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Abstract

The application of Augmented Reality (AR) technology in neurosurgery is becoming increas-
ingly widespread, especially in External Ventricular Drainage (EVD) procedures, where achiev-
ing efficient and precise registration remains a key challenge. Traditional marker-based registra-
tion methods are often complex and time-consuming, making them unsuitable for emergency
surgical situations. This paper presents a markerless automatic registration method based
on HoloLens 2, using the Dlib library to automatically detect facial landmarks, and perform-
ing point cloud registration based on these features. We designed four sets of experiments:
first, to verify the feasibility of the triangle-based registration algorithm; second, to assess the
accuracy and stability of Dlib’s feature point extraction on HoloLens; third, to validate the
registration accuracy, including the impact of skin displacement; and finally, to evaluate the
accuracy of the insertion path in a simulated EVD procedure. The experimental results show
that this method simplifies the registration process and demonstrates advantages in terms of
registration accuracy and speed, effectively meeting the real-time and precision requirements
of emergency surgeries. This study provides an efficient and reliable AR navigation solution
for EVD procedures, with promising prospects for further research.
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1 Introduction

In recent years, the application of augmented reality (AR) technology in surgical procedures
has developed rapidly, gradually becoming an important part of modern medical technology.
Microsoft’s HoloLens mixed reality glasses, with its advanced cameras, depth sensors, and
computer vision technology, can help surgeons visualize critical anatomical structures in real-
time during complex surgeries, significantly improving the accuracy and safety of the operations.
Registration technology, as the core of this process, precisely aligns digital images with the
patient’s actual anatomy. This not only enhances the visual experience for doctors but also
greatly reduces the risk of errors during surgery, thereby improving the success rate of surgeries
and the overall outcomes for patients.

Among various surgical procedures, external ventricular drainage (EVD) is a particularly chal-
lenging field. EVD surgery is commonly used to treat hydrocephalus, intracranial hypertension,
or intracranial hemorrhage, aiming to insert a catheter into the ventricular system to drain
excess cerebrospinal fluid. The main indications for EVD include subarachnoid hemorrhage,
intraventricular hemorrhage, and traumatic brain injury [13]. These conditions often cause
the drainage pathways of cerebrospinal fluid to be blocked by blood, leading to acute hydro-
cephalus and increased intracranial pressure [14]. Although EVD can effectively alleviate these
problems, its operation is complex and prone to complications such as catheter path bleeding,
improper catheter placement, and cerebrospinal fluid infections [17]. In traditional surgeries,
doctors usually rely on anatomical landmarks and preoperative images for catheter insertion,
or perform blind insertion based on experience. However, due to individual differences in pa-
tients’ anatomy and positional changes during surgery, manual catheter insertion often carries
errors, which may lead to misplacement or ineffective drainage [1, 26].

AR technology provides significant potential improvements for EVD procedures. Through
systems like HoloLens, preoperative images can be overlaid with the patient’s actual anatomy
in real-time, providing surgeons with three-dimensional visual guidance. AR can not only
accurately display the insertion location of the catheter but also show the real-time position
of surgical tools, reducing frequent visual switching during surgery. Furthermore, AR can help
doctors better understand hidden anatomical structures, avoiding damage to key areas and
further improving the accuracy and safety of surgeries.

Recently, more and more research has focused on registration techniques for the HoloLens in
EVD surgeries [20, 7, 25, 22, 23]. However, most of these techniques require external markers
and auxiliary devices. For example, studies by Li et al. [20] and Wang et al. [25] propose
methods that combine reflective markers with point cloud registration to achieve more precise
and stable head tracking. This method uses reflective markers attached to the patient’s head
and utilizes the HoloLens 2’s depth sensors to capture multiple frames of data, reconstruct the
head surface, and perform registration using the point cloud-based ICP algorithm [7]. Another
system [22] uses optical marker tracking through the OptiTrack cameras and the HoloLens 2,
while some approaches [23] employ QR codes for registration. Despite the progress in HoloLens
registration for EVD surgeries, these methods often require substantial preparation time for
equipment calibration and marker placement. This is not ideal for emergency surgeries re-
quiring a fast response, especially when dealing with acute intracranial pressure elevations.
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Time is of the essence, as excessive intracranial pressure can lead to brain hypoxia or other
irreversible damage. Doctors need to quickly insert the drainage tube to relieve pressure, but
traditional marker-assisted registration methods take too long, failing to meet this need. There-
fore, optimizing the registration process to increase speed while maintaining high accuracy and
stability has become a key issue to address. In this context, markerless and external-device-free
registration methods have emerged as a promising area of research.

In recent years, markerless registration methods based on depth sensors have gained popu-
larity among researchers due to their simplicity and ability to perform surgical tasks more
quickly. However, these methods also face challenges. For instance, the environmental data
captured by the HoloLens sensors tend to be inaccurate, which can affect registration accuracy.
Xie et al. [15] used the HoloLens’s spatial mapping function to align the virtual model with
the patient’s skin surface, but the coarseness of the surface mesh data limited registration ac-
curacy. Additionally, point cloud registration methods, while offering higher precision, often
capture irrelevant information, requiring manual cropping of the point cloud. Enzo’s study [27]
proposed a depth-sensing-based HoloLens registration technique that relies on complete point
cloud data. The method requires manual initialization, such as coarse registration or visual
center cropping, to process the point cloud data. However, this approach often causes the ICP
(Iterative Closest Point) algorithm to fall into local minima [21], especially when the point
cloud data is incomplete or cropped improperly, affecting registration accuracy and increasing
time and complexity due to manual cropping. Gsaxner et al. [9] propose a deep learning-based
solution that uses a pre-trained SSD network to automatically detect regions of interest (ROI),
effectively removing irrelevant noise points and improving registration accuracy. However,
this method relies on pre-trained models and cannot accurately segment regions of interest in
the point cloud, still requiring the ICP algorithm for fine registration. Similarly, the Vuforia
engine was used for feature-based target tracking in temporomandibular joint (TMJ) surg-
eries [28]. Although this method creates multiple views to assist in surgical registration, it
requires pre-uploading models and has limited tracking accuracy.

Given the challenges faced by existing markerless registration methods, as well as the high
demands for operational efficiency and simplicity in EVD catheter insertion surgeries, this
work proposes a new landmark point cloud-based automatic registration method that utilizes
the Dlib computer vision library to optimize the process. First, we use Dlib to detect and
extract regions of interest (ROI) from the point cloud data, typically facial landmarks. By
focusing on these landmarks, we aim to improve registration accuracy while reducing the
computational load required to process the entire point cloud.

After extracting the regions of interest, we employ a triangle-based registration algorithm to
align the point cloud precisely. This algorithm leverages the geometric properties of triangular
meshes to effectively handle noise and irregularities in the point cloud, resulting in more stable
and accurate registration outcomes. Moreover, the triangle-based registration method demon-
strates high computational efficiency when handling large-scale datasets, making it suitable
for real-time surgical environments.

This study aims to improve the application of the HoloLens technology in EVD surgeries
by proposing a reliable and efficient markerless, external-device-free automatic registration
method. With the continuous optimization of these technologies, AR may play an increasingly
important role in future surgical procedures, driving the advancement of medical imaging and
surgical intervention techniques. The following sections will introduce the proposed method in
detail and validate its effectiveness through experiments.



2 Related Data processing technologies and
libraries

2.1. Data Preparation
2.1.1. Preoperative Data Preparation
In a HoloLens-assisted EVD surgery, the initial step is to acquire the original head model. The
registration method used is landmark-based, where the virtual head CT image data, along
with the corresponding guided trajectories and other visualized images, are aligned with the
real patient’s head model. The head model is provided by the CT slices scan imaging of the
actual patient, as shown in Figure 2.1.

Figure 2.1: Dicom CT slices of head model

The geometry representation of the HoloLens is the mesh format, which must be converted from
the original medical data. Typically, the medical imaging data obtained from medical imaging
devices are in DICOM format. DICOM (Digital Imaging and Communications in Medicine)
CT data and Mesh models represent two distinct types of data representations. DICOM is a
medical imaging standard containing both images and patient data, commonly used for CT
scans that represent 3D anatomy as a series of 2D grayscale slices. In contrast, Mesh models
are used in graphics and AR applications like HoloLens, representing 3D shapes by connecting
vertices, edges, and faces to create a surface.

Converting DICOM CT data to a mesh model involves multiple steps. First, the DICOM
images are pre-processed, such as for noise reduction and contrast adjustment, to improve
the image quality. Then, a 3D voxel model is generated based on these images. Following
this, the conversion from the voxel model to a mesh model is accomplished through surface
reconstruction. This process involves surface extraction, mesh smoothing, and simplification
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to meet rendering and visualization needs. This series of steps can be completed using various
software tools such as MeVisLab or 3D Slicer. Ultimately, the mesh model is converted into
formats supported by HoloLens, such as OBJ or FBX, for further use in applications and
visualization.

When converting the 3D model into point cloud format, Open3D is first used to load the
generated mesh model. Open3D provides sampling functions to uniformly sample the mesh
and convert it into point cloud data format, which is shown in Figure 2.2(a). Open3D supports
various sampling strategies, such as area-based uniform sampling and Poisson sampling, which
can effectively capture the geometric details of the model. After sampling, the generated point
cloud can be further used for tasks such as 3D registration, visualization, and analysis.

(a) Mesh visualization (b) Mesh with point cloud (pink color)

Figure 2.2: Mesh to point cloud data

2.1.2. Preoperative landmarks
For landmark-based registration, it is essential to mark landmarks on the head model before
surgery. This process involves annotating specific landmarks on the virtual model, which are
used to highlight key points on the face that are relatively stable and less prone to movement.
This enhances the accuracy of rigid registration between the virtual model and the actual
patient during surgery. Typically, landmarks such as the corners of the eyes and the tip of the
nose are chosen. Since this is a point cloud-based registration task, the head’s CT model must
first be converted into a point cloud format, as shown in Figure 2.3.

The facial landmarks are manually selected from the point cloud model. As shown in Fig-
ure 2.4(a), a partial point cloud of the head was generated using a 3D scanning mobile ap-
plication1. Because this point cloud data contains color information, it is easier to identify
facial features compared to a point cloud generated from a CT scan converted into an OBJ
file. Therefore, this point cloud model is used during the initial testing and simulation of the
registration algorithm (manually selecting points based on facial features).

Landmarks are selected using the Open3D library, which offers a point selection feature. By
scripting, Open3D allows users to interactively select a point on the point cloud model using
the mouse, as shown in Figure 2.4. The selected point’s index in the overall point cloud is then
registered, allowing the marked point to be referenced in subsequent registration processes.

For point clouds sampled from mesh models, Open3D is typically used to extract the vertices
13D Scanner App by Laan Labs. Available on the App Store.
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Figure 2.3: Point cloud of head model

(a) point cloud used for test (b) Choosing points on test point cloud

Figure 2.4: Choosing landmarks in Open3d
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of the mesh and save them as point cloud data. However, it is often difficult to accurately
identify facial features for landmark selection, as shown in Figure 2.3. Therefore, an alternative
approach is to first process the mesh model in Unity, as it provides a clearer representation of
facial features. Landmarks can be annotated in the Unity scene. Then, based on the coordinate
information of the landmarks, the nearest points in the point cloud at the corresponding loca-
tions (landmarks in the point cloud) can be calculated. To improve computational efficiency,
a KD-tree can be built for efficient nearest-neighbor search [6].

2.2. Dlib Toolkit auto-detects facial landmarks
Dlib has been widely used in the fields of machine learning and computer vision, known for
its efficient and accurate algorithms. The object detection and facial recognition algorithms
in Dlib have performed excellently in multiple studies. For example, King (2009) [19] detailed
the design and implementation of Dlib, emphasizing its efficiency and accuracy in the C++
environment.

In terms of facial expression recognition, the Dlib model also demonstrated outstanding per-
formance. A recent study using the Dlib model for facial expression recognition showed an
accuracy of 97 of 100 [2]. This high precision makes Dlib highly reliable in practical applica-
tions. In summary, Dlib has gained widespread application and recognition across multiple
fields due to its efficient and accurate algorithms.

In this study, we employed the Dlib library to facilitate the automatic detection of landmarks,
streamlining the process of marking points within the point cloud data. Dlib is a widely-
used open-source machine learning library, particularly renowned for its robust applications
in computer vision, including facial detection and landmark recognition. The facial detection
algorithm in Dlib leverages Histograms of Oriented Gradients (HOG) features combined with
a linear classifier, using image pyramids and sliding window techniques for efficient face detec-
tion [19]. Moreover, Dlib includes a pre-trained model capable of detecting 68 facial landmarks,
which allows for precise identification of facial features [17]. By deploying Dlib for real-time
landmark detection within the Hololens camera system, we ensure reliable support for aug-
mented reality (AR) applications, enabling both facial recognition and expression analysis [3].

To implement real-time facial landmark detection, Dlib was set up on the server side. The
frames captured by the Hololens front camera are transmitted to a PC via TCP protocol,
using the HL2SS client. Each frame is processed by Dlib for face detection, and once a face is
identified, the detection process moves on to identifying 68 landmark points. These detected
landmarks are then visualized, typically marked in blue, highlighting each identified key point,
as illustrated in Figure 2.5. This approach efficiently automates the landmark detection process,
simplifying data handling and providing a stable and accurate foundation for subsequent AR
applications.

During the process of detecting facial landmarks using Dlib, the system not only identifies key
points in the 2D image but also matches these points with depth information to generate a 3D
point cloud. Specifically, the 2D target points detected by Dlib are remapped and integrated
with depth information and applied to the 3D point cloud reconstruction process through
TSDF (Truncated Signed Distance Function). In this process, the detected facial landmarks
(such as the inner corners of the eyes and the tip of the nose) are automatically located in
the 3D point cloud and aligned with other structures. Figure 2.6 shows the overlap of the red
landmarks detected by Dlib with the actual 3D point cloud.

This method of combining depth information with facial landmark detection not only enables
precise landmark identification but also functions as a filter during the point cloud reconstruc-
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Figure 2.5: Dlib detecting landmarks

Figure 2.6: Dlib extracted landmarks (red) with point cloud of environment visualization
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tion process. Although the TSDF can generate a complete point cloud of the face, the system
retains only the 3D point cloud data related to the landmarks detected by Dlib, as these land-
marks are identified in advance. This approach reduces computational load and enhances the
accuracy of point cloud registration. As shown in Figure 2.7, Dlib first processes the image
data from the HoloLens camera, detecting key landmarks in the 2D image and matching these
points with the depth map. When Dlib applies these coordinates to the point cloud reconstruc-
tion process, it effectively filters out all irrelevant point cloud data that does not correspond
to the detected landmarks, ensuring that the final point cloud reconstruction only includes
the essential facial landmark points. This efficient preprocessing mechanism contributes to the
precision of the registration algorithm between the virtual model and the actual anatomical
structure.

Figure 2.7: Dlib in pipeline

2.3. AR Visualization in Unity
In this study, a navigation program based on Unity is designed to assist in guiding EVD
surgeries using HoloLens. In Unity, we create a new project and import the pre-prepared OBJ
head model for visualizing the surgical process. The model is carefully adjusted with specific
color and transparency settings to allow users to clearly see the relationship between the virtual
head model and the actual head model, as shown in Figure 2.8. Visual feedback is essential
for surgeons during the operation, improving the accuracy and safety of the procedure.

The visualization of the ventricles is very important. We ensure that the ventricles are dis-
played with appropriate visualization modes and colors so they are well-represented within the
program. Additionally, the surgical planning path is visualized in the program to guide the
surgeon in following the pre-planned route during the surgery. These visualization elements
can be shown or hidden dynamically using voice command features in Unity, allowing the
surgeon to adjust the content as needed during the procedure.

While traditional navigation systems display enhanced information such as annotations, track-
ing tools, and anatomical segmentation superimposed on preoperative data, AR technology
takes this a step further by overlaying these enhancements into the user’s real-world envi-
ronment. Microsoft’s HoloLens 2 is particularly suitable, as it can function as a standalone
navigation system. When using HoloLens 2 for AR visualization, the models must be opti-
mized based on the device’s computing capabilities, display features, transparency, and other
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Figure 2.8: Unity scene for AR visualization

factors. This ensures smooth rendering and interaction on the HoloLens 2.

In some cases, more detailed models may be used during registration than those used for
visualization. For example, models with many vertices and faces can be remeshed into simpler
versions for visualization, reducing rendering complexity while maintaining functionality. This
helps ensure smooth performance on the HoloLens without overloading the device.

The AR visualization workflow begins by displaying surface models, enabling users to assess
the accuracy of the registration. Once the alignment is deemed satisfactory, voice commands
can be used to deactivate the surface model, allowing the user to focus on the projected internal
models. These internal models, such as the ventricle in the case of EVD surgery, are expected
to guide the surgeon throughout the procedure. Pre-planned incisions and drilling paths can
also be visualized on demand, improving the precision and accuracy of the surgical intervention.

Through this design and implementation, our navigation program aims to provide intuitive and
efficient support for EVD surgeries, helping surgeons make more precise decisions in complex
surgical environments. The ultimate goal of this research is to enhance the practical application
of HoloLens technology in real-world surgeries, offering patients a safer surgical experience.



3 Methodology

Multiple steps are involved in the External Ventricular Drainage (EVD) insertion surgical
navigation process. This includes the initial preoperative patient imaging scans, the creation
of the virtual model, the mid-stage preoperative planning and preparation of the AR program,
as well as the later stages involving registration and AR visualization for surgical guidance.
The entire workflow from preoperative to postoperative stages is illustrated in Figure 3.1. The
ultimate goal is the augmented visualization of the target area, represented by the red circular
region.

Figure 3.1: Flow chart of depth-based registration

3.1. Registration Algorithm
The registration algorithm aligns data from different sensor sources within a unified reference
frame, enabling precise alignment between virtual models and real-world environments. In
augmented reality (AR) systems, particularly in surgical navigation, registration algorithms
are crucial as they determine whether the virtual model can be accurately aligned with the
patient’s anatomical structures. This section introduces a landmark-based point cloud regis-
tration algorithm. This method aligns data by identifying and matching prominent feature
points within the point cloud. Building on this foundation, we will discuss the theoretical prin-
ciples, key technical components, and how this technique can be effectively implemented in the
HoloLens system to ensure efficient and stable registration in complex real-world scenarios.

The landmark-based point cloud registration algorithm relies on three landmark points for

10
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alignment, as illustrated in Figure 3.2. This method leverages the geometric principle that
”three points define a plane.” By registering the triangles formed by landmark points in both
the source and target point clouds, we can achieve data alignment. Commonly used registra-
tion algorithms include the Iterative Closest Point (ICP) algorithm [12], and Random Sample
Consensus (RANSAC) [11]. ICP is highly sensitive to the initial position, which significantly
impacts the final registration result [16], while RANSAC relies on large datasets and a sufficient
number of iterations to improve accuracy [4, 8]. A key evaluation metric for these algorithms
is the point-to-point distance error. In this experiment, the three-landmark method serves as
the basis for registration, simplifying the alignment of point cloud geometries by reducing it
to an affine transformation between triangles.

The specific steps for triangle-based registration are as follows, which are also shown in Figure
3.2:

• Initial Alignment: First, align one corresponding pair of points from the source and
target triangles;

• Rotation Alignment: Next, rotate the source triangle around the aligned point, ensur-
ing one edge of the source triangle coincides with the corresponding edge of the target
triangle;

• Final Adjustment: Finally, rotate around the aligned edge until the distance between the
third pair of points is minimized, completing the registration process.

Figure 3.2: Triangle based registration

To implement this approach, the CT scan of the head is transformed into a point cloud, and
three marked points are used to construct the source triangle for registration. The target point
cloud, on the other hand, is captured using the HoloLens and processed in conjunction with
the Open3D library on the PC server. After acquiring the two point clouds, the registration
is calculated through the Open3D library, generating the final transformation matrix.

In practical applications, to achieve the correct transformation and registration of models in
the Unity scene, a global transformation matrix needs to be sent to the HoloLens. However,
in the registration method, local transformations are performed step by step, as shown in
Figure 3.2. In each registration step, the local transformation matrix is applied relative to a
local reference point (the vertices of the triangle). To ensure that the transformation in each
step is correctly applied in the global coordinate system, we must base each registration step on
the global coordinate system. Specifically, for each local transformation, we first translate the
reference point to the origin of the global coordinate system, perform the necessary rotation
or translation, and then apply another translation matrix to return the reference point to its
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original position. In this way, each local transformation in the registration process is converted
to a global transformation, and each step of the registration can be correctly executed in the
global coordinate system. Ultimately, these transformation matrices, converted to the global
coordinate system, are multiplied together to produce a complete global transformation matrix,
achieving precise alignment between the source and target point clouds.

By using this landmark-based point cloud registration method, we can achieve high-precision
alignment between virtual models and real-world structures within augmented reality environ-
ments.

It is worth mentioning that during the actual registration process, the source point cloud
triangle is pre-defined by manually choosing the points, while the target point cloud triangle is
captured by the HoloLens. In this process, Dlib automatically identifies facial landmarks and
forms the target point cloud, which will be discussed in detail in Section 2.3. The front camera
of the HoloLens continuously captures RGB and depth information, which is transmitted to
the host computer for processing through data streaming protocols (such as the TCP scheme
used in HL2SS). This process reconstructs the point cloud data, as shown in Figure 3.3, where
the red points forming a triangle shape are gradually accumulated. The specific reconstruction
methods and workflow will be introduced later. These points are processed to form the final
target point cloud triangle. This data transmission process is implemented through a client-
server architecture written in Python.

Figure 3.3: Extracting point cloud of landmarks

3.2. Experimental System Workflow
The point cloud registration system in this study consists of a HoloLens 2 and a PC connected
to the same network. In this architecture, the HoloLens acts as the client, capturing depth
data and providing real-time visualization, while the PC serves as the server, responsible for
data processing, computation, and transmitting results back to the HoloLens. The system was
developed using the Unity engine, integrated with the HoloLens 2 Sensor Streaming (HL2SS)
plugin [10], ensuring efficient data transfer and interaction between devices. The pipeline is
shown in Figure 3.4.



3.2. Experimental System Workflow 13

In practice, the HoloLens captures real-time point cloud data through its depth sensors and
streams it to the PC for processing. The PC uses predefined source and target point clouds
for registration, computes the transformation matrix, and aligns the point clouds accurately.
Data processing is done using the Open3D Python library, and point cloud reconstruction
is performed through the Triangular Signed Distance Function (TSDF) volume segmentation
method. After the transformation matrix is calculated, it is transmitted back to the HoloLens,
which then displays the real-time registration results, aligning the virtual model with the pa-
tient’s anatomical structures in augmented reality. This system provides valuable AR feedback
that supports surgeons in making more precise decisions during surgery.

Figure 3.4: Framework of Registration system



4 Experiment and Results

We conducted four experiments aimed at evaluating the effectiveness of different techniques
in surgical guidance. The first experiment focused on a simulation validation based on land-
mark point cloud registration, with the goal of verifying the accuracy and feasibility of the
triangle-based registration algorithm. The results of this experiment will provide a reliable
foundation for the subsequent ones. In the second experiment, Dlib was used to extract land-
marks via the HoloLens, primarily to measure the precision and accuracy of the landmark
point cloud extraction by the HoloLens, ensuring the quality of the collected data. The third
experiment centered on the overall accuracy verification of the head model registration, as-
sessing the system’s stability and consistency through multiple registration tests. Lastly, the
fourth experiment validated the precision of EVD insertion during a simulated surgery. This
series of experiments is designed to offer critical insights for practical applications and further
explore the potential of these technologies in complex surgical environments. Notably, in the
following experiments, the left and right outer eye corners and the tip of the nose were chosen
as landmarks.

4.1. Experiment 1: Simulation of Landmark-Based Triangle Regis-
tration

4.1.1. Experimental Setup
The aim of this experiment was to verify the effectiveness of the triangle-based point cloud
registration method using landmarks. This method involves selecting three corresponding
landmark points in both the source and target point clouds, which define two triangles. The
registration process is achieved by calculating a geometric transformation matrix that aligns
these two triangles. Since three points can define a triangle, the process of aligning the source
and target point clouds can be viewed as registering two corresponding triangles. After ap-
plying the transformation matrix, the source point cloud is accurately aligned with the target
point cloud. The selected facial feature points, including the left outer eye corner, the right
outer eye corner, and the tip of the nose, are shown in Figure 4.1.

When selecting facial landmarks, it is important to account for slight displacements caused by
skin and muscle movement. These landmarks are less likely to be affected by facial movement,
ensuring rigid registration of the model during surgery. To ensure the accuracy of feature
point selection, a mobile phone-scanned point cloud with color information was used in the
experiment, allowing for a more intuitive selection of facial features compared to a monochro-
matic CT scan-generated point cloud. In addition, a comparison was made between the ICP
(Iterative Closest Point) algorithm and the triangle-based registration method proposed in
this study. The ICP algorithm, being sensitive to the initial position, usually requires a coarse
registration as a foundation, while the proposed method reduces dependency on the initial
position through affine transformation, addressing the sensitivity issue during the early stages
of ICP registration.

4.1.2. Experimental Results
This experiment was tested under two conditions: one with manually selected approximate
landmark points and the other with exactly identical landmark points. Under the manual

14
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Figure 4.1: Point cloud with chosen landmarks (colored spheres)

selection condition, the main purpose was visual validation, so no quantitative tests were
conducted. Figure 4.3(a) shows the visualized registration result of the source point cloud
(red) and the target point cloud (green). Due to larger errors in manual selection, registration
under this condition was primarily used to validate the feasibility of the algorithm, with limited
reference value for practical applications.

Under the condition of selecting identical landmark points, the system automatically calculated
the transformation matrix between the source and target point clouds using the Open3D library,
generating precise registration results. Quantitative test results indicated that even with the
accurate selection of landmark points, a certain amount of error remained in the registration
process. The registration TRE for the method of choosing the same points was 0.31 mm ±
0.04 mm.

(a) Triangle registration front view (b) Triangle registration side view

Figure 4.2: Triangle registration side view

In the comparison experiment with the ICP algorithm, only qualitative tests were performed,
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specifically testing the advantages of the proposed registration algorithm compared to ICP
under conditions where the source and target point clouds were far apart. The experimental
results showed that when the source and target point clouds were at a significant distance,
the initial registration of ICP often failed, as shown in Figure 4.3. This is because ICP is
overly sensitive to the initial positional relationship. In contrast, the triangle-based registration
algorithm proposed in this study was able to achieve satisfactory registration results even
under distant conditions, successfully overcoming ICP’s sensitivity to the initial position and
validating the superiority of this method.

(a) Triangle algorithm by manually choosing
landmarks

(b) Failure case for ICP Algorithm (source
point cloud: red target point cloud : green)

Figure 4.3: registration Visualization of ICP algorithm and triangle algorithm

4.2. Experiment 2: Dlib Facial Landmark Extraction via HoloLens
4.2.1. Method
In the pre-prepared 3D model within the HoloLens software, manual marking of facial land-
marks on the human model is required. Arbitrarily selecting these landmarks would lead to
significant inaccuracies. Therefore, this study selected Dlib as the tool to detect facial land-
marks in the real world to improve the accuracy of marking.

In the experiment, we used the front camera of the HoloLens2 as the camera for users to
observe and detect facial features. Through a TCP communication system, each frame of the
RGB images captured by the front camera was sent to the server host, where Dlib was used
to detect facial landmarks.

It is important to note that the RGB images captured by the front camera undergo resampling
and interpolation to match the spatial location of the depth map. This allows each pixel of
the depth information to correspond to a pixel of RGB information. In this case, Dlib’s facial
detection on the resampled RGB image can simultaneously locate the depth information of the
corresponding facial landmarks.

The purpose of this is to address the problem that facial landmarks cannot be directly extracted
from depth information. Since the depth information is what we actually need, representing
the positional coordinate information, Dlib’s limitation is that it can only detect landmarks
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based on RGB information.

4.2.2. Point Cloud Extraction Device
In the HoloLens, we used its built-in TOF depth sensors, Long Throw (LT), and the front cam-
era to collect depth and RGB information. The AHAT and LT depth sensors in the HoloLens
are responsible for short-range and long-range depth detection, respectively; AHAT is used for
short-range detections, such as hand gesture recognition, while LT is mainly responsible for
scene environment perception.

Referencing the study by Enzo et al. [18], which compared the two depth sensors of the
HoloLens, it was found that the AHAT depth sensor offers higher accuracy at close range
(20cm-60cm), while the LT sensor performs better at longer distances (greater than 60cm).
The LT sensor generally shows higher error compared to the AHAT sensor, but this difference
decreases for surfaces located beyond 50cm. Additionally, the standard deviation of the AHAT
sensor increases with distance to the surface, and it exhibits more outliers compared to the LT
sensor.

The distance for detecting facial landmarks with the HoloLens is approximately between 50cm
and 80cm, falling within the suitable detection ranges for both AHAT and LT sensors, but
more towards the long-range detection. Moreover, AHAT produces more outliers when de-
tecting depth information, resulting in more outlying points in the point cloud, while the LT
sensor generates fewer outliers. Since the registration method in this study is based on land-
marks, having less noise helps reduce the acquisition and accumulation of outliers, which can
potentially improve registration accuracy. Therefore, considering all factors, we chose the LT
sensor for depth detection.

4.2.3. Stability of Dlib-Extracted Target Point Cloud
Experimental Setup
To evaluate the accuracy of extracting facial landmarks from the point cloud, this study con-
ducted assessments from two dimensions: first, the stability of the extracted landmark point
cloud, and second, the accuracy of the extracted landmark point cloud.

To verify the stability of extracting landmark point clouds, we set up a procedure where the
user performed facial landmark point cloud extraction. During the extraction process, the
user slowly moved left and right as well as forward and backward, aiming to keep the Hololens
parallel to the frontal face of the head model. This allowed for dynamically collection of the
landmark point clouds. As shown in Figure 4.4, subsequent experiments were also conducted
following this standard to achieve consistent data collection.

Each landmark’s position accumulates point clouds from different frames. After outlier removal
and averaging, the final point is used in subsequent registration processes.

In the experiment, 14 sampling iterations were conducted, and the results were obtained. By
recording and analyzing the final coordinates of the collected points across multiple iterations,
we achieved the following results.

Results
The results are presented in a boxplot format. Since the absolute coordinates are related to
the origin position of the HoloLens at the moment the program starts, we focus on the range
of fluctuation of the detected coordinates rather than their absolute position.

As shown in Figures 4.5, 4.6 and 4.7, the results indicate that the fluctuation range of the target
landmarks detected by the HoloLens is relatively large on the Y and Z axes. In the boxplot,
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Figure 4.4: User collecting data wearing the HoloLens

the unit for the position coordinates is meters, and the maximum fluctuation range is around
1 cm, which may still be too large and potentially affect the accuracy of the registration.

4.2.4. Accuracy of Dlib-Extracted Target Landmarks
Experimental Setup
The landmarks in the extracted point cloud are the most critical part of the registration
algorithm, as their positions determine the accuracy of the registration. To evaluate the
accuracy of detecting and extracting landmarks from the point cloud using Dlib, we conducted
the following experiment.

In the Open3D coordinate system, registration of the source point cloud is performed based on
the detected landmarks and predefined landmarks. However, since the detected landmarks are
extracted using Dlib from the HoloLens camera, the accuracy of their physical world positions
depends heavily on the depth sensor, the RGB camera, and the overall detection accuracy of
Dlib. Therefore, the discrepancy between the detected landmarks in the physical world and
the pre-defined landmarks on the head model is particularly significant.

In an ideal scenario, the detected landmarks in the physical world should match the predefined
locations on the real head model, enabling highly accurate registration in the simulation exper-
iments. However, due to the limitations of manual calibration and detection accuracy, there
may be differences between the detected landmarks and the predefined landmarks, leading to
suboptimal registration results.

To address this, we designed an experiment. Small spheres were placed at the positions of
the outer eye corners and the nose tip on the Ground Truth virtual model. Similarly, the
detected landmarks from the HoloLens were visualized as small spheres projected in the real
world, allowing us to observe the discrepancy between the detected landmarks and the head
model’s predefined positions.

The Ground Truth was chosen as the registration result from the EM tracking system. The EM
tracking registration is a point-based registration process, where the coordinates of predefined
landmarks on the head model are acquired using an EM-tracking pointer. The specific steps
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Figure 4.5: Boxplot of the first landmark.

Figure 4.6: Boxplot of the second landmark.

Figure 4.7: Boxplot of the third landmark.
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are detailed in the validation section. This registration system, developed by Benmahdjoub et
al. [5], offers high registration accuracy, achieving millimeter-level precision. In this experiment,
we considered the EM tracking results to be highly accurate when the RMSE (Root Mean
Square Error) was less than 1 millimeter�The one we chose as the ground truth is 0.8284 mm).

Results
In the experiment, we measured the distances between the three landmarks (visualized as small
spheres) detected by the HoloLens and the corresponding spheres on the Ground Truth virtual
model. These distances represent the error between the landmarks detected by the HoloLens
and the predefined landmarks.

Through multiple experiments (n=14), we calculated the average distance between each pair
of landmarks. The results showed that the distances between the landmarks extracted by the
HoloLens and the actual predefined landmarks on the Ground Truth were approximately 2 cm,
as shown in Table 4.1. This error indicates that the accuracy of the landmarks detected by
the HoloLens has some deviations, which may affect the final registration outcome.

Pair Distance (m)
left outer corner of eye 0.0208 ± 0.0005
right outer corner of eye 0.0184 ± 0.0004
nose tip 0.0200 ± 0.0005

Table 4.1: Distances between ground truth and extracted landmarks

4.3. Experiment 3: Regsitration Validation
This section aims to validate the accuracy of the registration method, with a focus on the
analysis of registration errors, including skin shift and skin-based registration errors.

4.3.1. Experimental Setup
To measure the registration accuracy, we designed a Unity program that includes two identical
patient head models, each used for separate registration operations during the experiment.
The goal of this experiment is to compare the developed registration method with the EM
tracking-based registration method. The EM tracking-based method, which utilizes an EM
tracking and QR code registration system [5], serves as the ground truth in this experiment.

The EM tracking-based registration system consists of an EM tracking system, a QR code for
Vuforia tracking [24], a Hololens, and a PC server. The EM-tracking system includes a hand-
held pointer capable of tracking spatial coordinates (as shown in Figure 4.11(a)) and 4.12(a).
After calibration, the coordinates of any point touched by the pointer tip are recorded on the
PC server. Vuforia’s QR code is used to enable visual tracking on Hololens. The process of
obtaining ground truth registration based on EM tracking is as follows: First, the Unity server
program is launched on the PC server, which sends the calculated transformation matrix to the
Hololens client. The Hololens is worn, and the relevant client program is opened, ensuring that
the Hololens is successfully connected to the server. Then, Vuforia’s visual tracking function is
activated using voice commands. Next, the EM tracking pointer is used to sequentially touch
pre-selected landmarks in CT space (such as easily identifiable points on the skull), and the
PC server records the spatial coordinates of these points. By collecting a sufficient number of
landmarks, the registration matrix is calculated and transmitted to the Hololens, completing
the registration of the ground truth model, as shown in Figure 4.11(b) and 4.12(b). To ensure
that both the skull and head (including the skin) models are in the same CT coordinate system,
the skull was segmented from the head model, as shown in Figure 4.8.
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(a) Segmented region of skull (b) 3D visualization of segmented skull

Figure 4.8: Visualization of skull segmentation

In this experiment, skin shift is a factor of particular concern. The landmark-based registration
method developed in this study relies on landmarks on the skin surface. Although we aimed
to select stable landmarks (such as the outer corners of the eyes and the tip of the nose) for
registration, skin displacement relative to the skull can still occur, potentially affecting the
registration results. In contrast, the EM tracking-based ground truth registration method is
based on the skull, which offers higher accuracy. Since the skull is rigid, the coordinates of
the pre-calibrated points relative to the skull in CT space remain unchanged, ensuring the
precision of the EM tracking-based registration. However, the skin can shift slightly, especially
when made of silicone, which is manually installed on the skull surface. This can lead to
displacement, causing misalignment with the pre-calibrated coordinates on the model (as the
model treats the skin as rigid, while in reality, it is not). Therefore, measuring skin shift
and skin-based registration errors is crucial to understanding the impact of skin movement on
registration accuracy.

We also recorded the time required for registration, including data collection time and registra-
tion computation time. The time taken to collect landmarks is recorded while using Hololens.
During this process, the data collection time may vary significantly due to hardware limitations
and differences in the observer’s angle and method of operation. Therefore, during the experi-
ment, it is important to ensure consistency in the observation method and angle, maintaining
a uniform pattern of movement as in the previous experiment.

The experimental procedure and measurement methods include, first, measuring the skin shift.
Using the registered skull and skin models, the displacement of the skin relative to the skull was
evaluated. A set of reference points was evenly distributed across the anterior and posterior
regions of the model to measure the coordinate differences between the points on the skull and
skin registration. These reference points provided a consistent basis to objectively quantify
skin displacement during surgery due to movement.

Second, we measured skin-based registration errors. On the Hololens, these reference points
were visualized as spheres. The distance differences between the two registration methods
were recorded: one based on skin registration using EM tracking and the other using the
landmark-based registration method developed in this study. By comparing the two, we aimed
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to understand the impact of skin deformation on registration accuracy, helping to optimize
medical imaging and intervention techniques.

During the experiment, skull testing must be performed first, followed by skin testing. This
arrangement is necessary because the skin tests must be conducted under the same skin dis-
placement conditions to ensure data comparability and reliability. Through this experimental
design, we hope to gain a deeper understanding of the role of skin deformation in the registra-
tion process, providing valuable insights for improving the accuracy of medical imaging and
surgical interventions.

4.3.2. Results
After performing two separate EM tracking-based registrations for the skull and skin, we
obtained data on skin shift and registration error. During the registration process, skull reg-
istration was performed first, using the EM tracking pointer to collect reference points on the
skull and calculate the skull registration transformation matrix. Then, skin registration was
performed, using the EM tracking pointer to collect the same reference points on the skin
surface while maintaining the position of the skin relative to the skull. The transformation
matrices from both registrations were applied to all the reference points, yielding the positions
of the reference points in the EM tracking sensor coordinate system. The average distance be-
tween the skull and skin registration reference points was calculated, with the results repeated
over 14 trials, as shown in Table 4.2.

(a) Registration front view (b) Registration side view

Figure 4.9: Registration Result

In terms of registration validation, the data was collected by comparing the ground truth
and the reference spheres from the depth-based automatic registration method within the
same coordinate system (Unity). The displacement differences at each reference point were
calculated, yielding data on skin shift. The same observation method from Experiment 2 was
used for data collection, and the outcomes are displayed in Figure 4.9. The average distance
between the reference spheres in the registration results and the reference spheres in the ground
truth was calculated, and the target registration error (TRE) was determined. Figure 4.10
shows the overlap of the registration results and the ground truth. The red reference points
represent ground truth-based registration, while the green reference points represent the depth-
based automatic registration method.
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Figure 4.10: Visualization of the ground truth and registration result
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(a) EM-tracking collecting skull data
(b) EM-tracking registration visualization with

real skull

Figure 4.11: Skull registration result

(a) EM-tracking collecting skin data
(b) EM-tracking registration visualization with

skin

Figure 4.12: Skin registration result
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The table below (Table 4.2) summarizes the experimental results, including the skin displace-
ment relative to the skull, registration error, data collecting time, and registration time.

Skin Shift (mm) Registration Error (TRE) (mm) Data Collecting Time (s) Registration Time (s)
6.14 ± 0.68 16.41 ± 3.06 30.21 ± 12.43 6.59 ± 0.73

Table 4.2: Skin shift, registration error, data collecting time, and registration time results.

These results indicate that skin movement has a potentially significant impact on registration
accuracy. Since the skin is flexible and subject to external forces or deformation, the dis-
placement of the skin relative to the skull reached around 6 mm. The high registration error
reflects the negative effect of skin displacement on registration accuracy, validating the need
to carefully consider skin deformability when performing landmark-based registration on the
skin surface.

The registration method developed in this study is based on rigid body registration, aiming to
align the virtual skull model with the real skull accurately, thus achieving precise localization
of target tissues, such as the ventricles. However, the flexible nature of the skin introduces
larger errors in skin-based registration methods.

Regarding registration time, multiple experiments revealed that collecting landmarks with the
Hololens generally takes about 30 seconds. Although there were some fluctuations in time, the
overall efficiency was high. After completing the landmark collection, the time required for
registration computation was relatively stable, typically taking around 6 seconds.

4.4. Experiment 4: Evaluating EVD Insertion
This section evaluates the accuracy of participants’ performance in simulating an EVD (Exter-
nal Ventricular Drain) insertion surgery using the depth-based automatic registration method
and discusses the results.

4.4.1. Experimental Setup
The entire workflow of alignment using the Hololens registration is applied to the EVD insertion
surgery process in this experiment, serving as a navigation tool during the surgery. Preoper-
ative skull and ventricle data are visualized, allowing a clear display of the head model and
ventricles in the software for subsequent registration. To obtain an accurate ventricle model,
the ventricles within the brain were segmented, as shown in Figure 4.13. This step is crucial
for the surgical navigation process. Effective registration aligns the head model, including the
skin, with the real-world head model from all angles. Ideally, when no tissue or skin movement
occurs, the internal ventricles of the head should also align with the real-world ventricle tissue,
aiding participants in clearly visualizing the internal ventricles during insertion and improving
hand-eye coordination.

We simulated the placement of the EVD using a medical needle, which can be tracked by EM
tracking, in a model head. The model head consists of two parts: an internally 3D-printed
skull model and a silicone-based skin layer. The inside of the skull was injected with gelatin
and frozen to form a soft structure simulating brain tissue. The role of the simulated brain
tissue is to ensure that the needle path remains unchanged during insertion, similar to a real
surgery, to prevent any deviation in the experimental results. As shown in Figure 4.14(a), the
skin is cut open to reveal the gelatin inside the skull. In subsequent experiments, a new skin
without holes will be used, as shown in Figure 4.14(b).

During the navigation process, after the head is aligned, a visualization guide further assists
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(a) Segmented region of ventricle (b) 3D visualization of segmented ventricle

Figure 4.13: Segmentation of ventricle

(a) Gelatin in hole (b) User inserting needle

Figure 4.14: Simulation of EVD insertion
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participants in navigating the surgery. Before the surgery, an insertion path is pre-planned
on the virtual head model in the Hololens. The visualized insertion path extends outside
the head and makes contact with the internal ventricles, simulating a realistic EVD insertion.
Additionally, the EM tracking system tracks the medical needle used for the EVD insertion,
and a real-time tracking pointer is visualized on the needle. This pointer is also visualized as
a cylinder but with a different color to distinguish it from the guided insertion path. When
participants simulate the EVD insertion, they simply need to align the tracked pointer with
the green cylinder representing the guided path, as shown in Figure 4.15.

Experimental steps are shown as follows:

• Registration Process: Participants wear the Hololens and, through observation and ad-
justment, align the virtual head model with the real head model at all angles. Once
participants are satisfied with the registration result, they proceed to the next step.

• Hide Head Model: Using voice commands, participants hide the registered head model,
leaving only the visualized ventricle model, insertion path, and some reference points,
making it easier to focus on the surgical target area and improve accuracy.

• Prepare Insertion Tool: The medical needle tracked by the EM tracking system is pre-
pared, with a real-time visualized pointer (a white cylinder) displayed on the needle.

• Perform Insertion Simulation: Participants insert the needle into the head model accord-
ing to the visualized insertion path. During insertion, they attempt to align the tracked
pointer (white cylinder) with the pre-planned insertion path (green cylinder). Once the
participants achieve a satisfactory alignment, they use voice commands to save the inser-
tion experiment records, including translation and rotation information. This data will
be used for subsequent error analysis and result evaluation.

4.4.2. Results
During the experiment, five different participants were selected, each performing four insertions
at different positions, as shown in Figure 4.15. Among the five participants, three individuals
had experience using the Hololens.

To comprehensively evaluate the accuracy of the insertion path in a controlled experimental
environment, we used two models and a tracking cylinder. First, the Ground Truth model
(EM Tracking method) includes a cylinder representing the reference insertion path, serving
as a baseline for validating the accuracy of other methods. Second, the registration model
(depth-based automatic registration method) includes a cylinder representing the insertion
path, which is used to evaluate the effectiveness of the landmark-based registration method.
Finally, the actual path indicator (tracked pointer cylinder) simulates the actual insertion path
of the device, tracked in real-time by the EM tracking system, reflecting the participants’ actual
performance.

The criteria for evaluating the accuracy of the registration and insertion are as follows (see
also Figure 4.16):

• Total Error:

– Measures the distance between the Ground Truth model’s cylinder(red) and the
tracked pointer cylinder (white, actual insertion path).

– Reflects the overall deviation of the actual insertion path from the expected path.
• Perception Error:
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Figure 4.15: Insertion from user view

– Measures the distance between the registration model’s cylinder (green, landmark-
based insertion path) and the tracked pointer cylinder (white, actual insertion path).

– Indicates the discrepancy between the participants’ perceived path and the actual
insertion path when using the landmark-based registration method.

• Registration Error:

– Measures the distance between the registration model’s cylinder (green, landmark-
based insertion path) and the Ground Truth model’s cylinder (red, reference path).

– Reflects the deviation of the landmark-based planned path from the reference path.

registration error perception error total error
translation (mm) rotation (°) translation (mm) rotation (°) translation (mm) rotation (°)

15.17 (± 3.24) 5.82 (± 2.71) 5.10 (± 3.94) 3.19 (± 2.59) 16.07 (± 4.33) 7.14 (± 2.67)

Table 4.3: Insertion error with translation (in mm) and rotation (in degrees)
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Figure 4.16: Ground truth, navigation result and tracking needle



5 Discussion

Currently, the robustness of the registration algorithm may be insufficient, and its stability is
difficult to evaluate. The registration algorithm in use is relatively simple, deriving the regis-
tration transformation matrix through stepwise affine transformations between two triangles.
Although the algorithm can demonstrate high accuracy when the three pairs of registration
points coincide exactly, errors still persist. These errors may result from the limited preci-
sion during rotation when the algorithm is implemented in code, especially in the calculation
of small angles. Additionally, during the registration process, the landmarks marked on the
source point cloud and the point cloud obtained through the Hololens do not form identical
triangles, leading to cumulative errors. For example, in the second step, the alignment of
the lines is achieved by making them parallel, while the precision of the rotation in the third
step further introduces errors. It is also worth noting that this triangle-based registration
algorithm is sensitive to the order of points, meaning that different point orders can lead to
different registration outcomes. In some cases, using a different point order might produce
better registration results, which is another source of error.

When applying the Hololens for registration in practice, the accuracy is influenced by several
factors at both the system and physical levels.

At the system level, for instance, the landmarks pre-marked on the head model may not
perfectly match the positions of the landmarks detected in the actual point cloud. For the
registration algorithm, as long as the virtual and real landmarks maintain the same relative
position to the head, accurate registration can theoretically be achieved. However, in practice,
the pre-marked points (source point cloud) and the actual points obtained (target point cloud)
cannot match perfectly, resulting in registration errors. Furthermore, the visualization process
in the Hololens is subject to SLAM drift issues, meaning that after prolonged use of the
Hololens, the model’s position may shift.

At the physical level, factors such as skin movement and real-time tissue displacement can
affect both the registration process and the final surgical outcome. Skin movement may cause
a ”skin shift,” where the skin moves relative to the skull, causing facial feature points to shift
accordingly. Since registration is based on detected facial feature points, even if the predefined
landmarks on the virtual head model align accurately with the detected landmarks, the actual
registration between the skull and the brain’s ventricles may not be as accurate.

Regarding registration time, it is currently unstable. During the experiments, instability in
data collection caused significant fluctuations in the time required for data acquisition. Im-
proving the stability and efficiency of point cloud data acquisition is an issue that needs to be
addressed.

It is also important to note the limitations of Dlib detection. Dlib only enters the landmark
detection loop when it detects a complete face. If facial features are not prominent or are
missing for some reason, it is possible that Dlib will not detect a face, thereby failing to perform
landmark detection. In the experiment, an attempt was made to use a head model without
a jaw for registration testing, but since Dlib could not detect facial features, the registration
failed.
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In the EVD insertion experiment, the results varied among different participants due to their
varying levels of experience with the Hololens and surgery. Participants with more experience
were more familiar with operating Hololens and had a better understanding of the experimen-
tal procedures and instructions, which resulted in more accurate registration outcomes. Before
performing EVD insertion, registration needs to be completed, and only when participants
are satisfied with the registration results can they proceed with the insertion. The experi-
ment revealed that participants with experience in simulated surgeries using the Hololens had
higher standards for registration accuracy, resulting in better registration precision during
the simulated surgery. The overall results showed that inexperienced participants had higher
displacement and angle errors, while experienced participants had lower errors.

Additionally, besides registration accuracy, the Hololens’ visualization and depth perception ca-
pabilities had a significant impact on the outcome of the EVD insertion. Participants reported
after the experiment that the alignment they observed from different angles in the Hololens
varied, and depth perception posed certain challenges, requiring multiple observations from
different angles to achieve a satisfactory insertion. During the experiment, participants with
varying levels of prior knowledge about Hololens exhibited different behaviors. For instance,
participants with prior experience in using Hololens for EVD insertion showed smaller percep-
tion errors, indicating that experienced participants were better able to utilize the Hololens’
visualization capabilities to find the correct position.



6 Conclusion

This study proposes a markerless, external-device-free automatic registration method based on
the HoloLens 2, specifically designed for augmented reality (AR) navigation in External Ven-
tricular Drainage (EVD) surgeries. The motivation for the study stems from the limitations
of current registration methods used in EVD procedures. Traditional marker-based methods
are complex and time-consuming, especially in emergency surgical scenarios where high effi-
ciency and real-time performance are essential. Therefore, we developed a novel approach that
utilizes the Dlib library to automatically detect facial landmarks, combined with point cloud
registration technology, simplifying the registration process while enhancing the precision and
efficiency of surgical navigation.

In the experimental section, we designed and conducted four experiments to validate the effec-
tiveness of this method. First, we verified the feasibility of the algorithm through a point cloud
registration experiment based on landmarks. Despite manual errors in marking the landmarks,
the algorithm was able to achieve high registration accuracy, demonstrating the robustness of
the method. Second, we tested the accuracy and stability of Dlib’s detection and evaluated
the performance of HoloLens cameras in extracting facial landmarks. Although small move-
ments of facial features introduced minor errors, the overall detection accuracy met clinical
requirements. The third experiment assessed registration accuracy by analyzing the impact
of skin displacement on registration errors. Results showed that skin displacement of about
6mm caused registration errors of up to 16.41mm, indicating that skin flexibility significantly
affects registration accuracy during surgery. Lastly, we validated the accuracy of the insertion
path in a simulated EVD insertion experiment. Results showed that participants’ experience
with using HoloLens significantly influenced registration and insertion accuracy, with more
experienced users achieving better precision.

The main contribution of this study is providing an efficient, markerless, external-device-free
automatic registration method for EVD surgeries, significantly reducing dependence on exter-
nal devices and simplifying the registration process. This method demonstrated reasonable
accuracy and real-time performance in the experiments, making it suitable for emergency
surgical scenarios with potential for broad clinical applications. Moreover, the experiments
revealed the impact of skin displacement on registration accuracy, providing valuable insights
for further optimization of the registration algorithm.

Future research will focus on optimizing the algorithm to reduce the effects of skin displacement
and landmark detection on registration accuracy, further improving precision. Additionally,
we will explore applications in other complex neurosurgical procedures. With continuous im-
provements in robustness, real-time performance, and accuracy, we believe this method will
drive further exploration of depth-based automatic registration techniques.
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