procedural Generation of Natural Environments

Onrust, Benny; Bidarra, Rafael; Rooseboom, Robert; van de Koppel, Johan

DOI
10.1155/2017/7057141
Publication date
2017
Document Version
Final published version
Published in
International Journal of Computer Games Technology

Citation (APA)
Onrust, B., Bidarra, R., Rooseboom, R., & van de Koppel, J. (2017). Ecologically Sound Procedural
Generation of Natural Environments. International Journal of Computer Games Technology,
2017(7057141), 1-17. Article 7057141. https://doi.org/10.1155/2017/7057141

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1155/2017/7057141
https://doi.org/10.1155/2017/7057141

Research Article
Ecologically Sound Procedural Generation of
Natural Environments

Benny Onrust,1 Rafael Bidarra,1 Robert Rooseboom,2 and Johan van de Koppel2

1Computer Graphics and Visualization Group, Delft University of Technology, Delft, Netherlands
2Department of Spatial Ecology, Royal Netherlands Institute for Sea Research, Yerseke, Netherlands

Correspondence should be addressed to Rafael Bidarra; r.bidarra@tudelft.nl

Received 11 February 2017; Accepted 23 April 2017; Published 18 May 2017

Academic Editor: Michael J. Katchabaw

Copyright © 2017 Benny Onrust et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Current techniques for the creation and exploration of virtual worlds are largely unable to generate sound natural environments
from ecological data and to provide interactiveweb-based visualizations of such detailed environments.We tackle this challenge and
propose a novel framework that (i) explores the advantages of landscape maps and ecological statistical data, translating them to an
ecologically sound plant distribution, and (ii) creates a visually convincing 3D representation of the natural environment suitable
for its interactive visualization over the web. Our vegetation model improves techniques from procedural ecosystem generation
and neutral landscape modeling. It is able to generate diverse ecological sound plant distributions directly from landscape maps
with statistical ecological data. Our visualization model integrates existing level of detail and illumination techniques to achieve
interactive frame rates and improve realism. We validated with ecology experts the outcome of our framework using two case
studies and concluded that it provides convincing interactive visualizations of large natural environments.

1. Introduction

The visualization of existing and future natural environ-
ments is becoming more important for decision-making, as
well as for recreational and scientific communication, as it
considerably helps to better understand the various spatial
relations in an environment [1, 2]. This is an important topic
for ecologists who are focusing on developing ecological
models that can predict how an environment develops in
the future (see Figure 1). Such models use ecological and
geophysical processes to make these accurate predictions.
The disadvantage of these models is that the output lacks
detail and often can only be used by ecologists. A 3D
visualization of this data can be helpful to communicate their
work to nonecologists or promote future/existing natural
environments to the public in general.

The combination of ecological models, existing geo-
datasets, and 3D visualizations is becoming more relevant
with the so-called “Building with Nature” solutions. Building
withNature is an initiative that focuses on the development of
nature combined with other utilities [3]. For example, instead

of creating a strong dike to protect the land against water,
ecological processes are utilized in the target area to develop
natural dunes that can provide protection. This area can be
used not only for security, but also for recreation services.
Figure 2 shows an example of a Building with Nature project.
This project started with placing a lot of sand before the coast
(Figure 2(a)), which has evolved, by the end of 2013, into a
more unnatural coastline shape (Figure 2(b)) that allowed
natural dune beach and dune development through stimu-
lating natural ecological processes in that area. In addition,
the dunes were enriched with the extra sand, promoting the
coastal protection. Further, vegetation started growing on the
sand and provided space for fish, sea mammals, and birds.
Finally, there is more space for recreational purposes.

Ecological models are being developed to predict these
processes and 3D visualizations could help to explore and
communicate these results. This requires that the 3D visual-
izations are detailed, visually convincing, and easily accessible
to the general public.Therefore, the output data from ecolog-
ical models or geodatasets needs to be translated, in an eco-
logically correct manner, into an accurate plant distribution.

Hindawi
International Journal of Computer Games Technology
Volume 2017, Article ID 7057141, 17 pages
https://doi.org/10.1155/2017/7057141

https://doi.org/10.1155/2017/7057141

2 International Journal of Computer Games Technology

Figure 1: Virtual Paulinapolder: a salt marsh located in the Netherlands, generated, and rendered with our framework.

(a) (b)

Figure 2: An example of a “Building with Nature” project [3]. On (a), a lot of sand is placed, which is transformed by ecological processes in
the area shown in (b).

In addition, to promote communication and dissemination,
visualizations of such results should be easily and widely
accessible, making interactive 3D web visualizations little less
than indispensable.

However, both the generation of ecologically sound plant
distributions and the generation of detailed 3D environments
that are suitable for interactive web-based visualization are
far from trivial tasks. The input data from either ecological
models or geodatasets do not often contain enough detail
to derive exact plant positions nor to obtain a high-density
plant distribution with a large variety of species. Therefore,
procedural generation techniques have to be used to generate
and fill these missing details. Most procedural techniques for
natural environment focus either on simulation of ecosystems
or on the global generation of ecosystems using state-of-the-
art point generation technique to determine plant positions.
Both families of techniques lack the ability to correctly
translate ecological input data, like coverage or patchiness
data of plant species, to a plant distribution with high density
and variety. Moreover, most examples of interactive 3D
visualization of high-density natural environments focus on
desktop applications, which are less useful than web-based
applications in the context of ecological management, policy-
making, and popular awareness. It is not possible to use these

techniques directly in a web environment, because browser-
based solutions do not have the same rendering capabili-
ties as desktop-based solutions. Current web visualization
approaches focus on natural environments with only the
physical terrain or a low plant density/variety.

We present a new approach to generate accurate and
sound plant distributions from ecological input maps and
interactively visualize its results in a web browser-based con-
text. This article, therefore, answers the following questions:
(i) how to generate an ecologically sound plant distribution
from ecological inputmaps and (ii) how to generate a visually
convincing interactive 3D web-based visualization of such
natural environments with high density and variety of plants.
We answer these questions by proposing a frameworkwith (i)
a vegetation model that combines procedural and ecological
modeling techniques to translate landscape maps to an
ecologically sound plant distribution and (ii) a visualization
model that translates the generated plant distribution into
a 3D representation suitable for interactive visualization
over the web. The vegetation model is able to translate
input landscape maps with statistics about coverage and
patchiness of plant species to a sound and convincing plant
distribution; and the visualization model supports rendering
natural environments with high density and variety of plants.

International Journal of Computer Games Technology 3

20

40

60

80

20

40

60

80

20

40

60

80

20

40

60

80

200 250 300 200 250 300 200 250 300 200 250 300

A�er 5 years A�er 10 years A�er 15 years A�er 30 years
1200

800

400

0

(s
te

m
sm

2
)

Pl
an

t d
en

sit
y

Figure 3: Example outputs of a dynamic ecological model at different time stamps [6].

This article is a significantly extended version of a previ-
ous conference paper [4].

2. Related Work

This section provides an overview of techniques related to
ecological modeling, procedural ecosystem generation, and
interactive 3D visualization of natural environments. An
overview of ecological and procedural techniques is included
to show the current limitations in generating plant distribu-
tions.We also include non-web-based solutions of interactive
3D visualization, because of the limited examples that are
available for interactive web-based visualization for natural
environments. We do not include a review of generative
algorithms to produce individual 3Dplantmodels, as a survey
of such techniques has been recently published elsewhere [5].

2.1. Ecological Model Techniques. We divide ecological model
techniques into two categories: dynamic and neutral model
techniques. Dynamic models simulate ecological and geo-
physical processes [8], which normally result in raster maps
containing information about height, biomass, and/or cov-
erage of certain vegetation at a certain point in time [6,
9, 10]. This data often lacks sufficient details to extract
plant positions. Dynamic models make it possible to extract
spatial information about future landscapes. Figure 3 shows
the output of a dynamic ecological model at different time
stamps. This model provides information about the plant
density for an area that develops over the years.

Neutral models generate classification grid maps based
on coverage and shape metric information per plant
species. Shape metric values give information about the pat-
terns/patchiness of a plant species (e.g., a plant species could
grow scattered in an area or grow very close to each other).
This input data is translated to a single plant species for each
grid cell on the input map by using either a MRC (modified
random clusters) model [11] or fractal-based model [12]. The
disadvantage of neutral model techniques is that, similarly to
dynamic models, plant positions can often not be extracted
directly from the generated maps. Another disadvantage is
that neutral models assume that the conditions for each plant
species are the same for the complete environment (hence the
term “neutral”). For example, they assume that the coverage
value for a plant species is the same at every location in the
environment. Often, this assumption does not hold in real-
world environments.

2.2. Procedural EcosystemGeneration Techniques. Procedural
ecosystem techniques compute virtual plant distributions,
and these techniques can be divided into two categories:
local-to-global or global-to-local [13]. Techniques from the
local-to-global category use multiset L-systems to simulate
plant growth and competitions [14]. To obtain a complete
ecosystem, it is necessary to iterate through the L-system
rules and stop the simulation after a certain amount of
iterations. Local-to-global techniques make it possible to
model individual behavior for each plant. Complex behavior,
such as realistic competition for sun light and soil resources,
can be modeled [15]. The disadvantage is that the control-
lability of these techniques is low, as it is not possible to
predict the outcome after the simulation is finished given
the input parameters. They are not able to translate maps
and statistics about the environment to a realistic plant
distribution. Instead, these methods are good in showing
interactions between different plants.

The global-to-local techniques do not use a simulation
process to calculate a plant distribution and plants are not
modeled individually. Instead, positions from plants are
calculated directly from a globally defined environment.
Hammes [16] uses amethod that defines possible ecotypes for
an environment. An ecotype is, for example, a forest or desert.
Given a height map, the likelihood for each tile for every
ecotype is calculated. The ecotype with the highest probabil-
ity, while accounting for random variation, is selected. Next,
plants belonging to that ecotype are scattered randomly in
that tile. This method is limited, because plants are randomly
placed within a tile and only a single type of plant is used.
In addition, the final distribution does not follow the input
probability values for each ecotype. Lane and Prusinkiewicz
[13] place each plant with a dart-throwing algorithm in
combination with probability fields, which increases the
likelihood that plants are placed at their preferred location.
In addition, each plant can exhibit neighborhood effects on
the remaining plants by updating the probability field around
it with a negative or positive effect. Again, with this method it
is not possible to have the input plant species follow a certain
statistical distribution. Alsweis and Deussen [17] generated
plant distributions by generating points following the PDD
(Poisson Disk Distribution) in combination withWang tiling
to generate all the points efficiently. This method did not
investigate how to classify/assign these points to a plant
species. On the other hand, the placement of plants with
different sizes was convincing.

4 International Journal of Computer Games Technology

Weier et al. [18] extended the previous technique by also
classifying these points to different plant species, using a
combination of the previously discussedmethods ofHammes
[16] and Lane and Prusinkiewicz [13]. First, a complete
point set was generated using the PDD with a Wang tiling
technique. Each point receives probability values for each
plant species. Next, each point is assigned the plant species
with the highest probability, while accounting for some
random variation. Finally, a group of points is selected that
have a probability value with the highest standard deviation,
which are most certain to retain their original plant species
classification. These points are used to exhibit a neighbor-
hood effect on their neighboring points. To include this effect
in the classification, the classification process is repeated until
a number of iterations have been done or when a certain
amount of points does not change plant species anymore.
The disadvantage of this technique is that the classification
process does not translate the input statistical data to the final
plant distribution. Also, it is difficult to generate different
kinds of plant patterns in the plant distribution with only the
neighborhood kernel.

2.3. Interactive 3D Visualization of Natural Environments.
3D rendering of natural environment with high vegetation
count is a difficult problem, even with dedicated software
and/or hardware, due to the high polygon count and light
interaction. There are several desktop-based solutions that
are able to render large amounts of plants [19, 20]. Often,
these techniques focus on rendering one or two plant species
with a high density in the environment, but they achieve
interactive frame rates with it. Web-based rendering, which
has less rendering capabilities in comparison to desktop-
based rendering, on the other hand, does not have techniques
proposed, by our knowledge, for the rendering of such large
natural environments. Instead, the current focus is more
on geovisualizations. In this section, we first discuss several
techniques for the rendering of natural environments using
desktop-based solutions. Next, we provide a small overview
of the current work done for web-based rendering related to
natural environments.

One of the first techniques to render many plants in
real-time was a method proposed by Deussen et al. [21]
that handles complex plant ecosystems by abstracting further
away plant objects into single points and lines. Bruneton
and Neyret [20] developed a technique, which is able to
render a realistic forest representation in real-time with
realistic lighting at all scales.They use a z-field representation
to render the nearest trees individually and a shader map
representation to render far-away trees.The resulting lighting
was realistic and suitable for real-time purposes, especially
for far-away views. Other techniques focus on the rendering
of millions of grass blades in an environment. Boulanger
et al. [19] propose a method to render large amounts of
grass blades with dynamic lighting. A LOD (level of detail)
system divides the grass blades into different representations.
Geometry models are used for blades close to the viewer, and
blades atmoderate distances are representedwith vertical and
horizontal slices, while far away only the horizontal slice is
used. A modification of the alpha blending technique is used

to blend the transitions between the LODs. Fan et al. [22]
extended the previous method with animations. Although
none of these solutions is web browser-based, they provide
insight into how to organize the data to maintain real-time
performance and to create transition between the different
LODs.

The interactive 3D rendering of natural environments on
a web browser is a fairly new topic that has not received
much attention so far. In current literature we could not
find examples of 3D interactive visualization of complex
natural environments with high-density vegetation, and only
a few techniques aimed at real-time visualization of envi-
ronments without vegetation using geovisualizations [23, 24].
These visualizations focus on the streaming of geodata to
the browser and the organization of the data to achieve
interactive frame rates. Data is often organized in groups
using quadtree structures to reduce far-away geometry.

3. Basic Approach

Here, we provide the outline of our approach for the
generation and web-based visualization of natural environ-
ments. The main goal is to generate ecologically sound plant
distributions based on various ecological datasets and to
interactively visualize these over the web. In the previous
section, we have discussed various methods that focus on
the procedural generation and/or 3D visualization of natural
environments, but often these methods are limited and do
not provide satisfactory results. In particular, procedural
methods for the generation of plant distributions are mostly
unable to correctly process ecological information, such as
statistical data on coverage and patchiness, in combination
with landscape maps.

Our approach, improving upon fractal-based neutral
modeling and procedural point generation techniques, cap-
italizes on their advantages while avoiding their pitfalls, in
order to solve this problem. In addition, most interactive 3D
visualizations of natural environments are currently provided
in standalone applications, which typically can utilize more
GPU features than web browser-based applications. We
found no examples of web-based interactive visualizations of
large natural environments presenting a large variety of plant
species, like those we present here.

Before we go into the details of the framework’s structure,
we will first define some concepts frequently used in this
article and elaborate on the various kinds of input.

3.1. Concepts. The following concepts will be regularly used
throughout this article:

(i) Plant species: the species of the plant, for example, oak
or birch.

(ii) Plant spacing: theminimal required distance between
plants. Often, this is related to the plant radius or size
of the specific plant species.

(iii) Plant level: different plant species that are placed in
one group, because they have approximately the same

International Journal of Computer Games Technology 5

plant spacing. These groups are used in our frame-
work to processmultiple plant species simultaneously.
The aim of creating this division is to allow the
generation of plant distributions that contain plant
species with large difference in plant spacing, such as
trees and flowers.

(iv) Plant patterns or patchiness: the patterns of the plants
of a certain plant species. Plants of a species that
exhibit high patchiness grow close together, while
plants of a species with low patchiness grow scattered
throughout the environment.

(v) Plant coverage: the amount of occupation of a certain
plant species in the environment.

3.2. Input. A variety of input data is used at different stages.
The following list summarizes all these inputs:

(i) Landscapemaps: for calculating the plant distribution
and 3D visualization of the environment. During
plant distribution generation, landscape maps are
used in combination with statistical data of each
plant species. In addition, a height map is used to
represent the terrain. Landscape maps can be derived
from remote sensing sources, or they are generated by
ecological models.

(ii) Plant statistical data: statistics about the coverage per
plant species and about the patchiness of each plant
species, used for calculating the plant distribution.
This statistical data is often related to one or more
landscape maps. For example, we can have a height
map with coverage statistics that are based on the
height of that map, so that certain plant species
can have higher coverage on high ground and lower
coverage on low ground.

(iii) Plant models: one or more 3D models per plant
species, used to represent the various plant species at
the highest LOD.

(iv) Texture maps: used to represent the various LOD
representations and to decorate the rest of the scene.

(v) Other parameters: for example, plant spacing for
each plant species, used during plant distribution
generation.

3.3. Overview. A global overview of our approach is depicted
in Figure 4, visually representing the data pipeline, from
input data, through vegetation model, to visualization model.
The input data from existing remote sensing sources or
ecological models is translated by the vegetation model to
a point distribution where each individual point has been
classified to correspond to one of the plant types occurring
in that environment. The visualization model translates that
result to an interactive 3D visualization on the web.

3.4. VegetationModel. The vegetationmodel consists of plant
distributions generated from landscape maps in combination
with statistical data about coverage and patchiness of plant

species. This is achieved by dividing the model into two
separate components: plant position generation and plant
species generation. The plant position component generates
all possible plant positions from the input landscape maps.
The plant species component generates plant species for
these points using the landscape maps and the coverage and
patchiness statistical data.

3.5. Visualization Model. The visualization model organizes
and translates the generated plant distribution to a 3D
representation suited for interactive visualization over the
web. This stage consists of three phases: the offline phase, the
precomputation phase, and the rendering phase. The offline
phase occurs before the actual visualization and is done in
advance, once and for all; it includes, for example, the plant
model generation. The precomputation phase structures the
plant distribution from the vegetation model into a LOD
scheme of the terrain, organized in a quadtree structure.
Finally, the rendering phase renders all the geometry and
the various LODs are blended together to obtain smooth
transitions.

4. Vegetation Model

This section describes the vegetation model consisting of
plant distributions generated from landscape maps in com-
bination with statistical data about coverage and patchiness
of plant species. Generation of this model is divided into
two main stages: plant position generation and plant species
generation. Each of these stages will be discussed separately,
and in this discussion, we will assume that the plant sizes of
each plant species are equal. Towards the end of the section,
we introduce the concept of plant levels, which explains how
a plant distribution can be generatedwhere plant species have
significant differences in plant sizes.

4.1. Plant Position Generation. Thegoal of this stage is to gen-
erate all possible plant locations in the environment without
assigning or creating bias towards any of the plant species.
The classification of these positions using the coverage and
patchiness statistics of each plant species is handled at the
next stage. To obtain all possible plant positions, we adopt
the PDD with Wang tiling technique used by Alsweis and
Deussen [17] and Weier et al. [18]. This technique makes it
possible to randomly generate points with a uniform distri-
bution where each point has a predefined minimal distance
to each other: similar to what can be observed in nature.
We extended this technique to integrate plant positions of
different sizes seamlessly without creating a bias based on the
size to any of the plant species. The next paragraphs explain
how these plant positions are generated.

4.1.1. Identify Vegetated Tiles. The first step is to identify
on an input map of the landscape all the tiles that contain
vegetation. This requires the use of a map that provides
information on the location of vegetation, for example,
Normalized Difference Vegetation Index (NDVI), biomass,
or coverage maps.The next step is to threshold the map given

6 International Journal of Computer Games Technology

(a)

100

64

36

16

4

0
150 200 250

C
ov

er
 (%

)

Elevation (cm NAP)

Spa
Ely

Fes

Hal

Tri
Puc

Lim

Ast
Sua Pla

Air

(b)

(c) (d)

Figure 4: A visual overview of our approach starting with the various input data, such as (a) landscape maps and (b) statistical data [7]. Next,
from this data we derive the plant distribution in the vegetation model (c), where each point is associated with plant species. Finally, from
this plant distribution we derive the detailed 3D visualization model, suitable for rendering in the browser (d).

a user-defined threshold. Each tile with a value higher than
the threshold is marked as vegetated. The resulting output is
a binary grid map where, for each tile, it is indicated whether
it contains vegetation or not. In Figure 5 an example of this
step is shown. An NDVI map given as input is shown on
the left, and on the right we show the resulting binary map
after comparing each value of the tiles in the grid with the
predefined threshold.

4.1.2. Generate Plant Positions fromVegetated Tiles. Points are
generated with the PDD and Wang corner tiling technique
[25]. Wang corner tiling is used to avoid the corner problem
that appears in the regular Wang border tiling technique. A
Wang tiling is created using only the tiles on the map that are
marked as vegetated. Next, eachWang tile is filledwith a PDD
[26].

The result of this process is a seamless point distribution
where each point has at least a user-defined minimum
distance to other points and where only the vegetated tiles on

Figure 5: NDVImap onwhich a threshold is used to obtain the tiles
that contain vegetation. Threshold is set at 0.08.

themap contain points.Theminimumdistance is determined
based on the plant size of the plant species. Figure 6 shows
example output of plant positions generated from a tile-based
map with information about vegetation presence.

International Journal of Computer Games Technology 7

Figure 6: Plant positions generated from the vegetated tile map
using the PDD with Wang tiling technique.

4.2. Plant Species Generation. The aim of the plant species
generation stage is to classify the generated point distribu-
tion. The classification is based on fractal neutral modeling
techniques [12]. These techniques are able to classify raster
maps using coverage and patchiness statistics for each plant
species. As mentioned in Section 2, they are only able to
translate static coverage and patchiness data correctly. We
extended this method by integrating it with the generated
point distribution, so that it is able to handle nonstatic
statistical coverage and patchiness data. The next paragraphs
explain this classification procedure step by step.

4.2.1. Assigning Coverage and Patchiness Data. Thefirst step is
to assign each point a single coverage and patchiness value for
each plant species in the environment. Each point extracts the
appropriate value of each input map; for example, if the input
is a heightmap, each point is assigned a height value based on
the location in the map.The extracted values are translated to
a coverage value by using the corresponding statistical data,
for example, statistical data that contains information about
the coverage of each plant species for a certain range of height
values.

It is possible that each point receives multiple coverage
values for the same plant species; for example, a height map
may be augmented with a soil map with related coverage
statistics. This means that each point receives for every plant
species a coverage value based on the height and a coverage
value based on the soil. For the remainder of the classification,
these coverage values have to be merged to a single value,
so that each point has only a single coverage value for each
plant species. We obtain a single coverage value by taking
the minimum value, because we assume that the minimum
is the limiting growth factor for that plant species. The same
process is applied to extract the patchiness values. Patchiness
is represented with two values: roughness and patch area, for
the size of the patterns.

4.2.2. Fractal Generation. The second step is to calculate a
fractal value for every plant species in each point. Fractal
values are commonly used to represent different kinds of
patterns in nature [12]. The advantage of fractal algorithms is
that they calculate a random value for a point that depends on
the point location. This makes it possible to generate similar
random values for points that are close to each other and

dissimilar values for points that are not. This way, we can
represent plants that grow close to each other and plants that
are scattered throughout the environment. To achieve this
based on the patchiness input data, our fractal algorithmmust
be able to translate the input roughness and patch area values
to an individual fractal value for each point for every plant
species. In addition, it is possible that the roughness or patch
area values are nonstatic values for every plant species, in
contrast to those used in neutral modeling techniques.

We use a modified fractal Brownian motion algorithm
[26] that is able to generate a fractal value based on the
input patchiness data. Normally, fractal values are generated
by adding multiple values of Simplex noise with different
weights. A base frequency value is defined to determine the
clustering of similar Simplex noise values, where a lower
value means higher clustering and a higher value a lower
clustering. Based on the frequency, the amplitude value is
used to generate a new frequency value that in turn is used
to calculate a new Simplex noise value that is to be added to
the previous calculated values.

The frequency and amplitude value are used to relate
our patchiness data: the roughness and patch area. The
patch area is related to the frequency, and the roughness is
related to the amplitude. The relation between the amplitude
and the roughness is basically one-to-one, because when
a high roughness value results in a high amplitude value,
the patterns become rougher. The reason for this is that a
higher amplitude increases the frequency value with a higher
value of each iteration, and a higher frequency value means
more disperse patterns, which means rougher patterns. The
relation between the frequency and the patch area is more
difficult and is not one-to-one. Instead, the final fractal value
is calculated by generating and adding multiple fractal values
with different input frequency value. These input frequency
values cover the whole range of patch area values that are
available for that plant species in that environment. The
final value is calculated based on a weighted average of all
these calculated fractal values. The weight of each fractal
value depends on the similarity of the input patch area used
for that point. This process is required to support nonstatic
patchiness data within each plant species. Additional details
of this algorithm with examples can be found elsewhere [26].
Figure 7 shows fractal values that are generated for each point
position and all plant species. In this case there are four
plant species, which means that each point position receives
four fractal values equal to the number of plant species. In
addition, the example demonstrates the influence of different
patchiness statistics on the patterns of each plant species.

4.2.3. Classification. The last step is to classify each point
to a plant species using the coverage and fractal values that
were assigned to each point in the previous steps. First, an
individual threshold value for each plant species is calculated
for every point. The threshold value of a point is found by
taking an ordered list of the fractal values of all the points of
that particular plant species and then using the coverage value
of each point as percentile in that list. The fractal value that
matches with the position of the particular percentile is the
threshold value that is going to be used for that point.

8 International Journal of Computer Games Technology

Figure 7: Fractal map for each of four plant species where each
point has received fractal values for each plant species based on their
patchiness data. Clearly, different kinds of patterns can be identified
among the plant species.

Now each point has, for every plant species, a separate
threshold that is based on the coverage values. Next, for each
plant species, the fractal and threshold value of each point are
compared.When the fractal value is higher than the threshold
value, the point is assigned the corresponding plant species.
The result of this step is that each plant species gets assigned
a set of points matching the coverage and patchiness input
statistics. Figure 8 shows the various points that are classified
for each plant species with different coverage statistics.

In this process, it may happen that certain points have
been assigned to multiple plant species. These conflicts are
solved by assigning the plant species that has the highest frac-
tal value, which is determined separately for each conflicted
point. Figure 9 shows the classified plant distribution with
conflicts and the distribution where the conflicts are solved.

The consequence of this can be that a certain plant
species may end up having less coverage than required.
Therefore, the remaining nonclassified points are used to
add additional coverage to such plant species. Before the
remaining points can be classified, it is first necessary to
update the coverage values so that each plant species will
meet its expected coverage in the final plant distribution. For
each unclassified point, a new coverage value is calculated
by repeating the first step of the classification component.
First, the used coverage statistics are updated for each input
map by generating several reference points that are uniformly
distributed over the complete range of values of the input
map. Next, for each reference point, the total amount of
coverage in the intermediate plant distribution is calculated.
This is compared to the expected coverage and, by subtracting
the current coverage, we get the amount of missing coverage
per reference point. Per reference point, all coverage values

Figure 8:The intermediate result in the classification process where
each plant species has been assigned to the available plant positions
separately to meet the coverage input statistics.

are normalized. Next, coverage values can be assigned as
usual, as in the first step of this stage.

The remaining points are assigned a plant species by
repeating the same classification process. The only difference
is that the plant species are processed one-by-one on the
new remaining point set, so no conflicts are generated. The
main reason for this step is to ensure a stopping point for
the algorithm; otherwise, conflicts are likely to be generated,
and the process may need to be repeated. The plant species
with the highest standard deviation in their average patch-
iness statistics in comparison with the other plant species
is processed first. By the end of this process, a complete
plant distribution is obtained as shown in Figure 10. The
plant distribution is generated following the input statistics
about coverage and patchiness as can be seen in the plant
distribution.

4.3. Multiple Plant Levels. In the previous sections, we
assumed that all plant species have approximately the same
plant size. In this section, we describe how our vegetation
model can also support plant species that have large dif-
ferences in plant size, such as trees and flowers, and their
interaction. To achieve this, we introduce the concept of plant
levels, which basically divides the available plant species in
the environment in different groups. The division is based
on the plant size, so plant species with approximately the
same size are grouped together. The usage of multiple plant
levels requires a few extensions in both the plant position
generation and plant species generation part, which we
describe in this section.

4.3.1. Plant Position Generation. Plant positions for multiple
plant levels are generated semi-separately from each other.

International Journal of Computer Games Technology 9

(a) (b)

Figure 9: In (a), points in red are the plant positions that have been assigned to multiple plant species. On (b), these conflicts have been
resolved by taking the plant species with the highest fractal for a conflicted point.

Figure 10: The final plant distribution of the vegetation model.

This means that we start by generating plant positions from
the largest plant level (the plant species that have the largest
plant size) down to the smallest plant level. A plant level that
is processed takes into account the points that are already
placed on the map. Since each plant level is (significantly)
smaller than the previously processed plant level (and thus
the minimal spacing is smaller too), it is guaranteed that
the plant level being currently processed can generate plant
positions. The only problem is now how to take into account
the points that are already generated by the previous plant
levels.There are two options: use for these points theminimal
distance that they had when they were placed, or use for these

points the same minimal distance as for the points generated
in the current plant level. We use the last option, because
we do not know yet if a point generated for a certain plant
species will also be classified to one of the plant species of
that plant level. It is possible that during classification a point
is not assigned a plant species of that plant level. When that
happens, we do not want to waste this point but use it for the
processing of plant species of lower plant levels.

With this choice, integration will be seamless, while
with the other option the point would be isolated, because
it would have a much larger distance to the other points
than required. Therefore, the points generated with this
algorithm are nonbiased, because the size does not influence
the classification process, since it can be changed dynamically
without creating artifacts, like isolated points. An example
of this is shown in Figure 11, where a point distribution
is generated with two plant levels. Red is the larger plant
level and blue the smaller. As can be seen, the red points
all have a larger distance to each other than the blue points.
Nevertheless, the blue points have the same distance to the
red points as they have to each other.

4.3.2. Plant Species Generation. Again, the plant levels are
processed sequentially, starting with the largest plant level.
Each plant level uses the plant positions that are generated
for its level as well as the plant positions that have not been
classified by the previously processed plant levels. The same
classification procedure as explained in the previous section is
applied. After the classification of a plant level, it is possible to
apply neighborhood influences, like in the work of Lane and
Prusinkiewicz [13] andWeier et al. [18]. These neighborhood
effects influence the coverage statistics of the neighboring
nonclassified points andmake it possible to model influences
of, for example, trees on the neighboring smaller plants. An
output examplewith neighboring effects is shown in Figure 12
where the largest plant level (consisting of the blue points) has
a negative effect on the smaller plants of the other plant level.

10 International Journal of Computer Games Technology

Figure 11: PDD distribution with multiple plant levels. The red
points are plants with a larger plant spacing; the white points are
plants with a smaller plant spacing.

Figure 12: In this example, the blue plant species belongs to
the largest plant level, while the other plant species belongs to
the smallest plant level. The blue plant species has a negative
neighboring effect on the other plant species.

5. Visualization Model

This section explains how the generated plant distribution is
organized and translated to a 3D representation that supports
visualization over the web at interactive frame rates. We
start with explaining the two most important concepts of

the model: data organization and transitions between the
different LODs. Finally, we give an overview of the complete
rendering framework.

5.1. Data Organization. For the purpose of visualization,
the input plant distribution has to be translated into a 3D
representation. Due to the high density of the distribution
and the size of the complete environment, it is not feasible
to represent every plant as a detailed 3D model, because
that would result in a high geometry complexity, drastically
dropping the performance of the visualization, neither would
such a detailed representation be necessary, as the amount
of details humans see decreases with increasing distance.
Therefore, to reduce the geometry, it is necessary to use
different LODs (levels of detail) for the plants.Thismeans that
a different representation for a plant, other than its 3Dmodel,
has to be used, depending on the plant location relative to the
viewer.

For our framework, we adopt a level of detail scheme
that divides the plant distribution into three zones depending
on the location of the viewer. This scheme is similar to a
LOD technique proposed for the rendering of millions of
grass blades [19].The first zone, closest to the viewer, consists
of complete 3D models, to better convey the impression of
a richly detailed environment. In the second zone, further
away, plants are represented as billboards, that is, by flat
images. To support very large scenes, we also included a
third zone, further towards the horizon, where plants are not
represented individually, but as a color map applied on the
terrain. The switching between zones is dependent on the
distance to the viewing point and can be configured with a
user-defined threshold.

To use this LOD scheme, we had to solve another
problem: it is not feasible to calculate the appropriate LOD
representation for each plant, as this would require every
frame to iterate overmanyhundreds of thousands of plants on
the CPU.Therefore, neighboring plants are grouped together
and a single check is made for the whole group.These groups
are generated by dividing the plant distribution and storing
it in a quadtree structure [20, 21]. The whole distribution
is divided into four equal quads and each of these quads is
again divided into four quads.This continues up to a number
of iterations defined in the framework. The smallest quads
are placed closest to the user and gradually large blocks are
used to fill the remaining space.The switch between quads of
different sizes depends on a distance threshold.

In each of these quads, the plants have the same LOD
representation. Therefore, it is important that quads of dif-
ferent sizes are used and that the smaller quads are placed
close to the user, while the larger quads are placed further
away, to reduce the geometry complexity. We do not want
to place large quads close to the viewer, because close to the
user quads are filled with detailed plant models. As a result, a
lot of geometry is placed outside the viewing frustum (thus
outside the screen), because a large quad close to the user
cannot normally fit within the complete screen. Thus, with
this quadtree organization, less geometry is processed that is
located outside the view of the user.We use the same quadtree
structure and organization for the terrain data.

International Journal of Computer Games Technology 11

5.2. Transition between LODs. Using different representa-
tions for the plant models at fixed distances from the viewer
leads to a popping effect, noticed when plant represen-
tations switch abruptly between consecutive LODs. This
is an unwanted artifact that can distract the viewer from
the visualization. Therefore, it is necessary to smooth the
transition between the different LODs. In our case, we have
two transitions: between plant models and billboards and
between billboards and the terrain color map. We use alpha
blending for the smoothing procedure for each transition.

The first step to produce a smooth transition between the
plant models and billboards is to create a small, configurable,
overlapping region where both representations for a plant
coexist on the same location. Next, for each position in this
transition zone an alpha value is calculated that indicates
how much of that representation contributes to the final
blended result. This is calculated for both plant models and
billboards. As a result, the plant models in the transition
border have an alpha value near to one when closest to the
viewer, but gradually this value becomes smaller as the plant
models get closer to the other border of the transition zone.
For the billboards’ alpha values, the inverse happens. The
calculated alphas of both representations are now used to
blend the representations. This is achieved by generating two
separate images with one only containing the plant models
and the other the billboards. During the generation of these
images the alpha values of both representations are mapped
to the alpha band of these images. Thus, every pixel of both
images has received an alpha value. Finally, by combining
both images, a new image is generated, for which the color
of each pixel is a combination of the corresponding colors of
the billboard image and plant model image.

The process for the transition between billboards and
the terrain is similar to that for the transition between
plant models and billboards. Again, an overlapping zone is
created and for both billboards and terrain, an alpha value
is calculated. However, during this transition we do not
generate two separate images and combine them. Instead,
the calculated alpha values for the billboards are used to
represent the transparency of the billboards. This means
that billboards gradually fade out, because they become
transparent.The alpha value of the terrain is used to blend the
terrain LOD color with the original terrain color. The result
is that billboards gradually fade out as the distance to the
viewer increases and the terrain gradually changes color to
that similar to the billboards.

5.3. Rendering Framework. In this subsection, we give an
overview of the complete rendering framework that includes
the offline, precomputation, and rendering phases.

5.3.1. Offline Phase. The main task in the offline phase is the
generation of the 3D plant models, which we perform using
L-systems.Themain challenge of using L-systems is that they
are often hard to master, due to their lack of controllability
[5], making it time-consuming to create L-system rules that
generate convincing plant models. Therefore, we developed a
node-based L-system method, which allows one to create L-
system rules bymeans of a sequence of nodes in a graph. Each

of these nodes represents an L-system operation. One of the
main advantages of using node-based systems is that the user
can follow the content generation flow between the various
L-system rules and other relevant data [27]. For this, we used
the procedural engine Sceelix [28], which implements the
concept of Procedural Content Graphs [29], benefiting from
its numerous features: for example, the parameters for each
node operation can be dynamically set and can be made
dependent on one another throughout the L-system.

5.3.2. Precomputation Phase. The first task in the precom-
putation phase is to load all the data necessary for the
visualization, such as 3Dplantmodels, textures for billboards,
a height map to generate the terrain, and the plant locations
derived from the plant distribution. These plant locations,
organized in a quadtree structure, are used to place both
plant models and billboards at correct positions. In order
to minimize the “clone effect” of many similar plant models
and billboards used in the visualization, each position also
contains some additional information about the rotation,
scale, and color variance of the plant, aimed at slightly
randomizing its appearance.The rotation and scale factor are
a random uniform number; the color factor also depends on
the scale factor,meaning in practice that the smaller the plant,
the darker its color.

The terrain mesh is calculated from the imported height
map where each vertex corresponds to the height value of a
tile from the height raster map. The triangulation of these
vertices is based on using an additional terrain height map
that has double the resolution of the original height map,
which is obtained by using bicubic interpolation. We do this
interpolation outside of the framework and just import it
along with the original height map. This additional map is
necessary, because we need to decide which triangles are to
be generated for each quad. Since we derive the terrain from
a height map, the obtained vertices are always laying in strict
rows and columns that form quad, each of which can be
halved into two possible triangle pairs.The decision onwhich
triangle pair to generate depends on the additional reference
height point in the middle obtained from the height map
with the double resolution: for each triangle pair, the height
of the middle point is calculated based on its two triangles;
the triangle pair with the smallest height difference to that
reference point is chosen.

Another important task during the precomputation phase
for the terrain mesh is to calculate the colors of the color
map LOD representation for the terrain. As explained earlier
in this section, the color map LOD representation is not
represented as separate instances like in the case of the plant
models and billboards but is a color on the terrain based
on the color of the represented plant. This is calculated by
computing for each vertex in the terrain mesh the number
of plants and plant species that are within a certain distance
from it. The dominant plant species, which has the largest
number of plants closest to the specified vertex, is then chosen
for that vertex. Finally, the color that is assigned to the vertex
is obtained from a separate texture map, which defines the
terrain color map for each plant species.

12 International Journal of Computer Games Technology

5.3.3. Rendering Phase. In the rendering phase, the actual
visualization of the plants, terrain, water, and background is
performed. For each frame a check is made to decide which
LOD representation should be rendered at a certain plant
position using the quadtree structure. The first task in the
rendering phase is to go through the quadtree of the plant
positions and terrain, determine which quads are visible, and
choose which LOD representation they should have.The next
task is to render the visible objects and selected representation
to the screen. This task is divided into three steps, aimed
at achieving a smooth transition between the plant models
and billboards. The first two steps pertain the rendering of
the two separate images using alpha blending, and the third
step performs their combination. The first image is rendered
with the plant models and the underlying terrain and water.
The second image is rendered with the billboards and the
underlying terrain, water, and also the background.

The visualization is enriched with shadows to obtain a
more convincing scenery. Shadows are computed for the
plant model objects and terrain by using the percentage-
closer soft shadowmapping technique [30]. We did not com-
pute any shadows for the billboards, because that would dras-
tically increase the complexity of the visualization. Rather,
shadows on the billboards are integrated into the texture
of the specific plant species. This requires no additional
computation during the rendering phase. Furthermore, in
order to introduce additional details on the mesh, both the
terrain and water are enriched with normal maps, and they
use the environment map of the skybox to create some
reflection as well.

6. Implementation

The implementation of our framework involves several mod-
ules. The vegetation model is implemented with Python
scripts and its output is stored in a text file that is used as input
for the visualization model. The visualization model was
implemented withWebGL, because it is a cross-platform free
web standard that gives access to the low-level 3D graphics
API based on OpenGL ES 2.0. In addition, it does not require
installing any plug-ins, because it is implemented right into
the browser and all major browsers support WebGL. For
the actual implementation, we used an existing WebGL
framework three.js [31]. In the remainder of this section,
we will focus on the implementation details for the WebGL
rendering.

6.1. Plant Models. Each plant species is represented by one
or more 3D plant models. The geometry of these models is
stored on the GPU by using VBOs (Vertex Buffer Objects).
We only store a single instance of each unique model to
reduce the memory footprint.This also means that we do not
use a large variety of models for each plant species, because
that would result in a large number of models that have to be
stored in the GPU. Since we only store one unique instance
of each model, we need to store additional data on the GPU
to be able to place the different models across the scene.
Additional VBOs linked to each plant model are created that
contain information about position, scale, rotation, and color.

During rendering, each model goes through its linked lists
and uses this information to place itself in the environment,
a process called geometry instancing. The creation of the
various buffers is handled by the three.js framework, but
the geometry instancing process was not yet available at the
time of implementation. Therefore, this was implemented
in the three.js framework by using the WebGL extension
ANGLE_instanced_arrays with its corresponding functions.
(At the time of writing, the instancing process has also
become available in the official three.js framework build.)

6.2. Billboards. Efficient and effectivemethods for generating
billboards use geometry shaders so that only a single vertex
has to be sent to the GPU, which is then transformed in the
geometry shader to various planes [20]. However, currently,
geometry shaders are not available in WebGL. There are two
alternatives: (i) to create the various planes to represent the
billboards beforehand, which means that additional geom-
etry has to be sent to the GPU and processed in the vertex
shader, and (ii) to send a single vertex to the GPU and vertex
shader and use the GL_Point command in combination with
the Gl_PointSize command available in WebGL. This means
that the vertex is directly written as a pixel on the screen based
on the provided position with a certain size (e.g., number
of pixels) defined with Gl_PointSize. The advantage of this
method is that the amount of geometry sent to the GPU
is still as low as possible and the billboards always face the
camera directly, since they are written directly on the screen
as a quad. The disadvantage is that some controllability is
lost regarding the shape of the billboards because, with this
method, billboards are always represented as perfect squares
onwhich a texture is placed. In certain cases, it is possible that
the original texture of the billboard is not a perfect square,
and the texture has to add additional transparent pixels to the
original texture to become a perfect square. This means that
potentially a lot of unused transparent pixels are processed in
the fragment shader.

We decided to use the second alternative, because we
wanted to limit as much as possible the amount of geometry
that is sent to the GPU, to boost the frame rate of the
visualization. One important step of this implementation
of the billboards was to define the size (in pixels) of each
billboard on the screen, so that billboards that are further
away from the viewer must have a size that is smaller than
the billboards nearby.

Finally, each point representing a billboard has a list
attached with information about color variation, plant
species, texture variation, and position.The plant species and
texture variation information is necessary to select the correct
billboard texture from the complete texture map. Each plant
species has multiple billboard textures based on their plant
models obtained from different viewing angles, which are
defined using the texture variation information. One of the
textures is chosen for each position and during visualization
the texture of the billboards at a certain position does not
change. The main reason for this is that the use of a single
texture at each position is muchmore efficient than switching
between various textures during rendering.

International Journal of Computer Games Technology 13

6.3. Terrain and Water. The terrain geometry is put in VBOs
and stored on the GPU. The same applies to the water
geometry, which is basically represented as one big plane.The
shaders that are used to render both the water and terrain
use various common techniques such as texture blending,
normal, and environmental mapping. Textures are blended
based on, for example, the height of terrain to create smooth
transitions between the different types of terrain (e.g., sand
and grass). Normal maps are used to introduce additional
details on the terrain. Environmental mapping is mainly used
for water rendering to create reflection on the water.

6.4. LOD Transitions. The implementation of the transitions
between the LODswas achieved by using FBOs (FrameBuffer
Objects). FBOs make it possible to write and store results
instead of rendering directly to the screen. A separate FBO
is used to render the plant models and their surroundings
and another FBO is used to render the billboards and
surroundings. The textures from both FBOs are blended
together on the GPU by using a shader, as described in the
previous section. This result can then be sent to the screen,
or it can be stored in another FBO to apply any subsequent
effects.

A smooth transition can only be achievedwhen regions of
the billboards and plant models overlap. During the blending
of the two images the shader does not know whether it is
blending plants, terrain, or water. Therefore, a small overlap
must also be created of the terrain and water. This results in
the terrain and water being partly rendered twice.

6.5. Shadows. We only compute shadows that are cast by
the plant models on the plant models themselves and on
the terrain. Shadows are computed using the percentage-
closer soft shadow mapping technique, which is supported
by the three.js framework. These shadows are computed by
first generating a depth texture of the scene that is stored in
an FBO. The depth texture is generated based on the same
geometry instancing technique described above.

Finally, shadows are simply approximated for the terrain
LOD on which the billboards are placed. Each vertex in the
terrain shader has information about the number of plants
that are in the neighborhood, and in the fragment shader this
number is used to decide on the darkness of the color for that
fragment, to represent shadows.

7. Results and Discussion

In this section, we present some results generated by our
framework and discuss its rendering performance. Finally, we
discuss the validation of these results and of the framework as
a whole.

7.1. Input. To test our framework, we generated results for
two different regions: (i) an existing area called the Pauli-
napolder (247500m2), a salt marsh located in the South
of the Netherlands, and (ii) a fictive area (2025m2) based
on the output of an ecological model describing a (future)
salt marsh. For both areas, we use various landscape maps

and statistical data about coverage and patchiness of plants
as input to generate plant distributions with the vegetation
model. Since the Paulinapolder is an existing area, we can use
landscape maps derived from existing geographical datasets.
We have used two types of landscape maps: a height map and
an NDVI map. In addition, we used coverage and patchiness
statistics that are based on the height of the environment.The
NDVImap is used to determine the presence of vegetation in
the environment. In total, we consider seven different plant
species as input.

The ecological model area is based on an ecological
model developed by Schwarz [10]. This model generates
landscape maps containing information about the height
of the environment and a coverage map for a single plant
species. The generation of a single map by the ecological
model does not necessarily mean that only one plant species
grows there. After discussion with the ecologists, we decided
to add two additional plant species as input. To be able
to process these additional plant species, we use the same
coverage and patchiness statistics based on height as used for
the Paulinapolder. The coverage map is not directly used as a
coverage statistic for any plant species. Instead, it is used to
determine where vegetation is located.

7.2. Results. Based on the provided input data, we generated
the plant distribution of the vegetation model for each area
and translated this plant distribution to the corresponding
visualization model. The results of the vegetation model
are shown in Figure 13 for the Paulinapolder and in Fig-
ure 14 for the ecological model area. Figures 15 and 16
present a global visualization of both environments, respec-
tively. Figure 17 captures the seamless transition between
the different LODs, and Figure 18 provides a close-up
view of plant models. More results, including a video and
the interactive web visualization itself, are available online
(https://graphics.tudelft.nl/benny-onrust).

7.3. Performance. We focus on the performance of the visual-
ization model, as one of our main aims was to achieve inter-
active frame rates on a web browser. The vegetation model
is computed offline before the actual rendering and therefore
does not influence interactivity nor rendering performance.

The plant distribution generated for the Paulinapolder
area has around 700.000 plants. A typical frame of this
environment consists of up to 2,7 million triangles, repre-
senting the plant models, terrain, water, and background.
The rendering times for a typical Paulinapolder scene were
7.3ms, of which over 60% was spent on the plant models
and their shadows and around 30% on the billboards. For
the ecological model area, the plant distribution generated
consists of around 150.000 plants, and a typical frame consists
of around 0,4 million triangles in total. The rendering times
for a typical scene of the ecological model were 5.5ms, of
which around 40% was spent on the plant models and their
shadows and over 40% on the billboards.

We measured these rendering times on an Alienware
Aurora R4 with an Intel Core i7-4820K CPU @3.70GHz,
16GB RAM, and NVIDIA GeForce GTX 780, using the

https://graphics.tudelft.nl/benny-onrust

14 International Journal of Computer Games Technology

Figure 13: Result of the vegetation model for the Paulinapolder where yellow is Spartina, green is Elymus, red is Atriplex, blue is Aster, teal
is Artemisia, pink is Limonium, and white is Salicornia.

Figure 14: Result of the vegetation model for the ecological model
area where green is Spartina, red is Salicornia, and yellow is Aster.

Figure 15: Global overview of the virtual Paulinapolder.

Chrome browser v43.0. Machines with other GPUs offered
results in the same order of magnitude, thus always providing
frame rates above 50 fps.

Figure 16: Global overview of the virtual ecological model area.

7.4. Validation. We combine the validation of the Pauli-
napolder and the ecological model area, because the com-
ments on both areas are generally applicable. We performed
two types of validation: (i) a statistical validation of the plant
distribution, which calculates whether the input statistical
data matches the statistics derived from the generated plant
distribution, and (ii) an expert validation, which was per-
formed in collaboration with ecologists during the develop-
ment of this framework.

For the statistical validation on the generated plant dis-
tribution, we created several artificial datasets to investigate
certain special cases in the input data. First, we compared
the input coverage statistics with the coverage statistics of
the generated plant distributions. We did this on a global
level, where we calculate a single average coverage value for
each plant species and where we compare it with the average
coverage value of each plant species in the generated plant

International Journal of Computer Games Technology 15

Figure 17: Transition of the various LODs in the virtual Pauli-
napolder. Green is the regular plant models, red is the billboards,
and blue is the terrain color map.

Figure 18: Close-up view of the plant models in the virtual
Paulinapolder.

distribution. In addition, we performed the same comparison
on a local level where we, for example, calculate the average
coverage at certain height points for plant species whose
coverage is dependent on height. The exact figures of the
various comparisons can be found elsewhere [26]. This
validation showed that the input coverage data matches the
coverage values of the generated plant distribution both on a
global and on a local level.

We also validated our results throughout the development
of the framework, by having ecologists visually judge the
plant distributions and visualization models obtained. This
was done to investigate whether the generated results were
convincing and if the data was behaving properly. In general,
the ecologists found that the vegetation model was able to
convincingly translate ecological data to a plant distribution
for both the Paulinapolder and ecological model area. In
addition, plausible patterns in the plant distributions were
clearly reproduced in the visualization model: they were
deemed convincing and different patterns could be clearly
identified across the various plant species. Figure 15 shows
several such different patterns, ranging from very large
patches of plants that grow closely together, to small random
patterns of plants that grow scattered throughout the area.

The visualizations themselves were deemed convincing
by ecologists, who judged them as proper representations of
salt marshes.This was especially the case for the local/middle

distance view where the plant models are visible. The far
view, that is, the region where plants are represented as
billboards or as a color map on the terrain, was considered
less convincing than the local/middle view. One of the
remarks was that small gaps started to appear in the plant
distribution at a certain distance range. Another remark was
that the color variation among the various plant species was
not entirely satisfactory. However, in this view, the various
patterns for different plant species are clearly visible. The
transitions between the different LODs were, in most cases,
not noticeable by the ecologists, or they were at least not
considered distracting.

7.5. Discussion. The aim of this research was to generate an
ecologically sound plant distribution from landscape maps
and ecological statistical data and to translate it to a convinc-
ing interactive 3D visualization over the web. Also, the plant
distribution generation solution should be generic, in the
sense that it should support different plant species, patterns,
and input data. Validation showed that these requirements
were well met in general. Using statistical and expert vali-
dation, we showed that input ecological maps and statistics
were translated to a plant distribution with convincing pat-
terns. Expert validation and performance measurements also
indicate that we were able to create convincing real-time 3D
visualizations. Based on the validation and implementation,
we also found several limitations in the present framework,
which we discuss now.

Validation of the vegetationmodel showed that the cover-
age statistics were translated correctly to the generated plant
distribution and that the resulting patterns were convincing.
However, we did not validate whether the input patchiness
statistics also match the output statistics, because the regular
methods to calculate patchiness statistics assume that the pat-
terns are in a grid format and not in a point format.Therefore,
it should still be investigated how to perform this kind of
measurements on point sets. In any case, expert validation
indicates that the patterns were visually convincing.

The main limitation of the visualization model lies in the
representation of the billboards. Billboards are represented
as a single point and they are rendered as several pixels
on the screen to maximize rendering performance. As a
result, billboards face the camera from every viewing angle.
When the billboards are viewed globally from a high, bird-
eye view, the generated billboards often look less convincing,
because the same texture that is normally used to view
the billboards horizontally is then being used to view the
billboards vertically. In the current visualization, this is often
not very noticeable, because all the plants are relatively small
and have relatively uniform color distribution, but when
the plants become larger and there are more differences
among the plants, this will be more noticeable. In addition,
it is difficult to automatically set the correct size for each
billboard, because size is measured in number of pixels.
This gave the problem that certain billboard objects have
the correct size in local view, but from certain distances in
global view, the billboards become too small and this creates
small gaps in the distribution. An example of this is shown in
Figure 19.

16 International Journal of Computer Games Technology

Figure 19: Gaps appear in the plant distribution when viewing the
visualization in global view.

Figure 20:The plant models (green) cast different shadows than the
billboards (red). The shape of the plant can be seen in the shadows
cast by the plant models (see the shadows pointed by the black
arrow), which is not visible in the shadows (see the blue arrow) that
have been approximated for the billboards.

Shadows of the billboards are approximated by using
baked-in shadows in the texture, and shadows on the terrain
are approximated by turning the terrain color slightly darker.
This shadow computation does not use the actual shape
of the plants. In Figure 20, we can see that the billboards
objects have different “shadows” on the ground than the
plant models close to the viewer, though it is often difficult
to notice these differences and change in shadows. The
shadows cast by billboards could be improved by (partly)
replacing the current billboards with volumetric billboards
[32].These are able to generate realistic shadows and realistic
different viewing angles. However, their efficient implemen-
tation requires, for example, the use of a geometry shader,
which is not yet available in WebGL. Additional research
into this topic could greatly enhance the realism of 3D plant
distributions, because it would allow for the generation of
more convincing billboards, which are the weakest point in
the current visualization model with respect to a convincing
appearance.

Another disadvantage is the shadow computation tech-
nique for the plant model objects in the visualization.
Currently, we use the percentage-closer shadow mapping
technique that was directly available in three.js. The com-
puted shadows are realistic enough for our purposes, but
performance-wise it could be improved by, for example, using
a variance shadow mapping technique [33].

Finally, the alpha blending transition between the plant
models and billboards is in most cases smooth and there are
very limited ghosting or popping effects. When there is a
large difference in size between the plants in the visualization,
the transition is less smooth for the larger plants. The reason
for this is that the transition thresholds are the same for all
plant model objects. This could be improved by varying the
threshold per plant species. The larger plant species could
switch farther to a billboard representation.

8. Conclusion

We developed a new method for the generation of accurate
plant distributions from landscape maps and statistical data
and for the visualization of the resulting natural environ-
ments in an interactive 3D web environment. We presented
an implemented framework that addresses the main chal-
lenges of creating such plant distribution and of generating
and rendering a 3D visualization model that can be browsed
at interactive frame rates. For the plant distribution gen-
eration, we presented a new model that combines existing
procedural plant placement techniques using Poisson Disk
Distribution withWang tiling technique in combination with
concepts from neutral modeling techniques. In addition,
a visually convincing interactive 3D web visualization was
created by using, among others, LOD, shadow mapping, and
geometry instancing techniques. We tested our system by
generating plant distributions for two case studies, using
landscape maps and ecological statistical data. Ecologists
validated our results and found them to be most convincing.
Statistics showed that our framework is able to translate
correctly the input coverage statistics to the output plant
distribution.

Our work stands out from previous research, because (i)
our plant distribution generation is fully data-driven and (ii)
we demonstrated with our interactive visualization WebGL
prototype the possibilities of rendering over the web very
large natural environments with a high density and variety
of plants.

In the future, we would like to investigate whether
other representations of billboards improve the visualization
at different viewing angles, especially in global view. In
addition, we would like to investigate more local and global
illumination models to improve performance and realism
of lights and shadows in the visualization. To improve the
usability of thismethod, itmight be preferable to combine the
vegetation and visualizationmodel in one web application, so
that the user can easily change the plant distribution in the
3D visualization without having to do offline computations.
Furthermore, it might be interesting to extend the framework
by including the fauna of the environment, for improved
realism [34]. Finally, so far our framework has been tested
on environments with only grass-like plant species; we would
like to do additional testing for other more forest-like scenes
to assess the quality and performance of its results.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

International Journal of Computer Games Technology 17

Acknowledgments

The authors would like to thank Alex Kolpa for helping with
the implementation of the L-system plugin in Sceelix.

References

[1] C. Pettit, C. Raymond, B. A. Bryan, and H. Lewis, “Identifying
strengths andweaknesses of landscape visualisation for effective
communication of future alternatives,” Landscape and Urban
Planning, vol. 100, no. 3, pp. 231–241, 2011.

[2] R. van Lammeren, J. Houtkamp, S. Colijn, M. Hilferink, and
A. Bouwman, “Affective appraisal of 3D land use visualization,”
Computers, Environment and Urban Systems, vol. 34, no. 6, pp.
465–475, 2010.

[3] H. J. de Vriend, M. van Koningsveld, S. G. J. Aarninkhof, M. B.
de Vries, and M. J. Baptist, “Sustainable hydraulic engineering
through building with nature,” Journal of Hydro-Environment
Research, vol. 9, no. 2, pp. 159–171, 2015.

[4] B. Onrust, R. Bidarra, R. Rooseboom, and J. Van De Koppel,
“Procedural generation and interactive web visualization of
natural environments,” in Proceedings of the 20th International
Conference on 3DWeb Technology, pp. 133–141, ACM, 2015.

[5] R. M. Smelik, T. Tutenel, R. Bidarra, and B. Benes, “A survey
on proceduralmodelling for virtual worlds,”Computer Graphics
Forum, vol. 33, no. 6, pp. 31–50, 2014.

[6] S. Temmerman, T. J. Bouma, J. Van de Koppel, D. Van der Wal,
M. B. DeVries, and P.M. J. Herman, “Vegetation causes channel
erosion in a tidal landscape,”Geology, vol. 35, no. 7, pp. 631–634,
2007.

[7] J. de Leeuw, L. P. Apon, P. M. Herman, W. de Munck, and
W. G. Beeftink, The Response of Salt Marsh Vegetation to Tidal
Reduction Caused by the Oosterschelde Storm-Surge Barrier,
Springer, 1994.

[8] J.Molofsky and J. D. Bever, “A new kind of ecology?”BioScience,
vol. 54, no. 5, pp. 440–446, 2004.

[9] M. Rietkerk and J. van de Koppel, “Regular pattern formation
in real ecosystems,” Trends in Ecology & Evolution, vol. 23, no.
3, pp. 169–175, 2008.

[10] C. Schwarz, Implications of biogeomorphic feedbacks on tidal
landscape development [Ph.D. thesis], Radboud University
Nijmegen, 2014.

[11] S. Saura and J. Martinez-Millan, “Landscape patterns simu-
lation with a modified random clusters method,” Landscape
Ecology, vol. 15, no. 7, pp. 661–678, 2000.

[12] W. W. Hargrove, F. M. Hoffman, and P. M. Schwartz, “A fractal
landscape realizer for generating synthetic maps,” Conservation
Ecology, vol. 6, no. 1, 2, 2002.

[13] B. Lane and P. Prusinkiewicz, “Generating spatial distributions
for multilevel models of plant communities,” in Proceedings of
the Graphic Interface, pp. 69–80, 2002.

[14] O. Deussen, P. Hanrahan, B. Lintermann, R. Mech, M. Pharr,
and P. Prusinkiewicz, “Realistic modeling and rendering of
plant ecosystems,” in Proceedings of the 25th Annual Conference
on Computer Graphics and Interactive Techniques, pp. 275–286,
ACM, 1998.

[15] E. Chng, “An artificial life-based vegetation modelling
approach for biodiversity research,” Green Technologies:
Concepts, Methodologies, Tools and Applications, 417, 2010.

[16] J. Hammes, “Modeling of ecosystems as a data source for real-
time terrain rendering,” in In Digital Earth Moving, pp. 98–111,
Springer, 2001.

[17] M. Alsweis and O. Deussen, “Wang-tiles for the simulation and
visualization of plant competition,” in Advances in Computer
Graphics, vol. 4035 of Lecture Notes in Computer Science, pp. 1–
11, Springer, Berlin, Heidelberg, 2006.

[18] M. Weier, A. Hinkenjann, G. Demme, and P. Slusallek, “Gener-
ating and rendering large scale tiled plant populations,” Journal
of Virtual Reality and Broadcasting, vol. 10, no. 1, 2013.

[19] K. Boulanger, S. Pattanaik, and K. Bouatouch, “Rendering grass
terrains in real-time with dynamic lighting,” in Proceedings
of ACM SIGGRAPH 2006: Sketches (SIGGRAPH ’06), August
2006.

[20] E. Bruneton and F. Neyret, “Real-time realistic rendering and
lighting of forests,” Computer Graphics Forum, vol. 31, no. 2, pp.
373–382, 2012.

[21] O. Deussen, C. Colditz, M. Stamminger, and G. Drettakis,
“Interactive visualization of complex plant ecosystems,” IEEE,
pp. 219–226, 2002.

[22] Z. Fan, H. Li, K. Hillesland, and B. Sheng, “Simulation and
rendering for millions of grass blades,” in Proceedings of the 19th
Symposium on Interactive 3D Graphics and Games, pp. 55–60,
ACM, 2015.

[23] B. Fanini, L. Calori, D. Ferdani, and S. Pescarin, “Interactive 3D
landscapes on line,” International Archives of the Photogramme-
try, Remote Sensing and Spatial Information Sciences, vol. 3816,
pp. 453–459.

[24] M. Englert, P. Herzig, S. Wagner, Y. Jung, and U. Bockholt,
“X3D-earthbrowser: visualize our earth in your web browser,”
in Proceedings of the 18th ACM International Conference on 3D
Web Technology, pp. 139–142, ACM, 2013.

[25] A. Lagae, Tile-Based Methods in Computer Graphics [Ph.D.
thesis], Katholieke Universiteit Leuven, 2007.

[26] B. Onrust, Automatic generation of plant distributions for exist-
ing and future natural environments using spatial data [M.S.
thesis], Delft University of Technology, //graphics.tudelft.nl/
benny-onrust/, 2015, https://graphics.tudelft.nl/benny-onrust/.

[27] P. Silva, P.Müller, R. Bidarra, andA.Coelho, “Node-based shape
grammar representation and editing,” in Proceedings of the
Workshop on Procedural Content Generation for Games (PCG
’13), Co-Located with the Eigth International Conference on the
Foundations of Digital Games, 2013.

[28] Sceelix, “The 3D scenes procedural engine,” http://www
.sceelix.com. Accessed: 1 April 2017.

[29] P. B. Silva, E. Eisemann, R. Bidarra, and A. Coelho, “Procedural
content graphs for urban modeling,” International Journal of
Computer Games Technology, vol. 2015, Article ID 808904, 15
pages, 2015.

[30] R. Fernando, “Percentage-closer soft shadows,” in Proceedings
of the International Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’05), p. 35, ACM, 2005.

[31] R. Cabello, three.js-javascript 3D library, 2010.
[32] P. Decaudin and F. Neyret, “Volumetric billboards,” Computer

Graphics Forum, vol. 28, no. 8, pp. 2079–2089, 2009.
[33] W. Donnelly and A. Lauritzen, “Variance shadow maps,” in

Proceedings of the Symposium on Interactive 3D Graphics and
Games, pp. 161–165, 2006.

[34] N. Komodakis, C. Panagiotakis, and G. Tziritas, “3D visual
reconstruction of large scale natural sites and their fauna,” Signal
Processing: Image Communication, vol. 20, no. 9-10, pp. 869–
890, 2005.

https://graphics.tudelft.nl/benny-onrust/
http://www.sceelix.com
http://www.sceelix.com

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal of

Volume 201

Submit your manuscripts at
https://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

