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Abstract The dynamics of a string on an elastic
foundation with time- and coordinate-dependent coef-
ficients have been studied. Asymptotic solutions have
been constructed for the following cases: for an arbi-
trary value of the elastic foundation coefficient at small
and large time values, and for small and large coef-
ficients of the elastic foundation at arbitrary times.
Also a special case originated from an ageing process
has been studied. The ageing process is described by
an expression approximating some well-known exper-
imental data. The existence of localized modes along
the x coordinate is shown. The existence of these local-
izedmodes can lead to a spatial resonance phenomenon
under certain conditions. For the case of an arbitrary
elastic foundation coefficient value at small and at large
times, the spatial resonance phenomenon is observed
at small, special frequencies. This effect depends
also on a special phase and mode number. For large
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mode numbers, this special resonance seems to be not
possible.
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1 Introduction

A lot of natural and engineering constructions consist
of multi-layered structures. An upper coating of such a
structure is, as a rule, a thin layer. Thus, a top layer of
human/animal blood vessels is a slender structure rest-
ing on an interlayer between it and a vessel shell. An
other example of these structures is a thin film (includ-
ing protective films for windshields) connected to the
main material through an adhesive layer [1]. Investiga-
tion of the upper structure behaviour, in case the whole
multi-layer structure is subjected to an external load,
is of practical interest. In some problems, the struc-
ture dynamic study can be reduced to the investigation
of the dynamics of a thin film connected to an elas-
tic foundation. In this case, the foundation simulates
elastic characteristics of both the adhesive layer and
the main material. The elastic characteristics can vary
in time and can be non-uniform in space [5]. With the
change of the elastic foundation rigidity, the slender
structure dynamics also changes [2,3]. For example,
when a thin-film substrate material fails, the rigidity of
its elastic foundation decreases unevenly in time and
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space [4,6,7]. An ageing process of a foundation mate-
rial is another example of a process causing a change of
the foundation rigidity. The ageing affects elastic prop-
erties of a material depending on the type of this mate-
rial [8–10]. In some cases, the rigidity increases and the
Young’s modulus increases in time. In other cases the
above-mentioned characteristics decrease in time. For
example,medicinal agents added in human/animal ves-
sels can cause a change of the blood vessels rigidity and
they age for shorter time than it would be without those
drugs [8]. This fact should be taken into consideration
when the dynamics of blood vessels is studied. This
paper is mainly devoted to the investigation of oscil-
lations of slender structures connected to a foundation
altering its elastic characteristics due to an ageing pro-
cess. Currently, the analysis of dynamic structures with
ageing foundations has revealed that the modelling of
the foundation characteristics lead to additional inte-
gral terms in the differential equations describing the
bodymotions. A viscous-elasticmodel based on funda-
mental Boltzmann and Volterra concepts, and a theory
for rheological models date back toMaxwell, Voigt and
Thomson [2,11]. According to these models, a strain
in any point of a body depends on a deformation his-
tory of the material in this particular point. The defor-
mation /strain relation leads to a Volterra–Voigt linear
equation. Most authors studied beams and plates on a
viscous-elastic foundation with a bilateral contact. In
the above-cited references [2,11], the coupling prob-
lem was stated according to the structural mechanics
laws in an analytical formulation. However, only a few
authors found an analytical solution in a closed form for
some special cases. Often, the solution is numerical and
it is obtained by discretizing the equation governing the
problem. Unlike that approach, the current paper pro-
poses to simulate and to describe a foundation based
on available experimental data of the Young’s modu-
lus change. Experimental data given in [8–10] allows
presenting the foundation coefficient in the form of a
function depending on the space coordinates and time.
The present paper proposes to find an approximation
of the solution of the problem for a thin film on a foun-
dation with a coefficient changing due to the ageing
process. The corresponding equations are complicated;
nonetheless, we are capable to prove that the problem is
well posed. We obtain an estimate of the energy of the
system. To analyse the system of governing equations
in more detail,it is assumed that ageing is a slow pro-
cess. It allows us to use asymptotic methods.We derive

a system for the Fourier coefficients of the displace-
ment and obtain estimates for averaged amplitudes of
the Fourier coefficients, i.e. for energies of the linear
modes. The main results are as follows. The problem
under investigation has two types of eigenfunctions.
The first type is given by non-localized eigenfunctions
and the second type is described by localized ones. The
second type includes new eigenfuctions, which exist
only in the case of non-uniform space ageing. We also
find other space depending effects in ageing. For large
times there is possibly a “space resonance”, when the
frequencies of the string are influenced by the space
non-uniform ageing term.

2 Statement of the problem

In this paper the oscillations of a string connected to
an elastic foundation are studied. The coefficient of
the elastic foundation is related to mechanical char-
acteristics of the material. Such mechanical character-
istics can be non-uniform in space and/or temporally
non-uniform depending on the process in the material,
for example, a process of material ageing or a pro-
cess of damage growth. In [12] the authors mention
that the hyperbolic equation they use, has a term which
describes in time the change of the elastic foundation.
However, the term is not specified as a particular func-
tionof time, and thedynamics of the system is not inves-
tigated.We consider the following governing equation:

F0uxx − k0

(
1 − γ exp

(
− t

τ0(
p0 + b0 cos (ω∗x + φ)

)))

u − mutt = f (u, ut ) , (1)

whereu(x, t) is the stringdisplacement, t is time, t ≥ 0,
x ∈ [0, L], L is the length of the string, F0 is a constant
stretching force, k0 is a coefficient of the elastic foun-
dation when its material is not subjected to the ageing
process, k0 > 0, m is a string mass per unit length, and
f (u, ut ) is a smooth function that defines a dissipative
term.The simplest choice for f (u, ut ) is

f = c1ut , (2)

which describes dissipative effects in the elastic sys-
tem when the dissipative coefficient c1 > 0. The term

123



Oscillations of a string on an elastic foundation 569

k0
(
1 − γ exp

(
− t

τ0
(p0 + b0 cos (ω∗x + φ))

))
u des-

cribes the ageing effect. In this expression γ ∈ (0, 1] is
a non-dimensional constant, τ0 is a constant of the elas-
tic foundation material which determines the chang-
ing of the elastic foundation coefficient in time. Let us
introduce the function p(x) as follows:

p(x) = p0 + b0 cos (ω∗x + φ) , p0 > b0 > 0. (3)

The function p(x)is a given smooth, positive function
which corresponds to a possible non-uniform ageing
process. Here b0 is a non-dimensional amplitude of the
variable in space part of the function p(x) (b0 > 0),
p0 is a non-dimensional constant, ω∗ is a “space fre-
quency”,and φ is a “space phase”. In the process of
material ageing, the Young’s modulus, in particular, is
varying in time [4,8–10], which leads to the rigidity
growth and increase in the elastic foundation coeffi-
cient. Based on experimental data given in [4,8–10]
the function p(x) for the elastic foundation behaviour
was chosen in the presented form (3). If b0 = 0, we
have a spatially uniform ageing effect (later on ref-
ered to as case a), in all other cases we deal with the
spatially non-uniform case b). It is assumed that the
ageing process is progressing monotonically in time,
and therefore p(x) > 0. When the p(x) distribution
is known, this function can be expanded into a Fourier
series, and be approximated by the first few terms. This
is themotivation for (3). Also it is known [14] that some
functionally graded materials can have varying charac-
teristics in space according to this chosen form (3).

We take the following initial conditions

u (x, 0) = v0(x), ut (x, t) |t=0 = v1(x), (4)

where ||v0xx || + ||v1|| < ∞. Here we use the stan-
dard notation ||v|| for the norm, || f ||2 = 〈 f, f 〉 and
〈 f, g〉 is the scalar product in L2[0, L]: 〈 f, g〉 =∫ L
0 f (x)g(x)dx . The boundary conditions are assumed
to be given by:

u(0, t) = u(L , t) = 0. (5)

Notice that Eq. (1) can be transformed to a dimension-
less formwhen we rescale the variables. For the rescal-
ing, the following relations are used: x = x̄ L , u = ūL ,

t = t̄ L
c0
, c20 = F0

m , ω∗ = ω̄∗ 1
L , α = L2k0

c20m
, ε = c1L

c0m
,

εa = L
c0τ0

.

To simplify notations, we omit now the bars and
obtain the final equation:

uxx − α(1 − γ exp (−εatp (x)) u − utt = εut , (6)

The initial conditions have the same form as before, but
we should take into account that they are now written
for non-dimensional variables. The boundary condi-
tions are as follows:

u (0, t) = u (1, t) = 0, (7)

In the next sections we will assume that εa and ε are
small parameters.

3 Well-posedness of the problem

In this section we show that the problem is well posed
for a large class of perturbations f and not only for the
case when f = εut .

Let us introduce a functional E associated with
(6) when in the right-hand side of equation we have
ε f (u, ut ):

E[u(·, t)] = 1

2

(
||ux ||2 + ||ut ||2 (8)

+ α

∫ 1

0
(1 − γ exp(−εatp(x)))u

2(x, t)dx
)
. (9)

This functional can be interpreted as an energy. Let
us derive an estimate for E . If ε = εa = 0 one has
dE[u(·, t)]/dt = 0 for solutions of (6), i.e. the energy
is conserved. For ε > 0 and εa > 0 we multiply the
right-hand and the left-hand sides of Eq. (6) by ut .
Then, by integrating with respect to x from x = 0 to 1,
one finds

dE [u (·, t)]
dt

= D, (10)

and where

D = −ε

∫ 1

0

(
f (u, ut ) ut − αγμ

2
p(x)

exp (−εatp(x)) u
2
)
dx, (11)

where μ is a parameter defined by

μ = ε−1εa (12)
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The functional D can be considered to be a ”dissi-
pative function”. Under general assumptions on f , one
can show that the initial boundary value problem (6),
(7) and (4) is well posed. Below we will use the brief
notation E(t) = E[u(·, t)].
Lemma 1 Assume

f (u, ut ) ut ≥ βu2t , p(x) ≥ pmin = min
x

p(x) > 0,

(13)

where β > 0 is a constant. Then the energy E(t) sat-
isfies

E(t) ≤ E(0) exp
(
−2βεt + γ pmin

(1 − γ )pmax

)
,

t ∈ (0,+∞), (14)

where pmax = maxx p(x).

Proof Assumption (13) and (10) imply that

dE

dt
≤ − βε

∫ 1

0
u2t dx

+ αγ εa

2

∫ 1

0
p(x) exp(−εatp(x))u

2(x, t)dx .

One has

p(x) exp (−εatp(x)) ≤ pmax exp (−εatpmin) ,

thus

dE

dt
≤ − βε

∫ 1

0
u2t dx

+ αγ εa

2
pmax exp (−εatpmin)

∫ 1

0
u2(x, t)dx .

Note that
∫ 1
0 u2t dx ≤ 2E and

∫ 1
0 u2dx ≤ 2(α(1 −

γ ))−1E by definition (8) for E . These inequalities
imply that

dE

dt
≤ (−2εβ+εaγ (1−γ )−1 pmax exp (−εatpmin))E .

(15)

Therefore,

E(t) ≤ exp(−2εβt + γ (1 − γ )−1 pmax p
−1
min

(1 − exp (−εat)) E(0)

which proves (14).

Estimate (14) shows that the energy is bounded.
Therefore, the norms ||ut ||2, ||ux ||2 and ||u||2 are
bounded. And so, a solution of the initial boundary
value problem (1), (4) and (5) exists for t ∈ [0,+∞),
lies in the corresponding Sobolev space, and is unique,
i.e. the initial boundary value problem for (4), (6), and
(7) is well posed. 	


The assertion of this lemma has a consequence that
admits a transparent physical interpretation.The energy
is bounded and our system is stabilized for purely dis-
sipative perturbations when f is defined by (2) with
c1 > 0.

4 Eigenfunctions of the linearized problem

4.1 Asymptotics for eigenfunctions and eigenvalues

Our first step is to consider the unperturbed Eq. (6)
for ε = 0. Since 0 < εa � 1, it is natural to
introduce a slow time T = εat . Then for a fixed
”frozen” T the unperturbed Eq. (6) can be solved by
the Fourier method, i.e. by substitution of u(x, t, T ) =
ψ(x, T ) exp(iω(T )t) into (6). Then we obtain the fol-
lowing linear operator H:

Hψ = ψxx + W (x, T ) ψ. (16)

This operator is defined for functions ψ(x) ∈ C2[0, 1]
such that ψ(0) = ψ(1) = 0. Here,

W (x, T ) = −α (1 − γ exp (−T p(x))) ,

where the slow time T is a parameter in the potential.
Note that H is a Schrödinger operator, which can be
extended to a self-adjoint operator defined on the cor-
responding Sobolev space. Let us consider the spectral
problem

Hψn = λn(T )ψn, (17)

where ψn(x, T ) is an eigenfunction depending on the
slow time T , which can be considered to be a parameter,
and

ωn(T ) = √−λn(T ) (18)

is the corresponding frequency.
The following lemma describes general properties

of the frequencies ωn(T ).
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Oscillations of a string on an elastic foundation 571

Lemma 2 The frequencies ωn(T ) satisfy the estimate

ω2
n(T ) ≥ π2 + α − αγ exp(−T pmin). (19)

Moreover, if pmin > 0, they increase in T .

Proof We can assume that ||ψn|| = 1. Then Eq. (17)
implies

||∂ψn/∂x ||2

+α

(
1 − γ

∫ 1

0
exp (−T p(x)) ψ2

n (x)dx

)
= ωn(T )2.

Note that

min
ψn

||∂ψn/∂x ||2 = π2

under the conditions ψn(0) = ψn(1) = 0 and ||ψn|| =
1. Moreover,∫ 1

0
exp(−T p(x))ψ2

n (x)dx ≤ exp (−T pmin) .

Combining all these estimates, we obtain (19). The sec-
ond statement in Lemma 4.1 follows from the varia-
tional principle for the eigenvalues of the operatorH. In
some caseswe can obtain the asymptotics for the eigen-
values λn(T ). Actually, we have only two main meth-
ods: the Born approximation and the WKB method.
The first approach allows us to find the asymptotics for
small T or large T . 	

Lemma 3 (A) For small T the orthonormal eigenfunc-

tions of the operator H can be represented by the
following asymptotic relation:

ψn(x, T ) = √
2 sin (nπx)+ψ̃n(x, T ), for n ∈ N,

(20)

where the small correction ψ̃n satisfies the estimate

|ψ̃n(x, T )| < CnT, for n ∈ N. (21)

and the corresponding eigenvalues have as asymp-
totic expansions

λn(T ) = −ω̄2
n + λ̃n(T ) + O(T 2), (22)

where

ω̄n =
√

π2n2 + α(1 − γ ) (23)

and

λ̃n(T ) = −2αγ T
∫ 1

0
p(x) sin2(nπx)dx . (24)

(B) For large T the eigenfunctions of H can be repre-
sented by the following asymptotic expansion:

ψn(x, T ) = √
2 sin(nπx)+ ψ̃n(x, T ), for n ∈ N,

(25)

where

|ψ̃n(x, T )| < Cn exp(−T pmin),

where pmin is the minimum of the positive function
p(x) on [0, 1]. The corresponding eigenvalues are
defined by

λn(T ) = −ω̄2
n + λ̃n(T ) + O(λ̃2n), (26)

where

ω̄n =
√

π2n2 + α (27)

and

λ̃n(T ) = 2αγ

∫ 1

0
exp (−T p(x)) sin2(nπx)dx .

(28)

For the frequency ωn in both cases A and B one has
the asymptotic expansions

ωn(T ) = ω̄n − λ̃n(T )

2ω̄2
n

, (29)

where ω̄n and λ̃n are defined by (23) and (24) for
case A, and by (27) and (28) in case B, respectively.

Proof These statements have been proved in the well-
known perturbation theory; see [13]. 	


Note that the eigenfunctions ψn(x, T ) depend on
the slow time T . However, under the assumptions of
this Lemma, this dependence leads to weak effects,
which are not essential. The main contribution in ψn

is independent of T . Moreover, we notice that both
asymptotic expansions are consistent with Lemma 2:
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572 A. K. Abramian et al.

λ̃n(T ) decreases in T and the corresponding asymp-
totic expansion for the frequencies increases in T .

For small α the following asymptotic expansion for
λn can be obtained :

λn = −ω̄2
n + λ̃n(T ) + O

(
λ̃2n

)
, (30)

where

ω̄n = πn,

λ̃n(T ) = −2α
∫ 1

0
(1 − γ exp (−T p(x))) sin2(nπx)dx .

(31)

Note that for small T the correction ψ̃n can be
computed by the perturbation approach used in quan-
tum theory, that gives the following representation (see
[15])

ψ̃n(x, T ) = 2αγ T
∑

m=1,2...,m 
=n

Bmn sin (mπx)

ω̄2
m − ω̄2

n

+ O(T 2). (32)

where

Bmn =
∫ 1

0
p(x) sin (πmx) sin (πnx) dx .

We see that the main term in ψn does not depend on T ,
and that its correction is a linear function in T .

Therefore, we have two different cases, for which an
asymptotic expansion forωn can be found: (I) arbitrary
α but small T or large T , see the previous Lemma and
(II) smallα and arbitrary T . To conclude this section, let
us make an important remark: for all continuous p(x)
such that minx∈[0,1] p(x) > 0 and for each n the eigen-
values λn(T ) are decreasing functions of T . It follows
from this observation that the potentialW is a decreas-
ing function in T . This implies that the frequencies
ωn(T ) increase in T .

To conclude this section, let us notice that the rela-
tions for λ̃n can be simplified for n � 1 (the case of
high frequency modes). For T � 1 one has

λ̃n(T ) = −αγ T
∫ 1

0
p(x)dx . (33)

For T � 1 one obtains

λ̃n(T ) ≈ αγ

∫ 1

0
exp (−T p(x)) dx . (34)

5 The WKB method and localized modes

The WKB method allows us to find the modes and
the asymptotic expansion for λn(T ) for large α. This
asymptotic approach is valid for all T . We obtain two
kinds of eigenfunctions.The first class of eigenfunc-
tions consists of modes similar to the ones studied
above. The second class includes new eigenfuctions,
which exist only in the case of non-uniform ageing
when p(x) is not constant.

5.1 Non-localized eigenfunctions

Let α � 1 and γ ∈ (0, 1). We introduce the large
parameter h = √

α and look for eigenfunctions in the
form

ψn(x, T ) = an(x) sin (hΦn(x, T )) , (35)

where an and Φn are new unknown functions, which
define the amplitude and the phase of the eigenfunc-
tions, respectively. Then from (35) one obtains:

∂2ψn

∂x2
= − h2

∂Φn

∂x
sin(hΦn(x))

+ h
(
2
∂an
∂x

∂Φn

∂x
+ an

∂2Φn

∂x2

)
+ O(1).

Then we see that the terms of the order h2 give the
following eikonal equation for Φn :

(∂Φn

∂x

)2 = −λn/h
2 − 1 + γ exp(−T p(x)). (36)

The terms of order O(h) give linear equations for an ,
yielding

an = Cn

(∂Φn

∂x

)−1/2
, (37)

where Cn are constants. We can set Φn(0) = 0. Then,
the boundary condition at x = 1 gives

h
∫ 1

0

∂Φn

∂x
dx = nπ, (38)

where n is an integer. Now Eqs. (36) and (39) define
the amplitude an(x):
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Oscillations of a string on an elastic foundation 573

an = Cn

(
ω2∗/h2 − 1 + γ exp (−T p(x))

)−1/4
. (39)

Let us define the frequency ωn by λn = −ω2
n . Then,

by (38) and (36) we find the following equation for
ωn(T ):

∫ 1

0

√
ω2
n − α(1 − γ exp(−T p(x))) dx = nπ. (40)

The obtained eigenfunctions are not localized in x and
define high frequency modes since ωn = O(h). They
exist both in space uniform and non-uniform cases.

Note that for the high frequency modes the WKB
relation (40) gives an asymptotic expansion which is
uniform in T . One can show that for small T this rela-
tion reduces to relation (29), where λ̃n is defined by
(33), and that for large T we obtain relation (29) with
λ̃n defined by (34).

5.2 Localized eigenfunctions

Localized eigenfunctions (modes) are concentrated at
points x∗ where p(x) has local minima, i.e. p

′
(x∗) = 0

and p
′′
(x∗) = r2 > 0. Let us introduce a new variable

ξ = h1/2(x − x∗). Then for ξ = O(1), T = O(1) and
x = O(h−1/2) we obtain

exp(−T p(x)) = exp(−T p(x∗)) − R(T )2ξ2/h + O(h−3/2),

where

R(T )2 = Tr2

2
exp(−T p(x∗)).

Therefore, for modes ψ loc
n localized at x = x∗, we

obtain the following relation:

d2ψ loc
n

dξ2
− (a0(T ) + R(T )2ξ2)ψ loc

n

= h−1(−Ω2
n + O(h−1/2))ψ loc

n , (41)

where Ωn is a frequency of the nth localized mode and

a0(T ) = h−1(α − αγ exp(−T p(x∗)))
= √

α(1 − γ exp(−T p(x∗)) > 0.

Up to small corrections of the order h−1/2, Eq. (41)
coincides with the Shrödinger equation for a quantum
harmonic oscillator. The corresponding eigenfunctions

can be expressed viaHermit’s polynomials and have the
form

ψ loc
n (x, T ) = R(T )−1/4Ψn(R(T )1/2ξ), (42)

where

Ψn(X) = (2nn!√π)−1/2 exp(X2/2)
dn

dXn
exp(−X2),

and

Ωn(T )2 = h(a0(T ) + (2n + 1)R(T )). (43)

For n � 1/h one has the asymptotic expansion

Ωn(T )2 ≈ α(1 − γ exp(−T p(x∗))). (44)

For bounded values of n the boundary conditions
at x = 0, 1 are satisfied with exponential accuracy
O(exp(−c0(R(T )h)1/2). The main mode for n = 0
has the form

ψ loc
0 (x, T ) = (πR(T ))−1/4 exp(−R(T )h(x − x∗)2/2).

Note that these localized modes exist only for T such
that R(T )h � 1. For large T the functions ψ loc

n (x, T )

are not asymptotic solutions of Eq. (41).

5.3 Comparison of frequencies of localized and
non-localized modes

We can formulate the following general results for the
frequencies of localized and non-localized modes. Let
us assume that the function p(x) reaches its globalmin-
imum at an interior point x∗ ∈ (0, 1) and p

′′
(x∗) > 0.

Then the modes localized at x∗ have the frequencies
defined by relation (44). On the other hand let us con-
sider relation (40) that defines the frequencies of the
non-localized modes. Since p(x) ≥ p(x∗) this relation
implies that

ω2
n ≥ α(1 − γ exp(−T p(x∗))) + (nπ)2 > Ω2

n , (45)

i.e. for large α the frequencies of the non-localized
modes always are higher than the frequencies of the
modes localized at the global minimum of p. In partic-
ular, in case (3) one has that the minimal frequency is
determined by the localized modes and equals

min
n

Ωn(T ) ≈ α(1 − γ exp(−T (p0 − b0))).
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6 Fourier decomposition

Solutions of (6) can be expressed through the eigen-
functions ψn as

u(x, t) =
∑

n∈Z,n 
=0

Xn(t)ψn(x), (46)

where Xn(t) are unknown functions, which determine
complex amplitudes of the oscillations such that X−n =
X∗
n (the star denotes complex conjugation). We set

ψn(x) = ψ∗−n(x). Then u(x, t) is a real-valued func-
tion. Note that the sum in the right-hand side of (46)
should contain all possible modes, localized and non-
localized.

Let us consider the case with f given by (2). Then
Eq. (6) is linear and we obtain the following equations
for Xn :

d2Xn(t)

dt2
+ ω2

n(T )Xn = −ε
dXn(t)

dt
(47)

where ωn(T ) is defined by (18), and T = εat is a slow
time associated with the ageing process. Initial data for
Xn(t) and Vn = dXn/dt can be obtained by (4). We
obtain

Xn(0) = ||ψn||−2〈v0, ψn〉,
Vn(0) = ||ψn||−2〈v1, ψn〉. (48)

Note that the Galerkin approximations of u(x, t) use
a finite number N of the modes, i.e. n = ±1,±2, . . .±
N . The truncation number N can be defined by ener-
getic arguments. For t = 0 the energy E(t) equals
E = ∑

n∈Z ω2
n|Xn(0)|2 + |Vn(0)|2. The truncated

energy is EN = ∑N
n=−N ω2

n|Xn(0)|2 + |Vn(0)|2. Let
us choose a sufficiently small δ > 0. Note that if v0(x)
and v1(x) are smooth functions of x , then the n-th term
ω2
n|Xn(0)|2 + |Vn(0)|2 is a decreasing function of the

mode number n. Then, due to this decreasing property,
we can take N such that E − EN < δE . Equation
(47) involves two small parameters, ε and εa . This fact
allows us to obtain an asymptotic solution of Eq. (47)
, which have a transparent physical meaning.

6.1 Spatial resonance in the initial boundary value
problem

In this section we describe an interesting effect con-
nected with the existence of localized eigenfuctions.

Consider the Cauchy problem for Eq. (47) in the WKB
case, when h = √

α � 1, and there is a point x∗ which
yields a non-degenerate local minimum of p(x). The
Cauchy data Xn(0), Vn(0) = dXn/dt (0) for the ampli-
tudes of the non-localized modes can be obtained from
the initial conditions (4) by the relations

Xn(0) =
∫ 1

0
v0(x)ψn(x)dx,

Vn(0) =
∫ 1

0
v1(x)ψn(x)dx, (49)

and similarly for the amplitudes of the localizedmodes:

Xn(0)
loc =

∫ 1

0
v0(x)ψ

loc
n (x)dx,

Vn(0) =
∫ 1

0
v1(x)ψ

loc
n (x)dx . (50)

Consider the following two cases. In the first case
a, the initial data v0(x) and v1(x) are non-localized,
for example, vi (x) = ai (x) sin(Si (x)), where ai , Si
are smooth functions. In the second case b, these data
are localized at a point x0, for example, vi (x) =
bi (x) exp(−(x − x0)2/2σ 2), where σ > 0 is a small
parameter.

In case a the coefficients Xn(0)loc and Vn(0)loc can
be computed by the standard asymptotics [16], see for-
mula (42). They are small and have the order O(h−1/4).
Therefore, in this case the localized mode does not
make an essential contribution in the Fourier decom-
position.

For case b, if x∗ and x0 are separated, for exam-
ple, |x∗ − x0| � h−1/2, then again we have not an
essential contribution in the Fourier decomposition of
the localized mode. However, if these points are close,
say, |x∗ − x0| < h1/2, then we obtain an opposite pic-
ture. The contributions of the localized modes can be
estimated as follows:

|Xn(0)|, |Vn(0)| = O(σ ),

|Xn(0)
loc|, |Vn(0)loc| = O(h1/4(h + σ 2)−1/2). (51)

The contributions of the localized modes are larger
under the condition σ 2 � h−1/2. Therefore, we can
conclude that for large rigidity α the spatial resonance
effect arises, which is induced by the localized modes.

Consider this effect in the case (3). Then the points
x∗ are defined by

123



Oscillations of a string on an elastic foundation 575

x∗ = π(2k + 1) − φ

ω∗
, 0 < x∗ < 1,

where k = 1, 2, . . .. Such points exist only for large
space frequencies ω∗ > π . Below we will show that
for non-localizedmodes spatial resonances are possible
only for sufficiently small ω∗.

7 Asymptotic solution

It is natural, following the standard methods, to look
for asymptotic approximations of the solutions of Eq.
(47) in the following form:

Xn(t, ε, εa) = Yn(T ) exp(iε−1
a Sn(T )) + O(εa + ε),

i = √−1, (52)

where Yn is an unknown complex function of order 1,
and Sn is an unknown real-valued function of order
1. These functions determine a slowly evolving magni-
tude and a fast oscillating phase ε−1

a Sn of the n-thmode
respectively, where n > 0. For n < 0 we set formally
Xn = X∗−n , then the displacement u(t, x) takes real
values. We substitute Xn into (47) and obtain that the
principal terms of order 1 vanish under the condition

dSn(T )/dT = ωn(T ) (53)

which gives us an eikonal equation to for Sn . If this
equation is satisfied, then in Eq. (47) the main terms
become O(ε + εa). Removing terms of higher orders
in ε and εa we obtain

2
dYn(T )

dT
= −(μc1 + ωn(T )−1 dωn(T )

dT
)Yn, (54)

where the parameter μ is defined by (12). This equa-
tion is correct under the restriction εa � ε2, i.e.
μ � ε. Otherwise we must take into account the
higher-order correction terms in (47) and the equation
for Yn becomes rather complicated.

From (54) we obtain

Yn(T ) = Yn(0)ωn(T )−1/2 exp(−μc1T/2). (55)

Substituting this relation into the formula (52) for Xn

and taking real values one obtains the following asymp-
totic approximation of the solution of the problem:

∑
n∈Z

ωn(T )−1/2 exp(−μc1T/2)

×
(
an sin(ε

−1
a Sn(T ))

+ bn cos(ε
−1
a Sn(T ))

)
ψn(x, T ), (56)

where ψn(x, T ) are the asymptotic eigenfunctions
found in Sects. 4.1 and 5, and an, bn are constants. For
large rigidities α >> 1 this solution is a result of a
“double” WKB method: we apply the WKB approach
to find the time dependence of the amplitude for Xn ,
and to find the spatial form of the modes ψn .

8 Estimates of the amplitudes |Xn|

In this section, we derive energy estimates for the
amplitudes Xn . Let us introduce the unperturbed energy
of the nth mode Xn by

En(t) = 1

2

(
Pn(t)

2 + ω2
n(T )Xn(t)

2
)

,

Pn = dXn(t)

dt
. (57)

The first term in the right-hand side is the kinetic energy
associated with the n-th mode and the second term is
the potential energy. Let us multiply the right-hand and
the left-hand sides of (47) by dXn/dt . Then (47) and
(57) give the following relation for the energy

dEn(t)

dt
= −εc1

dXn(t)

dt

2

+εaωn(T )
dωn(T )

dT
X2
n . (58)

We see that the energy slowly evolves in time, whereas
Xn(t) also depends on the fast time t . In fact, let us
note that for ε = εa = 0 we have Xn = Yn sin(ωnt +
φn), where ωn,Yn and φn are independent of t . For
small ε and εa , these functions are slow functions of t .
This allows us to average relation (58) over the interval
In(T ) = [T, T + τn], where τn = 2πω−1

n (T ) is a
period depending on T . Note that, according to (52),
we have the following result

2τn
−1

∫ T+τn

T
Xn(t)

2dt = |Xn(T )|2 + O(ε + εa).

(59)

2τn
−1

∫ T+τn

T
Xn(t)

2dt = ω2
n|Yn(T )|2 + O(ε + εa).

(60)
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Let us denote the averaged energy Ēn . Then (59) and
(60) imply that

τn
−1

∫ T+τn

T
(
dXn(t)

dt
)2dt = Ēn(T ) + O(ε + εa),

(61)

τn
−1ω2

n

∫ T+τn

T
Xn(t)

2dt = Ēn(T ) + O(ε + εa).

(62)

Note that the averaged kinetic and the potenitial
energies of the weakly perturbed linear oscillator are
equal. Using the relations (61) and (62) we obtain from
(58) the main evolution equation for the energies Ēn of
the slow modes:

dĒn(T )

dT
= ε−1

a κn Ēn, (63)

where

κn = −εc1 + εaωn(T )−1 dωn(T )

dT
(64)

determines the time evolution of the energy part asso-
ciated with the nth mode.

9 Ageing and spatial resonances

The simplest case is when ageing is defined by p(x) =
a0. Then

λn(T ) = −(nπ)2 − α(1 − γ exp(−a0T )). (65)

In the non-uniform case we observe an interesting
effect, which can be named ”spatial resonance”. Let
p(x) be defined by (3).
Case 1, small T .

For small T one has

dλ̃n(T )

dT
= −2αγ

∫ 1

0
p(x) sin2(nπx)dx, (66)

and thus

κn = −ε + εaαγ

ω̄2
n

∫ 1

0
p(x) sin2(nπx)dx + O

(
ε2a

)
.

(67)

Fig. 1 The quantities κn(ω∗) for n = 1 (solid curve) n = 2
(dashed curve) and n = 3 (dotted curve). The ω∗ ranges in the
interval [0, 70] on the horizontal axis. The parameters are α = 1,
γ = 0.1, φ = π/2, εa = 0.1, ε = 0.001, p0 = 1 and b0 = 0.5

Let us consider the dependence of κn(ω) on ωn for
different n, which is illustrated in Fig. 1.

We observe that κn is positive only for small n (in
our case for n = 1, 2). So, the ageing helps to increase
the magnitudes of the lower modes only. Moreover, κ1
oscillates in ω∗ with a larger amplitude than κ2 and κ3
in amplitude; we observe a sharp peak in κ1(ω∗) values,
i.e. a spatial resonance effect is present. For large ω∗:
oscillations of κn(ω∗) damp and this resonance effect
is stronger for small n.

Consider the casewhen p(x) is defined by (3). Then,

κn = −ε + εaγ

2ω2
n
(p0 + b0R(ω∗, φ, n)), (68)

where

R (ω∗, φ, n)) = 1

2

[(
2ω−1∗

− (ω∗ + 2πn)−1
)

(sin (ω∗ + φ) − sin(φ))

− (ω∗ − 2πn)−1 (sin (ω∗ − φ) − sin(φ))
]
.

These relations indicate that there is a possible spatial
resonancewhen for the space non-uniform case b0 = 0
all amplitudes Xn(t) are exponentially decreasing in t
(i.e. all κn < 0), but for sufficiently large b0 the ampli-
tudes Xn(t) increase for some n < N0. The sufficient
conditions that the spatial resonance arises for the n-th
mode are as follows:
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ω∗ ≈ 2πn, −ε + εaγ a0
2ω2

n
< 0, (69)

−ε + εaγ

2ω2
n
(p0 − b0 cosφ) > 0. (70)

Note that this effect depends on the phase φ and n. For
large n or for large ω∗ the spatial resonance is impos-
sible. We can compare this conclusion with the result
of Sect. 5.2, where it is shown that for large rigidities
α >> 1 the spatial resonance occurs only if the space
frequency is sufficiently large.

Case 2, large T .
For large T one finds from (24) that

dλ̃n(T )

dT
= −2αγ Jω∗(T ),

Jω∗ =
∫ 1

0
p(x) exp(−T p(x)) sin2(nπx)dx .

(71)

Consider the integral in the right-hand side of this
relation. Using the well-known asymptotic estimate
[16], for large T , it follows that:

Jω∗(T ) = c̃0αγ (b0T )−1/2ω−1(p0 − b0)

× exp(−(p0 − b0)T )

×
∑

k∈I (φ,ω∗)
sin2(nπxk) + O(T−3/2), (72)

where c̃0 > 0 is a constant. Here xk = ω−1∗ ((2k +
1)π − φ) and I (φ, ω∗) is the set of all integers k such
that xk ∈ (0, 1). Note that for some ω∗ the main term
in Jω equals zero whereas for other ω∗ values this term
is not small. We observe here an effect of ” a spatial
resonance”, when spatially non-uniform ageing influ-
ences the linear modes in a different way. In the next
sections, we investigate this effect in more details.

9.1 The case of large rigidity

Consider the case α >> 1. To describe the time evo-
lution of the amplitudes Xn for all times T , we apply
the WKB approximation (see Sect. 5 ) and the relation
(40). By differentiating this relationwith respect T , one
obtains

dω(T )

dT
= αγ

∫ 1
0 p(x) exp(−T p(x))Δ(x)dx

ωn
∫ 1
0 Δ(x)dx

,

Δ(x) = (ω2
n − α(1 − γ exp(−T p(x))))−1/2. (73)

As a result, Eq. (64) gives

κn = −ε + εaαγ
∫ 1
0 p(x) exp(−T p(x))Δ(x)dx

ω3
n

∫ 1
0 Δ(x)dx

.

(74)

We see that for sufficiently large n the κn are negative.
Let us estimate the number of modes Nc such that the
corresponding En increases. Using (74) one has as a
rough estimate:

N 3
c (T ) ≈ C0ε

−1εaαγ

∫ 1

0
exp(−T p(x))p(x)dx,

(75)

where C0 is a positive constant. We see that Nc(T )

decreases in T .
For small T the number Nc(T ) depends on the aver-

age
∫ 1
0 p(x)dx only. For large T the number is defined

by the value pmin, i.e. the space points where ageing is
minimal.

10 Effects of ageing

The uniform and non-uniform ageing processes are
essentially different. To show this, let us consider the
relation (74) in the cases a and b. In the first case

p(x) ≡ a0 = const and dλ̃n(T )
dT = αγ a0 does not

depend on n. We obtain

κn = −ε + ρn, ρn = εaαγ a0
ω̄3
n

+ O
(
ε2a

)
. (76)

In this case the ageing contributes to the energy evo-
lution. This contribution is always positive. Therefore,
the amplitudes of somemodeswith smalln can increase
in some time interval t . The energy of the modes with
large n always decreases for all t since the term ρn is
proportional to n−3 for large n. Moreover, the energies
of all the modes are exponentially decreasing functions
in t for large times t , since for large T the quantities ρn
are exponentially small.

A general picture for the uniform case is as follows.
During some time period [0, T0] the energies En of
some modes with indices n = 1, . . . , nc can increase,
whereas all the other modes are exponentially decreas-
ing functions in time for all times. Roughly speaking
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Fig. 2 Energies of the solutions for the uniform (dotted curve)
and the non-uniform case (solid curve) as functions of time T
(horizontal axis), T ∈ [0, 200]. The parameters are α = 1, γ =
0.5, φ = π , ω∗ = 2π , εa = 0.2704, n = 1 and ε = 0.01

in the uniform case, the modes with lowest frequencies
give the main contribution to the energy.

In case b we have the same relation (76); however,
now ρn is defined by the integral

ρn = 2εaαγ

ω̄3
n

∫ 1

0
p(x) sin2(nπx)dx .

This term is not necessarily a monotone function in
n. Therefore, for large (but not too large) times t the
energy can be defined by a single resonance mode,
which gives a maximal term ρn .

Themain effect producedby the non-uniformageing
is as follows. For some special parameter values when
the relation

ε = αγ a0ω̄
−2
1

holds, the non-uniform term can produce an exponen-
tial growth of the magnitude of the main mode with
n = 1, whereas for the uniform ageing this magnitude
decreases. The energy can also increase in the non-
uniform case and decrease in the uniform case. This
effect is illustrated in Figs. 2 and 3.

11 An external load

Let us consider the case where Eq. (6) contains a har-
monic external load:

uxx − α(1 − γ exp(−εatp(x))u − utt

= εut + bθ(x) sin(Ωt), (77)

Fig. 3 Displacement u(x, t) for the uniform (dotted curve) and
the non-uniform case (solid curve). The parameters are taken as
in Fig. 2. t = 200

whereΩ is a frequency, and b > 0 is a non-dimensional
amplitude of an external load, and θ is a function in
x which shows the distribution of an external load
in space. In this case we also can find an asymptotic
approximation of the solution. We write the solution u
as a sum u = ũ+ ū, where ũ satisfies Eq. (6) for b = 0,
and ū is a special, particular solution of (77). The func-
tion ũ can be found by the asymptotic construction as
presented in the previous section. To find ū, we set

ū(x, t) =
∑

n∈Z,n 
=0

Zn(t)ψn(x, T ). (78)

The unknown coefficients Zn(t) in the eigenfunction
expansion (78) satisfy

d2Zn(t)

dt2
+ ω2

n(T )Zn = bθn(T ) sin(Ωt) + O(ε + εa),

(79)

where

θn(T ) = 〈θ, ψn〉
〈ψn, ψn〉 .

Note that due to the asymptotic results as obtained in
Sect. 4 (see lemma 4.1 and relation (32) for small α or
small T ) the function θn weakly depends on T and (for
small T )

ωn(T ) = √
2

∫ 1

0
θ(x) sin(πnx)dx + O(T ), T → 0.
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We can look for a particular solution of (79) in the
following form:

Zn(t) = Un(T ) sin(Ωt), (80)

whereUn(T ) is an unknown function. Substituting (80)
into (79), and neglecting small terms of the orders ε and
εa , we obtain

Un(T ) = bθn(T )(ωn(T )2 − Ω2)−1. (81)

For times T such that ωn(T ) ≈ Ω we obtain a reso-
nance. For these T values we should take into account
the small terms of the orders O(ε) and εa , and apply a
more sophisticated asymptoticmethod to find a particu-
lar solution of (79). Nonetheless, we can obtain general
results in these resonance cases. The remark at the end
of Sect. 4 shows that for each n the frequency ωn(T )

is a decreasing function in T . Therefore, we conclude
that for each fixed mode number n we have either a sin-
gle resonance for some T , or the resonance is absent.
The general number Nr of the resonances for differ-
ent n depends on the parameters α, γ , and Ω , but N is
independent of the form of the ageing function p(x).
In fact, for each n we have the resonance uniqueness
property, and thus the resonance exists if and only if
ωn(0) < Ω andωn(+∞) > Ω . The frequenciesωn(0)
and ωn(+∞) = limT→+∞ ωn(T ) can be easily com-
puted which implies the following.

(a) If α(1 − γ ) > Ω2, then the resonances are absent
and Nr = 0;

(b) If α(1− γ ) < Ω2 and α > Ω2 then the resonance
number is defined by the relation

Nr =
[√

Ω2 − α(1 − γ )/π

]
, (82)

where [x] is the maximal integer, which is less than
x (the floor of x);

(c) If α(1−γ ) < Ω2 and α < Ω2, then the resonance
number is defined by the relation

Nr =
[(√

Ω2 − α(1 − γ ) −
√

Ω2 − α

)
/π

]
.

(83)

Note that the resonance number increases in γ . The
resonance is absent for small Ω and too large Ω . The

Fig. 4 The number of resonances for γ = 0.9 (dotted curve) and
γ = 0.09 (star curve) for different values of α. The parameter
Ω = 40

properties of Nr can be illustrated in the following
Fig. 4.

12 Conclusion

The dynamics of a string on an elastic foundation with
variable time- and space-coordinate coefficients has
been studied. Asymptotic approximations of the solu-
tions have been constructed in the following cases: 1.
for an arbitrary value of the elastic foundation coeffi-
cientα at small and at large time values; 2. for small and
large values of the coefficient α at arbitrary times. A
special case for the elastic foundation coefficient func-
tion (originating froman ageing process) has been stud-
ied. The ageing process is described by an expression
approximating some well-known experimental data.
The obtained approximations of the solutions are accu-
rate.

In case of a large coefficient α, and a non-uniform
distribution of the ageing process in space, in addition
to the uniform ageing modes, the existence of localized
modes in local minima of the ageing function distribu-
tions p(x)has beenproved. It has been shown thatwhen
p(x) has a global minimum the frequency of the rele-
vant localized mode is located below the non-localized
frequencies.

For large rigidity values of α, the existence of local-
ized modes allows a “spatial resonance” phenomenon
under certain conditions as described in this paper. In
case the p(x) function is given by the first two terms in
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a Fourier cosine series, the “spatial resonance” is only
possible for large values of the frequencies ω(ω > π).
It can be confirmed, that in case an external force on
the string is expressed by a function (which is non-
localized along the coordinates), then the resonance
with the localized mode is weaker than the resonance
with the non-localized mode. But if the external force
is localized, then it is vice versa, the resonance with the
localized mode is stronger then with the non-localized
mode. In case of an arbitrary elastic foundation coef-
ficient α for small or large times, the “spatial reso-
nance” phenomenon is observed at small “special fre-
quencies”. This effect also depends on the phase and
the mode number n. Thus, for large n this resonance is
not possible. This conclusion is opposite to the case for
large elastic foundation rigidity coefficients, where the
effect was found at small non-“special frequencies”.
The difference between the non-uniform ageing and
the uniform ageing can be described as follows: for cer-
tain parameter values the non-uniform ageing causes an
exponential growth of the main mode frequency ampli-
tude for n = 1, when in case of a uniform ageing this
mode is influenced.
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