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Abstract

Unmanned aerial vehicles (UAVs), often referred to as autonomous drones,
are becoming more and more prevalent in our daily lives. Drones are usu-
ally equipped with traditional frame-based cameras and have functions like ob-
ject detection. However, the high energy consumption of frame-based cameras
presents a challenge to drone endurance. In addition, due to its own hardware
limitations, problems such as blurring and deformation will occur when captur-
ing high-speed moving objects. In contrast, event cameras, as one of the latest
neural technology cameras, have the characteristics of low power consumption,
low latency, and sensitivity to high-speed objects. This makes them well-suited
for integration into drone platforms. In this thesis, we introduce a method for
high-speed moving object recognition based on event cameras. This approach
involves enhancing objects with externally added “common features”: fiducial
markers, and employing a custom-developed deep learning neural network to
detect these markers. These marks can carry some messages, such as the in-
formation of related objects. When these marks are detected, it is considered
that objects are detected. We also developed a fiducial marker decoding method
based on region segmentation to obtain the message content, thereby achieving
interaction with the detected object. Evaluation results show that the proposed
method has a low computing time of 26.9 ms, low storage and memory usages
of 670 MB CPU memory and 750 MB GPU video memory, and a high accuracy
of 77.9%, making it suitable for high-speed object recognition based on event
cameras.



Preface

First and foremost, I would like to thank my supervisor Prof. Qing Wang, who
generously agreed to supervise my thesis last December after the company I
initially planned to complete my thesis with went bankrupt. Qing gave me a
lot of advice and guidance throughout the thesis process, and provided a lot of
help so that I could successfully complete my thesis. Thanks to Prof. Guohao
Lan for lending me his event camera. Without it, my thesis work would have
been much harder.
Special thanks go to my parents for their constant support and encourage-

ment. And also, I appreciate all my friends from the CESE program; meeting
you from different countries in the Netherlands has enriched my experience im-
mensely.
To my friends from SMU, who have been with me on this journey to TUD

for the past four and a half years, and Choisum, who brought unexpected joy
into my life, thank you all for making my time in the Netherlands vibrant and
full of life.
Finally, I would like to thank Tony, who I call my second supervisor in jest.

His early guidance when I was first exploring deep learning was really helpful.
I hope each of you finds the path that fits you best and becomes the person

you most aspire to be.

Jiacong Li

Delft, The Netherlands
20th August 2024

iii



iv



Contents

Preface iii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Problem and Objectives . . . . . . . . . . . . . . . . . . 2

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Work 5

2.1 Event Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 General Introduction . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Research of Event Cameras . . . . . . . . . . . . . . . . . 8

2.2 Fiducial Marker . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 General Introduction . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 Research of Fiducial Markers with Event Cameras . . . . 10

2.3 Image Segmentation Methods . . . . . . . . . . . . . . . . . . . . 10

2.3.1 General Introduction . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Research of Image Segmentation . . . . . . . . . . . . . . 11

3 Design 15

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Optimized Fiducial Marker . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Reason of Choice . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.2 Optimization: Direction Indicators . . . . . . . . . . . . . 17

3.3 Pipeline Step 1: Detection . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 Tradition Fiducial Marker Detection Method . . . . . . . 17

3.3.2 Purposed Detention Method: EvMarkNet . . . . . . . . . 19

3.4 Pipeline Step 2: Identification: Create Marker candidates . . . . 24

3.4.1 Optimizing polygon edges . . . . . . . . . . . . . . . . . . 24

3.4.2 Searching Direction Indicators . . . . . . . . . . . . . . . 26

3.4.3 Unwarping . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Pipeline Step 3: Identification: Decode . . . . . . . . . . . . . . . 27

3.5.1 Exsiting Fiducial Marker Decoding Method Based on Event
Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5.2 Decoding method based on enhanced region segmentation 28

v



4 Evaluation 33
4.1 Evaluation on Optimized Fiducial Marker . . . . . . . . . . . . . 33
4.2 Evaluation on EvMarkNet . . . . . . . . . . . . . . . . . . . . . . 34

4.2.1 Multi Version Comparison . . . . . . . . . . . . . . . . . . 34
4.2.2 EvMarkNet v3 Test Based on Independent Dataset . . . . 36

4.3 Evaluation on Accuracy of Creating Marker Candidates . . . . . 38
4.4 Evaluation on Accuracy of Decoding . . . . . . . . . . . . . . . . 39
4.5 Overall Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Conclusions 45
5.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.1 Possible Optimization Directions . . . . . . . . . . . . . . 46
5.2.2 Possible Tests to Conduct . . . . . . . . . . . . . . . . . . 48

vi



Chapter 1

Introduction

1.1 Motivation

An unmanned aerial vehicle (UAV), commonly known as an autonomous drone,
has indirectly affected people’s lives in the last decades. Such as aerial photo-
graphy, which allows people to see the world from a different perspective, or is
used for environmental monitoring to ensure the environment can be protected
more efficiently. With the rapid development of drone technology, drones have
gradually become closer to people’s daily lives and have been applied widely by
companies to save human resources, e.g., Amazon has applied drones for the
parcel delivery business [2].

Although the application scenarios of drones are varied and highly convenient,
the energy supply of drones has always been a problem since their invention.
While equipping them with large, high-capacity batteries seems like a straight-
forward solution, due to the technical limitations of modern batteries, it’s always
costly and can add substantial weight. Usually, this will not significantly im-
prove transportation efficiency. Especially for those application scenarios that
require cargo loading, the maximum load capacity is also strictly limited. Based
on this, Qing et al. [38] propose a method called ‘hitchhike’. The main idea in-
volves having a drone land on a moving vehicle that is traveling in the same
direction. This way, the drone can hitch a ride without using its own power,
saving energy during transit. But this method faces a significant problem: how
to identify and distinguish vehicles that move in the same direction or with
the same destination as the drone. Inspired by this, this thesis generalizes this
problem to a broader range of application scenarios and focuses on exploring
and solving the problem of high-speed moving object recognition.

When it comes to object recognition, the cameras for filming objects used
by mainstream drones on the market today are traditional frame-based cam-
eras. Although this type of camera can perfectly record the spatial details of
the captured scenes, such as texture, color, etc., and the algorithms and neural
network models designed for object recognition based on this camera are very
mature. However, due to the frame rate limitations and CMOS hardware tech-
nology, ordinary frame-based cameras often cannot perform well in capturing
high-speed moving objects or recording in low-light scenes. Therefore, the par-
ticular camera proposed by Lichtsteiner et al. [18], event camera, becomes the
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first choice. The event camera, also known as the event vision sensor (EVS),
has the advantage of high temporal resolution, low latency, wide dynamic range,
and very low energy consumption, which is ideal for high-speed moving object
recognition tasks on embedded platforms.

1.2 Research Problem and Objectives

With the background mentioned in Section 1.1, the research problem is formu-
lated as:

How to realize high-speed moving object recognition based
on event camera?

The research objectives can be formulated as follows:
To design and implement methods:

• To detect and identify moving objects with an event camera

The existing frame-based cameras always have problems with high-speed
moving object filming, such as blurring, distortion, and noise. While cam-
eras designed for capturing high-speed objects exist, their heavy weight
and large energy consumption make them less likely to become the primary
choice for drone platforms. In contrast, the output of event cameras is
clearer when dealing with high-speed moving objects. Therefore, this
thesis firstly aims to develop a moving object detection method based
on event cameras. And this method should be able to pinpoint the ac-
curate position and edge information of the detected object. Detection is
only a part of object recognition. We hope to know the types of objects
when they are detected, so object identification is also an essential part
of object recognition. Although there are already methods for object re-
cognition using event cameras, we aim to develop an innovative way to
achieve the same goal.

• Be efficient to run on embedded system platforms

In the drone applications discussed, a common issue with conventional
frame-based cameras is their high energy consumption. This consump-
tion increases as the video capture frame rate increases. The low power
consumption of event cameras makes them ideal for embedded platforms.
However, most of the existing similar algorithms are not suitable for em-
bedded platforms due to excessive resource requirements. To fully lever-
age this benefit, the high-speed object recognition method developed using
event cameras must be further optimized specifically for these platforms.

• Be scalable for various purpose usages

Contemporary object recognition methods are often highly specialized and
tailored for certain types of tasks. These methods frequently utilize neural
networks, which require substantial resources for training. When these
models are designed for a single function, adapting them to new purposes
can lead to significant computing resource waste. Consequently, there
is a need for a more universal approach to object recognition that can
efficiently handle diverse usages.
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• Be interactive with detected objects

Current object detection and identification algorithms typically yield bin-
ary outcomes, indicating whether an object is detected or specifying the
object’s label. However, this thesis proposes to develop a methodology
in which the system can interact dynamically with the recognized object,
allowing for the transmission of information through the object itself.

1.3 Contribution

This thesis proposes a methodology for high-speed moving object recognition
based on event cameras. The contribution can be summarized as follows:

• A novel moving object recognition pipeline based on an event camera and
fiducial marker.

• A new event dataset with a small volume, including the fiducial mark-
ers moving in different postures, can be used for training fiducial marker
detection.

• A deep learning model called EvMarkNet trained on the aforementioned
dataset and used for the detention of fiducial markers with different con-
tents.

• A new method to decode optimized fiducial marker based on event camera.

The methodology is designed based on the optimized fiducial marker which will
be introduced in Section 3.2. To the best of our knowledge, this is the first work
that attempts to use optimized decode fiducial for both object recognition and
data transmission. This is also the first work that attempts to detect fiducial
markers in event cameras based on a neural network. Detailed design will be
introduced in Chapter 3.

1.4 Structure

This report is dedicated to demonstrating the design, implementation, and op-
timization process of the method proposed in this thesis. Following this intro-
ductory chapter, there are four subsequent chapters. Each presents different
aspects as outlined below:

• Chapter 2: Review and analysis of previous research related to the thesis
topic.

• Chapter 3: Detailed introduction to the content and design concept of the
method proposed in the thesis.

• Chapter 4: Evaluation of the performance of the proposed method. Qual-
itative and quantitative analysis and comparison to the evaluation results,
as well as analysis of the advantages and disadvantages of the design.

• Chapter 5: Conclusion and summary of the proposed methods and ana-
lysis of the limitations and possible future development routes.

3
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Chapter 2

Related Work

2.1 Event Camera

2.1.1 General Introduction

Event cameras, also known as event vision sensors (EVS) event-based cameras
or “silicon retina” cameras, are a new type of camera proposed by Lichtsteiner
et al. [18]. The name silicon retina comes from the similarity of these cameras
to the retina in the human eye in the way they sense images. Each individual
photoreceptor cell in the human eye responds independently to the light it de-
tects, and the same principle is applied to event cameras. Each pixel on the
optical sensor of an event camera produces an independent signal output.
To understand the advantages of event cameras, it is necessary to understand

the working mode of traditional cameras first. The pixels of the sensor of tradi-
tional frame-based cameras output a unified and synchronized signal at a fixed
time interval. This output is called a frame. The speed of output frames is called
the frame rate. Because traditional cameras need to read and process signals
from all pixels on the sensor, the frame rate is greatly limited. In contrast,
the asynchronous output of event cameras can reduce the correlation between
pixels, and the output of one pixel is not subject to other pixels. This evidently
increases the temporal resolution of the event camera output. In addition, the
pixels of event cameras do not capture the absolute brightness of light, but the
change in light brightness. Figure 2.2 shows the essential difference between the
output of the frame-based camera and the event camera. If the brightness at
time t of a pixel at a location (x, y) is given by It,(x, y), an event is triggered
when:

∥ log(It+1,(x,y))− log(It,(x,y))∥1 ≥ τ (2.1)

Here τ is a threshold which will determine if an event is triggered or not.
Each event outputs the following data:

e = {(x, y), t, p} (2.2)

where p is the polarity of an event having a number of 1 or 0. The polarity
represents the trend of brightness change. If the brightness changes from low to
high, the polarity is equal to 1 and the event is called an on-event. In contrast,
if brightness changes from high to low, then the polarity is equal to 0 and the
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Figure 2.1: The camera used in this thesis, DAVIS346.

Figure 2.2: The figure shows a rotating disk with a dot on it. For a
frame-based camera, the output frame contains the entire disk and
the dot. For an event camera, only the motion of the dot causes
obvious brightness changes, so its output is only the moving dot. [30]

event is called an off-event. In order to use these events efficiently, the event
camera provides an output format, namely the event frame. The event camera
accumulates all events within a time window T and finally outputs a data packet.
The data frame can be defined as:

E (x, T ) =

(
t0+T∑
t=t0

e (x, t, p = ±1)

)
(2.3)

Figure 2.3 depicts the visual output of an event frame.

2.1.2 Features

Advantages

As a state-of-the-art camera with a completely different working principle from
the frame-based camera, the event camera has the following advantages:

• High Temporal Resolution and low latency : Because each pixel in an event
camera detects changes independently and generates events asynchron-
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Figure 2.3: Comparison between the RGB frame of a frame camera and
the event frame of an event camera. In the event frame, white and
black pixels represent the on and off of events. Gray pixels indicate
that no event has been triggered or the overlap area of on and off
events. It can be clearly seen that the outline of the high-speed
swinging racket is blurry in the RGB frame but clear in the event
frame. [36]

Figure 2.4: Inconsistency is reflected in different outputs when the
same object moves at different speeds.

ously, the system can respond almost instantly to changes in the scene.
These events can be output at intervals of up to 1 ms. This high temporal
resolution enables them to track fast-moving objects without motion blur,
making them ideal for high-speed applications such as robotics, motion
analysis, and motion tracking. More continuous footage can be captured.

• Low Power Consumption: Event cameras process only pixels that have
changed, significantly reducing data processing and power consumption
compared to frame-based cameras that output signals from all pixels re-
gardless of whether changes have occurred. This efficiency is very useful
for battery-powered or power-sensitive applications.

• High Dynamic Range (HDR): Due to the special design of the hardware,
event cameras usually have a higher dynamic range (usually over 120 dB),
which allows them to handle scenes with extremely high contrast, such as
seeing shadows or bright lights, without losing details. Frame-based cam-
eras usually struggle with such scenes due to saturation or underexposure.
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Disadvantages

Event cameras are not perfect. Compared with frame-based cameras, they have
the following disadvantages:

• Low Spacial Resolution: Event cameras detect only changes in brightness
and cannot capture static elements in a scene. The outputs have less
spatial detail, such as texture. In addition, the sensor resolution of the
event camera can only reach up to 640 x 480. This makes them less
suitable for applications that require complete scene information.

• Less sensitive to low-speed moving objects: Because the motions of objects
can cause a change in brightness. But when objects move at a slow speed,
the corresponding brightness changes can be few. This means only a few
events can be triggered. If the object is static, there is even no output at
all.

• Inconsistency of outputs: Due to the event camera’s special working prin-
ciple, even when shooting the same moving object, the output will look
different. For example, when the object moves at different speeds or only
translates or rotates, the output looks very different as shown in Figure
2.4.

2.1.3 Research of Event Cameras

Gallego et al. have conducted a detailed investigation [10] [37] into the devel-
opment and application of event cameras. In this chapter, we will list some of
the main application scenarios and research of event cameras.
The original purpose of event cameras was to detect high-speed moving ob-

jects. The algorithm for detecting moving vehicles using event cameras was pro-
posed by Litzenberger et al. [19] when event cameras were first invented. This
algorithm is mainly used for situations where the camera is in a static state.
Subsequently, Anton et al. proposed a moving object recognition method [23]
when the camera is in a dynamic state. This method estimates the camera’s
ego motion by analyzing the movement trend of a specific pattern in the scene
and compensates for the event frame output. The compensated event frames
are clearer. By comparing event frames at different times, moving objects can
be distinguished from stationary objects. Inspired by this, Zhao proposed a
method [40] using an event camera with IMU to measure the ego-motion dir-
ectly, and finally the camera output is optimized to reduce motion blur and
obtain clearer output results.
Recently, deep learning has received great attention in this emerging field,

and a large number of technologies have been developed for various purposes.
Zheng et al. conducted an investigation [42] on how deep learning is combined
with event cameras. For example, Sanket et al. proposed a method [33] that
combines drones with event cameras and uses neural networks to identify objects
flying toward the drone and avoid them. It also proposes a method to denoise
and deblur event frames using neural networks. Another method proposed by
Durvasula et al. [7] uses an enhanced U-Net network to improve the speed
and accuracy of robot image recognition. In the method proposed by Li et
al. [17], traditional algorithms are combined with deep learning networks for
autonomous driving target detection based on event cameras.
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Figure 2.5: Examples of different kinds of fiducial markers.

In addition, event cameras are often used in conjunction with traditional
frame-based cameras, combining the high temporal resolution of event cam-
eras output with the high spatial resolution of frame-based cameras output.
Pan et al. proposed a method to reconstruct a high-frame-rate video from a
single blurry RGB frame and event camera output. Messikommer [22] proposed
a method combining event and grayscale frames to realize enhanced feature
tracking.

2.2 Fiducial Marker

2.2.1 General Introduction

Fiducial markers are reference objects or patterns placed in the physical en-
vironment or in an image to provide known reference points. These markers
are used in various fields such as computer vision, robotics, augmented reality
(AR), and photogrammetry to help systems determine orientation, scale, and
position within a space. Fiducial markers are essential for precise measurement,
alignment, and tracking tasks.

Common fiducial markers include ARTag [8], ArUco [29], and AprilTag [26].
They have different coding systems and their own applicable scenarios. AprilTag16
is selected in this thesis, which has 16 encodable bits. As shown in the Figure
2.5, AprilTag16 consists of an outer white frame and a black encodable area,
and the pink dotted line is the precise encodable area range. A black or white
square represents each bit, black represents 0, and white represents 1. These
squares are arranged in different shapes to represent different IDs. These shapes
are fixed and tailored to ensure that the Hamming distance between different
shapes is maximized to reduce the misjudgment rate during detection. And it
can be least affected by the orientation of the marker during decoding. In a
system using a fiducial marker, the sub-system performing the marker identific-
ation will store a lookup table, which contains the correspondence between the
shape and the ID. As long as the decoded content has the same shape as the
shape in the lookup table after it’s arranged in a certain order, it is considered
to be decoded successfully.
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2.2.2 Features

The fiducial markers have the following features:

• High Contrast : Fiducial markers typically have high contrast patterns,
making them easily detected and distinguishable by cameras or sensors in
different light situations.

• Unique Patterns: Each marker typically has a unique pattern or code,
which enables the system to recognize and distinguish multiple markers
in a scene.

• Known Geometry : The shapes of the markers are predetermined and
known to the system, allowing precise calculation of spatial properties
and easily detected when partially obscured.

2.2.3 Research of Fiducial Markers with Event Cameras

Since the image style of the event camera output is completely different from
that of the frame-based output, the fiducial marker recognition method proposed
in A is completely unusable. Therefore, Sarmado et al. proposed a fiducial
marker recognition method based on event cameras [34]. However, this method
is not related to the direction of movement of the marker, and has extremely
low accuracy for diagonal movement. The recognition method [1] proposed by
Loch et al. is based on the method [9] used for fiducial marker recognition
with frame-based cameras proposed by Romero-Ramirez et al. The limitation
of method [9] makes [1] only applicable when the event frame is very clear and
has distinct edges, which has low versatility. To our best knowledge, these are
the only two studies for fiducial marker detection using event cameras.

2.3 Image Segmentation Methods

2.3.1 General Introduction

Image segmentation is a computer vision technique used to divide an image
into multiple regions. The segmentation process involves assigning a label to
each pixel in the image so that pixels with the same label have certain com-
mon characteristics, such as color, intensity, or texture. Image segmentation is
widely used in fields like medical imaging to segment cells and tumors and in
autonomous vehicles to understand the environment by segmenting pedestrians,
roads, and other vehicles. Image segmentation can be divided into semantic seg-
mentation, which groups pixels with similar features in an image into the same
category, and instance segmentation, which not only groups pixels into categor-
ies but also distinguishes different instances of the same type of object. Or the
combination of the two is called panoptic segmentation.
When segmenting an image, it is necessary to understand a concept for eval-

uating whether a pixel is segmented correctly. This concept will be further used
in Setion 4.2.1 for model evaluations. Figure 2.6 shows the definition of different
types of pixel segmentation results:

10



Figure 2.6: Definition of different types of pixel segmentation results.

• TP (True Positive): TP represents the number of foreground pixels that
have been properly classified as foreground.

• FP (False Positive): FP represents the number of background pixels being
misclassified as foreground.

• FN (False Negative): FN represents the number of foreground pixels being
misclassified as background.

• TN (True Negative): TN represents the number of background pixels that
have been properly classified as background.

2.3.2 Research of Image Segmentation

Traditional Algorithm

The simplest traditional algorithm uses thresholds to segment images. It sets all
pixel values above a certain threshold to one value (such as white) and all other
pixel values to another value (such as black). Otsu [28] proposed a method to
determine the threshold dynamically. This method classifies objects into two
categories: foreground and background. The threshold is calculated to minimize
the variance within the two categories and maximize the variance between the
two categories. And also, there is edge-based image segmentation. Canny [5]
and Sobel [15] are two commonly used image segmentation methods. They are
basically based on image gradient calculation, but Canny is not as sensitive to
noise as Sobel. In addition, there are image segmentation methods based on
clustering algorithms. Clustering methods such as K-Means [21] group pixels
into clusters based on their features (such as intensity, color, or texture). Each
cluster corresponds to a segment in the image.

Deep Learning for Image Segmentation

Compared with traditional algorithms, using deep learning for image segment-
ation can learn complex features and patterns in images, and achieve more
accurate and robust segmentation even in challenging scenarios. For example,
different object sizes, shapes and directions, as well as blurred or overlapping

11



Figure 2.7: U-net architecture. The horizontal gray arrows represent
skip connections.

objects. Ning et al. first proposed the method [24] using a convolutional net-
work for biological image segmentation. Later, FCN [20] proposed by Long
et al. laid the foundation for image segmentation using deep learning. FCN
replaces the fully connected layer in traditional CNN with convolutional layers,
which allows it to accept inputs of different sizes. However, since the last layer
only performs a simple upsampling, some image details will be lost.
Later, Long et al. proposed U-Net [31] for medical cell segmentation. This

time, U-Net added more deconvolution layers to the decoder part based on
FCN to obtain better image details, and added skip connections to keep spatial
information and ensure image details. However, this skip connection causes
U-Net to have extremely high memory usage and the model prediction time
was long. Figure 2.7 shows the model structure of U-Net. Our method uses a
network with a U-Net-like structure and will be introduced in Section 3.3.2.
Furthermore, Badrinarayanan et al. proposed SegNet [3]. Although SegNet

has an encoder-decoder structure similar to U-Net, SegNet does not directly pass
the feature map in the encoder to the decoder and combine it with other decoder
inputs. Instead, it stores the key pixel locations at each downsampling to obtain
pooling indices, and restores these indices to the corresponding positions during
upsampling to retain some image details. This greatly reduces memory usage,
but the accuracy is not as good as U-Net.
Recently, Kirillov et al. proposed a complex network architecture SAM [16].

It can be generalized to segment any object in any image, without the need to
retrain or fine-tune for a specific task, so it is incredibly versatile. However, due
to its complexity and the use of advanced techniques, SAM requires much more
computing power and memory, so it is not suitable for deployment on embedded
platforms.

12



So after that, Zhao et al. proposed FastSAM [41], and Zhang et al. pro-
posed MobileSAM [39]. Both are designed specifically for embedded platforms.
FastSAM is 98% faster than SAM, and MobileSAM has achieved a 75% speed
increase on this basis and achieved an accuracy that is not far from SAM. This
makes MobileSAM one of the most suitable image segmentation models for em-
bedded platforms. However, since we only discovered this network when writing
this report, we did not have the opportunity to combine it with our proposed
method. We mentioned the impact of using MobileSAM on our method in
Section 5.2.1.
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Chapter 3

Design

3.1 Overview

This chapter introduces the design of the proposed method to achieve the re-
search objectives raised in Section 1.2. The final solution is inspired by the
method of Sanket et al. [25], which aims to solve the positioning problem of
quadcopter drones by using neural networks to detect the common feature of
all quadcopters: propellers. Here, “common feature” is a pivotal concept in
the approach. Similarly, for scenarios like detecting moving vehicles, pinpoint-
ing key features of the vehicles could allow for their recognition. However, the
challenge arises from the diversity of vehicles. Especially from the drone’s per-
spective, discernible common features are not apparent. Furthermore, training
neural networks merely to identify moving vehicles raises issues with flexibility
and expandability. Given these challenges, developing a universal feature ap-
plicable across different objects and scenarios to enhance object detection and
identification is considered to be a proper solution. Consequently, in order to
guarantee the versatility and scalability of the final solution, the fiducial marker
is chosen.

The fiducial marker plays an important role in the proposed method. Unlike
traditional object detection methods that check the object directly, this method
employs fiducial markers to represent the objects for detection. Ideally, markers
will be attached to the corresponding objects. Furthermore, they are not or-
dinary fiducial makers but optimized and encoded to carry specific information,
e.g. the object they are attached to. Detection of the markers is considered
detection of the objects themselves, simplifying the recognition process.

The pipeline of the method can be divided into two parts, as shown in Figure
3.1. The first part only has one step, which is the detection of the moving
fiducial marker from the event frame.

The second part, the identification, can be divided into two steps. Firstly,
with the output from the first part, the location of the fiducial mark in the event
image is determined. This means the corresponding content can be extracted
from the event frame and saved as marker candidates. As the method is designed
to recognize fiducial markers moving in the 3D space, the candidates always need
to be unwarped to get the best visual posture for the further processing step.
As mentioned before, the optimized fiducial marker can contain some messages
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Figure 3.1: The pipeline for moving object detection based on event
camera.

to be transmitted. So the last step is to decode the marker candidates according
to the output from the previous steps. Section 3.3 to Section 3.5 will introduce
the design of each step respectively. But before that, Section 3.2 will introduce
the concept of optimizing the fiducial marker.

3.2 Optimized Fiducial Marker

3.2.1 Reason of Choice

Fiducial markers are initially used in computer vision and robotics to provide
a readily detectable reference point or feature in an image or video stream.
Similarly, to achieve easy and reliable object detection, fiducial markers are em-
ployed in this methodology. The technique of detecting fiducial markers with an
frame-based camera can not be used with an event camera, which makes fidu-
cial markers lose some advantages in this context, e.g., quick detection through
image gradients and enclosed polygons. However, the essential characteristic of
high contrast between encodable bits and the ambient environment remains be-
neficial. A moving high-contrast marker leads to obvious brightness variations
and can be effectively captured by an event camera.
The fiducial marker type chosen in this methodology is AprilTag16 having 16

bits encodable bits. AprilTag also provides other types with more encodable
bits like 25 and 36 bits. However, the choice is limited by the low resolution
of the event camera we are using (DAVIS346 with a resolution of 346 * 260
pixels). If it is assumed different type markers take up the same size of the area
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Figure 3.2: Optimized fiducial with its direction indicator (black blocks
on the white frame), and an output view of an event camera.

in the event camera view, in order to increase the rate of successful decoding,
representing a bit with more pixels is a better choice.

3.2.2 Optimization: Direction Indicators

As mentioned in Section 2.2.1, the fiducial marker is designed to have unique
IDs with corresponding shapes consisting of different combinations of encodable
bits. For AprilTag16, it has 30 various IDs. To fully use every encodable bit
of the marker to transmit more information rather than merely 30 different
messages, the direction indicators are added to markers.

As shown in Figure 3.2, the direction indicators are three black blocks on the
white frame of the marker. In the traditional application of fiducial markers, the
orientation of the marker is irrelevant because the shape of the encodable area
corresponding to its ID is fixed. As shown with two markers on the left of Figure
3.3. However, when each encodable bit of the marker is utilized for transmitting
information, it becomes crucial to indicate the starting bit of the information
sequence. In our design, the indicator on the left-top corner indicates the start
position should be the bit on the first column of the first row. The other bits
will be encoded line by line from left to right. As shown with two markers on
the right of Figure 3.3, even if both markers have the same encodable area shape
with different start points, the decoded results are different.

3.3 Pipeline Step 1: Detection

3.3.1 Tradition Fiducial Marker Detection Method

For the application of fiducial markers with frame-based cameras, the detection
method mentioned in [26] can be summarized into two main steps. 1) Finding
contour and segmenting lines using image gradient directions and magnitude.
2) Iterating all line segments and contours to find the combination of closed
polygons.

The efficacy of this method relies on image continuity. Typically, the output
from an frame-based camera maintains its continuity. In contrast, the output
from an event camera does not guarantee this, as illustrated in Figure 3.5.
The fundamental working principle of an event camera is to detect shifts in
light intensity. Therefore, when the marker moves slowly, rotates, or shifts
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Figure 3.3: Different decoding results with same encodable area shape,
red blocks indicate start bits.

Figure 3.4: Traditional detection method: Raw image (first), gradient
direction (second), gradient magnitude(third), finding enclose poly-
gons(fourth).

unidirectionally, the change in light intensity might be insufficient to trigger an
event on some pixels. As a result, the traditional method is not suitable for
marker detection with event camera output.

As mentioned in Section 2.2.3, Sarmado et al. proposed a method [34] used
for marker detection with event camera output. It has a similar idea to the
traditional method: 1) Performing line segmentation. 2) Finding approximate
polygons by iterating line segments and comparing the project between two
different segments. If the angles and distances between two lines are below
the specified thresholds and the endpoint of one line projects onto the other,
these lines are considered adjacent sides of a polygon. While this approach
effectively detects and decodes the marker, it is not universally applicable due
to similar limitations encountered with previous methods (too many or too few
lines can be detected because of discontinuity). Moreover, when the marker
moves diagonally as illustrated in Figure 3.6, the detected line segments fail
to project onto each other, preventing the formation of a valid approximate
polygon. Consequently, there is a need for a more versatile method that does
not depend on traditional algorithms.
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Figure 3.5: An output with continuous contours(first), discontinuity
caused by unidirectional shift, rotation, and slow movement (second,
third and forth). The edges of the markers are not connected any-
more.

Figure 3.6: A diagonally moving marker. Detected green lines can not
project onto the closest red lines. And they are too far away from
each other.

3.3.2 Purposed Detention Method: EvMarkNet

To detect fiducial markers with different moving statuses, we propose a method
using a deep learning neural network called EvMarkNet. This section discusses
the dataset used to train EvMarkNet and the detailed design of the EvMarkNet.

Dataset for EvMarkNet

The dataset for training EvMarkNet contains 10k data samples captured by
our event camera. Figure 3.7 shows a general view of the dataset. Image data
samples with gray backgrounds are event frames containing markers, which is
also the default visual output of our event cameras. The ground truth labels
are binary masks, where the white polygon indicates the position of markers
in image data samples, and black holes within the white polygon indicate the
position of direction indicators.
For image data sample generation, we create a marker set with 30 variations

of the optimized fiducial marker and create a pipeline to create videos called
MKV containing moving markers. In every MKV, one to three random markers
are chosen. Every marker is assigned a fixed number of random waypoints. The
waypoints are the pixel coordinates, showing the corresponding markers’ moving
destination in MKV. Given that every MKV has a fixed duration, the time spent
moving between waypoints remains consistent. This leads to varying speeds
of marker movement across different videos. In addition, different markers in
the same video may overlap due to random movement paths. This provides
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Figure 3.7: Data samples in the dataset with their ground truth.

Figure 3.8: Filming MKV with an event camera, event frame output
can be seen on the left screen.

additional training data for scenarios where markers are partially occluded.
Besides that, random 3D rotation angles are also set to markers while they
are shifting. It is worth mentioning that, as mentioned in Section 2.1.2, the
inconsistency in the event camera’s event frame output is caused by the different
speeds of the objects moving relative to the camera. Therefore, the randomness
of the marker movement speed when generating the MKV enriches the dataset’s
sample variety. As soon as the MKVs are generated, another type of video called
LBV is also generated. LBVs are videos consisting of moving binary masks that
share the same moving path and rotation angles as markers in MKV. In other
words, LBVs are actually the position reference of MKV.

With both MKVs and LBVs, we film the screen playing these videos with
our event camera, as depicted in Figure 3.8. For the MKV, we collect the
default visual output from the event camera, which is the accumulated event
frames. For LBV, since our event camera has a grayscale frame output mode
specially designed for testing, we directly collect the grayscale frame output
and subsequently adjust the contrast to produce grayscale binary masks. At
last, both outputs are sampled to extract image data samples along with their
corresponding ground truth labels. With a method similar to film MKV, we
capture several videos of urban landscapes and roads which are filmed by drones
equipped with frame-based cameras. This output is sampled and utilized as
random noise in the background of the image data samples. The event camera
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Table 3.1: Event camera parameters for capturing data.

Decay Function Decay Param Accumulation Event Contribution Frame Interval(for grayscale frame output)
Step 1.0E10 27ms 0.228 900

Max Potential Min Potential Neutral Potential Exposure(for grayscale frame output) Frame Mode (for grayscale frame output)
0.0 1.0 0.5 8500 Grayscale

used for data capturing is DAVIS346, having a resolution of 346 * 260, and all
data is collected by its supporting software DV [13]. Table 3.1 shows the setup
of the event camera for capturing data in DV.

Design for EvMarkNet

Since it is necessary to accurately know the position and edge information of
the fiducial marker, detecting fiducial markers from the event frame output is
intrinsically an image segmentation task. While advanced models like SegNet
and SAM excel in image segmentation, their large size, substantial memory
requirements, and slow processing speeds make them impractical for embedded
platforms. Additionally, no existing applications integrate event camera output
with these models. To address this gap, we developed a network specifically
tailored for this purpose, named EvMarkNet, which is designed to effectively
segment fiducial markers from the event frame.
EvMarkNet has a U-Net-like encoder-decoder structure, as shown in Figure

3.9. The first half of the network is called the encoder, which captures the crit-
ical characteristic of the input but in a reduced dimensionality. In our design,
the encoder always consists of convolution layers followed by a batch normaliz-
ation layer and a ReLu activation layer. As the number of layers increases, the
features extracted by each convolutional layer will gradually become abstract.
For example, the initial layers will extract some simple feature information,
such as corners and edges. For deeper layers, they will analyze the combination
of features extracted by the previous layers and finally discern some complex
non-visual features, such as interactions between background and objects.

The rest of the network is called the decoder. A decoder takes the encoded
data and reconstructs it back to the original input data or translates it into
another form of useful output. In our case, the output should be binary masks
showing the position of markers in the input event frames, similar to the ground
truth labels in the dataset. In EvMarkNet, the decoder always consists of de-
convolution layers to recover the image details.
The significant difference from the U-Net is the reduction of skip connection

and max-pool downsampling, and the application of ResBlocks. As mentioned
in Section 2.3.2, skip connection is designed to preserve the spatial details of
the image at different depths in the network, preventing the loss of details dur-
ing downsampling from causing the final output to be less accurate. However,
the skip connection can take up a substantial amount of memory. So we de-
cide to deprecate it. For downsampling steps, instead of using max-pooling,
a convolution layer with a stride of two is applied to reduce information loss.
The ResBlock is an important technology introduced in ResNet [14]. And the
advanced version introduced in [12] is applied in the network. In a nutshell,
ResBlocks help in training deeper networks to converge faster and show better
performance on complex tasks. And they allow networks to learn robust and
hierarchical features across different layers, improving the network’s ability to
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Figure 3.9: The structure of EvMarkNet

Table 3.2: Statistics of the symmetry and number of ResBlocks of
different versions of EvMarkNet, where “Max Dim” is the maximum
feature extraction and restoration dimension reached by the encoder
and decoder. ‘Layers’ is the total number of (de)convolution layers.
Each ResBlock has two (de)convolutional layers.

EvMarkNet
Encoder Decoder

Input Dim Max Dim Layers ResBlocks Output Dim Max Dim Layers ResBlocks
V0

32

128 11 2 16 256 11 2
V1 256 11 3 16 256 11 3
V2 256 8 1 16 256 8 1
V3 256 10 2 32 256 10 2

generalize from training data to unseen data.
During the network design process, it is necessary to focus on the network’s

symmetry and the number of ResBlocks. The introduction of ResBlocks and the
use of convolutional layers over pooling for downsampling result in asymmetry.
The asymmetry is reflected in the difference between the maximum feature ex-
traction dimension reached by the encoder and the maximum feature rebuilding
dimension reached by the decoder. For instance, in our initial design, the out-
put dimension of the encoder is 128. Afterward, a downsampling convolution
layer increases the dimension to 256. This will be the input to the subsequent
deconvolution layer belonging to the decoder. The output dimension from the
encoder does not align with the input dimension of the decoder, which can be
seen as asymmetry. The asymmetry impedes the encoder’s ability to extract
high-level features for the decoder to utilize in image restoration. In addition,
excessive use of ResBlocks can cause a large-size model, while insufficient use
can result in extremely slow training convergence. To figure out a balanced net-
work structure, we design four versions of networks and compare their training
and prediction performance. Detailed results will be discussed in Section 4.2.1.
Table 3.2 shows the structure difference between the four versions (the statistics
in this table don’t count the last layer used for outputting a single-dimension
grayscale image).
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Figure 3.10: An input and the prediction result of EvMarkNet V3.

EvMarkNet V0, as it’s just explained, the maximum reached dimension by
encoder and decoder is not matched. Meanwhile, the network output dimension
is less than the network input dimension. Therefore, the change from V0 to V1
mainly focuses on improving the symmetry of the network. As a result, V1
guarantees that the maximum dimension reached by the encoder and decoder
is the same. Regarding V2, it is only used to validate the effect of the number
of ResBlocks. For v3, based on V1, it ensures symmetry and an appropriate
number of ResBlocks to achieve the most balanced prediction time, model size,
and the best output results.

It is important to note that it’s not evident from the table, but the trans-
ition from V0 to V3 includes an increase in the number of convolutional layers
dedicated to low-level feature extraction and restoration, specifically the layers
before and after the ResBlock. V0 contains only six layers for this purpose,
whereas V3 expands to ten layers. This increase is believed to play a critical
role in enhancing the spatial details of the final outputs.

Based on EvMarkNet V3, as depicted in Figure 3.9, the network is trained
with the dataset mentioned in Section 3.3.2. Binary Cross Entropy is used as
training loss that can be represented with the following formula:

BCE = − [y log(ŷ) + (1− y) log(1− ŷ)] (3.1)

where:

• y is the actual label (0 or 1), provided by the ground truth labels in our
dataset.

• ŷ is the predicted probability (between 0 and 1), provided by the prediction
result of EvMarkNet.

Finally, EvMarkNet V3 is trained for 400 epochs with a batch size of 32. The
training is warmed up with a constant learning rate of 7e−4 to 300 epochs. And
a cosine decay strategy is used for faster convergence. The learning rate will
decay to 2e−3 in the last 100 epochs. The Adam optimizer is applied. Figure
3.10 shows one of the prediction outputs from by EvMarkNet V3.
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3.4 Pipeline Step 2: Identification: Create Marker
candidates

After obtaining the marker position predictions from EvMarkNet, it is essential
to extract the specific contents of the fiducial markers from the corresponding
areas in the event frame as indicated by the white polygons in the binary masks.
These are then used to establish marker candidates for decoding in the next step.
However, as illustrated in Figure 3.10, the prediction from EvMarkNet is not
flawless. The polygon edges are irregular, not accurately depicting the proper
position of the markers. Additionally, there is a minor white shadow above
the white polygon, indicating a predictive error in the marker’s position. To
achieve a more precise determination of marker positions, further processing of
the binary mask output from EvMarkNet is necessary.

3.4.1 Optimizing polygon edges

Finding Contours

The initial step in image processing involves determining the edge coordinates
of the polygon. To achieve this, we first apply a threshold of 80 to the binary
mask to enhance the boundary visibility between black and white pixels. Sub-
sequently, we employ the Suzuki-Abe Algorithm [35] and the Moore-Neighbor
Tracing Algorithm [4] to segment the black and white pixel areas and obtain the
contour coordinates of the white pixel areas. Since OpenCV [27] offers an op-
timized function, cv2.findContours(), based on these algorithms. We use this
function directly to ensure the efficiency of our method. Typically, in the model’s
predictions, the white polygon indicating the marker’s location has the largest
contour perimeter. Thus, the largest contour found by cv2.findContours() is
finally selected. Next, we utilize the cv2.approxPolyDP() function, which is
based on the Douglas-Peucker algorithm [32], to approximate the shape of the
white polygon to the nearest quadrilateral. The outcome of this process is the
coordinates of the four vertices of the quadrilateral.

Determining Vertices

According to the vertices obtained from the last stage, we draw the quadrilateral
and vertices. As shown in the first image in Figure 3.11, it is a perfect estimated
quadrilateral with four vertices based on a regular output from EvMarkNet
without many prediction errors. However, the second and third images contain
significant errors affecting the number of vertices. Therefore, the estimations
of the edge of the quadrilateral by cv2.approxPolyDP() have substantial bias.
The red lines are completely not attached to the edges of white polygons.
To solve this kind of issue, we design algorithms to correct the position of

vertices. The problem can be classified into two categories. The first category
is the white polygons having more than four vertices. In this case, there must
be several vertices clustering with each other. We have the following definition:

Ai =

∑n
j=1 dis(Vi, Vj)

n
(3.2)

where Ai is the average distance between vertex Vi and other vertices Vj . And n
represents the number of all vertices. In the second image of Figure 3.11, given
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Figure 3.11: The outlines (green lines), vertices (green dots), and ap-
proximate quadrilaterals (red lines) of different white polygons in
different outputs

that vertices 3, 4, 5, and 6 are close to each other, their average distance to all
other vertices is smaller compared to the average distance between vertices 1,
2, and 7 and the rest. Consequently, vertices 3, 4, 5, and 6 can be identified as
outliers and removed from the list of vertices.

The second category is the white polygons having four vertices, but one of
the vertices is far away from the other three vertices, as depicted in the third
image of Figure 3.11. The vertex 3 is located on the prediction error part of the
white polygon and causes mistaken quadrilaterals. To solve this problem, we
calculate angles between lines of every three points arranged clockwise. Given

the points Va(ax, ay), Vb(bx, by), and Vc(cx, cy), we can define the vectors:
−−→
BA

and
−−→
BC. The dot product of the vectors

−−→
BA and

−−→
BC is calculated as:

DP = (ax − bx) · (cx − bx) + (ay − by) · (cy − by) (3.3)

The magnitudes of the vectors
−−→
BA and

−−→
BC are given by:

∥
−−→
BA∥ =

√
(ax − bx)2 + (ay − by)2 (3.4)

∥
−−→
BC∥ =

√
(cx − bx)2 + (cy − by)2 (3.5)

The cosine of the angle θ between the vectors
−−→
BA and

−−→
BC is calculated as:

cos(θ) =
DP

∥
−−→
BA∥ · ∥

−−→
BC∥

(3.6)

The angle can be obtained by performing the arc cosine operation on Equation
3.6. If the angle is less than 80 degrees, the corresponding vertex is considered
an outlier and is removed from the vertices list. After filtering the vertices,
three vertices are determined to be in reasonable positions for both types of
problems. Assuming the desired quadrilateral should be symmetrical, the posi-
tion of the fourth vertex is calculated based on the symmetry principle relative
to the positions of the other three vertices. Eventually, the coordinates of these
four vertices are considered as the position of vertices of fiducial markers in
event frames.
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3.4.2 Searching Direction Indicators

Besides locating the marker itself, it is also essential to identify the position of
the direction indicator on the marker to determine its orientation. While the
largest contour from cv2.findContours() is processed further as previously
mentioned in Section 3.4.1, this section also utilizes other contour outputs. We
can find out whether the positions of particular contours fall within the desired
largest white polygon by comparing the center point of each contour to the main
polygon.
If exactly three contours are detected within the range white polygon, their

center coordinates are directly used as the position of the direction indicator.
On the contrary, if the contours are not equal to three, the event frame input
to EvMarkNet needs to be used. Since we have obtained the positions of the
marker vertices in the event frame in the previous stage defined as Vi, the center
point position C of the marker can be calculated from it. Therefore, there will

be a vector from the center point to the vertex
−−→
CV (green arrows in Figure

3.12). We can define a point M on this vector. The distance between M and C

is eighty percent of the magnitude of
−−→
CV .

M(x, y) = (Cx + 0.8 ∗ ∥
−−→
CV ∥x, Cy + 0.8 ∗ ∥

−−→
CV ∥y) (3.7)

The position of M is the approximate position of the center point of each dir-
ection indicator. We need to calculate the sum of the pixel color values within
a 5*5 range around point M . At this time, gray pixels are considered to have
a color value of 0, and black and white pixels all have color values of 128. As
shown in Figure 3.12, except M4, the remaining three points are surrounded by
black or white pixels. So the sums of those pixels are significantly higher than
the value sum of M4. As a result, The corner where M4 is located is considered
as no direction indicator. After identifying the coordinates of the direction
indicators, we arrange the three indicators for each marker in a clockwise se-
quence. The corner of the indicator in the middle of the sequence is designated
as the upper left corner of the marker. The vertex closest to this indicator is
also identified as the upper left vertex of the marker. The remaining vertices
are then organized in a clockwise order based on their distance to the sorted
indicators. With this arrangement, the orientation of the marker is determined.

3.4.3 Unwarping

In this step, we first extract the contents of the fiducial marks from the event
frames using the contours and vertices outlined in Section 3.4.1 and Section
3.4.2. Since the markers move in three-dimensional space, the images cap-
tured by the event camera might have perspective deformations. To address
this, we apply a homography transformation using cv2.findHomography() and
cv2.warpPerspective(), aiming to align the extracted content more closely
with a square shape. As the orientation of the marker was already determined
in the previous section, all the marker contents after transformation should
maintain a consistent orientation. Following the transformation, we scale the
extracted content to generate outputs with various details. Figure 3.13 shows
what the extracted content looks like before and after homography transform-
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Figure 3.12: Summing color values of pixels around blue points to find
out direction indicators (red circles).

Figure 3.13: Images on the three lines show the difference between
contents extracted from the same event frames before homography
transformation, after homography transformation and 1.2x rescaling,
and after homography transformation and 0.7x rescaling respectively.

ation, and after different scaling. The image contents that have undergone ho-
mography transformation and have been scaled down to 0.7x are finally chosen
as the marker candidate used for decoding in the next step.

3.5 Pipeline Step 3: Identification: Decode

3.5.1 Exsiting Fiducial Marker Decoding Method Based
on Event Camera

The method mentioned in Section 2.2.3 proposed by [34] divides events in a
marker candidate into two candidates according to their types: an on-event
candidate and an off-event candidate. They can be simply understood as com-
posed of the white and black pixels in the original event frame. Both on-event
and off-event candidates are then divided into a grid based on the number of
encodable bits of the marker. The color of each cell in the grid is binary classi-
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Figure 3.14: The left image shows a perfectly gridded marker’s encod-
able areas, with each grid containing only on or off events. The right
image shows a grid with large errors due to the diagonal movement
of the marker, with a very mixed pattern of events.

fied into 0 or 1. Finally, these 1s and 0s will be sorted according to the direction
of movement of the marker to obtain the final decoding result. Particularly
in our application, where we decode dynamically changing information rather
than a preset ID, misjudging the movement direction of the marker can lead to
incorrect ordering of the binary sequence (0s and 1s). This error can result in
entirely wrong decoded information.

Except this, another two primary issues with the method proposed in [34]
prevent us from adopting it directly. First, the type of fiducial marker it de-
codes differs from ours. Its use of ArUco markers, which lack an outer white
frame, simplifies identifying the boundaries of the encodable area. In contrast,
our markers include wide white frames, adding complexity to edge detection.
Second, as mentioned in ?? the method is tailored only for non-diagonal move-
ments. It relies heavily on precise grid division. Each grid must align perfectly
with each encodable bit for accurate results. Diagonal movements, however,
often lead to event overflow, as illustrated in Figure 3.14. This can cause cells
that should be classified as ‘0’ to be misclassified as ‘1’, leading to cascading
decoding errors.

3.5.2 Decoding method based on enhanced region seg-
mentation

In order to decode our markers and adapt to their movements in various direc-
tions, we propose a decoding method based on enhanced region segmentation.
This approach utilizes the marker candidates obtained in Section 3.4. As men-
tioned before, these candidates are rescaled to 0.7x. This rescaling minimizes
the presence of non-encodable areas within the candidate, facilitating more ac-
curate decoding. Candidates are later divided into on-event candidates and
off-event candidates. An example is shown in Figure 3.15. The marker in this
example is called Mc containing a message: 1000,0010,0001,1011. Most later ex-
amples are based on Mc. Although the extracted content is already suitable for
the subsequent decoding step, the inherent noise in the output from the event
camera can introduce significant errors during decoding. To mitigate this, we
apply Gaussian blur and a threshold of 200 to clean the candidates as depicted
in Figure 3.16.
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Figure 3.15: A: marker Mc, B: the marker candidate extracted from
Mc. C: Mc’s on-event candidate. D: Mc’s off-event candidate, the
large white area on the top of this image is the white frame of our
marker.

Figure 3.16: A: An on-event candidate before denoising. B: The same
on-event candidate after denoising.

First Refinement

Although the marker candidates have reduced the content of the non-encodable
areas by scaling, small amounts of white frame contents still remain. Therefore,
the initial refinement aims to determine the boundary between the white frame
and the encodable area. Given that the following processing techniques are
applicable to both on-event and off-event candidates.

To isolate the white frame from the encodable area in the candidate, four
values need to be determined. We first calculate the sum of the color values for
each column and row, resulting in arrays Sc and Sr respectively. Given that
white pixels have a color value of 255 and black pixels are 0, a large sum in any
column or row indicates a significant presence of white pixels. As illustrated
in Figure 3.15d, marker borders appear as continuous white areas. We can
establish a threshold and identify continuous segments in Sc and Sr that exceed
this threshold to determine the horizontal and vertical coordinate ranges of the
white areas.

We use four values to sign the boundaries of these borders, namely Fv, Fh, Lv,
Lh. These values represent the approximate positions of the first transition from
continuous black area to continuous white area in the vertical and horizontal
directions, and the approximate position of the last transition from continuous
white area to continuous black area in the vertical and horizontal directions.
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Figure 3.17: First refinement of Mc’s on-event and off-event candidates.
The horizontal and vertical red lines correspond to Lh, Lv, and the
horizontal and vertical pink lines correspond to Fh, Fv.

Taking Lv and Fv as an example, it can be defined as follows:

Lv =


i

0 < i ≤ Nc ∧
Sc(i) ≥ Twhite ∧
Sc(i+ j) ≤ Tblack, ∃ j ∈ [1, 4]

Nc − 1 i ≥ Nc − 4

(3.8)

Fv =



i

0 ≤ i < Nc ∧ i ≤ Lv ∧
Sc(i) ≤ Twhite ∧
Sc(i+ j) ≥ Tblack, ∃ j ∈ [1, 4]

Nc − 4 Nc − 4 ≤ i ≤ Lv

0 i > Lv

(3.9)

Where Nc is the number of pixel columns of a candidate, Sc(i) is the ith sum
value of array Sc, Twhite and Tblack indicate the threshold used to judge if column
i is in a continuous white or black region. If column i is in the white area, and
one of the next three adjacent columns is in the black area, then column i is
considered to be the dividing line between the black and white areas, and vice
versa. Figure 3.17 depicts the results of the first refinement of Mc. The white
frame is perfectly detected. It can be observed from Figure 3.17a, only Fh and
Lh are drawn. It’s caused by the negligible size of the white frame area, and
both Fv and Lv are 0 in this case.

Second Refinement

The initial refinement successfully eliminates most of the white frames from the
candidate, yet the result is not entirely filled with the encodable area. Also, a
black gap remains between the encodable area and the edge of the resulting im-
age, as illustrated in Figure 3.18. Therefore, the focus of the second refinement
is to determine the precise location of the encodable area.
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Figure 3.18: Mc’s refined off-event candidate. The gaps between the
codable and image edges are pointed out by green lines.

Compared with the first refinement, the logic of the second refinement is
much simpler. It is still necessary to obtain the sum of the candidate’s row and
column pixel color values Sr and Sc. At the same time, the candidate is scanned
from four directions of the image to check whether the color value of each row
and column exceeds the threshold Tb. Taking the determination of the right
side edge position of the encodable area as an example, starting from the last
pixel column of the candidate, if the value of column i is greater than the Tb,
then check whether the values from i − 1 to i − Ic are all greater than the Tb

(Ic is another threshold to indicate how many rows or columns to check in each
iteration). If all values are greater than the Tb, then column i is considered to
be the edge of the encodable area. It is worth mentioning that both Tb and Ic
are adaptive rather than fixed. Since the number of events generated when the
marker moves at different speeds and directions is different, the two thresholds
will change according to the density of white pixels in the candidate. The higher
the density, the higher the threshold. Figure 3.19 depicts some results of the
second refinement.

Column is an edge =


True

0 < i ≤ Nc ∧
Sc(i) ≥ Tb ∧
Sc(i− j) ≥ Tb, ∃ j ∈ [1, Ic]

False Otherwise

(3.10)

Decoding

For the final decoding step, we grid the results from the second refinement. We
define the cell on the top left corner of the grid as (0,0) and the cell on the
bottom right corner as (3,3). Unlike the method proposed in [34], the directions
of our candidates are confirmed by the direction indicator at the time of creation,
which ensures the order of the encodable bits is consistent and unaffected by the
marker’s movement direction. Most importantly, during the binary classification
of cell contents, we employ an adaptive threshold. This threshold maximizes
the tolerance to the bias of grid division. Even if white pixels overflow from
one cell to another, the adaptive threshold ensures that these overflowed cells
are accurately classified. This can be seen from Figure 3.20, which shows the
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Figure 3.19: Second refinement of Mc’s on-event and off-event candid-
ates. Red lines indicate the edge of the encodable areas.

Figure 3.20: Decoding results of Mc’s on-event and off-event candidates.
Pink texts are decoding the results of every bit. Blue texts are the
proportions of white pixels in each cell. Yellow texts are the threshold
of classification.

final decoding results of Mc’s on-event and off-event candidates. Regarding the
threshold of Figure 3.20a, which is 28%. Though the cell (3,3) has 16% of white
pixels in it, this portion is lower than 28%, so is still classified as a 0.
The results of these two candidates need to be read column by column starting

from the bit (0,0). The message contained by Figure 3.20a is: 1000,0010,0001,1010.
The message contained by Figure 3.20b is: 1000,0010,0000, 1111. Finally, the
information decoded from the on-event and off-event frames is combined using
an OR operation to get the message Mc containing: 1000,0010,0001,1011. This
is the same as it mentioned in Section 3.5.2.
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Chapter 4

Evaluation

This chapter will conduct a detailed quantitative and qualitative evaluation of
the design proposed in Chapter 3 and analyze its results. In the end, we will
summarize the performance of the entire methodology and analyze the existing
problems and bottlenecks of this method.

4.1 Evaluation on Optimized Fiducial Marker

As the foundation for our marker system, AprilTag16 has only 16 encodable
bits, which can be arranged into 30 distinct patterns to represent various IDs.
However, when we utilize all bits for transmitting diverse information, the the-
oretical maximum number of different messages that can be communicated ex-
pands dramatically to 216. This significant increase in potential outputs arises
because AprilTag16 is designed for robust detection, aiming to maximize the
number of detectable or correctable bit errors. To achieve this, each designed
pattern must consider its Hamming distance from other ID patterns, ensuring
a substantial difference to effectively reduce error rates.

Fully utilizing each bit for information transmission compromises stability,
particularly when the transmitted data is entirely random. This variation can
significantly impact the efficiency of the decoding method we proposed. For
instance, as depicted in Figure 4.1, consider a scenario where the encoded in-
formation in the marker consists of the sequences 1000,0010,0000,1010. Not-
ably, every bit in the fourth column is ‘0’ corresponding to black cells. The
event camera’s output reveals no on or off events in this last column. If our
proposed method for region segmentation and gridding of the coding areas is
applied, the decoded result turns out to be 1000,0001,0000,1001, which deviates
substantially from the original encoded information.

One potential solution to improve the stability of the transmitted information
is adding a header and footer, similar to the structure used in many communica-
tion protocols that include a header and a checksum. However, given the 16-bit
limitation, designing a complex header is not feasible. To ensure the smooth
execution of subsequent tests, we have to temporarily set both the first and
last bits of the information sequence to ‘1’. Additionally, we avoid transmit-
ting patterns that could entirely disappear at the edges of the encodable area,
such as sequences where either the first four bits or the last four bits are all 1s.
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Figure 4.1: A: a marker that contains all zeros in the last encodable
column, B: the event frame output by the event camera, C: on-event
candidate after the second refinement, D: on-event decoding result.

Figure 4.2: The definition of IoU.

Implementing this design constraint reduces the number of distinct information
types that can be transmitted to 12,544. The variability is drastically reduced
by 80%. Developing an efficient and stable coding system will be an essential
task in the future.

4.2 Evaluation on EvMarkNet

4.2.1 Multi Version Comparison

As mentioned in Section 3.3.2, the EvMarkNet used for detecting is not the first
version of the design. To evaluate the improvements of EvMarkNet V3 over its
predecessors, we conducted a series of tests comparing different versions of the
network. This comparison assessed the model size, parameter size, prediction
time, and Intersection over Union (IoU) scores of the prediction results.
IoU is a metric for image segmentation tasks, quantifying the quality of the

results by measuring the overlap between predicted and actual data. Based on
the information introduced in Section 2.3.1, IoU can be defined as:

IoU =
TP

TP + FP + FN
(4.1)

The accuracy can be defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(4.2)
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Table 4.1: Evaluation between different versions of EvMarkNet.

EvMarkNet Model Size (MB) Parameter (Million) Avg. Speed (ms/it) Avg. IoU (%)
V0 33.8 2.8 29 43.4
V1 59.3 4.8 38 63.8
V2 17.9 1.5 31 48.9
V3 55.1 4.6 43 81.6

Figure 4.3: A: an output from EvMarkNet v0, B: an output from Ev-
MarkNet v1.

The distinction between IoU and accuracy is shown in their treatment of True
Negative (TN) data. IoU ignores TNs, meaning it does not consider the seg-
mentation quality of the background content. As our image segmentation task
focuses only on the foreground, i.g. the quality of fiducial marker segmenta-
tion, IoU is more suitable for evaluating the performance of EvMarkNet in this
context.
We tested four versions of the model on a validation dataset of 1800 samples

separated from the main dataset. And each model is trained by 200 epochs with
a constant learning rate of 7e−4. The testing hardware setup is as follows: AMD
EPYC 7413 24-core CPU, NVIDIA A40 GPU, and 16GB of video memory are
allocated. The testing software setup is: Ubuntu 20.04, CUDA 12.3, cudnn
8.9.6, TensorFlow 2.16.1, python 3.11.0. Table 4.1 shows the results of our test.
From the data presented in the table, it is obvious that v2 has the smal-

lest model size, while v1 has the largest. As detailed in Section 3.3.2, too
many textitResBlocks contribute to larger model sizes. Hence, v2 with only
two ResBlocks is smaller than v1 which includes six ResBlocks. This reduc-
tion in ResBlocks also results in faster prediction times for v2 compared to v1.
Although v3 contains four ResBlocks, extra convolutional layers outside of the
ResBlocks slightly increase its size, making it a similar size to v1. While v2
has advantages in terms of size and speed, its IoU for prediction results signi-
ficantly falls behind v3. V2’s prediction speed is 27.9% faster than v3’s, but its
prediction quality is 67.3% better. If we compare v0 with v1, the enhancement
of the model’s symmetry improves prediction quality by 32% and also results
in more apparent segmentation of the marker edges, as depicted in Figure 4.3.
At last, v3 demonstrates an 85.5% improvement in prediction quality over the
initial version v0, confirming the effectiveness of our optimization and design
strategies for the final model version.
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Figure 4.4: IoU vs. Training Epochs for different EvMarkNet versions.

Figure 4.4 illustrates how the Intersection over Union (IoU) of the model
predictions related to training epochs. The training curves for models v0, v2,
and v3, which contain fewer ResBlocks, are relatively smooth with minimal
fluctuations. And they stabilize significantly after 160 epochs, indicating a
trend toward convergence. In contrast, the training curve for v1 that uses more
ResBlocks shows volatility. Notably, there is a sharp decline in IoU at 100
epochs. All those features show that a large number of ResBlocks can lead to
training instability and difficulty in convergence.

4.2.2 EvMarkNet v3 Test Based on Independent Dataset

After evaluating the advantages of EvMarkNet v3 against earlier versions, we
conducted a distinct test using an independent dataset to assess the model’s
capability with unseen data. We created 15 fiducial markers with random in-
formation. Instead of generating a video with randomly moving markers to
display on a screen, we displayed the marker on a phone screen and manually
swiped it at various speeds in front of the event camera. A total of 500 frames
were captured for this test. Figure 4.5 illustrates both the data collection pro-
cess and an example of a data sample. The final average IoU for the predictions
on the new dataset is 65%, which is lower than the results obtained with Ev-
MarkNet v3 on the validation dataset. This reason can be attributed to two
main factors:

• Limitations of the Training Dataset : The training dataset was generated
from videos containing markers moving randomly, with some variation in
speed as discussed in Section 3.3.2. Although videos take into account
the random movement speeds of the markers, these movement speeds are
generally slow and are not entirely the same as the faster movements in
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Figure 4.5: A: collecting the independent data, B: a data sample ex-
ample

Figure 4.6: A: event frame containing noise, B: light reflection during
collection

practical scenarios. We mentioned the inconsistency of the event frame
output of the event camera in Section 2.1.2. This difference between the
slower speeds in the training dataset and the faster movements in the new,
independent dataset contributed to differences in the event camera event
frame outputs. As a result, the quality of the model’s predictions was
diminished.

• Environmental Interferences: During the training data collection, the
screen material used to display the videos minimizes light reflection and
ensures clean data capture. In contrast, the mobile phone screen used in
collecting independent datasets sometimes produced reflections, introdu-
cing significant noise and interference. Figure 4.6 shows an example of an
event frame output affected by the light reflection on the screen.

To address the first issue, in future work, incorporating new data samples that
include faster marker movements and retraining the model can enhance the
model’s performance.
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Figure 4.7: The first line shows examples of correctly created marker
candidates. The second line shows examples of incorrectly created
marker candidates, which don’t have complete fiducial markers dis-
played or are in the wrong orientations.

4.3 Evaluation on Accuracy of Creating Marker
Candidates

This section focuses on testing and evaluating the accuracy of creating marker
candidates, utilizing the independent dataset referenced in Section 4.2.2 with the
prediction results from EvMarkNet. To determine the successful establishment
of a marker candidate, the following criteria must be met:

• The marker candidate, when extracted from the event frame and 1.3x
rescaled, should clearly display the entire fiducial marker.

• Building on the first criterion, if three indicators are visible at the upper
left corner, lower left corner, and upper right corner of the marker can-
didate, it confirms that the candidate has the correct orientation and is
correctly established.

Figure 4.7 depicts a correctly created marker candidate.
After conducting tests on 500 data samples, the accuracy of the final marker

candidate reaches 83.4% and 417 correct candidates are created. While the
prediction results from EvMarkNet only achieved 65% IoU due to occasional
inaccuracies in edge prediction or undetected direction indicators, the algorithm
we designed effectively compensates for these errors, as demonstrated in Figure
4.8.
However, for the same reason, incorrect candidate creations are caused by

inaccuracies in edge prediction or undetected direction indicators. Although
our method addresses most issues effectively, it struggles with a particular case,
as illustrated in Figure 4.9. In this instance, although the white polygon has
four vertices and is not clustered together, two of the vertices are actually offset
significantly, and our method cannot detect this error. Furthermore, another
situation is illustrated in Figure 4.10, the direction indicator which should be
within the green circle by design doesn’t appear. This issue arises because the
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Figure 4.8: There is an obvious error in the edge of the marker in
image A, but the algorithm can still estimate the correct edge

Figure 4.9: An example of wrong quadrilateral estimation

light intensity change in this area is not noticeable enough for the event camera
to generate enough events. Consequently, EvMarkNet can’t detect it. Our
algorithm also produces identical results when calculating the sum of the color
values in both the green and blue circles. This similarity in results makes it
impossible to determine the location of the last indicator.

4.4 Evaluation on Accuracy of Decoding

This section evaluates our decoding algorithm using the correctly established
marker candidates from the previous section. The test involves a simple com-
parison of the information decoded from the candidates against the information
they are intended to carry. After testing, the decoding accuracy for the 446
correctly established marker candidates is found to be 93.4%. Among the inac-
curately decoded information, the error rate for individual bits is 12.2%. This
translates to approximately 43 incorrectly decoded bits out of a total of 6244
bits transmitted across 446 pieces of information, resulting in a bit error rate of
about 6.8%.
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Figure 4.10: An example of incorrect candidate caused by an undetec-
ted direction indicator

When observing the test results, it is found that our method has a high error
tolerance. Processing on-event and off-event separately enables complementary
decoding results, enhancing overall accuracy. As depicted in Figure 4.11, ac-
cording to the designated information for the marker, the encodable bit in cell
(2, 3) should be encoded as ‘1’. In Figure 4.11a, the white pixels within the cell
(2, 3) of the off-event are distributed both horizontally and vertically, suggesting
that the arrangement is not due to pixel overflow. Thus, from our analysis, this
cell should be decoded as ‘1’. However, due to the application of a dynamic
threshold, this cell is mistakenly treated as ‘0’. In contrast, in Figure 4.11b, the
white pixels in cells (2, 3) are sufficiently apparent to be correctly classified as
‘1’. By applying an OR operation between the results from both candidates,
the error in the decoding of the off-event candidate is effectively neutralized.
Consequently, the final decoding result for this cell is correctly determined as
‘1’.
However, the dynamic threshold can be a double-edged sword, it sometimes

misclassifies cells. For instance, cell (2,2) in Figure 4.12 should be decoded
as ‘0’. However, because the proportion of white pixels exceeds the dynamic
threshold by 2%, it is mistakenly classified as ‘1’. This illustrates how sensitive
the decoding process is to threshold settings, leading to potential inaccuracies.

Figure 4.11: A: the decoding result on an off-event candidate, B: the
decoding result on an on-event candidate. The cell (2,3) in both
candidates are complementary.
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Figure 4.12: Mistaken classification in cell (2,2).

Figure 4.13: A, B: the decoding result of an on-event candidate and its
corresponding output of subsequent refinement. C, D: the decoding
result after manually adjusting the right edge of the encodable areas
and its corresponding output of subsequent refinement.

Sometimes, inaccuracies in the dynamic threshold calculation can cause low-
accuracy edge determinations in the encodable area by the second refinement.
For example, Figure 19b shows the default output of our second refinement
algorithm, which contributes to the decoding error of cell (2, 2) depicted in
Figure 19a. Figure 19d illustrates the output after manually adjusting the edge
to 3 pixels left. This adjustment leads to fewer white pixel leakage and correct
decoding of the cell (2, 2) in Figure 19c. This demonstrates the critical role of
precise edge alignment in reliable decoding.

Another source of decoding errors is the inaccurate calculation of the marker’s
white frame edges during the first refinement. As illustrated in Figure 4.14, the
pink solid line correctly denotes the left edge of the white frame, but the red
solid line, which is supposed to represent the right edge is wrong. The yellow
dotted line is added to this figure manually, indicating the expected position
for the right edge. This error occurs because the right edge of the frame within
the candidate is uneven, causing the white pixels to be scattered. Each column
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Figure 4.14: An incorrect first refinement result. The purple solid line
is the correct calculated position of the left edge of the white frame,
the red line is the incorrect calculated position of the right edge of
the frame, and the yellow dotted line is the manually added expected
right edge position.

Table 4.2: Final evaluation result of the entire pipeline.

Total Time Decoding Accuracy CPU RAM Min GPU Video RAM
26.9 ms 77.9% 670 MB 750 MB

near the yellow dotted line contains significantly fewer white pixels compared
to the column marked by the red solid line. Consequently, when the algorithm
scans lines, the yellow dotted line does not meet the threshold conditions. In
this scenario, the miscalculation during the first refinement disrupts subsequent
stages, preventing normal execution of the second refinement and decoding pro-
cesses. As a result, all encodable bits are considered undecidable. To address
this issue, incorporating additional image processing algorithms to smooth the
image edges is necessary.

4.5 Overall Evaluation

In this section, we evaluate the entire pipeline by processing 500 data samples
from the independent dataset mentioned in Section 4.2.2. The evaluation in-
volves running these samples through our pipeline and then comparing the final
decoded output with the original information contained in the samples. The
hardware configuration for this test is changed to Intel i7-11800H CPU, Nvidia
RTX3060 GPU, and 8GB of available memory allocated to this task. Unlike
the previous test of EvMarkNet, this setup represents a lower-performance con-
figuration to illustrate the efficiency of our pipeline. Table 4.2 shows the result
of the final evaluation.
The total operation time of the entire pipeline is only 26.9 ms. If the event

camera collects data at an interval of 27 ms, theoretically up to 37 pieces of
information can be transmitted per second. The final decoding accuracy of our
method is around 77.9%. This is the same as the cumulative loss multiplica-
tion results of our previous tests. What surprised us most is that the entire
pipeline runs much faster on a low-performance configuration than EvMarkNet
on a high-performance configuration. In addition, the CPU RAM usage of the
entire pipeline is only 670MB. It is even more worth mentioning that although
we allocated 8GB of video memory to the entire task (mainly for running Ev-
MarkNet), the minimum video memory actually required is only 700MB.
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In order to have a deeper understanding of the performance bottleneck of
the entire pipeline, we perform a more detailed evaluation. Each step in the
pipeline is timed separately. The time distribution of each step is depicted in
Figure 4.15. It can be clearly observed that the first step of using a neural
network for detection is the most time-consuming part of the entire pipeline,
24.2 ms, taking up 90% of the total duration. This high time consumption
is a trade-off when applying neural networks. As the payback for the extra
computation time, the network gains versatility and enhanced stability across
various application scenarios.
The decoding phase is the second most time-consuming part of the process,

taking 2.3 ms and accounting for 8.6% of the total computing time. This dur-
ation is reasonable because the decoding part needs to decode both on-event
and off-event candidates, which contain repetitive operations. In addition, the
decoding process involves exhaustive traversal algorithms and may need to scan
every row and column in the candidate. This becomes a potential factor in
increasing the total computation time.

Figure 4.15: A pie chart displaying the computation time distribution
of each step of the pipeline.
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Chapter 5

Conclusions

In this thesis, a method for high-speed moving objects based on event cameras
has been proposed. This method has the characteristics of being able to detect
and identify moving objects based on event cameras and interact with recognized
objects. In addition, this method is versatile for different application scenarios
and is suitable for embedded platform devices.

The whole method is designed to revolve around a keyword and the com-
mon features between objects. We use optimized fiducial markers to introduce
external consistent features to all objects. The detection of the marker is con-
sidered the detection of the objects themselves. This ensures our method’s
versatility and interactive capability. We first utilize a custom-developed neural
network called EvMarkNet to detect the fiducial marker in the event frame out-
put by the event camera, and create a dataset for training the network. The
prediction result of EvMarkNet provides the approximate position of the fiducial
marker in the event frame. From this, we extract the contents of fiducial markers
from the event frame and apply a homography transformation to form marker
candidates suitable for decoding. These candidates are split into on-event and
off-event candidates, each undergoing two rounds of region segmentation re-
finements to define the encodable areas within markers. Finally, the refined
encodable area is gridded, and each cell in the grid is binary classified with a
dynamic threshold. The decoding results from the on-event and off-event are
combined using an OR operation to produce the final result.

We conducted qualitative and quantitative tests and evaluations of our pro-
posed method. First, we assess different versions of EvMarkNet. With version
v3 showing the highest Intersection over Union (IoU), it proves its prediction
quality and the rationality of our design approach. Next, we separately test
each step in the pipeline. The high decoding accuracy shows the effectiveness of
our method in analyzing fiducial markers and its tolerance to errors. We finally
evaluated the entire pipeline and confirmed that it has low computation time,
low storage and memory usage, and high accuracy, even on a lower-performance
platform.

Based on these findings, we conclude that the method proposed in this thesis
is well-suited for high-speed moving object recognition based on event cameras.
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5.1 Limitations

Although our method has shown good performance, it still has certain limita-
tions:

• The event camera we use is equipped with a manual focus lens. This
constraint means if it’s deployed on unmanned equipment, the distance
between the camera and the object must remain constant to avoid defo-
cusing, which might lead to serious performance degradation.

• Our approach relies heavily on a specific type of fiducial marker, AprilTag16.
And the entire dataset used to train EvMarkNet is based on this kind of
marker. As a result, introducing new types of markers or customizing ex-
isting ones (for instance, making structural modifications to our markers)
could potentially reduce the accuracy of EvMarkNet ’s predictions.

• Our method is limited to the case where there is only one fiducial marker
in the event frame. For multiple markers, our method will only decode
the marker with the largest area in the event frame.

• The fiducial marker originally contains content with a fixed shape and ID,
which makes the traditional fiducial marker detection method have an er-
ror compensation mechanism. Even if some bits are not decoded correctly,
this mechanism can be used to get close to the most similar shape and
ID. This mechanism is particularly useful when the marker is partially ob-
scured. However, we use fiducial markers to transmit completely random
information, which makes the information decoding accuracy almost zero
when the marker is obscured.

5.2 Future Works

Due to time constraints, many design details could not be optimized, and many
tests could not be performed. The following lists possible future optimization
directions and tests that can be used to demonstrate the advantages of this
method.

5.2.1 Possible Optimization Directions

Neural Network with Better Prediction Quality

As the first step in the pipeline, high-quality prediction results from the Ev-
MarkNet can make the subsequent candidate creation and decoding more effi-
cient, with fewer candidate orientation problems, bias problems on the edges of
the encodable area, and binary classification errors due to white pixel leakage.
We believe that there are models with faster prediction speed and better output
quality. Exploring the latest models could prove beneficial. For example, the
recently released MobileSam [39] offers improvements in both model size and
prediction speed compared to EvMarkNet, though its prediction quality remains
to be evaluated.
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Figure 5.1: A: the event frame of a marker moving towards the top left,
B: events are divided into two groups according to their timestamps,
where red pixels are old events and green pixels are new events. The
moving direction can bee seen from B.

Fiducial Marker with More Encodable Bits

The fiducial marker used in our proposed method has only 16 encodable bits,
and two of them are used as restriction bits. A marker with more bits might be
feasible. More bits means more information combinations and effective encoding
systems. Such as more restriction bits, or header and CRC checksum. This will
significantly improve the transmission stability of information.

Dynamic thresholds for more flexibility

As mentioned in Section 4.4, sometimes dynamic thresholds can lead to errors in
binary classification. In this case, a more flexible dynamic threshold is needed.
For instance, we can consider the distribution of white pixels in each cell in the
gridded encodable area. If most of the white pixels in some cells are distributed
at the edge, more weights can be added to them when calculating the threshold.
In addition, the white pixel density of each cell can be calculated, and more
weights can be added to cells with high white density.

EvMarkNet Implement with TensorFlow Lite

TensorFlow Lite [11] was proposed by Google to optimize and compress models
trained based on TensorFlow while maintaining the output quality of the model
as much as possible and reducing the size of the model. To implement our model
on embedded platforms, TensorFlow Lite is a good choice.

Utilization of Time Density of Event Camera

As mentioned in 2.1, in return for sacrificing spatial resolution, the event camera
has a high temporal resolution. Each event output from the event camera has
its own timestamp. An application of using their timestamp to estimate object
moving direction is depicted in Figure 5.1. This feature, as the most significant
advantage of event cameras, should be fully utilized. The processing of event
frames is essentially the processing of two-dimensional images, which do not
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contain any three-dimensional time information. It is necessary to develop a
network designed to accept independent events as inputs. Such a network would
analyze the spatiotemporal relationships of events, enabling it to make more
accurate predictions.

5.2.2 Possible Tests to Conduct

Comparison with Currently Popular Image Segmentation Models

We want to compare our EvMarkNet with the current popular models for image
segmentation to see what its advantages and disadvantages are. So we need to
use the same network structure like SegNet [3] or DeepLab [6] to train for the
task of fiducial marker detection, or use pre-trained models such as SAM [16] to
transfer train or fine-tune. In this way, we can make a reasonable comparison.

Comparison with Traditional Fiducial Marker Detection Method

Some functions and features for traditional fiducial marker recognition should
be added to our pipeline, such as a marker shape-matching mechanism and error
compensation mechanism. Then it’s possible to compare our method’s advant-
ages and disadvantages with those of traditional fiducial marker recognition
methods.

Execution on embedded system platforms

One of the goals of this paper is to design a method suitable for embedded plat-
forms. Although our method has been shown to have low storage and memory
consumption suitable for embedded platforms, the specific performance on em-
bedded platforms is still unknown. Although we tried to run our method on
NVIDIA TX2, it was unsuccessful due to CUDA software compatibility issues.
We hope to have the opportunity to verify our method on embedded platforms
in the future.
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