
Uncovering Secrets of the Maven Repository
Maven packaging

Priyam Rungta1

Supervisor(s): Sebastian Proksch1, Mehdi Keshani1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Priyam Rungta
Final project course: CSE3000 Research Project
Thesis committee: Sebastian Proksch, Mehdi Keshani, Soham chakraborty

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/


Abstract
Maven, a widely adopted software ecosystem for
Java libraries, plays a critical role in the devel-
opment and deployment of software applications.
However, there exists a limited understanding of
the composition and characteristics of the Maven
repository, leaving users and contributors unaware
of the contents they interact with. This research
aims to address this knowledge gap by conduct-
ing a comprehensive analysis of Maven packag-
ing and informing developers, library maintain-
ers, security analysts, and the open-source com-
munity about Maven library practices. The re-
search investigates the secrets of the Maven repos-
itory, focusing on Maven packaging. Using data
from the POM file, Maven index file, and Maven
repository, we analyze the distribution of packaging
types, checksums, qualifiers, and file types within
Maven libraries. The experiment involves examin-
ing 479,915 packages from the Maven repository,
utilizing the POM file, the Maven index, the Maven
repository and manual requests to the Maven repos-
itory. The results reveal that JAR is the packag-
ing type in more than 75% packages across all
sources, and inconsistencies are found among dif-
ferent data sources, highlighting the need for im-
proved data consistency and reliability within the
Maven ecosystem. Furthermore, the adoption of
the sha256 and sha512 checksum algorithms re-
mains limited, with only 1.4% of packages utilizing
these secure hash functions. In terms of qualifiers,
sources and Javadoc exhibit the highest prevalence,
with adoption rates of 82% and 76% respectively.
Moreover, class files and XML are identified as the
most frequently packaged file types, encompassing
71% and 61% of the packages, respectively among
a very diverse classification. These findings pro-
vide insights into Maven library characteristics and
inform optimization of library usage.
Keywords: Maven, Packaging type, Checksum,
Qualifier, Type of files

1 Introduction
Maven is a software project management tool. Based on
the concept of a project object model, Maven can manage
a project’s build, reporting and documentation from a central
piece of information [1]. The Maven repository 1 serves as
a centralized hub for developers to store, share, and manage
projects that are based on the Java Virtual Machine (JVM).

Our research aims to provide valuable insights to the soft-
ware engineering community by comprehensively examining
the features and characteristics of Maven libraries. By focus-
ing on Maven packaging and its surrounding ecosystem, we
seek to gain a deeper understanding of Maven as a central
place where developers ship their final products. This knowl-
edge will enable us to optimize the usage of Maven libraries
and contribute to the advancement of software engineering
practices.

The structure of the Maven ecosystem provides a valuable
source of data and a unique opportunity to study and analyze
the distribution of Java libraries. By examining their char-
acteristics and attributes, we gain valuable insights into the
ecosystem and its practices, which is of great benefit to both
library maintainers and the ecosystem. Additionally, having a

1https://mvnrepository.com/

deeper understanding of the maven packaging would help in
understanding how the lifecycle of each package differs from
others. This would further help to build a custom package
type and customize the default build lifecycle.

This paper aims to comprehensively analyze packaging
types, checksums, qualifiers, and executable contents within
the Maven repository. The research questions focus on deter-
mining the prevalence of packaging types, identifying com-
mon bytecode checksum algorithms and their trends, inves-
tigating commonly used qualifiers, and identifying file types
packaged in libraries’ executables.

To achieve this goal, the paper proposes an experimental
setup comprising a core infrastructure and a setup designed
to address specific research questions. The core infrastruc-
ture is responsible to download the Maven index file, process
the packages and store the result in a database after apply-
ing the setup for the specific research questions. To address
the research questions, the packaging type of each package
is acquired by consulting three sources: the package’s index,
the POM file, and the Maven repository. These sources col-
lectively contribute to determining the packaging type. Sim-
ilarly, checksum types and qualifier artifacts are obtained via
manual requests that involve parsing artifact names. Further-
more, the executable artifact is resolved to extract the infor-
mation, specifically the file extensions of all entries contained
within the artifact. This methodology leveraging multiple
sources and employing manual requests enables the effective
addressing of the research questions.

The experimental setup described above provided a com-
prehensive approach to address the research questions. Af-
ter completing the experiments, 1.4% of the packages could
not be analyzed due to unavailable POM files. However,
we found that the prevalent packaging type across all three
sources is jar, accounting for more than 75% packages.
While around 3% of packages had multiple packaging types,
the rest consisted of a single type. During the analysis, we
discovered discrepancies between POM files, the index file,
and the Maven repository in certain packages, suggesting in-
consistencies within the system. Specifically, 9% packages
showed inconsistencies between the POM file and the index
file, 4% packages had discrepancies between the index file
and the repository, and 12% packages exhibited inconsisten-
cies between the POM file and the repository. Additionally,
we came across some unconventional packages that deviated
from the expected norms.

Regarding checksum algorithms, the analysis revealed that
99.9% packages utilized md5 and sha1 algorithms, while only
1.4% packages adopted sha256 and sha512 algorithms. Inter-
estingly, 0.08% packages lacked any checksum algorithm as
Maven only recommends the usage of a checksum algorithm
but does not enforce its implementation.

When it comes to qualifiers, the analysis of qualifiers per
package in the Maven repository showed that sources were
the predominant qualifier, found in 82% of the packages.
Javadoc qualifiers were also prominent, appearing in 76% of
the packages.

Upon examining the primary executable file types, we ob-
served that class files comprised the majority, being present
in 71% of the analyzed packages. Additionally, XML files
were prevalent, appearing in 61% of the packages. It is worth
noting that 80% of packages encompassed file types beyond
the top 10 categories, reflecting a diverse array of file types
within the dataset.

Our research bridges the gap for multiple stakeholders. For
developers and contributors, it will help them to make in-
formed decisions about selecting appropriate packaging types
for their projects and understanding the packaging choices
made by popular libraries. Library maintainers can benefit

https://mvnrepository.com/


as it can help them make informed decisions when releas-
ing new versions, considering packaging type compatibility,
and aligning with industry practices. Additionally, security
analysts and the open-source community can leverage this re-
search to analyze the usage of different checksum algorithms
for bytecode. They can assess the adoption rates of more
secure algorithms like SHA-256 and track the evolution of
checksum practices over time. Lastly, this research can help
all the stakeholders assess the security of their dependencies
and make informed decisions when selecting libraries and the
knowledge of common qualifiers can assist in accessing and
utilizing source code or documentation for libraries, facilitat-
ing better understanding and usage of third-party code.

2 Background
In this section, we discuss the glossary of the terminology
discussed in the report and highlight the findings from the
related work on the Maven ecosystem.

2.1 Glossary
This section provides definitions of key terms and acronyms
used throughout the paper.
Maven Index File: A file generated by Maven during the in-
dexing process, containing metadata information about the ar-
tifacts stored in a Maven repository, enabling efficient search
and retrieval of dependencies during the build process.
.m2: The ”.m2” folder is a directory that is automatically cre-
ated in the user’s home directory. It serves as the default loca-
tion for storing Maven-related files and artifacts. The ”.m2”
folder is used as the local repository by Maven to cache down-
loaded dependencies, plugins, and other artifacts required for
building Java projects.
Packaging type: Maven uses packaging types to categorize
and define the output format of a project’s artifact. The pack-
aging type is specified in the project’s Maven POM (Project
Object Model) file and determines how the project is pack-
aged and distributed. For example, a POM file can spec-
ify <packaging>jar</packaging> and the resulting package
looks like my-library-1.0.0.jar.
Package: In Maven, a package refers to the resulting output
artifact that is created during the build process. It represents
the compiled code, resources, and other necessary files bun-
dled together in a specific format based on the project’s pack-
aging type. my-library-1.0.0.jar is a packaged Java library
that includes compiled classes, resources, and dependencies,
ready for use in other projects.
Maven Artifact Resolver: It is a library for working with arti-
fact repositories and dependency resolution. Maven Artifact
Resolver deals with the specification of local repositories, re-
mote repositories, developer workspaces, artifact transports,
and artifact resolution [2].
POM: A Project Object Model or POM is the fundamental
unit of work in Maven. It is an XML file containing informa-
tion about the project and the Maven configuration to build
the project. It contains default values for most projects [3].
Qualifier: A qualifier is an optional attribute that provides an
additional way to differentiate artifacts with the same group,
artifact ID, and version. It is used to distinguish artifacts
based on specific variations or features, such as different
build profiles, target platforms, or supplemental files associ-
ated with the main artifact. For example, my-library-1.0.0-
sources.jar indicates that the JAR contains the source code
files (e.g., Java source files) for the corresponding library.
Checksum: Checksums are generated for artifacts and accom-
panying metadata files in the repository. These checksums,
often in the form of hashes, provide a way to validate the in-
tegrity of downloaded artifacts by comparing the calculated

checksum with the expected value. For example, my-artifact-
1.0.0.jar.md5 signifies a checksum file for the ”my-artifact”
JAR file with version 1.0.0. The ”.md5” extension in the
checksum file indicates that the MD5 hashing algorithm was
used to generate the checksum value for the JAR artifact.

2.2 Related work
The Maven ecosystem, with its vast collection of open-source
libraries and artifacts, has been the subject of several research
studies aimed at understanding its structure, dependencies,
and usage patterns. In this section, we highlight the previ-
ous research conducted on the Maven ecosystem.

Raemaekers et al. experimented to analyze the Maven De-
pendency Dataset, focusing on only jar files’ metrics, modifi-
cations, and dependencies [4]. Their research, which exam-
ined individual classes, functions, and packages across differ-
ent library versions, revealed some interesting insights. One
notable finding was that only 68.4% of libraries in the dataset
had source jar files, while 53.1% had javadoc jar files. How-
ever, these conclusions were drawn with certain limitations,
such as the presence of non-Java languages, test code, and
corrupted source jars in the dataset.

Our research aims to expand on the study conducted by
Raemaekers et al., which focused on evaluating metrics only
for jar files in the Maven repository. Additionally, our
experiment provides comprehensive insights into the entire
repository, considering various packaging types. We aim
to overcome the previous limitation by examining all quali-
fiers present in the repository, as compared to only sources
and javadoc, providing a more comprehensive understanding.
Furthermore, as the previous study was conducted 10 years
ago, we will provide updated statistics on the availability of
javadoc and source files in the current Maven repository.

Kanda et al. investigated the presence of inner jar files
within jar files in the Maven central repository, as well as
the extent of duplication [5]. Their analysis revealed that ap-
proximately 0.8% of jar files contained inner jar files, with
an average of 13.1 inner jar files per jar file and a median
of 2. Additionally, 15% of the jar files appeared as inner jar
files. They concluded that duplication in libraries is not un-
common, with 10% of jar files containing inner jar files found
to be duplicated.

Kanda et al. investigated inner jar files while our research
aims to give additional insights into the files present within
the libraries’ executables.

Benelallam et al. took a different approach and focused
on modelling the Maven Central repository on an artifact
level, rather than analyzing source code [6]. Their objec-
tive was to create a dependency graph that could facilitate
queries. They discovered that around 85% of Maven arti-
facts and their dependencies could be described using the 3-
tuple format of ”GroupId:ArtifactId:Version.” Moreover, they
found that 12.5% of artifacts were duplicated, and an equal
percentage were either deployed in another repository or had
corrupted pom.xml files. The remaining artifacts represented
unique groups, with an average of 10 versions per library.

Soto-Valero et al. delved into the usage patterns and distri-
bution of different library versions in the Maven ecosystem
[7]. Their research aimed to determine how actively vari-
ous library versions were being utilized and distributed over
time. They discovered that 30% of libraries had multiple ac-
tively used versions. Interestingly, more than 17% of libraries
exhibited significant variation in usage among different ver-
sions, with some versions being more popular than others.
Surprisingly, around 4% of the libraries had never been used.
These findings indicated that ”Maven Central’s immutability



of artifacts supported a sustained level of diversity among li-
brary versions in the repository”.

Ma et al. focused their study on Maven archetypes, specif-
ically identifying schema patterns in archetype POMs [8].
They analyzed the frequency of element tags, element se-
quences, and configuration patterns. Their investigation re-
vealed that ”artifactId,” ”groupId,” and ”version” were the
most frequently used element tags. Furthermore, the most
common element sequences were ”(artifactId, project >de-
pendencies >dependency)” and ”(groupId, project >depen-
dencies >dependency).”

In conclusion, previous research on the Maven ecosystem
has provided valuable insights into various aspects, such as
the availability and quality of source and javadoc jars, ar-
tifact duplication, inner jar files, library version usage, and
archetype POM patterns. These studies have shed light on
the structure, dependencies, and characteristics of the Maven
ecosystem, contributing to a better understanding of this vital
component in the Java development landscape. Though there
has been a lot of research to understand the Maven ecosystem
better, there is little evidence that provides insight into the
distribution of types of packaging types, checksums, quali-
fiers and executables.

3 Methodology
In this section, we describe the data selection approach and
then describe the experimental setup required.

3.1 Data Selection
The data selection process for this research study employed a
simple random sampling approach to obtain a representative
sample of Maven libraries [9]. Simple random sampling was
chosen as the preferred technique for several reasons. Firstly,
it ensures that every individual or element in the population
has an equal chance of being selected for the sample. Sec-
ondly, it eliminates any systematic biases that may arise from
using other sampling techniques, such as stratified or cluster
sampling. Thirdly, it helps in creating a representative sam-
ple, increasing the likelihood of generalizability to the entire
population.

The Maven repository, acting as a centralized hub for Java-
based projects, served as the primary data source. The Maven
index was retrieved on June 6, 2023. This section outlines
the methodology and procedures used to select the data for
analysis.
Sampling Procedure To ensure a comprehensive and unbi-
ased dataset, a rigorous approach of simple random sampling
was employed, where one version of each package was ran-
domly chosen. The data selection process involved the fol-
lowing steps:

• Sample Size Determination: To ensure adequate repre-
sentation of the Maven repository, one version for every
package was chosen randomly. The total sample size is
479,915, which represents a confidence level of 99% and
a margin of error of 0.18% 2. The number of packages
sampled is 4.7% of the maven repository.

• Seed and Reproducibility: To maintain consistency and
reproducibility, a fixed seed value of 0.5 was used for
randomization. This seed value ensured that the same
samples could be obtained consistently across multiple
iterations of the study.

The simple random sampling technique, implemented
without specific exclusion criteria, provided an unbiased and

2https://www.checkmarket.com/sample-size-calculator/
#sample-size-calculator

Year Total Packages Sampled Packages Ratio
2011 278,326 24,910 0.0894
2012 136,552 13,787 0.101
2013 178,376 15,384 0.0863
2014 237,086 19,459 0.082
2015 345,994 28,069 0.0811
2016 514,152 35,110 0.0682
2017 728,262 39,746 0.0546
2018 920,570 44,330 0.0481
2019 1,218,375 53,100 0.0436
2020 1,404,258 51,620 0.0367
2021 1,773,855 58,433 0.0329
2022 1,791,565 60,130 0.0336
2023 805,670 35,837 0.0453
Total 10,333,041 479,915 0.0469

Table 1: Packages distribution per year with seed = 0.5

inclusive representation of the Maven library ecosystem. This
approach, combined with a fixed seed value for reproducibil-
ity and the selection of only one version per package, ensured
a diverse and unbiased dataset across different years. Table 1
shows the number of packages selected from each year. Ad-
ditionally, the Maven index file and the database are made
available 3.

3.2 Experimental Setup
In this section, we describe the experimental setup used to
answer the research questions.
Core infrastructure The methodology employed in this
study consists of a series of interconnected components de-
signed to accomplish specific objectives. It begins by loading
a configuration that encompasses various settings for the sys-
tem’s components, providing flexibility and customization.
At the core of the infrastructure lies a database, which serves
as the central repository for storing and managing processed
information. Raw data sourced from the local or remote
”.m2” folder undergoes processing and organization, result-
ing in distinct tables within the database.

To facilitate efficient retrieval of package information, the
first step is to download the index file from the Central reposi-
tory 4. This file contains essential details about each package,
such as the group ID, artifact ID, version, and packaging type.
After downloading the index file, the information about each
package is stored in a table for further reference.

With the necessary data organized, the next step is to se-
lect a representative subset of packages for focused analysis.
Based on the criteria outlined in the data selection, a subset
of packages is selected from the index table. Randomization
techniques, utilizing seed and a sample percentage, are ap-
plied to ensure an unbiased selection process. The selected
packages are then stored in a separate table, enabling a fo-
cused analysis of the representative subset. To ensure the
availability of necessary information for subsequent process-
ing steps, packages are resolved within a local repository. If
the package is not found in the local repository, the speci-
fied artifacts are resolved from the Maven repository. This
approach guarantees that all the required information is ac-
cessible for subsequent processing steps.

Now that the relevant packages are selected and resolved,
the next stage involves extracting the necessary data for anal-
ysis. The selected packages are processed by a component

3https://doi.org/10.5281/zenodo.8077125
4https://repo.maven.apache.org/maven2/.index/

https://www.checkmarket.com/sample-size-calculator/#sample-size-calculator
https://www.checkmarket.com/sample-size-calculator/#sample-size-calculator
https://doi.org/10.5281/zenodo.8077125
https://repo.maven.apache.org/maven2/.index/


Figure 1: Overview of processes involved in methodology

dedicated to extracting relevant data. This data extraction
component executes the necessary operations on the pack-
ages, resulting in the extraction of pertinent information. The
extracted data is subsequently stored in a dynamic table. In
order to handle any exceptions or errors encountered during
the resolution or processing of packages, an error-handling
mechanism is incorporated. A dedicated table is utilized to
record the names of packages associated with their respective
error messages, enabling thorough error analysis and resolu-
tion.

Given the potentially substantial volume of data, paral-
lelization is an essential aspect of the methodology. By lever-
aging the available server resources, the system efficiently
utilizes multiple threads for concurrent processing. This par-
allelization enables timely analysis and extraction of informa-
tion from the extensive dataset.

Overall, this methodology provides a systematic approach
to analysing a significant amount of data, extracting relevant
information using specified extractors, and storing the pro-
cessed data in a structured manner. By following this coher-
ent workflow, the system can effectively conduct experiments
and enable further analysis or utilization of the obtained re-
sults. Figure 1 provides an overview of the structure of the
core infrastructure.
Methodology for Research Questions In this section, the
methodology for all the research questions is described.

There are three sources used to obtain the packaging type
of a package: the package’s index, its POM file, and the
Maven repository. All three sources are utilized to store the
packaging type in the table.

During the package processing from the index file, the exe-
cutable artifact is determined, and its packaging type is stored
in the table. This is then passed to every extractor through the
Runner component to gather the required information. The
packaging type is extracted from the POM file using Maven’s
built-in Model 5 class. This extraction occurs after resolving
the POM artifact. Lastly, to obtain packaging types from the
repository, we make manual requests per package to retrieve
all the artifacts present in the repository. The artifact names
are parsed according to the pattern artifactID - version. ex-
tension, to identify the executable artifact.

For all artifact names that conform to this specific pattern,
the ”extension” constituent is stored in the database as one of
the packaging types associated with the package.

5https://maven.apache.org/ref/3.0.4/maven-model/apidocs/org/
apache/maven/model/Model.html

Moving on, the acquisition of information pertaining to
checksum types is also reliant on manual requests. The de-
cision to opt for manual requests as a means of obtaining the
data was primarily driven by the objective of reducing the
number of requests made to the Maven repository through
our resolver. Maven operates under a need-to-know principle,
meaning that fetching all the checksum artifacts would neces-
sitate a separate request for an individual artifact. This ap-
proach would not only be computationally intensive but also
carry the risk of potential IP banning. Furthermore, during the
implementation phase, we came to realize that the index file
exclusively contained ”.sha256” and ”.sha512” files, lacking
any other forms of checksum artifacts. Consequently, relying
on the index file to retrieve all the hash files associated with
the package was not a viable option. Therefore, similar to the
methodology employed for determining packaging types, the
names assigned to the artifacts are parsed, according to the
pattern artifactID - version. extension. checksum, to ascer-
tain whether they represent checksum artifacts.

For all artifact names that adhere to this particular pattern,
the ”checksum” component is retained in the database as one
of the hashes attributed to the package.

To obtain all the qualifier artifacts linked to a specific pack-
age, the identical method was employed for checksum re-
trieval. artifactID - version - qualifier. extension is the pattern
followed for these artifacts.

Among the artifact names that adhere to this particular pat-
tern, the ”qualifier” element is stored in the database as one
of the ancillary files accompanying the package.

Finally, to obtain all the files contained within the exe-
cutable, the executable artifact is resolved (unless the package
is a POM project). Subsequently, the names of all the entries
within the file are parsed, and their extensions are collected
and stored in a set data structure.

The methodology described in this section outlines the pro-
cess of obtaining packaging types, checksum types, quali-
fier artifacts, and executable files for packages. It utilizes
three sources: the package’s index, the POM file, and the
Maven repository. The packaging type is determined and
stored, while checksum types and qualifier artifacts are ob-
tained through manual requests by parsing artifact names. Fi-
nally, the executable artifact is resolved to collect and store
the file extensions of all the entries within the file. Over-
all, this methodology enables a systematic approach to gather
crucial information for comprehensive package analysis.

4 Evaluation
Among the extensive sample set of 479,915 packages, a mere
fraction of 1.4% (rounding up to 3 decimal places) could not
be analyzed. The primary reason behind this limitation was
the inability to fetch the parent POM files from the Maven
repository. The retrieval of the parent POM files necessitates
the resolution of the packages. However, while attempting
to acquire the POM file of the parent package, it was dis-
covered that the file was unavailable or inaccessible. Upon
manual inspection of around 25 packages 6, it was observed
that the reason for unavailability was either the POM file was
corrupted, or that the POM file was originally located in one
repository but had since been relocated to another repository.
As a result, the analysis of these packages could not be satis-
factorily executed.

RQ1 - Packaging types
In this section, we provide the distribution of packaging types
obtained from three different sources: the POM file, the
Maven Index, and the Maven repository.

6https://repo1.maven.org/maven2/as/leap/cloud-code-sdk/2.3.5/

https://maven.apache.org/ref/3.0.4/maven-model/apidocs/org/apache/maven/model/Model.html
https://maven.apache.org/ref/3.0.4/maven-model/apidocs/org/apache/maven/model/Model.html
https://repo1.maven.org/maven2/as/leap/cloud-code-sdk/2.3.5/


75.042

11.968
4.579 2.433 1.336 1.175 0.629 0.487 0.227 0.2 1.924

0

10

20

30

40

50

60

70

80
P

er
ce

n
ta

ge

Packaging type

Figure 2: Distribution of the 10 most popular packaging types from
POM files

80.849

11.29

2.268 1.736 1.305 1.222 0.33 0.161 0.084 0.068 0.688
0

10

20

30

40

50

60

70

80

90

P
er

ce
n

ta
ge

Packaging type

Figure 3: Distribution of the 10 most common packaging types from
the Maven index

The POM file Upon analyzing the data set, we discovered
the presence of 181 distinct packaging types referenced in the
POM files of the packages. Among these packaging types,
the most prevalent, constituting a significant 75% of all pack-
aging types, is the jar type. Moreover, excluding the top 10
packaging types, the remaining packaging types constitute a
mere 1.9% of the total. Figure 2 shows the distribution of the
POM’s 10 most frequent packaging types. Furthermore, table
5 in appendix A provides the top 25 packaging types in the
POM file.

Maven Index In the context of packaging types sourced
from the Maven index, the analysis has revealed the presence
of 110 discrete packaging types within the index file. Among
this comprehensive array of packaging types, the predomi-
nant category is the jar packaging type, which encompasses
the majority of approximately 80.85% of the overall distribu-
tion. Furthermore, a proportion of merely 0.69% of packages
exhibit packaging types that are distinct from the top 10 most
prevalent categories. Figure 3 shows the distribution of the
10 most frequent packaging types in the index. Additionally,
table 6 in appendix A provides the top 25 packaging types in
the Maven index.

Maven repository After conducting a comprehensive anal-
ysis of the packaging types found in the Maven repository,
we identified a diverse range of 137 distinct packaging types.
Notably, the prevalence of the jar packaging type stands out,
again, constituting a significant 80% of the total distribution.
Moreover, when excluding the top 10 packaging types, a mere
1.3% of packages showcase alternative packaging types. Fig-

79.969

10.858

2.449 1.681 1.261 1.186 0.716 0.318 0.155 0.111 1.296
0

10

20

30

40

50

60

70

80

90

P
er

ce
n

ta
ge

Packaging type

Figure 4: Distribution of the 10 most popular packaging types in the
Maven repository

Number of Packaging Types Percentage (%)
1 96.65908
2 2.98197
3 0.27883
4 0.00719
5 0.00042

Table 2: Distribution of Packaging Types

ure 4 shows the distribution of the maven repository’s 10 most
frequent packaging types. Furthermore, table 7 in appendix A
provides the top 25 packaging types in the Maven repository.

Furthermore, we have discovered that certain packages
contain multiple artifacts in the Maven repository that ad-
here to the pattern, namely the artifactID - version. exten-
sion, which we use to identify if the artifact can be classified
as an executable artifact. These artifacts can also be regarded
as alternative packaging types for the package. Upon man-
ual inspection of around 40 packages 7, we found that these
alternative artifacts, despite having different extensions, con-
tained identical content compared to the artifact specified in
the POM file or the Maven index. This highlights the exis-
tence of multiple packaging types for a single package. The
results reveal that roughly 96% of the packages possess a
solitary packaging type, whereas minimal two packages from
the entire dataset exhibit the presence of five distinct packag-
ing types. Table 2 appropriately illustrates the distribution of
packages based on the number of packaging types associated
with them.

Besides, upon a thorough analysis of packaging types from
various reliable sources, we conduct a comparative assess-
ment of the packaging type for individual packages across
these sources to find any discrepancies between them.
Inconsistencies in packaging type In an ideal scenario, the
packaging type specified in the POM file should determine
how the project is packaged and distributed. Consequently,
the index file should also include an artifact with the same
packaging type. However, our experiments have revealed
that in 9.2% of the packages, there is a discrepancy between
the packaging type mentioned in the POM file and the ac-
tual packaging type found in the index. There are 293 such
unique pairs. Among these packages, the most prevalent dis-
parity, accounting for 48.7% of the cases, occurs when the
packaging type is designated as a bundle in the POM file, yet
the packaging type recorded in the index is a jar. Figure 5

7https://repo1.maven.org/maven2/com/facebook/presto/
presto-benchto-benchmarks/0.258/

https://repo1.maven.org/maven2/com/facebook/presto/presto-benchto-benchmarks/0.258/
https://repo1.maven.org/maven2/com/facebook/presto/presto-benchto-benchmarks/0.258/


48.676

8.415 6.83 5.754 4.068 2.141 2.102 2.054 1.996 1.571

16.393

0

10

20

30

40

50

60
P

er
ce

n
ta

ge

Packaging Type

Figure 5: Distribution of top 10 differences between the POM file
and the index file

shows the distribution of the top 10 differences between the
packaging type in the POM file and the index file. The first
element of each label is the packaging type from the index
and the second one is the packaging type from the POM file.
In addition, table 8 in appendix A provides the top 25 differ-
ences in packaging types between the POM file and the index
file.

During the analysis of the results, careful consideration has
been given to the fact that Maven inherently converts certain
packaging types into a jar during the packaging process since
its default packaging value is jar 8.

In our experiments, we also compare the packaging types
between the index file and the Maven repository, as well as
between the POM file and the Maven repository. Firstly, we
observed that the index file includes artifacts only with one
of the packaging types found within the repository. Among
the sampled dataset, it is observed that approximately 3.9%
of the packages exhibit different packaging types between
the Maven repository and the Maven index. Secondly, when
comparing the packaging type specified in the POM file with
the packaging type(s) identified in the repository, we have dis-
covered a difference of 12.3%. Moreover, through manual
inspection of approximately 30 packages 9, we made an in-
triguing observation: in these cases, the packaging type listed
in the index file did not correspond to the primary executable
of the package. Interestingly, the packaging type of the pri-
mary executable differed from both the packaging type men-
tioned in the POM file and the index file itself. This implies
that the main executable of the package was neither indicated
in the POM file nor the index file, but it did exist within the
Maven repository 10. Consequently, it means that the index
file provided inaccurate or incomplete information about the
contents of the package.

Concluding the analysis of the packaging types, we have
encountered some atypical outcomes. Firstly, in accordance
with the methodology, it is expected that the name of any ar-
tifact should invariably commence with the artifactID of the
package. However, we discovered around 340 packages 11

in which certain artifacts did not adhere to this naming con-
vention. The results obtained by parsing these artifacts are
excluded from the results reported. Secondly, a noteworthy

8Apache’s Maven Indexer implementation
9https://repo.maven.apache.org/maven2/de/mediathekview/

MServer/3.1.60/
10https://repo1.maven.org/maven2/org/opencompare/play-app/0.

4/
11https://repo1.maven.org/maven2/com/inmobi/monetization/

inmobi-ads-kotlin/10.5.0/

Checksum type Percentage (%)
MD5 49.304
SHA1 49.3

SHA512 0.703
SHA256 0.693

Table 3: Distribution of each checksum among all the checksum
types

99.901 99.895

1.424 1.405
0

20

40

60

80

100

120

.md5 .sha1 .sha512 .sha256

P
er

ce
n

ta
ge

Checksum type

Figure 6: Distribution of each checksum per package

observation emerged: there exists a subset of 521 artifacts
12 that exhibit a pattern characteristic of executable artifacts,
yet their file extensions correspond to checksum files, such
as md5, sha1, and others. The results obatined from analyz-
ing these artifacts have not been included in the results as it
is unclear what kind of file is hashed by the checksum al-
gorithm. Illustrative examples showcasing the structure of
these artifacts are my-library-1.0.0.sha256 and my-library-
1.0.0.sha256.sha1.

RQ2 - Checksums
In this section, we delve into the distribution of checksum ar-
tifacts, examining the prevalence of each artifact type within
the dataset. Remarkably, approximately 49.3% of the check-
sum artifacts are of the md5 type, and an equivalent propor-
tion is observed for the sha1 artifacts. Furthermore, a minor
fraction of 0.7% comprises sha256 and sha512 artifacts, con-
tributing to the overall distribution. Table 3 depicts the distri-
bution of each checksum among all the checksum types.

Continuing our analysis, we observe that nearly 99.9% of
all the packages in the data set incorporate md5 and sha1
checksum algorithms. In contrast, a meagre 1.4% of packages
make use of the more advanced sha256 and sha512 check-
sum algorithms. Figure 6 shows the distribution of checksum
types per package.

Upon conducting a more comprehensive analysis, it has
come to light that certain packages(0.08%) lack any form
of checksum algorithm. Furthermore, a majority of 98.4%
packages exhibit the utilization of precisely two checksum
algorithms. Table 4 shows the distribution of the number of
checksum types per package.

Lastly, we also monitor the evolution of checksum algo-
rithms employed over the years. Our experiments show that
the adoption of more robust checksum algorithms, such as
sha256 and sha512, commenced in 2014 and has been grad-
ually gaining traction since then, albeit at a gradual pace. In
addition, we observe that the adoption rates of md5 and sha1

12https://repo1.maven.org/maven2/org/apache/camel/
kafkaconnector/camel-infinispan-source-kafka-connector/3.20.0/

https://github.com/apache/maven-indexer/blob/master/indexer-core/src/main/java/org/apache/maven/index/artifact/DefaultArtifactPackagingMapper.java
https://repo.maven.apache.org/maven2/de/mediathekview/MServer/3.1.60/
https://repo.maven.apache.org/maven2/de/mediathekview/MServer/3.1.60/
https://repo1.maven.org/maven2/org/opencompare/play-app/0.4/
https://repo1.maven.org/maven2/org/opencompare/play-app/0.4/
https://repo1.maven.org/maven2/com/inmobi/monetization/inmobi-ads-kotlin/10.5.0/
https://repo1.maven.org/maven2/com/inmobi/monetization/inmobi-ads-kotlin/10.5.0/
https://repo1.maven.org/maven2/org/apache/camel/kafkaconnector/camel-infinispan-source-kafka-connector/3.20.0/
https://repo1.maven.org/maven2/org/apache/camel/kafkaconnector/camel-infinispan-source-kafka-connector/3.20.0/


Number of checksum type Percentage (%)
0 0.08
1 0.042
2 98.454
3 0.016
4 1.399

Table 4: Number of checksum types in each package

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

93

94

95

96

97

98

99

100

101

2011 2012 2013 2014 2015 2016 2017 2018 2020 2019 2021 2022 2023
P
er
ce
n
ta
ge

P
er
ce
n
ta
ge

Years

MD5 SHA1 SHA512 SHA256

Figure 7: Distribution of checksum types over the years

checksum algorithms are quite comparable. Similarly, the
adoption rates of sha256 and sha512 checksum algorithms
exhibit a similar trend. Figure 7 shows the distribution of all
checksum types over the years.

In figure 7, the adoption rates of md5 and sha1 are repre-
sented on the left axis, while sha256 and sha512 are repre-
sented on the right axis.

RQ3 - Qualifiers
In this section, we analyze the diverse qualifiers present in
the Maven repository. Our experiment yielded a total of 2673
distinct qualifier types in the dataset. Remarkably, 82.4%
and 76.8% of the packages in the dataset have sources and
javadoc respectively. Figure 8 shows the presence of the top
10 qualifiers per package. Some packages even include test
or test-sources as seen in the figure 8. Furthermore, table 9 in
appendix B provides the top 25 qualifiers found in the Maven
repository.

Furthermore, when considering all the qualifiers present in

4.137

82.375
76.844

5.902 2.302 0.654 0.616 0.466 0.464
20

40

60

80

100

R
at
io

82.375
76.844

5.902 2.302 0.654 0.616 0.466 0.464 0.438 0.387
7.356

0
10
20
30
40
50
60
70
80
90

P
er
ce
n
ta
ge

Qualifier

Figure 8: Top 10 qualifiers present per package

46.329
43.218

3.32 1.295 0.368 0.346 0.262 0.261 0.246 0.217
4.137

0
5

10
15
20
25
30
35
40
45
50

P
er
ce
n
ta
ge

Qualifier

Figure 9: Top 10 qualifiers present in the Maven repository

4.469
2.808 2.54 1.903 1.591 1.175 1.132

0

5

10

15

File types

class xml properties file txt json jar html css png Others

22.132

19.048 18.288

4.469
2.808 2.54 1.903 1.591 1.175 1.132

24.915

0

5

10

15

20

25

30

P
er

ce
n

ta
ge

File type

Figure 10: Top 10 file types present in the executable of the package
in Maven repository

the repository, sources account for 46.3% of the total quali-
fiers, while javadoc represents 43.2% of the qualifiers. Figure
9 shows the presence of the top 10 qualifiers per package.

RQ4 - Files in executable
In this section, we conduct an analysis of the file types within
the executable of the package which is stated in the index
file. These results were observed specifically for packages
that have an archival component, encompassing 86.64% of
the packages which have been successfully resolved (98.63%
of the dataset). Our experiments report that the sample data
set contains over 14,500 distinct file types. Notably, class files
accounted for 22.1% of the total, while files outside the top
10 categories constituted 24.9%. These findings highlight the
immense diversity of file types present and emphasize that a
significant portion of the files falls outside the top 10 cate-
gories. Figure 10 shows the top 10 file types present in the
executable of the package. In addition, table 10 in appendix
C provides the top 25 types of files packaged in the primary
executable.

Furthermore, we made an interesting observation that
80.1% of the packages contain file types that fall outside the
top 10 categories. Additionally, we found that 71.2% of the
packages include class files. Figure 11 shows the top 10 file
type present per package. The category mentioned as ”file” in
figure 11 refers to the files which do not have any extension.

5 Discussion
In this section, we dive into a comprehensive discussion and
analysis of the findings presented in the preceding chapters.
The discussion aims to provide a deeper understanding of



71.172

61.255

58.81114.372

9.029

8.167

6.12

5.117
3.777

3.64

80.124

xml properties file txt json jar html css png Others

71.172

61.25558.811

14.372
9.029 8.167 6.12 5.117 3.777 3.64

80.124

0

10

20

30

40

50

60

70

80

90
P

er
ce

n
ta

ge

File type

Figure 11: Top 10 file types present per package

the research outcomes, their implications, and their signifi-
cance in the broader context of the field. By examining the
results in light of the research objectives, we explore the key
insights, limitations, and potential avenues for further inves-
tigation. Additionally, we address any discrepancies, unex-
pected findings, or unresolved questions that emerged during
the research process.

Interpretation and Implication
In this section, we provide a comprehensive discussion of the
key insights from the results of each research question.
Packaging types In our experiment, the JAR (Java
Archive) format is the most prevalent packaging type across
all the sources for multiple reasons. Firstly, it serves as the
default packaging type in Maven, when no packaging is de-
clared, Maven assumes the packaging is the jar, simplifying
project setup [3]. Secondly, the JAR format aligns seamlessly
with Maven’s dependency management and build processes,
allowing efficient inclusion and referencing of external li-
braries. Furthermore, JAR files enjoy widespread compatibil-
ity across Java development tools, platforms, and application
servers, facilitating seamless integration. Additionally, the
JAR format provides a convenient means of packaging and
distributing Java artifacts, bundling classes, resources, and li-
braries into a single file.

Packaging inconsistencies across various sources in the
Maven ecosystem raise concerns regarding reliability and
consistency. Relying solely on the packaging types men-
tioned in the index file or the POM file can lead to incor-
rect assumptions about package contents. Manual inspec-
tion or verification of artifacts in the repository is necessary
for accurate packaging information. Moreover, these differ-
ences can occur due to several factors. Firstly, customiza-
tion and configuration play a significant role. The packaging
type specified in the POM file reflects the project’s intended
distribution format, while the packaging type in the Maven
index file and repository is influenced by the build and de-
ployment processes, which may involve additional transfor-
mations or repackaging. Secondly, as projects evolve and new
versions are released, the packaging type may be modified to
accommodate changes or ensure compatibility with specific
tools or platforms. Consequently, the packaging type listed in
the Maven repository and index file corresponds to the spe-
cific version being considered, while the packaging type men-
tioned in the POM file may pertain to a different version or
an earlier stage of the project likely because developers for-
get to update their pom in some releases Thirdly, variations in
packaging types can arise from mirroring and repository man-
agement, where different organizations or teams may have
distinct configurations and policies. The packaging type in

the Maven repository and index file may align with the mir-
roring organization’s policies, while the original packaging
type specified in the POM file may differ. Additionally, in-
consistencies can occur due to human errors during the build,
deployment, or publishing process, leading to discrepancies
in packaging types across different sources.

To resolve such inconsistencies, it is important to ensure
proper communication and coordination between the devel-
opment, build, and deployment processes. It is also crucial
to review and validate the configuration files and scripts in-
volved in packaging and deploying artifacts. Incorporating
an automated system to keep track of the changes made to
packaging types and maintaining accurate documentation can
help identify and address any discrepancies that may occur.

The most common disparity between the packaging type
in the maven index file and the POM file is jar and bundle
respectively. The bundle packaging type is commonly associ-
ated with projects that use the OSGi (Open Service Gateway
initiative) framework 13 and packaged by the Maven Bundle
Plugin 14. In the OSGi framework, which provides a modu-
lar system for Java applications, the term ”bundle” refers to
a specific unit of deployment. OSGi bundles are essentially
JAR files that adhere to the OSGi specification and contain
additional metadata like the Manifest files [10]. So during the
build process, Maven generates a JAR file that complies with
the OSGi specification. The resulting artifact has a .jar file
extension, as it follows the established convention for OSGi
bundles.

Concluding the discussion on packaging types, there might
be some possible reasons for the unconventional outcomes.
Firstly, The naming convention we mentioned, where artifacts
should begin with the artifactID, is a recommended conven-
tion in Maven, but it is not strictly enforced. Maven pro-
vides flexibility in naming artifacts, and it’s up to the devel-
opers and maintainers of the projects to decide on the naming
scheme. The probable reasons for deviating may include his-
torical naming conventions, project-specific requirements, or
even human error during the artifact creation process. Not
following the naming convention in Maven can lead to in-
consistencies, reduced code readability, compatibility issues
with tools, and hinder collaboration and maintainability in
a project. Adhering to naming conventions promotes con-
sistency, improves comprehension, and ensures compatibility
with various development tools and processes. Maven main-
tainers and community contributors can improve packaging-
type practices through documentation and education, as well
as tooling and automation. They can enhance the official
Maven documentation, providing clear guidelines, examples,
and educational resources to emphasize the importance of
consistent packaging types and naming conventions. Addi-
tionally, they can develop or enhance tools and plugins that
detect deviations from recommended naming conventions, is-
suing warnings or suggestions to promote compliance. Inte-
grating automated checks into CI/CD pipelines can enforce
naming conventions and ensure consistency across projects.
Checksums The relatively low utilization of the sha256 and
sha512 algorithms indicates that their advantages, such as
stronger collision resistance and increased security, may not
be fully appreciated or implemented by most package devel-
opers. This is concerning, considering the known vulnerabil-
ities of md5 and sha1 checksum artifacts that remain preva-
lent in the dataset. It highlights the need for increased aware-
ness and the adoption of stronger checksum algorithms. Ad-

13https://docs.osgi.org/javadoc/r4v43/core/org/osgi/framework/
launch/Framework.html

14https://felix.apache.org/documentation/ attachments/
components/bundle-plugin/bundle-mojo.html

https://docs.osgi.org/javadoc/r4v43/core/org/osgi/framework/launch/Framework.html
https://docs.osgi.org/javadoc/r4v43/core/org/osgi/framework/launch/Framework.html
https://felix.apache.org/documentation/_attachments/components/bundle-plugin/bundle-mojo.html
https://felix.apache.org/documentation/_attachments/components/bundle-plugin/bundle-mojo.html


ditionally, the identification of packages lacking any check-
sum algorithm underscores the importance of implementing
integrity checks to prevent tampering and ensure the authen-
ticity of software packages.
Qualifier Our experiment revealed a substantial increase in
the availability of source code and Javadoc documentation
within libraries. The dominant presence of sources at 82.4%
packages and Javadoc at 76.8% packages signifies a remark-
able improvement compared to the findings of Raemaekers et
al. [4] in 2013. In their study, only 68.4% of jar libraries had
source files, and 53.1% had Javadoc files. This notable en-
hancement in accessibility can be attributed to factors such as
the growing recognition among developers regarding the sig-
nificance of providing these resources for understanding and
extending libraries. Additionally, advancements in software
development tools and practices, including integrated devel-
opment environments (IDE) and build-automation systems,
have likely played a crucial role in facilitating the availability
of source code and Javadoc documentation.

However, it is crucial to acknowledge that a consider-
able percentage of libraries still do not offer source code or
Javadoc documentation. This presents challenges for devel-
opers who rely on these resources for library comprehension
and extension. Future research should delve into the under-
lying reasons behind this and identify strategies to encourage
more libraries to provide these valuable resources.
Type of files The presence of over 14,500 distinct file types
within the sample data set highlights the immense diversity
of files present in these executables. This diversity can be at-
tributed to the wide range of programming languages, frame-
works, and tools utilized in software development. The ex-
istence of such a vast array of file types poses challenges for
developers, analysts, and researchers who need to understand
and manipulate these packages effectively.

Examining the top 10 file types per package, we find the
presence of class files for a significant number of packages
(71.2%). Class files are fundamental components of Java pro-
grams and are crucial for Java Virtual Machine (JVM) execu-
tion. This finding indicates the prevalence of Java-based li-
braries in the sample data set. It underscores the significance
of Java as a widely adopted programming language and sug-
gests that a considerable number of libraries are developed in
Java or have Java components.

Interestingly, the remaining files outside the top 10 cate-
gories constitute a significant proportion (24.9%) of the to-
tal. Additionally, around 80% of the packages have file types
which are not present in the top 10 categories. These collec-
tively highlight the presence of a diverse range of file types
beyond the commonly observed ones. These less common
file types may include configurations, resources, documenta-
tion, scripts, templates, or other specialized file formats spe-
cific to certain programming languages or frameworks. It em-
phasizes the need for developers, analysts, and tools to be
adaptable and capable of handling a broad spectrum of file
types to effectively work with these libraries. Additionally,
researchers and analysts should consider the diverse nature
of these file types when conducting further investigations or
developing analysis tools for software ecosystems.

Overall, the results underscore the challenges and opportu-
nities associated with working with the file types packaged in
libraries’ executables. They highlight the need for continued
research and development efforts to address the complexities
arising from the diverse range of file types encountered in
software development and analysis.

Limitation
The selection of an appropriate data sampling approach is
crucial for ensuring the validity and reliability of research

findings. To have a representative data set, a simple random
sampling approach was deployed. However, it is important
to recognize the limitations associated with this approach,
specifically, the fact that only one version per package was
chosen using simple random sampling.

Firstly, by selecting only one version per package, the anal-
ysis may overlook potential variations in packaging types,
checksums, qualifiers, and file types present in different ver-
sions. Focusing on a single version may not capture the full
range of variation and nuances across versions, thereby lim-
iting the depth of analysis. Secondly, selecting only one ver-
sion per package limits the ability to explore version-specific
patterns and trends in packaging types, checksums, qualifiers,
and file types. Comparative analysis across different versions
is not possible, preventing insights into the evolution of these
characteristics over time.

In addition, it is important to note that the experiments con-
ducted in this study did not include an analysis of the pack-
aging types of parent packages. The focus was specifically
on the packaging types, checksums, qualifiers, and file types
within individual packages, without considering the packag-
ing types of their parent packages. This limitation should be
taken into account when interpreting the results and under-
standing the overall context of the findings.

Another limitation to consider is that the analysis of the
type of files in executables is solely conducted on artifacts
classified as primary executables, as specified in the Maven
index file. Consequently, the examination did not encompass
all the archives available in the Maven repository. This limita-
tion should be acknowledged to understand that the findings
of types of files are specific to the primary executables and
may not reflect the characteristics of other types of archives
present in the Maven repository.

Future recommendation
In order to address the challenges and opportunities associ-
ated with packaging standards and interoperability, research
should be conducted to investigate the existing packaging
standards and specifications in various software ecosystems,
such as Maven, npm, and PyPI. This exploration should
aim to bridge the gaps between different packaging systems,
proposing strategies or frameworks that promote smoother
integration and cross-platform compatibility. Additionally,
the potential impact of packaging type variations on software
quality and security should be examined. Through empiri-
cal studies, vulnerability assessments, and the development
of static analysis tools, researchers can analyze the relation-
ship between packaging types and vulnerabilities, such as de-
pendency conflicts, misconfigurations, and package hijack-
ing. To improve software distribution practices, it is essential
to develop comprehensive best practices and guidelines for
maintaining consistent packaging across different sources and
ecosystems. This can be achieved through surveys, case stud-
ies, and the collection of industry insights to establish recom-
mendations that enhance packaging integrity, reduce errors,
and ultimately improve the quality of software distribution.

Additionally, future recommendations include conducting
version-specific analysis over time and examining, focusing
on developing adaptable approaches to handle the interplay
between packaging types and other characteristics, facilitat-
ing better utilization of Maven libraries. Strategies should
be developed to address inconsistencies, improve packaging
standardization, and enhance the availability of source code
and documentation. By implementing these recommenda-
tions, stakeholders, including developers, contributors, and li-
brary maintainers, can make informed decisions and improve
the overall quality and security of software projects within the
Maven ecosystem.



6 Responsible Research
Responsible research is essential to uphold ethical standards,
ensure data integrity, and promote unbiased analysis, thus
fostering trust and credibility in research findings. The results
of this research can be replicated as a seed was used to ran-
domly select packages, ensuring the reproducibility and gen-
eralizability of the findings. Furthermore, the entire dataset,
including the Maven index file, the database, and intermedi-
ate data has been made available 3.

The research design minimized requests to the Maven
repository to prevent IP bans, as a large amount of data was
already available at the TU Delft server 15. Additionally, only
one request was made per package instead of one request per
artifact to get the data. Therefore, the scope of this research
does not pose critical ethical implications.

7 Conclusion
Our research aimed to address the limited understanding of
the composition and characteristics of the Maven repository,
specifically focusing on Maven packaging. By conducting a
comprehensive analysis, we sought to uncover valuable in-
sights that can inform developers, library maintainers, secu-
rity analysts, and the open-source community about Maven
library practices and identify areas for improvement.

To achieve this, we utilized data from the POM file, Maven
index file, and Maven repository, examining 479,915 pack-
ages. Multiple sources and manual requests were employed
to ensure thorough analysis. Through this approach, we in-
vestigated the distribution of packaging types, checksums,
qualifiers, and file types within Maven libraries.

The results of our analysis provide significant findings in
several key areas. First, we discovered that jar is the most
prevalent packaging type, accounting for over 75% of the
packages across all sources. This dominance can be at-
tributed to the simplicity, compatibility, and seamless inte-
gration within the Java development community offered by
the JAR format. Furthermore, inconsistencies were identi-
fied among different data sources, emphasizing the need for
improved data consistency and reliability within the Maven
ecosystem. Strengthened communication and coordination
between development, build, and deployment processes are
essential to ensure consistency in packaging types.

From a security perspective, our research reveals that the
adoption of stronger checksum algorithms, such as sha256
and sha512, remains limited, with only 1.4% of packages uti-
lizing these secure hash functions. Encouraging wider adop-
tion of these algorithms can significantly enhance the security
of Maven libraries.

In terms of qualifiers, sources and Javadoc exhibit the high-
est prevalence, with adoption rates of 82% and 76% respec-
tively. Additionally, class files and XML emerged as the most
frequently packaged file types, encompassing 71% and 61%
of the packages, respectively, showcasing the diverse range
of file types within Maven libraries.

Our research provides valuable insights into Maven library
characteristics and highlights the importance of addressing
data consistency, security measures, and file type diversity.
By leveraging these findings, developers, library maintainers,
and security analysts can make informed decisions to opti-
mize the usage of Maven libraries and improve the Maven
ecosystem as a whole. Addressing these aspects will en-
hance the overall reliability, security, and usability of Maven
libraries.

15https://www.fasten-project.eu/view/Main/

References
[1] B. Porter, J. v. Zyl, and O. Lamy, “Welcome to apache

maven.”
[2] Apache Maven Project, “Apache Maven Resolver,”

2023.
[3] Apache Maven Project, “Maven POM,” 2023.
[4] S. Raemaekers, A. Van Deursen, and J. Visser, “The

maven repository dataset of metrics, changes, and de-
pendencies,” in 2013 10th Working Conference on Min-
ing Software Repositories (MSR), pp. 221–224, IEEE,
2013.

[5] T. Kanda, D. M. German, T. Ishio, and K. Inoue, “Mea-
suring copying of java archives,” Electronic Communi-
cations of the EASST, vol. 63, 2014.

[6] A. Benelallam, N. Harrand, C. Soto-Valero, B. Baudry,
and O. Barais, “The maven dependency graph: a tem-
poral graph-based representation of maven central,”
in 2019 IEEE/ACM 16th International Conference on
Mining Software Repositories (MSR), pp. 344–348,
IEEE, 2019.

[7] C. Soto-Valero, A. Benelallam, N. Harrand, O. Barais,
and B. Baudry, “The emergence of software diversity in
maven central,” in 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR),
pp. 333–343, IEEE, 2019.

[8] X. Ma and Y. Liu, “An empirical study of maven
archetype.,” in SEKE, pp. 153–157, 2020.

[9] G. Sharma, “Pros and cons of different sampling
techniques,” International journal of applied research,
vol. 3, no. 7, pp. 749–752, 2017.

[10] Baeldung, “Introduction to osgi.” https://www.
baeldung.com/osgi, 2019.

https://www.fasten-project.eu/view/Main/
https://www.baeldung.com/osgi
https://www.baeldung.com/osgi


A Packaging Type

Packaging type Frequency
jar 354,980

pom 56,613
bundle 21,662

aar 11,508
maven-plugin 6,319

war 5,560
klib 2,975

maven-archetype 2,303
eclipse-plugin 1,074

feature 948
esa 756

nbm 655
hpi 542

hk2-jar 366
nar 322
swc 298
apk 289

content-package 275
zip 261
tile 245

sonar-plugin 240
takari-jar 232
gwt-lib 229

car 214
jbi-service-unit 194

Table 5: Top 25 frequencies of packaging type mentioned in POM file



Packaging Type Frequency
jar 382,451

pom 53,405
aar 10,728

module 8,210
zip 6,174
war 5,782
nbm 1,559
esa 760
xml 396
nar 322
car 299
swc 270

apklib 226
kar 224

bundle 206
ear 183

jdocbook 147
swf 134

plugin 132
oar 131
rar 128

signature 87
sha512 67

tgz 65
xsd 63

Table 6: Top 25 frequencies of packaging type mentioned in Maven index file

Packaging Type Frequency
jar 391,493

pom 53,155
aar 11,990

module 8,227
zip 6,174
war 5,805
klib 3,505
nbm 1,559
esa 760
hpi 542
xml 520

tar.gz 441
tar 373
nar 322
car 299
apk 284
swc 278

buildinfo 270
apklib 256

kar 226
bundle 215

ear 183
jdocbook 152

ha1 134
swf 134

Table 7: Top 25 frequencies of packaging type mentioned in Maven repository



POM Packaging Type Index Packaging Type Frequency
bundle jar 21,166

maven-plugin jar 6,303
jar module 3,659

klib module 2,970
pom zip 2,502

maven-archetype jar 2,303
jar zip 1,769

eclipse-plugin jar 1,073
feature pom 931

jar nbm 914
pom jar 893
pom module 868
aar module 683
hpi jar 541

hk2-jar jar 366
content-package zip 274

tile xml 245
sonar-plugin jar 238

jar pom 234
takari-jar jar 232

apk jar 230
gwt-lib jar 229

jbi-service-unit zip 194
eclipse-feature jar 191

ejb jar 182

Table 8: Top 25 differences in frequencies of packaging type mentioned in POM file and index file



B Qualifier

Qualifier Frequency
sources 389,670
javadoc 363,507

tests 27,921
test-sources 10,890

source-release 3,095
jar-with-dependencies 2,914

tests-javadoc 2,204
tests-sources 2,195

sources-commercial 2,071
metadata 1,829
features 1,802

p2artifacts 1,384
p2metadata 1,384

site 1,204
p2Artifacts 1,136
p2Content 1,136

bin 1,069
test-javadoc 839

shaded 764
src 720

kubernetes 617
package 598

all 587
resources 584

config 474

Table 9: Top 25 qualifiers found in the Maven repository



C Type of files

File Type Frequency
class 336,672
xml 289,762

properties 278,202
file 67,984
txt 42,712

json 38,635
jar 28,948

html 24,206
css 17,868
png 17,217
list 15,750
sjsir 15,344
tasty 12,220

factories 12,065
yml 9,255
java 8,886
gif 8,509
xsd 7,226
conf 6,449

kotlin module 5,919
map 5,879
svg 5,853
ico 4,110
rsa 4,082

npmignore 4,065

Table 10: Top 25 type of files packaged inside the executable


	Introduction
	Background
	Glossary
	Related work

	Methodology
	Data Selection
	Experimental Setup

	Evaluation
	Discussion
	Responsible Research
	Conclusion
	Packaging Type
	Qualifier
	Type of files

