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Abstract

This article presents a case study determining the optimal preventive maintenance policy for a light rail rolling stock sys-
tem in terms of reliability, availability, and maintenance costs. The maintenance policy defines one of the three predefined
preventive maintenance actions at fixed time-based intervals for each of the subsystems of the braking system. Based on
work, maintenance, and failure data, we model the reliability degradation of the system and its subsystems under the cur-
rent maintenance policy by a Weibull distribution. VWe then analytically determine the relation between reliability, avail-
ability, and maintenance costs. We validate the model against recorded reliability and availability and get further insights
by a dedicated sensitivity analysis. The model is then used in a sequential optimization framework determining preventive
maintenance intervals to improve on the key performance indicators. VWe show the potential of data-driven modelling to
determine optimal maintenance policy: same system availability and reliability can be achieved with 30% maintenance cost
reduction, by prolonging the intervals and re-grouping maintenance actions.
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Introduction required) versus system performance, expressed in
terms of reliability and availability. The maintenance
actions of HTM follow a pre-determined maintenance
policy: a set of preventive maintenance (PM) tasks is
performed at fixed, distance- or time-based intervals.
The maintenance policy is the sequence of tasks with a
positive impact on the performance and life expectancy
of the subsystem and its components, described in terms
of task level (ranging from a simple check to a full
repair), and their timing.

We focus on the braking system of light rail rolling
stock (Alstom Citadis), more details in Appendix 1.
For light rail rolling stock, it is currently the task of the

Public transportation networks are being consistently
indicated as a key player to ensure sustainable, afford-
able, and high-quality mobility in urban areas.' In real-
ity, much has still to be done to ensure a high level of
system performance when providing safe and comforta-
ble transport services to its customers. High level of
system performance comes from carefully planned
operations and a high availability of the asset during
operations (reliability of operations, disturbances, and
disruptions) as well as outside operations (workforce
for maintenance and repairs, availability of extra vehi-
cles to run the planned services). Keeping a high level
of service encompasses these three aspects which are
conflicting, with direct impact on capital-intensive
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Figure 1. Combination of approaches identified to determine the optimal maintenance policy.

manufacturer to determine a maintenance policy on
forehand, based on reliability, availability, maintain-
ability, and safety (RAMS) specifications and based on
the degradation, failures, and repairs expected in the
warranty period. Maintenance tasks and intervals were
never evaluated, and it is suspected (based on experi-
ence and gut feelings, not on quantitative indicators)
that they are very conservative, resulting in a high
workshop load and high maintenance costs. The goal
of this article is to report on a test case on dedicated
optimization of PM policy which targets directly reliabil-
ity, availability, and maintenance costs. We combine the
existing failure records with a dedicated maintenance
model to improve the maintenance of a rolling stock
system.

The main contribution of this article is the applica-
tion to a relevant test case of a comprehensive approach
used to determine a PM policy and comparison against
the current state of practice. To the best of our knowl-
edge, no similar test case bridging data-driven failure
modelling and data-driven maintenance modelling has
been reported yet in the literature, despite its very high
practical interest. The approach proposed goes through
the following systematic steps:

®  Failure modelling: describing the failure behaviour
with Weibull functions. The values of Weibull coef-
ficients were also derived from the recorded
failures.

®  Characterization of maintenance actions and related
costs: the downtime and costs of preventive and
corrective maintenance actions are determined
based on recorded data.

e Development of the maintenance model: the model
relates the maintenance actions with the failure
behaviour, based on the sequence of PM actions,
and time intervals between them. We consider three
levels of PM actions, based on Tsai et al.>

®  Model validation and sensitivity: we determine the
sensitivity, influence of uncertainties, impact of
input parameters, and uncertainties related to mod-
el’s input parameters towards availability and costs.
A benchmark maintenance model is determined for
the current maintenance policy and validated
against observed availability and costs.

®  Definition of optimal maintenance policy for a given
key performance indicator: the model is used to
determine maintenance policies aimed at the maxi-
mum reliability, maximum availability, and mini-
mum costs, and a compromise between them.

Based on available historical data of past repairs
and maintenance actions, optimized maintenance poli-
cies can be determined, which allow consistent savings
compared to current approaches, while keeping the
operational performance higher than current state of
practice. We schematize the combination of data-driven
system modelling, expert knowledge, and company
strategies and objectives in Figure 1. We remark that
due to the confidentiality of the data, we can only
report aggregated and relative improvements, concern-
ing the company objectives.

The article is organized as follows. Section ‘Literature
review on PM’ reports on the existing literature. Section
‘Modelling failure functions’ describes the possibilities
given by data-driven approaches for modelling failures
and definition of maintenance actions. Section
‘Modelling PM’ determines the maintenance model, and
proposes an optimization scheme targeting a set of key
performance indicators, which is evaluated in section
‘Results and discussion’. Section ‘Conclusion and rec-
ommendations’ concludes the research, with directions
for future research. This article is based on Kraijema.*

Literature review on PM

Applications of PM to rolling stock systems have often
analysed and targeted a single subsystem rather than a
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holistic perspective of the overall system (air condition-
ing system’ and door systems®). We also point to the
reader to Giacco’ for a longer discussion of mainte-
nance issues in rolling stock. In general, PM targets
avoiding the system failure and keeps the system avail-
able and reliably working for longer periods. In fact,
PM actions are proactive in nature and are performed
before the systems fail. There are various models of the
effects of PM actions on the overall performance of the
system; this section gives a short overview of the possi-
ble models. For systems where a condition based moni-
toring system cannot be easily set up, most research
efforts are currently directed to better quantifying the
intervals for PM and modelling the impact of different
maintenance levels and maintenance operations. We
call this a PM policy: the set of maintenance actions
that are to be performed on specific components or
subsystems of a technical system. It also defines the
maintenance intervals for these actions.®’

There are three types of models that can be used to
describe the relation between the failure behaviour of a
system and components (SC) and the applied mainte-
nance policy:

e Constant failure rate (age reduction PM): the fail-
ure rate, as a function of the effective SC age, is
assumed the same throughout its life cycle. The
effects of PM actions are modelled by an effective
age reduction (for the period of PM action 7 > 0)
of the SC, and the failure rate A(¢) becomes A(z — 7).

®  Failure rate reduction: the second category assumes
that the effects of PM actions on the SC’s failure
behaviour are modelled by a reduction of the failure
rate of the SC, that is, the failure rate A(7) becomes
a-A(t), where a € (0;1).

® Combined: the effect of PM actions is modelled by
a reduction of the effective system age as well as
the failure rate, that is, the failure rate A(t) becomes
a - A(t — 7) for linear models or A(c - ¢ + d) for non-
linear models.

All these modelling approaches use the failure distri-
bution function to predict the SC’s reliability. The dis-
tinctive difference is found in the way the assumed
failure behaviour continues after PM actions are per-
formed. PM actions influence the failure times of sys-
tem and components (SC). PM actions are described in
literature in three typical classifications: perfect, mini-
mal, and imperfect.'® Perfect PM actions restore the
system to an optimal state, that is, the reliability of the
system is increased to the ‘As Good As New’ (AGAN)
level. Minimal PM actions restore the system to a state
comparable to the state just before the maintenance
actions were performed, that is, the reliability is
increased by a minimal amount. This is referred to as
‘As Bad As Old’ (ABAO). Most PM actions performed
in real life are neither perfect nor minimal. These in-
between actions are often referred to as imperfect PM.
In general, imperfect maintenance models can be

grouped into following groups: age reduction models,'!
hazard rate reduction models,'> combined age-hazard
reduction models,'® and others.'* Detailed overview of
different PM policies can be found in Pham and
Wang'® and Wang.'¢

Cheng et al."” proposed a linear PM model that opti-
mizes the PM intervals between preventive replace-
ments by minimizing the cost while maintaining a
certain minimum level of reliability. The systems relia-
bility is derived from a Weibull failure rate distribution.
An improvement factor w is introduced to model the
effects of PM actions on the system’s effective age. This
means considering ¢ = (1 — ) and 5 = 0. Schutz and
Rezg'® proposed a nonlinear PM model based on the
effectiveness of PM actions on the system reliability ver-
sus cost. The effectiveness factor p and PM interval
length T define the effective age reduction of the sys-
tem. This means considering ¢ = (1 —p) and d=T.
Cheng and Tsao' stated that PM actions do not always
directly reduce the systems effective age or failure rate.
PM actions such as cleaning, adjusting, or lubricating
will only impact the systems degradation rate and will
not improve the reliability of the system.

Coria et al.*® proposed a maintenance model with a
more general relation between PM interval and failure
rate. Weibull parameters can thus be estimated from
real-life failure time data of a system that has been
maintained from day one. Imperfect PM actions are
performed at fixed intervals ¢, = kT, with T length of
the PM interval. Tsai et al.® also use three different lev-
els of PM actions. This provides the ability to closely
match the real-life situation and allows for detailed
insight into cost savings at a higher system availability
and reliability level than models that only consider
component replacement. The improvement of PM
actions to the reliability is described as a function of
the failure mechanisms of the component. Based on the
literature surveyed, we found that the models of Coria
and Tsai were the most suitable for the rolling stock
system due to the possibility to leverage imperfect data
about past (possibly imperfect) maintenance tasks.

Modelling failure functions

Available data of recorded failures and identification
of subsystem

We start from a database of about 2200 failure, repairs,
and maintenance actions which span 5years between 1
January 2010 and 31 December 2014. In this period, a
uniform maintenance policy has been used, for the
entire fleet of light rail rolling stock. Burn-in of the
vehicles is neglected as the vehicles started operations
in 2006. Instead, a period of 2weeks (estimated with
the help of the maintenance engineer (HTM, personal
communications, 2015)) is considered after each main-
tenance action to avoid considering burn-in or imper-
fect repairs. We filtered the dataset as to not consider
censorship, by restricting to a set of records where
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maintenance actions were anyway performed at fixed
intervals, and have been numerous, for all vehicles con-
sidered. Relaxing this assumption only needs different
methods for estimation of failure rate.*!

Among the subsystems, the braking system has been
selected as the most relevant one, being responsible for
more than a third of failures, costs, and downtime (see
Appendix 1). This has a direct impact on the mainte-
nance policy of the rolling stock systems. The braking
system is functionally divided into the four following
subsystems: brake control, hydraulics, magnetic track,
and electro-dynamic (ED) braking. This latter is
excluded from the study as no failure has ever been
recorded.

Failure data for the remaining three subsystems are
available from different sources: vehicle diagnostics sys-
tem, driver input, work from inspection, and work
order data. Each of these data sources were used and
crosschecked to get detailed failure records. The infor-
mation provided on the corrective work orders will be
used to derive the distance to failures for each of the
components in the braking system. The mean distance
between failures (MDBF) of components in the braking
system (the equivalent for transport units of the mean
time between failures (MTBF), with the distance cov-
ered replacing the time elapsed) can be derived more
accurately based on the position of the failed compo-
nent. When this data are not reported in the computer-
ized maintenance management system (CMMYS),
information might be given by the mechanic as a
remark on the repair work order.

For each of the subsystems, a standard Weibull dis-
tribution was used to characterize the failure rate; the
scale and shape factors of Weibull distributions are
determined from recorded failures to model their fail-
ure behaviour. Due to the fact that most failure repairs
are imperfect or not effective at all, those distributions
cannot be fitted right away.

Failure rate modelling

The failure rate distribution is modelled by means of
Weibull distribution, where travelled distance was used
instead of time.?” The distance between failures of the
components in the braking system is also influenced by
the current PM policy. Formally, the failure probability
density function is defined as

(o)

where f'is the failure probability distribution function, d
is the distance travelled between failures, B is the shape
factor of Weibull distribution, and n is the scale factor
of Weibull distribution. Weibull parameters are gener-
ally estimated using graphical'®>* or analytical fitting
methods.?*?*?* Based on the experiments proposed in
Coria et al..>® we used a common maximum likelihood
estimation (MLE) procedure to determine the Weibull

Jd) = (1)

parameters of the system under the current PM policy,

where d|, d-, ..., d, are actual distances to failure from
the data
- B (dj)B ! ({11)/3
L=J[=(=) & 2
Hl n\n 2

The data give sufficient evidence that the failure rates
of three subsystems are almost constant.

Reliability related to maintenance actions

Three PM actions considered in this model are:

e Service (PM1): this includes easily performed
maintenance actions such as cleaning, adjustment,
retightening, refilling, or adding consumables (oil,
grease, etc.). Service actions are assumed to help
maintain the SC’s current state of reliability. The
current level of reliability is not improved, but the
rate of deterioration is reduced.

e Low-level repair (PM?2): this includes more time-
consuming PM actions, such as small spare part
replacement in addition to the service activities.
Low-level repair is assumed to improve the SC’s
reliability to a state in between AGAN and ABAO.

®  High-level repair (PM3): this includes SC overhaul
or replacement. High-level repair is assumed to
return the reliability to an AGAN state.

The effects that these PM actions have on the relia-
bility of the SC are defined by two improvement factors
my and m,. m; is used to alter the deterioration rate of
the SC’s reliability after PM1, and m, is used to define
the reliability increase after PM2. Using standard
Weibull distributions for the failure rate, the reliability
of the system after maintenance interval j with interval
duration T is defined as

~ ﬁ(!*(H)ﬂ)B

Ri(1) = Ry, -e ( ! (3)

with

Roj = Ryj-1 + my(Ro — Ryj-1) (4)

where Ry ; is the initial reliability at maintenance stage
J. Ry is the initial reliability of a new SC, and R, _ is
the final reliability before maintenance in the previous
stage.

The improvement factors can be defined as a func-
tion of some s failure mechanisms, for example, fatigue;
wear (contact stress); ageing; and others, such as con-
tamination, corrosion, and heat.?> The improvement
factors are defined as

m, = ZP./;I‘ 1

where i refers to the failure mechanisms, pis the failure
probability, and 7 is the probability for system

(5)
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improvement caused by the PM action. The two
improvement factor parameters m; and m, have value
of 1 for high-level repair (PM3), m, has value of 0 for
the service (PM1); in the other cases, they have a value
between 0 and 1. Determining the precise value for
those two parameters is a crucial task as it describes the
influence of all maintenance actions. To this end, we
refer to expert opinion.

Tsai et al.® optimize the system for availability, which
also involves determining the relation between reliability
and the maintenance actions performed. We here briefly
introduce the key relations between those three
concepts. The system-level reliability is defined using
the Advisory Group on the Reliability of Electronic
Equipment (AGREE) method,?**” assuming that the
general system can be decomposed into a series of inde-
pendent SCs, in this case the four braking subsystems.
This leads to the expression of the reliability of the sys-
tem over time, where «; is the probability of system fail-
ure due to subsystem i

n

Ry(1) = 1= ai(l = Ri(1)) (6)

i=1
The system-level availability in stage j is defined as

MUT, ;
A= = (7)
/" MUT,; + MDT,,

where MUT is the mean uptime of the system defined
as

And MDT is the mean downtime of the system
defined as

i

J Aij(2)dt

i1

n
MDTS,j =ty + Z tpm,i,k + [L’m,i .
i=1

©)

where 7.,,; represents the average repair time for sub-
system i, t,,;, is the time required to perform PM

action k on subsystem i, and #,, is an additional system-
level time for grouped maintenance actions. The aver-
age repair time 7.,,,; is dependent upon the severity of
the failure. All times are derived from the planning
module of HTM. Braking system failures are always
‘critical’ for safety and need to be dealt with as soon as
possible. This takes an extra downtime ¢, due to failure
and includes the time required to evacuate passengers
(if applicable), transfer of the vehicle to the depot, and
waiting time for repair; 7., 1s the mean repair time
for subsystem i

(10)

[cm,i =1Im + tir + tcm,i,m

Modelling PM

Input parameters

The impact of maintenance actions on the failure beha-
viour is described by multiplying the failure probability
with the improvement probability associated with the
associated PM action per failure mechanism. We use
the available failure records to estimate the failure
probabilities per failure mechanism. The improvement
probabilities of associated PM actions are instead esti-
mated using expert opinion. However, before estimat-
ing the improvement probabilities of PM actions, it is
necessary to define the content of PM actions. Table 1
gives an overview of the maintenance tasks that are
assumed to be performed when a PM action is applied
to the subsystem, and Table 2 gives an overview of the
related parameters to each subsystems and failure
cause.

For each subsystem, we identified up to four com-
mon failure causes, which make up the majority of the
failures and give the results of the failure cause analy-
sis. We report in Table 2 the failure probability (as
recorded in the CMMS) per cause and subsystem, and
the estimated improvement factors associated with the
PM actions, determined with help of maintenance
experts from HTM. Here, m; can be computed as the
improvement /; to the operational condition of each
subsystem, due to PM1 actions; m, is defined as the
repair success rate d; of PM2 actions.

Table |. lIdentification of subsystems and related PM actions.

Subsystem PM action k

ID Description PMI PM2 PM3

| Brake control system CleanVisual inspectionTighten loose Clean thoroughlyln-depth visual Overhaul
connectionsFunction check inspectionFunction checkReplace if

necessary

2 Hydraulic brake system Clean and lubricateVisual Clean thoroughlyln-depth visual Overhaul
inspectionTighten loose inspectionReplace if necessary
connectionsFill fluid if necessary

3 Magnetic track brake CleanVisual inspectionTighten loose Clean thoroughlyln-depth visual Overhaul

connections

inspectionReplace if necessary

PM: preventive maintenance.
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Table 2. Parameter values for subsystems, PM actions, and failure probabilities (FP).
Subsystem Parameter Failures causes
|. Brake control system Software Ageing Wear
PMI: |; 0.9 0.8 0.8
PM2: q; 0.9 0.9 0.9
FP: pg; 0.6 0.2 0.2
2. Hydraulic brake system Wear Ageing External Fatigue
PMI: |; 0.8 0.8 0.8 0.5
PM2: d; 0.9 0.9 0.9 0.8
FP: pg; 0.5 0.3 0.1 0.1
3. Magnetic track brake Ageing External Wear
PMI: |; 0.8 0.8 0.8
PM2: q; 0.9 0.9 0.9
FP: pg; 0.5 0.3 0.2

PM: preventive maintenance; FP: failure probabilities.

PM model

We can finally determine the link between maintenance
intervals and performance indicators: total costs, avail-
ability, and reliability. The total cost at system level,
due to maintenance actions C;; in the jth PM interval
depends on the sum of PM cost C,,, and Corrective
maintenance (CM) cost C,,,

lj

Cpm,i,k + Ccm,i . J /\i,j(t)dt

tji-1

Cx,j = Z

i=1

(11)

The components of equation (11) that are related to
costs are defined using the CMMS system by deriving
the internal hourly rates and spare parts costs.

Based on the expression of reliability in equations
(8), (10), and (11), and the structure of the SC, different
intervals ¢, ; are associated to different subsystems, as
they have independent, unrelated failure rate. For each
subsystem, the smallest optimal subsystem-level inter-
val 1, ;, based on maximizing the availability y, is:

ty

(tp + tom)A (1) — J)\(l)dt = i"’—’”
o m

(12)

The optimal interval 7 which allows to keep avail-
ability always above the threshold can then be assumed to
be the smallest of them, that is, 7=, = min; {¢,,}
Subsystems i with #,; = T receive maintenance at any
maintenance interval; those with 7,; > T receive mainte-
nance when the reliability would decrease below the mini-
mum acceptable reliability R,,,;, within a time interval 7T,
that is, before the next planned maintenance action. At
any maintenance interval, the type of PM actions will be
selected by means of a maintenance benefit function B;.
For the jth PM interval, benefit B;, is defined as the ratio
between the reliability improvement and the cost involved

fRi,.H 1(0)dt — jSRi.v/(l)dl

tj 1

Ci, k

B =

(13)

The availability of the system can be expressed as in
equation (7). To this end, we need to define the mainte-
nance times associated with PM1, PM2, and PM3 and
with the corrective maintenance actions. The mean
downtime (MDT) due to PM, related to a given main-
tenance interval T, is defined as

n
MDT[))H,S =ty t Z tpm.i,k

i=1

(14)

where ¢, is the time required for the (overall) system-
level maintenance, and t,, ; « is the time required to per-
form PM action k on subsystem i for all # subsystems.

The values of PM times ¢,,,;, and ¢, in equation
(14) are derived from the planning module in the
CMMS system and verified by the maintenance engi-
neer. The values of CM times (see equation (10)) are
also derived from the CMMS system: ?.,;,, mean
repair time for subsystem i, ¢4, extra downtime due to
failure of system [ together with the extra downtime
includes the time required to evacuate passengers (if
applicable), transfer of the vehicle to the depot, and
waiting time for repair.

Tsai et al.® define the minimum reliability at the sys-
tem level; while we define the minimum reliability at
subsystem level and as a function of the risk associated
with the failure of the subsystem. The risk of failure is
calculated by relating the probability of occurrence with
the impact on corporate objectives. Combining the cal-
culated risk values with the minimum reliability, which
is set by company policies to 0.85, the minimum relia-
bility of each subsystem was calculated. The AGREE
method is used, as presented in equation (7). The values
of the system probability failure due to a specific sub-
system can also be derived from CMMS: those are,
respectively, 0.42, 0.44 and 0.14 for the brake control
system, the hydraulic brake system, and the magnetic
track brake.

Maintenance interval optimization

The optimization of the maintenance policy relates to
choosing the interval of maintenance between
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For time_interval = min_time_interval

For each subsystem

stage j = stagej + 1
time interval = time_interval + 1

to max_time_interval do:

For stagej =1 to end of life / time interval do:

Determine required maintenance action due to insufficient reliability
Determine potential maintenance actions based on benefit function
Compute system reliability, availability and cost

Figure 2. Pseudocode of the optimization approach.

maintenance stages j and the most beneficial mainte-
nance action k for subsystem i/ in stage j. For maximiz-
ing overall availability, Tsai et al® determine
analytically the minimum maintenance interval in the
multi-component setting. The minimum interval drives
the all maintenance process, based on some economic/
structural dependence.”® We remark that this approach
is inapplicable in the system considered, as no explicit
check of subsystem reliability is performed. Moreover,
for the other performance indicators, a closed-form
solution is not easy to derive. We thus resort on a sim-
ple sequential optimization approach to determine
simultaneously maintenance interval and maintenance
actions along time. The key problem investigated is the
precise determination of the sequence of maintenance
actions to be performed in a PM scheme, that is, when
to perform which maintenance action, based on a set of
performance indicators.

The algorithm is shown in Figure 2. The possible
time intervals for maintenance (time_interval) are
scanned in sequence within a range {min_time_interval;
max_time_interval}. Given a time interval, the timing
of PM maintenance is given. To determine the actions
chosen, for all stages j until the expected end of life of
the system, we determine the required and potential
maintenance actions. The required maintenance actions
are those that are required as the current reliability is
below the threshold. Note that there is a substantial dif-
ference with the approach of Tsai et al.,’ where there is
no minimum reliability setting prescribed. In the case
when the most beneficial maintenance action k does not
improve the reliability of the system to the minimum
required level, the next best & is selected, which allows
reaching the target reliability. The potential mainte-
nance actions are those which would not be required at
current stage j, but would be required between the cur-
rent maintenance stage j and the next one j + 1. For
those, the benefit function as in equation (13) is used.

The reliability, availability, and the costs are then
assessed at system level. The time_interval which leads
to the minimum costs, maximum availability, or maxi-
mum reliability is, respectively, selected. As final output
of the optimization model, the sequence of maintenance
actions is outputted, as well as the evolution of the per-
formance indicators over time. The model is implemen-
ted in MATLAB R2014b and reports quickly the
optimal maintenance interval, as well as the sequence

Table 3. Relative difference in availability, PM cost, and CM
cost between the calculated and recorded values.

Parameter Description Deviation from
recorded value (%)

As System availability I.15

Com PM cost 0.25

Cem CM cost 0.56

PM: preventive maintenance.

of maintenance actions. Depending on the amount of
intervals evaluated, the entire optimization takes
between 5 and 45 min of computation time on a stan-
dard computer.

Model validation and sensitivity analysis

To validate the PM model of section ‘PM model’, a
benchmark PM model was created by setting the
system-level maintenance interval 7" to match the cur-
rent maintenance policy together with all other input
parameters. The resulting availability, PM cost, and
CM cost compared favourably with the data extracted
from the records (Table 3).

To determine the impact of changes, uncertainties,
and error in estimation in the input parameters on the
output of the model, we have performed a sensitivity
analysis. Precisely, we evaluated the influence of the
improvement factors (m; and m,), maintenance times
(tpm and t.,), maintenance costs (C., and C,,,), and
minimum reliability (R,,;,) on the resulting availability
and total maintenance costs. Table 4 gives an overview
of the input parameters with their low and high values
that are included in the sensitivity analysis. Both low
and high values are selected in such a way that they rep-
resent the 90% confidence interval for the specific para-
meter. Note that the high values of parameters such as
improvement factors and minimum reliability para-
meters are limited to a maximum value of 1.

The sensitivity analyses for availability and total
maintenance costs are reported as tornado charts in
Figure 3. The reference value of output parameters is
given by the vertical axis. The blue/red bars represent
the output parameter value for the low/high input para-
meter values, respectively.
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We determine quantitatively the best maintenance
intervals and their impact to the company objectives
and the results correspond to the general intuition.
Figure 4 shows how the maintenance interval has sig-
nificant impact on the PM costs. The costs and inter-
vals are reported scaled down to the benchmark policy
currently implemented. Looking only at PM costs, the
minimum is found for a maintenance interval which is
about 90% longer. Even though a reduction of the
maintenance interval significantly increases the reliabil-
ity of the system, it also increases the PM cost (and
reduces the availability, due to the continuous mainte-
nance visits). This relationship is rather regular. A simi-
lar behaviour in cost increase is found, much stronger,
for long maintenance intervals. After a certain thresh-
old, PM costs jump significantly because high-level PM

Figure 5. System-level reliability as a function of the
maintenance interval.

actions are required to recover the system to the desired
reliability levels, and high-level PM actions yield higher
maintenance costs. The erratic behaviour for very long
maintenance intervals is due to the interaction of fail-
ures and the extensive repairs needed when mainte-
nance is performed.

We now discuss the relationship between mainte-
nance intervals and the performance indicators.
Figure 5 shows the relation between maintenance inter-
vals and reliability. The maintenance interval is
reported relative to the benchmark, while the reliability
is reported in absolute number. Two curves are plotted:
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Figure 6. Relative maintenance cost (top) and relative
availability (bottom) as a function of the minimum reliability for
maintenance intervals between 30% and 180% of the benchmark
interval.

the one reporting the mean reliability given a mainte-
nance interval (R;,eans blue solid line) and the one
reporting the minimum reliability given a maintenance
interval (R ., red dotted line).

It is evident from the figure how the R, drops at
a higher rate than the R,.cq, since reliability before
maintenance is directly decreasing with longer mainte-
nance intervals, while the reliability after maintenance
is roughly the same, after the PM actions are per-
formed. Overall, high minimum reliability requirements
are associated to a smaller maintenance interval, and
therefore, increased maintenance cost of the system.

Figure 6 reports on direct connections between relia-
bility, availability, and costs. Allowing the subsystem
reliability to drop significantly below the minimum
reliability R,,;, prescribed by the key performance indi-
cators results in high PM cost. In this case, the only fea-
sible PM action is PM3, which is the most expensive
maintenance action. However, the maintenance cost
rapidly increases when the minimum system reliability
requirements exceed 0.85. The minimum costs, within
the feasible range of intervals, correspond to a smaller
reliability, as shown in Figure 6 (top). The resulting
maintenance policy is very similar to the availability
driven policy, in terms of maintenance interval. Figure
6 (bottom) shows the relation between minimum relia-
bility and availability of the system. A rapid decrease in

availability is observed when the minimum system relia-
bility requirements exceed 0.85. This corresponds to
increased system downtime due to short maintenance
intervals. The availability of the current benchmark
solution is the lowest, before the sharp increase in relia-
bility. This is one of the motivations for choosing a dif-
ferent, optimized, maintenance interval.

The results in the previous sections show that the
total maintenance cost and system availability are
highly dependent upon the minimum reliability require-
ments of the system. Both availability and cost driven
maintenance policies allow the reliability of the system
to drop below the accepted minimum. Table 5 gives the
values of the key parameters for the availability-, cost-,
and reliability-driven maintenance policies, relative to
the current situation.

Discussion

Compared with the benchmark figures of the current
policy, both availability and cost driven maintenance
policies show a potential maintenance cost reduction of
30%. They moreover maximize the system availability
without sacrificing the current mean and minimum
reliability; the maintenance intervals are almost 100%
longer. The reliability-driven maintenance policy shows
a potential increase of 20% in average system reliability
and 48% of the minimum system reliability, without
compromising the availability of the system or raising
the total maintenance cost significantly. Increasing the
reliability is related to achieve higher customer satisfac-
tion. Interesting directions for integral assessment of
maintenance in transport systems direct towards the
level of service, by means of quantifying uncertain
travel time and delay in operations®® or in evaluating
the societal costs of delay as perceived by the different
users.

A key feature of the system is the strong relation
between a reduction in the time required for mainte-
nance (related to workforce employed, and quality of
maintenance actions) and an improved availability of
the system. Quality of maintenance actions is very
important: the cost increase due to reduction of m;, (the
improvement factor of maintenance) is equivalent to
the cost increase associated with reliability increase.
While quality assurance of PM actions is difficult, it is
usually even more difficult to increase system’s reliabil-
ity. The imperfect repair action PM2 has also a strong
influence on the maintenance costs and needs to be
quantified carefully. Further steps should investigate
the possibility of identifying parameters of concurrent
processes (such as failure/condition degradation and
maintenance/condition improvement) from the data,
possibly suggesting new data to be acquired. We also
believe that analysis of the sensitivity of the reliability
and the costs gives insights on the confidence bound of
the expert values which are currently used. In fact, the
high sensitivity to parameters m; and m, means it is
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Table 5. Overview of performance indicators of the optimized maintenance policies.

Parameter Description Current policy (%) Relative to current policy and optimized for:
Availability (%) Cost (%) Reliability (%)

T Interval 100 178 180 42

A, System availability 100 100.4 100.4 99.9

Rs mean Mean system reliability 100 101.3 101.3 120.2

Rs,min Minimum system reliability 100 96.7 98.4 147.5

Com PM cost (EUR/year) 100 572 543 191.8

Cem CM cost (EUR/year) 100 89 89.6 88.5

Ciot Total maintenance cost (EUR/year) 100 714 70.1 145.8

PM: preventive maintenance.

relatively easy to calibrate those values based on the
recorded costs.

Conclusion and recommendations

This article describes a case study of optimized mainte-
nance policy for a light rail braking system, achieving
great insight using readily available work order data,
synthesizing the approach from few separated works in
the reliability literature. We use a data-driven approach
to determine the failure rates for a specific subsystem,
integrate this into a maintenance model relating main-
tenance actions and improvements. We perform an
exhaustive optimization to find the best maintenance
policy based on reliability, availability, and mainte-
nance cost. We found that focusing on availability and
cost, the reliability of the system would drop below the
accepted minimum, but allowing for substantial cost
savings. The maintenance policy based on reliability
proves improves reliability significantly without
increasing the maintenance cost, compared to the
benchmark situation currently performed. In general,
extending maintenance intervals needs to be done care-
fully because maintenance costs are discontinuous and
have sudden jumps.

We recommend exploring further possibilities to
optimize the maintenance intervals based on multi-
component optimization, which could then expand
beyond the braking system and encompass multiple
systems with more complex economic/structural depen-
dence.?° This would result in more complex expres-
sions of failure rates, an expression of reliability,
availability dependent on more processes. Finally, opti-
mizing the PM interval for such a situation would need
agreement between systems, severity of the failure of
the different systems, and availability of different work-
force for performing the required check/maintain oper-
ations. We did an exploratory step in this direction
towards multi-component systems given in Haans.?!
The maintenance interval could be further optimized
by some combinatorial optimization methods.*? In our
work, we used an exhaustive numerical optimization
approach where we investigated maintenance actions
for specific maintenance intervals. The computation

time is acceptable for the current setup, but might
require more sophisticated approaches with more com-
plex systems. As the maintenance time has been evalu-
ated as crucial with regard to availability of the system,
the workshop capacity could be studied more in detail.
The company showed extreme interest in the theoretical
work here described, which has been picked up by
maintenance managers in their vision. A (gradual) path
towards implementation of the PM policy is therefore a
very interesting idea.
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Appendix |

Braking subsystem description and relevance

We focus on the rolling stock Citadis, designed and
manufactured by Alstom. A schematic overview of the
rolling stock is shown in Figure 7.

Figure 8 reports the most relevant systems in terms
of costs related to failures and related downtime due to
either rolling stock being not able to run awaiting repair
or under maintenance. The braking system is the most
critical part of the rolling stock system, with the highest
influence on maintenance planning and operations.
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1. Drive control unit

2. Braking control unit

3. Valve control unit

4. Passive disc brake, trailing bogie
5. Passive disc brake, driven bogie
6. Speed sensor

7. Hydraulic unit, trailing bogie

8. Hydraulic unit, driven bogie

9. Hydraulic emergency release unit
10. Mechanical emergency release unit
11. Pressure vessel

12. Magnetic track brake

Figure 7. Rolling stock considered, indicating the braking system.*?
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Figure 8. Subsystems of the rolling stock, ranked by their cost of failures, and resulting downtime.



