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Online Identification of Continuous Bimodal and Trimodal Piecewise
Affine Systems

Le Quang Thuan1, Ton van den Boom2 and Simone Baldi3

Abstract— This paper investigates the identification of con-
tinuous piecewise affine systems in state space form with jointly
unknown partition and subsystem matrices. The partition of the
system is generated by the so-called centers. By representing
continuous piecewise affine systems in the max-form and using a
recursive Gauss-Newton algorithm for a suitable cost function,
we derive adaptive laws to online estimate parameters including
both subsystem matrices and centers. The effectiveness of the
proposed approach is demonstrated with a numerical example.

I. INTRODUCTION

A piecewise affine (PWA) system is a special kind of finite-
dimensional, nonlinear input-state-output systems, with the
distinguishing feature that the functions representing the
systems differential equations and output equations are piece-
wise affine functions of state and input [20]. Any piecewise
affine system can be considered as a collection of finite-
dimensional affine input-state-output systems, together with a
partition of the product of the state space and input space into
polyhedral regions. Each of these regions is associated with
one particular affine system from the collection. Depending
on the region in which the state and input vector are
contained at a certain time, the dynamics is governed by the
affine system associated with that region. Thus, the dynamics
switches if the state-input vector changes from one polyhe-
dral region to another. In recent decades, the analysis and
control of PWA systems have been extensively investigated
due to their modeling capabilities. PWA systems form a
subclass of hybrid systems and they can be used to approx-
imate nonlinear systems [11], [16]. They are widely used in
engineering and applied science to model complex systems.
Many physical systems appearing in theoretical engineering
can be modeled by means of piecewise affine systems such as
relay systems, hysteresis systems, and system with saturation
phenomena, etc. In addition, PWA systems have become
more popular thanks to their equivalence with many classes
of hybrid systems such as mixed logical dynamical systems
[6], linear complementary systems and other model classes
[9]. Thus, PWA systems provide the powerful means for
analysis and design of hybrid systems. This paper focuses
on identifying continuous piecewise affine systems.
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The system identification has been a long-standing problem
in control theory and received much attentions. For PWA
systems, identification is composed of two ingredients: es-
timation of the subsystem parameters and the hyperplanes
defining the partition. In the case that one of the ingredients
is assumed to be known, various contributions have been
presented in the literature. Identifying PWA systems with
known partitions can be carried out by standard linear identi-
fication techniques in a local manner. When both subsystems
and the partition are unknown, to identify PWA systems, the
partition must be estimated together with the subsystems.
This has been known a very challenging problem and the
main difficulty lies in the fact that the identification problem
includes a classification problem to determine in which
region each data point must be associated. Despite of the
difficulty, there are recently proposed techniques dealing
with the issue: Bayesian procedure [12], the bounded-error
procedure [5], the clustering-based procedure [8] and the
Mixed-Integer Programming procedure [18]. Further results
on identification of subclasses of PWA systems can be found
in [1], [22]. Most of the work in the area of identifying
PWA systems focuses on the development of identification
algorithms for discrete-time piecewise affine functions in
regression form and the algorithms are offline.

A different study on system identification has been per-
formed with continuous-time PWA system in state space
form and known partition [7], [13]–[15]. In [13], [15], the
authors proposed a method to identify the sub-models of
PWA system online and under persistence of excitation
condition ensures the asymptotic convergence of parameters
to true parameters. These results are generalized in [14] with
the use of concurrent learning. The paper shown that the
concurrent use of recorded and instantaneous data leads to
exponential convergence of all subsystem parameters under
verifiable conditions on the recorded data. Ealier work on this
direction dates back to the paper [7] dealing with continuous
bimodal piecewise affine systems. Summarizing, to the best
of our knowledge, there is no online identification method
developed for continuous-time PWA systems in state space
form with joint subsystem and partition estimation.

In this paper, we develop a method to identify online
continuous-time PWA systems in state space form where
both the partition and the subsystems are unknown. The
system partition is assumed to be generated by the so-called
centers [1]. The advantage of such partitions is that one can
represent continuous-time PWA systems in more compact
form. Then, a cost function depending on the estimation error
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can be defined, and the derivative of the cost function with
respect to all parameters can be taken. This can be used to
develop a recursive Gauss-Newton algorithm, thus obtaining
a set of adaptive laws for the estimated parameters, including
both subsystem matrices and centers.

This paper is organized as follows. Section II introduces
the considered PWA systems and its identification problem.
The main results of this paper are presented in Section III
and Section IV with online identification of bimodal and
trimodal piecewise affine systems, respectively. A numerical
example will follow in Section V. Finally, Section VI is the
conclusions and future work.

II. PWA SYSTEMS AND IDENTIFICATION PROBLEM

Consider continuous piecewise affine dynamical systems of
the form

ẋ =


A1x+B1u+ e1 if (x, u) ∈ X1

...
...

ANx+BNu+ eN if (x, u) ∈ XN

(1)

where x ∈ Rn is the state, u ∈ Rm is the input, Ai ∈
Rn×n, Bi ∈ Rn×m, ei ∈ Rn are given matrices, and
{X1,X2, . . . ,XN} is a polyhedral partition of Rn+m. In
the piecewise systems literature, several kinds of polyhedral
partitions of Rn×m have been considered (see e.g. [1],
[17], [19], [20]). Since this paper aims at the identification
of piecewise affine dynamical systems, we will work with
the partitions generated by the so-called centers due to its
minimality of parameters. As defined in [1], given N vectors
c1, c2, . . . , cN of Rn+m called centers, one can generate
polyhedral regions

Xj =
{
z ∈ Rn+m | ||z − cj ||2 6 ||z − ck||2,∀k 6= j

}
=
{
z ∈ Rn+m | Ajz 6 qj

}
(2)

where

Aj = 2
[
c1 − cj . . . cj−1 − cj cj+1 − cj . . . cN − cj

]T
qj =

[
β1,j . . . βj−1,j βj+1,j . . . βN,j

]T
with βk,j = cTk ck − cTj cj for j = 1, 2, . . . , N.

Identification problem. Consider the system (1) where Xj
is defined by (2). Suppose that the subsystem matrices
Aj , Bj , ej and the centers cj are unknown. Based on the
measured state x(t) and input u(t), we want to find the
update laws for the estimated parameters Âj(t), B̂j(t), êj(t)
and ĉj(t) such that Âj(t) → Aj , B̂j(t) → Bj , êj(t) →
ej , ĉj(t)→ cj as t→∞.

III. ONLINE IDENTIFICATION OF BIMODAL PWA
SYSTEMS

In this section, we first consider the identification of a
particular class of the system (1) where N = 2, called
bimodal piecewise affine systems. As N = 2, the system
(1) reads as

ẋ =

{
A1x+B1u+ e1 if (x, u) ∈ X1

A2x+B2u+ e2 if (x, u) ∈ X2

(3)

where

X1 = {(x, u) | 2(c2 − c1)T
[
x
u

]
− (cT2 c2 − cT1 c1) 6 0},

X2 = {(x, u) | 2(c2 − c1)T
[
x
u

]
− (cT2 c2 − cT1 c1) > 0}.

A. Max-form presentation of bimodal PWA systems

The system (3) is nonlinear in the parameters. However, by
invoking the well-known properties of continuous bimodal
piecewise affine functions, one can split the right-hand side
into two parts: one part is linear and the other is nonlinear
in the parameters. In fact, the continuity of the system (3) is
equivalent to the unique existence of the h ∈ Rn such that
(see, [21])[

A1 B1

]
−
[
A2 B2

]
= 2h(c2 − c1)T , (4a)

e1 − e2 = −h(cT2 c2 − cT1 c1). (4b)

In view of (4), one can rewrite the bimodal system (3) as

ẋ =
[
A2 B2

] [x
u

]
+ e2

− hmax
{

2(c1 − c2)T
[
x
u

]
− (cT1 c1 − cT2 c2), 0

}
. (5)

This system is called the max-form representation of the
bimodal piecewise affine system (3).

B. Online identification of bimodal PWA systems

Since every bimodal piecewise affine system (3) can be
equivalently represented in the form (5), its identification can
be performed by identifying the system (5). Moreover, for the
hyperplane X1∩X2, there are infinitely many pairs of centers
(c1, c2) which generates the hyperplane. However, when we
fix one center by an arbitrary vector, the other one is uniquely
determined. Thus, without loss of generality, we suppose that
the center c2 is known, c2 = c̃. For convenience, we use
the notations c, A,B, e instead of c1, A2, B2, e2, respectively.
Then, the system (5) becomes

ẋ =
[
A B

] [x
u

]
+ e

− hmax
{

2(c− c̃)T
[
x
u

]
− (cT c− c̃T c̃), 0

}
. (6)

We now solve the identification issue of the system (6) with
unknown parameter

θ =


θ1
...
θn
c

 , where θi =


ri(A)T

ri(B)T

ei
hi

 for i = 1, 2, . . . , n,

and ri(M) denotes the ith row of the matrix M . Let us now
suppose that the state x(t) and output u(t) are available from
measurements. The identification of the system (6) with these



measurements is carried out by minimizing the following
integral cost function

J(t, θ̂) =
1

2

∫ t

0

e−λ(t−s)||x(s)− x̂(s, θ̂)||2ds (7)

=
1

2

∫ t

0

e−λ(t−s)
n∑
j=1

(
x̂j(s, θ̂)− xj(s)

)2
ds.

Here, λ > 0 is a forgetting factor decided by the designer, θ̂
is the estimated values of θ, and x̂(s, θ̂) denotes the estimated
state of the system (6) with the observer

˙̂x(s, θ̂) = Dx̂(s, θ̂) +
[
Â−D B̂

] [x(s)
u(s)

]
+ ê

− ĥmax
{

Λ(ĉ, x(s), u(s)), 0
}

(8)

where Λ(ĉ, s) = 2(ĉ − c̃)T
[
x(s)
u(s)

]
− (ĉT ĉ − c̃T c̃) and D is

a stable matrix of the form D = diag(µ1, µ2, . . . , µn) with
µj < 0 for all j = 1, 2, . . . , n. Note that the solution of the
system (8) for the initial state x(0) can be component-wisely
written as

x̂i(s, θ̂) = eµisxi(0) +

∫ s

0

eµi(s−τ)
{

ri(Â−D)x(τ)

+ ri(B̂)u(τ) + êi − ĥi max
{

Λ(ĉ, s), 0
}}
dτ

for i = 1, 2, . . . , n.
The cost function J(t, θ̂) has a global minimum at the

real system parameters θ̂ = θ. In order to try to find θ, the
recursive Gauss-Newton algorithm would be employed in
this paper. By this algorithm, we first choose an initial value
θ̂0 which is assumed to be in a small neighborhood of θ.
Then, the sequence θ̂(t) is updated online via the following
adaptive law

˙̂
θ(t) = −Γ(U(t))−1Φ(t)


∂J(t, θ̂)

∂x̂1
...

∂J(t, θ̂)

∂x̂n


∣∣∣
θ̂=θ̂(t)

, (9a)

θ̂(0) = θ̂0 (9b)

where Γ > 0 is decided by designer, and

U̇(t) = −ΓU(t) + Φ(t)Φ(t)T , U(0) = 0 (10)

with

Φ(t) =



∂x̂1(t, θ̂)

∂θ̂1
0 · · · 0

0
∂x̂2(t, θ̂)

∂θ̂2
· · · 0

...
...

...
...

0 0 · · · ∂x̂n(t, θ̂)

∂θ̂n
∂x̂1(t, θ̂)

∂ĉ

∂x̂2(t, θ̂)

∂ĉ
· · · ∂x̂n(t, θ̂)

∂ĉ



It can be verified that

d

dt

(∂J(t, θ̂)

∂x̂i

)
= −λ∂J(t, θ̂)

∂x̂i
+ x̂i(t, θ̂)− xi(t), (11a)

∂J(t, θ̂)

∂x̂i
(0) = 0 (11b)

for i = 1, 2, . . . , n. Furthermore, since one can write x̂i(t, θ̂)
in the form

x̂i(t, θ̂) = g0,i(t) +
[
gT1,i(t) gT2,i(t) g3,i(t) −g4,i(t)

]
θ̂i

with

g0,i(t) = eµitxi(0)− µi
∫ t

0

eµi(t−τ)xi(τ)dτ,

g1,i(t) =

∫ t

0

eµi(t−τ)x(τ)dτ, g2,i(t) =

∫ t

0

eµi(t−τ)u(τ)dτ,

g3,i(t) =

∫ t

0

eµi(t−τ)dτ,

g4,i(t) =

∫ t

0

eµi(t−τ) max
{

Λ(ĉ, τ), 0
}
dτ,

it is easy to verify that

∂x̂i(t, θ̂)

∂θ̂i
=


g1,i(t)
g2,i(t)
g3,i(t)
−g4,i(t)

 =: g̃i(t)

x̂(t, θ̂)− x(t) =

g0,1(t)− x1(t)
...

g0,n(t)− xn(t)

+

 g̃1(t)T θ̂1
...

g̃n(t)T θ̂n


and

∂x̂i(t, θ̂)

∂ĉ
= −ĥi

∫ t

0

eµi(t−τ)

 w1(τ)
...

wn+m(τ)

 dτ
where

wj(τ) =

{
2xj(τ)− 2ĉj ,Λ(ĉ, τ) = max

{
Λ(ĉ, τ), 0

}
0 , otherwise

(12)
for j = 1, 2, . . . , n where

xj(τ) =

{
xj(τ) , j = 1, 2, . . . , n

uj−n(τ) , j = n+ 1, . . . , n+m.

Therefore, one can write (11a) as

d

dt

(∂J(t, θ̂)

∂x̂i

)
= −λ∂J(t, θ̂)

∂x̂i
+ g0,i(t)− xi(t) + g̃i(t)

T θ̂i

(13)
for i = 1, 2, . . . , n and write Φ(t) in the form

Φ(t) =



g̃1(t) 0 · · · 0
0 g̃2(t) · · · 0
...

...
...

...
0 0 · · · g̃n(t)
∂x̂1
∂ĉ

∂x̂2
∂ĉ

· · · ∂x̂n
∂ĉ

 .



To update g0,i, g̃i and Φ, we use the fact that

˙̃gi(t) = µig̃i(t) +


x(t)
u(t)

1
−max{Λ(ĉ(t), t), 0}

 , g̃i(0) = 0

(14a)
ġ0,i(t) = µig0,i(t)− µixi(t), g0,i(t) = xi(0) (14b)

d

dt
(
∂x̂i
∂ĉ

) = µi
∂x̂i
∂ĉ
− ĥi

 w1(t)
...

wn+m(t)

 , ∂x̂i
∂ĉ

(0) = 0 (14c)

for i = 1, 2, . . . , n and w1, w2, . . . , wn+m defined in (12).
In summary, one can update the parameters θ̂(t) as follows:

Theorem 1: The parameters θ̂(t) can be updated by the
differential equations (9), (10), (13) and (14).

C. Special cases: Affine systems
In the continuous bimodal piecewise affine system (3), by
taking A1 = A2 = A, B1 = B2 = B and e1 = e2 = e, the
system boils down to the affine system ẋ = Ax + Bu + e
for any given centers c1 and c2. The online identification of
the system with e = 0 has been well-studied by Lyapunov
function approach; see e.g. [10]. In this section, by reducing
our results to affine systems, we obtain an online update law
to identify affine systems. It seems that these formulation is
unavailable anywhere else.

To derive the formulation, note that one can take any
centers c1, c2 and h = 0. Thus, we only need to identify
the parameters

θ =

θ1...
θn

 , where θi =

ri(A)T

ri(B)T

ei

 for i = 1, 2, . . . , n,

and the observer (8) just simply is
˙̂x(s, θ̂) = Dx̂(s, θ̂) + (Â−D)x(s) + B̂u(s) + ê. (15)

Reducing from the bimodal case, we come up with an update
law to updating Â, B̂ and ê as follows:

˙̂
θ(t) = −Γ(U(t))−1Φ(t)

∂J(t, θ̂)

∂x̂

∣∣∣
θ̂=θ̂(t)

(16a)

θ̂(0) = θ̂0 (16b)

where Γ > 0 is chosen by designer, and

U̇(t) = −ΓU(t) + Φ(t)Φ(t)T ,

Φ(t) =


g̃1(t) 0 · · · 0

0 g̃2(t) · · · 0
...

...
...

...
0 0 · · · g̃n(t)

 ,
d

dt

(∂J(t, θ̂)

∂x̂i

)
= −λ∂J(t, θ̂)

∂x̂i
+ g0,i(t)− xi(t) + g̃i(t)

T θ̂i,

˙̃gi(t) = µig̃i(t) +

x(t)
u(t)

1

 , g̃i(0) = 0,

ġ0,i(t) = µig0,i(t)− µixi(t), g0,i(0) = xi(0),

for i = 1, 2, . . . , n.

IV. ONLINE IDENTIFICATION OF TRIMODAL PWA
SYSTEMS

This section aims at solving the identification of the system
(1) for N = 3, trimodal piecewise affine systems. In this
case, the system (1) reads as

ẋ =


A1x+Bu+ e1 if (x, u) ∈ X1

A2x+Bu+ e2 if (x, u) ∈ X2

A3x+Bu+ e3 if (x, u) ∈ X3

(17)

where

X1 = {(x, u) | 2(c2 − c1)T
[
x
u

]
− (cT2 c2 − cT1 c1) 6 0,

2(c3 − c1)T
[
x
u

]
− (cT3 c3 − cT1 c1) 6 0},

X2 = {(x, u) | 2(c2 − c1)T
[
x
u

]
− (cT2 c2 − cT1 c1) > 0,

2(c3 − c2)T
[
x
u

]
− (cT3 c3 − cT2 c2) 6 0},

X3 = {(x, u) | 2(c3 − c2)T
[
x
u

]
− (cT3 c3 − cT2 c2) > 0,

2(c3 − c1)T
[
x
u

]
− (cT3 c3 − cT1 c1) > 0}.

A. Max-form presentation of trimodal PWA systems

Once the system (17) is continuous, one can write it in
the max-form. Indeed, for any c1, c2 and c3, two following
possible cases may occur:
a) Case 1: c1, c2 and c3 lie on a line. Without loss of
generality, we assume that c2 is in the segment [c1, c3]. In
this case the continuity of system (17) is equivalent to the
existence of the vectors h and k in Rn such that one can
write the system (17) as

ẋ =A1x+B1u+ e1

− hmax{2(c2 − c1)T
[
x
u

]
− (cT2 c2 − cT1 c1), 0}

− kmax{2(c3 − c2)T
[
x
u

]
− (cT3 c3 − cT2 c2), 0}. (18)

b) Case 2: c1, c2 and c3 do not lie on a line. The continuity
of system (17) is equivalent to the existence of the vectors
h1, h2, h3 ∈ Rn such that[

A1 B1

]
−
[
A2 B2

]
= 2h1(c2 − c1)T , (19a)

e1 − e2 = −h1(cT2 c2 − cT1 c1),[
A2 B2

]
−
[
A3 B3

]
= 2h2(c3 − c2)T , (19b)

e2 − e3 = −h2(cT3 c3 − cT2 c2),[
A3 B3

]
−
[
A1 B1

]
= 2h3(c3 − c1)T , (19c)

e3 − e1 = −h3(cT3 c3 − cT1 c1).

In this case, we claim that

h1 = h2 = −h3 =: h. (20)



In fact, it follows from (19) that

(h3 + h2)cT3 + (h1 − h2)cT2 − (h1 + h3)cT1 = 0. (21)

Once c1, c2 and c3 are linearly independent, the equality (21)
immediately yields h1 = h2 = −h3. If c1, c2 and c3 are
linearly dependent, one can express one of them as a linear
combination of the others, says for instance c3 = αc1 +βc2.
Then, since c1, c2 and c3 do not belong to a line, c1 and c2
must be linearly independent and α+ β 6= 1. Moreover, one
has

(h3 + h2)cT3 = α(h3 + h2)cT1 + β(h3 + h2)cT2 ,

(h3 + h2)cT3 = (h1 + h3)cT1 + (h2 − h1)cT2 .

This implies that h2 + h3 = (α + β)(h2 + h3), and hence
h2+h3 = 0, i.e. h2 = −h3. Substituting this in (21) and due
to the linear independence of c1 and c2, one gets h1 = h2.
Therefore, the claim (20) has been proved.

In view of (20) and (19), one now can rewrite the system
(17) in the max-form as

ẋ = A3x+B3u+ e3 − hmax
{

2(c2 − c3)T
[
x
u

]
− (cT2 c2 − cT3 c3), 2(c1 − c3)T

[
x
u

]
− (cT1 c1 − cT3 c3), 0

}
for some h ∈ Rn.

B. Adaptive update laws

As it has been shown, the max-form presentations of tri-
modal PWA systems have two different forms depending
on whether or not the centers are in a line. Once the form
is determined, we can develop the corresponding adaptive
update laws in a similar fashion as bimodal case. However,
due to the page limitation, it will be not shown in this paper.

Remark 1: Due to the fact that the system (3) is nonlinear
in the parameters, the cost function (13) is nonconvex with
respect to θ̂ and can eventually present some local minima.
Thus, the convergence of the estimated parameters to their
true values cannot be guaranteed for every initial condition.

Remark 2: In case of linear systems, persistence of exci-
tation is an important factor when dealing with parameter
identification. This condition guarantees the convergence of
the estimated parameters to the true parameters. Persistence
of excitation can be achieved by choosing sufficiently rich
input signals. However, in our case, the system is nonlinear in
the parameters. To the best of our knowledge, no convergence
result is available, a part from a class of bilinear parametriza-
tions [10] and PWA systems with known partition [13]–[15]).
Convergence can only be demonstrated via simulations.

V. NUMERICAL EXAMPLES

Consider the continuous bimodal piecewise linear system

ẋ =

{
−2x+ u , x 6 0

3x+ u , x > 0.
(22)
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Fig. 1: Online identification of A,B and h when c1 and c2
are known (The state of true system and the true parameters
are shown in red)

Let c1, c2 be a pair of centers such that ||c1|| = ||c2|| and
that generates the hyperplane x+ 0 · u = 0, i.e.

{x | x 6 0} = {x | 2(c2 − c1)

[
x
u

]
6 0},

{x | x > 0} = {x | 2(c2 − c1)

[
x
u

]
> 0}.

For such c1, c2, one can write the system (22) in the form

ẋ = Ax+Bu− hmax{2(c1 − c2)x, 0} (23)

where A = −3, B = 1 and h is uniquely determined from[
−3 1

]
= 2h(c2 − c1)T .

a) First, we suppose that the centers are known with c1 =[
−0.3 0.3

]T
and c2 =

[
0.3 0.3

]T
. We need to identify

A,B and h. Note that the real values of A, B and h are

A = −3, B = 1, h = 1/(1.2) = 0.8333.

Using the developed algorithm, we get the simulation result
which is shown in Fig. 1. The parameter h is estimated
correctly while the system is in region 2 and max{Λ, 0} = 0.
This happens because of the retrospective cost (13) (that
exploits the past estimation errors) and the fact that the
system was in region 1 approximately on the time interval
[2, 3].
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Fig. 2: Online identification of A,B, h and c1 when only c2
is known (The state of true system and the true parameters
are shown in red)

b) Now, let us assume that only c2 =
[
0.3 0.3

]T
is known.

Initializing in a small neighborhood of real values A,B, h
and c1 with Â(0) = 0, B̂(0) = 0, ĥ(0) = 0, ĉ1(0) =[
0.0 0.3

]
and again using our algorithm developed for

bimodal systems, we get the simulation result shown in
Fig. 2. Due to the increase number of parameters and
nonlinearities, we observe that the convergence to the true
values is slower.

VI. CONCLUSIONS AND FUTURE WORKS

This paper provided a method for online identifying
continuous-time PWA systems in state space form with
both the partition and subsystems are unknown. The system
partition is assumed to be generated by the centers. In this
work, we restrict our consideration to the case where the
number of centers is at most three. In the future, we will
generalize the results to general piecewise affine systems and
study its applications to adaptive optimal control problems
of large-scale systems studied in [2]–[4].

ACKNOWLEDGMENT

The work of the first author is partially funded by Vietnam
National Foundation for Science and Technology Develop-
ment (NAFOSTED) under grant number 101.02-2014.32.

REFERENCES

[1] L. Bako, K. Boukharouba, E. Duviella, and S. Lecoeuche. A recursive
identification algorithm for switched linear/affine models. Nonlinear
Analysis: Hybrid Systems, 5(2):242–253, 2011.

[2] S. Baldi and P. Ioannou. Stability margins in adaptive mixing control
via a lyapunov-based switching criterion. IEEE Transactions on
Automatic Control, PP(99):1–1, 2015.

[3] S. Baldi, I. Michailidis, E. B. Kosmatopoulos, A. Papachristodoulou,
and P. A. Ioannou. Convex design control for practical nonlinear
systems. IEEE Transactions on Automatic Control, 59(7):1692–1705,
2014.

[4] Kosmatopoulos E. B. Baldi S., Michailidis I. and Ioannou P. A. A
“plug-n-play computationally efficient approach for control design
of large-scale nonlinear systems using co-simulation. IEEE Control
Systems Magazine, 34(5):56–71, 2014.

[5] A. Bemporad, A. Garulli, S. Paoletti, and A. Vicino. A bounded-error
approach to piecewise affine system identification. IEEE Transactions
on Automatic Control, 50(10):1567–1580, 2005.

[6] A. Bemporad and M. Morari. Control of systems integrating logic,
dynamics, and constraints. Automatica, 35(3):407–427, 1999.

[7] M. Bernardo, U. Montanaro, and S. Santini. Hybrid minimal control
synthesis identification of continuous piecewise linear systems. In
Proceedings of the 48th IEEE Conference on Decision and Control
and Chinese Control Conference, Shanghai, China, pages 3188–3193,
2009.

[8] G. Ferrari-Trecate, M. Muselli, D. Liberati, and M. Morari. A
clustering technique for the identification of piecewise affine systems.
Automatica, 39(2):205–217, 2003.

[9] W.P.M.H. Heemels, B.D. Schutter, and A. Bemporad. Equivalence of
hybrid dynamical models. Automatica, 37(7):1085–1091, 2001.

[10] P. Ioannou and B. Fidan. Adaptive Control Tutorial. Advances in
Design and Control. Society for Industrial and Applied Mathematics
(SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104), 2006.

[11] P. Julian, M. Jordan, and A. Desages. Canonical piecewise-linear
approximation of smooth functions. IEEE Transactions on Circuits
and Systems I: Fundamental Theory and Applications, 45(5):567–571,
1998.

[12] A.L. Juloski, S. Weiland, and W.P.M.H. Heemels. A bayesian approach
to identification of hybrid systems. In the 43rd IEEE Conference on
Decision and Control, Atlantis, Paradise Island, Bahamas, pages 13–
19, 2004.

[13] S. Kersting and M. Buss. Adaptive identification of continuous-time
switched linear and piecewise linear systems. In Control Conference
(ECC), 2014 European, pages 31–36, June 2014.

[14] S. Kersting and M. Buss. Concurrent learning adaptive identification
of piecewise affine systems. In the 53rd IEEE Conference on Decision
and Control, Los Angeles, CA, USA, pages 3930–3935, 2014.

[15] S. Kersting and M. Buss. Online identification of piecewise affine
systems. In the UKACC International Conference on Control, pages
86–91, July 2014.

[16] J.-N. Lin and R. Unbehauen. Canonical piecewise-linear approxima-
tions. IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications, 39(8):697–699, 1992.

[17] J.S. Pang M. K. Camlibel and J. Shen. Conewise linear systems:
Non-zenoness and observability. SIAM journal on Control and
Optimization, 45(5):1769–1800, 2006.

[18] J. Roll, A. Bemporad, and L. Ljung. Identification of piecewise affine
systems via mixed-integer programming. Automatica, 40(1):37–50,
2004.

[19] L. Q. Thuan. Non-zenoness of piecewise affine dynamical systems
and affine complementarity systems with inputs. Control Theory and
Technology, 12:35–47, 2014.

[20] L. Q. Thuan and M. K. Camlibel. Controllability and stabilizability
of a class of continuous piecewise affine dynamical systems. SIAM
Journal on Control and Optimization, 52(3):1914–1934, 2014.

[21] L.Q. Thuan and M.K. Camlibel. On the existence, uniqueness and
nature of carathodory and filippov solutions for bimodal piecewise
affine dynamical systems. Systems & Control Letters, 68:76 – 85,
2014.

[22] C. Wen, S. Wang, X. Jin, and X. Ma. Identification of dynamic
systems using piecewise-affine basis function models. Automatica,
43(10):1824–1831, 2007.


