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Recommendation systems powered by artificial intelligence (AI) are widely used to improve user experience. 

However, AI inevitably raises privacy leakage and other security issues due to the utilization of extensive user 

data. Addressing these challenges can protect users’ personal information, benefit service providers, and fos- 

ter service ecosystems. Presently, numerous techniques based on differential privacy have been proposed to 

solve this problem. However, existing solutions encounter issues such as inadequate data utilization and a ten- 

uous trade-off between privacy protection and recommendation effectiveness. To enhance recommendation 

accuracy and protect users’ private data, we propose ID-SR, a novel privacy-preserving social recommenda- 

tion scheme for trustworthy AI based on the infinite divisibility of Laplace distribution. We first introduce a 

novel recommendation method adopted in ID-SR, which is established based on matrix factorization with a 

newly designed social regularization term for improving recommendation effectiveness. We then propose a 
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differential privacy-preserving scheme tailored to the above method that leverages the Laplace distribution’s 

characteristics to safeguard user data. Theoretical analysis and experimentation evaluation on two publicly 

available datasets demonstrate that our scheme achieves a superior balance between privacy protection and 

recommendation effectiveness, ultimately delivering an enhanced user experience. 

CCS Concepts: • Security and privacy → Privacy protections; • Information systems → Recom- 

mender systems; • Computing methodologies → Artificial intelligence ; 

Additional Key Words and Phrases: Social recommendation, trustworthy artificial intelligence, differential 

privacy, matrix factorization, Laplace mechanism 
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 INTRODUCTION 

n the era of big data, Artificial Intelligence (AI) is widely used in various industries. AI-based
ecommender systems play a crucial role in mitigating information overload and aiding users in
aking efficient decisions. Designing more efficient and accurate personalized recommendation
ethods for target users has become a prominent research topic [ 9 , 10 , 16 , 18 , 19 , 25 , 29 ]. How-

ver, AI-based methods need to use a large amount of user data, which inevitably brings about
ecurity issues such as personal information leakage. Research has demonstrated that even if a
ecommendation system does not directly utilize users’ private details, such as gender or address,
 malicious attacker can still deduce sensitive information through inference, which will poten-
ially harm the user [ 2 ]. For instance, by merely observing users’ ratings of items, an attacker
an infer their gender or even ascertain whether they have a specific medical condition. Illegally
rafficking such sensitive personal information can lead to discrimination against victims when
eeking insurance or employment, even exposing them to targeted sales pitches and scams. Ac-
ordingly, designing more trustworthy AI-based algorithms that protect user privacy while deliver
igh-quality recommendations is of paramount importance. 
To address security concerns in AI-based recommender systems, many researchers have con-

ucted investigations using privacy-preserving techniques such as homomorphic encryption, dif-
erential privacy, k-anonymity, and others. Nevertheless, schemes based on k-anonymity [ 3 ] re-
trict the assumption of the attacker’s background knowledge, making it not secure enough for
rivacy protection. Meanwhile, numerous studies based on homomorphic encryption and other
ryptographic schemes [ 11 , 15 , 31 , 32 ] entail significant computational overhead, making them
hallenging to implement in practical scenarios. In contrast, differential privacy [ 6 ] offers reduced
omputational overhead and introduces a rigorous and quantifiable privacy concept. It constrains
he magnitude of the variation in the final output of an algorithm caused by a record in the dataset.
urthermore, it ensures that an attacker, even with knowledge of all data except one, cannot in-
er information about the unknown data. Consequently, a recommendation method based on dif-
erential privacy serves the dual purpose of protecting user privacy and delivering high-quality
ecommendations. 

In recent years, significant advancements have been made in recommendation schemes based
n differential privacy [ 4 , 12 , 23 , 38 ]. Zhu et al. [ 37 ] incorporated differential privacy into neighbor-
ased collaborative filtering algorithms by applying it to items and covariance matrices, resulting
n perturbed recommendations. Friedman et al. [ 8 ] introduced the differential privacy concept
CM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 161. Publication date: June 2024. 
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o the matrix factorization recommendation algorithm. Four different perturbation schemes: In-
ut Perturbation, Stochastic Gradient Perturbation, Output Perturbation, and Alternating Least

quares (ALS) with Output Perturbation are addressed in this work. However, these schemes in-
roduced noise and did not fully utilize the rating data. Jorgensen et al. [ 14 ] introduced a novel
rivacy concept called Personalized Differential Privacy (PDP) , which generalizes differential
rivacy by allowing users to specify individual privacy requirements for their data. Building upon
his concept, Zhang et al. [ 33 ] developed a novel recommendation scheme called PDP-PMF, which
s based on Probabilistic Matrix Factorization. Unlike traditional approaches that provide a uni-
orm level of privacy guarantee, PDP-PMF aims to satisfy user-specified privacy requirements at
he item level. This approach can yield improved recommendation results for recommender sys-
ems. By leveraging deep reinforcement learning, Xiao et al. [ 28 ] introduced an alternative user
rofile perturbation scheme for recommender systems. This scheme leverages differential privacy
o safeguard user privacy and utilizes deep reinforcement learning (RL) to determine the pri-
acy budget against inference attackers, which can increase the user privacy protection level. In
ddition, several other methods try to provide better privacy protection and recommendation re-
ults based on machine learning [ 1 , 5 , 22 , 27 , 30 , 34 , 35 ]. However, most of the above methods
eglect the problem that the recommender is not fully trustworthy. 
Among the schemes that consider untrustworthy servers, Hua et al. [ 13 ] introduced a scheme

nown as Differentially Private Matrix Factorization (DPMF) . This scheme employs a dis-
ributed matrix factorization model and introduces perturbations to the objective function through
 trusted third party. DPMF ensures that users’ ratings remain undisclosed to the server, thus, safe-
uarding the privacy of rating data. On this basis, Meng et al. [ 21 ] sought to tackle the challenge
f achieving privacy-preserving social recommendations with personalized privacy settings. They
resent a new scheme, PrivSR, which enables users to model ratings and social relationships pri-
ately. It can protect users’ privacy from both untrusted recommenders and friends by assigning
istinct noise levels to sensitive and non-sensitive ratings. Many local differential privacy schemes
ave also been proposed to protect users’ privacy and guard against untrustworthy servers [ 24 ,
6 , 36 ]. However, these schemes have not yet found the optimal trade-off between privacy and
ecommendation effectiveness. 

Generally speaking, the existing schemes still suffer from the following shortcomings. 

—The current schemes suffer from inadequate utilization of information, which often simply
utilize the raw rating and relationship data, ignoring the other information embedded in
the dataset. This will call for a comprehensive exploration of the existing data. 

—The current schemes still cannot achieve a satisfactory trade-off between privacy protec-
tion and recommendation effectiveness. The application of privacy-preserving technolo-
gies naturally affects recommendation effectiveness, exacerbated by the problem of un-
trustworthy servers. Some existing approaches either directly modify the original scoring
data or introduce noise to the results, leading to excessive noise and impacting the quality
of recommendations. 

To resolve these two deficiencies, we propose ID-SR, a novel privacy-preserving social recom-
endation scheme for trustworthy AI based on differential privacy and matrix factorization. It

ims to protect user privacy while delivering optimal recommendations, which can be seen as a
olution to the AI security problem in recommender systems. Specifically, first, we introduce an
mproved social recommendation method, called I-SR, based on matrix factorization with a novel
ocial regularization term. This scheme treats each item individually, accounting for the influence
f social relationships and users’ similar preferences on their own preferences. It can effectively
tilize the information embedded in historical ratings to enhance recommendation results. Second,
ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 161. Publication date: June 2024. 
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y employing the Laplace differential privacy mechanism, we introduce perturbations to the objec-
ive function and divide them into smaller components based on users or items. This enables users
o add noise locally, protecting the original data. Third, in the perturbation process, we leverage the
nfinite divisibility of the Laplace distribution and its stability to devise a noise generation scheme
hat aligns with I-SR. Considering the type of perturbation in the matrix decomposition section and
he diverse requirements of recommender systems, we develop two generation schemes: the undif-
erentiated noise generation scheme and the categorical noise generation scheme. Subsequently,
e provide proof of the proposed scheme’s adherence to the definition of differential privacy. The

eatures and contributions of our work are summarized as follows: 

—We put forward ID-SR, a novel privacy-preserving social recommendation scheme for trust-
worthy AI based on the infinite divisibility of Laplace distribution. We first introduce an
improved social recommendation method, I-SR, based on matrix factorization with a novel
social regularization term that considers the impact of social relationships and rating sim-
ilarity on user preferences. The method optimizes each item individually, allowing for the
comprehensive utilization of historical ratings and social relationships to enhance recom-
mendation quality. 

—For the proposed social recommendation method, ID-SR offers a new noise generation
scheme based on the infinite divisibility of the Laplace distribution and its stability to pro-
tect the user information. Considering the different requirements of the recommendation
system, we introduce two objective function perturbation schemes: undifferentiated per-
turbation and classification optimization perturbation. In the undifferentiated perturbation
scheme, all ratings are assigned equal privacy budgets. In contrast, the classification opti-
mization scheme allocates different privacy budgets to different categories of data. These
schemes address the challenge posed by untrustworthy recommendation servers and po-
tentially malicious friend users, providing better privacy guarantees to users. 

—The proposed scheme satisfies the differential privacy definition in theory. Experimental
results from diverse datasets demonstrate that ID-SR can provide better recommendations
while preserving user privacy, achieving a better trade-off between the two objectives. 

The remainder of this article is organized as follows. Section 2 introduces the relevant prelimi-
aries, such as differential privacy. Our scheme and the theoretical proof are proposed in Section 3 .
ection 4 gives the experimental results. Conclusions and future work are presented in Section 5 . 

 PRELIMINARIES 

.1 Differential Privacy 

ifferential privacy was initially introduced by Dwork [ 6 ] in 2006. By employing a rigorous math-
matical proof, differential privacy ensures that any information revealed through dataset output
s perturbed to a level where individual records remain indistinguishable, preventing a third party
rom inferring changes, additions, or deletions to a specific record based on variations in the out-
ut. It offers the highest levels of security among the current perturbation-based privacy protection
ethods. Formally, the differential privacy is defined as follows. 

Definition 2.1 ( ε-differential Privacy) Given two neighboring datasets D, D 

′ and a randomized
lgorithm A, A satisfies ε-differential privacy if for any anonymized output O ∈ Range(A), 

P r [A(D) = O] ≤ e ε × P r [A(D 

′ ) = O], 

here Range(A) denotes the output range of algorithm A and the term “neighboring datasets”
efers to two datasets that differ by only one record. This can occur in two scenarios: either D 

′ has
CM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 161. Publication date: June 2024. 
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ne additional or less data compared to D or D and D 

′ have the same number of data, but only
ne of them differs in content. Pr denotes the probability distribution and privacy budget ε is a
ositive real number. The smaller it is, the better privacy protection it can provide. 

This definition indicates that algorithm A satisfies ε-differential privacy if the outputs of algo-
ithm A on any two neighboring databases are indistinguishable, i.e., the probability distributions
f the outputs are less different than ε . 

.2 Laplace Mechanism 

he Laplace mechanism is a widely employed differential privacy protection mechanism for nu-
erical data. It introduces random perturbation noise to the data in order to ensure privacy protec-

ion. To illustrate the specific principles of the Laplace mechanism, we first present the definitions
f sensitivity and Laplace distribution. 

Definition 2.2 (Sensitivity). The maximum value of the variation of an algorithm A over two
eighboring datasets D and D 

′ is known as sensitivity, denoted as 

�A = max 

D ,D 

′ 
| | A(D) −A(D 

′ )| | 1 , 

here | | · | | 1 denotes the L 1 norm. 

Definition 2.3 (Laplace Distribution [ 17 ]). The Laplace distribution L(μ, b) is a continuous prob-
bility distribution characterized by a location parameter ( μ) and a scale parameter ( b). The math-
matical expectation of the Laplace distribution is equal to μ, the variance is equal to 2 b 2 , and its
robability density function is represented as follows: 

f (x |μ, b ) = 1 

2 b 
e −

|x−μ | 
b . 

The Laplace mechanism adds noise Y that conforms to the Laplace distribution to the result of
he randomized algorithm A as follows: 

M(D) = A(D) + Y , 

here M(D) represents the confusion result after the addition of noise and Y ∼ L(0 , � A/ε), � A is
he sensitivity of the algorithm A described above. 

A more detailed description of the Laplace mechanism can be found in Dwork et al. [ 7 ]. We give
ust a brief introduction here. 

.3 Properties of the Laplace Distribution 

2.3.1 Infinite Divisibility of the Laplace Distribution. 

Definition 2.4 (Infinite Divisibility). A probability distribution with characteristic function ψ is
nfinitely divisible if, for any integer n ≥ 1 , we have that ψ = ϕn 

n , where ϕn is another characteristic
unction. In other words, a random variable Y with characteristic function ψ has the representation

Y 

d 
= 

n ∑
i= 1 

X i (1)

or some individually and identically distributed random variables X i . 

Proposition 2.5. Let Y ∼ L(θ , s) have a Laplace distribution with characteristic function ψ Y (t) =
 

itθ /1 + s 2 t 2 , −∞ < t < +∞ . Then, the distribution of Y is infinitely divisible. Furthermore, for every
ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 161. Publication date: June 2024. 
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nteger n ≥ 1 , representation ( 1 ) holds. Each X i is distributed as θ/n + Y 1 n − Y 2 n , where Y 1 n and Y 1 n

re individually and identically distributed with gamma density 

(1 /s)1 /n 

Γ(1 /n) x 
1 
n −1 e −x/s , x ≥ 0 , 

n which Γ(1 /n) is a gamma function. For all positive integers, Γ(n) = (n − 1 )! 

The infinite divisibility of the classical Laplace distribution (where θ equals 0) is also stable.
hus, the following equation holds: 

Y 

d 
= 

√ 

B n−1 (Y 1 + · · · + Y n ), 

here Y , Y i ∼ L(0 , s). B n−1 is a random variable drawn from a beta distribution with parameters
n − 1 ) and 1. 

2.3.2 Mixture of Normal Distributions. 

Proposition 2.6. A standard classical Laplace random variable Y has the representation 

Y 

d 
= 
√ 

2 W Z , 

here the random variables W and Z have the standard exponential and normal distributions,

espectively. 

.4 Matrix Factorization 

atrix factorization (MF) is a popular used AI technique in recommendation systems [ 20 ]. Its
ey idea is to factorize the high-dimensional and sparse rating matrix R into two low-dimensional
nd dense matrices, i.e., the user profile matrix U and the item profile matrix V . Then, the two
rofile matrices will be used to predict user ratings of unrated items in the item set. 
Assuming that there are n users and m items in the recommender system, we use R i j to denote

he rating of user i on item j. The original rating matrix R = [R i j ] ∈ R 

n×m is typically sparse since,
n general, users rate a much smaller number of items compared with the total number of items
vailable. MF decomposes R into two matrices, U = [u i ]i ∈ [n ] ∈ R 

d×n and V = [v j ]j ∈ [m ] ∈ R 

d×m .
ere, u i represents the latent vector of user i , v j represents the latent vector of item j, and d denotes

he number of latent factors, which can react to the implicit characteristics of users and items. For
nstance, in a user movie rating dataset, the hidden factors of items may represent different movie
enres, such as action, comedy, and more. The latent vectors of a specific movie can be interpreted
s its degree of association with various genres. To enhance the recommendation effectiveness,
arious variants of matrix factorization techniques exist. The more commonly objective function
f MF with regularization terms is as follows: 

min 

U ,V 

n ∑
i= 1 

m ∑
j= 1 

I i j 

(
R i j − u 

T 
i v j 

)2 
+ λ

(
| | u i | | 2 + | | v j | | 2 

)
, 

here I i j = 1 if user i rated item j; otherwise, I i j = 0 . 
The final profile matrix U for users and V for items can be obtained using the stochastic gradi-

nt descent algorithm to optimize the function above iteratively. The inner product of these two

atrices results in 

ˆ R = U × V, which can be utilized for rating prediction. 

.5 Social Recommendation Based on Matrix Factorization 

ncorporating social information into matrix factorization has resulted in various schemes. In this
tudy, we specifically examine the recommendation method proposed by Ma et al. [ 19 ] that utilizes
CM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 161. Publication date: June 2024. 
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Fig. 1. The framework of ID-SR. 
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ocial regularization terms. Based on the above MF algorithm, the social recommendation method
an be mathematically written as follows: 

min 

U ,V 

n ∑
i= 1 

m ∑
j= 1 

I i j 

(
R i j − u 

T 
i v j 

)2 
+ λ

(
| | u i | | 2 + | | v j | | 2 

)
+

n ∑
i= 1 

∑
f ∈F i 

S i f | | u i − u f | | 2 F , (2)

here F i denotes the friends of user i , S i f denotes the similarity between user i and user f , and

| | · | | 2 F denotes the Frobenius norm. 

 THE PROPOSED SOCIAL RECOMMENDATION WITH DIFFERENTIAL PRIVACY 

.1 Scenario 

n this work, we consider the scenario in which the recommendation server is not entirely trust-
orthy. We aim to prevent the disclosure of the accurate contents of the original data through

he perturbation of the item and user latent vector. By doing so, we safeguard the privacy of each
ser’s information within the system, protecting it from potential inference. The framework of our
cheme, depicted in Figure 1 , involves two entities: the recommendation server and the users. The
ecommendation server assumes the responsibility of maintaining the item profile matrix, aggre-
ating the perturbed data from each user and updating the latent vectors of each item to complete
he item profile matrix. Users are required to manage their own latent vectors and transmit the
erturbed data to both the recommendation server and other users to update the latent vectors. 
For clarity, we will primarily focus on describing the recommendation scheme from the per-

pective of one user. To this end, we divide the user entity into four categories: 

—The target user, who is the recipient of recommendations 
—The friends of the target user, who are the users that have a social relationship with the

target user. 
—The users who rated the same items as the target user 
—Other users who do not belong to the above entities 
ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 161. Publication date: June 2024. 
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It is important to note that all users in the four categories are actual participants in the recom-
endation system and will be included as the recommended target user. 

.2 Threat Model 

n practical scenarios, users, recommendation servers, and external malicious attackers may at-
empt to access the personal information of specific users due to economic interests and other
easons. Therefore, we consider the following threat models: 

—An external malicious attacker seeks to obtain the data of a victim user in the recommen-
dation process and subsequently steal the victim’s private information for personal gain. 

—The recommendation server is considered semi-honest, strictly following the scheme to
provide recommendation results, but may be curious about certain users’ accurate data
and attempt to access it. At the same time, even if the server is trusted, an attacker may
be able to directly steal the data stored in it in order to gain access to the user’s private
information. 

—Some users within the recommendation system, even those trusted by others, may ex-
hibit semi-honest behavior. External attackers could disguise themselves as normal users
or some normal users may be curious about other users’ data, leading to the semi-honest
behavior. 

.3 Settings 

o address all the security threats mentioned above and simultaneously harness the full potential
f the data for improved recommendation results, our scheme, ID-SR, is structured as follows. First,
e maximize the utilization of information within the rating data by introducing a novel social

egularization term. Building upon this, we propose an improved MF-based social recommendation
ethod (I-SR). This method comprehensively accounts for the impact of social relationships and

ating similarity on user preferences, adopts individualized optimization for each item instead of
niform treatment, and thus employs a fine-grained optimization scheme for the item set, resulting

n improved recommendation effectiveness. Second, to ensure privacy protection for user data, we
evise an associated perturbation scheme for I-SR. It is based on the Laplace differential privacy
echanism and leverages the infinite divisibility of the Laplace distribution. Within the MF section,
e introduce two types of perturbation schemes: the undifferentiated scheme and the classification
ptimization scheme. The distinction between these two schemes is whether they categorize and
ncorporate the rating data with varying privacy levels. They are suitable for different systems. 

In our scheme, the item profile matrix V, perturbed by each user, is maintained by the recom-
endation server and will eventually be disclosed to the user to provide recommendations. Since

he recommendation server is considered semi-honest, the user’s own latent vector u i should be
aintained locally and secretly by oneself to prevent the attackers from deducing the user’s rat-

ng of an item by calculating u i × V. The communication data between the user and the server
r between the users are perturbed during the whole scheme process. Therefore, a privacy guar-
ntee can be provided. To facilitate subsequent discussions, we summarize the critical notations
mployed in Table 1 . 

.4 Improved Social Recommendation 

ocial recommendation uses historical rating data and social relationship information of users to
rovide personalized recommendations. Fully utilizing the information contained in these data
an provide better recommendations. In this work, we begin with proposing an improved social
ecommendation method, I-SR, which features a novel social regularization term. 
CM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 161. Publication date: June 2024. 
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Table 1. Critical Notations Employed in ID-SR 

Notation Meaning 

n Number of users 
m Number of items 
d Number of latent factors 
u i Latent vector of user i
v j Latent vector of item i
o 

i 
j User i’s noise vector for item j

U User profile matrix, composed by u i 

V Item profile matrix, composed by v j 

R i j Rating of item j by user i
I i j Indicator function, whether user i rated item j or not 

R max Maximum rating value in the system 

R min Minimum rating value in the system 

S i f Similarity between user i and user f 

S 
f 
i j For item j, the similarity between user i and user f 

C j Users who rated item j in addition to the target user 
F i Friends of user i

Exp(λ) Exponential distribution with parameter λ
B n Beta distribution with parameter n and 1 
L(b) Laplace distribution with position parameter 0 and scale parameter b

Γ(k, θ ) Gamma distribution with shape parameter k and scale parameter θ
N (μ, σ 2 ) Normal distribution with location parameter μ and squared scale parameter σ 2 

U (a, b) Continuous uniform distribution with parameters a and b
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We consider a recommender system consisting of n users and m items. The system includes the
ating records R = [R i j ] ∈ R 

n×m as well as the social relationships between users. In this work, we
olely focus on directed binary social relationships. Specifically, a value of 1 indicates when user
trusts user f , whereas 0 indicates no trust. Typically, the recommendation method incorporat-

ng social regularization is denoted as Equation ( 2 ). The method consists of two components: the
asic matrix factorization model and the social regularization term, in which the regularization
erm captures the influence of social relationships on user preferences. However, we identified
wo disadvantages with this term. First, it solely focuses on the influence of social relationships,
pecifically users’ trusted friends, on the target user’s preferences, which fails to leverage the rich
nformation present in the historical rating data. In fact, the historical rating data contains the
ated records of many users. Based on the idea that users with similar preferences may prefer a
pecific target item, we propose that the rating data can be more fully exploited to optimize the
egularization term by adding 

∑n 
i= 1 

∑
c ∈C j 

S ic | | u i − u c | | 2 F as a complementary, where C j denotes

he users who rated item j in addition to the target user and S ic indicates the similarity between
he two users, which is usually computed by Vector Space Similarity (VSS) and the Pearson

orrelation Coefficient (PCC) [ 19 ]. This term shows the effect of users with similar preferences
n the target user, which can also be understood as a potential social relationship and coincides
ith the idea of user-based collaborative filtering. 
The second question is this: do users with social relationships who share a preference for one

tem necessarily share preference for another thing? The answer is no, as gender, age, and only
ndividual preferences significantly impact user preferences. Current social regularization items
ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 161. Publication date: June 2024. 
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re user based, assigning equal weight to each item rated by a user. Instead, we propose computing
he inter-user similarity for each item at a fine-grained level, that is, changing the traditional term

o 

∑n 
i= 1 

∑m 

j= 1 

∑
f ∈F i S 

f 
i j (| | u i − u f | | )2 F , where S 

f 
i j denotes the similarity between users i and f for item

. The existing similarity measures are based on multiple vectors and do not apply to our proposed
ew similarity. Therefore, in I-SR, we use the following formula to measure the similarity between
wo users for item j: 

S 
f 
i j = 1 −

|R i j − R f j | 
R max − R min 

, (3)

here R max and R min represent the maximum and minimum values of rating allowed in the sys-
em, respectively. 

By addressing the two issues above, I-SR is able to provide an accurate measurement of the
mpact of social relationships and preference similarity on the target user at the item level. In
ummary, the objective function of our improved social recommendation method, based on the
asic matrix factorization model, is as follows: 

min 

U ,V 
J = 

n ∑
i= 1 

m ∑
j= 1 

I i j 

(
R i j − u 

T 
i v j 

)2 
+ λ

(
| | U | | 2 F + | | V| | 2 F 

)
+ α

n ∑
i= 1 

m ∑
j= 1 

∑
f ∈F i 

S 
f 
i j (| | u i − u f | | )2 F + α

n ∑
i= 1 

|V i | ∑
j= 1 

∑
c ∈C j 

S c i j (| | u i − u c | | )2 F , 

(4)

n which λ denotes the coefficients of the matrix regularization term, α indicates the coefficients
f the social regularization terms, and | V i | represents the number of items user i has rated. Like
raditional methods, I-SR consists of two parts: the basic matrix factorization model and the social
egularization term. Evaluations on two publicly available datasets show that by extending and
ccurately carving the regularization terms, I-SR can provide better recommendations, which will
e given in Section 4 . 

.5 Perturbation Scheme Based on Differential Privacy 

n order to protect sensitive information, such as users’ ratings and latent vectors u i , we employ
ifferential privacy in our proposed scheme. More specifically, we utilize objective function per-
urbation to safeguard the confidentiality of the generated item and user profile matrices to protect
sers’ information. Considering the threat model outlined in Section 3.2 , we adopt the strategy of

ndividual optimization of U and V, rather than joint optimization, to mitigate the risk of multiple
ttackers gaining access to the information. Within ID-SR, we employ the gradient descent method
o update the item and user latent vectors. Guided by Equation ( 4 ), the gradients with respect to
 i and v j are as follows: 

∂J 

∂v j 
= 2 

n ∑
i= 1 

I i j 

(
u 

T 
i v j − R i j 

)
u i + 2 λv j (5)

∂J 

∂u i 
= 2 

m ∑
j= 1 

I i j 

(
u 

T 
i v j − R i j 

)
v j + 2 λu i + α

|V i | ∑
j= 1 

∑
f ∈F i 

2 S 
f 
i j (u i − u f ) + α

|V i | ∑
j= 1 

∑
c ∈C j 

2 S c i j (u i − u c ), (6)

here F i stands for the friends of user i . 
Among them, V is publicly available to provide user recommendation services and simultane-

usly shared with other recommendation systems for joint optimization. The user’s latent vector,
 i , and the specific rating value, R i j , are sensitive information that should only be possessed by the
CM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 161. Publication date: June 2024. 
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ser. 1 However, the gradient concerning v j as Equation ( 5 ), which is employed by the recommen-
ation server to update v j , unavoidably relies on this sensitive information. Hence, it is crucial
o introduce perturbation in the basic matrix factorization model to prevent the recommenda-
ion server and the external attackers from extracting accurate data through inference attacks and
ther methods. Moreover, based on Equation ( 6 ), it is evident that when users update their own
idden vectors, u i , they rely on the vectors, u f and u c , which are from their friends or other users
ho have rated the same item. If unprotected, the information of user f and c may be leaked.
onsequently, it is essential to introduce perturbation in the social regularization term to protect
gainst user-based and external attackers. Subsequently, we will present the perturbation schemes
or both the matrix factorization model and the social regularization term. 

3.5.1 Privacy-Preserving Matrix Factorization. Based on the above discussion, each user who
ated j needs to send 2 I i j (u 

T 
i v j − R i j )u i to the recommendation server for updating v j . To protect

he sensitive information contained therein, we apply the objective perturbation method [ 4 ] with
-differential privacy. First, we introduce a formal objective function of the matrix factorization
odel with perturbations: 

n ∑
i= 1 

m ∑
j= 1 

I i j 

((
R i j − u 

T 
i v j 

)2 
+ v 

T 
j o 

i 
j 

)
+ λ

(
| | U | | 2 F + | | V| | 2 F 

)
, (7)

here o 

i 
j ∈ R 

d×1 is user i’s noise vector for item j. The gradient with respect to v j according to

quation ( 7 ) is as follows: 

∂J 

∂v j 
= 

n ∑
i= 1 

I i j 

(
2 
(
u 

T 
i v j − R i j 

)
u i + o 

i 
j 

)
+ 2 λv j . (8)

t this point, users can send the perturbed gradient data I i j (2 (u 

T 
i v j − R i j )u i + o 

i 
j ) to the server,

hich will effectively hide the user’s sensitive information and prevent it from being stolen. In

rder to provide ε−differential privacy guarantees for v j , 
∑n 

i= 1 o 

i 
j = o j ∼ L(2 � 

√ 

d /ε) is required.

owever, ensuring that the sum of each noise conforms to the Laplace distribution is challenging
f users are allowed to generate noise arbitrarily. Thus, Hua et al. [ 13 ] proposed a solution based
n Proposition 2.6 involving interactions between the server and users. In this work, we propose
 solution based on the infinite divisibility of the Laplace distribution, employing it as the matrix

actorization part of our undifferentiated scheme . 
First, each user who rated item j randomly selects the noise vector Y 

1 i 
j , Y 

2 i 
j ∈ R 

d×1 , where each

lement of them is randomly and independently picked from Γ(1 /| R j | , 2 � 

√ 

d /ε). | R j | denotes the
umber of users who rated item j. Then, the user just computes o 

i 
j = Y 

1 i 
j − Y 

2 i 
j as the final noise

ector. According to Proposition 2.5 , we have that o j ∼ L(2 � 

√ 

d /ε). Our perturbation scheme
s generated locally by the users, which reduces the interaction requirement compared with the
xisting scheme. 

Theorem 3.1. Let � = R max − R min . If each element in o j is randomly and independently selected

rom L(2 � 

√ 

d /ε), the derived V satisfies ε− differential privacy. 

Proof. Based on Proposition 2.5 , if each element of Y 

1 i 
j , Y 

2 i 
j is randomly and independently

elected from Γ(1 /| R j | , 2 � 

√ 

d /ε), that is, with the characteristic function 

(1 − 2 � it 
√ 

d )−1 / |R j | , 
 If an attacker gets hold of u i or gets an approximation of u i through inference attack, he can compute u i × V to obtain 

he user’s ratings for all items and then use these to infer personal information about the victim, such as the health status. 
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here i is an imaginary unit and t is a real number, then, by the nature of the characteristic
unction, the characteristic function of each element in o i j = Y 

1 i 
j − Y 

2 i 
j is 

ϕ = 

( 
1 

1 − (2 � 
√ 

d /ε )it 

) 1 /|R j | 
×

( 
1 

1 + (2 � 
√ 

d /ε )it 

) 1 /|R j | 
= 

( 
1 

1 − (2 � 
√ 

d /ε )2 i 2 t 2 

) 1 /|R j | 
= 

( 
1 

1 + (2 � 
√ 

d /ε )2 t 2 

) 1 /|R j | 
. 

hus, we have that 

ϕ |R j | = 
1 

1 + (2 � 

√ 

d /ε)2 t 2 
= ψ , 

n which ψ is the characteristic function of L(0 , 2 � 

√ 

d /ε). In other words, we have that 
∑ |R j | 

i= 1 o 

i 
j =

 j ∼ L(0 , 2 � 

√ 

d /ε), which means that each coordinate o jl of o j = (o j1 , o j2 , . . . , o jd ) is from the

( 2 � 
√ 

d 
ε 

). The density function of it is ε 

4 � 
√ 

d 
e 
−

ε |o jl | 

2 � 
√ 

d . 

Let D, D 

′ be two neighboring datasets only differing from one record R i j and 

˜ R i j since, from the
ifferent inputs, we obtain the same output V , which is obtained after convergence. According to

quation ( 8 ), we have that ∂ J (D)
∂v j 
= 

∂ J (D 

′ )
∂v j 

= 0 , that is, 

2 

n ∑
i= 1 

I i j 

(
u 

T 
i v j − R i j 

)
u i + o j = 2 

n ∑
i= 1 

I i j 

(
u 

T 
i v j − ˜ R i j 

)
u i + ˜ o j . 

ince only the records R i j and 

˜ R i j make a difference, we get that 

o j − ˜ o j = 2 u i (R i j − ˜ R i j ). 

onsidering that |R i j − ˜ R i j | ≤ � and | |u i | | ≤ 1 , we have that 

| | o j − ˜ o j | | ≤ 2 � . 

or each vector v j of the derived V, we can get that 

P r [v j |D]
P r [v j |D 

′ ] = 
∏d 

l= 1 P r (o jl )∏d 
l= 1 P r ( ˜ o jl )

= e 
−

ε 
∑d 

l= 1 
|o jl | 

2 � 
√ 

d /e 
−

ε 
∑d 

l= 1 
| ˜ o jl | 

2 � 
√ 

d = e 
ε 
∑d 

l= 1 
(| o jl | −| ˜ o jl | )

2 � 
√ 

d ≤ e 
ε 
√ 

d 
∑d 

l= 1 
(| o jl | −| ˜ o jl | )2 

2 � 
√ 

d = e 
ε 
√ 

d | | o jl − ˜ o jl | | 

2 � 
√ 

d ≤ e ε . 

Thus, we can provide the privacy guarantee consistent with ε−differential privacy for the
erived V. �

The approach mentioned above treats all historical rating data uniformly. In contrast, many
ontemporary recommendation systems offer users the capability to categorize ratings or other
hared content. Providing unequal weights of privacy protection for different types of ratings can
ignificantly enhance the recommendation quality of the recommendation system within the same
rivacy budget. Hence, following the concept of personalized social recommendation proposed by
eng et al. [ 21 ], we divide the types of ratings and employ diverse levels of privacy protection as

he matrix factorization part of our classification optimization scheme . In the classification
ptimization scheme, the objective function of the matrix decomposition part becomes 

min 

U ,V 
J = 

n ∑
i= 1 

m ∑
j= 1 

I 
1 
i j 

((
R i j − u 

T 
i v j 

)2 
+ v 

T 
j o 

i 
1 , j 

)
+

n ∑
i= 1 

m ∑
j= 1 

I 
2 
i j 

((
R i j − u 

T 
i v j 

)2 
+ v 

T 
j o 

i 
2 , j 

)
+ · · ·

+

n ∑
i= 1 

m ∑
j= 1 

I 
K 

i j 

((
R i j − u 

T 
i v j 

)2 
+ v 

T 
j o 

i 
K, j 

)
+ λ

(
| | U | | 2 F + | | V| | 2 F 

)
, 

here I k i j ( k = 1 , 2 , . . . , K ) is the indicator function for ratings of category k , which denotes whether

ser i rated item j or not. o 

i 
k, j 

is the noise generated by user i for item j from each category. In our
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cheme, the noise size is different for different categories, and private data requires a larger noise
han fully publicizable data to provide more privacy protection. 

Currently, different recommendation systems set up many different sharing categories for the
ontent sharing session, for example, setting the sharing content into two categories: private and
ublic or providing more categories of categorization. To facilitate descriptive convenience, we
ill illustrate our noise generation scheme using a 3-categorized (private, partially public, and

ully public) recommender system as an example. Assume that each of the three types is assigned
n ε 1 , ε 2 , and ε 3 privacy budget, where ε 1 = β1 ε 3 , β ∈ (0 , 1 ], ε 2 = β2 ε 3 , β2 ∈ (0 , 1 ], and β1 ≤ β2 . In
he scenario in which the total privacy budget is ε , we set ε 3 = ( 1 

β1 
+ 1 

β2 
+ 1 )ε (a similar setup

ould be adopted for more categories) and employ the interactive noise design for generating noise
ased on the additivity of the normal distribution. Specifically, according to Proposition 2.6 , the
ecommendation server first generates W j ∈ R 

d×1 for item j, where each element of it is randomly
nd independently selected from Exp(1 ). Then, the server shares W j to the users in R 3 , j who

ated the item j and these users select Z 

i 
j ∈ R 

d×1 . Here, there is a difference in the Z 

i 
j generated

rom users who categorize the ratings of this item. For the users who set the rating fully public,
ach element in Z 

i 
j (denote as Z 

i 
3 , j ) is randomly and independently selected from N (0 , 1 /| R 3 , j | )

similar for the users who set the rating to other categories), where | R 3 , j | denotes the number of
sers who set the rating of j as fully public. Thus, the noise vector o 

i 
3 , j can be computed as o 

i 
3 , j =

 � (2 dW j )1 /2 
Z 

i 
3 , j /ε 3 . Based on the additivity of the normal function, we have that 

∑ |R n, j | 
i= 1 o 

i 
3 , j =

 3 , j ∼ L(2 � 

√ 

d /ε 3 ), which is equivalent to each element in o 3 , j being independently and randomly

elected from L(2 � 

√ 

d /ε 3 ). 

Theorem 3.2. Let � = R max − R min . If each element in o 1 , j , o 2 , j , . . . , o K, j is randomly and inde-

endently selected from L(2 � 

√ 

d /ε 1 ), L(2 � 

√ 

d /ε 2 ), . . . , L(2 � 

√ 

d /ε K 

), respectively, then the derived

 satisfies ε−differential privacy. 

Proof. Since ε K 

= ( 1 
β1 
+ 1 

β2 
+ · · · + 1 

βK−1 
)ε and ε j = βj ε K 

, for j = 1 , . . . , K − 1 , we can formulate

he summation of all the random noise from all the users as follows: 

o j = 

|R 1 , j | ∑
i= 1 

o 

i 
1 , j +

|R 2 , j | ∑
i= 1 

o 

i 
2 , j + · · · +

|R K, j | ∑
i= 1 

o 

i 
K, j 

= 
2 � 

√ 

2 dW j 

ε 1 

|R 1 , j | ∑
i= 1 

Z 

i 
1 , j +

2 � 

√ 

2 dW j 

ε 2 

|R 2 , j | ∑
i= 1 

Z 

i 
2 , j + · · · +

2 � 

√ 

2 dW j 

ε K 

|R K, j | ∑
i= 1 

Z 

i 
K, j . 

ased on the additivity of the normal distribution (can be denoted as 
∑n 

i= 1 N (0 , 1 
n 
) = N (0 , 1 )), the

bove equation can be expressed as 

o j = 2 � 

√ 

2 dW j Z j 

(
1 

ε 1 
+

1 

ε 2 
+ · · · + 1 

ε K 

)
= 2 � 

√ 

2 dW j Z j 
��� 1 

(1 + β1 

β2 
+ · · · + β1 

βK−1 
)ε 
+

1 

( β2 

β1 
+ 1 + · · · + β2 

βK−1 
)ε 
+ · · ·+ 1 

( 1 
β1 
+ 1 

β2 
+ · · · + 1 

βK−1 
)ε 

���
= 

2 � 

√ 

d 

ε 

√ 

2 W j Z j . 

here Z j denotes the standard normal distribution that can be indicated as Z j ∼ N (0 , 1 ). Thus, we
an get that the summation of all the random noise from all the users, o j = (o j1 , o j2 , . . . , o jd ), is a
-dimensional vector, in which each coordinate o jl ∼ L(2 � 

√ 

d /ε). 
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The subsequent proof is identical to the proof of Theorem 3.1 for V satisfying ε−differential
rivacy; our classification optimization scheme can provide the same privacy guarantee
or V . �

3.5.2 Privacy-Preserving Social Regularization. During the process of updating the user latent
ector u i , it is necessary for each user to transmit the data, including one’s own latent vector,
atings, and other relevant information for other users to update u i . To safeguard the privacy of
his data, we also employ objective function perturbation. The traditional perturbation scheme of
he social regularization term can be expressed as follows: 

min 

U ,V 

n ∑
i= 1 

∑
f ∈F i 

(
S i f | | u i − u f | | 2 F + u 

T 
i o 

f 
i 

)
. 

n ID-SR, the incorporation of the novel social regularization term necessitates the adoption of
 new perturbation design in order to ensure ε−differential privacy protection. Leveraging the
tability properties of the Laplace distribution, we propose the following perturbation scheme: 

min 

U ,V 

n ∑
i= 1 

|V i | ∑
j= 1 

∑
f ∈F i 

(
S 

f 
i j | | u i − u f | | 2 F + u 

T 
i 

√ 

B 

i 
1 o 

f 
i j 

)
+

n ∑
i= 1 

|V i | ∑
j= 1 

∑
c ∈C j 

(
S c i j | | u i − u c | | 2 F + u 

T 
i 

√ 

B 

i 
1 o 

c 
i j 

)
, (9)

here 
√ 

B 

i 
1 ∈ R 

d×1 is a vector generated by the target user and each element in it is independently

nd randomly selected from a Beta distribution with parameters both being 1. o 

f 
i j and o 

c 
i j are the

oise vectors generated by other users for the target user i . 

In I-SR, during the process of calculating the similarity between two users ( S 
f 
i j and S c i j ), private

ata R i j from the other users are used; it also needs to be processed to protect the users’ informa-
ion. Thus, in ID-SR, we change the similarity as follows: 

S 
f 
i j = 1 −

|R i j + q 
f 
i j − R f j | 

R max − R min 
, 

here q 
f 
i j ∼ U (R min , R max ) is a random variable selected from the uniform distribution. At the

ame time, to keep the meaning of similarity, we make the following settings: if the perturbed S 
f 
i j 

xceeds 1, then set it to 1, whereas if it is less than 0, then set it to 0. 
Similarly, in order to provide a ε−differential privacy guarantee for each derived u i , we need to

esign a noise generation scheme to make 
∑ |V i | 

j= 1 

∑
f ∈F i o 

f 
i j = o f ,i ∼ L(4 

√ 

d /ε) and 

∑ |V i | 
j= 1 

∑
c ∈C j 

o 

c 
i j =

 c,i ∼ L(4 
√ 

d /ε). Both of the methods we introduced in Section 3.5.1 can be used. Specifically, in
ur proposed approach based on the infinite divisibility of the Laplace distribution, the users

n F i (similar to the users in C j ) generate the vector o 

f 
i j = Y 

1 f 
i − Y 

2 f 
i , where each element of

 

1 f 
i − Y 

2 f 
i is randomly and independently picked from Γ(1 /(| V i | ∗ | F +i | ), 4 

√ 

d /ε). In the interac-
ive generation scheme, the target user first generates W i ∼ Exp(1 ) and the users in F +i select

 

f 
i ∼ N (0 , 1 /(| V i | ∗ | F +i | )); the noise vector can be computed as o 

f 
i j = 4 (2 dW i )1 /2 

Z 

f 
i /ε . According

o our objective function Equation ( 9 ), the gradient of the socialization part with respect to u i is
s follows: 

∂J 

∂u i 
= 

m ∑
j= 1 

∑
f ∈F i 

(2 S f i j (u i − u f ) +
√ 

B 

i 
1 o 

f 
i j ) +

m ∑
j= 1 

∑
c ∈C j 

(2 S c i j (u i − u c ) +
√ 

B 

i 
1 o 

c 
i j ) + 2 λu i . (10)
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Theorem 3.3. If each element in o f ,i and o c,i is independently and randomly selected from

(4 
√ 

d /ε), the derived U will satisfy ϵ−differential privacy. 

Proof. According to Propositions 2.5 and 2.6 , both of our noise generation methods can get

he result that 
∑m 

j= 1 

∑
f ∈F +i 

o 

f 
i j = o f ,i ∼ L(4 

√ 

d /ε) and 

∑m 

j= 1 

∑
c ∈C j 

o 

c 
i j = o c,i ∼ L(4 

√ 

d /ε). During the

rocess of updating the target user’s latent vector u i , the summation of all the random noise from
ll the other users can be represented as follows: 

o i = 

√ 

B 

i 
1 o f ,i +

√ 

B 

i 
1 o c,i ∼

√ 

B 1 

( 
L 

( 
4 
√ 

d 

ε 

) 
+ L 

( 
4 
√ 

d 

ε 

) ) 
. 

ince the infinite divisibility of classical Laplace distribution is stable, which is described in Propo-

ition 2.5 , we can get that each element in o i = {o i1 , o i2 , . . . , o id } is distributed as L(2 
√ 

d /ε). 
Let D, D 

′ be two neighboring datasets that only differ by one record u f (or u c ) and 

˜ u f . Since from
he different inputs, we obtain the same output U that is obtained after convergence, we have that
∂ J (D)
∂u i 
= 

∂ J (D 

′ )
∂u i 

= 0 , where J is as Equation ( 10 ) with an additional term 2 
∑m 

j= 1 I i j (u 

T 
i v j − R i j )v j ,

hich is from the matrix factorization part. Thus, we have that 

o i + 2 
∑
f ∈F i 

S 
f 
i j (u i − u f ) = ˜ o i + 2 

∑
f ∈F i 

˜ S i j 
f (u i − ˜ u f ). 

ince only the records u f and 

˜ u f make a difference, we get that 

o i − ˜ o i = 2 

(
S 

f 
i j −

˜ 
S 

f 
i j 

)
u i + 2 S 

f 
i j u f − 2 

˜ 
S 

f 
i j ˜ u f . 

onsidering that S 
f 
i j ∈ [0 , 1 ], | | u i | | ≤ 1 , we have that 

| | o i − ˜ o i | | ≤ 4 . 

or each vector u i of the derived U , we can get that 

P r [u i |D]
P r [u i |D 

′ ] = 
∏d 

l= 1 P r (o il )∏d 
l= 1 P r ( ˜ o il )

= e 
−

ε 
∑d 

l= 1 
|o il | 

4 
√ 

d /e 
−

ε 
∑d 

l= 1 
| ˜ o il | 

4 
√ 

d = e 
ε 
∑d 

l= 1 
(| o il | −| ˜ o il | )

4 
√ 

d ≤ e 
ε 
√ 

d 
∑d 

l= 1 
(| o il | −| ˜ o il | )2 

4 
√ 

d = e 
ε 
√ 

d | | o il − ˜ o il | | 
4 
√ 

d ≤ e ε . 

Thus, we can provide the privacy guarantee consistent with ε−differential privacy for the de-
ived U . �

Following the above privacy-preserving recommendation design based on the Laplace Differ-
nce Privacy Mechanism, ID-SR can handle all the threats presented in Section 3.2 and provide
etter recommendation results while ensuring that the users’ sensitive data, e.g., the actual rating
alues and latent vectors, are not leaked, protecting the user’s privacy. 

.6 Our Scheme ID-SR 

ombining the social recommendation method and perturbation scheme we proposed above, ul-
imately, ID-SR under classification optimization scheme (denoted as ID-SR(k), k indicates the
umber of categories) aims to solve the following optimization problem: 

min 

U ,V 
J = 

n ∑
i= 1 

m ∑
j= 1 

I 
1 
i j 

((
R i j − u 

T 
i v j 

)2 
+ v 

T 
j o 

i 
1 , j 

)
+

n ∑
i= 1 

m ∑
j= 1 

I 
2 
i j 

((
R i j − u 

T 
i v j 

)2 
+ v 

T 
j o 

i 
2 , j 

)
+ · · ·
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+

n ∑
i= 1 

m ∑
j= 1 

I 
K 

i j 

((
R i j − u 

T 
i v j 

)2 
+ v 

T 
j o 

i 
K, j 

)
+ α

n ∑
i= 1 

|V i | ∑
j= 1 

∑
f ∈F i 

(
S 

f 
i j | | u i − u f | | 2 F + u 

T 
i 

√ 

B 

i 
1 o 

f 
i j 

)
+ α

n ∑
i= 1 

|V i | ∑
j= 1 

∑
c ∈C j 

(
S c i j | | u i − u c | | 2 F + u 

T 
i 

√ 

B 

i 
1 o 

c 
i j 

)
+ λ

(
| | U | | 2 F + | | V| | 2 F 

)
, (11)

here α is a scalar to control the effect of social regularization. When there is no categorization
f the ratings, i.e., the number of categories is 1, the above formula can be used as the objective
unction of the undifferentiated scheme. Thus, we will not repeat it. In fact, the undifferentiated
erturbation scheme (denoted as ID-SR(non)) can be viewed as a special form of classification
ptimization scheme. Therefore, for the sake of convenience, the subsequent explanation focuses
olely on the classification optimization scheme. In ID-SR, we use the gradient descent algorithm
o iteratively optimize the user latent vector u i and the item latent vector v j , obtaining the user
rofile matrix U and item profile matrix V. The gradients of Equation ( 11 ) with respect to u i and
 j are given as follows: 

∂J 

∂v j 
= 

K ∑
k= 1 

n ∑
i= 1 

I 
k 
i j 

(
2 
(
u 

T 
i v j − R i j 

)
u i + o 

i 
k, j 

)
+ 2 λv j (12)

∂J 

∂u i 
= 2 

m ∑
j= 1 

I i j 

(
u 

T 
i v j − R i j 

)
v j + 2 λu i 

+ α
m ∑
j= 1 

∑
f ∈F i 

(
2 S 

f 
i j (u i − u f ) +

√ 

B 

i 
1 o 

f 
i j 

)
+ α

m ∑
j= 1 

∑
c ∈C j 

(
2 S c i j (u i − u c ) +

√ 

B 

i 
1 o 

c 
i j 

)
. 

(13)

To protect the users’ information against the untrusted recommendation server, users, and at-
ackers, our improved privacy-preserving social recommendation scheme, ID-SR, will follow the
rocess shown in Figure 2 
In our system, the recommendation server holds the item sets. Each user holds its own ratings

nd social relationships. The overall process is divided into three phases: initialization, optimiza-
ion, and result generation. In the initialization phase, the recommendation server initializes the
tem profile matrix V and sends it to all users, whereas the user initializes its own latent vector
 i . After this, users will interact with each other and the server to work together to complete the
ptimization phase. Specifically, in each iteration, the recommendation server aggregates pertur-
ation data from each user according to Equation ( 12 ) in order to update the item profile matrix
nd send it to each user. Users, in turn, aggregate perturbation data from other users according to
quation ( 13 ) to update their own latent vector until convergence. Finally, using the converged V

nd u i , the user computes the final result ˆ R i = u 

T 
i V and obtains the recommendation result. The

lgorithm of ID-SR is described in Algorithm 1 . 
ID-SR is trained using rating data and social relationship data. A suitable differential privacy

cheme is designed to protect users’ data. At the end of the algorithm, a matrix of predicted ratings
or each user is returned; based on this, items will be selected to recommend for the user. 

Theorem 3.4. ID-SR satisfies ε−differential privacy. 

Proof. In our scheme ID-SR, we optimize the item profile matrix V and user profile matrix U

ased on Equation ( 12 ) and Equation ( 13 ), respectively, instead of taking joint optimization. Based
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Fig. 2. The working process of ID-SR. 
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n Theorems 3.1 , 3.2 , and 3.3 , both derived V and U under different versions of ID-SR satisfy ε-
ifferential privacy. Thus, our scheme ID-SR satisfies ε-differential privacy and can resist attacks
uch as stealing and inferencing on user ratings and latent vectors by different attackers in the
verall process. �

 EXPERIMENTAL EVALUATION 

n this section, our primary objective is to evaluate the effectiveness of our proposed scheme by
nswering the following two questions: 

(1) Can our proposed improved social recommendation method I-SR yield better recommen-
dation results? 

(2) Can ID-SR achieve a more optimal balance between privacy protection and recommenda-
tion effectiveness? 

To investigate these two questions, we implement I-SR, three forms of ID-SR, and perform the
ubsequent experimental setups. 

.1 Experimental Settings 

n this article, we primarily focus on two publicly available social recommendation databases:
iaoDVD 

2 and Epinions. 3 Both databases contain two files: the rating file, which includes users’
 http://w w w.ciao.co.uk/ 
 http://w w w.epinions.com/ 
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ALGORITHM 1 : Improved Privacy-Preserving Social Recommendation Based on Differential 
Privacy (ID-SR) 

Input: J , ε, γ , α , λ, User ratings R and social relationships data 

Output: ˆ R 

1: Users initialize their own latent vector u i , Recommendation Server initializes item profile matrix V

2: while not converge do 

3: //Recommendation server updates v j 
4: for j = 1 , . . . , m do 

5: for k = 1 , . . . , K do 

6: for i in R k, j do 

7: Send 2 (u 

T 
i v j − R i j )u i + o 

i 
k, j 

to the recommender 

8: end for 

9: end for 

10: Update v j = v j − γ ∂ J 
∂v j 

11: end for 

12: //User updates u i 

13: for i = 1 , . . . , n do 

14: for j = 1 , . . . , m do 

15: User i send 
√ 

B 

i 
1 to the users in F i ∪ C j 

16: for f in F i do 

17: Send 
√ 

B 

i 
1 o 

f 
i j − 2 S 

f 
i j u f to the user i 

18: end for 

19: for c in C j do 

20: Send 
√ 

B 

i 
1 o 

c 
i j − 2 S c i j u c to the user i 

21: end for 

22: end for 

23: Update u i = u i − γ ∂ J 
∂u i 

24: end for 

25: end while 

26: 

27: return 

ˆ R = UV 
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A

atings of items on a scale from 1 to 5, and the social relationship file, which captures the relation-
hips between users, represented by a directed binary value, i.e., a social value of 1 indicates that
ser i has a relationship with user f , whereas 0 signifies no relationship. Statistical information
or the datasets is provided in Table 2 . 

In our experiments, we use five-fold cross-validation to partition the dataset and evaluate the
cheme. Mean Absolute Error (MAE) and Root Mean Square Error(RMSE) are used as the
etrics, which are defined as follows: 

MAE = 

∑
(i, j)∈R t e s t 

| ˆ R i j − R i j | 
|R te s t | 

RMSE = 

√ ∑
(i, j)∈R t e s t 

( ˆ R i j − R i j )2 

|R te s t | 
, 

here R te s t is the set of ratings in the testing set, and smaller MAE and RMSE usually indicate
etter performance for recommendation effectiveness. 
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Table 2. Statistics of Datasets 

Dataset Users Items Ratings Relationships 
CiaoDVD 17,615 16,121 72,665 40,133 
Epinions 49,290 139,738 664,824 487,181 

 

n  

l  

r  

p

4

T  

p

 

 

 

 

 

p  

t  

l  

a  

b  

s  

e

4

I  

f  

(  

 

 

 

 

 

 

 

 

 

In terms of parameters, some of them are set uniformly in the following experiments. We set the
umber of latent factors d = 10 , matrix regularization term coefficient λ = 10 −3 , and social regu-

arization term coefficient α = 10 −2 . Except for the experiment that explores the effect of learning
ate, we set γ = 10 −3 . More descriptions of the parameters, especially about the effect of certain
arameters, will be given in the following experiments. 

.2 Effectiveness of the New Method 

o answer the first question, which pertains to evaluating the efficacy of I-SR, we conduct a com-
arative experiment between I-SR and the following methods. 

—Funk_svd [ 9 ] : Basic Matrix Factorization Model. It decomposes the matrix R into two
low-dimensional matrices and uses them to predict the user ratings of items. A regularity
is added to the objective function to control the model variance. 

—Social_reg [ 19 ] : Recommendation Systems with Social Regularization. It introduces a so-
cial regularization term based on matrix factorization. Complementing social relationships
can be an effective way to improve recommendations. 

The results at γ = 10 −2 and 10 −3 are shown in Table 3 . As can be seen from the table, I-SR out-
erforms the other two algorithms at different learning rates. Since all of the above algorithms use
he same matrix factorization model, it can be concluded that our proposed improved social regu-
arization term can effectively improve the recommendation results. In fact, I-SR can be considered
s the version of ID-SR without differential privacy. From the above experiment results, it can also
e seen that the learning rate does not significantly affect the algorithms without privacy pre-
erving. In other words, smaller learning rates do not significantly improve the recommendation
ffectiveness of the algorithms without differential privacy. 

.3 Evaluation of ID-SR 

n order to answer the second question and evaluate the effectiveness of ID-SR, we implement dif-
erent versions (ID-SR(non), ID-SR(2), and ID-SR(3)) of our scheme and select some recent research
DPMF [ 13 ], PrivSR [ 21 ]) for comparison. The brief introductions on these schemes are as follows.

—DPMF [ 13 ] : Differentially Private Matrix Factorization. It is based on the basic factoriza-
tion model and uses objective perturbation to ensure that the final item profiles satisfy
differential privacy. It solves the challenge of decomposing the noise component into small
pieces. 

—DPMF(modify): A modified version of DPMF that we implemented. While the original
DPMF uses an undifferentiated noise generation scheme that provides the same pertur-
bation to all ratings, DPMF(modify) uses a classification optimization scheme under two
categories, classifying ratings into private and public, and giving different perturbations to
them. 

—PrivSR [ 21 ] : Personalized Privacy-Preserving Social Recommendation. It is based on the
social recommendation model and uses objective perturbation, allocating different noise
magnitudes to personalized sensitive and non-sensitive ratings. 
ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 161. Publication date: June 2024. 
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Table 3. Comparisons for Illustrating the Effectiveness of I-SR 

Dataset Learning Rate Method MAE RMSE 

Funk_svd 0.78176 1.02688 
10 −2 Social_reg 0.76845 1.1616 

CiaoDVD I-SR 0.7401 0.98233 
Funk_svd 0.77806 1.02627 

10 −3 Social_reg 0.76636 1.01491 
I-SR 0.74634 0.9861 

Funk_svd 0.83209 1.09294 
10 −2 Social_reg 0.82053 1.07165 

Epinions I-SR 0.81188 1.0646 
Funk_svd 0.832 1.0924 

10 −3 Social_reg 0.81925 1.05876 
I-SR 0.81088 1.05472 
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—ID-SR(non): Version of our ID-SR under an Undifferentiated Noise Generation scheme.
Based on our proposed improved social recommendation algorithm I-SR, the objective
function is perturbed based on the Laplace differential privacy mechanism, and all ratings
are equally protected. 

—ID-SR(2): Our scheme ID-SR under the Classification Optimization scheme with two cate-
gories. Since PrivSR is a 2-category algorithm, we also implemented a 2-classification ver-
sion of DPMF and ID-SR for a fair comparison to validate the effectiveness of our scheme.

—ID-SR(3): Our scheme ID-SR under the Classification Optimization scheme with three
categories. 

Among these schemes based on differential privacy, given the presence of multiple parame-
ers that could influence the outcomes, several experiments were designed through the controlled
ariable method to make a comprehensive evaluation of our scheme. 

First, we would like to start by taking a general look at the performance of ID-SR and assessing
he impact of categorization on the results. Under both datasets, we fix the learning rate γ = 10 −3 ,
rivacy budget ε = 1 , and vary the percentage of the first and second categories. Among these
chemes, DPMF and ID-SR(non) are both undifferentiated noise generation approaches that re-
ain unaffected by data classification. At the same time, DPMF(modify), PrivSR, and ID-SR(2) are

oth two-classification schemes wherein the historical rating is categorized into private and public
roups. To simulate the user’s actions, we randomly select x percent of the ratings as private and
he remaining 100-x as public. ID-SR(3) is the three-classification implementation of our scheme.
 corresponds to the proportion of private and partially public data, whereas the fully public data
ercentages are given by 100-2x. We vary x as { 10 , 20 , . . . , 50 } and the results are shown in Figure 3
nd Figure 4 . 

It can be seen that under different datasets, compared with DPMF, our undifferentiated noise
eneration scheme ID-SR(non) can lead to a significant improvement in recommendation ef-
ectiveness, and the recommendation accuracy even exceeds that of DPMF(modify), which has
een improved by classification optimization. At the same time, compared with other schemes
ith the same two-classification optimization, our scheme ID-SR(2) is outperforming. Our three-

lassification scheme, ID-SR(3), can provide the best recommendation results among all of the
ethods above while providing privacy protection for the data through more fine-grained pertur-

ation imposition, which can illustrate the effectiveness of our improved social regularization term
nd the different perturbation schemes proposed. In this experiment, an increase in the proportion
CM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 161. Publication date: June 2024. 
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Fig. 3. Comparison on CiaoDVD under the same privacy budget and different data divisions. 

Fig. 4. Comparison on Epinions under the same privacy budget and different data divisions. 

Table 4. Recommendation Results at Different Learning Rates 

Method Learning Rate MAE RMSE 

10 −3 1.68593 2.04711 
ID-SR(2) 10 −4 1.30603 1.65864 

10 −5 0.98246 1.30258 
10 −3 1.71936 2.07609 

PrivSR 10 −4 1.3063 1.65712 
10 −5 1.00232 1.32527 
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f private and partially public data, i.e., applying a larger proportion of loud noise to the dataset
s a whole, brings about a small but insignificant change in accuracy. Later in this article, we will
et x = 20%, i.e., select 20% of the data as private (20% each of private and partially public data in
D-SR(3)), as a representative scenario to evaluate the performance of ID-SR. 

During our experiments, we found that the recommendation effectiveness of schemes with pri-
acy preservation is strongly influenced by certain parameters. Thus, in a second step, we want to
xplore the impact of different factors on our schemes. First, we explore the impact of the learning
ate. The results of PrivSR and ID-SR(2) under the CiaoDVD dataset with privacy budget ε = 0 . 1
t different learning rates are shown in Table 4 . 

As we have seen, smaller learning rates can lead to significant improvements in recommenda-
ion results but will come at the cost of longer training times. For a practical recommender, fast
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Fig. 5. Recommendation effectiveness under different datasets and privacy budget. 
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ecommendations are essential. Thus, pursuing better results by tuning the learning rate is not
hat we are after. Our focus is on longitudinal comparisons with some parameters to illustrate

he performance of our algorithms, not on how to tweak the parameters to make recommenders
erform better. In subsequent experiments, we will fix the learning rate to 10 −3 to evaluate our
cheme. 

We also found that the effect of schemes with differential privacy based on objective perturba-
ion is strongly influenced by the number of ratings of each item in the dataset. Thus, we conducted
he following experiments. We filtered the CiaoDVD dataset by sequentially filtering items rated
ess than 10, 20, and 30 and forming three datasets based on this, CiaoD VD-10, CiaoD VD-20, and
iaoDVD-30. Under different datasets, we set γ = 10 −3 and x = 20% to evaluate the performance
f PrivSR and ID-SR(2) under different privacy budgets. The experimental results are shown in
igure 5 . 

Overall, the dataset with the original unfiltered items performs better when the privacy budget
s very small ( ε = 0 . 1 ). In other cases, the dataset that filters more items shows significant improve-

ent in recommendation results. This is in line with our predictions because, first of all, items with
ore ratings bring better forecasts due to the fact that they can be predicted by a larger number of

sers who can predict their features and, thus, describe their hidden vectors more easily. Second,
or items with only very few ratings, the noise perturbation added to them is huge. Indeed, for an
tem, when the privacy budget is small, e.g., ε = 0 . 3 , the noise imposed on it will approximately
ollow L(60 ). When the rating number of an item is small, e.g., only 5, the perturbation applied to
he user’s hidden vector approximately conforms to L(12 ). This noise is relatively large, especially
ompared with the user’s latent vector u i , as | | u i | | ≤ 1 . Excessive noise significantly impacts the
ecommendation, and there is no need to add them to the user’s hidden vector. Fortunately, modern
ecommendation systems typically have a substantial user base that rates each item much more
requently than our test dataset, resulting in the method performing well on large-scale datasets.
dditionally, when a few items have a limited number of ratings, indicating the occurrence of the

tem cold-start problem, the recommendation results can be further supplemented based on the
ontent of the item descriptions. 

Based on the above discussion, we finally evaluate the impact of different privacy budgets on
he effectiveness of each scheme under the same learning rate and dataset. We set ε from 0.1 to 2;
he results are shown in Figure 6 and Figure 7 . 

At ε = 0 . 1 , DPMF has the best recommendation accuracy because other schemes with social
ecommendation methods require additional protection of the user’s hidden vectors, and more
CM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 161. Publication date: June 2024. 
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Fig. 6. Comparison on CiaoDVD under different privacy budgets. 

Fig. 7. Comparison on Epinions under different privacy budgets. 
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oise needs to be added. Other than that, our scheme performs better under other privacy budgets,
nd the finer categorization scheme can significantly improve the recommendation results. The
ecommendation accuracy of ID-SR(3) is even close to Social_reg when the privacy budget ε = 2 .
his demonstrates that our scheme performs better and strikes a better balance between privacy
rotection and recommendation effectiveness. 

 CONCLUSIONS AND FU T URE WORK 

n this article, we propose a novel privacy-preserving social recommendation scheme for trustwor-
hy AI called ID-SR, which aims to provide better recommendations while protecting user data. It
s a solution to the AI security problem in recommender systems. ID-SR synthesizes the impact of
ocial relationships and users with similar preferences on the target user’s preferences. It considers
ser similarity at a fine-grained level for each item. We enhance the traditional matrix decompo-
ition algorithm for social regularization terms and introduce a new matrix decomposition-based
ocial recommendation method: I-SR. To protect users’ private data from potential theft or in-
erence by untrustworthy servers, users, and external attackers, we develop a differential privacy-
reserving scheme specifically adapted to I-SR. Our approach leverages the infinite divisibility and
tability properties of the Laplace distribution. We introduce perturbations to the objective func-
ion, conforming to the Laplace mechanism, in order to protect the generated user latent vectors
nd item latent vectors. We implement various versions of ID-SR by dividing the historical rating
ACM Trans. Knowl. Discov. Data., Vol. 18, No. 7, Article 161. Publication date: June 2024. 
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ataset in different ways. Through experimental evaluation, we demonstrate that ID-SR outper-
orms other approaches, delivering improved recommendation results while effectively preserving
ser data privacy. 
In our future work, we plan to explore scenarios such as Top-N recommendation and address the

hallenge of novelty recommendation by considering the dynamic dataset problem. Additionally,
e aim to investigate more robust privacy-preserving solutions, ultimately offering users more

ecure and personalized recommendation methods. 
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