
FINDING CORE-PERIPHERY STRUCTURE IN

DIRECTED NETWORKS

FINDING CORE-PERIPHERY STRUCTURE IN

DIRECTED NETWORKS

AN ALGORITHM FOR DETECTING MULTIPLE-GROUP
CORE-PERIPHERY STRUCTURE IN DIRECTED NETWORKS

Thesis

to obtain the degree of Master
at Delft University of Technology,

under the supervision of Prof.dr.ir. RE Kooij
to be defended on Tuesday, August 31, 2021 at 13:00

by

Hao HUANG

ACKNOWLEDGMENT

Throughout writing this thesis, I have received a great deal of support and assistance.

I would first like to thank my supervisor, Professor Rob Kooij. Your guidance was pro-
found in formulating the research questions and heading in the proper research direc-
tions. The insightful feedback during the writing pushed me to refine my thesis to a
higher quality that I alone could never achieve. The support and teaching I got from you
was invaluable.

I would like to acknowledge Mark van Staalduinen, Managing Director and Founder of
CFLW Cyber Strategies. This thesis originated from a cooperation of the TU Delft NAS
group and CFLW Cyber Strategies. I want to thank you for offering me this opportunity
and professional input on the dark web.

I would also like to thank my schoolmate at TU Delft, who assisted me with their expe-
rience on writing and university paperwork. But, more importantly, I want to thank you
and all my friends in the United Kindom, the United States, and China who accompa-
nied me in this pandemic. It is this very special time that brought us together. I wish to
meet you again one day.

v

ABSTRACT

The core-periphery structure is a mesoscale topological structure that refers to the pres-
ence of a dense core and a sparse periphery. The core-periphery structure has been dis-
covered in financial, biological, and technological networks. Various methods for detect-
ing core-periphery structure have been proposed, exploring different discrete or contin-
uous models and single or multiple core-periphery groups. A method that implements
multiple-group detection and edge-direction dependency to core-periphery detection is
yet to be researched.

This report proposes an algorithm to extract the core-periphery structure that satisfies
multiple-group and edge-direction dependency requirements. This algorithm features
a heuristic process and can process a large-scale network in an acceptable amount of
time. Details of the theory behind the proposed algorithm are presented. The algorithm
is tested on synthetic, random scale-free, and sampled dark web networks to verify the
basic and advanced feasibility. Finally, in-depth analysis with the knowledge of core-
periphery structure on a large-scale dark web network sample is presented.

vii

CONTENTS

1 Introduction 1

2 Core-Periphery Structure and Detection Algorithms 3
2.1 Core-periphery Structure . 3
2.2 Multiple-group Detection . 5
2.3 Core-Periphery Structure in Directed Graphs 6

3 Methods 7
3.1 Judging criteria, Group and Partition . 7
3.2 Algorithm Workflow. 12

3.2.1 Initializing and Pre-processing. 13
3.2.2 Label-switching Heuristic Process 13
3.2.3 Outcome of the Algorithm . 14
3.2.4 Extra Runs . 14

3.3 Performance Analysis and Implementation 14

4 Results 17
4.1 Synthetic Network . 17
4.2 Random Scale-free graphs . 18
4.3 Dark Web Dataset . 21

4.3.1 Dataset. 22
4.3.2 Core-Periphery Analysis . 23

5 Discussion 31

ix

1
INTRODUCTION

Graph theory enables us to mathematically study networks that play a role in various
aspects of our lives, including physical, biological, financial, information, and techno-
logical networks. When studying the networks, the graph can be described as a collec-
tion of nodes and edges. Edges link two nodes symmetrically in undirected graphs. But
in directed graphs, an edge is a one-way connection from the source node to the target
node. Usually, when the direction of edges is introduced into a graph, the complexity of
studying it increases considerably.

The core-periphery structure is a fundamental network pattern, typically referring to
the presence of a set of densely connected "core" nodes and a "periphery" that is well-
connected to the core but sparsely connected to other periphery nodes. Different from
communities, the core nodes are more reasonably well-connected to periphery nodes
in the network. The core-periphery structure is a mesoscopic feature that lies between
the microscopic (local node properties) and the macroscopic (global network proper-
ties) level.

The core-periphery structure is a relatively newly proposed concept. It was the first time
proposed in the 1970s but not standardized until 2000, and most studies on this topic
span from 2010 to now. The core-periphery structure still has great potential in appli-
cations. Part of the goal of this project is to experiment with the knowledge of core-
periphery structure on real-life networks and see how it can help improve on usual com-
munity detection methods.

Many methods for detecting core-periphery structures were developed. The detection
and presentation of core-periphery structures vary from different methods. The pri-
mary distinction is between discrete and continuous models, which refers to how nodes
are determined to belong to the core according to a discrete value or continuous score.
Another newly developed idea is multiple-group core-periphery detection. It is ben-
eficial to regard the network as a collection of multiple core-periphery pairs because it
presents a global core-periphery structure and regional patterns, thus revealing more de-

1

1

2 1. INTRODUCTION

tailed information of the network’s grouped communities and allowing the study of them
separately. This report dedicates the proposed algorithm to detecting discrete-model
multiple-group core-periphery structure using an automated partitioning method.

The mass majority of methods for detecting core-periphery structures are developed for
undirected networks. Although many of them can be applied to directed networks, usu-
ally, they do not provide an edge-direction-dependent definition but rather disregard the
edge direction. When it comes to directed graphs, there is no well-established common
practice for core-periphery structure detecting. In this report, the primary goal, and at
the same time, the biggest challenge, is to make the proposed algorithm edge-direction
dependent while maintaining the multiple-group detecting feature as mentioned earlier.

This study is an extended project of my previous work. In cooperation with the TU
Delft NAS group, CFLW Cyber Strategies1 provided a dark web dataset for analysis. The
dark web has several unique and challenging topological properties. The proposed algo-
rithm will take those properties into consideration and provide analysis from the core-
periphery perspective. Further applications with the knowledge of core-periphery struc-
tures are also explored.

The rest of the report is organized as follows: Chapter 2 explains the principle of core-
periphery structure and presents precedent algorithms that utilize different methods
and parameters to detect the structure. Chapter 3 describes the design of the algorithm
in detail of theory and implementation. Chapter 4 reports the result from analysis con-
ducted on various graphs. Finally, chapter 5 concludes the finding and achievements
and discusses unresolved questions.

1https://cflw.com/

2
CORE-PERIPHERY STRUCTURE

AND DETECTION ALGORITHMS

This chapter explains the fundamental principle of core-periphery structure. Two of the
alternative methods for detecting core-periphery structures, which this proposed algo-
rithm has taken the example of, are highlighted. One is the multiple-group detecting
algorithm developed by Kojaku and Masuda [1]. The other one is the method for detect-
ing core-periphery structures in directed graphs by Andrew Elliott et al. [2].

2.1. CORE-PERIPHERY STRUCTURE
Core-periphery structure (also denoted by C-P in this report for the sake of brevity) is
a concept that has received attention since the late 1970s. Various notions of the core-
periphery structure are proposed in different fields until in 2000, Borgatti and Everett
proposed the most widely accepted definition of core-periphery structure in weighted,
undirected graphs for both discrete and continuous models [3]. In their definition, a bi-
modular block model includes a fully connected set of core nodes and a periphery with
nodes that are only fully connected to the core node-set. This block model is called an
ideal core-periphery structure. The adjacency matrix shows the relationship between
core and periphery more clearly. The periphery nodes radiate from the densely con-
nected core. The idealized C-P structure and an approximate one are shown in Figure
2.1 In real-world networks, the ideal structure’s requirement is extremely difficult to be
satisfied. Usually, a more relaxed criterion of core-periphery structure is applied. The
core nodes are densely connected, and the periphery nodes are well connected to the
core while loosely connected to each other.

In Borgatti and Everett’s algorithm (the BE algorithm for short), to detect a core-periphery
pair in a network with N nodes, they defined:

Q =
N∑

i=1

N∑
j=1

Ai j ci c j (2.1)

3

2

4 2. CORE-PERIPHERY STRUCTURE AND DETECTION ALGORITHMS

Figure 2.1: Two simple core-periphery structure:
(a) Idealized structure (b) approximate structure

where Ai j is the element in the adjacency matrix A of the given network, i.e. Ai j = 1
if node i and j are adjacent by an edge and Ai j = 0 otherwise. c is a vector of length
equal to the number of nodes in the network containing the C-P partition information.
The entries in c is in {0,1}. The n-th entry of c represents the partition of the n-th node,
i.e. the cn entry equals to 0 if the node is a periphery node and equals to 1 if it is a core
node. The goal is to maximize the value of quality Q by trying different partitions c. The
motivation behind Eq. 2.1 is that the quality of C-P structure Q only increases when an
edge is connecting core nodes. Q is also featured in the proposed algorithm. The typical
methods used are approximate procedures such as heuristics, genetic algorithms and
simulated annealing.

Borgatti and Everett’s definition is a descriptive definition of core-periphery structure,
a strictly mathematical definition has not been well proposed yet. Hereafter, various
notions and detection algorithms of the core-periphery structure have been developed.
Della Rossa et al. [4] proposed the method of profiling the core-periphery structure by
specifying the behavior of a random walker. This work adopted a continuous score to
measure a node’s importance in the core-periphery structure. Yang and Leskovec [5]
discovered that overlapping communities in community structures can construct the
core-periphery structure. Xiao Zhang et al. [6] identified core-periphery structure by
fitting a stochastic block model to empirical network data using a maximum-likelihood
method. Different notations of core-periphery structures are reviewed in [7].

2.2. MULTIPLE-GROUP DETECTION

2

5

2.2. MULTIPLE-GROUP DETECTION
Kojaku and Masuda [8] argued that the one-block core-periphery model, which the BE
algorithm and many other algorithms assume, is merely accounted for by heterogeneous
degree distribution. There is a strong tendency for high-degree and low-degree nodes to
be core and peripheral nodes, respectively. They proposed the third partition of resid-
ual nodes that do not belong to any significant core-periphery pair. On top of that,
they developed a multiple-group detection algorithm (the KMER algorithm) [1] that fo-
cuses only on the idealized core-periphery structure, assuming the null-model of the
given network is an Erdős–Rényi graph. In their study, the periphery is configured to be
sparsely connected, which is assumed to be more realistic for real-world networks.

The criteria of judging the quality of detected core-periphery groups is an extension of
Eq. 2.1 to the multiple-group scenario. To define a multiple-group C-P structure, the
algorithm needs to know whether a node belongs to the core or periphery and to which
group the node belongs. A group is defined as a subset of nodes in the network that ex-
hibit a stronger C-P structure than other nodes added. Multiple non-overlapping subsets
co-exist in the network and form the best approximation of an idealized multiple-group
C-P structure. On top of C-P partition information stored in c, another vector g is needed
for storing the group partition information. Let G be the number of groups, g is a vector
of length N in which the entries are from {0,1,2, ...,G}. The element gn indicates to which
group the n-th node belongs. The generalization of Borgatti and Everett’s definition of
C-P structure for multiple-group detection is illustrated in Eq. 2.2 and Eq. 2.3.

Q =
N∑

i=1

N∑
j=1

Ai j Bi j (2.2)

Bi j (G ,C) =
{
δgi ,g j (ci = 1 or c j = 1 and i 6= j)

0 (otherwise)
(2.3)

where δ is Kronecker delta:

δ(gi , g j) =
{

1 if gi = g j

0 if gi 6= g j

The adjacency matrix representation of multiple-group C-P structure is shown in Figure
2.2. The calculation using Eq. 2.1 can be interpreted as rearranging the given network’s
adjacency matrix and overlapping it on the idealized adjacency matrix. When an edge is
present in both matrices, the quality of the detected C-P structure will increase. On the
other hand, if an edge is absent in either matrix, it will not change the quality value.

The algorithm utilizes a label-switching heuristic process to reach the maximum value of
quality. This process is repeated multiple times until the algorithm maximizes the qual-
ity value Q. During each iteration, nodes are processed in a newly generated random
order. For a node to do "label-switching", several tentative increment values are calcu-
lated, referring to the resulting value of switching this node’s C-P partition and switching

2

6 2. CORE-PERIPHERY STRUCTURE AND DETECTION ALGORITHMS

Figure 2.2: Approximate and idealized adjacency matrix
The gray level indicates the density of edges.

it into its neighboring group. Only the operation that yields the highest tentative incre-
ment for the quality Q will be adopted. The proposed algorithm will utilize a similar
process accompanied by extra data processing to improve performance.

2.3. CORE-PERIPHERY STRUCTURE IN DIRECTED GRAPHS
Many methods for detecting core-periphery structures were developed for undirected
networks. Although most of these algorithms can be generalized to directed graphs, they
do not also generalize the definition of the discrete C-P structure as edge-direction de-
pendent. Most algorithms either disregard the edge direction or consider the edge in
each direction as an independent observation.

Andrew Elliott et al. [2] proposed a generalization of the block model, introduced by
Borgatti and Everett, to directed networks, in which the definition of both core and pe-
riphery are edge-direction dependent. This model is implemented in the proposed algo-
rithm in cooperation with multiple-group detection. Section 3.1 will explain the details
of the block model in the work of Andrew Elliott et al..

3
METHODS

In this chapter, the theory and implementation of the proposed algorithm will be dis-
cussed. The main goal of the algorithm is to accomplish two significant features: 1.
Multiple-group Detection and 2. Edge-direction Dependency. The idea of combining
them may seem straightforward, but it is not a trivial task. This goal is achieved through
series of data processing, featuring a crucial automated process to maximize the quality
of the C-P structure. A criterion extended from the discrete core-periphery structure’s
original definition is introduced to detect C-P structures and differentiate groups. Ev-
ery implementation and modification to the mentioned methods will be explained in a
temporal order following the data flow in the algorithm.

3.1. JUDGING CRITERIA, GROUP AND PARTITION
Before diving into the data processing, one should understand what notions are used
throughout the algorithm.

In undirected networks, the adjacency matrix is symmetric as the edges have no spec-
ified direction. An idealized core-periphery structure can be represented in the way
shown in Figure 3.1. The idealized structure features a core with full connections among
each core node and a periphery that only connects to the core nodes. There should be no
connection between any periphery nodes. To detect a C-P structure is to find out the C-P
partitioning that resembles the idealized structure as much as possible. In comparison,
directed networks have more complicated edge relations. Using the same representa-

Figure 3.1: Undireted graph representation

7

3

8 3. METHODS

Figure 3.2: Directed graph representation

Figure 3.3: Idealized directed C-P structure

tion means disregarding the in and out edge difference, thus potentially erasing some
node properties. For example, some major domains in the dark web may have huge dif-
ferences in the number of in- and out- links. A wiki or directory site can have thousands
of outgoing links but only a dozen incoming links. On the other hand, a large market
usually has many links pointed towards it but refers to very few other sites. Disregarding
the difference between in- and out -degrees will eliminate the possibility of distinguish-
ing a node from other nodes with a similar size but different functions. In a directed
graph, it is wise to separate core and periphery sets into a partition that consists of four
sets: Core-in, Core-out, Periphery-in, Periphery-out. These four sets will be denoted
by C-in, C-out, P-in,P-out in this report. Figure 3.3 shows an idealized C-P structure in
a directed network. A similar network is tested with the algorithm and presented in Sec-
tion 4.1.

In the proposed algorithm, the information of detected multiple-group C-P pairs is stored
in two arrays: Group and Partition. For a network with n nodes, the length of both arrays
is n. They store the information about which group and which C-P partition a node is
categorized into, following its index starting from 0. The entries in Partition are from
{1,2,3,4} representing C-in, C-out, P-in ,and P-out respectively. The entries in Group

3.1. JUDGING CRITERIA, GROUP AND PARTITION

3

9

Figure 3.4: Directed graph representation with punishing values

ranges from 0 to the number of nodes according to the configuration. The number of
groups can be specified or self-generated through the process. Usually, in the latter case,
the indices of groups are its first member’s index. In this report, by default, the number
of groups is equal to the number of nodes after initialization, which means every group
is put into a group with itself as the only member. After the algorithm is complete, the
number of groups will be greatly decreased.

With a new partitioning scheme, the idealized adjacency matrix should be modified as
shown in Figure 3.2. Note that what is depicted is now a directed network’s adjacency
matrix. When reading this matrix, it is important to remember that row-labeled nodes
represent the source and column-labeled nodes represent the target. This model pre-
serves the direction difference and can be used to calculate the quality value of detected
groups of core-periphery structure similarly as Eq. 2.2. As a C-in node, it is expected to
mostly receive links from the other two "out" partitions and only actively reach out to
other C-in nodes. Therefore only the C-in column equals 1 in the C-in row. A C-outnode
is expected to link towards all partitions except P-out. Therefore, a C-outrow link always
increases the quality unless it connects to a P-out node. For P-in nodes, they are not
supposed to establish a link towards any other nodes. Therefore, no increment should
be gained if any link comes out from P-in are found. Finally, for P-out nodes, they should
not link to other periphery nodes according to the definition of core-periphery structure.
Therefore only links towards C-in will be counted towards the quality value.

This matrix directly uses the adopted quality value Q as in the BE algorithm and the
KMER algorithm. The scoring in the matrix proved to be weak and led to undesirable
results because the initialization is random and difficult to have a proper distribution of
nodes (in groups and partitions) to kick off the process.

To resolve this problem, an enhanced scoring matrix is implemented. Now the presence
of an unexpected edge will punish the quality value as presented in Figure 3.4. The pun-
ishing strength for edges connecting any C-P partitions can be configured to adjust the
result. In the final version of the algorithm, the punishing value is universally set to -0.5.
The choice of -0.5 is the result of a series of testing on the punishing values. All values in
[−0.9,−0.1] proved to be feasible while the values around -0.5 results in more core nodes

3

10 3. METHODS

detected than values near -0.1. A punishing value near -0.9 on the other hand makes the
detection result unstable. The difference between runs using punishing value -0.9 varies
greatly in both C-P and group partitions. The universal punishing value of -1, as sug-
gested by Andrew Elliott et al. in Ref. [2] returned too many core nodes. The comparison
among different punishing values are illustrated in Figure 3.6. This settings of values in
Figure 3.4 will be the default settings and applied during the testing in Chapter 4. Figure
3.5 shows the legend used in Figure 3.6, 3.7 and some other figures in Chapter 4. These
networks are 200-node scale-free networks generated by networkX, using the same set-
tings as explained in Section 4.2, and visualized with Cytoscape [9].

Figure 3.5: Network Visualization Legend

Figure 3.6: Different punishing values and results
(a)punishing by -0.1 (b) punishing by -0.4 (c) punishing by -1

For the multiple-group detection part, in the early stage of testing, an edge is disregarded
when it is found connecting two different groups, and a new array group_members is
generated for every group. Every group’s members are registered in this array. The algo-
rithm needs extra resources to store the information of each group, making the computa-

3.1. JUDGING CRITERIA, GROUP AND PARTITION

3

11

tion costly and coding difficult. The proposed algorithm introduced another punishing
value for inter-group edges. The proposed algorithm now considers all groups as a whole
and deducts the quality value when an edge connects two different groups regardless of
the C-P partition of the two nodes this link is connecting. This change is made assuming
that a group of core-periphery structures should be internally well connected but more
loosely connected to external groups. The default setting of the inter-group punishing
value is -0.2. This choice is made after testing. As the inter-group punishing value in-
creases, the algorithm becomes unstable detects more groups and core nodes, as shown
in Figure 3.7.

Figure 3.7: Different inter-group punishing values and results
(a)inter-group edges punished by -0.2 (a)inter-group punished by -0.5

Nodes are colored by groups

In this project, the quality value Q is normalized by P , the maximum number of possible
edges in the idealized C-P structure. Essentially in Eq. 2.1 and Eq. 2.2, calculating the
quality value Q is counting the edges present in both the given network’s approximate
adjacency matrix and the corresponding idealized adjacency matrix. Gr oup and Parti-
tion determine the number of edges in both matrices. In directed networks, P can be
calculated by:

P = N1 × (N1 −1)+N2 × (N2 −1+N1 +N3)+N4 ×N1 (3.1)

where N1, N2, N3, and N4 refer to the number of nodes in the current tentative C-P par-
tition. N1 × (N1 −1) represents the number of links within C − i n nodes; N2 × (N2 −1+

3

12 3. METHODS

N1 +N3) represents the number of outgoing links from C −out to other three node-sets;
N4 ×N1 represents the number of outgoing links from P −out to C − i n. The normal-
ized quality value Q = Q

P ranges from -1 to 1. Before the algorithm run completes, it is
possible for Q to decrease to a negative value because of the punishing matrix.

3.2. ALGORITHM WORKFLOW
In this section, the algorithm workflow will be presented in the same order as the data
flow through the processes. The coding is done in Python. The graph is generated with
a python package networkX for processing complex networks [10]. Most calculation and
data manipulations in Python are done with Numpy [11] with the assistance of a JIT
compiler Numba [12]. The pseudocode of the complete algorithm is shown in Algorithm
1. The variable G is the network object generated from the dataset by networkX, and
adjS is a 1-D array of a compressed edge list. Note that the variable adjS is an edge
list but used the starting letters of "adjacency". This variable name is used because an
adjacency matrix of the given network is originally used but replaced by an edge list to
improve calculation speed in the final version. This change is explained in Section 3.3

Algorithm 1: Algorithm for finding multiple-group core-periphery structure

1 findCP (G , ad j S);
Input : networkX graph G , the compressed edge list matrix adjS
Output: Group, Partition

2 detect trivial nodes, determine trivial nodes’ C-P partition
3 initialize Group and Partition
4 Quality = negative infinity;
5 while True do
6 increment = 0;
7 shuffle list of nodes Node_Or der ;
8 for i in Node_Or der do
9 compute tentative values for changing Gr oupi and Par ti t i oni

10 get highest tentative quality newQ;
11 if newQ > Quality then
12 adapt the change that leads to newQ
13 increment = newQ - Quality
14 Quality = newQ
15 end
16 end
17 if increment == 0 then
18 break;
19 end
20 end
21 return Group, Partition

3.2. ALGORITHM WORKFLOW

3

13

3.2.1. INITIALIZING AND PRE-PROCESSING
After a network is fed into the algorithm, the information will be reformed to maximize
the algorithm’s speed and simplify the calculation. Other than general information that
can be retrieved later by passing the graph G generated by networkX, the network is
stored as a compressed edge list. This matrix will be inquired repetitively in a later pro-
cedure.

All nodes with only one edge connected are regarded as trivial nodes, either in or out. All
trivial nodes will be exempted from the label-switching heuristic process (explained in
Section 3.2.2), put into P-in or P-out partition according to its in- or out- degrees, and
remain unchanged till the end. This procedure will rule out a considerable portion of
nodes in real-life networks and save the time and space required for the algorithm to
complete.

All nodes except for trivial nodes will be assigned a random partition from four possi-
bilities. If not specified, they will be assigned to a group indexed by its node index. On
initialization, the graph will have several groups equal to the number of nodes.

3.2.2. LABEL-SWITCHING HEURISTIC PROCESS
The information of Group and Partition, stored in two arrays, and the edge list are passed
into this phase. Gr oupi and Par ti t i oni stores the i-th node’s group and C-P partition
information. Inspired by KMER, the algorithm will calculate multiple tentative values for
a node and adopt the operation on either Gr oupi or Par ti t i oni that yields the highest
increment. This process is called Label-switching Heuristics.
The new random order for processing nodes will be drawn at the start of the label-
switching heuristic process. In each iteration, every node except the trivial nodes will
be scanned in the newly generated order. The randomly generated order can cause dif-
ferences among multiple runs on the same dataset. However, the randomness of this
process is also a good feature of the algorithm. If a significant core-periphery structure
is present in the network, results from different runs should be structurally identical.

Two sets of possible operations are considered: 1. Switching the node to the other three
node-sets, which it is currently not in, and 2. Switching the node into its neighboring
groups that it is currently not in. When calculating a tentative value, the edge list will be
inquired. All edges associated with these nodes will be considered and contribute to the
tentative increment based on the scoring matrix. If more than one positive increment is
returned, only the change that yields the highest increment will be applied into Group or
Partition.

This process will be repeated until no positive tentative increment is returned for any
processed node in an iteration. Upon finishing the run, the two arrays Group and Parti-
tion will be storing all changes accumulated in this run and be returned.

3

14 3. METHODS

3.2.3. OUTCOME OF THE ALGORITHM
The outcome of a completed algorithm run is two arrays Group and Partition, and en-
tries are the nodes’ group and C-P partition in the order of their indices. They store the
information about the group and the C-P partition a node belongs to. Group and Parti-
tion will participate in extra runs if required.

3.2.4. EXTRA RUNS
The result of a completed run is manually checked. If the results of group partitioning
are not optimal, i.e., cannot provide clear aid for efficient analysis, extra runs of the al-
gorithm can be applied to a subgraph that only contains core nodes. In this section and
later part of the report, layer-n refers to the result after the n-th run of the algorithm. For
example, layer-2 is the second run of the algorithm, i.e., the first "extra run".

Upon finishing the extra run, all nodes in the same group in the previous layer with a
node in the current layer will be grouped into the current layer’s group. When a desirable
result is achieved, the algorithm casts every high layer Group result to its previous layer
indices until it reaches its layer-1 indices.

3.3. PERFORMANCE ANALYSIS AND IMPLEMENTATION
In the final version, the number of calculations performed is based on the network’s
number of edges and nodes. For an iteration to complete, the algorithm will scan through
n nodes and calculate 3+k tentative values where k is the number of neighboring groups
of the scanned node. Each calculation requires the algorithm to check both nodes’ core/pe-
riphery partition connected by all m edges in the network. The time complexity of this
step is:

O (mn)

Originally, the calculations are performed by scanning through the adjacency matrix and
check if the edge is present. The quality score is adjusted according to the two nodes it
is connecting. One of the main goals is to apply the algorithm on a large-scale dataset,
which is presented in Section 4.3.2. A "compressed edge list" is implemented in the form
of a 1-D array to boost processing speed. The elements in this array are constructed by:
element = (source index) × n + (target index) where n is the total number of nodes . Both
the index of source and the index of the target are arranged in ascending order. With this
format of compressed edge list, the algorithm can save the space that stored zeros in the
normal adjacency matrix and skip all unnecessary queries. This single data manipula-
tion improved the speed on a 10000 edge dataset by more than 100 times.

Various tools are implemented to boost the performance further. Python is known for
slow scientific calculation compared to C++. A JIT compiler for Python, Numba is used
to translate Python code to faster C-like machine code. Multi-processing is implemented
at the node scanning phase. The algorithm takes all neighboring groups and computes
tentative increments for them simultaneously.

With the assistance of Numba, the performance of the algorithm is improved by more

3.3. PERFORMANCE ANALYSIS AND IMPLEMENTATION

3

15

than 100 times. Furthermore, with a 10000-edge, 7789-node network as the benchmark,
using Numba reduced the time for completing the run from around 2000 seconds to
under 30 seconds1.

1Computer specification: Intel i7-9700K @ 3.60GHz, 16GB RAM @ 3200MHz, RTX2070 Super

4
RESULTS

This section showcases the algorithm’s results on synthetic networks with planted C-P
structure, randomly generated networks, and two real-life networks sampled from the
dark web to prove the algorithm’s feasibility on different types of networks. Before the
test results, the result from a synthetic directed network is provided to verify the algo-
rithm’s functionality. The topological properties of these graphs will be presented and
analyzed with the assistance of core-periphery structural information. Node-specific
observations will also be made on the dark web datasets. Unless specified, the results
presented are generated with the default settings shown in Figure 4.1 mentioned in the
previous chapter. The indices of nodes are assigned by their order of appearance in the
dataset. Its first member’s index assigns the indices of groups.

Figure 4.1: Default settings of the punishing matrix

4.1. SYNTHETIC NETWORK
Before presenting the test result on more complex and large-scale networks, the algo-
rithm is verified by a directed network with planted C-P structure. The graph is shown
in Figure 4.2. The five nodes in the center are planted core nodes with much higher in-
or out- degrees compared to nodes in the periphery. The core nodes are also fully con-

17

4

18 4. RESULTS

nected, while the periphery nodes only connect one or two core nodes. Only very few
edges are connecting two periphery nodes. The figure shows that even with some edges
that differ from the idealized C-P structure, all nodes are categorized correctly into both
group and C-P partition as intended.

Figure 4.2: A directed network with planted C-P structure
(a) Nodes colored by group (b) Nodes colored by C-P partition

4.2. RANDOM SCALE-FREE GRAPHS
The algorithm processes three random directed scale-free networks with increasing size
to verify the basic functionalities. The probability for adding a new node connected to
an existing node chosen randomly according to the in-degree distribution, adding an
edge between two existing nodes (one chosen according to the in-degree distribution
and the other chosen randomly according to the out-degree distribution), and adding a
new node connected to an existing node chosen randomly according to the out-degree
distribution, are 0.2, 0.6, 0.2 correspondingly. The networks are generated by networkX
using parameters: al pha = 0.2,bet a = 0.6, g amma = 0.2, seed = 123. Self-loops and
multi-edges are removed before being fed into the algorithm. The number of nodes in
each network is 200, 400, and 1800 respectively. The visualization tool used is Cytoscape
[9], the layout is the Prefuse Force Directed layout. The network visualization legend is
shown in Figure 3.5. The periphery nodes also have a smaller size to avoid visual clutter.
For conciseness, visualizations in this section use colored nodes by their group’s index
and modified nodes’ shapes according to its C-P partition as shown in Figure 3.5. This
node-shape mapping persists through every extra run layer. In this section, a new par-
tition is introduced as residual nodes. The residual nodes are the product of extra runs.
They are periphery nodes from the last layer but do not fit in any merged groups in the
new layer. Such nodes can be determined as not participating in any significant C-P
structure and denoted as residual nodes. In the visualization, residual nodes are colored
dark and have a V-shape marker.

4.2. RANDOM SCALE-FREE GRAPHS

4

19

200-NODE NETWORK

Figure 4.3: 200-node scale-free network

Figure 4.3 shows the result of core-periphery detection. After removing self-loops and
multi-edges, the average out-degree of this graph is 1.78. The power-law exponent for
out-degree distribution is αout = 2.37 and for in-degree distribution αi n = 2.50. Among
200 nodes, 22 nodes(8 C − i n and 14 C −out) are categorized as core nodes. There are
two groups containing 2 C − out nodes and one group containing 2 C − i n nodes. All
other core nodes are partitioned along with their attached periphery nodes. The core
has much stronger connections than the periphery.

400-NODE NETWORK
The results from the 400-Node scale-free network is shown in Figure 4.4. After remov-
ing self-loops and multi-edges, the average out-degree of this graph is 1.82. The power-
law exponent for out-degree distribution is αout = 2.47 and for in-degree distribution
αi n = 2.57. As the number of nodes doubles, the number of core nodes increased from
15 to 37. The nodes are colored by their group index with a continuous mapping. Groups

4

20 4. RESULTS

Figure 4.4: 400-node scale-free network

with similar color are likely to be merged in extra runs.

Figure 4.5 shows the result from layer-2. There are 7 C − i n nodes but 0 C −out nodes.
All 7 C − i n nodes are in the same group, forming a strong core-periphery structure with
their inherited periphery nodes from last layer.

1800-NODE NETWORK
The algorithm detected 22 C-in and 15 C − out nodes. After removing self-loops and
multi-edges, the average out-degree of this graph is 1.98. The power-law exponent for
out-degree distribution is αout = 2.35 and for in-degree distribution αi n = 2.62. With a
much bigger jump in the number of nodes, the number of core nodes did not grow pro-
portionally but only up to 104 (62 C − i n and 42 C −out). At this stage, the number of
groups and core nodes are already difficult for efficient analysis. Extra runs should be ap-
plied to improve the crude visualization. The result from layer-2, as shown in Figure 4.6
greatly reduced the number of core nodes to 16. All 16 core nodes are in the same group.
It proved that this network has a very dense core. Layer-3, shown in Figure 4.7 further re-

4.3. DARK WEB DATASET

4

21

Figure 4.5: 400-node scale-free network on layer-2
Nodes colored by groups

duced the number of core nodes to 3, highlighting the three most important core nodes
in the network. Most periphery nodes from layer-1 and layer-2 are carried into layer-3 as
non-residual nodes. They are colored yellow, the same as the biggest group.

REMARKS
The algorithm proves to work as intended. Nodes are correctly categorized according
to their in/out-degree and relation to other nodes. However, although the connection
among core nodes is not weak, the algorithm still struggles to merge them. This is most
likely caused by the default settings’ assumption that groups should be separable from
each other, represented by weak connections between groups regardless of nodes’ C/P
partition. A workaround is to use extra runs on higher layer subgraphs. This method is
demonstrated in Section 4.3.2.

4.3. DARK WEB DATASET
In-depth analysis is conducted on the dataset provided by CFLW Cyber Strategies. This
section will first introduce the dataset format and general information about the sam-

4

22 4. RESULTS

Figure 4.6: 1800-node scale-free network on layer-2
Nodes colored by groups

pled network, then presents the analysis done on the dataset with the knowledge of
multiple-group core-periphery structure.

Because of the limit of Cytoscape, it was not easy to smoothly process the graph with
such an enormous size. In this section, the visualization and analysis are done with the
assistance of Gephi. Therefore some features are missing. Expressly, the nodes’ shape is
limited to be circular.

4.3.1. DATASET
The dataset is a collection of 100,001 randomly sampled relations in the dark web. Each
relation is a directed link from Domain #1 to Domain #2. For each relation, both domain’s
information is presented as follows: domain index, domain address, domain title, and
timestamp. In this report, the temporal properties are not studied. The first five relations
are shown in Table 4.1. The network is connected and contains 49294 unique domains
in the dark web as nodes and 100,001 directed relations as edges. The average degree
(both in- and out- included) is 2.029. The network diameter is 22, and the average path

4.3. DARK WEB DATASET

4

23

Figure 4.7: 1800-node scale-free network on layer-3
Nodes colored by groups

length is 9.39, which is double the average path length of the real dark web [13], [14]. The
sampled relations are more spread to ensure randomness than a real-word dark web, i.e.,
the difference between nodes with the highest degrees is smaller. For example, node 22
has the highest degree of 946. Following 22, node 46 and 278 each has 906 and 811 links.
Compared to another dark web dataset that values the width of sampling, which crawled
10000 links in total on domains exhaustively, a dominant node has 5500 edges while the
second biggest one only has 650.

4.3.2. CORE-PERIPHERY ANALYSIS
The run-time for detecting the multiple-group core-periphery structure in this network
is around 60 minutes (3816 seconds). In comparison, to process 10% of the network
(10000 edges, 11028 nodes), the algorithm only spent 31 seconds.

Among 49294 nodes, only 0.73% are categorized as core nodes (0.41% of Core-in and
0.32% Core-out). 13.33% of the nodes are Periphery-out. An enormous portion of 85.94%
nodes is Periphery-in. The type of domains is very distinguishable by checking its C/P

4

24 4. RESULTS

ID Domain # 1 Domain Address # 1 Domain title # 1 ID Domain # 2 Domain Address # 2 Domain title # 2
151183 http://t63y6g....onion Onion Links 920 http://4yjes6....onion login | Drugmarket
298607 http://c3b24j....onion Darknet Tor - Wiki Tor 19279 http://vrm4fr....onion GlobaLeaks
865087 http://urcjjn....onion Scam List of Tor 54435 http://galaxy....onion CC Galaxy is A...
336225 http://kyoyvb. . . .onion Scam List of Tor 59417 http://bitcar....onion BITCARDS - Home
336294 http://3bpfr2....onion Onion Link List... 41637 http://r26lia....onion The CC Buddies...

Table 4.1: First Five relations in the dataset

partition. C-in and P − i n nodes are usually market or service domains. C − out and
P −out nodes are usually wiki/directory link list sites. The first run detected 360 core

Figure 4.8: Core-periphery structure View colored by core/periphery partition

nodes and 7328 groups, with only 32 groups each having more than 0.5% percent of the
network’s population(from 1.76% to 2.21%). The largest group is #22, with node #22 it-
self, having the highest degree, in- and out- added up to 946, in this network. One prop-
erty of the dark web is that many large-degree nodes have most of their descendants only
connected to themselves. Secondly, the core nodes are mostly disconnected from each
other. In this network, big C −out nodes occupy the majority of links but rarely connect.
By definition, core nodes should strongly connect with other core nodes, while periphery
nodes should only connect to the cores. To make different groups more distinguishable,
the algorithm is configured to discourage links (punish inter-group links regardless of
C-P partition). It is difficult for the algorithm to partition multiple core nodes in a sin-
gle group through one run because of these two properties. Most of the formed groups

4.3. DARK WEB DATASET

4

25

Figure 4.9: Top 32 groups

consist of only one core node and its descendants in a large number. The desired result
should be multiple core nodes partitioned together in a large group. Looking at Figure
4.8, a few sets of core nodes located closely together in this layout are observable: (1): A
set of Core-in nodes on the top-left sector, each having a large number of trivial P −out
descendants. (2): A set of Core-out nodes on the top-right sector, each having a large
number of trivial P − i n descendants. Also, a large set of P − i n nodes, surrounded by
Core-out nodes, are connected to multiple Core-out nodes. (3): A set of Core-in nodes
on the bottom-right sector, sharing a large set of mixed-type periphery nodes.

A subgraph is extracted from the network by only selecting the core nodes, there are 360
such nodes, and 71 of them are isolated. Both the number of groups and the number
of core nodes are still too large for efficient analysis after only one algorithm run. To
improve the result, there are two options. One is by tuning the punishing matrix (de-
crease the punishing value of inter-group edges connecting core nodes) to encourage
core nodes to group together. However, this option is expected to have a slight effect be-
cause of the dominant number of trivial nodes and very sparse connections among core
nodes. The second option is to perform an extra run on the networks but only include
core nodes. From this small core-node-only network, a higher layer of core-periphery
structure can be extracted. Lesser core nodes will be categorized as periphery nodes in
additional runs and re-partitioned into a higher level C-P group along with all its pe-
riphery nodes. Additional runs can be performed multiple times until the core node-set

4

26 4. RESULTS

Figure 4.10: Several groups of core-periphery nodes

Figure 4.11: 11 largest groups after 4 extra runs

4.3. DARK WEB DATASET

4

27

is refined to a small size, highlighting only the most important core nodes. The algo-
rithm can accumulate a score through multiple runs each time a node remains in the
core node-set. Eventually, the most important core nodes will have the highest score.

After four extra runs, the algorithm successfully partitioned smaller groups together.
There are now 11 groups with more than 2% of the population (from 2.21% to 4.05%).
The former largest group #22 is now merged into group #38, the new largest group.
Five groups stood out: #38 (4.05%), #256 (3.85%), #752 (3.37%), #3758 (2.95%), and #212
(2.88%). Group #38 has fewer core nodes than others but has the core node #22 with the
largest degree 946. Node #38 is a C−out node titled "DeepLink Onion Directory". Group
#256 contains a large portion of node-set (3) mentioned above. These P − i n nodes are
related together by their mutual P − out neighbors, Wiki/Directory sites with very low
degrees in this sampled network. A few C −out nodes are also present. They are con-
nected to the C − i n cluster by three C −out hub nodes #205, #215, and #1063. All three
nodes are link list sites. There is always at least one hub node in each group. They are
node #415 "The Deep Searches" in group #256, node #974 "CB3ROB Tactical Data Ser-
vices - TOR Darknet site listing" in group #3758, and node #496 "DarkNet 2020 - Wiki
Links Tor" in group #212.

Only four nodes survived through 3 extra runs and remained in layer-4 as core nodes:
#256 (C − i n, group #256), #752 (C − i n, group #752), #2417 (C − i n, group #752), and
#212 (C−out , group #362). According to the information provided by the core-periphery
structure, #212 is the one with the most value to investigate. The egocentric network of
node #212 is shown in Figure 4.13. Node #212 is highlighted because it is the only C−out
that survived four rounds of filtering and stayed in the same core/periphery partition as
in layer 1. This egocentric network contains 15 core nodes from layer-1 (7 C − i n and 8
C −out) including the largest C −out node #22. Node #212 is titled "CB3ROB Tactical
Data Services - TOR Darknet site listing" which appears to be a darknet service directory
site. Node #212 connects to 7 different layer-4 groups including the 4 out of 5 biggest
groups, serving as the most important central hub.

4

28 4. RESULTS

Figure 4.12: Four major groups after 4 extra runs; Red:C-in Blue:C-out

4.3. DARK WEB DATASET

4

29

Figure 4.13: Egocentric network of node #212;
Left: Layer-4 group view Right: Layer-4 C/P view

5
DISCUSSION

DISCUSSION AND FUTURE WORK
The tests on different networks showed satisfying results, especially on the 100000 edges
dark web sample network. However, some flaws in my approach do exist. The core/pe-
riphery partitioning proves to be accurate with all service/market and link list sites cat-
egorized into C − i n and C − out , respectively. The in and out partitions enable us to
differentiate nodes’ function, which is an excellent addition to the core-periphery struc-
ture analysis. However, the group partitioning does not return desired results on its own.
Through only one run, one group almost always only includes one core node and its
trivial peripheries. The result can be enhanced by doing extra runs, but finding better
punishing values, especially for inter-group edges, is a more beneficial approach. Right
now, the algorithm uses a universal punishing value for all inter-group edges. A way to
improve this is to check if such edges connect core nodes. If so, a lighter or zero punish-
ment could be adapted to encourage different groups to merge through links between
their core nodes. Due to the limit of time and lack of experience, I could not fully explore
this path. In continued work, people could follow this direction.

On a brighter note, this algorithm’s final version became around 10000 times faster than
its first functionally complete version. This accomplishment is the combined results of
using pre-processing, multi-processing, data manipulation, and compiling with Numba.
Points for improvement still exist, and I have already noticed two. The level of parallelism
is relatively low, and more powerful tools like graphic card computation (CUDA) are not
utilized. Additionally, the final version of the algorithm still scans through every node
present in the network. A possible improvement is only to scan the edges that involve
the label-switched node. However, this increases code complexity significantly and is
not easily compatible with the compiling tool Numba, which single-handedly improves
the performance by a factor of 100. Further increasing the speed has the potential to
enable analysis on much larger scale networks.

This project was originated from a summer project I participated in, organized by the TU

31

5

32 5. DISCUSSION

Delft NAS Group and CFLW Cyber Strategies, in the summer of 2020. In the beginning,
I only used existing python libraries to do core-periphery detection on a smaller dataset
representing an undirected network. However, I am happy that I can eventually accom-
plish the goal of implementing multiple-group core-periphery detection into directed
graphs.

CONCLUSION
This thesis proposed an algorithm that can detect multiple groups of core-periphery
node pairs in directed graphs. This algorithm utilizes an extended version of the core-
periphery structure’s definition in the form of a "punishing matrix" that can make the de-
tection edge-direction dependent. To divide nodes into different groups, a inter-group
punishing value is added to the process. Through a label-switching heuristic process,
the algorithm updates each node’s core/periphery or group partitions in multiple iter-
ations, eventually reaching the maximum quality of the multiple-group core-periphery
structure. A series of data manipulation and tools are used to improve the performance.
The algorithm can process large-scale networks within an acceptable amount of time.
The results can be used to aid network analysis. From the perspective of core-periphery
structure, the information extracted can uncover important nodes that other methods
may not highlight. This method for detecting multiple-group core-periphery structures
in directed graphs is highly configurable and can enable a more advanced approach in
network analysis.

BIBLIOGRAPHY

[1] Sadamori Kojaku and Naoki Masuda. “Finding multiple core-periphery pairs in
networks”. In: Physical Review E 96.5 (Nov. 2017). ISSN: 2470-0053. DOI: 10.1103/
physreve.96.052313. URL: http://dx.doi.org/10.1103/PhysRevE.96.
052313.

[2] Andrew Elliott et al. “Core-Periphery Structure in Directed Networks”. In: CoRR
abs/1912.00984 (2019). arXiv: 1912.00984. URL: http://arxiv.org/abs/1912.
00984.

[3] Stephen Borgatti and Martin Everett. “Models of Core/Periphery Structures”. In:
Social Networks 21 (Nov. 1999), pp. 375–395. DOI: 10.1016/S0378- 8733(99)
00019-2.

[4] F. D. Rossa, F. Dercole, and C. Piccardi. “Profiling core-periphery network structure
by random walkers”. In: Scientific Reports 3 (2013).

[5] Jaewon Yang and Jure Leskovec. “Structure and Overlaps of Ground-Truth Com-
munities in Networks”. In: ACM Trans. Intell. Syst. Technol. 5.2 (Apr. 2014). ISSN:
2157-6904. DOI: 10.1145/2594454. URL: https://doi- org.tudelft.idm.
oclc.org/10.1145/2594454.

[6] Xiao Zhang, Travis Martin, and M. Newman. “Identification of core-periphery struc-
ture in networks”. In: Physical review. E, Statistical, nonlinear, and soft matter physics
91 (Sept. 2014). DOI: 10.1103/PhysRevE.91.032803.

[7] P. Csermely et al. “Structure and dynamics of core/periphery networks”. In: Jour-
nal of Complex Networks 1.2 (Oct. 2013), pp. 93–123. ISSN: 2051-1329. DOI: 10.
1093/comnet/cnt016. URL: http://dx.doi.org/10.1093/comnet/cnt016.

[8] Sadamori Kojaku and Naoki Masuda. “Core-periphery structure requires some-
thing else in the network”. In: New Journal of Physics 20 (Oct. 2017). DOI: 10.1088/
1367-2630/aab547.

[9] Paul Shannon et al. “Cytoscape: a software environment for integrated models of
biomolecular interaction networks”. In: Genome research 13.11 (2003), pp. 2498–
2504.

[10] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dy-
namics, and function using NetworkX. Tech. rep. Los Alamos National Lab.(LANL),
Los Alamos, NM (United States), 2008.

[11] Charles R. Harris et al. “Array programming with NumPy”. In: Nature 585.7825
(Sept. 2020), pp. 357–362. DOI: 10.1038/s41586- 020- 2649- 2. URL: https:
//doi.org/10.1038/s41586-020-2649-2.

[12] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. “Numba: A LLVM-Based Python
JIT Compiler”. In: Proceedings of the Second Workshop on the LLVM Compiler In-
frastructure in HPC. LLVM ’15. Austin, Texas: Association for Computing Machin-
ery, 2015. ISBN: 9781450340052. DOI: 10.1145/2833157.2833162. URL: https:
//doi-org.tudelft.idm.oclc.org/10.1145/2833157.2833162.

33

https://doi.org/10.1103/physreve.96.052313
https://doi.org/10.1103/physreve.96.052313
http://dx.doi.org/10.1103/PhysRevE.96.052313
http://dx.doi.org/10.1103/PhysRevE.96.052313
https://arxiv.org/abs/1912.00984
http://arxiv.org/abs/1912.00984
http://arxiv.org/abs/1912.00984
https://doi.org/10.1016/S0378-8733(99)00019-2
https://doi.org/10.1016/S0378-8733(99)00019-2
https://doi.org/10.1145/2594454
https://doi-org.tudelft.idm.oclc.org/10.1145/2594454
https://doi-org.tudelft.idm.oclc.org/10.1145/2594454
https://doi.org/10.1103/PhysRevE.91.032803
https://doi.org/10.1093/comnet/cnt016
https://doi.org/10.1093/comnet/cnt016
http://dx.doi.org/10.1093/comnet/cnt016
https://doi.org/10.1088/1367-2630/aab547
https://doi.org/10.1088/1367-2630/aab547
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1145/2833157.2833162
https://doi-org.tudelft.idm.oclc.org/10.1145/2833157.2833162
https://doi-org.tudelft.idm.oclc.org/10.1145/2833157.2833162

34 BIBLIOGRAPHY

[13] Jennifer Xu and Hsinchun Chen. “The Topology of Dark Networks”. In: Commun.
ACM 51.10 (Oct. 2008), pp. 58–65. ISSN: 0001-0782. DOI: 10 . 1145 / 1400181 .
1400198. URL: https : / / doi - org . tudelft . idm . oclc . org / 10 . 1145 /
1400181.1400198.

[14] Manlio Domenico and Alex Arenas. “Modeling Structure and Resilience of the Dark
Network”. In: Physical Review E 95 (Dec. 2016). DOI: 10.1103/PhysRevE.95.
022313.

https://doi.org/10.1145/1400181.1400198
https://doi.org/10.1145/1400181.1400198
https://doi-org.tudelft.idm.oclc.org/10.1145/1400181.1400198
https://doi-org.tudelft.idm.oclc.org/10.1145/1400181.1400198
https://doi.org/10.1103/PhysRevE.95.022313
https://doi.org/10.1103/PhysRevE.95.022313

APPENDIX

The main body of the proposed algorithm is provided in this Appendix.
Also included is code for the generation of the used scale-free networks and or import-
ing data from the dark web dataset. The code can be used after uncommenting it. For
code of extra runs and saved files please refer to the repository: https://github.com/
lhawx0/multiDiCP
Details of included files are provided in the repository.

Listing 1: Insert code directly in your document

from concurrent . futures import ThreadPoolExecutor
import networkx as nx
import matplotlib . pyplot as p l t
import math
import csv
import numpy as np
import pandas as pd
from numba import n j i t

@njit
def calculate_Q_reverse (adjS , partit ion_old , group_old , target , par_new , group_new) :

" " " Calculate the quality value of given network , done by going through a l l the edges

Args :
adjS (numpy. array) : the compressed edge l i s t in 1−d array form
parti t ion_old (numpy. array) : The old p a r t i t i o n array
group_old (numpy. array) : The old group array
t a r g e t (i n t e g e r) : the index of scanned node
par_new (i n t e g e r) : the t e n t a t i v e new p a r t i t i o n of t a r g e t
group_new (i n t e g e r) : the t e n t a t i v e new group of t a r g e t

Returns :
[f l o a t] : the quality value Q

" " "
p a r t i t i o n = np . copy (part i t ion_old)
group = np . copy (group_old)
p a r t i t i o n [t a r g e t] , group [t a r g e t] = par_new , group_new
h i t = 0
num_Cin = np . count_nonzero (p a r t i t i o n == 1)
num_Cout = np . count_nonzero (p a r t i t i o n == 2)
num_Pin = np . count_nonzero (p a r t i t i o n == 3)
num_Pout = np . count_nonzero (p a r t i t i o n == 4)
number_nodes = len (p a r t i t i o n)

for sidx in adjS :
i , j = divmod(sidx , number_nodes)
i f group [i] == group [j] :

i f p a r t i t i o n [i] == 1 :
i f p a r t i t i o n [j] == 3 or p a r t i t i o n [j] == 4 :

35

https://github.com/lhawx0/multiDiCP
https://github.com/lhawx0/multiDiCP

36 APPENDIX

h i t −= 0.5
e l i f p a r t i t i o n [j] == 1 : h i t += 1
e l i f p a r t i t i o n [j] == 2 : h i t −= 0.5

e l i f p a r t i t i o n [i] == 2 :
i f p a r t i t i o n [j] == 2 : h i t −= 0.5
else : h i t += 1

e l i f p a r t i t i o n [i] == 3 :
h i t −= 0.5

e l i f p a r t i t i o n [i] == 4 :
i f p a r t i t i o n [j] == 1 : h i t += 1
else : h i t −= 0.5

else :
h i t −= 0.2

max_hit = num_Cin* (num_Cin − 1) + num_Cout * (num_Cout − 1 + num_Cin +num_Pin) + num_Pout*num_Cin
i f max_hit == 0 :

Q = − math . i n f
return Q

else :
Q = h i t /max_hit

return Q

def find_CP_M4 (adjS ,G) :
" " " find the multiple −group core −periphery s t r u c t u r e in a dire cte d network

Args :
adjS (numpy. array) : the compressed edge l i s t in 1−d array form
G (netxorkX network o b j e c t) : the imported di rec ted network

Returns :
group , p a r t i t i o n (numpy. array , numpy. array) : the multiple −group core −periphery s t r u c t u r e information on group anc C−P p a r t i t i o n

" " "

number_of_nodes = G. number_of_nodes ()
remain = []
remove = []
for node , degree in dict (G. degree ()) . items () :

i f degree >=2:
remain . append(node)

e l i f degree <2:
remove . append(node)

remain = np . array (remain)
remove = np . array (remove)
belongs = { }
for node in remove :

for neib in nx . all_neighbors (G, node) :
belongs [node] = neib

owns = { }
owning = { }
for node , belon in belongs . items () :

i f belon in owns :
owns[belon] . append(node)

37

owning [belon] += 1
else :

owns[belon] = [node]
owning [belon] = 1

owns_list = [np . array (owns[i]) for i in owns]

max_len = 0
for l i in owns_list :

i f len (l i) > max_len :
max_len = len (l i)

for l i in owns_list :
i f len (l i) < max_len :

zero = np . zeros (max_len − len (l i))
l i = np . concatenate ((l i , zero))

owns_list = np . array (owns_list)
t r i v i a l _ p a r t i t i o n = { }
s i g n i _ p a r t i t i o n = { }
for node in remove :

i f G. in_degree (node) == 1 :
t r i v i a l _ p a r t i t i o n [node] = 3

e l i f G. out_degree (node) == 1 :
t r i v i a l _ p a r t i t i o n [node] = 4

e l i f nx . all_neighbors (G, node) == 0 :
pass

else :
raise ValueError ("removed node degree i s not 1")

for node in remain :
ins = G. in_degree (node)
outs = G. out_degree (node)

i f ins > outs :
s i g n i _ p a r t i t i o n [node] = 1

e l i f ins < outs :
s i g n i _ p a r t i t i o n [node] = 2

else :
s i g n i _ p a r t i t i o n [node] = np . random . randint (1 , 5)

p a r t i t i o n = np . zeros (number_of_nodes)
for idx in range (number_of_nodes) :

i f idx in t r i v i a l _ p a r t i t i o n :
p a r t i t i o n [idx] = t r i v i a l _ p a r t i t i o n [idx]

e l i f idx in s i g n i _ p a r t i t i o n :
p a r t i t i o n [idx] = s i g n i _ p a r t i t i o n [idx]

else :
raise ValueError (" idx does not e x i s t ")

group = np . arange (number_of_nodes)

for owner , owned in owns . items () :
group [owned] = owner

order = np . array (remain)

38 APPENDIX

print ("run started . . . ")
Q = − math . i n f
i t e r s = 0
l a s t _ i n c r e = 1
while (True) :

i t e r s += 1
np . random . s h u f f l e (order)
incre = 0
for i in order :

new_Q = Q
d i f f = 0
par_old = p a r t i t i o n [i]
par_new = par_old
i f par_old ! = 1 :

par_Q = calculate_Q_reverse (adjS , part i t ion , group , i , 1 , group [i])
i f par_Q> new_Q:

par_new = 1
new_Q = par_Q

i f par_old ! = 2 :
par_Q = calculate_Q_reverse (adjS , part i t ion , group , i , 2 , group [i])
i f par_Q > new_Q:

par_new = 2
new_Q = par_Q

i f par_old ! = 3 :
par_Q = calculate_Q_reverse (adjS , part i t ion , group , i , 3 , group [i])
i f par_Q > new_Q:

par_new = 3
new_Q = par_Q

i f par_old ! = 4 :
par_Q = calculate_Q_reverse (adjS , part i t ion , group , i , 4 , group [i])
i f par_Q > new_Q:

par_new = 4
new_Q = par_Q

nbs = [e for e in nx . all_neighbors (G, i)]
to_groups = set (np . take (group , nbs))
base_Q = Q
switch_to = −1

def wrapperfunc (target_group) :
return target_group , calculate_Q_reverse (adjS , part i t ion , group , i , p a r t i t i o n [i] , target_group)

processes = []
with ThreadPoolExecutor () as ex :

processes . append(ex .map(wrapperfunc , to_groups))

for r e s u l t s in processes [0] :
temp_Q = r e s u l t s [1]
to = r e s u l t s [0]
i f temp_Q >= base_Q :

base_Q = temp_Q
switch_to = to

i f base_Q > new_Q and switch_to != −1:
the r e s u l t of group−switching i s b e t t e r
d i f f = base_Q − Q

Q = base_Q
group [i] = switch_to
i f i in owns :

39

group [owns[i]] = switch_to
e l i f new_Q > base_Q and par_new ! = par_old :

the r e s u l t of p a r t i t i o n switching i s b e t t e r
d i f f = new_Q − Q

Q = new_Q
p a r t i t i o n [i] = par_new
update h i t /max

incre += d i f f

print (" s t i l l running : " + s t r (i t e r s))
i f (incre <= 10**−10 and l a s t _ i n c r e <= 10**−10 and i t e r s >= 4) :

print (" i t e r s : "+ s t r (i t e r s))
print (" incre : "+ s t r (incre))
break

l a s t _ i n c r e = incre

print (" Final Q: " + s t r (Q))
return part i t ion , group

def main () :

###
Importing the dataset and generating the networkX o b j e c t G
df = pd . read_excel ("DATAEXTRACT. x l s x " , skiprows = 0 , dtype = ’ int64 ’)
e _ l i s t = df . values . t o l i s t ()
map_list = { }
index = 0
f o r pairs in e _ l i s t :
i f pairs [0] not in map_list :
map_list [pairs [0]] = index
index += 1

i f pairs [1] not in map_list :
map_list [pairs [1]] = index
index += 1

f o r pairs in e _ l i s t :
pairs [0] = map_list [pairs [0]]
pairs [1] = map_list [pairs [1]]

G = nx . DiGraph ()
G. add_edges_from (e _ l i s t)

###

###
Generating random scale − f r e e network ; the f i r s t argument : of number of nodes .
F = nx . scale_free_graph (200 , alpha =0.2 , beta =0.6 ,gamma=0.2 , seed = 123)
G = nx . empty_graph (F . number_of_nodes () , create_using=nx . DiGraph ())
e d _ l i s t = []
for e in F . edges () :

i f e not in e d _ l i s t and e [0] != e [1] :
e d _ l i s t . append(e)

G. add_edges_from (e d _ l i s t)

40 APPENDIX

###

###
p l o t t i n g the network with matplotlib , not used
pos = nx . layout . spring_layout (G)

node_sizes = [3 + 10 * i f o r i in range (len (G))]
M = G. number_of_edges ()
edge_colors = range (2 , M + 2)

nodes = nx . draw_networkx_nodes (G, pos , node_size=node_sizes , node_color =" blue ")
edges = nx . draw_networkx_edges (
G,
pos ,
node_size=node_sizes ,
arrowstyle =" − >" ,
arrowsize =10 ,
edge_color=edge_colors ,
edge_cmap= p l t .cm. Blues ,
width=2 ,
)
l a b e l s = nx . draw_networkx_labels (G, pos)

pc = mpl . c o l l e c t i o n s . PatchCollection (edges , cmap= p l t .cm. Blues)
pc . set_array (edge_colors)
p l t . colorbar (pc)

ax = p l t . gca ()
ax . s e t _ a x i s _ o f f ()
p l t . show ()
###

###
generating the compressd edge l i s t
num_nodes = G. number_of_nodes ()
num_edges = G. number_of_edges ()
print (num_nodes)
print (num_edges)
print (num_edges/num_nodes)
adjS = np . empty(num_edges , dtype=np . uint32)
idx = 0
for node in G. nodes () :

for neib in sorted (G. neighbors (node)) :
adjS [idx] = num_nodes * node + neib
idx += 1

s t a r t the run
part , group= find_CP_M4 (adjS ,G)

#compact index of groups
group_map = { }
group_map_re = { }
idx = 0
for g in group :

i f g not in group_map :

41

group_map [g] = idx
group_map_re [idx] = g
idx += 1

for i in range (len (group)) :
group [i] = group_map [group [i]]

save r e s u l t f o r extra runs and v i s u a l i z a t i o n
nx . write_gml (G, "FINAL200_4 . gml")
with open(’ FINAL200_4 . csv ’ , mode= ’w’ , newline= ’ ’) as e x p o r t _ f i l e :

export_writer = csv . writer (e x p o r t _ f i l e , del imiter= ’ , ’ , quotechar= ’ " ’ , quoting=csv .QUOTE_MINIMAL)
export_writer . writerow ([’ Id ’ , ’ coreness ’ , ’ group ’])
for node in G. nodes :

export_writer . writerow ([node , part [node] , group [node]])

print (part)
print (group)

i f __name__ == "__main__" :
main ()

	Introduction
	Core-Periphery Structure and Detection Algorithms
	Core-periphery Structure
	Multiple-group Detection
	Core-Periphery Structure in Directed Graphs

	Methods
	Judging criteria, Group and Partition
	Algorithm Workflow
	Initializing and Pre-processing
	Label-switching Heuristic Process
	Outcome of the Algorithm
	Extra Runs

	Performance Analysis and Implementation

	Results
	Synthetic Network
	Random Scale-free graphs
	Dark Web Dataset
	Dataset
	Core-Periphery Analysis

	Discussion

