
 
 

Delft University of Technology

Hierarchical Bayesian modelling for geotechnical parameter derivation

Mavritsakis, A.; Schweckendiek, T.; Teixeira, A.M.; Smyrniou, E.

DOI
10.3850/978-981-18-5184-1_MS-13-037-cd
Publication date
2022
Document Version
Final published version
Published in
Proceedings of the 8th International Symposium on Reliability Engineering and Risk Management

Citation (APA)
Mavritsakis, A., Schweckendiek, T., Teixeira, A. M., & Smyrniou, E. (2022). Hierarchical Bayesian modelling
for geotechnical parameter derivation. In M. Beer, E. Zio, K.-K. Phoon, & B. M. Ayyub (Eds.), Proceedings
of the 8th International Symposium on Reliability Engineering and Risk Management (pp. 398-405).
Research Publishing. https://doi.org/10.3850/978-981-18-5184-1_MS-13-037-cd
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.3850/978-981-18-5184-1_MS-13-037-cd
https://doi.org/10.3850/978-981-18-5184-1_MS-13-037-cd


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Proc. of the 8th Intl. Symp. on Reliability Engineering and Risk Management (ISRERM 2022)

Edited byMichael Beer, Enrico Zio, Kok-Kwang Phoon, and Bilal M. Ayyub

©2022 ISRERM Organizers. Published by Research Publishing, Singapore.

doi: 10.3850/978-981-18-5184-1_MS-13-037-cd

Hierarchical Bayesian modelling for geotechnical parameter derivation 
A. Mavritsakis�1, T. Schweckendiek1,2, A. M. Teixeira1, and E. Smyrniou1  

1Deltares, Delft, The Netherlands 
2Department of Hydraulic Delft University of Technology, The Netherlands 

Abstract 
Bayesian inference poses as a means for characterizing the uncertainty in geotechnical parameters based on limited site investigation 
data. In this study, a Hierarchical Bayesian analysis framework is used to analyse a site investigation database in order to derive 
geotechnical soil parameters for two widely applied strength models. The first one focuses on calibrating the relationship between in-
situ CPT measurements and undrained shear strength. The second one is the SHANSEP soil strength model, which is used for 
evaluating the undrained shear strength using OCR information. The framework operates in a hierarchical fashion, performing inference 
on separate project sites and at the same time drawing conclusions on a global level. The result is site characterization on a probabilistic 
level and the derivation of geotechnical parameters together with their probability distributions. The results are assessed by evaluating 
their influence in the failure probability of a geotechnical structure, demonstrating that the proposed hierarchical approach provides a 
more complete description of uncertainty than standard practice methods. 

Keywords: Hierarchical Bayesian Modelling, Bayesian Inference, SHANSEP, Site Characterisation, Soil strength, Uncertainties

1. Introduction 
While laboratory testing can provide direct estimates of 

geotechnical parameters for the design or assessment of 
structures, in-situ tests are performed on a greater scale and 
draw information on the undisturbed behaviour and the 
spatial heterogeneity of the soil. In these cases, Bayesian 
inference can pose as a means for calibrating the 
relationships between in-situ and laboratory test data, as 
well as for characterizing the uncertainty and spatial 
variability of soil parameters. In this study, a Hierarchical 
Bayesian modelling (HBM) is explored to establish the 
relationship between the CPT (Cone Penetration Test) in-
situ measurements and the undrained shear strength of the 
soil as determined in the lab. The same approach is used to 
calibrate the SHANSEP strength parameters, which are 
used for modelling the undrained shear strength of certain 
clay soils, and to identify the spatial heterogeneity pattern 
of soil parameters.  

In this context, the impact of HBM is examined on two 
different geotechnical parameter settings within the 
undrained shear strength parameter estimation. These 
HBM applications are showcased and compared to a 
standard practice approach.  

The HBM operates in a hierarchical fashion, 
performing inference on separate project sites and at the 
same time drawing conclusions for the parameter 
population. The result is site characterization on a 
probabilistic level and the derivation of geotechnical 
parameters together with their probability distributions. 
This outcome can be utilized in determining characteristic 
values, or in a fully probabilistic analysis in a project site 
and on a regional level. 

Section 1 and 2 are introductory sections to the problem 
and the theory behind HBM, respectively. Section 3 
presents the benefits of adopting HBM in deriving 
geotechnical parameters by analysing the structure of the 
statistical models and comparing the resulting posteriors. 
Section 4 investigates the advantages of employing HBM 
by evaluating its impact on the assessment of probability 
of failure for an existing embankment. Finally, Section 5 
presents the conclusions and follow ups. 

 
� E-Mail: Antonis.Mavritsakis@deltares.nl 

2. Theoretical background and approach  

2.1 Bayesian inference 
Bayesian inference is used to draw conclusions on 

variables via data and observations by employing Bayes’ 
theorem (Eq. 1). It entails the set-up of a statistical model, 
which describes initial information on the variables 
through the prior distribution. A key component of the 
model is the formulation of the likelihood function, which 
measures the competency of the model in describing the 
observations. Conditioning on the observations leads to a 
statistical model that expresses the updated knowledge on 
the variables via the posterior distribution. Note that 
Bayesian inference reduces epistemic uncertainty in the 
statistical model, while aleatory uncertainty remains. 

  (1) 

In the above equation: 
�  is the variable vector that is being inferred; 
�  is the vector of observations; 
�  is the posterior distribution; 
�  is the prior distribution; 
�  is the likelihood of the observations given the 

variable vector. 

In the analyses presented in this paper, Bayesian 
inference is calculated using the No U-Turn Sampler 
(NUTS) algorithm [1], which is a highly efficient version 
of Hamiltonian Monte Carlo (HMC). The algorithm is 
implemented via the Probabilistic Programming Python 
package PyMC3 [2]. 

2.2 Robust Bayesian Linear Regression 
Bayesian inference can be employed to fit Linear 

Regression models. A typical problem experienced in such 
models in the sensitivity of the fit to data outliers. To 
mitigate this impact, Robust Linear Regression techniques 
are adopted [3]. In the context of this paper, Robust Linear 
Regression models are implemented by assuming that the 
regression errors follow t-Student distributions, instead of 
Normally distributed ones. The t-Student distribution is 
able to allocate higher likelihood values at far-off points, 
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interpreting outliers as high-variance observations and 
reducing their impact on the regression parameters’ 
posteriors. In addition to the mean ( ) and standard 
deviation ( ), the t-Student distribution is parametrized by 
the number of degrees of freedom ( ), which controls 
the behaviour of the distribution’s tails.  

2.3 Hierarchical Bayesian Modelling 
In several engineering problems, variables that describe 

the same phenomenon at different groups of data are 
implicitly related, as compelled by the data generating 
process. Consequently, the variables of each group belong 
to the same population. Bayesian models can be divided in 
three types when it comes to the treatment of grouped data: 

� Pooled models treat all data as one group or 
population, without any distinction between groups. 

� Unpooled models make distinctions between groups, 
but groups are independent. 

� Hierarchical models (partially pooled) make 
distinctions between groups and a level of dependency 
among groups is included. 

A benefit of adopting Bayesian inference is the ability 
to operate in hierarchical structures. Hierarchical Bayesian 
Models (HBM) infer the variables per group, as well as the 
parameters defining the population distributions through 
hyperparameters. The hyperparameters ( ) describe the 
population distribution of the group variables ( ) and infer 
them by conditioning the HBM on the observations ( ) as 
indicated in Eq. 2. The simplification holds, because the 
observations depend directly only on the group variables, 
while the two-way influence between the observations and 
the hyperparameters is indirect and mediated by the group 
variables [3]. Additionally, the group variables interact via 
a common dependency on the hyperparameters, which 
means that observations for group  provide information 
for all group variables , instead of only affecting the 
variables of their group  during inference. 

  (2) 

A noteworthy feature of HBMs for geotechnical 
engineering is their ability to infer the population posterior 
distribution. Considering that geotechnical data is usually 
grouped per site, the posterior distribution of the 
population can express information for site variables on a 
regional, national, or even global level, depending on the 
origin of the data. The population posterior distributions 
are expected to enhance predictions at a new site, where no 
observations are yet available. 

HBM is flexible enough to incorporate the Robust 
Linear Regression scheme. This combination, which 
belongs to the family of Hierarchical Linear Models, will 
be used in the following sections of this paper. 

Fig. 1 provides a generic description of the adopted 
HBM structure. A set of three hyperparameters influences 
the regression coefficients per group (  and ). These are 
the mean ( ) and standard deviation ( ) per regression 
coefficient, as well as their correlation coefficient ( ). The 
regression coefficients per group are used to evaluate the 
regression model of the group, which is then applied in the 

likelihood function. Two more hyperparameters, the 
standard error of the regression ( ) and the number of 
degrees of freedom ( ) - which is required in the Robust 
Linear Regression scheme - are used to evaluate the 
likelihood function of the group. Since groups are assumed 
to be independent, the likelihood of the model is the 
product of the individual group likelihoods (Eq. 3) 

 (3) 

 
Figure 1. Illustration of the general HBM structure used in the 
study. 

2.4 Geotechnical background 
The impact of HBM is examined on two different 

geotechnical parameter derivation settings, which are 
organics parts of standard geotechnical practice. Hence, 
they pose as candidates for showcasing the impact of 
adopting HBM over the standard practice approach, as well 
as the pooled and unpooled Bayesian models. Specifically, 
the settings are: 

� The Nkt regression, which connects the corrected CPT 
cone resistance (qnet) to the undrained shear strength of 
clays (Su), according to Eq. 4 [4]. This relationship has 
high practical value, as it allows for mapping Su over 
the subsoil by utilizing the abundance of CPT 
measurements in site investigations datasets. 
 

  (4) 
 

� The SHANSEP strength model regression, which is 
defined by parameters  and  [4]. SHANSEP 
connects the maximum effective stress level and the 
over-consolidation ratio (OCR) to the undrained shear 
strength of clays (Su), according to Eq. 5 
Consequently, Eq. 6 is derived and reformulates the 
SHANSEP strength model parameters as the 
coefficients of a linear regression model; log(S) takes 
the role of the intercept while m is the slope 
coefficient. 
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  (5) 
 (6) 

The SHANSEP strength model is widely used in 
geotechnical calculations of clay and peat soils, so an 
improvement of the derivation of its parameters can prove 
valuable. 

2.5 Inference procedure set-up 
The world-wide CLAY10 database [5], containing data 

from CPT measurements and laboratory tests (totalling 374 
datapoints gathered at 33 sites over the globe) is used in 
this study to provide the observations for the inference 
procedure. 

For judging the inference results, the cross-validation 
method is adopted, which according to [3] entails that the 
database is in a training dataset for inference and a testing 
dataset for evaluating the predictive power of the inferred 
model. In this study, 80% to 20% of the total observations 
are attributed to the training and testing datasets 
respectively. 

Two metrics are used to evaluate the prowess of the 
HBM. The first metric is the log-likelihood of the test 
observations, as calculated with the posterior predictive 
distribution, as described by Eq. 7.  

 
  (7) 

 
The second metric is the expected value Root Mean 

Square Error (RMSE), which is defined according to Eq. 8. 
 

  (8) 

 
In this analysis, the NUTS algorithm is executed with 4 

chains and 2,500 posterior samples. This adjustment has 
been examined to sufficiently explore the variable domain. 

3. Bayesian estimation of geotechnical parameters  

3.1 Standard practice 
The standard practice approach in the Netherlands [4] 

comprises the derivation of the Nkt distribution, as the slope 
coefficient of a regression analysis with zero intercept 
using the Ordinary Least Squares (OLS) method. Even 
though the method leads to distributions for the regression 
coefficient, as well as a description of the regression error, 
it is still deterministic, because it derives just the point 
estimates of the distribution parameters. 

The standard approach for deriving the SHANSEP 
parameters consists of a Linear Regression analysis which 
yields the SHANSEP parameters and their distributions. It 
should be noted that in most practical applications, the m 
parameter is derived by oedometer tests, and the regression 
analysis is performed for the S parameter. However, since 
no oedometer tests are available in the database, the 
forementioned procedure is adopted. 

3.2 HBM inference of the Nkt regression model 
In the Bayesian models, Nkt is determined as the slope 

coefficient of a Robust Linear Regression model fit 
between qnet and Su. The regression model is selected to 

have a zero-intercept coefficient for the sake of 
compatibility with standard practice. In this way, Nkt 
reflects part of the reducible uncertainty of the model, 
while the regression error represents irreducible 
uncertainty. Moreover, the regression follows a 
heteroscedastic interpretation of the errors, which is 
supported by the shape of the point clouds and the physical 
phenomenon modelled; the strength uncertainty is 
proportional to the cone resistance and when the cone 
resistance is zero, the soil has no strength. So, the Bayesian 
model infers the Coefficient of Variation (CoV), which is 
used to define the error regression model estimate ( ) 
using Eq. 9. Lastly, since the Robust Linear Regression 
scheme is adopted, the number of degrees of freedom 
( ) of the t-Student likelihood function should be 
inferred. 

  (9) 

Tab. 1 presents the priors for the random variables of 
the HBM. The priors of the hyperparameters  and  
are weakly informative. It is a-priori known that Nkt takes 
non-negative values. Thus, it follows a truncated normal 
distribution. However, variable Nkt is indirectly sampled 
with an auxiliary variable ( ) [6], to allow for 
better exploration of the variable domain. Moreover, the 
CoV and  are the same for all sites. This choice might 
lead to some inaccuracy in modelling aleatory uncertainty 
per site but improves largely the applicability of the results 
to new sites. 

Table 1. Prior distributions for the random variables of the HBM 
of the Nkt setting. 

Variable Prior 
Type Parameters 

 Half normal  
 

 Half normal  
 

 Truncated 
normal 

 
 

 

 Half normal  
 

 Inverse gamma  
 

 +  (10) 

  (11) 

 (12) 

Eq. 10 – 12 describe the derivation of the regression 
coefficient  from the random variables and the 
formulation of the regression model and the likelihood 
function per site. As shown by Eq. 3, the likelihood of the 
model is the product of the individual site likelihoods. 
Also, the likelihood per site is the product of the likelihood  
per data point in the site, as the points are assumed to be  
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Figure 2. Posterior regression model fits for the Nkt model (sites indicated by colour) and KDE plots of the posterior samples for the 
pooled, unpooled and partially pooled models (only 5 sites displayed for clarity). 

independent. Thus, Eq.12 describes the likelihood of the 
model as this double product, with index  indicating the 
site and index  indicating the datapoint of each site. 

Fig. 2 presents the regression lines and Kernel Density 
Estimation (KDE) [7] fits of the posterior samples for each 
of the pooled, unpooled and partially pooled models. The 
stiff behaviour of the pooled model does not allow the 
regression line to follow the data, Thus, it leads to low 
uncertainty of the regression slope, but compensates for the 
uncertainty of the data through a high standard error, which 
resembles aleatory uncertainty. The HBM displays similar 
behaviour to the unpooled model. However, its posterior 
distributions are just slightly wider, indicating a greater 
extent of uncertainty in its variable estimations, which is 
introduced by the incorporation of hyperparameters. 
Expectedly, the posterior of the population mean 
hyperparameter of the HBM is centred at the same values 
as the Nkt posterior of the pooled model, since it needs to 
capture the trend of all sites. Yet, the former has greater 
spread to allow for site-specific  variables to 
approximate the values that best describe their datasets. 

Table 2. Log-likelihood score and expected RMSE per model on 
the train and test datasets for the Nkt regression model. 

Model 

Log-likelihood [-] 
on the: 

RMSE [MPa] 
on: 

Train 
dataset 

Test 
dataset 

Train 
dataset 

Test 
dataset 

Pooled 2.98 -5.26 7.0E-4 5.2E-4 
Unpooled 3.81 3.58 2.3E-4 3.2E-4 
Partially 
pooled 3.81 3.58 2.3E-4 3.2E-4 

 
Tab. 2 presents the metric scores of the pooled, 

unpooled and partially pooled Bayesian models. It should 
be noted that the log-likelihood metric is scaled by the 
number of entries in the dataset. In this way, the 
loglikelihood scores of the train and test datasets are 
comparable. Evidently, the pooled model is the least 
flexible and achieves the worst scores in terms of both 
RMSE and log-likelihood. On the other hand, the unpooled 

and HBM models score equally well in the RMSE and log-
likelihood metrics for the training and testing dataset. In 
this case, the HBM closely approximates the unpooled 
model. Although the two models have the same 
effectiveness, the unpooled model lacks the derivation of 
population-level conclusions. 

3.4 HBM inference of the SHANSEP regression model 
Tab. 3 presents the prior distributions attributed to each 

of the random variables of the HBM for the SHANSEP 
setting. The model is defined similarly to the respective 
model of the previous section, but in this case both 
regression coefficients are being inferred. Again, weakly 
informative priors are selected for the hyperparameters. 
Since this regression model includes two coefficients, the 
correlation between them needs to be inferred too. 
Otherwise, the model is incapable of dependably sampling 
regression coefficients at a population level. The 
correlation matrix has been attributed a weakly informative 
prior, modelled with the Lewandowski-Kurowicka-Joe 
distribution (LKJ) [8]. The regression slope coefficient 
offset are sampled from a multivariate distribution that is 
truncated, in order to ensure that m is non-negative. As in 
the previous section, the variable that models irreducible 
uncertainty, the standard error ( ), as well as the 
number of degrees of freedom of the likelihood function 
( ), are common for all sites in the partially pooled 
model, in order to increases the utility of the results in 
making predictions for new sites. 

Eq. 13-14 describe the derivation of the regression 
coefficients  and . from the random variables. Eq. 15-16 
formulate the regression model and the likelihood function 
of the HBM, which is expressed similarly to the one for the 
Nkt regression setting. 

  (13) 

  (14) 

   (15) 

  (16) 



402 Proc. of the 8th International Symposiumon Reliability Engineering and Risk Management (ISRERM 2022)

Table 3. Prior distributions for the random variables of the HBM 
of the SHANSEP setting. 

Variable Prior 
Type Parameters 

 Normal  
 

 Half normal  
 

 Half normal  
 

 Half normal  
 

 LKJ  

 Truncated 
normal 

 
 

 

 Half normal  
 

 Inverse gamma  
 

 
Fig. 3 presents the regression lines and KDE posterior 

plots for each of the pooled, unpooled and partially pooled 
models. The pooled model shows low uncertainty in the 
regression coefficients and greater values of the error 
standard deviation. In other words, the pooled model leads 
to a greater extent of aleatory uncertainty. On the other 
hand, the unpooled model is ill-behaved, as evidenced by 
the great spread of the SHANSEP parameter distributions 
and unstructured behaviour of the regression lines. This 
stems from the nature of data available per site and 
manifests as combinations of the regression coefficients 
that span a wide value ranges being able to describe the 
data sufficiently well. Examples of the data characteristics 

that lead to the forementioned behaviour is the lack of over-
consolidated samples in a site dataset, which expectedly 
leads to no information for the regression slope, or OCR 
values that are confined in narrow ranges. Lastly, the HBM 
is flexible enough to sufficiently reduce epistemic 
uncertainty and provide a satisfactory fit per site. 
Additionally, the hyperparameters impact the prior of the 
site parameters compel the regression coefficients to 
follow a global trend. This leads to well behaved posteriors 
that are concentrated in explicit neighbourhoods of the S-
m plane, even with data of unfavourable nature. 

Tab. 4 presents the metric scores of the pooled, 
unpooled and partially pooled Bayesian models. The 
unpooled model scores significantly better RMSE values 
in the training dataset than in the testing dataset, a 
behaviour that usually implies overfitting. On the other 
hand, both RMSE values are consistent and sufficiently 
low for the HBM (0.06 for the training dataset and 0.07 for 
the testing dataset). Also, the HBM achieves a greater 
loglikelihood score in the testing dataset than the unpooled 
model, even though the opposite results are met in the 
training dataset. This suggests that the stronger structure of 
the partially pooled model leads to better predictions than 
the unpooled model. Due to its rigidity, the pooled model 
lacks accuracy and exhibits low predictive power. 

Table 4. Log-likelihood score and expected RMSE per model on 
the train and test datasets for the SHANSEP regression model. 

Model 

Log-likelihood [-] 
on the: 

RMSE [kPa] 
on: 

Train 
dataset 

Test 
dataset 

Train 
dataset 

Test 
dataset 

Pooled -0.51 -0.60 0.17 0.19 
Unpooled 0.25 -0.06 0.07 0.20 
Partially 
pooled 0.20 0.05 0.06 0.07 

 
Figure 3. Posterior regression model fits for the SHANSEP model (sites indicated by colour) and KDE plots of the posterior samples 
for the pooled, unpooled and partially pooled models (only 5 sites displayed for clarity). 
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4. Impact of HBM in a geotechnical application 
So far, the benefits of adopting HBM in deriving 

geotechnical parameters have been elaborated by analysing 
the structure of the statistical models and by comparing the 
resulting posteriors. This section aims to further investigate 
the advantages of employing HBM by assessing its impact 
on the failure probability of a geotechnical structure. 

Specifically, the posteriors derived in the previous 
section (Fig. 2 and Fig. 3) are utilized in the failure 
probability assessment of the slope stability of an 
embankment. An artificial example is set up, representing 
a situation that is commonly met in practice: assessing the 
slope stability failure probability of an embankment. An 
existing sand embankment is assumed to be founded on a 
soft clay formation, the strength of which is characterized 
by a CPT and OCR profile. The embankment height is 4m 
and the slope has been built at an inclination of 1:2. On top 
of the embankment, a permanent load of 20kN/m2 is 
placed. For simplicity, all model parameters, expect for the 
strength of the soft clay layer, are considered deterministic. 
The geotechnical model is built in D-Stability [9]. The 
failure probability of the slope is calculated using Monte 
Carlo Simulations (MCS). 

The analysis aims to compare the failure probability 
results as estimated using the standard practice parameter 
derivation approaches and HBM. Moreover, it does so in  
the two different scenarios. In the first one, it is assumed 
that the embankment lies in one of the sites of the dataset. 
This scenario mimics the situation of having both in-situ 
and laboratory soil investigation data in the site of the 
embankment and Bayesian inference can lead to site-
specific predictions. In this scenario, the standard approach 
predicts by performing OLS regression using only the data 
of the examined site. A site with strength values at the 
upper side of the strength range is selected. In the second 
scenario, the embankment lies at a new site where only in-
situ soil investigation data is available. This scenario 
explores the ability of the HBM to make predictions using 
the population-level posteriors, whereas the standard 
approach predicts by performing OLS regression on the 
pooled dataset. 

4.2 Probability of failure with the Nkt regression model 
inference 

Since the Nkt regression model connects the CPT cone 
resistance directly to the undrained shear strength, soil is 
modelled with a failure criterion of undrained shear 
strength independent from the stress level. All analyses for 
the Nkt setting are performed with the same CPT profile, 
generated by Random Field Generation, as indicated in 
[10]. The mean cone resistance is 0.6 MPa and the 
Coefficient of Variation is 10%. The random field is 
characterized by a vertical scale of fluctuation of θv=1.0m. 
In combination with the calculation of the vertical effective 
stress, the corrected cone resistance (qnet) is estimated and 
used to estimate the undrained shear strength of the soil. 

According to the standard approach, the  profile is 
generated by drawing samples from the relevant predictive 
distribution defined by the regression model. For the site-
specific analysis, the regression is fit on the dataset of the 
site, while for the new site analysis the regression is solved 
for the entire database. For the site-specific analysis, the 

posterior predictive distribution of the site is used to draw 
 samples. At this point, it is supposed that the  is 

horizontally homogenous in the proximity of the 
embankment. This assumption allows the sampling of each 
Su profile from the posterior predictive distribution with a 
single random  draw. When sampling for the new site 
analysis with the HBM, the sampling of the  value is 
preceded by the sampling of the site mean and standard 
deviation from the population distributions. 

 
Figure 4. MCS samples for the Nkt setting reliability analysis, 
drawn according to the standard approach and the HBM. 

The results are shown in Tab. 5. The standard method 
estimates a slope probability of failure (Pf) of 2% for the 
new site, while no failed realizations have been met in the 
site-specific analysis (likely implying a Pf < 1%). The 
HBM prediction leads to a Pf of 3% for the site-specific 
analysis, which is greater than that of the standard 
approach. A greater increase is found in the new site 
scenario, where the HBM calculates a Pf of 11%. In the Nkt 
setting, the regression coefficient posterior of the HBM in 
each scenario and the coefficient distribution derived by 
the OLS are centred in the same neighbourhood. However, 
in this scenario the HBM allows for greater uncertainty 
than the standard approach. Fig. 4 presents the histograms 

 samples drawn by the standard approach and the HBM. 
While the samples of the latter have a higher mean, they 
also exhibit greater variance. So, several HBM samples 
take values lower than the minimum of the standard 
approach samples. Since the latter shows no failed 
realizations, it is deduced that these samples generate the 
failures met in the MCS of the HBM. This greater variance 
of the HBM is attributed to its two-level structure of 
stochastic variables, as well as its probabilistic 
interpretation of the variables of the problem. 

4.3 Probability of failure with the SHANSEP regression 
model inference 

The second geotechnical setting employs the 
SHANSEP strength model and its HBM results in the slope 
failure probability analysis. The OCR profile is generated 
based on a uniform-over-depth POP value of 20 kPa. It 
should be noted that this geotechnical model is not 
equivalent to the previous one. No relationship has been 
accounted between the CPT cone resistance and the OCR 
value of the previous and current analysis respectively, so 
the soil material is not equally strong in the two settings. 

As in the previous scenario, the undrained shear 
strength comes from the posterior predictive distribution of 
the HBM. Fig. 5 compares the mean regression model and 
the 90% credible intervals of the standard approach and the 
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HBM for the site-specific predictions. Due to the effect of 
the hyperparameters, which leads to well-defined 
posteriors of the regression coefficients, the credible 
interval of the HBM behaves better than that of the 
standard approach. Essentially, the credible interval of the 
latter implies that the model has predictive power only in 
the range of the dataset. In contrast, the opposite is true for 
the HBM, which has significant accuracy even far from the 
dataset. This behaviour was also verified by the 
performance of the HBM in the test metrics (section 3.4). 
Because the OCR profile of the geotechnical model spans 
a range of values greater than the one of the dataset, the 
HBM leads to less uncertain Su samples that the standard 
approach. 

 
Figure 5. Mean regression model and 90% credible interval of 
the prediction accosting to the standard approach (top) and the 
HBM (bottom) for the site-specific prediction. 

 

Table 5. Probability of failure per approach (column) and 
scenario (row) using the HBM posteriors in geotechnical settings 
Nkt and SHANSEP. 

Approach / 
Scenario 

Probability of failure Pf [%] 
Nkt model SHANSEP model 

HBM Standard HBM Standard 
High 

strength site 3 < 1 2 46 

New site 11 2 10 18 
 

The probability of failure results are presented in Tab. 
5. Similarly, to the behaviour exhibited by the unpooled 
model, the site-specific OLS regression for the standard 
approach leads to ill-defined distributions for the 
regression coefficients, which lack predictive power. So, 
the standard approach leads to high Pf (46%). On the other 
hand, the HBM can reach well-defined posteriors and 
attain considerable predictive prowess. The result of 
adopting HBM in the site-specific analysis in the reduction 
of Pf to 2%. For the new site analysis, the standard 
approach fits a regression model on the entire dataset. 
Much like the pooled model, the OLS approach leads to 
low coefficient uncertainty but high regression error. The 

strength prediction of this approach leads to a probability 
of failure of 18%. Contrarily, the HBM presents greater 
hyperparameter uncertainty but attains better flexibility, 
which in turn leads to lower regression error. Eventually, 
the HBM achieves a Pf of 10%. The new site prediction of 
the HBM has greater failure probability than the existing 
site because it includes greater uncertainty, but also due to 
the selected existing site showing strength values greater 
than the database average. 

5. Conclusions 
In the context of this paper, HBM has been combined 

with Robust Linear Regression to derive geotechnical 
parameters for two typical parameter estimation problems 
met in geotechnical practice.  

Firstly, the HBM outcome posterior distributions, have 
been compared to the results of simpler Bayesian 
alternatives on a statistical level. Secondly, the impact of 
adopting HBM in parameter derivation is assessed on a 
geotechnical engineering level and compared with the 
standard practice approach. These comparisons are done 
for two geotechnical settings, the Nkt regression model and 
the SHANSEP model regression, linked to a slope stability 
analysis. 

In the first geotechnical setting (Nkt model), and when 
comparing the HBM outcome, the HBM performs equally 
well to the unpooled model. However, the latter suffers in 
practice, as it lacks the derivation of population-level 
statistics. In the second geotechnical setting (SHANSEP 
model), the HBM outperforms both the pooled and 
unpooled models. Specifically, the power of the HBM in 
inferring the population distributions urges the site-specific 
posteriors to follow a global trend and guides them to 
explicit neighbourhoods, leading to well-behaved models. 
On the other hand, the unpooled model lacks this structure 
and exhibits ill behaviour, due to irregularities of the 
SHANSEP data. Notably, two regression coefficients are 
inferred for the SHANSEP model, while only one is 
inferred for the Nkt model. This hints that the HBM starts 
outperforming the unpooled model when the regression 
model becomes more complex. All in all, HBM is proven 
to be flexible enough to follow data patterns, is inherently 
prepared to avoid specific caveats and holds practical 
value, as it allows inference and prediction on site and 
population levels. 

For the problem at hand, the HBM is structurally more 
uncertain than the unpooled and pooled models in an OLS 
regression scheme used in the standard approach. 
However, the HBM can lead to reduction of epistemic 
uncertainty and more accurate description of aleatory 
uncertainty, enough to compensate for its inherently 
greater uncertainty. This behaviour has been detected in the 
SHANSEP setting, which uses two regression coefficients 
and deals with more irregular data. In contrast, the HBM 
has led to greater uncertainty in the Nkt setting, which 
utilizes a simpler regression model. 

To the end of comparing the impact of HBM 
estimations in a geotechnical application, the posteriors 
drawn are used in a slope stability failure probability 
analysis for an artificial example of an existing 
embankment. The analysis is performed for a site that 
already exist in the CLAY10 database, as well as for a new 
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site, whose samples are drawn from the population-level 
posterior.  

In the Nkt setting, the HBM predictions have led to 
greater probabilities of failure than the standard approach. 
In this simple regression setting, the HBM does not 
outperform the OLS regression in flexibility and accuracy 
enough to compensate for its greater prediction 
uncertainty. On the other hand, adopting the HBM has been 
successful in drastically reducing the probability of failure 
for the SHANSEP setting, which entails a more complex 
regression model than the Nkt setting. In the Bayesian 
perspective, the HBM is still more credible than the OLS 
approach, as it provides a more thorough description of 
uncertainty, by modelling the parameters of the population 
level as stochastic variables. 

In conclusion, HBM has exhibited considerable 
advantages for inference of geotechnical parameters in the 
two examined settings. Firstly, the hierarchical structure 
provides a twofold benefit in terms of statistical modelling; 
it allows for flexible models that achieve high prediction 
accuracy and drives models into deriving well-defined 
posteriors. Secondly, HBM aids on a practical level, due to 
its ability to infer population distributions and identify 
trends. Moreover, HBM can be easily adjusted to follow 
standard methods and produce results compatible with 
standard practice. Lastly, it has been demonstrated that 
adopting the HBM can lead to both lower and greater 
probabilities of failure than the ones estimated by the 
standard approach, depending on the complexity of the 
regression setting that is used to predict the soil strength for 
the geotechnical failure probability analysis. 
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